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Abstract

Are written corpora useful for phonological re-
search? Word frequency lists for low-resource
languages have become ubiquitous in recent
years (Scannell, 2007). For many languages
there is direct correspondence between their writ-
ten forms and their alphabets, but it is not clear
whether written corpora can adequately represent
language use. We use 15 low-resource languages
and compare several information-theoretic prop-
erties across three corpus types. We show that
despite differences in origin and genre, estimates
in one corpus are highly correlated with estimates
in other corpora.

1 Introduction

One of the challenges facing corpus research
in phonology is the absence of detailed cross-
linguistic phonological corpora. When a phono-
logical trend is found in a language or a lan-
guage family, e.g. OCP in Semitic (McCarthy,
1986), does it extend to other languages too?
Variation-friendly versions of Optimality The-
ory (e.g. Anttila, 1997; Boersma, 1998; Gold-
water and Johnson, 2003) predict that oblig-
atory constraints in one language would ap-
pear as trends in other languages too, e.g. lan-
guages without grammatical final devoicing
should have fewer voiced codas than voiced on-
sets. This rigor is difficult to achieve without
detailed phonemic lexicons.

The Crubadan corpus (Scannell, 2007; cf. Zu-
raw, 2006) provides word frequency files for
thousands of languages, often based on Bible
translations and Wikipedia. The Linguistic Data
Consortium (LDC) has provided data for many
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languages in various formats, e.g. conversation
transcripts and newswire, from which word fre-
quency files could be easily generated (for a
few languages, LDC provides such data directly).
An intriguing new source for word frequencies is
the Open Subtitles Corpus (Tiedemann, 2009),
which collects subtitle data for multiple lan-
guages. Therefore, it potentially represents spo-
ken language better than Bible translations or
Wikipedia.

There are several challenges in using word
lists for research in phonology. First and most
obviously, some procedure needs to be applied
to translate alphabetic representations to phone-
mic representations, if such a procedure is pos-
sible.! But even in cases in which a clear cor-
respondence between the alphabet of a language
and its phonemic representation does exist, we
may suspect that the data itself is inadequate,
or not representative of the phonemic trends of
the language. For instance, Daland (2013) dis-
cusses burstiness, or the possibility that other-
wise low-frequency words could bias a sample
due to them being over represented in a partic-
ular subset of the corpus. A good example of
this effect can be found in the Criibadan entry for
Indonesian, in which the word Indonesia is the
14th most frequent. This is due to the fact that
the word frequencies were created from the In-
donesian Wikipedia, a corpus in which the word
Indonesia is very frequent. For comparison, the
word Indonesia is not among the 1,000 most fre-
quent words in the word frequency files derived

"For some questions, using the alphabet directly may be
enough (e.g. Piantadosi et al., 2011), but for phonological ques-
tions, the use of the alphabet as a proxy for phonemic represen-
tations is suspect.



from an Indonesian newspaper collected for Co-
hen Priva (2017).

Despite burstiness, recent findings suggest
that segment frequency, predictability, and infor-
mativity values converge to their model values
rather quickly (Cohen Priva and Jaeger, 2018),
which may follow from the segmental domain
being considerably more dense than the word-
and-above domain. However, their findings
compared subsamples of a corpus to the entire
corpus, rather than different corpora to one an-
other. Furthermore, word frequencies were es-
tablished using spoken corpora. Would it be
valid for other studies to rely on word frequency
lists from different genres, often less represen-
tative of spoken language? An additional limi-
tation is that their findings were based on only
one language with millions of word tokens in
the entire corpus (the samples were substan-
tially smaller). Our goal in this paper is to as-
sess whether similar findings arise without these
limitations, e.g. would Cribadan-based data be
similar to spoken data from the same language,
using smaller corpora, and many different lan-
guages.

2 Methods and materials

2.1 Word frequency lists

We used word frequencies from three corpora,
the Criubadan Corpus (Scannell, 2007), the Open
Subtitles Corpus (Tiedemann, 2009), and con-
versation transcripts (some of them scripted)
from the IARPA Babel program (Adams et al.,
2017; Andresen et al., 2019, 2018, 2017; Andrus
et al., 2017b; Benowitz et al., 2019; Bills et al.,
2015, 2018, 2016; Conners et al., 2016). We
only used languages that appeared in the Open
Subtitles corpus, or were part of the IARPA Ba-
bel program. For every language, we ranked
word type by token frequency, only considering
words that had the same or more occurrences
than the 30,000th ranked word. Additionally, we
excluded words that our rules could not trans-
late as well as words whose frequencies in that
corpus were lower than 5. Furthermore, we did
not use Georgian from the Open Subtitles cor-

pus because we determined that although the
words consisted of Georgian script, many were
not actually in Georgian, but possibly in Rus-
sian.>  We similarly excluded Haitian Creole
from TARPA Babel (Andrus et al., 2017a) be-
cause the spelling convention was not consistent
with written Haitian Creole. We also excluded
words that had any uppercase letters in them in
order to discard of irrelevant data, including but
not limited to names, acronyms, and companies.
The resulting number of types and tokens per
corpus are listed in Table 1 for Open Subtitles,
and Table 2 for TARPA Babel.

Table 1: Open Subtitles vs. Cribadén type and token fre-
quencies

Language  Open S. types Open S. tokens Cribadédn types Cribadan tokens
Bulgarian 23,100 342,000,000 21,300 1,160,000
Catalan 17,700 2,790,000 17,900 1,510,000
Greek 23,100 461,000,000 22,100 1,780,000
Hungarian 29,500 296,000,000 26,300 1,130,000
Indonesian 30,400 75,400,000 14,900 1,690,000
Korean 30,800 5,830,000 28,600 821,000
Malayalam 33,100 1,430,000 14,100 328,000
Tamil 2,950 112,000 28,100 842,000
Tagalog 1,530 68,400 12,700 1,090,000

Turkish 29,000 441,000,000 23,700 795,000

Table 2: TARPA Babel vs. Criibadén type and token fre-
quencies

Language Babel types Babel tokens Cribadén types Criibadan tokens

Guarani 4,920 391,000 3,150 105,000
Georgian 7,550 408,000 33,900 1,190,000
Swahili 5,240 377,000 16,600 1,680,000
Tamil 9,480 521,000 28,100 842,000
Tagalog 5,370 692,000 12,700 1,090,000
Tok Pisin 1,720 479,000 1,520 1,030,000
Turkish 9,170 663,000 23,700 795,000
Zulu 8,610 416,000 26,900 884,000

2.2 Translation to phonemic representation

For each language in the Open Subtitles and
IARPA Babel corpora, we assessed whether it
would be possible to translate them to phone-
mic representations. It is difficult to reconstruct
stress reliably, so we did not try to capture this
information. We successfully created rules that
would translate the following languages (corpus
name in parentheses, o for open substitles, b

?For instance, the second most frequent word in Open Subti-
tles for Georgian is 3, which (a) does not appear in the Cribadan
Georgian word frequency list and (b) translates to /v/ in Geor-

gian. Therefore, g is not a Georgian word but likely the Russian
preposition 6.



for IARPA Babel): Bulgarian (o), Catalan (o),
Greek (0), Georgian (b), Guarani (b), Hungar-
ian (0), Indonesian (0), Korean (o), Malayalam
(0), Swahili (b), Tagalog (o, b), Tamil (o, b), Tok
Pisin (b), Turkish (o, b), and Zulu (b).

The translation procedure involved creating
regular expressions that would match letters to
their corresponding segments, conditioned by
the context in which they were used, with the
most specific context taking precedence over
less specific contexts. Finally, sporadic string
editing operations were used e.g. to treat gem-
ination as a segment followed by a repetition
(e.g. /t,/), rather than the same segment repeat-
ing twice (e.g. /t,;t/). The translation proce-
dures were verified against reference translation
words for those languages. The full translation
procedure, the translation code, and the rules
used to translate each language are all available
at https://urielcpublic.s3.amazonaws.com/code/
SCiL2020Code-2019-09-15.tbz.

2.3 Calculation of information-theoretic
properties

We followed standard practice for calculat-
ing the information-theoretic measurements
(e.g. Aylett and Turk, 2004; van Son and van
Santen, 2005; Bell et al., 2009). We calculated
three properties. Segment frequency is the un-
igram probability of each segment in the en-
tire corpus, negative log, transformed, ignor-
ing types. Segment type frequency is the prob-
ability of finding each segment in any word
type (negative log, transformed). Segment in-
formativity (Cohen Priva, 2008, 2015) is the ex-
pected value of each segment’s surprisal (based
on maximum-likelihood estimates), using all the
preceding phonemes as context (van Son and
Pols, 2003). Peripheral segments are likely to
be mis-calculated, as they appear in very few
word types. Therefore, we removed all seg-
ments that occurred more than 50 times less
frequently than the most frequent segment (by
token). This step is crucial because many al-
phabets (e.g. Tamil) provide means to represent
sounds that are not part of the basic phonemic
inventory of the language. The down side is that

some non-peripheral phonemes could also be ex-
cluded by this procedure. Had we processed
American English (for which our translation pro-
cedure could not be used, but which does have
pronunciation dictionaries), the exclusion crite-
rion would have only led to the exclusion of /3/
and /o1/. The exclusion of /3/ would have been
legitimate, as it is indeed a peripheral phoneme
that occurs in restricted contexts, but /o1/ is not
a peripheral phoneme in American English, it is
only infrequent.

We also calculated bigram type and token fre-
quency to estimate whether the environments
in which segments are found are comparable.
These properties are more sparse, thus they
are expected to show more bias across corpora
(burstiness and per-genre effects are expected).
We used add-one smoothing in order to consider
all bigrams across corpora.

2.4 Properties of interest

For all five properties, segment type frequency,
segment token frequency, segment informativ-
ity, bigram type frequency, and bigram fre-
quency, we compare them across corpora. We
calculated Pearson correlations between the es-
timates in one corpus and the estimates of the
same properties in the other corpus. We chose
Pearson correlations because the values of the
different properties are expected to be consis-
tent across corpora, rather than having the same
rank. We also report the median difference in
bits for the five properties, as the properties are
supposed to be near-identical across corpora, not
just correlated.

3 Results

3.1 Segment-level properties

In both corpora, all three properties were highly
correlated, as shown in Table 3 for Open Sub-
titles and Crubadan, and in Table 4 for IJARPA
Babel and Crabadan. Correlations were higher
overall between the Open Subtitles corpus and
Crubadan than between the IARPA Babel cor-
pora and Crabadan. Type frequency correlations
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were higher than token frequency correlations,
which means that answering questions such as
“how many words have that segment” would
be less corpus-dependent than asking “how fre-
quent that segment is.” Figure 1 illustrates the re-
lationship between segment frequencies across
the Open Subtitles and Cribadan, and Figure
2 illustrates the relationship between segment
frequencies across IARPA Babel and Cribadan.
Figures 3 and 4 illustrate the relationship of
segment informativity between Open Subtitles
and Crubadan, and between IARPA Babel and
Crubadén, respectively. All four figures show
that low correlation is usually centered around
specific segments rather than all segments. For
instance, Tamil /i:/ is a lot more frequent in Open
Subtitles than in Crdbadan. This is likely due to
the under-representation of the words Briigeir
and 15, /nirnkal/ and /ni:/ respectively, both of
which are second person pronouns, because they
are less frequent in written corpora than in spo-
ken corpora (rank 51 and 36, vs. 3 and 13, respec-
tively). Such discrepancies were more likely
to affect segments whose type frequencies were
low than segments whose type frequencies were
high, as verified in a post-hoc correlation test be-
tween the absolute difference between the esti-
mates and their type frequency (always positive,
statistically significant in 10 out of the 18 com-
parisons we have).

Table 3: Open Subtitles vs. Cribadan correlation between
information-theoretic properties. For every property, we
provide the Pearson r correlation, and in parentheses, the
median absolute difference in bits.

Language  Seg. type freq. Seg. token freq Seg. informativity
Bulgarian ~ 0.99 (0.08) 0.97 (0.13) 0.97 (0.17)
Catalan 1 (0.05) 0.99 (0.12) 0.95 (0.24)
Greek 0.99 (0.06) 0.99 (0.16) 0.92 (0.29)
Hungarian  0.99 (0.07) 0.99 (0.14) 0.98 (0.13)
Indonesian  0.99 (0.13) 0.98 (0.19) 0.98 (0.17)
Korean 0.98 (0.13) 0.98 (0.22) 0.96 (0.17)
Malayalam 0.99 (0.1) 0.98 (0.18) 0.99 (0.11)
Tamil 0.98 (0.17) 0.92 (0.19) 0.83 (0.37)
Tagalog 0.98 (0.29) 0.97 (0.11) 0.92 (0.17)
Turkish 0.99 (0.11) 0.99 (0.13) 0.98 (0.14)

3.2 Bigram-level properties

The results are summarized in Table 5 for Open
Subtitles and Crubadan, and in Table 6 for
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Figure 1: Segment frequency correlation between Open
Subtitles and Cribadan frequency. Both axes are in bits.
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Figure 2: Segment frequency correlation between IARPA
Babel and Cribadén frequency. Both axes are in bits.



Table 4: TARPA Babel vs. Cribadan correlation between
information-theoretic properties. For every property, we
provide the Pearson r correlation, and in parentheses, the

median absolute difference in bits.

Language Seg. type freq. Seg. token freq Seg. informativity
Guarani 0.9 (0.19) 0.85 (0.35) 0.84 (0.32)
Georgian  0.98 (0.22) 0.95 (0.32) 0.97 (0.27)
Swahili 0.96 (0.24) 0.94 (0.27) 0.79 (0.26)

Tamil 0.94 (0.3) 0.88 (0.33) 0.82 (0.3)
Tagalog  0.95 (0.17) 0.85 (0.27) 0.84 (0.19)

Tok Pisin  0.95 (0.22) 0.92 (0.3) 0.94 (0.25)
Turkish 0.99 (0.15) 0.97 (0.18) 0.96 (0.12)

Zulu 0.95 (0.32) 0.93 (0.36) 0.9 (0.34)
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IARPA Babel and Crubadén informativity. Both axes are

TARPA Babel and Crubadan.

As expected, the correlations were overall
lower at the bigram level than at the segmental
level, likely due to sparsity issues that we know
exist at the word level (Daland, 2013). However,
for most languages, the correlations were still im-
pressively high, at Pearson r>.93 and r>.85 for
bigram type frequency, representative of Open
Subtitles and IARPA Babel’s correlations with
Crubadén respectively, and Pearson r>.86 and
r>.79 for bigram token frequencies, representa-
tive of Open Subtitles and IARPA Babel’s cor-
relations with Crubadéan respectively. For refer-
ence, assuming that the inherent noise of an ex-
perimental population is SD=1 and the sampling
noise equals SD=.5, the correlation between test
and retest of the same individual is expected to
be around Pearson r=.8.

Table 5: Open Subtitles vs. Cribadén correlation between
type and token frequencies for bigrams. For every prop-
erty, we provide the Pearson r correlation, and in paren-
theses, the median absolute difference in bits.

in bits.

Language  #bigram types Bigram type freq. Bigram token freq
Bulgarian 608 0.98 (0.27) 0.86 (0.56)
Catalan 611 0.97(0.28) 0.94 (0.58)
Greek 464 0.97 (0.33) 0.88 (0.63)
Hungarian 1202 0.96 (0.39) 0.83 (0.6)
Indonesian 627 0.97 (0.36) 0.91 (0.74)
Korean 705 0.96 (0.45) 0.9 (0.67)
Malayalam 970 0.95 (0.4) 0.9 (0.71)
Tamil 681 0.94 (0.62) 0.9 (0.87)
Tagalog 446  0.93 (0.63) 0.89 (0.74)
Turkish 733 0.97 (0.41) 0.85 (0.63)




Table 6: TARPA Babel vs. Cribadan correlation between
type and token frequencies for bigrams. For every prop-
erty, we provide the Pearson r correlation, and in paren-
theses, the median absolute difference in bits.

Language # bigram types Bigram type freq. Bigram token freq

Guarani 484 0.85(0.91) 0.74 (1.68)
Georgian 879 0.93 (0.66) 0.88 (1.29)
Swabhili 621 0.91 (0.74) 0.81 (1.12)
Tamil 714 0.9 (0.91) 0.81 (1.47)
Tagalog 479 0.91 (0.48) 0.79 (1.39)
Tok Pisin 357 0.9(0.56) 0.83 (1.14)
Turkish 724 0.96 (0.43) 0.91 (1.22)
Zulu 729 0.87 (0.81) 0.73 (1.58)

4 Discussion

4.1 Differences across corpora and
corpus-usability

We were concerned that the lower correlations
between IARPA Babel and Crubadan, relative
to the correlations between Open Subtitles and
Crabadan, were due to the smaller size of the
corpus. Cohen Priva and Jaeger (2018) report
correlations that approximate >.99 for segment
frequency with as few as 100,000 word tokens,
a threshold nearly all of our corpora passed (ex-
cept Open Subtitles for Tagalog). To verify that
corpus size is not an issue we ran a post-hoc
analysis to predict segment correlations (Fisher-
transformed) using log frequencies from the two
contributing corpora. Except for a marginal
effect for token frequencies in Open Subtitles,
there was no correlation. We did observe sub-
stantially more interjections, false-starts, loan-
words, and conversation-starting / ending in
IARPA Babel than in either Cribaddn or Open
Subtitles, which is to be expected given the type
of the corpus. We are not sure why different
languages show this effect to different extents,
but given the number of comparisons we have, it
would seem that the lower boundary on within-
language correlations is still high enough to sup-
port the study of phonological properties using
corpora of different types and with relatively
high degrees of noise.

Seg. type Seg. token Seg. informativity

IARPA Babel

10.0

10 15 5 10 15 20
Crabadan

Figure 5: Segment type frequency, token frequency, and
informativity, as well as bigram type frequency and bi-
gram informativity for Tamil, by property. Especially for
bigram values, it is evident that estimates get progressively
worse for low frequency values.

4.2 Reducing noise

Given that some degree of noise does exist when
switching corpus types, it is important to ask
what could be done to decrease the amount of
noise. One parameter researchers can control
is reliance on low-frequency segments and bi-
grams as well as the use of more robust statistics.

Certainty of information-theoretic values di-
minishes for less frequent segments and bigrams,
which are more easily swayed by word-level fre-
quency effects. Figure 5 shows the correlations
for Tamil. It is evident that the estimates for
lower-frequency bigrams (and to some extent,
individual segments) are worse than for high-
frequency segments. Studies that cannot toler-
ate the lower-precision that is associated with
changes across genres could therefore focus on
high-frequency segments and contexts.

5 Conclusion

We checked whether segment type frequency,
segment token frequency, segment informativ-
ity, as well as bigram type and token frequency
could be reliably estimated across different cor-
pus types genres. We showed that segments
were more reliably estimated than bigrams and
that type frequencies were more reliably esti-
mated than token frequencies. However, even
for the least similar corpora, Cribadan and



IARPA Babel, the reliability of measurements
was substantial, and likely not larger than for
many experimental designs. We also found that
high-frequency elements were more reliably esti-
mated than lower-frequency ones. We therefore
believe that corpus-based research in phonology
can mitigate the concerns related to generaliza-
tions across genre and corpus types.
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Abstract

Truth Value Judgment Task experiments
(TVITs) are a common means of investigat-
ing pragmatic competence, particularly with
regards to scalar inference. We present a novel
quantitative linking function from pragmatic
competence to participant behavior on TVJTs,
based upon a Bayesian probabilistic model
of linguistic production. Our model captures
a range of observed phenomena on TVITs,
including intermediate responses on a non-
binary scale, population and individual-level
variation, participant endorsement of false ut-
terances, and variation in response due to so-
called scalar diversity.

1 Introduction

In Truth Value Judgment Task experiments
(TIVTs), participants are asked whether a given
sentence is, e.g., ‘right’ or ‘wrong’ (or ‘true’ or
‘false’, etc.), often in a context of evaluation. In
the field of experimental pragmatics, participant
judgments in TVIT paradigms have been partic-
ularly important for investigating pragmatic com-
petence, especially as it relates to scalar implica-
ture (Noveck, 2001; Noveck and Posada, 2003;
Bott and Noveck, 2004; De Neys and Schaeken,
2007; Geurts and Pouscoulous, 2009; Chemla and
Spector, 2011; Degen and Goodman, 2014; De-
gen and Tanenhaus, 2015). On the traditional view
of pragmatic competence and its link to TVIT re-
sponses, scalar implicature is assumed - following
Grice (1975) - to be a binary and categorical phe-
nomenon, in the sense that a given utterance is as-
sumed to categorically either give rise to an impli-
cature or not, depending on contextual, cognitive,
and linguistic factors. To experimentalists oper-
ating on this assumption, a participant’s judgment
on a particular trial in a TVIJT reflects whether or
not a scalar implicature was computed in context.

Judith Degen
Stanford University
jdegen@stanford.edu

For example, a ‘wrong’ judgment of the sen-
tence John ate pizza or a sandwich, in a context in
which the stronger utterance alternative John ate
pizza and a sandwich is true and equally relevant,
is typically interpreted as a “pragmatic” judgment:
participants must have recognized that in such a
context, the or-sentence is true yet underinforma-
tive. Pragmatically enriching it to John didn’t eat
both pizza and a sandwich via scalar inference
makes it contextually false. Conversely, an answer
of ‘right’ on this view reflects a “literal” semantic
interpretation whereby the implicature is not com-
puted (i.e. John ate pizza or a sandwich - and pos-
sibly both).

This linking assumption underpins the vast ma-
jority of TVIJT literature relating to scalar infer-
ence (Noveck, 2001; Papafragou and Musolino,
2003; Geurts and Pouscoulous, 2009; Doran et al.,
2012; Potts et al., 2015). In an early example, Pa-
pafragou and Musolino (2003) observe that chil-
dren accept true but underinformative sentences in
a TVIJT at a relatively high rate relative to adults,
and that this rate is modulated by the particular
linguistic scale invoked on a given trial of the ex-
periment (i.e. some/all vs. finish/start vs. cardinal
numbers). The authors argue from this result that
scalar implicature computation is dependent upon
linguistic scale as well as on a child’s recognition
of the communicative goals of her interlocutor.

Though widely employed, this linking assump-
tion for TVITs is associated with a host of prob-
lems discussed by Jasbi et al. (2019). Follow-
ing those authors as well as Tanenhaus (2004),
we take these open problems to be indicative of
a larger issue in linguistics, namely that the link-
ing hypotheses which bridge linguistic theory and
experimentally-elicited behavior are often under-
developed, underspecified, or (in some cases) ab-
sent in experimental studies. In the service of
providing a proof of concept for how this is-



sue may be addressed by future researchers, we
propose and evaluate a novel account of partici-
pant response in TVJT paradigms based on an ex-
plicit and quantitatively specified linking function
rooted in a probabilistic theory of pragmatic com-
petence. The general idea is that participants’ re-
sponses in TVJT experiments are related to the
probability with which a cooperative pragmatic
speaker would have produced the observed utter-
ance (e.g., John ate pizza or a sandwich) in or-
der to communicate the meaning presented to par-
ticipants as fact (e.g., that John ate both pizza
and a sandwich). This probabilistic production
based view departs substantially from the previous
widespread assumption that truth-value judgments
are a measure of interpretation.

Before turning to the specifics of the account,
we briefly review some of the open problems in
the TVIJT literature that motivate the re-thinking
of linking functions in TVJT paradigms:

Intermediate judgments: When provided
more than two response options in a TVIT, a siz-
able proportion of participants rates underinfor-
mative sentences using the intermediate response
options - for example, as only ‘kind of [right
/ wrong]’, or ‘neither [right nor wrong]’. Kat-
sos and Bishop (2011), for example, provided
participants with three response options and ob-
served substantial selection of the intermediate op-
tion. They interpreted the choice of this inter-
mediate option as being the result of the com-
putation of an implicature, but a priori, there is
no reason to favor this linking assumption over
one whereby the intermediate response is associ-
ated with a literal semantic interpretation. More
generally, it is not clear how the outputs of a bi-
nary model of scalar implicature (i.e. implicature
or —implicature) should relate to non-binary re-
sponses on TVITs.

Population-level variation: In order to explain
behavioral variation in contexts where one expects
a scalar inference, an adherent to the categorical
view of scalar implicature must stipulate that a)
not all participants calculated the implicature; or
b) some participants who calculated the implica-
ture showed divergent behavior due to some in-
dependent mechanism which masked the ‘correct’
implicature behavior; or some combination of (a)
and (b). However, and despite the prevalence of
variation at the population level in reported TVIT
experiments, even a qualitative analysis of this

kind of variation is largely absent from the exper-
imental scalar implicature literature.

Scalar diversity: Doran et al. (2012), following
Papafragou and Musolino (2003) inter alia, report
that judgments of true but underinformative sen-
tences vary according to the particular linguistic
material contained within the sentence, in partic-
ular the relevant linguistic scale. They conclude
that variation among scalar implicatures is a func-
tion of the scale itself (see also van Tiel et al. 2014
for further support for scale-based scalar diversity
in a non-TVIJT paradigm).

Whether this variation is truly due to inherent
features of the linguistic scale (or, e.g., prior world
knowledge, or other linguistic material, or other
confounding features of the experimental context)
is an open question which warrants investigation
beyond the scope of this paper. Below, we an-
alyze data from a TVJT where different rates of
exhaustive interpretation were observed between
a putative lexical scale (<and, or>) and a putative
ad-hoc, context-dependent pragmatic scale. Our
analysis of the data suggests that in this instance,
(at least some) variation at the level of linguistic
scale may be reduced to more general aspects of
pragmatic competence.

Endorsement of false utterances: Invariably,
a proportion of participants in TVJTs accepts
strictly false sentences. For example, in the study
we analyze below, a substantial number of par-
ticipants rated conjunctions A A B as partially
correct in contexts where only A was true. The
most common approaches to this type of data
are either to use it as the basis of an exclu-
sion criterion or to simply consider it meaning-
less noise. Doran et al. (2012), for example, ex-
clude participants whose performance deviates by
more than two standard deviations from the mean
response on ‘control’ sentences whose semantic
contents are consistent with the context of evalua-
tion (and which do not admit of potentially contra-
dictory pragmatic enrichments) or whose seman-
tic contents contradict the context. Katsos and
Bishop (2011) report that 2.5% of false sentences
in their experiment were endorsed by child partic-
ipants. On the standard linking assumption, these
data are difficult to make sense of, but we will
show that they are within the scope of a satisfac-
tory analysis of TVJT behavior.

The remainder of the paper is structured as fol-
lows: in Section 2, we summarize the results



Condition | Response Options
Binary ‘Right’, “Wrong’
Ternary ‘Right’, ‘Neither’, ‘Wrong’
‘Right’, ‘Kinda  Right’, ‘Kinda
Quaternary Wrong’, " Wrong’
Quina ‘Right’, ‘Kinda Right’, ‘Neither’, ‘Kinda
Y Wrong’, ‘Wrong’
Table 1:  Response-option conditions of Jasbi et

al. (2019)’s TVJT study.

of a recently reported TVIJT study that exempli-
fies the features discussed above: intermediate
judgments, population-level variation, scalar di-
versity, and participant endorsement of false ut-
terances. Section 3 presents our novel quantita-
tive model of the data from that study. Building
on insights from the Bayesian probabilistic litera-
ture on pragmatic competence (Frank and Good-
man, 2012; Goodman and Stuhlmiiller, 2013), we
model participants as making judgments about a
soft-optimal pragmatic speaker whose production
choices are a function of utterances’ contextual in-
formativeness. On our analysis, participants fur-
thermore expect that the speaker sometimes pro-
duce strictly false utterances that are nonetheless
somewhat contextually useful. We show that this
analysis provides broader empirical coverage over
the traditional assumptions discussed above.'

2 TVJT Data

2.1 Experiment Materials, Design and
Procedure

Jasbi et al. (2019) report the results of a TVJT de-
signed to test whether linking hypothesis and num-
ber of response options modulate the researcher’s
inferences about scalar implicature rates. In their
study, number of response options varied between
two and five as a between-subjects manipulation.
Conditions are summarized in Figure 1. Partici-
pants (n = 200) were first shown six cards (Table
2) featuring one or two of the following animals: a
cat, a dog, and an elephant. On every trial, partic-
ipants saw one of the six cards, and a blindfolded
cartoon character Bob made guesses as to what an-
imals were on the card. Participants were asked
to rate Bob’s guesses using the response options
available in their particular condition.

Bob made the following guess types: simple
declaratives (e.g., There is a cat), conjunctions
(e.g., There is a cat and a dog), and disjunctions

"Data and code for all analyses and graphs are available
athttp://github.com/bwaldon/tvjt_linking.
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Table 2: Cards used in Jasbi et al. (2019)’s TVIT.

(e.g., There is a cat or a dog). Card types were
crossed with guess types in this study such that a
card containing an animal X could be presented
with a guess of There is an X, Thereisan X ora Y
(where Y is some animal distinct from X), There is
anX andaY, or There is a Y; cards containing two
animals X and Y could be presented with a guess
of There is an X, There is an X or a Y, There is an
XandaY,or There is a Z (where Z is some animal
distinct from X and Y).

The researchers elicited 3 judgments per partic-
ipant for each combination of card and guess type.

2.2 Results and Discussion

Proportions of responses for each card-guess type
in each response-option condition are shown in
Figure 1, with rows presenting behavior aggre-
gated across one and two-card conditions.

The results of the study illustrate the sev-
eral open empirical issues associated with TVITs
more generally. First, participants routinely re-
ported intermediate judgments between ‘Right’
and ‘“Wrong’ in those conditions where intermedi-
ate response options were available. In the Qua-
ternary and Quinary response-option conditions,
for example, the intermediate judgment of ‘Kinda
Right’ was the single most-selected response op-
tion in two-animal card conditions where Bob’s
guess was true but underinformative (i.e. either
a simple delcarative or a disjunction).

The results also exemplify the issue of
population-level variation: for example, al-
though behavioral patterns are otherwise fairly
categorical in the Binary condition, participant
judgments were roughly split between ‘Right’ and
‘Wrong’ for underinformative uses of disjunc-
tion on two-animal card conditions. A visual in-
spection of the results suggests even more varia-
tion in the population as number of response op-
tions increase. The authors furthermore reported
individual-level variation: qualitatively similar
trials (e.g. two trials involving underinforma-
tive disjunction) sometimes received different re-
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Figure 1: Model predictions (light bars) plotted against empirical results (dark bars) from Jasbi et al.’s (2019)

TVIT study. Error bars indicate 95% multinomial confidence intervals. Red and green bars indicate false and true

trials, respectively; blue bars indicate implicature trials.

sponses from the same participant.

Comparison of judgments of true but underin-
formative simple declaratives (i.e. There is an X)
to judgments of true but underinformative disjunc-
tions (i.e. There is an X or a Y) on two-animal
card conditions revealed some amount of scalar
diversity. Following Horn (1972), exposure to the
disjunctive connective or canonically activates an
informationally-stronger scalemate and as a prag-
matic alternative to give rise to an exclusive in-
terpretation. In contrast, the pragmatic scale in
the case of the simple declarative is constructed
in a more context-dependent manner. To illus-
trate, in a two-animal card context where the card
features both a cat and a dog, the listener consid-
ers a partially-ordered pragmatic scale of cat and
dog, cat, and dog, where the conjunction outranks
its scalemates in terms of informational strength.
Thus, an utterance of cat activates cat and dog as
an alternative to give rise to an the exhaustive in-
terpretation (There is only a cat on the card).

In the Binary and Ternary conditions, under-

informative uses of or resulted in substantially
higher rates of “Wrong’ responses than did under-
informative simple declaratives, suggesting that
at the population level, or was interpreted more
exhaustively than the simple declarative. How-
ever, this pattern was reversed in the Quaternary
and Quinary conditions, in which underinforma-
tive simple declaratives were more likely to be
considered only ‘Kinda Right’ and less likely to be
considered simply ‘Right’ compared to underin-
formative disjunctions. This pattern suggests that
in the Quaternary and Quinary conditions, simple
declaratives were interpreted more exhaustively
than disjunctions.

Finally, the data in the Quaternary and Quinary
conditions also reveal substantial participant en-
dorsement of false utterances. Note specifi-
cally that in one-animal card trials, the conjunctive
guess (e.g. cat and dog) is strictly false; thus, we
might naively expect a priori that participants cat-
egorically judge these utterances to be ‘“Wrong’ in
all conditions. Yet when given the option to rate



this sentence ‘Kinda Right’ or ‘Kinda Wrong’,
participants often did so. In all other conditions
where the utterance was strictly false (e.g. a guess
of elephant for a card containing a cat or a cat and
dog), behavior was effectively categorical. That is,
rates of endorsement of false utterances varied ac-
cording to the particular way in which the sentence
was false in context.

In sum, the data collected by Jasbi et al. (2019)
reflect a range of behavioral patterns unaccounted
for by the traditional categorical view of scalar
inference and corresponding standard linking as-
sumptions. Below, we report an analysis of their
data that aims to predict these phenomena.

3 Analysis

3.1 Cognitive model

Our analysis implements a proposal outlined by
Jasbi et al. (2019), couched in the Rational
Speech Act (RSA) framework (Frank and Good-
man, 2012; Goodman and Stuhlmiiller, 2013).
RSA provides a Bayesian, probabilistic account
of pragmatic competence. In RSA, the pragmatic
inferences drawn by listeners are represented as
probability distributions over meanings which the
speaker plausibly intended to convey with a given
observed utterance. The probability of this lis-
tener (L1) attributing an intended meaning m to a
speaker who produces an utterance u is calculated
from a prior probability distribution over potential
world states P, as well as from L;’s expectations
about the linguistic behavior of the speaker .51.

Py, (mlu) o Ps, (ufm) - Py(m)

Pg, is modeled as a probability distribution over
possible utterances given the speaker’s commu-
nicative intentions m. This speaker produces ut-
terances that soft-maximize utility, where utility
is defined via a tradeoff between an utterance’s
cost C and its contextual informativeness, calcu-
lated from the representation of a literal listener L
whose interpretation of an utterance u is in turn a
function of the truth conditional meaning [[u]](m)
and of her prior expectations P,,(m) regarding the
likelihood of possible world states. The extent to
which the speaker maximizes utility is modulated
by a parameter o — the greater «, the more the
speaker produces utterances that maximize utility.

P51 (u‘m) o< eoc(ln Lo(m|u)—C(u))
Pry(mlu) oc [[u]](m) - P(m)

In RSA (and contra the traditional view), prag-

matic inferences are not categorical computations
of enriched meanings over the semantic denota-
tions of utterances. For example, exclusive inter-
pretations of or are represented in RSA as a pos-
itive shift in the posterior probability of an exclu-
sive meaning, relative to its prior probability.

In other words, ‘implicature’ is not a theoreti-
cal construct in the RSA framework, absent addi-
tional stipulations regarding how to go from prob-
ability distributions to binary, categorical infer-
ences. This is an advantage: providing a proba-
bilistic representation of both the speaker’s utter-
ance choices and the listener’s resulting posterior
beliefs after observing an utterance puts us one
step closer to accounting for the quantitative be-
havioral patterns observed in tasks such as TVJTs.

3.2 Behavioral model

Jasbi et al. (2019) proposed but did not system-
atically test a simple linking hypothesis: rather
than providing one response if an implicature is
computed and another if it isn’t, a participant in
a TVIJT experiment provides a particular response
to an utterance u if the probability of u given a
meaning represented by m lies within a particular
probability interval on the distribution Pg, (u|m).?
The participant is modeled as a responder 2, who
in a binary forced-choice task between ‘Right’
and ‘“Wrong’ responds ‘Right’ to an utterance v in
world m just in case Pg, (u|m) meets or exceeds
some probability threshold 6:
‘Right’
‘Wrong’

iff Pg, (u|m) > 6

R(u,m,0) =
( ) otherwise

The model is extended straightforwardly to an
experiment in which participants have a third re-
sponse option (e.g. ‘Neither’), as in the Ternary
condition. In this case, the model specifies two
probability thresholds: 67, the minimum standard
for an utterance in a given world state to count as
‘Right’, and 6, the minimum standard for ‘Nei-
ther’. Thus, in the Ternary condition:

‘Right”  iff Pgs, (ulm) > 6,
R(u,m,0) = < ‘Neither’ iff 61 > Pg, (u|lm) > 05
‘Wrong’ otherwise

Applying a similar logic allows for the speci-
fication of linking hypotheses for TVJTs with an

Following Degen and Goodman (2014), the authors ar-
gue that conceptually, behavior on TVITs is better modeled
as a function of an agent’s representation of a pragmatic
speaker rather than of a pragmatic listener.



arbitrary number of response options.

The intuition behind the threshold model is as
follows: participants should disprefer utterances
that are relatively unexpected. Thus, high S; pro-
duction probability for a given utterance in context
makes it more likely that the utterance receives a
positive evaluation in the TVJT — expressed by
ordered response options above ‘Wrong’. Con-
versely, the more unexpected an utterance is, the
more likely it is to be judged as “Wrong’. Underin-
formative utterances of the sort that have tradition-
ally been used to assess ‘implicature rates’ are pre-
cisely the kinds of utterances that are unexpected
from informative speakers and are therefore likely
to be rated as “Wrong’.

Here, we assess the quality of this linking hy-
pothesis on the dataset from Jasbi et al. (2019).
To that end, we first specify the space of possi-
ble meanings and utterances that inform a partici-
pant’s pragmatic competence in this task. We as-
sume that participants have uniform prior expecta-
tions of seeing any of the six possible cards in the
experiment. We further assume that participants
have uniform prior expectations of a speaker pro-
ducing any of the four utterance types with which
a card may have been crossed. For example, if
the card featured either just a cat or both a cat and
a dog, we represent the participant as having uni-
form prior expectations of a speaker producing the
guesses elephant, cat, dog, cat and dog, or cat or
dog (that is, we do not posit a cost asymmetry be-
tween possible utterances).’

For illustrative purposes, the ‘Simple Bayesian’
bars in Figure 2 display marginal distributions
over possible utterances produced by S; given
these assumptions for the utterance and meanings
priors, as well as an arbitary value of 1 for the op-
timality parameter «, and given that the speaker
intends either to communicate the meaning that
(just) a cat is on the card or that both a cat and
a dog are. The speaker distributions reveal two
conceptual issues for the threshold response model
proposed by Jasbi et al (2019).

First, the probability of S producing the strictly
false guess of cat and dog should be zero if the
card contains just a cat. This is because the lit-
eral listener probability Pr,, of inferring the ‘only
cat’ meaning given cat and dog is zero by virtue

3We include dog as a possible guess because we posit
that participants have no reason a priori to expect the other
true and underinformative simple declarative - cat - over this
equally informative guess in two-animal card conditions.

of the fact that the utterance is strictly false in this
world state. Thus, any model of response that is
a function of Pg, as specified predicts that partic-
ipants categorically rate the cat and dog guess as
‘Wrong’ in this context, contrary to what is ob-
served in the Quaternary and Quinary conditions.

Second, the probability of producing disjunc-
tions is lower than the probability of produc-
ing simple declarative guesses in two-animal card
contexts. This asymmetry is advantageous in
the case of the Binary and Ternary response
data: assuming a threshold for ‘Right’ posi-
tioned between Pk, (cat or dog|cat and dog) and
P, (cat|cat and dog), we predict correctly that
underinformative simple declaratives should be
judged ‘Right’ more often than underinformative
disjunctions. But the asymmetry in S; probabil-
ities therefore predicts the wrong pattern of re-
sponses on corresponding trials in the Quaternary
and Quinary conditions.

We argue that these two seemingly disparate
issues can be mediated by a common solution.
In particular, we propose a revision to the sim-
ple Bayesian inference story above, whereby
pragmatically-competent listeners either expect
speaker productions as directly sampled from the
Pg, distribution, or that those utterance production
probabilities inform a second conditional proba-
bility distribution of utterances given utterances,
the ‘Partial Truth’ utterance distribution Pg,.:

Pspr(u'|u) o< 35 Ps, (u'|m)?

meu]

The ‘Partial Truth’ distribution is a generalized
way of modeling a speaker who makes assertions
that are sometimes strictly false in light of her in-
tended meaning. Recall that the semantic con-
tent of any possible utterance choice made by S
is a set of possible worlds and is therefore con-
sistent with meanings unintended by the speaker.
Spr models the speaker’s soft-optimal produc-
tion probabilities given these unintended mean-
ings, renormalizing the pragmatic speaker’s pro-
duction probabilities over all possible worlds con-
sistent with utterance choices sampled from Pg, .

“For our implementation of Spr, we restrict the distribu-
tion such that " must entail (or be entailed by) u in order to
have probability above 0. Without this restriction, Sp7 could
in principle assign high probability to utterances which have
no relevance to the question under discussion (i.e. “What ani-
mals are on the card?”), by virtue of those utterances’ asserta-
bility in worlds consistent with u. A systematic exploration
of the linguistic alternatives available to S1 (as well as Spr)
is a question we must leave to future work.
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Figure 2: Simulated S; production probabilities.

To illustrate: suppose a speaker intends to com-
municate that many (but not all) of the X are Y,
and has quantifier choices many and all. The only
possible utterance choice for the simple Bayesian
S1 speaker is many, which is semantically consis-
tent with the intended meaning. But the lower-
bounded quantifier many is also semantically con-
sistent with an ‘all of the X are Y’ meaning, which
in turn is consistent with the utterance choice all.
By Spr, we have some nonzero expectation that
the speaker will use all to communicate the ‘many
(but not all) of the X are Y’ meaning.’ Thus, a
pragmatic listener who hears all from the ‘Par-
tial Truth’ speaker will have a nonzero expectation
that all should receive an imprecise, non-maximal
interpretation. In other words, Spr provides a
generalized way of formalizing ‘loose-talk’ pro-
duction behavior (Lasersohn, 1999).6

The ‘Partial Truth’ bars in Figure 2 visual-
ize marginal distributions over utterances given
an arbitrary 0.6 probability that the speaker sam-
ples from the Ps,, distribution after sampling
from Pg,. The ‘Partial Truth’ speaker assigns
nonzero probability to a guess of cat and dog
even when the speaker’s intended meaning is the
single-animal cat card, largely due to the fact that
the optimal guess in this context (cat) is truth-
conditionally consistent with a two-animal card
that makes cat and dog both true and pragmat-
ically optimal.” Moreover, this speaker assigns

5The effect of this is similar to the use of QUD projection
functions for hyperbolic interpretations (Kao et al., 2014).

SFormalizing this production behavior is different from
analyzing why imprecision exists (indeed, is pervasive) in lin-
guistic communication. For the time being, we present this
‘loose-talk’ speaker model without a thorough assessment of
its explanatory power.

"Because cat or dog is a possible S; production, and this
choice lies in an entailment relation with the simple declar-

greater probability to a guess of cat or dog in two-
animal contexts and down-weights the probability
of producing simply cat: the optimal utterance in
this context (cat and dog) is consistent with sev-
eral world states in which the disjunction cat or
dog is assertable and with relativley fewer worlds
in which cat is assertable.

3.3 Quantitative model evaluation

We now turn to a quantitative assessment of the
threshold model of response, having addressed
two ways in which the unenriched S; represen-
tation would fail to qualitatively capture behav-
ioral patterns in Jasbi et al (2019)’s TVIT study.
Additionally, following Jasbi et al., we recognize
that if threshold values were made to be com-
pletely invariant across trials of the experiment,
then the model would make the undesirable pre-
diction that every participant should have exactly
the same response in a given trial type. To allow
for population-level variation, the model respon-
der makes a response by comparing the speaker
probability against thresholds that are generated
from sampling from Gaussian distributions. We
thus allow for both population-level and individual
level-variation, on the assumption that this sam-
pling procedure takes place whenever a participant
is asked to evaluate an utterance in the TVIT.}

In order to evaluate the RSA-based thresh-
old model, we conducted a Bayesian data analy-
sis. This allowed us to simultaneously generate
model predictions and infer likely parameter val-
ues, by conditioning on the TVJT data from Jasbi
et al. (separately for each of the four response-
option conditions of the experiment) and integrat-
ing over the free parameters. Each model assumes
uniform priors over utterances and world states as
above. We infer the Gaussian threshold distribu-
tion parameters and alpha optimality parameters
from uniform priors over parameter values using
MCMC sampling (observing - for every sample
of possible parameter values the expected propor-
tion of responses in that trial type and comparing
that distribution to the empirically-observed pat-
tern of response).” Additionally, for the Quater-

ative guess dog, we also assign some probability to dog as a
guess in this context - albeit lower probability than is assigned
to the conjunctive guess cat and dog.

8We also introduce a random noise term in the parameter
estimation such that the simulated responder makes random
guesses on 1% of trials. This noise term is removed when
running the model forward to make predictive estimations.

“We used WebPPL (Goodman and Stuhlmiiller, 2014) for
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1.22 | 0.125 | 0.073
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1.38 | 0.076 | 0.061 | 0.011

Quaternary condition
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2.75 | 0.159 | 0.277 | 0.101 | 0.048 | 0.797
Quinary condition

o g 16, Moo Hos Hoy PT
4.38 | 0.099 | 0.184 | 0.042 | 0.005 | 0.002 | 0.437

Table 3: MAP estimates obtained from Bayesian data
analysis, where « is the optimality parameter, o and
w1 are Gaussian threshold distribution parameters, and
PT is the probability with which the speaker samples
from Ps, . rather than directly from Pk, .

nary and Quinary conditions, we infer from a uni-
form prior the probability with which the speaker
samples from Pg,,,. after sampling from Pg,. The
intuition for restricting the ‘Partial Truth’ manipu-
lation to these conditions is that the behavioral pat-
terns which this manipulation is intended to cover
are only observed in these conditions. '’

Posterior distributions over the parameter val-
ues are displayed in Figure 3, and model pre-
dictions using maximum a posteriori (MAP) esti-
mates of the parameter values (Table 3) are plot-
ted against Jasbi et al. (2019)’s results in Fig-
ure 1. Qualitatively, the model addresses each of
the desiderata for an empirically adequate linking
function discussed above. In all conditions, the
model makes predictions for the full range of re-
sponse options available to participants — thus ad-
dressing the issue of intermediate judgments. At
the same time, the model addresses the issue of
population-level variation: sampling threshold
values from Gaussian distributions allows differ-
ent judgments in the population for a given utter-
ance (while keeping the speaker production prob-
ability of that utterance constant).

Recall that in the Quaternary and Quinary con-
ditions, there was an asymmetry in the judgment
of underinformative disjunctions versus underin-

MCMC inference, with 5000 samples (plus a lag of 10 iter-
ations between samples) and a burn-in time of 20,000 itera-
tions. We computed maximum a posteriori values from the
marginal posterior distributions over parameter values using
the density function in R.

10We speculate that there may be a link between increasing
the number of response options and participants’ increased
expectation of Partial Truth speaker behavior, which may
have been strengthened by the fact that the Quaternary and
Quinary conditions explicitly made reference to gradient lev-
els of correctness (i.e. ‘Kinda Right’ / ‘Kinda Wrong’). But
this speculation warrants future investigation.

formative simple declaratives. The model makes
use of the ‘Partial Truth’ speaker function in order
to adjust the underlying speaker production proba-
bilities - and hence the distribution of predicted re-
sponse options - for these utterances. The ‘Partial
Truth’ function also boosts the production prob-
ability of strictly false conjunctions, allowing the
model to predict responses other than “Wrong’ for
this trial type. Thus, the ‘Partial Truth’ enrich-
ment helps to address both scalar diversity and
endorsement of false utterances.'!

The correlation between empirical observations
and model predictions is high (Adj. R? > 0.9
in all conditions), suggesting that the threshold
responder model is a good model of TVJT be-
havior overall. Nevertheless, the model makes
some undesirable predictions. For example, it
over-predicts rates of ‘Neither’ responses in the
Quinary condition. Empirically, this response
tended to be disfavored relative to positive and
negative response options, for example in the case
of strictly false cat and dog guesses. The model
assumes that the labeling of the response options
should have no particular effect on selection, but
future work should engage with this assumption.

4 Discussion and Conclusion

Based on a single underlying probabilistic model
of pragmatic competence, the presented thresh-
old responder model provides a level of empiri-
cal coverage for TVJT data unavailable to existing
linking models rooted in the categorical view of
scalar implicature. The contribution of this paper
is twofold: methodologically, we present this anal-
ysis as a proof-of-concept approach to modeling
TVIJT data for researchers in experimental seman-
tics/pragmatics. We see the presented behavioral
model as a starting point for future quantitative an-
alytic work in the TVJT domain — a model against
which future models may be assessed.'?

On the theoretical side, the cognitive model that
forms the basis for the behavioral model is non-
neutral in its assumptions. In particular, it as-
sumes that TVJT behavior is the result of rea-
soning about probabilistic utterance choices that

""'We leave further investigation of the ‘Partial Truth’ func-
tion - in particular its extension to an analysis of linguistic
imprecision as sketched above - to future work.

2For example, one could in principle link the thresh-
old model to pragmatic listener probabilities of meanings
given utterances rather than to speaker production probabili-
ties given intended meanings (as we do in this paper).
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Figure 3: Normalized marginal posterior distributions over parameter values for the threshold responder model in
each experimental condition. Note that the posterior distribution for the optimality parameter « has been rescaled

for the purposes of this visualization.

are the result of trading off (contextual) utterance
informativeness and cost. Under this view, not
only does TVJT behavior not quantify implica-
ture rates; the very notion of an implicature evap-
orates. Rather than finding this undesirable, we
believe that this framework allows for more rigor-
ous engagement with the complexities of linking
theoretical constructs to behavior (see also Franke
2016), an area of some dearth in experimental se-
mantics/pragmatics.
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Abstract

In a series of experiments Wilcox et al.
(2018, 2019b) provide evidence suggesting
that general-purpose state-of-the-art LSTM
RNN language models have not only learned
English filler-gap dependencies, but also some
of their associated ‘island’ constraints (Ross,
1967)). In the present paper, I cast doubt on
such claims, and argue that upon closer inspec-
tion filler-gap dependencies are learned only
very imperfectly, including their associated is-
land constraints. I conjecture that the LSTM
RNN models in question have more likely
learned some surface statistical regularities in
the dataset rather than higher-level abstract
generalizations about the linguistic mecha-
nisms underlying filler-gap constructions.

1 Introduction

Recurrent Neural Networks (RNNs) are a class of
abstract neural network where the connections be-
tween nodes consist of a directed graph along a
temporal sequence. This architecture allows node
outputs at current time step to depend on the cur-
rent input as well as on the previous output state.
Thus, the network can exhibit temporal dynamic
behavior, since the internal state of the system is a
kind of memory that can be used to process sub-
sequent input. Such models are therefore well-
suited for natural language tasks, among others.
RNNs with a Long Short-Term Memory (LSTM)
architecture have a far more elaborate and selec-
tive form of memory. A common LSTM node is
composed of a cell, an input gate, an output gate
and a forget gate. Such gates enable RNN nodes
to remember values over arbitrary time intervals
and the three gates regulate the flow of informa-
tion into and out of the nodes.

LSTM RNNs are therefore better suited than
plain RNNs to model long-distance dependencies
of the kind found in natural languages (Linzen

et al., 2016; Gulordava et al., 2018; Bernardy and
Lappin, 2017). This includes filler-gap dependen-
cies like (1), where the wh-phrase what is inter-
preted as the object of do, even though the two
words are separated by four clausal boundaries as
indicated by square brackets.

(1) What; do you think [the students will say
[they believe [the TA claimed [he was trying
to do_;]111?

I refer to the ‘extracted’ phrase as the filler and
to the canonical position where it would otherwise
be realized as the gap, signaled via an underscore.
The filler-gap dependency is the semantic and syn-
tactic linkage that must be established between the
filler and its in situ canonical location in order for
such utterances to be interpretable.

1.1 Learning Filler-Gap dependencies

Recently, Chowdhury and Zamparelli (2018) pro-
vide some evidence that LSTM RNNs can store
information about the filler phrase, and detect that
the probability of the sentence-final NP in exam-
ples like (2) is low because of the presence of a
filler-gap dependency.

(2) Who; should Mia discuss_; / *this candidate.

Wilcox et al. (2018) improve on this work,
and propose a Surprisal-based (Hale, 2001; Levy,
2008) differences-within-differences design to
measure the ability of the RNN to learn filler-gap
dependencies, using a factorial design as in (3).

(3) a. I know that the lion devoured a gazelle at
sunrise.
[NO WH-LICENSOR, NO GAP]

b.*I know what the lion devoured a gazelle
at sunrise.
[WH-LICENSOR, NO GAP]



c.*I know that the lion devoured _ at sunrise.
[NO WH-LICENSOR, GAP]

d. I know what; the lion devoured ; at sun-
rise.
[WH-LICENSOR, GAP]

Wilcox et al. define S(w) as the surprisal of a
given word w, estimated in terms of the log in-
verse probability of w according to the RNN’s hid-
den state softmax activation h before consuming
w, given all previous words in the sentence:

(4) S(w) = —logz p(w|h)

If the model has learned to represent filler-gap
dependencies, then the surprisal of the proposi-
tion at in (3a) should be a small number, since
the probability of at in this context is high, and
the surprisal of ‘at’ in (3b) should be a large num-
ber, since the probability of ‘at’ in this context is
low. Consequently, their difference S(3b) — S(3a)
should yield a large positive number. Similarly,
S(3d) — S(3c) should yield a large negative num-
ber, and the full licensing interaction (S(3b) —
S(3a)) — (S(3d) — S(3c)) should be a large pos-
itive number. This licensing interaction represents
how well the network learns both parts of the li-
censing relationship: a positive wh-licensing inter-
action means the model represents a filler-gap de-
pendency between the wh-word and the gap site;
a licensing interaction indistinguishable from zero
indicates no such dependency. Wilcox et al. find
that typical models show about 4 bits of licensing
interaction in simple examples like (3).

Using this design, Wilcox et al. (2019b) found
that LSTM RNNs can maintain filler-gap depen-
dencies across up to four clausal boundaries, not
unlike the ones in (1). Two models were used
for these experiments: (i) the model in Gulordava
et al. (2018) — henceforth the Gulordava model —
which was trained on 90 million tokens of English
Wikipedia, and has two hidden layers of 650 units
each; and (i1) Jozefowicz et al. (2016) — hence-
forth the Google model — which was trained on
the One Billion Word Benchmark (Chelba et al.,
2013), has two hidden layers with 8196 units each,
and employs a character-level convolutional neu-
ral network.

But more recently Da Costa and Chaves (2020)
shows that the Gulordava and Google LSTM mod-
els have learned filler-gap dependencies only very
imperfectly. In particular, the models completely
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Figure 1: Surprisal at the gap-agreeing verb in ‘which’
interrogatives across embedding levels (LSTM RNN5s)

failed to learn that filler-gap constructions also im-
pose agreement dependencies like those in (5). In
such constructions, the singular/plural number in-
formation of the extracted phrase must match that
of the verb from which the extraction takes place.

(5) a. They wondered which lawyer I think you
said _ was/*were upset.

b. They wondered which lawyers I think you
said _ *was/were upset.

Following the same factorial approach and code
of Wilcox et al. (2018), Da Costa and Chaves
(2020) extracted the softmax activation of the
verbs were/was in 20 items like those illustrated
in (6), up to four levels of clausal embedding.

(6) a. Someone wondered which lawyer(s) I
think was/were ...
[Nsg/pis LEVELL, Vg1

b. Someone wondered which lawyer(s) I
think you said was/were ...
[Nsg/pis LEVEL2, Vo]

c. Someone wondered which lawyer(s) I
think you said you thought was/were ...
[Nsg/pts LEVEL3, Vg /]

d. Someone wondered which lawyer(s) who
people believe I think you said you
thought was/were ...

[Nsg/pis LEVEL4, Vg1

The results in Figure 1 show that both the Gu-
lordava and the Google models failed. Had the



LSTM RNNs succeeded at this task, the condi-
tions where the noun and verb agree (i.e. N,;-Vy,
and Ng4-V,) would be lower in surprisal than
the conditions where the agreement is mismatched
(i.e. Np-Vgg and Ng4-V,,). Note also that in the
Google model surprisal increased with the level of
embedding, so that the correct verb form is more
unexpected in level 4 than the incorrect verb forms
in levels 1 and 2. Da Costa and Chaves (2020)
tested other types of construction and the results
are equally bad, suggesting that the Gulordava and
Google models have not learned the morphosyntax
of filler-gap dependencies, even though they were
trained on datasets larger than what a child learner
is exposed to; according to Atkinson et al. (2018),
children begin to exhibit adult-like active forma-
tion of filler-gap dependencies by age 6.

1.2 Learning Island Constraints

Wilcox et al. (2018, 2019b) in addition claim
that the Gulordava and Google models have
learned certain constraints on filler-gap dependen-
cies known as Islands (Ross, 1967). In partic-
ular, Wilcox et al. claim that the models learn
that the subordinate clauses introduced by whether
have reduced acceptability as in (7a), that relative
clauses and adverbial adjuncts are difficult to ex-
tract from as in (7b,c), and that conjuncts and the
left branches of NP are not possible to extract, as
in (7d,e). All reported examples below are from
Wilcox et. al experiments. Square brackets indi-
cate the island-establishing environments.

(7) a* I know what Alex said [whether your
friend devoured _ at the party].
(Wh-Island)

b.*I know (that/what/who) the family bought
the painting [that depicted _ last year].
(Complex NP Constraint Island)

c¢.*I know what the patron got mad [after
the librarian placed _ on the wrong shelf].
(Adjunct Constraint Island)

d.*I know what the man bought [the painting
and _ ] at the antique shop.
(Conjunct Constraint island)

e.*I know what color you bought [ car] last
week.
(Left Branch Constraint island)

However, Wilcox et.’s claims are too strong.
First, most of these island constraints are more

complex than Wilcox et. al’s discussion suggest,
and before it cannot be claimed that a model learns
island constraints before all the associated condi-
tions are shown to have been learned as well. For
example, the Conjunct Constraint is but a piece
of a larger set of constraints that are specific to
coordination, known as the Coordinate Structure
Constraint (CSC). The CSC consists of the Con-
junct Constraint, the Element Constraint, the ATB
Exception, and the Asymmetric Exception; see
Kehler (2002, Ch.5) for a detailed overview and an
account of most of these constraints that is based
on pragmatic discourse relations.

The Complex NP Constraint (CNPC) is simi-
larly complex. First, it is not restricted to relative
clauses: nouns that semantically introduce propo-
sitional complements like in the claim that Robin
stole a book also induce such extraction limita-
tions (e.g. *What; did you reject the claim [that
Robin stole _;]1?7°). Second, it is also known that
the CNPC vanishes in presentational relatives (i.e.
in relatives that express assertions rather than pres-
supposed content), as we discuss below.

Moreover, some of the island constraints that
Wilcox et al. probed are know to be weakened
when the island phrase is untensed, and vanish al-
together if there is a secondary (i.e. ‘parasitic’) gap
outside the adjunct (Engdahl, 1983); see Phillips
(2006) for experimental evidence. In sum, there is
a complex array of facts that still need to be tested.

Finally, the Left Branch Constraint (LBC) items
that Wilcox ef al. used, like (7¢), have a critical
confound. The sentences are not licit even without
the extraction (i.e. *what color car). And since the
sentences are ill-formed, with or without extrac-
tion, it remains unclear whether the RNNs have or
not learned the LBC.

But even conceding that the results are over-
all on the right track, there is one final problem.
Both the Gulordava and Google models failed to
learn that extraction from subject phrases (phrasal
or clausal) is hampered, as illustrated in (8).

(8) a.*I know who [the painting by _ ] fetched a
high price at auction.
(Subject Constraint Island)

b.*I know who [for the seniors to defeat ]
will be trivial.
(Sentential Subject Constraint Island)

The difficulty in learning clausal Subject Island ef-
fects is unexpected because such islands are much



stronger than Wh-islands. Not only the oddness
induced by a Wh-island constraint violation is less
pronounced than that of clausal Subject islands,
but also because counterexamples to the former
are much easier to find. Compare (7) with the ac-
ceptable counterpart in (9).

(9) Which shoes are you wondering [whether
you should buy _ ]?

See Abrusan (2014, Ch.4) for strong evidence that
Wh-islands and their exceptions are contingent on
subtle semantic-pragmatic factors, not syntax. In-
deed, there is growing evidence that many island
constraints are at least in part due to non-syntactic
factors, including pragmatics and processing bi-
ases; see Chaves and Putnam (2020) for a de-
tailed overview. For example, counterexamples
have been noted in the literature to all of the is-
land constraints probed by Wilcox et al., with the
exception of the Conjunct Constraint and the Left
Branch Constraint islands; see Hofmeister and Sag
(2010) and references cited. This includes Sub-
ject Islands involving VP subjects, as in the at-
tested data in (10). See Huddleston et al. (2002,
1093,1094), Santorini (2007), and Chaves (2013)
for more attestations.

(10) a. In his bedroom, which [to describe as
small] would be a gross understatement,
he has an audio studio setup.
[pipl.com/directory/name/Frohwein/Kym]

b. They amounted to near twenty thousand
pounds, which [to pay _ | would have ru-
ined me. (Benjamin Franklin, William
Temple Franklin and William Duane.
1834. Memoirs of Benjamin Franklin, vol
1. p.58)

[archive.org/details/membenfrankO1frankrich]

c. The (...) brand has just released their S/S
2009 collection, which [to describe _ as
noticeable] would be a sore understate-
ment.
[missomnimedia.com/2009/page/2/?s=art+radar&
x=0&y=0]

d. Because this does purport to be a food
blog, I will move from the tv topic to the
food court itself, which [to describe  as
impressive] would be an understatement.
[phillyfoodanddrink.blogspot.com/2008/06/foodies-
food-court.html]

All of these counterexamples involve restrictive
relative clauses, suggesting that the Subject Con-
dition is sensitive to pragmatics (Abeillé et al.,
2018; Chaves and Dery, 2019).

The point here is a cautionary one: many is-
land constraints are not absolute, and come with
a complex array of patterns, many of which are
still poorly understood. It cannot be claimed that
a given language model has learned an island con-
straint before showing that both the negative and
the positive cases (if any exist) have been correctly
learned as well.

Note also that the Gulordava and the Google
models did not perform in the same way at learn-
ing these island constraints: whereas the Google
model failed to learn CNPC islands when the word
‘that’ appears instead of ‘who/what’, the Gulor-
dava model failed to learn Wh-Islands. The perfor-
mance of the Google was not significantly better
that Gulordava’s even though the former was orig-
inally trained with ten times more data than the
latter, contained ten times as many hidden units,
and used character CNN embeddings. This again
suggests that something fundamental about filler-
gap dependencies is being missed.

The question then becomes: are these mod-
els actually learning filler-gap dependencies or are
they simply learning surface-based contingencies
that have little to do with the underlying syntactic
and semantic mechanisms that cause island phe-
nomena? As Jo and Bengio (2017) demonstrate,
neural networks tend to learn surface statistical
regularities in the dataset rather than higher-level
abstract concepts; for adversarial research show-
ing this to be the case in the language domain
see Jia and Liang (2017) and lyyer et al. (2018),
for instance. Indeed, Marvin and Linzen (2018)
found that LSTM RNN:ss fail to learn reflexive pro-
noun agreement and negative polarity licensing,
and Wilcox et al. (2019a) showed that such mod-
els learn center-embedding dependencies only im-
perfectly. In the remainder of this paper the same
models, code and licensing interaction approach
of Wilcox et al. (2018) is used to provide evidence
suggesting that these LSTM RNNs merely capture
partial and superficial morphosyntactic properties
of filler-gap dependency constraints. The present
results are consistent with those of Wilcox et al.
(2019a), in which these models are not fully able
to suppress expectations for gaps inside at least
some island environments and recover them later.



2 Extraction from Relative Clauses

Wilcox et al. (2018) found that evidence suggest-
ing that both the Google and the Gulordava models
have learned the CNPC. However, the CNPC is not
without principled exceptions. It is well-known
that CNPC effects systematically vanish in exis-
tential relative clauses (Erteschik-Shir and Lappin,
1979; McCawley, 1981; Chung and McCloskey,
1983) as in (11). See Kush et al. (2013) for exper-
imental evidence that existential relatives are not
island inducing syntactic environments.

(11) a. This is the kind of weather that there are
[many people who like _].
(Erteschik-Shir and Lappin, 1979)

b. There were several old rock songs that she
and I were [the only two who knew _].
(Chung and McCloskey, 1983)

c. John is the sort of guy that I don’t know
[a lot of people who think well of _].
(Culicover, 1999, 230)

d. Which diamond ring did you say there
was [nobody in the world who could buy
_1? (Pollard and Sag, 1994, 206)

Such relatives are special in that they express as-
sertions rather than presupposed content, and the
extraction is thus arguably acceptable because the
referent that is questioned is part of the content
that is asserted and at-issue (Goldberg, 2013). It
should be relatively easy for the models to use the
there be sequence as a cue that these constructions
are different from other relatives. If Google and
Gulordova’s RNN models have learned the CNPC
rather than superficial contingencies then the ex-
istence of a second gap inside an existential rela-
tive should not cause a large spike in surprisal and
the licensing interaction should be small, or ide-
ally, close to zero. For this purpose 18 experimen-
tal items were taken from Kush et al. (2013) and
adapted to the present task, using the methodology
as Wilcox et al. A sample is in (12).!

(12) a. It was known that there were many math-
ematicians who worked on the project for
years.

[NO WH-LICENSOR, NO GAP]

'Only verbs that strongly require complements were em-
ployed, and that-relatives were avoided given that the models
have difficulty with them according to Wilcox et al. (2018).

gap
no-gap
B gap

2

Surprisal of ‘wh-licensor* minus ‘no wh-licensor

goc;gle gulorldava
model

Figure 2: Licensing Interaction in Existential Relatives

b.*This was the problem which there were
many mathematicians who worked on the
project for years.
[WH-LICENSOR, NO GAP]

c.*It was known that there were many math-
ematicians who worked on _ for years.
[NO WH-LICENSOR, GAP]

d. This was the problem which there were
many mathematicians who worked on
_ for years.

1 [WH-LICENSOR, GAP]

Ideally, the no-gap condition interaction S(12b) —
S(12a) should be a positive number, and the gap
condition interaction S(12d) — S(12c) a negative
number. As the graphs in Figure 2 indicate, this is
what was found for the Gulordava model, but not
for Google’s. In the latter, the no-gap condition is
indistinguishable from zero (¢t = -0.75, p = 0.46)
suggesting that the latter model overlooks the sub-
ject gap. That said, the full wh-licensing interac-
tion values are clearly positive, and in the order
of about 1.5 bits. This is much lower than the 4
bits found by Wilcox et al. (2018), but nonethe-
less suggests that at least some aspects of the filler-
gap dependency are detected by the models. Many
other attempts were made to arrive at stronger re-
sults, with different materials, but the results in-
variably had similar outcomes, with the ‘no-gap’
bars either being indistinguishable from zero or
negative. I now move on to islands which are not
as strongly correlated with surface cues.



0.5 1

0.0 1

IIIIIII[

Z-score

-0.5 1

-1.0 1+ :

Ty

G 15 5 6 1

13 177 16 4 3 19 24 10 20 8 23 11 7 22 U 14 18 2 21 9

Experimental items & aggregated G(rammatical) and U(grammatical) distractors

Figure 3: Acceptability ratings by item (with grammatical (G) and ungrammatical (U) distractors aggregated)

3 Extraction from Adjunct Clauses

Wilcox et al. (2018) probed the strongest type of
adjunct island (tensed adjuncts), traditionally re-
garded as exceptionless since Huang (1982). But
recent work has revealed that exceptions do exist;
see Kluender (1998, 267), Truswell (2011, 175,
ft.1), Levine and Hukari (2006, 287), and Gold-
berg (2006, 144). For example, Sprouse et al.
(2016) found no evidence of an island effect in ex-
amples like (13), in terms of sentence acceptability
rating, but found strong evidence of island effects
in other adjunct island examples.

(13) I called the client [who]; the secretary wor-
ries [if the lawyer insults _;].
(Sprouse et al., 2016)

Similarly, Miiller (2017) experimentally shows
that Swedish conditional adjuncts seem to yield
much weaker island effects than causal adjuncts,
and Kohrt et al. (2018) found experimental evi-
dence that (non-clausal) English adjunct islands
are contingent on semantic factors. In more recent
work, Chaves and Putnam (2020) provide experi-
mental evidence suggesting that Mueller’s results
likely extend to English as well. Chaves and Put-
nam (2020) report a sentence acceptability exper-
iment with 24 items falling into three conditions,
illustrated in (14).

(14) a. Who; did Sue blush [when she saw _;]?
[TEMPORAL ADJUNCT]

b. What; did Tom get mad [because Phil for-
got to say _;]? [CAUSAL ADIJUNCT]

c. What; does Evan get grumpy [if he is told

to do_;]? [CONDITIONAL ADJUNCT]

I what follows I briefly describe this experiment
in more detail, with the aim of repurposing the

items for a counterpart experiment using the Gu-
lordava and Google models. Each item was in-
terspersed and pseudo-randomized with 36 filler
phrases, half of which are ungrammatical, as illus-
trated in (15). The grammatical distractors were
immediately followed by Yes/No comprehension
questions, and the mean comprehension question
accuracy was 86%.

(15) a.*Who does the union identify as having
most recently fired from _?

b. What did the editor recommend should be
revised ?

Chaves and Putnam analyzed data from 38 English
native speakers, who were asked to rate the accept-
ability of each experimental item on a 5-point Lik-
ert scale. There was a wide range of acceptability
scores, from fairly high in the acceptability scale
to very low, as seen in Figure 3. The (aggregate)
ratings for the grammatical (G) and the ungram-
matical (U) distractors are included, for compar-
ison. Conditional adjuncts were clustered at the
high end of the ratings, temporal adjuncts in the
middle, and causal adjuncts at the bottom.

I now describe how the stimuli from this ex-
periment was repurposed to the same task that
Wilcox et al. (2018) employed. The top 5 human-
rate rated items (High Acceptability condition) re-
ceived a mean acceptability of 3.30 (SD = 0.2),
and the bottom human-rated 5 rated items (Low
Acceptability condition) received a mean accept-
ability of 1.95 (SD = 0.13). These 10 items were
selected and adapted to the 3 x 2 x 2 factorial li-
censing interaction methodology of Wilcox et al.
(2018). The counterparts of the item in (14c) are
shown in (16) and (17) for illustration. In a nut-
shell, all items were embedded under ‘I know’ and



google google

gulordava gulordava

High Low

High

o

HE

-
HE

——

_2-

gap
no-gap

M oap

Surprisal of ‘wh-licensor’ minus ‘no wh-licensor’

Extraction domain type

Figure 4: Effect of extraction site on wh-licensing interaction for adjunct islands, across high/low acceptability

all proper names were replaced with pronouns. In
the Object condition there is no adjunct clause.

(16) a. I know that they usually are told to do the
homework in the morning.
[OBIJECT, NO WH-LICENSOR, NO-GAP]|

b.*I know what they usually are told to do
the homework in the morning.
[OBIECT, WH-LICENSOR, NO-GAP]

c.*I know that they usually are told to do__ in
the morning.
[OBJECT, NO WH-LICENSOR, GAP]

d. I know what they usually are told to do
_ in the morning.
[OBIJECT, WH-LICENSOR, GAP]

In the Adjunct back condition there is an adjunct
clause at the end of the sentence, as in (17). Fol-
lowing Wilcox et al. (2018), there was a third
condition where the adverbial clause is fronted,
and appears immediately after the complementizer
that rather than at the end of the utterance.

(17) a. I know that the kids get grumpy if they
are told to do the homework in the morn-
ing.

[ADJUNCT BACK, NO WH-LICENSOR, NO-GAP]
b.*I know what the kids get grumpy if they
are told to do the homework in the morn-
ing.
[ADJUNCT BACK, WH-LICENSOR, NO-GAP]
c.*I know that the kids get grumpy if they are
told to do _ in the morning.
[ADJUNCT BACK, NO WH-LICENSOR, GAP]

d. I know what the kids get grumpy if they
are told to do_ in the morning.
[ADJUNCT BACK, WH-LICENSOR, GAP]

If the Gulordava and Google models have learned
the subtleties of the tensed Adjunct Constraint
then the filler-gap dependencies in the High Ac-
ceptability condition items should have a signif-
icantly lower surprisal than the Low Acceptabil-
ity condition items. In order to access this, the
surprisal of the word after the critical region was
measured. Focusing on the object items first, inter-
actions of the type S(16b) — S(16a) should ideally
result in a positive number, however, for both High
acceptability or Low acceptability items. This was
the case in the Google model, but not for the Gu-
lordava model, as Figure 4 shows; perhaps the lat-
ter model discovered that a gap after the preposi-
tion in (16b) is not necessarily out of the question.
S(16d) — S(16¢) yielded the expected highly neg-
ative values, as illustrated by the long teal bars.
Moving on to the Adjunct back items, the inter-
actions of the type S(17b) —S(17a) should ideally
result in a positive number as usual, contrary to
fact, and S(17d) — S(17c) should ideally result in
a negative number in the High acceptability condi-
tion and cancel out in the Low acceptability condi-
tions. Neither result occurred because the interac-
tion values were centered around zero. The full li-
censing interaction (S(17b)—S(17a))—(S(17d)—
S(17c)) is shown in Figure 5. None of the Ad-
junct front/back High/Low conditions is statisti-
cally distinguishable from zero, although signifi-
cance is approached (t = 2.73,p = 0.052) in the
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case of Adjunct front High for Gulordava.

In sum, all extractions from clausal adjuncts
are ultimately deemed islands environments by the
models, contrary to the human judgments.

4 Extraction from Negative Phrases

Negative Islands are perhaps the clearest type of
island in which semantic and pragmatic factors
play a key role. Consider the examples in (18).

(18) a.*Which country weren’t you born in _?
b.*How many kids don’t you have _?

c.*How fast didn’t John drive ?

The question in (18a) presupposes that the ad-
dressee was born in all countries but one, which
is contrary to world knowledge, and therefore in-
felicitous (Kuno and Takami, 1997). Hence, the
oddness vanishes if the verb is not a one-time pred-
icate, as in (19).

(19) Which country haven’t you visited _ yet?

The oddness of the degree questions in (18b,c)
is due to an analogous reason; see Abrusédn (2011)
for detailed discussion. It is again clear that the
oddness is caused by semantic factors, since the
introduction of existential modals makes the island
effect vanish (Fox and Hackl, 2006):

(20) a. How many kids can’t you have _?
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Figure 6: Wh-licensing in negative phrases

b. How fast is John required not to drive _?

In order to evaluate whether RNNs are sensi-
tive to such effects 14 items were constructed in a
2x2x?2 design, as illustrated in (21). The verb is
negated in items in the negative (NEG) condition.

(21) a. I wonder if the owner of the truck has
(not) driven at this speed during the race.
[NO WH-LICENSOR, POS/NEG, NO GAP]

b.*I wonder how fast the owner of the truck
has (not) driven at this speed during the

race. [WH-LICENSOR, POS/NEG, NO GAP]

c.*I wonder if the owner of the truck has
(not) driven at _ during the race. [No
WH-LICENSOR, POS/NEG, GAP|

d. I wonder how fast the owner of the truck
has (*not) driven at _ during the race.
[WH-LICENSOR, POS/NEG, GAP]

The results are shown in Figure 6. The inter-
action S(21b) — S(21a) should have resulted in
a moderate-to-large positive numbers, regardless
of the presence of negation. In other words, the
red bars should be positive and not overlap with
zero. This was not true of either model, espe-
cially for Gulordava. Conversely, S(21d)—S(21c)
should have yielded a moderate-to-large negative
number in the pos(itive) condition but obtain a sig-
nificantly higher value in the neg(ative) condition
(ideally, close to zero). However, there was no sta-
tistically significant difference between the inter-
action values across the two island conditions (pos
and neg) for the Google model (t = 0.3, p =0.73)
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nor for the Gulordava model (¢t = 1.11, p = 0.27).
The full interactions are shown in Figure 7. Had
Negative Islands been learned, the teal bars would
be centered around zero, like those in in Figure 5.

5 Discussion

The claim that sate-of-the-art LSTM RNNs mod-
els have learned filler-gap dependencies and is-
lands is premature on both linguistic and exper-
imental grounds. First, the linguistic constraints
in question are far more complex than what ex-
tant studies consider. Second, there is evidence
that these models only learn partial contingen-
cies about filler-gap dependencies, which suggests
that the actual linguistic mechanism that underlies
such long-distance phenomena is not accessible to
the model.

The problem is arguably not due to a lack of
data. The training datasets for Gulordava and
Google are unrealistically large when compared to
the amount of linguistic input the average child is
exposed to (Atkinson et al., 2018). Similarly, the
problem is not likely to be due to lack of expres-
sivity, since this kind of model is Turing-complete;
see Siegelmann and Sontag (1995) and Siegel-
mann (1999, 29-58) for proofs and examples, as
well as Hornik et al. (1989) and Lu et al. (2017)
for detailed discussion about Cybenko’s universal
approximation theorem.

The present findings suggest that model size and
training regimen yield diminishing returns, and
that there is a more fundamental factor prevent-
ing such systems to learn filler-gap dependencies.
The problem likely stems from the fact that filler-

gap dependencies are not merely surface string
patterns: they involve rich morphological, syntac-
tic and semantic dependencies which crucially in-
teract with pragmatics and world knowledge, thus
far absent from training. Most crucially, many is-
land phenomena seems to be sensitive to semantic
and pragmatic constraints, including the Subject
Constraint (Chaves and Dery, 2019; Abeill¢ et al.,
2018), the Adjunct Constraint (Truswell, 2011;
Miiller, 2017; Kohrt et al., 2018; Goldberg, 2013),
the Complex NP Constraint (Erteschik-Shir and
Lappin, 1979; Goldberg, 2013), the Coordinate
Structure Constraint (Kehler, 2002, Ch.5), Wh-
Islands Abrusan (2014, Ch.4), Negative Islands
(Abrusan, 2011), among others. See Chaves and
Putnam (2020) for extensive discussion of these
and other island effects.

In sum, it not clear how current neural models
can learn island constraints from stringsets alone,
precisely because of the subtle semantic and prag-
matic properies that underpin the phenomena in
question. The present findings are consistent with
the fact that Marvin and Linzen (2018) found that
LSTM RNNsS fail to learn other complex phenom-
ena such as reflexive pronoun agreement, negative
polarity licensing, and center-embedding depen-
dencies (Wilcox et al., 2019a).

All experimental items and statistical anal-
ysis scripts are made available online at
https://github.com/RuiPChaves/LSTM-RNN-
unbounded-dependency-experiments. The code to
run the models is the same as Wilcox et al. (2018).
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Abstract

This paper examines the generalization abil-
ities of encoder-decoder networks on a class
of subregular functions characteristic of natu-
ral language reduplication. We find that, for
the simulations we run, attention is a necessary
and sufficient mechanism for learning gener-
alizable reduplication. We examine attention
alignment to connect RNN computation to a
class of 2-way transducers.

1 Introduction

Reduplication is a cross-linguistically common
morphological process (Moravcsik, 1978; Rubino,
2005). It is estimated that total reduplication and
partial reduplication occur in 85% and 75% of the
world’s languages, respectively (Rubino, 2013).
Total reduplication places no bound on the size of
the reduplicant while partial does.

1. (a) wanita — wanita~wanita
‘woman — women’
(b) guyon — gu~guyon
‘to jest — to jest repeatedly’

(Sundanese)

Morphological and phonological processes are
sufficiently characterized by the regular class of
languages and functions, and effectively com-
puted by finite-state transducers (FSTs) (Johnson,
1972; Kaplan and Kay, 1994; Koskenniemi, 1984;
Roark and Sproat, 2007). In finite-state calcu-
lus, an FST can process the input string either
once in one direction (1-way FST), or multiple

(Indonesian)

times by going back and forth (2-way FST). 1-
way FSTs compute rational functions, while 2-
way FSTs are more expressive, computing regu-
lar functions (Engelfriet and Hoogeboom, 2001;
Filiot and Reynier, 2016).! Most morphological
and phonological processes are in fact restricted
to subclasses of rational functions and their cor-
responding 1-way FSTs (Chandlee, 2014, 2017;
Chandlee and Heinz, 2018). The exception is to-
tal reduplication, which is uncomputable by 1-
way FSTs due to its unboundedness (Culy, 1985;
Sproat, 1992). It needs the power of 2-way FSTs,
and requires subclasses of the regular functions
(Dolatian and Heinz, 2018b).

This paper uses these subregular functions that
characterize reduplication to probe the learning
and generalization capacities of Recurrent Neu-
ral Network (RNN) architectures. While given
infinite computational power, RNNs can simu-
late Turing machines (Siegelmann, 2012), many
RNN classes and their gating mechanisms are ac-
tually expressively equivalent to weighted finite-
state acceptors (Rabusseau et al., 2019; Peng et al.,
2018). Furthermore, growing evidence suggests
that RNNs and other sequential networks prac-
tically function as subregular automata (Merrill,
2019; Weiss et al., 2018).

We extend these subregular characterizations to

'In the French literature on formal language theory, 1-way
FSTs compute rational functions. In contrast, most work in
American computer science calls this class the regular func-
tions. We follow French conventions because we also discuss
2-way FSTs which compute regular functions in their system.



test encoder-decoder (ED; Sutskever et al., 2014)
networks. We use a typology of reduplication pat-
terns computed by subregular 2-way FSTs (Dola-
tian and Heinz, 2019) to probe the ability of the
networks to learn patterns of varying complex-
ity. Our results suggest that when adding atten-
tion (Bahdanau et al., 2014) to these models, not
only do they successfully learn and generalize all
of the attested reduplication patterns that we test,
but the attention acts in an alignment suggestive
of the subregular 2-way FSTs. In contrast, lack of
attention prohibits learning of the functions, and
the generalization is suggestive of 1-way FSTs.
This provides a principled glimpse into the inter-
pretability of these networks on well-understood
computational grounds, motivated by linguistic in-
sight (Rawski and Heinz, 2019).

The paper proceeds as follows. §2 overviews
the computation and learnability of reduplication.
Methods, results, and discussion are in §3,84,85,
respectively. Conclusions are in §6.

2 Background

2.1 Computing reduplication

As stated, reduplication is characterized by differ-
ent subclasses of regular functions and computed
by their corresponding FSTs, forming the hierar-
chy shown in Figure 1. 1-way FSTs compute ra-
tional functions. They are widely used in com-
putational linguistics and NLP (Roche and Sch-
abes, 1997; Beesley and Karttunen, 2003; Roark
and Sproat, 2007). 2-way FSTs are more pow-
erful. They exactly compute regular functions,
which mathematically correspond to string-to-
string transductions using Monadic Second Order
logic (Engelfriet and Hoogeboom, 2001), making
them the functional counterpart of the regular lan-
guages (Biichi, 1960). They have mostly been
used outside of NLP (Alur and éerny, 2011).

2-way FST = Regular functions

/

1-way FST =Rational functions

C-Seq

/
C-OSL

Seq
‘ /

/

ISL OSL

Figure 1: Hierarchy of subregular functions

When defined over a 1-way FST, all partial
reduplicative functions are computable by Sub-
sequential (Seq) functions (Chandlee and Heinz,
2012; Chandlee, 2017), which are computed by
deterministic 1-way FSTs. Total reduplication is
uncomputable by 1-way FSTs because there is no
bound on the size of the reduplicant (Culy, 1985),
so its output language is at least Mildly Context-
Sensitive (Seki et al., 1991, 1993).

Over 2-way FSTs, both partial and total redu-
plication can be alternatively computed by a con-
catenation of subclasses of regular functions that
are analogous to l-way FST subclasses.” Al-
most all reduplicative processes, including to-
tal reduplication, are computed by Concatenated-
Sequential (C-Seq) functions, which are concate-
nations of Seq functions (Dolatian and Heinz,
2018a,b). Most reduplication processes are suffi-
ciently characterized by C-Seq functions because
they can almost always be decomposed into two
concatenated Seq functions: one to produce the
reduplicant via truncation Trunc(x), and one to
produce an identical copy of the base ID(x). Fig-
ure 2 shows such a division of a reduplicated word
gu~guyon (1b). 3 Figure 2 shows this division of
a reduplicated word gu~guyon (1b).

guyon

Trunc(z) ID(z)

gu ~ guyon

Figure 2: Initial-CV reduplication as a concatenation
of subsequential functions.

Seq functions as 1-way FSTs and C-Seq func-
tions as 2-way FSTs both compute partial redupli-
cation, but differ in their origin semantics (Dola-
tian and Heinz, 2018b), the finite-state analog to
alignment (Bojaiczyk, 2014). Consider a func-
tion f, an FST 7" which computes f, and an input-
output pair (x,y) such that f(x) = y. Given some
substring y; in y, the origin information of y; with
respect to 7' is the position z; in = such that the

2See Alur et al. (2014) on the use of concatenation as a
function combinator.

3 Chandlee (2017) and Dolatian and Heinz (2018a)’s re-
sults are actually stronger. Over 1-way FSTs, most par-
tial reduplicative processes are Input-Strictly Local (ISL)
functions, a subclass of Seq functions. Over 2-way FSTs,
most reduplicative processes are the concatenation of Output-
Strictly Local (C-OSL) functions, a subclass of C-Seq.
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Figure 3: FSTs and origin information for initial-CV reduplication

FST’s input-read head is in position x; of the in-
put z when the FST outputs the substring ;.

To illustrate, consider initial-CV copying:
f(pat) = papat. This function is computable
by either the 1-way FST in Figure 3.a.i or the 2-
way FST in Figure 3.b.i. The input is flanked by
the end boundaries x,x. The 1-way FST implic-
itly advances from left-to-right on the input string.
The 2-way FST advances left-to-right via the ex-
plicit +1 direction parameter until it produces the
first CV string (=the reduplicant). After that, it
moves right-to-left via the -1 direction parameter
and reaches the start boundary . It then advances
left-to-right and outputs the base.* For the input-
output pair (pat, papat), the 1-way FST generates
an ‘alignment’ or origin information such that the
entire second copy ‘pa’ is associated or generated
from the vowel ‘a’ in the input (Figure 3.a.ii). In
contrast, the 2-way FST generates the alignment
in Figure 3.b.ii where the second output ‘p’ is as-
sociated with the input consonant ‘p’. The role of
origin semantics and alignment acts as a diagnos-
tic for understanding whether the neural networks
we probe behave more like a 1-way or 2-way FST.

2.2 Learning reduplication

Chandlee et al. (2015) and Dolatian and Heinz
(2018a) respectively show that ISL (Seq) and C-
OSL (C-Seq) reduplicative processes are provably
learnable by inducing their corresponding 1-way
or 2-way FSTs in polynomial time and data. For

*See the appendix for more details on 2-way FSTs.

Dolatian and Heinz (2018a), their proof relies on
making the training data ‘boundary enriched’ with
the reduplicative boundary symbol ~, e.g. the
training data for initial-CV reduplication is {(pat,
pa~pat), (mara, ma~mara), etc.}. They hypothe-
size that learning without the boundary ~ is tanta-
mount to learning morpheme segmentation.
Gasser (1993) used simple RNNs to model
reduplication and copying functions, finding that
they could not properly learn reduplicative pat-
terns. However, Prickett et al. (2018) found that
ED networks, a class of RNNs that have per-
formed well on a number of other morphologi-
cal tasks (Cotterell et al., 2016; Kirov and Cot-
terell, 2018) could learn simple reduplicative pat-
terns. These patterns used training data that did
not represent a realistic language learning sce-
nario, since all words had the same length and syl-
lables were limited to a CV structure. We test the
extent to which ED networks are capable of learn-
ing more realistic reduplicative functions. We find
that vanilla EDs, like Prickett et al.’s, struggle to
scale to realistic data, while EDs augmented with
an attention mechanism easily acquire complex,
natural-language-based reduplication patterns.

3 Methods
3.1 Data

We use a library of C-Seq transducers derived
from the typology of natural language reduplica-
tion patterns (Dolatian and Heinz, 2019) to gener-
ate sets of input-output mappings which we use to



query several ED architectures.

The typology exhibits multiple parameters and
distinctions. Already mentioned was the distinc-
tion between partial and total reduplication: copy-
ing a bounded substring of the input gu~guyon
(1b) vs. copying the entire potentially unbounded
input wanita — wanita~wanita (1a).

For partial reduplication, one subparameter is
whether the reduplicant has a fixed size or a vari-
able size that is still smaller than some fixed nat-
ural number. Fixed-sized partial reduplication
is the most common pattern, e.g. initial CV-
copying: gu~guyon (1b) (Moravcsik, 1978; Ru-
bino, 2005). One instantiation of variable-length
partial reduplication is copying the initial foot
(2(a)i) (Marantz, 1982), or syllable (2(b)i) (Hau-
gen, 2005), which used to be unattested (Moravc-
sik, 1978). Another subparameter is whether
the reduplicant is adjacent to the segments it
copied (1b) or non-adjacent, i.e. wrong-sided (2c).
Wrong-sided reduplication is controversial (Nel-
son, 2003) but attested (Riggle, 2004).

2. (a) 1i. (dimu)rU — dimu~dimurU (Yidin)
‘house’ — ‘houses’
ii. (gindal)ba — gindal~gindalba
‘lizard sp.” — ‘lizards’
(b) 1i. vu.sa — vu~vusa (Yaqui)
‘awaken’ — ‘awaken (habitual)’
ii. vam.se — vam~vamse
‘hurry’ — ‘hurry (habitual)’
(c) gqanga — qanga~qan
‘fire” — ‘fire (absolute)’

(Koryak)

Over 1-way FSTs, adjacent partial reduplication
and foot/syllable copying are ISL while wrong-
sided reduplication is Seq. Over 2-way FSTs, total
reduplication and all the above partial reduplica-
tion functions are C-OSL, a subclass of C-Seq.’

We tested multiple patterns, including partial
initial and wrong-sided reduplication of the first
two syllables, total reduplication, and partial ini-
tial reduplication of the first two segments. For
each pattern, the models are given base strings
as input and trained to reproduce the base string
along with its reduplicant (i.e. a right or left con-
catenated fully or partially copied form). For all
patterns, 10,000 input-output pairs are generated,
7,000 of which are used to train the models while
the remaining 3,000 are held out to test model

SFoot and syllable copying are C-OSL if the input is
marked by syllable/foot boundaries; otherwise they’re C-Seq.

generalization. For clarity the ~ symbol is used
throughout this paper to denote the boundary be-
tween a base and its reduplicant, however no such
boundary is present in the model’s training data.

3.2 Models

Many ED networks were built and trained on the
datasets described above. EDs are composed of
a recurrent encoder, which sequentially processes
an input string to yield a vector representation of
the sequence in R", and a recurrent decoder which
takes the encoded representation of the input as a
starting state and continues producing outputs un-
til it produces a target stop symbol or reaches an
experimenter-defined maximum length. The use
of recurrent layers in both in the encoder and de-
coder allows EDs to map variable-length input se-
quences to variable-length output sequences, with
no necessary relationship between the length of
the input and target output (Sutskever et al., 2014).

Simple (SRNN) and gated (GRU) recurrence
relations were tested as the encoder and decoder
recurrent layers.® In SRNN layers the network’s
state at any timepoint, h;, is dependent only on the
input at that timepoint and the network’s state at
the previous timepoint (Elman, 1990).

hy = tanh(Wyxy + bip + Wihe—1 + bps) (1)

Consequently, in an SRNN there is only one
path for the forward and backward propogation
of information. This leads to potential problems
for SRNNSs in representing long-distance depen-
dencies (Bengio et al., 1994) and problems with
the backward flow of information during training
(Hochreiter et al., 2001). GRU layers have a series
of gates, called the reset r;, update z;, and new n;
gates, which create an alternative path of informa-
tion flow (Cho et al., 2014), as shown in (2).

¢ =0 (Wipwy + b + Wiphy 1 + bpy)
2y =0 (Wizxy + biz + Wiohy 1 + bpz)
ng =tanh(Winxy + bin + 1 © (Whphe—1 + bpy))
he =(1—2z) ©@ng + 26 © hy—q
(2)

In a classic ED architecture, the encoded repre-
sentation of the input is the only piece of infor-

SGRU layers have been shown to behave comparably
to LSTMs, despite having fewer parameters (Chung et al.,
2014). One difference between GRU and LSTM comes from
(Weiss et al., 2018), who suggests that LSTMs are able to
learn arbitrary a™b" patterns while GRUS are not.



mation that is passed from the encoder to the de-
coder. This forces all necessary information in
the input to be stored in this vector and preserved
throughout the decoding process. In all experi-
ments presented below, the target outputs consist
of a concatenated reduplicant and base. Because
the model must reproduce the base. it must pre-
serve the identity of all phonemes in the input se-
quence. In order to test the ability of the model
to learn the reduplicative function independent of
its ability to store segment identities over arbitrar-
ily long spans, a global weighted attention mech-
anism was incorporated into some of the models.
This is a key point of departure from previous at-
tempts to model reduplication with ED networks.

Attention allows the decoder to selectively at-
tend to the hidden states of the encoder by learning
a set of weights, W4, which map the decoder’s
current state to a set of weights over timesteps in
the input, and then concatenating the current de-
coder hidden state, h;, the weighted combination
of all encoder hidden states to yield a new current
decoder state, hy (Bahdanau et al., 2014; Luong
et al., 2015). This is illustrated in Equation 3,
where E is a matrix of size input length x hid-
den dimensionality such that the ith row contains
the encoder hidden state at timepoint 7.

hi = CAT(hy, 0 (Wahi) T E) (3)

In this way, the decoder can pull information
directly from the encoder by learning an alignment
between the output and input representations.

The next section presents the results of train-
ing networks with either SRNN or GRU recurrent
layers with and without an attention mechanism
and then testing their ability to generalize the tar-
get pattern. All networks are trained to minimize
phoneme level cross-entropy.

4 Results

In this section, we test ED networks on their abil-
ity to learn partial (§4.1,4.3) and total reduplica-
tion (4.2). Within partial reduplication, we test if
they can learn adjacent reduplication vs. wrong-
sided reduplication, and fixed-size vs. variable-
length reduplication.

4.1 Partial reduplication

One simplifying assumption of previous work is
that the reduplicant is a fixed-length substring of
the base. This section tests the extent to which ED

networks are able to learn reduplicative functions
that copy a variably sized substring of the base in
a way that is sensitive to linguistic structure which
is not explicitly encoded in the training data.

Models were trained on initial and wrong-sided
reduplication in which the reduplicant consisted
of the first two-syllables in the word. Syllables
were defined to be as onset-maximizing as possi-
ble and complex onsets and codas were included
in the training data. This means that, for words
with more than two syllables, the target redupli-
cant included everything between the left edge
of the word and the right edge of the second
vowel (initial: tasgatri—tasga~tasgatri, wrong-
sided: tasgatri—tasgatri~tasgat). For words with
only one or two vowels the reduplicant was the
entire word (tasgat—tasgat~tasgat). Due to the
variable presence of onsets and codas, both simple
and complex, reduplicants in these test cases vary
in length between 2 and 10 phonemes, and may
contain either 1 or 2 vowels.

In order for the model to learn this pattern, it
must learn to identify which phonemes are conso-
nants and which are vowels, must learn the syllab-
ification rules, and must learn to handle the one-
syllable exceptional case. Table (1) shows the gen-
eralization accuracy for the tested network archi-
tectures on datasets instantiating this pattern. As
will be discussed in §4.3, the success of networks
without attention is partially dependent on char-
acteristics of the target language, namely the size
of the language’s segment inventory and permit-
ted string lengths. To highlight these effects, re-
sults are reported from a representative small lan-
guage, which has 10 unique phonemes and permits
bases of between 3 and 9 segments, and a large
language, which has 26 unique phonemes and per-
mits bases of between 3 and 15 segments.

Non-attention Attention

Small Large | Small Large

Initial SRNN | 0.107 0.000 | 0.997 0.990
GRU | 0.787 0.234 | 1.000 1.000

wrong-sided SRNN | 0.001 0.000 | 0.995 0.994
GRU | 0.682 0.236 | 1.000 1.000

Table 1: Generalization accuracy by network type for
all four languages that were tested.

The results suggest that the attention-based
models are able to learn and generalize both initial
and wrong-sided two-syllable reduplication pat-
terns in a way that is robust to recurrence rela-



tion and language size. Non-attention GRU mod-
els show mild success in the small language, but
seem heavily affected by language size, a result
that will be explored thoroughly in §4.3. Non-
attention RNN models are unable to learn the pat-
terns in any of the simulations we ran.

The attention-based models are able to learn an
alignment between the input and output that al-
lows them to pull information directly from the
input during decoding, sidestepping a potential
information bottleneck at the encoded represen-
tation. To illustrate the alignment functions, an
SRNN trained on two-syllable initial reduplication
was used to make predictions about novel forms
and the attention weights were stored. Figure (4)
plots the attention weights for this model at ev-
ery step in decoding for the three-syllable word
pastapo and the two-syllable word spaftof (‘<’
and ‘>’ represent start-of-sequence and end-of-
sequence tokens, respectively).

Voooe ~vwoooe~rnooh

V40 20T 020 +=00n A

< pastapos> <spaftofs>

Figure 4: Attention weights over input (horizontal) at
each time step of correct decoding of reduplicated form
(vertical) for two-syllable initial reduplication of the
words pastapo and spaftof. Darker squares indicate a
lower weight on the alignment between two timesteps.

The attention weights confirm that the model
learned an alignment between -corresponding
phonemes in the input and output. A single
phoneme in the input has an output correspondent
in both the base and reduplicant. These examples
also illustrate the model’s ability to i) identify the
cut-off point for the reduplicant even when it is not
explicitly marked and to ii) identify exceptional
cases where the word is only two syllables and
thus the reduplicant consists of material past the
second vowel. In pastapo the model cuts off the
reduplicant after the second vowel and in spaftof
the model correctly includes the coda consonant
because the word consists of only two syllables.

This section showed that attention-based mod-
els can learn initial and wrong-sided reduplication
even when the pattern is complicated by sensitiv-
ity to linguistic structure that results in variable-
length reduplicants. Once the network has learned
enough structure to perform syllabification, the
two-syllable partial reduplicative function is C-
Seq. The next section examines the extent to
which these networks learn unbounded copying,
i.e. total reduplication.

4.2 Total reduplication

We test the ability of ED networks to learn
and generalize total reduplication: wanita —
wanita~wanita (l1a). As mentioned, total redu-
plication is not a rational function and is uncom-
putable with a 1-way FST, since there is no upper
bound on the size of the copied string. However, it
is a C-Seq function and computable by the corre-
sponding 2-way FST. Total reduplication is thus a
crucial test case for the RNN behavior.

As in §4.1, SRNN and GRU models with
and without attention are trained on large and
small languages where small languages have 10
phonemes and base lengths between 3 and 9 seg-
ments, and large languages have 26 phonemes and
base lengths between 3 and 15 segments.

Non-attention Attention

Small Large | Small Large
SRNN | 0.046 0.0 | 0.999 0.985
GRU | 0.705 0.211 | 0.999 0.995

Table 2: Generalization accuracy by network type on
both the large and small total reduplication patterns.

Table 2 shows the generalization accuracy for
all network configurations. The results are nearly
identical to those for the partial reduplication pat-
terns in §4.1. Attention models can robustly learn
the pattern, with negligible effects of recurrence
relation or language size. Without attention, no
model fully succeeds in generalizing the total
reduplication pattern, with the best performance
coming from the GRU on the small language.

These results show that attention-based models
can learn a generalizable total reduplication func-
tion as well as they can learn partial reduplication
functions. This means that attention-based ED
network generalization does not distinguish be-
tween total and partial reduplication, despite glar-
ing functional and automata-theoretic differences



in the functions themselves. This clearly sug-
gests that an RNN architecture that can learn both
functions necessarily computes a C-Seq function,
which properly includes both processes. Further-
more, as discussed in §5, the interpretability of
the corresponding FST characterization (2-way vs
1-way) and its origin semantics provides a direct
computational link to the attention mechanism of
these RNN architectures.

4.3 Alphabet size and string length effects

As shown so far, network architecture is not the
only factor that influences a network’s ability to
learn a target reduplicative function. The compo-
sition of the target language, in terms of the num-
ber of segments in the language and the number of
permitted string lengths, can have a dramatic ef-
fect on model behavior.

The effect of model architecture and language
composition was investigated by testing the extent
to which all network configurations could learn
simple reduplication pattern while systematically
varying the size of the segment inventory and per-
mitted base lengths in the data. The reduplica-
tive function chosen for these tests copied a fixed-
window of two segments for initial reduplication:
guyon—gu~guyon. This was chosen because it is
typologically well-attested (Moravcsik, 1978; Ru-
bino, 2005, 2013) and also predicted to be the sim-
plest reduplication pattern for the network to learn
(since it is insensitive to linguistic structure and
has a fixed-length reduplicant).

Data that followed this pattern was gener-
ated for languages with 10, 18, and 26 unique
phonemes in their inventory and which permit
bases to vary from 3 to between 5 and 10 seg-
ments. These results are shown in Figure (5).7 The
top panel shows the effect of alphabet size; string
lengths are fixed between 3 and 8. The bottom
panel, which shows the effect of string lengths; al-
phabet size is fixed at 26. The lines paralleling 1.0
in the top panel show that the ability of attention-
based models to learn the target function is robust
to alphabet size. The lines paralleling 1.0 in the
bottom panel illustrate that attention-based mod-
els are similarly robust to string length variation.

In contrast, the non-attention models show large
effects of alphabet size and string length. The non-

"The reported results are from initial reduplication with a
window size of two segments, however, wrong-sided redupli-
cation and a larger window size of three were also tested with
nearly identical results.
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Figure 5: Effect on varying alphabet size and maximum
string length, with minumum string length fixed at 3, on
generalization accuracy.

attention SRNN shows very limited success. It is
able to generalize with a very limited number of
string lengths; but when maximum string length
exceeds 7, it is no longer able to learn the target
function at all. Consequently, the accuracy of the
SRNN in the top panel, where maximum string
length is fixed at 9, is stuck at 0.0 across all al-
phabet sizes.

The effects of both string length and alphabet
size are also visible for the non-attention GRU.
In the top panel, where maximum string length
is fixed at 9, a decrease in generalization accu-
racy as a function of alphabet size is observed.
The effect of maximum string length on the non-
attention GRU is less dramatic than on the SRNN,
but the GRU still displays a decrease from near
ceiling accuracy with lengths between 3 and 5, to
~ 0.60 when lengths range between 3 and 10.

The sensitivity of non-attention SRNN and
GRU models to alphabet size and string length are
likely a result of the fact that these models are
unable to directly reference the input during de-
coding and must pass all information through the
encoder bottleneck. This hypothesis is strength-
ened by the fact that, without attention, the GRU
performs much better than the SRNN. The GRU
has extra gates between timepoints which aid in
the long-distance preservation of information, mit-
igating the bottleneck problem to an extent. How-



ever, while this assists the GRU network, it is not
enough to make alphabet size and word length
non-issues. The non-attention GRU is similar in
architecture to the LSTM model of Prickett et al.
(2018), with a slightly different training objective,
suggesting that their model would similarly have
difficulty scaling up.

The lack of a difference between the attention-
based GRU and SRNN corroborates the idea that
when this information bottleneck is not an issue
both architectures are capable of learning general-
izable reduplication.

5 Discussion

5.1 Origin semantics and alignment

As explained in §2.1, partial reduplication can be
computed as a function with either 1-way or 2-way
FSTs. However, the two finite-state algorithms
differ in their origin semantics or alignment. The
alignment difference is simulated by the attention-
based RNNs. The alignments learned by attention-
based models for partial reduplication in §4.1 and
§4.3 are analogous to the origin semantics com-
puted by the 2-way FST. We illustrate in Figure 6.

N\

Figure 6: (left): Attention weights over input (hori-
zontal) at each time step of correct decoding of redu-
plicated form (vertical) for the mapping pat—pa~pat.
Darker squares indicate a lower weight on the align-
ment between two timesteps. (right): Origin semantics
of 2-way FST from Figure 3b.ii.

While both Seq and C-Seq functions sufficiently
characterize partial reduplication, this 2-way-like
alignment suggests that the RNNs are generaliz-
ing C-Seq functions (see Fig. 4 for other exam-
ples). This extends to total reduplication (§4.2)
whose alignment when learned by the attention-
based RNNs suggests the same origin information
as 2-way FSTs. These results hint at the expressiv-
ity of the ED models, explicitly connecting their

computations to the 2-way automata characteriz-
ing this subregular class.

5.2 Generality of copying mechanisms

The results suggest that the same general-purpose
mechanism can be used to model both partial and
total reduplication. The attention-based RNNs
learned both processes with near-equal ease and
generalizability and the same tools. This learn-
ing result fits well with reduplicative typology and
theory. Partial and total reduplication are typo-
logically and diachronically linked. If a language
has partial reduplication, then it almost always has
total reduplication, often because the former de-
veloped from the latter (Rubino, 2013). Because
of this dependence, certain linguistic theories use
the same mechanisms to generate both processes
(Inkelas and Zoll, 2005).

Computationally, our result fits with the charac-
terization of reduplication over 2-way FSTs (Dola-
tian and Heinz, 2018b) but not over 1-way FSTs
(Chandlee et al., 2012). Because total reduplica-
tion cannot be modeled by a 1-way FSTs, some
suggest that total and partial reduplication are on-
tologically different and should be computed with
separate mechanisms (Roark and Sproat, 2007,
Chandlee, 2017). In contrast, when computed over
2-way FSTs, both reduplicative processes fall un-
der the same subclass of C-Seq functions.

5.3 Scaling problems

The results from §4.3 shows that attention-based
RNNs could equally well learn a partial redupli-
cation function regardless of alphabet size input
size. In contrast, attention-less RNNs suffer. For
an attention-less RNN, learning initial-CV copy-
ing with a small alphabet over smaller words is
significantly easier then learning it with a larger
alphabet over larger words. Their scaling diffi-
culty is reminiscent of 1-way FST treatments of
partial reduplication. To compute partial redupli-
cation, 1-way FSTs can suffer a significant state
explosion as alphabet size or reduplicant size in-
creases. This is why some call 1-way FSTs ‘bur-
densome models’ for partial reduplication (Roark
and Sproat, 2007, 54). 2-way FSTs do not suffer
from state explosion (Dolatian and Heinz, 2018b).

6 Conclusions

We showed that RNN encoder-decoder networks
with attention can learn partial and total redupli-



cation patterns. Non-attention models exhibited
mixed success in learning generalizable reduplica-
tion functions in a way that was dependent on al-
phabet size and string length, suggesting that their
failure is attributable to the information bottleneck
between encoder and decoder rather than an in-
ability to learn the target function. This corrob-
orates the finding by Weiss et al. (2018) that re-
current networks’ expressive power is restricted in
practice, and shows the fruitfulness of using well-
understood subregular classes to probe this expres-
sivity.
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A Appendix

The definition and illustration for 2-way FSTs are
taken from Dolatian and Heinz (2018b). We use
x,xas the start and end boundaries.

3) Definition: A 2-way, deterministic FST is a
six-tuple (@, X, T, qo, F, §) such that:

Q is a finite set of states,

Y = X U{x, x} is the input alphabet,
T is the output alphabet,

go € @ is the initial state,

F C Q is the set of final states,

0 : Q@ x X — @Q xI*x D is the
transition function where the direction
D ={-1,0,+1}.

For a survey on legitimate configurations in a 2-
way FSTs, its computational properties, and com-
plexity diagnostics, please see Dolatian and Heinz
(2018b).

To illustrate 2-way FSTs, Figure 7 shows a 2-
way FST for total reduplication. The 2-way oper-
ates by:

1. reading the input tape once from left to right
in order to output the first copy,

2. going back to the start of the input tape by
moving left until the start boundary x is
reached,

3. reading the input tape once more from left to
right in order to output the second copy.

Specifically, this figure is interpreted as follows.
The symbol X stands for any segment in the alpha-
bet except for { x, x }. The arrow from ¢; to itself
means this 2-way FST reads X, writes >, and ad-
vances the read head one step to the right on the
input tape. The boundary symbol ~ is a symbol
in the output alphabet I', and is not necessary. We
include it only for illustration.

We show an example derivation in Figure § for
the input-output pair (wanita, wanita~wanita) (1a

using the 2-way FST in Figure 7. The derivation
shows the configurations of the computation for
the input wanita and is step by step. Each tuple
consists of four parts: input string, output string,
current state, transition. In the input string, we
underline the input symbol which FST will read
next. The output string is what the 2-way FST has
outputted up to that point. The symbol A marks
the empty string. The current state is what state
the FST is currently in. The transition represents
the used transition arc from input to output. In the
first tuple, there is no transition arc used (N/A).
But for other tuples, the form of the arc is:

input symbol:output string

input state output state

direction
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Figure 7: 2-way FST for total reduplication.
Outputting the first copy
1. (xwanitax, A, g0, N/A) 9. (xwanitax, wanita~, @, q M—l~> )
. A . . A
2. (Xwanitax, A, q, Qo N—l> q1) || 10. (Xwanitax, wanita~, Q2, Q2 —l> q2)
+ _
. D . . A
3.  (xwanitax, W, q1, q1 —>1 q1) || 11. (xwanitax, wanita~, q, q2 —>l q2)
+ _
. DI . . A
4. (xwanitax, wa, q, q1 —1> q1) || 12. (Xwanitax, wanita~, qQ, Q2 41% qQ2)
+ _
. DI . . PPN
5.  (Xwanitax, wan, q1, Q1 —1> q1) || 13. (Xwanitax, wanita~, qQ, Q2 —l> q2)
+ _
. . 3 . . DI
6. (Xwanitax, wani, ., q —I> q1) || 14. (xwanitax, wanita~, qQ, q2 —l> q2)
+ _
. . 3 . . PPN
7. (Xwanitax, wanit, q1, q1 —1> q1) || 11. ( xwanitax, wanita~, q2, Q2 —l> q2)
+ _
. . DI
8. (xwanitax, wanita, @ a7 q)
+
Outputting the second copy
. . A . . . DS
12.  ( XwanitaX, wanita~, a3, Q2 —>Nl q3) || 15. ( xwanitax, wanita~wani, q3, q3 —>] q3)
+ +
. . 3y . . . DI
13.  ( Xwanitax, wanita~w, q, g3 —l> q3) || 15. ( xwanitax, wanita~wanit, g3, g3 —]> q3)
+ +
. . 3y . . . D
14. ( Xwanitax, wanita~wa, qQ3, Q3 —l> q3) || 16. ( xwanitax, wanita~wanita, g3, g3 —1> q3)
+ +
. . DI . . . :
14. ( Xwanitax, wanita~wan, ¢3, Q3 —1> q3) || 17. ( xwanitax, wanita~wanita, ¢y, ¢3 M—?) qr)
+ +

Figure 8: Derivation of wanita—wanita~wanita.
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Abstract

We perform statistical analysis of the phe-
nomenon of neology, the process by which
new words emerge in a language, using large
diachronic corpora of English. We investigate
the importance of two factors, semantic spar-
sity and frequency growth rates of semantic
neighbors, formalized in the distributional se-
mantics paradigm. We show that both factors
are predictive of word emergence although we
find more support for the latter hypothesis. Be-
sides presenting a new linguistic application
of distributional semantics, this study tackles
the linguistic question of the role of language-
internal factors (in our case, sparsity) in lan-
guage change motivated by language-external
factors (reflected in frequency growth).!

1 Introduction

Natural languages are constantly changing as the
context of their users changes (Aitchison, 2001).
Perhaps the most obvious type of change is the in-
troduction of new lexical items, or neologisms (a
process called “neology”). Neologisms have var-
ious sources. They are occassionally coined out
of whole cloth (grok). More frequently, they are
loanwords from another language (tahini), derived
words (unfriend), or existing words that have ac-
quired new senses (as when web came to mean
‘World Wide Web’ and then ‘the Internet’). While
neology has long been of interest to linguists (§2),
there have been relatively few attempts to study it
as a global, systemic phenomenon. Computational
modeling and analysis of neology is the focus of
our work.

What are the factors that predict neology? Cer-
tainly, social context plays a role. Close interac-
tion between two cultures, for example, may re-
sult in increased borrowing (Appel and Muysken,

'The code and word lists are available at https://
github.com/ryskina/neology

2006). We hypothesize, though, that there are
other factors involved—factors that can be mod-
eled more directly. These factors can be under-
stood in terms of supply and demand.

Bréal (1904) introduced the idea that the dis-
tribution of words in semantic space tends to-
wards uniformity. This framework predicts that
new words would emerge where they would re-
pair uniformity—where there was a space not oc-
cupied by a word. This could be viewed as supply-
driven neology. Next, demand plays a role as well
as supply (Campbell, 2013): new words emerge
in “stylish” neighborhoods, corresponding to do-
mains of discourse that are increasing in impor-
tance (reflected by the increasing frequency of the
words in those neighborhoods).

We operationalize these ideas using distribu-
tional semantics (Lenci, 2018). To formalize the
hypothesis of supply-driven neology for compu-
tational analysis, we measure sparsity of areas
in the word embedding space where neologisms
would later emerge. The demand-driven view of
neology motivates our second hypothesis: neigh-
borhoods in the embedding space containing
words rapidly growing in frequency are more
likely to produce neologisms. Both hypotheses are
defined more formally in §3.

Having formalized our hypotheses in terms of
word embeddings, we test them by comparing the
distributions of the corresponding metrics for a set
of automatically identified neologisms and a con-
trol set. Methodology of the word selection and
hypothesis testing is detailed in §4. We discuss the
results in §5, demonstrating evidence for both hy-
potheses, although the demand-driven hypothesis
has more significant support.

2 Background

Neology Specific sources of neologisms have been
studied: lexical borrowing (Taylor and Grant,
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2014; Daulton, 2012), morphological derivation
(Lieber, 2017), blends or portmanteaus (Cook,
2012; Renner et al., 2012), clippings, acronyms,
analogical coinages, and arbitrary coinages, but
these studies have tended to look at neologisms
atomistically, or to explicate the social conditions
under which a new word entered a language rather
than looking at neologisms in systemic context.

To address this deficit, we look back to the sem-
inal work of Michel Bréal, who introduced the
idea that words exist in a semantic space. His
work implies that, other things being equal, the
semantic distribution of words tends towards uni-
formity (Bréal, 1904). This is most explicit in his
law of differentiation, which states that near syn-
onyms move apart in semantic space, but has other
implications as well. For example, this principle
predicts that new words are more likely to emerge
where they would increase uniformity. This could
be viewed as supply-driven neology—new words
appear to fill gaps in semantic space (to express
concepts that are not currently lexicalized).

In linguistic literature neology is often associ-
ated with new concepts or domains of increasing
importance (Campbell, 2013). Just as there are
factors that predict where houses are built other
than the availability of land, there are factors that
predict where new words emerge other than the
availability of semantic space. Demand, we hy-
pothesize, plays a role as well as supply.

Most existing computational research on the
mechanisms of neology focuses on discovering
sociolinguistic factors that predict acceptance of
emerging words into the mainstream language and
growth of their usage, typically in online social
communities (Del Tredici and Ferndndez, 2018).
The sociolinguistic factors can include geogra-
phy (Eisenstein, 2017), user demographics (Eisen-
stein et al., 2012, 2014), diversity of linguistic
contexts (Stewart and Eisenstein, 2018) or word
form (Kershaw et al., 2016). To the best of our
knowledge, there is no prior work focused on
discovering factors predictive of the emergence
of new words rather than modeling their lifecy-
cle. We model language-external processes indi-
rectly through their reflection in language, thereby
capturing phenomena evident of our hypotheses
through linguistic analysis.

Distributional semantics and language change

Word embeddings have been successfully used for
different applications of the diachronic analysis

of language (Tahmasebi et al., 2018). The clos-
est task to ours is analyzing meaning shift (track-
ing changes in word sense or emergence of new
senses) by comparing word embedding spaces
across time periods (Kulkarni et al., 2015; Xu and
Kemp, 2015; Hamilton et al., 2016; Kutuzov et al.,
2018). Typically, embeddings are learned for dis-
crete time periods and then aligned (but see Bam-
ler and Mandt, 2017). There has also been work
on revising the existing methodology, specifically
accounting for frequency effects in embeddings
when modeling semantic shift (Dubossarsky et al.,
2017).

Other related questions where distributional se-
mantics proved useful were exploring the evolu-
tion of bias (Garg et al., 2018) and the degrada-
tion of age- and gender-predictive language mod-
els (Jaidka et al., 2018).

3 Hypotheses

This section outlines the two hypotheses we intro-
duced earlier from the linguistic perspective, for-
malized in terms of distributional semantics.

Hypothesis 1 Neologisms are more likely to
emerge in sparser areas of the semantic space.
This corresponds to the supply-driven neology
hypothesis: we assume that areas of the space
that contain fewer semantically related words are
likely to give birth to new ones so as to fill in
the ‘semantic gaps’. Word embeddings give us
a natural way of formalizing this: since seman-
tically related words have been shown to popu-
late the same regions in embeddings spaces, we
can approximate semantic sparsity (or density) of
a word’s neighborhood as the number of word vec-
tors within a certain distance of its embedding.

Hypothesis 2 Neologisms are more likely to
emerge in semantic neighborhoods of growing
popularity. Here we formalize our demand-driven
view of neology, which assumes that growing fre-
quency of words in a semantic area is a reflection
of its growing importance in discourse, and that
the latter is in turn correlated with emergence of
neologisms in that area. In terms of word em-
beddings, we again consider nearest word vectors
as the word’s semantic neighbors and quantify the
rate at which their frequencies grow over decades
(formally defined in §4.4).



4 Methodology

Our analysis is based on comparing embedding
space neighborhoods of neologism word vectors
and neighborhoods of embeddings of words from
an alternative set. Automatic selection of neolo-
gisms is described in §4.2, and in §4.4 we detail
the factors we control for when selecting the alter-
native set. In §4.1 we describe the datasets used in
our experiments. Our data is split into two large
corpora, HISTORICAL and MODERN; we addition-
ally require the HISTORICAL corpus to be split into
smaller time periods so that we can estimate word
frequency change rate. Embedding models are
trained on each of the two corpora, as described in
§4.3. We compare the neighborhoods in the HIS-
TORICAL embedding space, but due to the nature
of our neologism selection process, many neolo-
gisms might not exist in the HISTORICAL vocab-
ulary. To locate their neighborhoods, we adapt
an approach from prior work in diachronic anal-
ysis with word embeddings: we learn an orthog-
onal projection between HISTORICAL and MOD-
ERN embeddings to align the two spaces in or-
der to make them comparable (see Hamilton et al.,
2016), and use projected vectors to represent ne-
ologisms in the HISTORICAL space. Finally, §4.5
describes the details of hypothesis testing: statis-
tics we choose to quantify our two hypotheses and
how their distributions are compared.

4.1 Datasets

We use the Corpus of Historical American English
(COHA, Davies, 2002) and the Corpus of Contem-
porary American English (COCA, Davies, 2008),
large diachronic corpora balanced by genre to re-
flect the variety in word usage. COHA data is split
into decades; we group COHA documents from
18 decades (1800-1989) to represent the HISTOR-
ICAL English collection and use full COCA 1990-
2012 corpus as MODERN.

The obtained HISTORICAL split contains 405M
tokens of 2M types, and MODERN contains 547M
tokens of 3M types.>

4.2 Neologism selection

We rely on a usage-based approach to extract the
set of neologisms for our analysis, choosing the

2Statistics accompanying the corpora state that entire
COHA dataset contains 385M words, and COCA contains
440M words; we assume the discrepancy is explained by to-
kenization differences.

words based on their patterns of occurrence in our
datasets. It can be seen as an approximation to se-
lecting words based on their earliest recorded use
dates, as these dates are also determined based on
the words’ usage in historical corpora. This anal-
ogy is supported by the qualitative analysis of the
obtained set of neologisms, as discussed in §6.

We limit our analysis to nouns, an open-class
lexical category. We identify nouns in our cor-
pora using a part-of-speech dictionary, collected
from a POS-tagged corpus of English Wikipedia
data (Wikicorpus, Reese et al., 2010), and select
words that are most frequently tagged as ‘NN’.

We additionally filter candidate neologisms to
exclude words that occur more frequently in cap-
italized than lowercased form; this heuristic helps
us remove proper nouns missed by the POS tagger.

We select a set of neologisms by picking words
that are substantially more frequent in the MOD-
ERN corpus than in the HISTORICAL one. It is
important to note that while we use the term “ne-
ologism,” implying a word at the early stages of
emergence, with this method we select words that
have entered mainstream vocabulary in MODERN
time but might have been coined prior to that. We
consider a word w to be a neologism if its ra-
tio f,(w)/ frn(w) is greater than a certain thresh-
old; here f,,(-) and f3(-) denote word frequencies
(normalized counts) in MODERN and HISTORI-
CAL data respectively. Empirically we set the fre-
quency ratio threshold equal to 20.

We rank words satisfying these criteria by their
frequency in the MODERN corpus and select the
first 1000 words to be our neologism set; this is
to ensure that we only analyze words that subse-
quently become mainstream and not misspellings
or other artifacts of the data.

4.3 Embeddings

Our hypothesis testing process involves inspecting
semantic neighborhoods of neologisms in the HIS-
TORICAL embedding space. However, many neol-
ogisms are very infrequent or nonexistent in the
HISTORICAL data, so we approximate their vec-
tors in the HISTORICAL space by projecting their
MODERN embeddings into the same coordinate
axes.

We learn Word2Vec Skip-Gram embed-
dings® (Mikolov et al., 2013) of the two corpora

SHyperparameters: vector dimension 300, window size 5,
minimum count 5.



and use orthogonal Procrustes to learn the aligning
transformation:

R =arg mfizn QW — wh),

where W) W) ¢ RIVIXd are the word em-
bedding matrices learned on the HISTORICAL and
MODERN corpora respectively, restricted to the in-
tersection of the vocabularies of the two corpora
(i.e. every word embedding present in both spaces
is used as an anchor). To project MODERN word
embeddings into the HISTORICAL space, we mul-
tiply them by the obtained rotation matrix R.

4.4 Control set selection

To test our hypotheses, we collect an alternative
set of words and analyze how certain statistical
properties of their neighbors differ from those of
neighbors of neologisms. At this stage it is im-
portant to control for non-semantic confounding
factors that might affect the word distribution in
the semantic space. One such factor is word fre-
quency: it has been shown that embeddings of
words of similar frequency tend to be closer in the
embedding space (Schnabel et al., 2015; Faruqui
et al.,, 2016), which results in very dense clus-
ters, or hubs, of words with high cosine similar-
ity (Radovanovi¢ et al., 2010; Dinu et al., 2014).
We choose to also restrict our control set to only
include words that did not substantially grow or
decline in frequency over the HISTORICAL pe-
riod in order to prevent selecting counterparts that
only share similar frequency in the MODERN sub-
corpus (e.g., due to recent topical relevance), but
exhibit significant fluctuation prior to that period.
In particular, we refrain from selecting words that
emerged in language right before our HISTORI-
CAL-MODERN split.

We create the alternative set by pairing each ne-
ologism with a non-neologism counterpart that ex-
hibits a stable frequency pattern, while controlling
for word frequency and word length in characters.
Length is chosen as an easily accessible correlate
to other factors for which one should control, such
as morphological complexity, concreteness, and
nativeness. We perform the pairing only to ensure
that the distribution of those properties across the
two sets is comparable, but once the selection pro-
cess is complete we treat control words as a set
rather than considering them in pairs with neolo-
gisms.

Following Stewart and Eisenstein (2018), we
formalize frequency growth rate as the Spear-
man correlation coefficient between timesteps
{1,...,T} and frequency series f(;.7)(w) of word
w. In our setup, timesteps {1,...,18} enumer-
ate decades from 1810s to 1980s, and f;(-) denote
word frequencies in the corresponding ¢-th decade
of the HISTORICAL data.

Formally, for each neologism w, we select
a counterpart w, satisfying the following con-
straints:

e Frequencies of the two words in the
corresponding corpora are comparable:
fm(wn)/ fn(we) € (1 — 46,14 6), where §
was set to 0.25;

e The length of the two words is identical up to
2 characters;

e The Spearman correlation coefficient 75 be-
tween decades {1,...,18} and the control
word frequency series f(1.1g)(w.) is small:

s ({1 : 18}7f(1:18)(wc)) | <01

These words, which we will refer to as stable,
make up our default and most restricted control
set. We will also compare neologisms to a re-
laxed control set, omitting the stability constraint
on the frequency change rate but still controlling
for length and overall frequency, to see how ne-
ologisms differ from non-neologisms in a broader
perspective.

4.5 Experimental setup

We evaluate our hypotheses by inspecting neigh-
borhoods of neologisms and their stable con-
trol counterparts in the HISTORICAL embedding
space, viewing them as proxy for neighborhoods
in the underlying semantic space. Since many ne-
ologisms are very infrequent or nonexistent in the
HISTORICAL data, we approximate their vectors
in the HISTORICAL space with their MODERN em-
beddings projected using the transformation de-
scribed in §4.3. The neighborhood of a word w is
defined as the set of HISTORICAL words for which
cosine similarity between their HISTORICAL em-
beddings and v,, exceeds the given threshold T;
vy, denotes a projected MODERN embedding if w
is a neologism or a HISTORICAL embedding if it
is a control word.*

*Cosine similarity is chosen as our distance metric since it
is traditionally used for word similarity tasks in distributional
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Figure 1: Neighborhoods of projected MODERN embeddings of two neologisms (shown in red), renewables and
pesto, in the HISTORICAL embedding space, visualized using t-SNE (Maaten and Hinton, 2008). Figure 1a shows
an example of a neighborhood exhibiting frequency growth: words like synfuel or privatization have been used
more towards the end of the HISTORICAL period. The neighborhood also includes natural-gas that can be seen as
representing a concept to be replaced by renewables. The word pesto (Figure 1b) is projected into a neighborhood
of other food-related words, most of which are also loanwords, several from the same language; it also has its

hypernym sauce as one of its neighbors.

The two factors we need to formalize are se-
mantic sparsity of the neighborhoods and increase
of popularity of the topic that the neighborhood
represents. We use sparsity in the embedding
space as a proxy for semantic sparsity and ap-
proximate growth of interest in a topic with fre-
quency growth of words belonging to it (i.e. em-
bedded into the corresponding neighborhood). For
the neighborhood of each word w, we compute the
following statistics, corresponding to our two hy-
potheses:

1. Density of a neighborhood d(w,T): num-
ber of words that fall into this neighborhood
d(w,T) = |{u: cosine(vy, vy,) > T}|

2. Average frequency growth rate of a neigh-
borhood r(w,T): as defined in the previous
subsection, we compute the Spearman corre-
lation coefficient between timesteps and fre-
quency series for each word in the neighbor-
hood and take their mean:

b
d(w,T)

X er ({1:18}, f118)(w))

w:cosine(Vy , vy ) >T

r(w,r) =

In our tests, we compare the values of those
metrics for neighborhoods of neologisms and
semantics (Lenci, 2018). We have also observed the same

results when repeating the experiments with the Euclidean
distance metric.

neighborhoods of control words and estimate the
significance of each of the two factors for a range
of neighborhood sizes defined by the threshold 7.
We test whether means of the distributions of those
statistics for the neologism and the control set dif-
fer and whether each of the two is significant for
classifying words into neologisms and controls.

As mentioned in §4.2, our vocabulary is re-
stricted to nouns, and we only consider vocab-
ulary noun neighbors when evaluating the statis-
tics.” Since we project all neologism word vectors
from MODERN to HISTORICAL embedding space,
for neologisms occurring in the HISTORICAL cor-
pus we might find a HISTORICAL vector of the ne-
ologism itself among the neighbors of its projec-
tion; we exclude such neighbors from our analy-
sis. We cap the number of nearest neighbors to
consider at 5,000, to avoid estimating statistics on
overly large sets of possibly less relevant neigh-
bors.

5 Results

Following the experimental setup described in
84.5, we estimate the contribution of each of
the hypothesized factors employing strictly con-
strained and relaxed control sets. We start by ana-
lyzing how the distributions of those statistics dif-
fer for neologisms and stable controls, both by

SHere we refer to the vocabulary of words participating in
our analysis, not the embedding model vocabulary; embed-
dings are trained on the entire corpora.
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Figure 2: Number of HISTORICAL word vectors within a certain cosine distance of a word and average growth
rate of frequency (represented by Spearman correlation coefficient) of those HISTORICAL words, averaged across
neologism (darker) and stable control word (lighter) sets. Projected neologism vectors appear in lower-density
neighborhoods compared to control words, and neighbors of neologisms exhibit a stronger growth trend than those

of the control words, especially in smaller neighborhoods.

comparing their sample means and by more rigor-
ous statistical testing. We also evaluate the signifi-
cance of the factors using generalized linear mod-
els for both stable and relaxed control sets.

5.1 Comparison to stable control set

First, we test our hypotheses on 720 neologism-
stable control word pairs (not all words are paired
in the stable control setting due to its restrictive-
ness).

Figure 2 demonstrates the values of density and
frequency growth rate for a range of neighborhood
sizes, averaged over neologism and control sets.
Both results conform with our hypotheses: Fig-
ure 2a shows that on average the projected neol-
ogism has fewer neighbors than its stable coun-
terpart, especially for larger neighborhoods, and
Figure 2b shows that, on average, frequencies
of neighbors of a projected neologism grow at a
faster rate than those of a counterpart. Interest-
ingly, we find that neighbors of stable controls still
tend to exhibit small positive growth rate. We at-
tribute it to the general pattern that we observed:
about 70% of words in our vocabulary have posi-
tive frequency growth rate. We believe this might
be explained by the imbalance in the amount of
data between decades (e.g. 1980s sub-corpus has
20 times more tokens than 1810s): some words
might not occur until later in the corpus because of
the relative sparsity of data in the early decades.

As we can see from Figure 2a, neighborhoods
of larger sizes (corresponding to lower values of

the threshold) may contain thousands of words, so
the statistics obtained from those neighborhoods
might be less relevant; we might only want to
consider the immediate neighborhoods, as those
words are more likely to be semantically related to
the central word. It is notable that the difference in
the growth trends of the neighbors is substantially
more prominent for smaller neighborhoods (Fig-
ure 2b): average correlation coefficient of immedi-
ate neighbors of stable words also falls into stable
range as we defined it, while immediate neighbors
of neologisms exhibit rapid growth.

5.2 Statistical significance

To estimate the significance and relative contribu-
tion of the two factors, we fit a generalized lin-
ear model (GLM) with logistic link function to the
corresponding features of neologism and control
word neighborhoods:®

(T)

y(w) ~ (1 + exp(—

— 87 d(w, ) = BT - r(w, 7))

where y is a Bernoulli variable indicating whether
the word w belongs to the neologism set (1) or
the control set (0), and 7 is the cosine similarity
threshold defining the neighborhood size.

Table 1 shows how the coefficients and p-values
for the two statistics change with the neighbor-
hood size. We found that when comparing with

®We use the implementation provided in the MATLAB
Statistics and Machine Learning Toolbox.



Stable control set

Relaxed control set

Neighborhood size

Large (7 = 0.35) 1.98
Medium (7 = 0.45)  0.20

Density Growth Density Growth
6((;) x 10*  p-value 5@ x 10 p-value /j’gr) x 10*  p-value 67(-T> p-value
825 x107° 1.84 235 x 10780 —1.07 5.63x107%  0.61 2.83x 10734
8.29 x 1071 1.16 2.92 x 1078 —3.67 4.00 x 10710 0.46 6.19 x 1076
2.90 x 1072 0.70 1.61 x 10758 —8.92 4.01 x 107°  0.28 1.19 x 10736

Small (7 = 0.55) 6.90

Table 1: Values of the GLM coefficients and their p-values for different neighborhood cosine similarity thresholds
T. BC(ZT) and Bﬁﬂ denote the coefficients for density and average frequency growth respectively for neighborhoods
defined by 7. Comparing the results for the stable and relaxed control sets, we find that for the stable controls
density is only significant in larger neighborhoods, but without the stability constraint both factors are significant

for all neighborhood sizes.

the stable control set, average frequency growth
rate of the neighborhood was significant for all
sizes, but neighborhood density was significant at
level p < 0.01 only for the largest ones.” We at-
tribute this to the effect discussed in the previous
section: difference in average frequency growth
rate between neighbors of neologisms and stable
words shrinks as we include more remote neigh-
bors (Figure 2b), so for large neighborhoods fre-
quency growth rate by itself is no longer predictive
enough.

We also evaluate the significance of features
for the relaxed control set without the stability
constraint on 1000 neologism-control pairs. We
have repeated the experiment with 5 different ran-
domly sampled relaxed control sets (results for
one showed in Table 1). For medium-sized neigh-
borhoods (0.4 < 7 < 0.5) density variable is
always significant at p < 0.01, but densities of
largest and smallest neighborhoods were rejected
in several runs. With more variance in the con-
trol set, differences in neighborhood frequency
growth rate between neologisms and controls are
less prominent than in the stable setting, so density
plays a more important role in prediction.?

Growth feature weights ﬁ,@ are always positive
and density feature weights B(gﬂ are negative in the
relaxed setting (where density is significant). This
matches our intuition that neighborhood frequency
growth and sparsity are predictive of neology.

Comparing sample means of density and growth
rates between neologisms and each of the 5 ran-
domly selected relaxed control sets (as we did

" Applying Wilcoxon signed-rank test to the series of
neighborhood density and frequency growth values for ne-
ologism and stable control sets showed the same results.

8Detailed results of the regression analysis and collinear-
ity tests can be found in the repository. No evidence of
collinearity was found in any of the experiments.

for stable controls in Figure 2) demonstrated that
neologisms still appear in sparser neighborhoods
than the controlled counterparts. The difference
in frequency growth rate between the neologism
and control word neighborhoods is also observed
for all control sets (although it varies noticeably
between sets), but it no longer exhibits an inverse
correlation with neighborhood size.

6 Discussion

We have demonstrated that our two hypotheses
hold for the set of words we automatically se-
lected to represent neologisms. To establish va-
lidity of our results, we qualitatively examine the
obtained word list to see if the words are in fact
recent additions to the language. We randomly
sample 100 words out of the 1000 selected ne-
ologisms and look up their earliest recorded use
in the Oxford English Dictionary Online (OED,
2018). Of those 100 words, eight are not defined
in the dictionary: they only appear in quotations
in other entries (bycatch (quotation from 1995),
twentysomething (1997), cross-sex (1958), etc.) or
do not occur at all (all-mountain, interobserver,
off-task). Of the remaining 92 words, 78 have been
first recorded after the year 1810 (i.e. since the be-
ginning of the HISTORICAL timeframe), 44 have
been first recorded in the twentieth century, and
21 words since 1950. However, some of the words
dating back to before 19th century have only been
recorded in their earlier, possibly obsolete sense:
for example, while there is evidence of the word
software being used in 18th century, this usage
corresponds to its obsolete meaning of ‘textiles,
fabrics’, while the first recorded use in its currently
dominant sense of ‘programs essential to the oper-
ation of a computer system’ is dated 1958. To ac-
count for such semantic neologisms, we can count



the first recorded use of the newest sense of the
word; that gives us 82, 58 and 31 words appear-
ing since 1810, 1900 and 1950 respectively.” This
leads us to assume that most words selected for
our analysis have indeed been neologisms some-
time over the course of the HISTORICAL time.

We would also like to note that the results of
this examination may be skewed due to factors
for which lexicography may not account: for ex-
ample, many words identified as neologisms are
compound nouns like countertop or soundtrack
that have been written as two separate words or
joined with a hyphen in earlier use. There is
also considerable spelling variation in loanwords,
e.g. cuscusu, cooscoosoos, kesksoo were used in-
terchangeably before the form couscous was ac-
cepted as the standard spelling. Specific word
forms might also have different life cycles: while
the word music existed in Middle English, the plu-
ral form musics in a particular sense of ‘genres,
styles of music’ is much more recent.

Qualitative examination of the neologism set re-
veals that new words tend to appear in the same
topics; for example, many words in our set were
related to food, technology, or medicine. This
indirectly supports our second hypothesis: rapid
change in these spheres makes it likely for related
terms to substantially grow in frequency over a
short period of time. One example of such a neigh-
borhood is shown in Figure 1a: the neologism re-
newables appeared in a cluster of words related
to energy sources — a topic that has been more
discussed recently. There is also some correlation
between the topic and how new words are formed
in it: most food neologisms are so-called cultural
borrowings (Weinreich, 2010), when the name
gets loaned from another culture together with the
concept itself (e.g. pesto, salsa, masala), while
many technology neologisms are compounds of
existing English morphemes (e.g. cyber+space,
cell+phone, data+base).

We also consider nearest neighbors
(HISTORICAL words with highest cosine sim-
ilarity) of the neologisms to ensure that they
are projected into the appropriate parts of the
embedding space. Examples of nearest neighbors
are shown in Table 2. We saw different patterns
of how the concept represented by the neologism

For all words that have one or more senses marked as
a noun, we only consider those senses. Out of the 92 listed
words, only three do not have nominal senses, and for two
more usage as a noun is marked to be rare.

Neologism | Nearest HISTORICAL neighbors
email telegram letter
pager beeper phone

blogger journalist columnist
sitcom comedy movie
spokeswoman | spokesman director
sushi caviar risotto
rehab detoxification aftercare

Table 2: Nearest HISTORICAL neighbors of projected
MODERN embeddings for a sample of emerging words.
We can see that words get projected into semanti-
cally relevant neighborhoods, and nearest neighbors
can even be useful for observing the evolution of a con-
cept (e.g. pager:beeper).

relates to concepts represented by its neighbors.
For example, some terms for new concepts
appear next to related concepts they succeeded
and possibly made obsolete: e.g. email:letter,
e-book:paperback, database:card-index. Other
neologisms emerge in clusters of related concepts
they still equally coexist with: hip-hop:jazz,
hoodie:turtleneck; most cultural borrowings fall
under this type (see the neighborhood of pesto in
Figure 1b). Both those patterns can be viewed as
examples of a more general trend: one concept
takes place of another related one, whether in
terms of fully replacing it or just taking its place
as the dominant form.

Other interesting effects we observed include
lexical replacement (a new word form replacing
an old one without a change in meaning, e.g.
vibe:ambience), tendency to abbreviate terms as
they become mainstream (biotech:biotechnology,
chemo:chemotherapy), and the previously men-
tioned changes in spellings of compounds
(lifestyle:life-style, daycare:day-care).

7 Conclusion

We have shown that our two hypothesized fac-
tors, semantic neighborhood sparsity and its aver-
age frequency growth rate, play a role in determin-
ing in what semantic neighborhoods new words
are likely to emerge. Our analyses provide more
support for the latter, conforming with prior lin-
guistic intuition of how language-external factors
(which this factor implicitly represents) affect lan-
guage change. We also found evidence for the for-
mer, although it was found less significant.

Our contributions are manifold. From a com-
putational perspective, we extend prior research



on meaning change to a new task of analyzing
word emergence, proposing another way to ob-
tain linguistic insights from distributional seman-
tics. From the point of view of linguistics, we
approach an important question of whether lan-
guage change is affected by not only language-
external factors but language-internal factors as
well. We show that internal factors—semantic
sparsity, specifically—contribute to where in se-
mantic space neologisms emerge. To the best
of our knowledge, our work is the first to use
word embeddings as a way of quantifying seman-
tic sparsity. We have also been able to operational-
ize one kind of external factor, technological and
cultural change, as something that can been mea-
sured in corpora and word embeddings, paving the
way to similar work with other kinds of language-
external factors in language change.

An admittable limitation of our analysis lies
in its restricted ability to account for polysemy,
which is a pervasive issue in distributional seman-
tics studies (Faruqui et al., 2016). As such, se-
mantic neologisms (existing words taking on a
novel sense) were not a subject of this study, but
they introduce a potential future direction. Addi-
tional properties of word’s neighbors can also be
correlated with word emergence, both language-
internal (word abstractness or specificity) and ex-
ternal; these can also be promising directions for
future work. Finally, our future plans include
exploration of how features of semantic neigh-
borhoods are correlated with word obsolescence
(gradual decline in usage), using similar semantic
observations.
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Abstract

It is well-known that the acceptability judg-
ments at the core of current syntactic theories
are continuous. However, an open debate is
whether the source of such gradience is situ-
ated in the grammar itself, or can be derived
from extra-grammatical factors. In this paper,
we propose the use of a top-down parser for
Minimalist grammars (Stabler, 2013; Kobele
et al., 2013; Graf et al., 2017), as a formal
model of how gradient acceptability can arise
from categorical grammars. As a test case, we
target the acceptability judgments for island
effects collected by Sprouse et al. (2012a).

1 Introduction

The human judgments linguists use to evaluate the
adequacy of syntactic theories fall in a wide, non-
binary spectrum of acceptability — a fact well-
known from the early days of generative gram-
mar (Chomsky, 1956, 1965, a.o.). Nonetheless,
mainstream syntax has long claimed that gram-
matical knowledge is, at its core, categorical, and
that gradience in acceptability judgments comes
from extra-grammatical factors (Sprouse, 2007,
a.0.). However, the rise of experimental methods
in theoretical syntax has renewed the question of
whether gradience should be integrated in gram-
matical theories directly, for instance in the form
of probabilistic models (Keller, 2000; Crocker and
Keller, 2005; Sorace and Keller, 2005; Lau et al.,
2014, 2015, 2017).

As the relation between grammaticality and
acceptability is not transparent, constructing a
well-specified theory of how gradient acceptabil-
ity arises from grammatical knowledge is clearly
valuable. From an empirical perspective, how-
ever, categorical approaches seem to be at a disad-
vantage when compared to gradient grammatical
models rooted in quantitative, probabilistic frame-
works.

There is an abundance of well-known propos-
als about the way syntactic structure and cogni-
tive resources can be integrated to derive connec-
tions between acceptability and processing diffi-
culty (e.g., Yngve, 1960; Wanner and Maratsos,
1978; Rizzi, 1990; Rambow and Joshi, 2015; Gib-
son, 2000; McElree et al., 2003; Lewis and Va-
sishth, 2005, a.0.). However, few models based
on current grammatical formalisms have been im-
plemented in precise computational frameworks
(cf. Boston, 2010). In order to have a complete
theory of how acceptability judgments correlate
to categorical grammars, what seems to be neces-
sary is a formal model of the syntactic structures
licensed by said grammars, and a theory of how
such structures interact with extra-grammatical
factors to derive differences in acceptability. This
would make it possible to test how assumptions
about fine-grained syntactic details lead to quan-
tifiable predictions for the gradient acceptability of
individual sentences (Stabler, 2013; Sprouse et al.,
2018).

Here, we suggest that a parser for Minimal-
ist grammars (MGs; Stabler, 2013), coupled with
complexity metrics measuring memory usage (Ko-
bele et al., 2013; Grafetal., 2017, a.0.), is an effec-
tive model to address these issues. The MG parser
has been used in the past to study which aspects of
grammar drive processing cost for a vast set of off-
line processing asymmetries cross-linguistically
(Gerth, 2015; Graf et al., 2017; Zhang, 2017).
Given the ability of MGs to encode rich syntactic
analyses, the MG parser is especially sensitive to
fine-grained grammatical information, and thus is
able to generate quantitative predictions especially
suited to our purposes.

In particular, we relate sentence acceptability to
sentence structure by specifying: 1) a formalized
theory of syntax in the form of MGs; 2) a parser as
a model of how the structural representation of a



sentence is built from its linear form; 3) a linking
theory between structural complexity and accept-
ability in the form of metrics measuring memory
usage. As a proof-of-concept for the validity of the
linking theory, we model the acceptability judg-
ments for three types of syntactic islands, using
as a baseline the judgments reported in (Sprouse
et al., 2012a).

Importantly, our main aim is not to settle the
debate of whether gradience should be found in
the grammar itself, or in the interaction between
grammar and external factors (if such a debate
could ever be settled). What we offer is a formal-
ized, testable model of the latter hypothesis, in the
hope of providing ground for a more principled in-
vestigation of categorical grammaticality and con-
tinuous acceptability.

2 MG Parsing

2.1 MGs

MGs (Stabler, 1997, 2011) are a lexicalized,
mildly context-sensitive formalism incorporating
the structurally rich analyses of Minimalist syntax
— the most recent version of Chomsky’s transfor-
mational grammar.

An MG grammar is a set of lexical items (LIs)
consisting of a phonetic form and a finite, non-
empty string of features. LIs are assembled via two
feature checking operations: Merge and Move. In-
tuitively, Merge encodes subcategorization, while
Move encodes long-distance movement depen-
dencies. Here, we avoid most of the technical de-
tails of the formalism, and we limit our discussion
to a general description of the data structures de-
fined by these grammars.

MGs’ derivation trees encode the sequence of
Merge and Move operations required to build
the phrase structure tree for a specific sentence
(Michaelis, 1998; Harkema, 2001). In a traditional
derivation tree, all leaf nodes are labeled by Lls,
while unary and binary branching nodes are la-
beled as Move or Merge, respectively. However, as
the details of the feature calculus are irrelevant to
us, we adopt a simpler representation that discards
the feature annotation of LIs, and labels internal
nodes as standard in minimalist syntax. We also
explicitly include dashed arrows indicating move-
ment relations. '

Note that, due to the fact that intermediate landing sites

for moved phrases do not affect the traversal strategy, we do
not explicitly highlight them with movement arrows.

The fundamental difference between a phrase
structure tree and a derivation tree is that in the
latter, moved phrases remain in their base position,
and their landing site must be fully reconstructed
via the feature calculus (cf. Fig. 1a and Fig. 1b).
As a concequence, the final word order of a sen-
tence is not directly reflected in the order of the
leaf nodes in a derivation tree.

Importantly, MG derivation trees form a regular
tree language, and thus can be regarded as a simple
variant of context-free grammars (CFG), allowing
us to exploit some of CFGs more established pars-
ing algorithms.

2.2 Top-down MG Parsing

We follow recent sentence processing results, and
adopt Stabler (2013)’s top-down parser for MGs.
This parser is a variant of a standard depth-first,
top-down parser for CFGs: it takes as input the
string representation of a sentence, hypothesizes
the structure top-down, verifies that the words in
the structure match the input string, and outputs an
encoding of the sentence structure in the form of
a derivation tree. Importantly, the surface order of
lexical items in the derivation tree is not the phrase
structure tree’s surface order. Thus, simple top-to-
bottom and left-to-right scanning of the leaf nodes
yields the wrong word order. While scanning the
nodes then, the MG parser must also keep track of
the derivational operations which affect the linear
word order.

Memory plays a crucial role in this procedure:
if a node is hypothesized at step i, but cannot be
worked on until step j, it must be stored for j —i
steps in a priority queue. To make this traversal
strategy transparent to the reader, we adopt Ko-
bele et al. (2013)’s notation, in which each node
in the tree is annotated with an index (superscript)
and an outdex (subscript). Intuitively, the annota-
tion indicates for each node in the tree when it is
first conjectured by the parser (index) and placed
in the memory queue, and at what point it is con-
sidered completed and flushed from memory (out-
dex). Consider the tree in Fig. 1b, explicitly an-
notated with the parsing steps. The node does is
hypothesized at step 3. However, which engineer
comes before it in the input, so does has to wait
until step 12 to be flushed out of the queue.

Finally, note that Stabler’s parser was originally
given a search beam discarding the most unlikely
predictions. Here though, we are not interested



/\

/ \ / \
whlch engineer does TP
/ N\
| Elmo; T
A
N ! T WP
\\\ / \
) o _t v
/N
S v VP
/\
Tl like _t

(a)

10.
h1 h englnleler

Figure 1: Phrase structure tree (a), and annotated MG derivation tree (b) for Which engineer does Elmo like?.
Boxed nodes in (b) are those with tenure value greater than 2, following (Graf and Marcinek, 2014).

in the cost of choosing among alternative parsing
choices, and want to focus on the specific contri-
bution of the grammar to memory usage. Thus,
we assume that the parser is equipped with a per-
fect oracle, which always makes the right choices
when constructing a tree (Kobele et al., 2013). Es-
sentially, the MG model employs a deterministic
parsing strategy, where ambiguity has no role.

2.3 Measuring Memory Usage

Recently, Stabler (2013)’s MG parser has been
used to investigate which aspect of grammatical
structure affect off-line processing difficulty (Ko-
bele et al., 2013; Graf and Marcinek, 2014; Gerth,
2015; Graf et al., 2017, a.0.).

In order to allow for psycholinguistic predic-
tions, the behavior of the parser is related to pro-
cessing difficulty via complexity metrics measur-
ing how the structure of a tree affects memory. The
MG model refers to three main notions of mem-
ory usage (Graf et al., 2017): (a) how long a node
is kept in memory (tenure); (b) how many nodes
must be kept in memory (payload); (c) how much
information is stored in a node (size).

Tenure and payload for each node 7 in the tree
can be easily computed via the node annotation
scheme of Kobele ef al.: a node’s tenure is equal
to the difference between its index and its outdex;
the payload of a derivation tree is computed as the
number of nodes with a tenure strictly greater than

2 (boxed nodes in our tree annotation scheme).?
For instance, tenure for the node does in Fig. 1b is
computed as 12—3 =09.

Defining size in an informal way is slightly
trickier, as it was originally based on how infor-
mation about movers is stored by Stabler’s top-
down parser (for a technical discussion, see Graf
et al., 2015). In practice, size measures the hier-
archical length of a movement dependency, and is
computed as the index of a mover minus the in-
dex of its target site. Considering again the tree in
Fig. 1b, the size of Elmo is 6 —3 =3.

In order to contrast derivations, past work has
used these general concepts to define a vast set
of complexity metrics measuring processing dif-
ficulty over a full tree (Kobele et al., 2013). For
instance, tenure can be associated to metrics like
MAXT := max({tenure-of(n)}) and SUMT :=
Y, tenure-of(n). MAXT measures the maximum
amount of time any node stays in memory dur-
ing processing, while SUMT measures the over-
all amount of memory usage for all nodes whose
tenure is not trivial. It thus captures total memory
usage over the course of a parse. As an illustrative
example, consider one last time the tree in Fig. 1b.
Tenure in this tree is mostly driven by the move-
ment of the embedded object, thus MAXT is mea-

2We refer to tenure values < 2 as trivial, since it arises
naturally from the binary nature of derivation trees, and it’s
not due to extra waiting time in the priority queue (Graf and
Marcinek, 2014).



sured at does and it is equal to 12 —3 = 9. Similar
metrics can be defined for size. For instance, in
Fig. 1b SUMS is given by the length of the ob-
ject movement and the length of the subject move-
ment: (8 —1)4 (6 —3) = 10.

These metrics have been surprisingly successful
in accounting for a vast array of different process-
ing phenomena, such as right embedding vs. cen-
ter embedding, nested dependencies vs. crossing
dependencies, as well as a set of contrasts involv-
ing relative clauses (Graf and Marcinek, 2014;
Graf et al., 2015). However, Graf et al. (2015)
argue that a better approach would make use of
ranked metrics of the type (M, M>, ..., M,). Such
rankings work in a way similar to constraint rank-
ing in Optimality Theory (Prince and Smolensky,
2008): a lower ranked metric matters only if all
higher ranked metric have failed to pick out a
unique winner (e.g., if two constructions result in
a tie over MAXT). Following this idea, Graf et al.
(2017) show that when complexity metrics are al-
lowed to be ranked in such a way the space of pos-
sible metrics quickly explodes (up to 1600 distinct
metrics). Considering the total number of possible
metrics, it is conceivable that some metric com-
bination could explain any hypothetical process-
ing asymmetry — thus reducing the explanatory
power of the model. However, this does not seem
to be the case. Graf et al. (2017) rule out the vast
majority of these metrics, by showing their insuf-
ficiency in accounting for some crucial construc-
tions across a variety of grammatical analyses.

Here then, we rely on previous work and fo-
cus on the predictions made by a ranked version
of (MAXT, SUMS) in comparing memory bur-
den for contrasting sentences (Zhang, 2017; Liu,
2018; Lee, 2018; De Santo, 2019; De Santo and
Shafiei, 2019). In addition, our core linking hy-
pothesis connects processing difficulty to accept-
ability by assuming that higher memory cost im-
plies lower acceptability.

3 Gradient Acceptability in Syntactic
Islands

Given the metrics’ sensitivity to minor differences
in syntactic structure, the MG parser’s predictions
are the most interpretable when used to compare
the relative complexity of minimally different sen-
tences. Careful comparisons across sentences as
similar as possible in their underlying syntactic
structure seem also to be desirable if we want to

understand the source of gradient variation in ac-
ceptability judgments. For these reasons, we chose
to model the data on the acceptability of syntactic
islands collected by Sprouse et al. (2012a) (hence-
forth SWP), in a first investigation of the viability
of the parser as a model of gradient acceptability.

Syntactic islands are well-known in linguistics
(Chomsky, 1965; Ross, 1968) as a set of phe-
nomena in which the acceptability of a sentence
is degraded, in relation to the interaction of a
long-distance dependency and its syntactic con-
text. Consider the following sentences:

(1) a. What; did John say Bill saw #; ?
b. What; did John have dinner before Bill
saw ;7

In 1a, what is displaced from its lower position
as the object of the verb saw to a sentence initial
position. In 1b, this same displacement cannot take
place, as what is inside an adjunct clause (headed
by because). Thus, 1b is considered ill-formed
by native speakers of standard American English.
Since displacing an element from inside an ad-
junct leads to ungrammaticality, adjunct clauses
are classic example of island structures.

SWP conducted an extensive investigation of
the acceptability of island constructions, by col-
lecting formal acceptability judgments for four
island types using a magnitude estimation task.
The acceptability contrasts in this study are opti-
mal for our purposes for multiple reasons. First,
while a categorical grammar would predict a bi-
nary split in sentence acceptability (violates an
island/doesn’t violate an island), the continuous
scale the estimation task was based upon revealed
a spectrum of gradient judgments. Second, the
stimuli in SWP’s design were based on a (2 x 2)
factorial definition of island effects, and explic-
itly identify two structural factors that might af-
fect acceptability: 1) the length of a movement de-
pendency; 2) the presence of a so-called “island
construction” (Kluender and Kutas, 1993). This
careful dimensional decomposition of the test sen-
tences, coupled with the continuous scale of the
judgment task, resulted in a set of well-defined
pairwise comparisons ideal for the MG parser’s
modeling approach.

In what follows, we test whether the gradient
of acceptability shown in SWP’s data is predicted
by a parser grounded in a rich categorical gram-
mar. Before proceeding with our analysis though,
it seems to be important to make an additional note



about our aims. An expert reader might know that
there is an ongoing debate in the literature about
the nature of islands effects (see, for instance,
Hofmeister et al., 2012a; Sprouse et al., 2012b;
Hofmeister et al., 2012b, and references therein)
— with classical syntactic accounts rooting them
in grammatical constraints, while others arguing
that such effects can be reduced to a conspiracy of
processing factors.

Importantly, we are not attempting to reduce
these effects to processing demands and, at least
at this stage, it is not our purpose to directly en-
gage with this debate. For the same reasons, we
do not investigate the super-additivity found in
SWP’s paper, as we are not interested in modeling
the grammaticality of an island violation per-se.
Relatedly, we do not claim that the acceptability
of island violations is purely syntactic in nature,
as it has been shown to be sensitive to a variety
of semantic factors (Truswell, 2011; Kush et al.,
2018; Kohrt et al., 2018, a.o.). Crucially, we are
“just” interested in exploring the idea that the gra-
dient component of acceptability judgments arises
due to processing factors. We focus on islands ef-
fects exclusively because of the optimal baseline
offered by SWP’s data.

We will return to the question of whether our
model could give any insights into the question of
separating processing and grammatical contribu-
tions to island effects in Sec. 5.

4 Modeling Results

SWP focused on English wh-movement depen-
dencies to explore four types of islands con-
structions: Subject, Adjunct, Complex NP, and
Whether islands. Since the MG parser is only sen-
sitive to structural differences, in this paper we ig-
nore the case of Whether islands and concentrate
on the remaining three cases. Table 1 presents a
summary of all modeling contrasts in the paper,
compared with the experimental results of SWP.3

4.1 Subject Island: Case 1

First, we model Subject islands as in SWP’s
Experiment 1, comparing 4 sentence types
across 2 conditions: subject/object extraction, and
island/non-island. Note that here island does not
imply a violation, but refers to the presence of an
island structure (Kluender and Kutas, 1993).

3 All scripts are available at https://github.com/CompLab-
StonyBrook/mgproc.

Island Type | Sprouse et al. (2012) MG Parser

2b > 2a
2b > 2d
2b > 2¢
2a > 2c
2a > 2d
2¢c > 2d 2¢
3a>3b
3a > 3c
3a>3d
3b>3d
3¢ >3b
3¢ >3d
4a > 4b
4a > 4c
4a > 4d
4b > 4d
4c > 4b
4c > 4d
5a > 5b
S5a=>5c
5a > 5d
5b > 5d
5¢ > 5b
5¢ > 5d

Subject Island
Case 1

Subject Island
Case 2

Adjunct Island

Complex NP
Island

NN N N N N N N N N R N N N N N VAR NENENENEN

Table 1: Summary of results (as pairwise compar-
isons) from (Sprouse et al., 2012a), and corresponding
parser’s predictions (x > y: x more acceptable than y).

(2) a. Whatdo you think the speech interrupted

1? Obj/Non Island
b. What do you think ¢ interrupted the
show? Subj/Non Island

c. What do you think the speech about

global warming interrupted the show
about 1?7 Obj/Island

d. What do you think the speech about ¢ in-

terrupted the show about global warm-
ing? Subj/Island

Annotated MG derivation trees for these sen-
tences are shown in Fig. 2 (object/subject with no
island) and Fig. 3 (with island).* The parser’s pre-
dictions (via MAXT) overall match the experimen-
tal results (see Table 1).

4Due to space constraints, annotated derivations are
provided just for the Subject island case, as an illustrative ex-
ample. Derivations for all other island types can be easily re-
constructed from standard minimalist analyses of the test sen-
tences (e.g., Adger, 2003). Source files can also be found at
https://github.com/aniellodesanto/mgproc/tree/master/islands.

SWhen a wh-element is displaced from an embedded po-
sition, we avoid intermediate landing sites due to successive
cyclicity. As intermediate movement steps do not affect the
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Figure 2: Annotated derivation trees for (a) 2a (object, non-island) and (b) 2b (subject, non-island).

The factorial design of the original study helps
us understand the model’s predictions. The con-
trast between 2b and 2a,2d is correctly captured
by MAXT. This is due to the wh-element spanning
a longer, more complex structure comprising the
whole embedded DP subject in the Island cases.
Compare 2a and 2b, both with highest tenure on
do (14 and 11, respectively — cf. Tbl. 2). In 2a, do
is conjectured after what has been scanned from
the input. But then it cannot be flushed out of
memory until what is confirmed in its base posi-
tion as the embedded complement. In 2b, do only
has to wait until the embedded subject position is
reached, and then it is discarded from memory.

Consider now 2c. Here the highest tenure is on
the embedded 7' head, which has to wait for the
wh-element in object position, and then for the
whole complex DP in subject position, before it
can finally be flushed out of the queue. The longer
wh-dependency in the object case explains once
again why 2b is preferred over 2c, and the addi-

traversal strategy, this choice does not significantly change
our results (cf. Zhang, 2017).

S 03&/7
(b)

Clause Type Ex. # MaxT SumS
Obj./Non Island 2a 14/do 19
Subj./Non Island 2b 11/do 14
Obj./Island 2c 23/T2 22
Subj./Island 2d 15/do 20
Short/Non Island  3a 5/C 9
Long/Non Island 3b 11/do 14
Short/ Island 3c 11/72 9
Long/ Island 3d 17/72 20

Table 2: Summary of MAXT (value/node) and SUMS
by test sentence for Subject island in case 1 and 2 (72
marks the embedded T head.)

tional complexity of the DP subject is crucial in
driving the 2b > 2c contrast.

Finally, there is one case in which parser’s
predictions and experimental data disagree: the
contrast between subject and object extraction in
the island condition (2c vs 2d). The parser pre-
dicts that 2c should be more acceptable than 2d
(Subj/Island > Obj/Island). This is not surprising,
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Figure 3: Annotated derivation trees for the test sentences in (a) 2c (object, island) and (b) 2d (subject, island).

as the memory metrics pick up on the additional
length of the extraction in the object case, and thus
obviously predict the preference for a subject gap.
However, SWP show Obj/Island > Subj/Island —
which is expected from a theoretical perspective
since 2d is the ungrammatical condition (i.e., there
is an extraction out of an island).

We will come back to the significance of this
mismatch in Sec. 5. Crucially for our main claim
though, the parser correctly predicts the gradient
of acceptability for those conditions that, accord-
ing to a categorical grammar, should all be equiv-
alent (i.e., those containing no forbidden extrac-
tion).

4.2 Subject Island: Case 2

The previous section suggests that, when a gram-
matical violation coincides with processing factors
(e.g., length of a dependency), parser and human
judgments should match on all contrasts. Luck-

ily, SWP offer us the chance to test such a pre-
diction, with a second set of subject island sen-
tences. SWP’s Experiment 2 compares a short de-
pendency and long dependency (matrix vs embed-
ded extraction in the original paper), again in an
island and non-island condition.

(3) a. Who ¢ thinks the speech interrupted the

primetime TV show? Short/Non Island

b. What do you think ¢ interrupted the

primetime TV show? Long/Non Island

c. Who ¢ thinks the speech about global

warming interrupted the primetime TV

show? Short/Island

d. What do you think the speech about ¢ in-
terrupted the primetime TV show?

Long/Island

As expected, parser’s preferences and experi-
mental data fully match in this case, as the un-
grammatical condition (3d) is also the one in



which the movement dependency is the longest.
Here however, deriving the correct preferences re-
quires the ranking of (MAXT,SUMS), instead of
just MAXT alone (note also that SUMS by itself
would not suffice, as it would not predict 3a >
3c, cf. Tbl. 2). Such a ranking also preserves the
results in the previous section, which fully relied
on MAXT. Interestingly, note how MAXT val-
ues for 3b (Long/Non Island) and 3c (Short/ Is-
land) tie here, as the additional structural com-
plexity of 3c does not interact with the main move-
ment dependency (who raising from Spec,TP to
Spec,CP). Moreover, the Short/Non Island (3a)
and Short/Island (3c) conditions have very similar
structures (with an extraction out of the main sub-
ject). Nonetheless, the memory metrics are able
to capture subtle differences in the way the parser
goes through the two sentences (arguably captur-
ing the “island construction” cost of (Kluender and
Kutas, 1993)).

4.3 Adjunct and Complex NP Islands

So far, we have been successful in replicating
SWP’s acceptability judgments via the MG parser.
However, we might wonder whether this success
is due to something peculiar in the way the Sub-
ject island test cases interact with the MG parsing
strategy. Thus, we tested the MG parser on Ad-
junct and Complex NP islands, again using as a
baseline the results in SWP’s Experiment 1. The
test sentences for the adjunct case were as follows:

(4) a. Who t thinks that John left his briefcase
at the office? Short/Non Island

b. What do you think that John left ¢ at the
office? Long/Non Island

c. Who ¢ laughs if John leaves his briefcase

at the office? Short/Island

d. What do you laugh if John leaves ¢ at the
office? Long/Island

As for Subject islands in case 2,

(MAXT,SUMS) correctly predicts the pattern
of acceptability reported by SWP, matching the
empirical results across all conditions (cf. Tbl. 1).
Similar results are obtained for the Complex NP
island, with test sentences as follows:

(5) a. Who t claimed that John bought a car?
Short/Non Island
b. What did you claim that John bought #?
Long/Non Island

Clause Type Ex. # MaxT SumS
Short/Non Island 4a 13/PP 10
Long/Non Island  4b 17/PP 18
Short/Island 4c 13/PP 11
Long/Island 4d  21/PP 28
Short/Non Island  5a 5/C 9
Long/Non Island 5b 13/did 19
Short/Island 5c 5/C 9
Long/Island 5d 15/did 21

Table 3: Adjunct Island and Complex NP Island:

MAXT (value/node) and SUMS values by test sentence.

c. Who ¢ made the claim that John bought

a car? Short/Island
d. What did you make the claim that John
bought ¢? Long/Island

Once more, the parser matches the acceptability
preferences reported in SPW correctly in all con-
ditions. Particularly interesting is the absence of a
contrast between 4a and 4c. This is again due to
the absence of a real interaction between the addi-
tional structural complexity of the island and the
main movement dependency. The fact that this re-
sults in a tie stresses how movement dependencies
and structural complexity conspire with the top-
down strategy of the MG parser in non-trivial ways
to drive memory cost.

5 Discussion

This paper argues for an MG parser as a good, non
probabilistic formal model of how gradient accept-
ability can be derived from categorical grammars.
In doing so, we provide one of the first quanti-
tative models of how processing factors and fine-
grained, minimalist-like grammatical information
can conspire to modulate acceptability. As a proof-
of-concept, we replicated the gradient acceptabil-
ity scores for the island effects in (Sprouse et al.,
2012a). These results are certainly preliminary, but
the success of the parser on this baseline is encour-
aging.

As mentioned in the Introduction, many hy-
potheses have been formulated in the past about
the way memory and grammatical factors con-
spire to produce processing differences across sen-
tences. Thus, it is reasonable to wonder what are
the benefits of the particular linking hypothesis
implemented here. As we pointed out before, one
of the main advantages of our model is the tight
connection between the parser behavior and the



rich grammatical information encoded in the MG
derivation trees. This allows for rigorous evalua-
tions of the cognitive claims made by modern syn-
tactic theories.

In line with recent work using the MG parser as
a model of processing difficulty, Section 4 focused
on the predictions made by MAXT and SUMS,
Clearly, one could easily conceive of metrics that
take different syntactic information into account
(for example, by counting the amount of bound-
ing nodes or phases). However, tenure and size
arguably rely on the simplest possible connection
between memory, structure, and parsing behavior
— as they exclusively refer to the geometry of
a derivation tree, without additional assumptions
about the nature of its nodes.

Of course, a question remains about the cogni-
tive plausibility of such metrics. While this model
is certainly not the first to formalize memory cost
as associated to the length of movement depen-
dencies, the previous discussion highlighted how
size-centered metrics do not simply depend on the
length of a movement steps. Instead, they pick
up on the non-trivial changes in the behavior of
the parser, based on how long-distance dependen-
cies interact with local structural configurations.
Thus, they cannot trivially be identified with other
length-based measures (cf. Gibson, 1998; Ram-
bow and Joshi, 2015, a.o0.). As previous work
points out, in the future it will be important to ex-
plore the relation between these complexity met-
rics, and psychological insights about the nature
of human memory mechanisms (De Santo, 2019).

Similarly, as one reviewer suggests, it would be
interesting to see whether SPW’s results can be de-
rived from different cognitive hypotheses; for in-
stance by implementing in the MG model the va-
riety of constraints explored by Boston (2012) for
a dependency parser. Moreover, in this study we
employ a deterministic parser to exclusively focus
on the relation between structural complexity and
memory usage. However, it is known that struc-
tural and lexical frequency influence islands’ ac-
ceptability (Chaves and Dery, 2019, a.o.). Thus,
informative insights would come from imple-
menting information-theoretical complexity met-
rics over the MG parser (Hale, 2016), and explore
the predictions of expectation-based approaches.

Obviously, the target judgments modeled here

are part of a restricted set. Future studies in this
sense will benefit from wider comparisons among

minimally different variants of acceptable and un-
acceptable sentences (cf. Sprouse et al., 2013,
2016). As mentioned, the nature of the model
makes comparisons beyond pairs of minimal sen-
tences hard to interpret. However, in future it
might be possible to define normalization mea-
sures for memory metrics computed over sen-
tences with widely different underlying structures.

Finally, in Section 3 we avoided discussing the
nature of island effects, as we do not mean for the
MG model to address the debate of whether island
violations are reducible to processing factors, or
are instead tied to core grammatical constraints.
Importantly, while this approach might superfi-
cially be construed as a reductionist theory, it is
not: for instance, the MG parser by itself is not
able to explain the difference between sentences
that are simply hard to process, and sentences con-
sidered unacceptable/ungrammatical. Thus, the
model is theoretically neutral with respect to
grammatical or reductionist frameworks.

However, consider the first case of Subject is-
lands we analyzed in Sec. 4. The parser produced
the right predictions for all test sentences except
when, in the presence of an island construction,
the longest movement dependency and the island
violation did not coincide (2¢ and 2d). This mis-
match is not only explained, but it is actually ex-
pected, if we embrace a grammatical theory of is-
land constraints. Under such theory, 2d is prefer-
able from a processing perspective (as it involves
shorter dependencies), but its acceptability is low-
ered by the fact that it violates a grammatical con-
straint, while 2c does not.

While we have to be careful in formulating hy-
potheses based on a single data point, this contrast
suggests that the MG model could help us investi-
gate those aspects of acceptability that are funda-
mentally tied to grammatical constraints.
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Abstract

An evolutionary model of pattern learning
in the MaxEnt OT/HG framework is de-
scribed in which constraint induction and con-
straint weighting are consequences of repro-
duction with variation and differential fitness.
The model is shown to fit human data from
published experiments on both unsupervised
phonotactic (Moreton et al., 2017) and super-
vised visual (Nosofsky et al., 1994) pattern
learning, and to account for the observed re-
versal in difficulty order of exclusive-or vs.
gang-effect patterns between the two experi-
ments. Different parameter settings are shown
to yield gradual, parallel, connectionist- and
abrupt, serial, symbolic-like performance.

1 Introduction

Some constraints in natural-language grammars
must be induced from phonological data, such
as constraints which refer to specific lexemes,
(e.g., McCarthy and Prince 1993; Fukazawa 1999;
Pater 2000; Ota 2004; Pater 2007; Coetzee and
Pater 2008; Pater 2009; Becker 2009), to spe-
cific lexical strata, inflectional paradigms, or other
language-particular lexical classes, (e.g., Benua
1997; Alderete 1999; Ito and Mester 2001; Flack
2007a; Inkelas 2008), or to phonetically arbitrary
sound classes that do not recur across languages
(e.g., Bach and Harms 1972; Anderson 1981;
Buckley 2000), as well as those which enforce id-
iosyncratic requirements (e.g., Prince and Smolen-
sky 1993, 101). !

*The author is indebted for comments and suggestions
to Katya Pertsova, Jennifer Smith, participants in the UNC-
Chapel Hill P-Side caucus, and three anonymous SCiL re-
viewers. The research was supported in part by NSF BCS
1651105, “Inside phonological learning”, to E. Moreton and
K. Pertsova.

!Constraint induction from phonetics is a separate issue,
and is not addressed here; see, e.g., Hayes 1999; Smith 2002;
Flack 2007b.

How and when are phonological markedness
constraints induced? Proposals in the Optimal-
ity Theory/Harmonic Grammar literature fall into
two main categories: exhaustive search, in which
the learner considers all of a set of possible con-
straints, keeping those that best satisfy criteria
(Hayes and Wilson, 2008; Wilson and Gallagher,
2018), and error-patching, in which the learner
identifies a particular error type and makes a
constraint against it (Adriaans and Kager, 2010;
Pizzo, 2013; Pater, 2014).

Here we discuss an alternative, evolution.
Evolution-based algorithms are attractive because
they are both an established technology for effi-
ciently searching large, inconveniently-shaped hy-
pothesis spaces (Back, 1996; Eiben and Smith,
2003; De Jong, 2006), and the basis of a leading
account of human creativity in art, engineering,
science, and other domains (Campbell, 1960; Si-
monton, 1999; Dietrich and Haider, 2015). In the
specific model considered here, Winnow-MaxEnt-
Subtree Breeder, constraints interact via Max
Ent Harmonic Grammar (Goldwater and Johnson,
2003), but weights are population sizes, weight
update is population growth or shrinkage in re-
sponse to fitness-based selection, and constraints
are innovated via mutation and recombination.

The paper is structured as follows. §2 de-
scribes the model (the “Winnow-MaxEnt-Subtree
Breeder”). §3 illustrates some of its properties us-
ing a simplified “toy”” example (Simulation 1). §4
quantifies a necessary condition for learnability in
terms of the learning rate, the mutation rate, and
the number of critical constraints. §85 and 6 il-
lustrate how the model accounts for human data
from two published experiments which tested for-
mally analogous patterns but found very different

2A learner using positive rather than negative constraints
can identify correct forms and make constraints that reward
them (Boersma and Pater, 2007).



results, the unsupervised phonotactic learning of
Moreton et al. (2017) and the supervised visual
pattern learning of Nosofsky et al. (1994). Ap-
propriate parameter settings cause the model to
act in the first case more like a connectionist net
(e.g., Gluck and Bower 1988b,a) and in the sec-
ond case more like a serial, rule-based hypothesis-
tester (e.g., Nosofsky et al. 1994; Ashby et al.
2011; Goodwin and Johnson-Laird 2013). §7 sug-
gests further empirical tests of the model.

2  Winnow-MaxEnt-Subtree Breeder

The anatomy of Winnow-MaxEnt-Subtree
Breeder will be briefly described here. It
is based on a model described in Moreton
(2010b,a,c) and analyzed in Moreton (2019),
which it modifies and extends.>. Source code
and a replication kit can be found at https:
//users.castle.unc.edu/~moreton/

Software/SCiL2020ReplicationKit/.

2.1 Constraints and candidates

Consubstantiality of candidates and constraints.
Candidates are represented using prosodic and
Feature-Geometric trees familiar from existing
phonological theory (Goldsmith, 1976; McCarthy,
1981; Sagey, 1990; Clements and Hume, 1995) —
in this paper, a slightly simplified version of the
feature system in Gussenhoven and Jacobs (2005,
Ch. 5). A box marks the ; L and R mark left
and right constituent boundaries. A constraint is a
representational subtree, rooted at a PrWd, which
describes a locus of violation (or satisfaction de-
pending on the polarity of the constraint). Fig-
ure 1 depicts a micro-constraint that implements
ONSET, a la Smith (2006). Any notational variant
of this micro-constraint would belong to the same
macro-constraint.

Meta-constraints. Since constraints are con-
substantial with representations, they can evalu-
ate each other. Winnow-MaxEnt-Subtree Breeder
therefore allows the user to define metaconstraints,
constraints which award a fitness bonus or penalty
to other constraints. These can be used to prevent
ill-formed constraints (e.g., *[+high][+low]), or to
gently encourage or discourage constraints of par-
ticular types (e.g., those that mention “salient” fea-
tures, or express particular phonetic principles).

3Erratum for that SCIL paper: p. 5, below Eqn. 35, “>
log z” should be “~ log =”.

ONSET Matches once in it
-1 L PrwWwd R
e -
L Syllable -
[ [Root ] [Root]
[Root ] . [Place] . [Place]
.. [Dor] .. [Cor]
.[+hl] ...[+ant]
... [-bk] ... [-dist]
.. [-10] . [-nas]
[-nas] . [+cons]
. [-cons] . [-approx]
. [+approx|] - [-son]
[+son] -[-lat]
[-lat] . [-cont]
[+cont] [Lar]
[Lar] . [+spr
. [-spr gl]
gl] . [—voi]
[+voi]

Figure 1: A constraint uses a subtree to describe a locus
of violation.

2.2 Learning constraint ‘“weights”

Weights are population sizes. In a Harmonic
Grammar framework (Legendre et al., 1990), we
can, without changing candidate harmonies, re-
place any constraint C; of weight w; with w;/(
constraints that each contribute ¢ to harmony. For
example, if ( = 0.01, a MAX constraint of
weight 3.5 can be replaced by 350 micro-MAX’s,
each of which has weight 1 and whose marks are
multiplied by 0.01. In Winnow-MaxEnt-Subtree
Breeder, all constraints are micro-constraints of
fixed weight 1. The harmony of a candidate z is

h(z) =) (e(x) )

Luce/MaxEnt choice ritle. Given the experi-
menter’s intended winner 27 and intended loser
x~, the learner chooses ™ with a probability that
depends on the harmonies of the candidates.

- eh(a™)
Pr(z7 | 2™, x ):W 2
This is the two-alternative Luce choice rule
(Luce, 1959, 23) applied to the exponentiated
harmonies, i.e., a conditional Maximum Entropy
model (Goldwater and Johnson, 2003; Jager,
2007; Hayes and Wilson, 2008). The generaliza-
tion to k alternatives is straightforward. The total
harmony available in the system is thus N, limit-
ing performance.
Macro-constraints. The algorithm itself is cog-
nizant only of micro-constraints. For analytic
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Expected Effect on
d; Favors offspring o; population of [¢;]
—1 loser 1/(1+mn)<1 shrinks
0 neither 1 stays same
+1 winner 1+n>1 grows

Table 1: Effect of error on offspring of micro-constraint
and population of macro-constraint.

convenience, we, looking in from outside, can
classify two micro-constraints ¢;, ¢; as belonging
to the same macro-constraint if they assign the
same scores to all candidates in the representa-
tional space. In the example above, the 350 micro-
MAX’s belong to a macro-constraint with a pop-
ulation size of 350 and an effective weight of
3.5. Macro-constraint membership is an equiva-
lence relation, so we can write [¢;] for the macro-
constraint containing the micro-constraint c;.

Weight update is reproduction. When an error
occurs, each micro-constraint ¢; produces an ex-
pected number of offspring given by

0; = (1 4n) 3)
where 7 is a learning-rate parameter and d; =
ci(x ™) —c;(x7) is the difference between the win-
ner’s and loser’s score on ¢;. (The quantity o; is
the fitness of ¢;.) In particular, ¢; produces |o; |
offspring with certainty, and one more with prob-
ability o; — |0;]. E.g., if ¢; is binary (awards 0 or
1 marks), then Table 1 shows the expected num-
ber of offspring of the micro-constraint and the ef-
fect on the population size of the macro-constraint.
This update rule induces a variant of the Winnow-
2 algorithm (Littlestone, 1988; Moreton, 2019),
first mentioned as a possible HG learning algo-
rithm by Magri (2013).

If “soft” meta-constraints (those that assign fi-
nite marks) are specified, they add an offset to o;
equal to ¢ times the total score they assign to c;.

2.3 Evolving constraints

The initial constraint population is set by the user.
Thereafter, on each error, the population is com-
pletely replaced via the following procedure.

Breeding. For each micro-constraint ¢; in the
pre-error population P, o; - s identical clone off-
spring are made and deposited in the reproductive
population R. Here s is the “clutch size” parame-
ter, 1 by default, which allows the absolute number
of offspring to be varied while maintaining the rel-
ative proportions belonging to differently-fit par-
ents.

Recombination. Of the constraints in R, |o -
|R| 4+ 0.5| are randomly selected to be recombi-
nant breeders, partitioning R into B (recombinant
breeders) and R — B (parthenogenetic breeders).
The offspring population O is initialized to equal
R — B. For each breeder ¢; € B, another breeder
cj € B of equal or greater fitness (0; < 0j) is
selected, and the two constraints are combined as
described in Moreton (2019) to make a new con-
straint ¢; j, which is then added to O. (Recombi-
nation is not used in the simulations described in
this paper.)

Mutation. Of the constraints in O, |¢|O| +0.5]
are randomly selected to undergo mutation. Mu-
tation is undirected, i.e., the probability of a par-
ticular mutation is independent of its effect on fit-
ness (just as in the Minimum Description Length
learner of Rasin and Katzir 2016). Mutation pro-
ceeds recursively, starting with the highest node in
the constraint. Mutation operations differ between
node genera (Table 2). At each node, every oper-
ation that can apply to that node first has a chance
to apply. Then the algorithm visits each actual or
potential dependent of the node, and applies recur-
sively to it. A potential dependent of a unary fea-
ture is any currently unrealized dependent feature;
e.g., an unfilled [ant] slot under [+Cor]. A poten-
tial dependent of a prosodic category is an inter-
val between two of its actual constituents, count-
ing the category’s own boundaries as constituents.
For example, the PrWd in [00]pswq has two actual
dependents (the two os) and three potential ones:
[ 0 o |prwd. Mutation could add another o node

at any or all of the three potential dependents.

After mutation has applied to a constraint, the
mutant and the original are compared, and if they
are identical, or if the mutant receives marks from
a “hard” meta-constraint (one that assigns marks
of —o0), mutation is re-attempted until an actual
mutant is achieved. The number of mutants pro-
duced on each error is thus Nsu.

The probability of each operation can be set in-
dividually. In the present simulations, all are set
to the same probability 7, except those for Gain
head, Lose head, and Duplicate constituent, which
are set to 0. The larger 7 is, the more the mutant
will differ from the parent.

A micro-constraint which is lost from the popu-
lation and later re-innovated returns with its old fit-
ness value, rather than the default fitness of 1 given
to novel micro-constraints. (This design choice is



Invert polarity: Change the sign of the mark
given by a constraint.

Add constituent: Applied to a potential depen-
dent in a PrWd (syllable), adds a syllable
node (segment node) there. (E.g., [00]prwa
has three potential dependents, marked here
with _s: [_o_o_]prwa. Each _ could mu-
tate into another syllable.)

Delete constituent: Applied to a syllable node
(segment node), deletes it.

Duplicate constituent: Applied to a syllable or
segment, makes an adjacent duplicate copy
of the syllable or segment, including all of its
dependents.

Gain head: Applied to a PrWd (syllable), des-
ignates one of its syllables (segments) as the
head, or moves the head if there already is
one.

Lose head: Applied to a PrWd (syllable), makes
it headless by undesignating the existing head
(if any)

Flip anchor: Applied to a prosodic boundary
marker, toggles it (between — and L, or be-
tween — and R).

Gain unary: Applied to a potential unary fea-
ture (e.g., the empty position under a [+Place]
node where [+Cor] could go), adds that unary
feature.

Lose unary: Applied to an actual unary feature,
deletes it along with all of its dependents.
Gain binary: Applied to a potential binary fea-
ture (e.g., the empty position under a [+Cor]
node where [fant] could go), adds that fea-

ture (with + and — values equally likely).

Lose binary: Applied to an actual binary feature,
deletes it.

Invert binary coefficient: Applied to an actual bi-
nary feature, changes + to — and vice versa.

Table 2: List of mutation operations.

crucial to the success of Simulation 3 in §6.)

Memorization.  With probability pmem, the
learner creates a new micro-constraint that gives
+1 mark to the candidate that should have won, or
—1 mark to the candidate that should not have (the
experimenter can set a switch, mem_polarity).
This constraint is cloned npem times, and the
clones are added to O. (In all simulations in this

paper, Pmem = 0.)

Population adjustment. The resulting offspring

population is adjusted in size to meet the tar-
get size of N. The default method (random ad-
Jjustment) is to randomly delete or clone micro-
constraints, with equal probability. An alterna-
tive (fitness-based adjustment) is to choose the
fittest IV offspring, with ties broken randomly. The
adjusted population then completely replaces the
previous generation.

The parameters are listed in Table 3. In all
the simulations reported here, the parameters were
fixed across trials within a simulation, although in
fact they can be varied from trial to trial.

N Number of micro-constraints in population.

¢ Weight quantum.

n Learning rate.

m Mutation rate.

s Clutch size.

Pmem Probability to memorize winner/loser as con-
straint.

Tmem Number of copies of winner/loser memorized.

mem_polarity Memorize winner or loser?
meta  Meta-constraint set

mut Mutation probabilities (see Table 2)

rec Recombination parameters (not discussed here)

Table 3: List of simulation parameters.

3 Simulation 1: 2AFC phonological
learning (toy example)

Since new macro-constraints arise by mutation
out of old ones, existing macro-constraints should
prime discovery of new ones that are similar to
them. Since high-weighted (populous) macro-
constraints initiate more mutations, new macro-
constraints should tend to be mutants of (hence,
similar to) high-weighted old ones. And be-
cause approximate solutions can prosper when the
learner has not yet discovered the precise con-
straints, an approximately-right constraint can fo-
cus the learner’s mutational searching on its own
neighborhood.

We illustrate these general principles of the
model’s behavior using a stripped-down “toy”
example. The stimulus space is the set of all
(C)V(C) where C' is one of /p,t,k/ and V =
/u/ . Pattern A has two place restrictions on the
coda; Pattern B has one on the coda and one on
the onset (Table 4).

To make analysis easier, o is set to 0 to make
all reproduction asexual (this is true througout this
paper). The mutation distance between the criti-
cal constraints in Condition A is then 2 (from *[—
syll, +Lab]], to *[-syll, +Dor]],: delete [+Lab],



Pattern A Discovery of

Unviolated *[-syll, +Dor]], (=NODORCODA) *,[[-syll, +Lab] or  Abs.
constraints  *[-syll, +Lab]], (=NOLABCODA) *[-syll, +Dor]], *[-syll, +Lab]], diff.
Positive u, ut, pu, put, tu, tut, ku, kut A 237 243 114
Negative up, uk, pup, puk, tup, tuk, kup, kuk B 313 316 322
- Pattern B Table 5: Median trials to and between discovery of crit-
Unv1012.1ted *[-syll, +Dor]], (=NODORCODA) ical constraints in Simulation 1, Conditions A vs. B.
constraints  *;[[-syll, +Lab] (=NOLABONS)
Positive u, up, ut, tu, tup, tut, ku, kup, kut the critical macro-constraints’ weights develop
Negative uk, pu, pup, put, tuk, kuk more asymmetrically in Condition B. The mean

Table 4: Phonotactic patterns for Simulation 1.

insert [+Dor]), while that between those in Con-
dition B is 4 (from *[-syll, +Lab]], to *,[[-syll,
+Dor]: delete [+Lab], insert [+Dor], unset right
boundary, set left boundary). The same holds
for other micro-constraints that instantiate these
macro-constraints, because they likewise occur in
pairs (e.g., with a useless [+nas] feature added to
both). Discovering either critical constraint should
therefore prime discovery of the other better in the
A condition than in the B condition. Concretely,
we expect that in Condition A, as compared to
Condition B, (1) time between discovery of the
two constraints will be smaller, and (2) the weights
of the two constraints will be more strongly corre-
lated (because they co-exist for longer).

The simulation parameters were set as follows:
learning rate n = 0.25, mutation rate u = 0.05,
a population of N = 200 constraints initialized to
* (L PrWd R), weight quantum ¢ = 0.05. The
individual probabilities of the mutation operations
Add constituent, Delete constituent, Flip anchor,
Gain unary, Lose unary, Gain Binary, Lose binary,
Invert binary coefficient were set to 7 = (0.005,
and all the others to 0. The time limit was 1024
trials, and 100 replications of each condition were
run. Non-discovery was coded as oo, so aggregate
results are reported as medians, not means.

Prediction (1): Time between discovery smaller
in A than B: The median number of trials
that elapsed between discovery of the two crit-
ical constraints was 2.8 times greater in Condi-
tion B than in Condition A, as shown in Table
5. The difference was significant by a Wilcoxon-
Mann-Whitney rank-sum test (U = 2657.5,p =
0.003082,usingwilcox.test inR’s stats li-
brary, R Core Team 2018).

Prediction (2): Weights of the two constraints
more strongly correlated in A than B: Because
discovery is more simultaneous in Condition A,

correlation between the weights of *[—syll, +Dor]
and the other critical macro-constraint was 0.72 in
Condition A, 0.56 in Condition B (significantly
different by a Wilcoxon-Mann-Whitney rank-sum
test, U = 4761,p = 0.0003484. Non-discovery
meant no correlation could be computed for 5 of
the A and 24 of B simulations.).

Attention-like effects: Clues in the data can
cause the learner to search some regions of con-
straint space more intensively. Here, the constraint
*[=syll, +Dor]], (i.e., NODORSALCODA, critical
in A and B conditions) is one mutation away from
*[—syll]]l, (i.e., NOCoODA). The latter constraint
is discovered early and simultaneously in both A
and B (see Table 6). It is better supported by the
training data in A (4 out of 8 positive vs. 0 out of
8 negative stimuli) than in B (3 out of 8 positive
vs. 1 out of 8 negative). Once discovered, its pop-
ulation grows for longer in A than in B, peaking
at 59 micro-constraints on Trial 305 vs. 23 micro-
constraints on Trial 260. Between discovery and
peak, the *[—syll]], population grew at a rate of
59/(305 — 24) = 0.21 micro-constraints per trial
in Condition A, but only 23/(259 — 24) = 0.10 in
Condition B, i.e., half as fast. More population in
*[-syll]], means more opportunities to spawn *[—
syll, +Dor]],, and indeed that constraint is found
sooner in Condition A (estimate is 72 trials by
Wilcoxon-Mann-Whitney test, U = 2657.5,p =
0.003082). Across all 99 replications in Condi-
tion A in which both constraints were discovered,
a mean of 47% of all instances of *[-syll, +Dor]],
were immediate offspring of *[—syll]],. The anal-
ogous figures for Condition B are 91 and 8.7%.

Speaking anthropomorphically, we might say
that the A learner “notices” that codas matter,
i.e. up-weights *[-syll]],. That “directs its at-
tention” to the coda position (by allowing the ap-
proximate solution *[-syll]], to elbow out other
constraints). This “focused attention” results in
a more-intensive search among neighbors of *[—



syll]],, which soon finds both critical constraints.
Thus, R&D work that helps find one constraint
also helps find the other. The critical constraints
then outcompete the approximate constraint and
drive its weight down. In the B condition, it
takes longer to discover the critical constraint be-
cause the mutant population is divided between
constraints targeting the onset and coda positions,
i.e., the data does not “call attention” to one posi-
tion more than the other.

where wy, is the updated wy.

When the learning algorithm converges,
E[w) /wg] > 1 for all k, i.e., all of the macro-
constraint weights are either constant, or else
increasing at the expense of the neutral con-

straints. Setting E [w), /wi] = 1 and solving for
ri yields the critical value
1
pr=o ©)
nl—p

If r, < r*, then w; < wyg. Hence, a necessary

Median trial number

condition for convergence is Vk : rp > r*. But

since the r;’s add to 1, there must be at least one k

Event A B
*[—syll]], discovered 24 24
*[—syll]], population peaks 305 260

(peak pop. size) (59) (23)

*[-syll, +Dor]], discovered 237

312

such that r;, < 1/n. Hence a stable final grammar
exists only if

]_i
n < Nerit :nilu

(6)

Table 6: Discovery of *[—syll]], (NOCODA) primes
discovery of *[—syll, +Dor]], (NODORSALCODA) in
Simulation 1.

4 Mutation, learning, and complexity in
a monostratal grammar

The pattern in Simulation 1 can be captured by a
monostratal grammar: The two macro-constraints
handle disjoint, exhaustive subsets of the pattern,
and are not critically ranked (weighted) relative to
each other. In the general monostratal case, there
are n critical macro-constraints in the minimal so-
lution, with [¢x] having exclusive responsibility for
Trial Type k. Suppose that the learner has already
found them all, and that ( and N are big enough
that growth in the population of any critical macro-
constraint comes mainly at the expense of non-
critical constraints (assumed to be neutral). We
will see that 7 and p impose an upper bound on n.

Let r; be the probability that when the next er-
ror occurs, it will occur on Trial Type k. Then
the expected proportional change in the popula-
tion size wy of [cg] is the expected product of
its rates of growth through reproduction and of
shrinkage through mutation. If we assume what
is typically the case, that mutation turns a critical
constraint into another critical constraint negligi-
bly often, then on the next error, [cx] reproduces
with probability r; and then shrinks by mutation
with probability 1:

E [wi/wi] = ri(L+n)(1 = p) + (1= 7p) (1 — p)

=1+ ren)(L—p)
4)

In Simulation 1, n and p were chosen so that
Nerit = 0.25 - (1 —0.05)/0.05 = 4.74 > 2 = n,
and indeed, the average proportion correct for the
last 16 trials was above 0.95 in both the A and
B conditions. To illustrate the effect of varying
Nerit, the simulation was re-run with all combi-
nations of n € {0.1,0.15,0.25,0.3} and p €
{0.025,0.05,0.1,0.15}. Figure 2 shows the re-
sults in terms of proportion correct on the last 16
trials (of 2048). For n¢qe > 2, the median — in-
deed, the lower quartile — is never below 0.9. For
Nerit €ven slightly below 2, performance drops off
rapidly.

The reproduction and mutation rates thus fix
an upper bound on the number of critical macro-
constraints in a learnable monostratal grammar.
A pattern which minimally requires more than
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Figure 2: Proportion correct on the last 16 trials as a
function of ng;, Simulation 1, Condition A. Vertical
line marks n..;; = 2.



Nerit Macro-constraints cannot be learned at all.
A pattern which can be expressed with ngqje or
fewer macro-constraints cannot be learned using
an equivalent monostratal grammar that has more,
e.g., one relying on parochial constraints or stim-
ulus memorization.

S5 Simulation 2: Unsupervised
phonological learning (Moreton et al.,
2017)

When the population size N is large, and the
weight quantum ( is small, the learner approxi-
mates a constraint-based model in which the con-
straint set contains all possible constraints up to
a certain size, whose weights vary continuously.
The reason is that the mutants created on any er-
ror will sample the space of possible constraints
densely. Simulation 2 illustrates this point.

In many lab experiments, phonotactic learning
is unsupervised: Participants are trained by ex-
posure to pattern-conforming stimuli only. Since
Winnow-MaxEnt learns from winner-loser pairs,
the learner must somehow generate its own loser
on each trial.

A straightforward way to do that is for the
learner to sample from the probability distribution
specified by its current grammar. If the sample
differs from the presented stimulus (virtually cer-
tain, regardless of how well the pattern has been
learned), the stimulus and sample are used as 2™
and ™ in Equation 3. Since =™ is always pattern-
conforming, but x~ is sometimes not, macro-
constraints enforcing the pattern prosper (i.e., gain
population relative to other constraints).

The hypothesis is tested by simulating three
different conditions from a published experiment
(Moreton et al., 2017, Exp. 1). The stimulus space
consisted of the 256 possible C1V1CoVa stimuli
for which the consonants were one of [t d k g] and
the vowels one of [i & uo] . Human participants
were familiarized by hearing and repeating aloud
32 pattern-conforming stimuli in pseudo-random
order such that each stimulus occurred 4 times.
They then did 32 test trials in which they heard
two novel stimuli, one pattern-conforming and one
not, and were asked to choose the conforming
stimulus.

Three specific patterns were chosen for the sim-
ulation, each instantiating a different pattern type
in the classification of Shepard et al. (1961, see
Figure 3). The pattern “C' is voiceless” belongs

to Type I, a simple, one-feature affirmation. The
pattern “C'; and Cs disagree in voicing” is of Type
I, an if-and-only-if (equivalently, an exclusive-or)
combination of two features. Finally, the pattern
“at least two of: (1) Cs is velar, (2) C1 is voice-
less, (3) Vs is back” is of Type 1V, a three-feature
“gang effect”.

=] >
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(o] [a] | [o]
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Figure 3: Pattern Types I, II, and IV of Shepard et al.
(1961), illustrated using visual stimuli. Type I is de-
fined by a single feature (“the figure is black™); Type
11 is an iff/xor relation between two features (“black iff
round”); and Type IV is a three-feature gang effect (“at
least two of white, triangular, small”).

For each pattern, 32 conforming training stim-
uli, 32 conforming test stimuli, and 32 non-
conforming test stimuli were randomly chosen.
Each of the three patterns can be learned to perfec-
tion with n = 8 or fewer macro-constraints. The
simulation parameters were set at 7 = 0.33, 4 =
0.025 (satisfying Equation 6 for n = 8), { = 0.05,
and N = 2000 constraints. The values were cho-
sen by trial and error to approximate human per-
formance. The test task for human participants
was to decide which of each test pair was “a word
in the language you were studying”. In the simu-
lation, this was implemented by attaching to each
training and test stimulus a [+real] feature. The
constraint set was initialized to equal proportions
of x [+real] and x [-real]. The learner got
as many training and test trials as did the humans.
100 replications of each simulation were run.

Simulation results are shown in Table 7 along-
side human performance. The numbers are simi-
lar, and the proportion of pattern-conforming test-
phase responses decreases in the order [ > IV >
11.



tral wug or non-wug stimulus.* A small N should

therefore favor Type I over Type II, and Type 11

Pattern type
I II v
Sim. 0.83£0.13 0.48+0.02 0.60=+0.05
Human 0.73+0.12 0.57+0.11 0.70+0.09

over Type IV. For the grammar to give human-like
near-categorical responses with so few constraints,

Table 7: Proportion pattern-conforming responses in
the test phase (& 1 s.d., not s.e.m.) for Simulation 2
and human data (Moreton et al., 2017, Table 5), show-
ing I > IV > II order.

6 Simulation 3: Supervised visual
learning (Nosofsky et al., 1994)

When the population size N is small and the
weight quantum ( is large, the Winnow-MaxEnt-
Subtree Breeder approximates a serial hypothesis-
tester that keeps trying one categorical rule after
another until it finds one that works. This is illus-
trated in Simulation 3.

The human experiment to be replicated is that
of Nosofsky et al. (1994). The stimulus space con-
sisted of eight geometric figures varying on three
binary dimensions (shape, shading, and size, as in
Figure 3). A pattern was an assignment of four
stimuli to Category A, and four to B. On each
trial, the participant saw a figure, classified it as A
or B, and received right/wrong feedback. Train-
ing continued until the participant had responded
correctly on 32 consecutive trials, or reached a
limit of 400 trials. The difficulty order, in terms
of trials to criterion or errors to criterion, was
I<II<IV.

Many hypothesis-testing models in the concept-
learning literature account for this difficulty order
by positing a bias towards syntactically-simple hy-
potheses (Shepard et al., 1961; Nosofsky et al.,
1994; Feldman, 2006; Ashby et al., 2011; Good-
win and Johnson-Laird, 2013). The bias in
Winnow-MaxEnt-Subtree Breeder has a different
origin.

It can be seen from Figure 3 that a correct gram-
mar of the Type I problem can be made with just
two macro-constraints: * [-wug] [+black]
and *[+wug] [-black]. These constraints
designate the top face of the cube as a wug
(i.e., pattern-conforming) and the bottom face
as a non-wug. The smallest correct Type II
grammar needs four constraints, one for each
of the back-to-front edges of the cube (e.g.,
* [-wug] [+black] [+circle]). The small-
est correct Type IV grammar needs six constraints,
one for each of the edges radiating from the cen-

the weight quantum ¢ must be large, so that each
constraint has the effect of a categorical rule.

The parameters for Simulation 3 were adjusted
by trial and error to the values N = 7,( = 12,7 =
Lpy=1~= 1/2. Clutch size was set to 12.
Fitness-based selection was turned on so that the
fittest N of the offspring were chosen. The high
mutation rate and large clutch size should have
the effect of making the offspring population be
a diverse random sample of the 54 possible con-
straints. Any micro-constraint in the sample which
has previously been seen to favor a loser will be
assigned its previous (negative) fitness, and hence
be eliminated from the offspring set by fitness-
based selection. (Here is where the learner’s mem-
ory for the fitness of extinct micro-constraints,
mentioned above in §2.3, is crucial.) The result
should be that, as the simulation progresses, in-
valid micro-constraints are gradually discovered
and permanently eliminated from consideration,
so that the offspring population becomes more and
more a random sample of size 7 from the valid
constraints.

In the Type I condition, there are 2 valid faces,
8 valid edges, and 8 valid corners, and a correct
grammar can be made in many ways: from the 2
faces, from 1 face plus 4 edges, from 1 face plus 3
edges plus 2 corners, etc. In the Type II condition,
there are 4 valid edges and 8 valid corners, and a
correct grammar can be made from the 4 edges, or
3 edges plus 2 corners, or 2 edges plus 4 corners.
In the Type IV condition, there are 6 valid edges
and 8 valid corners, and a correct grammar can
only be made from the 6 edges, or from 5 edges
plus 2 corners, or from 2 faces plus 2 copies of
each of 2 corners. Hence a random sample of size
N = 7 is more likely to solve Type I than Type II,
and Type II than Type IV.

The results of the simulation (100 replications)
are shown in Table 8. The order of difficulty is
the same for the learner as for the humans (who
are about 40% faster in all conditions). Chang-
ing the model parameters has caused Types II and
IV to change places with respect to Simulation
2. Smaller values of N amplify the advantage of

4 Alternatively, Type IV can be expressed with two face
constraints, plus two copies of each of two corner constraints
to override the face constraints, which is still six constraints.



% participants Mean trials
reaching criterion to criterion

I II v I Im 1v

Sim. 100 98 74 68 161 210
Human 100 100 100 44 85 127

Table 8: Attainment of criterion performance (32 con-
secutive correct responses in 400 trials) for Simulation
3 and human participants (Nosofsky et al., 1994, 356).
Mean trials to criterion excludes cases where criterion
was not reached. There were 100 replications.

Type II over Type IV. For N < 5, no Type IV sim-
ulations reach criterion.

7 Discussion

The Winnow-MaxEnt-Subtree Breeder links
phonological learning theoretically with other
kinds of pattern learning and with creativity in
other domains, thus spawning future research
questions (e.g., whether mutation is undirected,
or sensitive to the demands of the problem; Si-
monton 1999; Dietrich and Haider 2015; whether
recombination — sexual reproduction — is em-
pirically motivated, etc.). A more immediate task
is to test its empirical adequacy for phonological
learning. This section suggests some places to
start.

Abruptness. The learning curve in the large-
N/small-C case is predicted to be more abrupt
when the pattern depends on induced constraints
rather than preexisting ones from UG or L1 (More-
ton, 2019). Complex patterns require a high learn-
ing rate 77 and/or low mutation rate p (see §4).
Lower p means longer intervals between con-
straint discoveries, while higher 17 means faster
population growth following discoveries; hence,
complex patterns are predicted to be learned as
a series of sudden acquisitions of individual sub-
patterns. I know of no experimental evidence
bearing directly on either prediction, but abrupt-
ness is a familiar aspect of first-language acqui-
sition (“across-the-board” changes, e.g., Smith
1973; Macken and Barton 1978; Vihman and
Velleman 1989; Barlow and Dinnsen 1998; Levelt
and van Oostendorp 2007; Gerlach 2010; Becker
and Tessier 2011; Guy 2014), and been observed
in lab-learned phonology (Moreton and Pertsova,
2016). Individual learning curves for many com-
plex non-linguistic skills show discontinuities al-
ternating with gradual power-law improvements
(Haider and Frensch, 2002; Bourne, Jr. et al.,

2010; Gray and Lindstedt, 2017; Donner and
Hardy, 2015).

Priming. As seen in Simulation 1, a target
grammar in the large-N/small-( case is found
sooner when the relevant macro-constraints are
separated by fewer mutations, because finding one
constraint generates mutants that are helpful in
finding the next. The acquisition of a constraint
thus primes acquisition of similar constraints. It
may be relevant that, in a sample from P-Base
(Mielke, 2008), Carter (2017) found that lan-
guages tend to re-use phonological features: The
probability that a language which uses Feature
F' in N phonologically-active classes uses it in
N + 1 classes increases with N (a preferential-
attachment process).

Nepotism. A weighty macro-constraint in
the large-IN/small-( case generates many mu-
tant offspring, thereby maintaining related macro-
constraints at higher weights than justified by their
usefulness. Hence learners should show emergent
effects of constraints that are mutationally close
to high-weighted ones. In adult segment-class
learning, generalization to untrained segments is
stronger when they are more similar to trained
segments (Cristid et al., 2013). Prickett (2018)
showed that GMECCS (a gradient-ascent Maxi-
mum Entropy learner, Pater and Moreton 2012;
Moreton et al. 2017) underpredicts that differ-
ence, but that the fit can be improved by making
weight updates “leak” between featurally-similar
constraints. Nepotism may furnish a mechanism
to cause such leakage.

Cognitive realism. Human participants re-
port different approaches, including intuition, rote
memorization, and explicit reasoning. Differences
in self-reported approach correlate with differ-
ences in objective measures such as pattern-type
difficulty order, learning-curve shape, and abil-
ity to verbalize the pattern (Moreton and Pertsova
2016, Moreton and Pertsova, in prep.). Simula-
tions 2 and 3 illustrated parameter settings corre-
sponding to intuition (large N, small (, random
selection) and to a rudimentary sort of reasoning
(small N, large ¢, fitness-based selection), and the
Pmem parameter enables stimulus memorization. It
would be desirable to know if intermediate com-
binations of parameter values correspond to types
of human performance, how parameter values are
linked to experimental conditions, and whether the
number of parameters can safely be reduced.
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Abstract

Human communication often involves the use
of verbal irony or sarcasm, where the speakers
usually mean the opposite of what they say.
To better understand how verbal irony is ex-
pressed by the speaker and interpreted by the
hearer we conduct a crowdsourcing task: given
an utterance expressing verbal irony, users are
asked to verbalize their interpretation of the
speaker’s ironic message. We propose a ty-
pology of linguistic strategies for verbal irony
interpretation and link it to various theoreti-
cal linguistic frameworks. We design com-
putational models to capture these strategies
and present empirical studies aimed to answer
three questions: (1) what is the distribution
of linguistic strategies used by hearers to in-
terpret ironic messages?; (2) do hearers adopt
similar strategies for interpreting the speaker’s
ironic intent?; and (3) does the type of seman-
tic incongruity in the ironic message (explicit
vs. implicit) influence the choice of interpreta-
tion strategies by the hearers?

1 Introduction

It is well understood that recognizing whether a
speaker is ironic or sarcastic is essential to under-
standing their actual sentiments and beliefs. For
instance, the utterance “pictures of holding ani-
mal carcasses are so flattering” is an expression
of verbal irony, where the speaker has a nega-
tive sentiment towards “pictures of holding animal
carcasses”, but uses the positive sentiment word
“flattering”. This inherent characteristic of ver-
bal irony is called semantic incongruity — incon-
gruity between the literal evaluation and the con-
text (e.g., between the positive sentiment words
and the negative situation in this example). Most
NLP research on verbal irony or sarcasm has fo-
cused on the task of sarcasm detection treating
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elena.musi@liverpool.ac.uk,
smara@columbia.edu

it as a binary classification task using either the
utterance in isolation or adding contextual infor-
mation such as conversation context, author con-
text, visual context, or cognitive features (Davi-
dov et al., 2010; Maynard and Greenwood, 2014;
Wallace et al., 2014; Joshi et al., 2015; Bamman
and Smith, 2015; Muresan et al., 2016; Amir et al.,
2016; Mishra et al., 2016; Ghosh and Veale, 2017;
Felbo et al., 2017; Ghosh et al., 2017; Hazarika
et al., 2018; Tay et al., 2018; Ghosh et al., 2018;
Oprea and Magdy, 2019). Such approaches have
focused their analysis on the speakers’ beliefs and
intentions for using irony (Attardo, 2000). How-
ever, sarcasm and verbal irony are types of inter-
actional phenomena with specific perlocutionary
effects on the hearer (Haverkate, 1990). Thus, we
argue that, besides recognizing the speaker’s sar-
castic/ironic intent, it is equally important to un-
derstand how the hearer interprets the speaker’s
sarcastic/ironic message. For the above utterance,
the strength of negative sentiment perceived by
the hearer depends on whether they interpret the
speaker’s actual meaning as “picture ...are not
flattering” vs. “pictures ...are so gross” (Table
1). The intensity of negative sentiment is higher in
the latter interpretation than in the former. Kreuz
(2000) noted that most studies in linguistics and
psychology have conducted experiments analyz-
ing reaction times (Gibbs, 1986; Katz et al., 2004)
or situational context (Ivanko and Pexman, 2003),
featuring a setup with in vitro data aimed at testing
the validity of specific theories of irony. Instead,
our study adopts a naturalistic approach to under-
stand hearers’ reception of irony looking at what
linguistic strategies are recurrently used by hear-
ers to interpret the non-literal meaning underlying
ironic utterances.

We leverage the crowdsourcing task introduced
by Ghosh et al. (2015) for their work on detect-
ing whether a word has a literal or sarcastic in-



terpretation, later adopted by Peled and Reichart
(2017). The task is framed as follows: given
a speaker’s ironic message, five annotators (e.g.,
Turkers on Amazon Mechanical Turk (MTurk))
are asked to verbalize their interpretation of the
speaker’s ironic message (i.e., their understand-
ing of the speaker’s intended meaning) (see Ta-
ble 1; S;,, denotes the speaker’s ironic message,
while H;,,; denotes the hearer’s interpretation of
that ironic message). The crowdsourcing experi-
ments are reported in Section 2.

The paper makes three contributions. First, we
propose a data-driven typology of linguistic strate-
gies that hearers use to interpret ironic messages
and discuss its relevance in verifying theoretical
frameworks of irony (Section 4). Second, we pro-
pose computational models to capture these strate-
gies (Section 5). Third, we present two studies
that aim to answer two questions: (1) does the
type of semantic incongruity in the ironic mes-
sage (explicit vs. implicit; see Section 3) influ-
ence the choice of interpretation strategies by the
hearers? (Section 6.2); (2) do interpretation strate-
gies of verbal irony vary by hearers? We make all
datasets and code available.'

2 Datasets of Speakers’ Ironic Messages
and Hearers’ Interpretations

To generate a parallel dataset of speakers’ ironic
messages and hearers’ interpretations we conduct
a crowdsourcing experiment. Given a speaker’s
ironic message (S;;,,), five Turkers (hearers) on
MTurk are asked to verbalize their interpretation
of the speaker’s ironic message (i.e., their un-
derstanding of the speaker’s intended meaning)
(Hjne). The design of the MTurk task was first in-
troduced by Ghosh et al. (2015), who use the re-
sulting dataset to identify words that can have both
a literal and a sarcastic sense. Peled and Reichart
(2017) employed similar design to generate a par-
allel dataset to use for generating interpretations of
sarcastic messages using machine translation ap-
proaches. They use skilled annotators in comedy
writing and literature paraphrasing and give them
the option not to rephrase (we refer to Peled and
Reichart (2017)’s dataset as SIGN). We perform
this new crowdsourcing task and do not rely en-
tirely on the above two datasets for two reasons:
(1) we focus on verbal irony, and (2) we always
require an interpretation from the Turkers. Un-

like the above two studies, the main goal of our
research is to analyze the linguistics strategies em-
ployed by hearers in interpreting verbal irony.

We collected messages that express verbal irony
from Twitter using the hashtags #irony, #sarcas-
tic, and #sarcasm. We chose Twitter as a source
since the presence of the hashtags allows us to se-
lect sentences where the speaker’s intention was
to be ironic. Furthermore, even though Twitter
users cannot be considered representative of the
entire population, they are unlikely to be skewed
with respect to topics or gender. We manually
checked and kept 1,000 tweets that express verbal
irony. We do not draw any theoretical distinction
between sarcasm and irony since we cannot as-
sume that Twitter users also differentiate between
#irony and #sarcasm, blurred even in scholarly lit-
erature. The Turkers were provided with detailed
instructions and examples of the task including the
standard definition of verbal irony taken from the
Merriam-Webster dictionary (“use of words to ex-
press something other than and especially the op-
posite of the literal meaning”). We decided to
suggest them a guiding definition for two reasons.
First, hearers do not usually focus on literal vs.
non literal meaning, as shown by studies measur-
ing processing times for both types of statements
(Inhoff et al., 1984). Therefore, when asked to
rephrase the speakers’ intended meaning, hearers
would have probably come up with sentences ex-
pressing the speaker’s imagined discursive goals,
rather than disclosing their perceived literal mean-
ing. Second, it is reasonable to assume that Turk-
ers would have looked up the standard meaning of
ironic utterance given by an online dictionary to
ease up their task, possibly coming up with biased
definitions.

The Turkers were instructed to consider the en-
tire message in their verbalization to avoid asym-
metry in length between the S;,, and H;,;. We
obtained a dataset of 5,000 S;,,-H;,; pairs where
five Turkers rephrase each S;,,. A total of 184
Turkers participated in the rephrasing task. Ta-
ble 1 shows examples of speaker’s ironic messages
(S;m) and their corresponding hearers’ interpreta-
tions (Hﬁnt). Next, we ran a second MTurk task
to verify whether the generated H;,,; messages are
plausible interpretations of the ironic messages.
This time we employ three Turkers per task and
only Turkers who were not involved in the con-

"https://github.com/debanjanghosh/interpreting _verbal_irony tent generation task were allowed to perform this



Sim

T
Hint

2
Hint

3
Hint

1. Ed Davey is such a pas-
sionate, inspiring speaker

Ed Davey is a boring, unin-
spiring speaker

Ed Davey is such a dull,
monotonous speaker

Ed Davey is not a passion-
ate, inspiring speaker

2. can’t believe how much
captain America looks like
me

I wish I looked like Cap-
tain America. I need to lose
weights

can’t believe how much
captain America looks dif-
ferent from me

I don’t, but I wish I looked
like Captain America

3. Pictures of you holding
dead animal carcasses are
so flattering

Hate hunting season and
the pictures of you holding
dead animal are so gross

Pictures of you holding
dead animal carcasses is an
unflattering look

Pictures of you holding
dead animal carcasses are
not flattering

Table 1: Examples of speaker’s ironic messages (Si.,) and interpretations given by 3 Turkers (HZ,,,).

task. We observe that Turkers labeled 5% (i.e., 238
verbalizations) of H;,;s as invalid and low qual-
ity (e.g., wrong interpretation). For both tasks, we
allowed only qualified Turkers (i.e., at least 95%
approval rate and 5,000 approved HITs), paid 7
cents/task and gave sixty minutes to complete each
task. The final dataset contains 4,762 pairs S;,-
Hint-

3 Semantic Incongruity in Ironic
Messages: Explicit vs. Implicit

Attardo (2000) and later Burgers (2010) distin-
guish between two theoretical aspects of irony:
irony markers and irony factors. Irony markers are
meta-communicative signals, such as interjections
or emoticons that alert the reader that an utterance
might be ironic. In contrast, irony factors cannot
be removed without destroying the irony, such as
the incongruity between the literal evaluation and
its context (“‘semantic incongruity”). Incongruity
expresses the contrast between the conveyed senti-
ment (usually, positive) and the targeted situation
(usually, negative). This contrast can be explicitly
or implicitly expressed in the ironic message.
Following Karoui et al. (2017), we consider
that semantic incongruity is explicit, when it
is lexicalized in the utterance itself (e.g., both
the positive sentiment word(s) and the negative
situation are available to the reader explicitly).
On Twitter, beside sentiment words, users often
make use of hashtags (e.g., “Studying 5 subjects
... #worstsaturdaynight™) or an image (e.g., “En-
couraging how Police feel they’re above the law.
URL”; the URL shows a police car not paying
parking) to express their sentiment. We consider
these cases as explicit, since the incongruity is
present in the utterance even if via hashtags or
other media. For implicit incongruity, we con-
sider cases where one of the two incongruent terms
(“propositions” in Karoui et al. (2017)) is not lex-
icalized and has to be reconstructed from the con-

text (either outside word knowledge or a larger
conversational context). For example “You are
such a nice friend!!!”, or “Driving in Detroit is fun
;)" are cases of ironic messages where the seman-
tic incongruity is implicit. Based on these def-
initions of explicit and implicit incongruity, two
expert annotators annotated the S;,,,-H;,; dataset
(1000 ironic messages) as containing explicit or
implicit semantic incongruity. The inter-annotator
agreement was k=0.7, which denotes good agree-
ment similar to Karoui et al. (2017). The annota-
tion showed that 38.7% of the ironic messages are
explicit, while 61.3% are implicit. In the following
section we propose a typology of linguistic strate-
gies used in hearers’ interpretations of speakers’
ironic messages and in section 6.2 we discuss the
correlation of linguistic strategies with the type of
semantic incongruity.

4 Interpreting Verbal Irony: A Typology
of Linguistic Strategies

Given the definition of verbal irony, we would
expect that Turkers’ interpretation of speaker’s
ironic message will contain some degree of op-
posite meaning with respect to what the speaker
has said. However, it is unclear what linguistic
strategies the Turkers will use to express that. To
build our typology, from the total set of S;,,,-H;p:
pairs obtained through crowdsourcing (i.e., 4,762
pairs; see Section 2) we selected a dev set of 500
Sim-Hin: pairs. Our approach does not assume any
specific theory or irony, but it is data-driven: a lin-
guist expert in semantics and pragmatics analyzed
the dev set to formulate the lexical and pragmatic
phenomena attested in the data. The assembled
typology is, thus, the result of a bottom-up proce-
dure. A S;,,,-H;¢ pair can be annotated with more
than one strategy. The core linguistic strategies are
explained below and synthesized in Table 2.



Typology Distribution (%)
Antonyms

- lexical antonyms (42.2)
- antonym phrases (6.0)
Negation

- simple negation (28.4)
Antonyms OR Negation

- weakening sentiment (23.2)
- interrogative — declarative (5.2)
- desiderative constructions (2.8)
Pragmatic inference (3.2)

Table 2: Typology of linguistic strategies and their
distribution (in %) over the dev set

4.1 Linguistic Strategies

Lexical and phrasal antonyms: This category
contains lexical antonyms (e.g., “love” <> “hate”,
“great” < “terrible”) as well as indirect antonyms
(Fellbaum, 1998), where the opposite meaning can
only be interpreted in context (e.g., “passionate
speaker” — “boring speaker”’; Table 1). Although
the typical antonym of “passionate” is “unpassion-
ate”, “boring” works in this context as a lexical
opposite since a speaker who is passionate entails
that he is not boring. Besides lexical antonyms,
Turkers sometimes use antonym phrases (e.g., “I
can’t wait” — “not looking forward”, “I like (to
visit ER)” — “T am upset (to visit ER) ).

Negation: Here, Turkers negate the main pred-
icate. This strategy is used in the presence of
copulative constructions where the predicative ex-
pression is an adjective/noun expressing sentiment
(e.g., “is great” — “is not great”’) and of verbs ex-
pressing sentiment (e.g., “love” — “do not love”)
or propositional attitudes (e.g., “I wonder” — “I
don’t wonder”).

Weakening the intensity of sentiment: The use
of negation and antonyms is sometimes accom-
panied by two strategies that reflect a weakening
of sentiment intensity. First, when S;,, contains
words expressing a high degree of positive sen-
timent, the hearer’s interpretation replaces them
with more neutral ones (e.g., “I love it” — “I don’t
like it”). Second, when S;,, contains an intensi-
fier, it is eliminated in the Turkers’ interpretation.
Intensifiers specify the degree of value/quality ex-
pressed by the words they modify (Méndez-Naya,
2008) (e.g., “cake for breakfast. so healthy” —
“cake for breakfast. not healthy”).

Interrogative to Declarative Transformation
(+ Antonym/Negation): This strategy, used

mostly in conjunction with the negation or
antonym strategies, consists in replacing the inter-
rogative form with a declarative form, when S;;,, is
arhetorical question (for brevity, R(Q)) (e.g., “don’t
you love fighting?” — “I hate fighting”).

Counterfactual Desiderative Constructions:
When the ironic utterance expresses a posi-
tive/negative sentiment towards a past event (e.g.,
“glad you relayed this news”) or an expressive
speech act (e.g., “thanks X that picture needed
more copy”’) the hearer’s interpretation of intended
meaning is expressed through the counterfactual
desiderative constructions I wish (that) p (‘I wish
you hadn’t relayed ...”, “I wish X didn’t copy
...”7). Differently from antonymic phrases, this
strategy stresses on the failure of the speaker’s
expectation more than on their commitment to the
opposite meaning.

Pragmatic Inference: In addition to the above
strategies, there are cases where the interpretation
calls for an inferential process to be recognized.
For instance, “made 174 this month ...I’'m gonna
buy a yacht!” — “made 174 this month ...I am
so poor”. The distribution of the strategies on the
dev set is represented in Table 2.

4.2 Links to Theoretical Frameworks

In linguistic literature many different approaches
to irony have been provided. Here we focus on
the three accounts (w.r.t. examples from S;,,,-H;,;
corpus) that bear a different views on pragmatic
factors. According to Grice (1975), ironic mes-
sages are uttered to convey a meaning opposite
to that literally expressed, flouting the conversa-
tional maxim of quality “do not say what you be-
lieve to be false”. In verbal irony, the violation
of the maxim is frequently signaled by “the oppo-
site” of what is said literally (e.g., intended mean-
ing of “carcasses are flattering” is they are gross;
Table 1). The linguistic strategies of antonyms
(e.g. “worst day of my life”) and simple nega-
tion (“yeap we totally dont drink alcohol every
single day”[...]) cover the majority of the S;;,,-
H;y: corpus and seem to fit the Gricean (Grice,
1975) account of irony, since the hearer seems
to have primarily recognized the presence of se-
mantic incongruity. However, as touched upon
by Giora (1995), antonyms and direct negation
are not always semantically equivalent strategies,
since the second sometimes allows a graded inter-
pretation: if “Xx is not encouraging”, it is not nec-



essarily bad, but simply “x < encouraging”. Such
an implicature is available exclusively with items
allowing mediated contraries, such as sentiment
words (Horn, 1989). Direct negation with senti-
ment words implies that just one value in a set is
negated, while the others are potentially affirmed.
The spectrum of interpretations allowed by nega-
tion as a rephrasing strategy indicates that hearers
recognize that the relevance of the ironic utterance
in itself plays a role next to what the utterances
refers to (if the rephrased utterance is intended
as “x is not encouraging at all”, the perceived ir-
relevance of the corresponding ironic utterance is
more prominent than in “x is not very encourag-
ing”). The fact that the interpretation of irony has a
propositional scope is even clearer when the ironic
sentence in interrogative form (“and they all lived
happily ever after ?”) is rephrased as a declara-
tive (e.g. “I doubt they all lived happily ever af-
ter”): the hearers recognizes that the question has
a rhetoric value since otherwise contextually irrel-
evant. The intentional falsehood of Gricean anal-
ysis is also not deemed by Sperber and Wilson
(1986); Wilson and Sperber (2012) as a necessary
and sufficient condition for irony. According to
their theory of echoic mentioning, irony presup-
poses the mention to the inappropriateness of the
entire sentence: in asserting “awesome weather in
Scotland today” the speaker does not simply want
to express that the weather was horrible but he
signals that assuming that the weather would be
nice was irrelevant and, thus, ridiculous. Kreuz
and Glucksberg (1989) expand the Relevance The-
ory approach talking about echoic reminding to
account for cases such as “could you be just a
little louder, please? My baby isn’t trying to
sleep” where the extreme politeness reminds the
hearer that the question is indeed a request and
that the mother bears a certain stance and has cer-
tain expectations towards the addressee. Simi-
larly, the use of the pragmatic inference strategy
cannot be fully explained in Gricean terms: the
rephrase “made 174 this month ...I am so poor”
for “made 174 this month ...I am gonna buy a
yatch” more than pointing to the presence of lex-
ical incongruity, show that the hearers knows for
background knowledge that the assertion of “buy-
ing a yatch” is completely irrelevant in the con-
text of a low salary situation. Rephrasing strate-
gies using counterfactual desiderative construc-
tions (e.g. “I really wish my friends and fam-

ily would check up on my after yesterday’s near
death experience”) show, instead, that the interpre-
tation of irony involves an echoic reminding to the
speaker’s (social) expectations which failed to be
fulfilled. Overall, using the results of our crowd-
sourcing experiment with main existing theories
of irony, it turns out that the theories have a com-
plementary explanatory power. In Section 6.2 we
investigate weather this situation might relate to
the presence of explicit/implicit irony.

5 Empirical Analysis of Interpretation
Strategies

Here our goal is to perform a comparative em-
pirical analysis to understand how hearers inter-
pret verbal irony. To accomplish this, we pro-
pose computational models to automatically de-
tect these linguistic strategies in two datasets: (1)
Sim -H;n: dataset and (2) the SIGN dataset. As
stated in Section 2, albeit for a different purpose,
the task designed in Peled and Reichart (2017) is
identical to ours: they used a set of 3,000 sarcas-
tic tweets and collected five interpretation verbal-
ization, including an option to just copy the orig-
inal message if it was not deemed ironic. They
used workers skilled in comedy writing and liter-
ature paraphrasing. SIGN contains 14,970 pairs.
To evaluate our models, we asked two annotators
to annotate two test sets of 500 pairs each from
the S;,, -H;n: and the SIGN dataset (i.e., denoted
by STG Niest), respectively. Note, the test set for
the S;, -H;yn: has no overlap with the dev set of
500 S;n-H;p: pairs used to identify the strategies
(Section 4). Agreement between the annotators for
both sets is high with £ > 0.9. In STG Ngest, 79
instances were just copies of the original message,
which we eliminated, thus the SIG N4 contains
only 421 instances.

5.1 Computational Methods

Lexical Antonyms. To detect whether an S;;,,-
H;,,; pair uses the lexical antonyms strategy, we
first need to build a resource of lexical antonyms.
We use the MPQA sentiment Lexicon (Wilson
et al., 2005), Hu and Liu (2004)’s opinion lexi-
con, antonym pairs from Mohammad et al. (2013),
antonyms from WordNet, and pairs of oppo-
site verbs from Verbocean (Chklovski and Pantel,
2004).

Given this lexicon of lexical antonyms, the task
is now to detect whether a given S;,,-H;,; pair



dev test ST1GNtest

Strategies P R F1 P R F1 P R F1

Lex_ant 8.0 957 922 972 899 934 894 979 935
Simple_neg 920 894 90.7 883 883 883 933 912 922
AN_weaksent 93.6 879 907 950 919 934 933 875 903
AN;_p 531 654 586 800 044 572 8.7 706 714
AN _desiderative 100.0 929 963 100.0 100.0 100.0 100.0 66.7 80.0
AntPhrase+PragInf 86.2 532 658 707 853 774 895 68.0 773

Table 3: Evaluation of Computational Methods on dev, test and STG Nyes; set (in %)

uses the lexical antonyms strategy. We use a
heuristic approach based on word-alignment and
dependency parsing (similar to contradiction de-
tection (De Marneffe et al., 2008)). Word-to-word
alignments between S;,,,-H;,,; are extracted using
a statistical machine translation (SMT) alignment
method - IBM Model 4 with HMM alignment
from Giza++ (Och and Ney, 2004). We consider
a lexical antonym strategy if: 1) antonym words
are aligned; 2) they are the roots of the respec-
tive dependency trees or if the nodes modified
by the lexical antonyms are the same in their re-
spective trees (e.g., ‘can you show any more of
steelers” — “show less of steelers”, the candi-
date lexical antonyms are more and less and they
are the objects of the same predicate in S;;,-Hjpn:
show). Out of 211 S;;,,-H;y; pairs that are marked
as having lexical antonym strategy (dev set), 12
instances are identified by only the dependency
parses, 67 instances by the word-alignments, and
100 instances by both (P/R/F1 scores are 92.1%,
77.7% and 84.3%), respectively on dev dataset.
However, sometimes both dependency and word-
alignment methods fail. In “circling down the
bowl. Yay” — “circling down the bowl. aw-
ful”, although the lexical antonyms yay and aw-
ful exist, neither the alignment nor the dependency
trees can detect it (25 such instances in the dev
set). To account for this, after having run the
dependency and alignment methods, we also just
search whether a S;,,,-H;,,; pair contains a lexical
antonym pair. This improves the final recall and on
the dew set we achieve 89.0% precision, 95.7% re-
call, and 92.2% F1 on dev dataset (Lex_ant Strat-
egy; Table 3 show results both on dev and the
test sets). Note, just searching whether a lexical
antonym pair is present in a S;,-H;p: pair results
in low precision (58.6%) but high recall (80%).

Simple negation. This strategy (denoted as
Simple_neg in Table 3 and Table 4) involves iden-
tifying the presence of negation and its scope.
Here, however, the scope of negation is con-

strained since generally Turkers negated only a
single word (i.e., “love” — “not love”). Thus our
problem is easier than the general problem of find-
ing the scope of negation (Li and Lu, 2018; Qian
et al., 2016; Fancellu et al., 2016). We use 30
negation markers from Reitan et al. (2015) to find
negation scope in tweets. We first detect whether a
negation marker appears in either H;,;+ or S;,,,, but
not in both (negation can appear in S;,,, for ironic
blame) If the marker is used, we extract its parent
node from the dependency tree, and if this node is
also present in the other utterance, then Negation
strategy is selected. For instance, in “looks just
like me” — “does not look like me”, the negation
not is modifying the main predicate looks in H;,,
which is also the main predicate in S;,,, (words are
lemmatized). In the next section, we discuss if the
parent nodes are not the same but similar and with
different sentiment strength.

Weakening the intensity of sentiment. The
first strategy — replacing words expressing a high
degree of positive/negative sentiment with more
neutral ones (‘I love being sick” — “I don’t like
being sick)—, is applied only in conjunction with
the negation strategy. We measure the differ-
ence in strength using the Dictionary of Affect
(Whissell et al., 1986). Out of 31 S;;,-H;y¢ pairs
in the dev set, we automatically identify 28 inter-
pretations that use this approach. For the second
strategy — removing the intensifier (I am really
happy” — “I am disappointed’) —, we first deter-
mine whether the intensifier exists in S;,, and is
eliminated from H;,,;. We use only adjective and
adverb intensifiers from Taboada et al. (2011), pri-
marily to discard conjunctions such as “so” (“no
water so [ can’t wash ...”). This strategy is used
together with both lexical antonyms and Simple
negation strategies. For a candidate S;,,,-H;,,; pair,
if the lexical antonym strategy is selected and ag
and apy are the lexical antonyms, we determine
whether any intensifier modifies ag and no inten-
sifier modifies ay. If the Negation strategy is se-



lected, we identify the negated term in the Hj,,
and then search its aligned node from the S;,,, us-
ing the word-word alignment. Next, we search in
the S;,,, if any intensifier is intensifying the aligned
term. The strategies are denoted as AN_weaksent
in Table 3 and Table 4.

Interrogative to Declarative Transformation
(+ Antonym/Neg). To capture this strategy we
need to determine first if the verbal irony was ex-
pressed as a rhetorical question. To build a clas-
sifier to detect R(), we collect two categories of
tweets (4K each) (1) tweets labeled with #sarcasm
or #irony that also contain “?”, and (2) information
seeking tweets containing “?”. We train a binary
classifier using SVM RBF Kernel with default pa-
rameters. The features are Twitter-trained word
embeddings (Ghosh et al., 2015), modal verbs,
pronouns, interrogative words, negations, and po-
sition of “?” in a tweet. We evaluate the training
model on the dev data and the P/R/F1 are 53.2%,
65.4%, and 58.6%, respectively (in future work
we plan to develop more accurate models for R(Q)
detection). Once we detect the ironic message
was expressed as a R(Q), we identify the specific
interpretation strategy accompanying the trans-
formation from interrogative to declarative form:
antonym or negation. These combined strategies
are denoted as AN;_, p in Table 3 and Table 4.

Desiderative Constructions: Currently, we use
a simple regular expression “I [w]* wish” to cap-
ture counterfactual cases (AN_desiderative in Ta-
bles 3 and Table 4).

Note, when the Simple negation and lexical
antonyms strategies are combined with other strat-
egy (e.g., removing of intensifier), we consider
this combined strategy for the interpretation of
verbal irony and not the simple negation or lexical
antonym strategy (i.e., we do not double count).

Phrasal antonyms and pragmatic inference:
Identifying phrasal antonyms and pragmatic in-
ference is a complex task, and thus we propose
a method of phrase matching based on phrase
extraction via unsupervised alignment technique
in SMT. We use IBM Model 4 with HMM
(Giza++; (Och and Ney, 2000)), phrase extraction
via Moses (Koehn et al., 2007) and the IRST tool
to build the required language models. As post-
processing, we first remove phrase pairs obtained
from the S;,,,-H;,; bitext that are also present in
the set of extracted phrases from the H;,¢-Hjpy

Strategies Sim-Hint SIGN
Lex_ant 2,198 (40.0) 9,691 (51.8)
Simple_neg 1,596 (29.1) 3,827 (20.5)
AN _weaksent 895 (16.3) 2,160 (11.6)
AN;p 329 (6.0) 933 (5.0)
AN _desiderative 92 (1.7) 86 (0.5)
AntPhrase+Praglnf 357 (6.5) 1912 (10.1)

Table 4: Distribution of interpretation strategies on
two datasets (in %)

bitext. This increases the likelihood of retaining
semantically opposite phrases, since phrases ex-
tracted from the H;,;-H;,¢ bitext are more likely
to be paraphrastic. Second, based on the transla-
tion probability scores ¢, for phrase e if we have
a set of aligned phrases f..; we reject phrases
that have ¢ scores less than Wlfm) Finally,
11,200 phrases are extracted from the S;.,-H;ns
bitext. The low recall for this strategy is ex-
pected since there are too many ways that users
can employ pragmatic inference or rephrase the
utterance without directly using any antonym or
negation. In future, we will explore neural MT
(Cho et al., 2014) and use external data to gen-
erate more phrases. Since we have not manually
evaluated these phrase pairs, we only use this strat-
egy after we have tried all the remaining strategies
(AntPhrase+Praglnf in Table 3 and Table 4).

5.2 Results and Distribution of Linguistic
Strategies

The performance of the models is similar on both
test and SIGNgs sets, showing consistently
good performance (Table 3; 90% F1 for all strate-
gies, except the AntPhrase+PragInf and AN7_,p).
Given these results, we can now apply these mod-
els to study the distribution of these strategies in
the entire datasets (Table 4). The strategy distri-
bution between our dataset S;,,,-H;,,+ and SIGN
dataset is similar and matches the distribution on
the manual annotations on the dev dataset in Ta-
ble 2. The sum of the strategies can exceed the
total number of the pairs since a tweet can con-
tain several ironic sentences that are interpreted
by Turkers. For instance, in “Dave too nice ...a
nice fella” — “Dave not nice ...a mean fella” we
observe the application of two strategies, lexical
antonyms (e.g., nice — mean) and negation (e.g.,
nice — not nice).



6 Discussion

6.1 Hearer-dependent Interpretation
Strategies

We investigate how hearers adopt strategies for in-
terpreting the speaker’s ironic intent. To imple-
ment this study, we selected three Turkers (e.g.,
H!, H2, and H?; In Table 1, H! , are generated
by the correspondent Turker H?), from our crowd-
sourced data, who were able to rephrase at least
five hundred identical S;,,, messages. Note, we
cannot carry this experiment on the SIGN dataset
(Peled and Reichart, 2017) because the annotators’
information is absent there.

Although the three Turkers choose Ilexical
antonym and simple negation as two top choices,
there is some variation among them. H! and
H? choose antonyms more frequently than nega-
tion while in contrary Turker H3 choose negation
more than antonyms, sometime combined with the
weakening of sentiment strategy. As we mentioned
in Section 4.2, antonyms and direct negation are
not semantically equivalent strategies since the lat-
ter, allows a graded interpretation: if “x is not in-
spiring”, it is not necessarily bad, but simply “x <
inspiring” (Giora, 1995). In Table 1, the S;,,-H;ne
pair “passionate” — “boring” and “flattering” —
“gross” (interpretation of H') have more contrast
than the pair “passionate” — “not passionate” and
“so flattering” — “not flattering” (interpretation of
H?). This suggests that H! perceive the intensity
of negative sentiment towards the target of irony
(“Ed Davey” and “picture of dead animals”, re-
spectively) higher than Turker H3. All three Turk-
ers have chosen the remaining strategies with sim-
ilar frequencies.

6.2 Message-dependent Interpretation
Strategies

Interpretation Strategies and the Type of Se-
mantic Incongruity: We investigate whether
the type of semantic incongruity in the ironic mes-
sage (explicit vs. implicit; see Section 3) influ-
ences the choice of interpretation strategies by the
hearers. To do this, we looked at S;,,,-level distri-
bution of interpretation strategies used by the hear-
ers for the same ironic message S;,,,. Table 5 rep-
resents the correlation of linguistic strategies with
the type of semantic incongruity (explicit vs. im-
plicit) as well as the presence and absence of irony
markers.

We notice that Turkers use lexical antonyms

Strategies incongruity marker
Exp. Imp. + —
Lex_ant 48.5 348 357 422
Simple_neg 249 323 28.9  30.0
AN_weaksent 143 176 157 16.8
ANr-p 5.9 6.1 123 3.1
AN _desiderative 1.3 1.9 0.9 2.0
AntPhrase+Praglnf 5.2 7.1 6.2 6.6

Table 5: Rephrasing Strategies against Incongru-
ency and Irony Markers on S;,,,-H;,; dataset (in
%)

5 4,1 3,2 31,1 221 21,11 1,1,1,1,1
# of Turkers

Figure 1: Strategies selected per message (in %)

as interpretation strategy more when the seman-
tic incongruity is explicit than implicit (48.5% vs.
34.8%): the presence of explicit sentiment trig-
gered the use of the antonym strategy. In contrary
they use simple negation more when the semantic
incongruity is implicit than explicit.

We also analyze the interpretation strategies
w.r.t. to the presence (+) or absence (—) of irony
markers. We implement various morpho-syntactic
as well as typographic markers (similar to (Ghosh
and Muresan, 2018)) to identify the presence of
markers. We observe that Lex_ant strategy is
used more in cases where the markers are ab-
sent. In S;,-H;,:, markers are present twice as
much in the case of implicit (21%) than explicit
incongruity (10%). This finding validates (Burg-
ers et al., 2012) who argued speakers will likely
use markers to signal their ironic intent in implicit
incongruity.

Message interpreted the same by all hearers:
In Figure 1, the vertical columns (purple: S;,-
Hin+ and grey: SIGN) depict the distribution (in
%) of tweets strategy-wise. In S;,,-H;,; dataset,
for 17% of messages (124 S;,,s) all five Turkers
use the same strategy to interpret the S;;,,s (labeled
as 5 on the X-axis), whereas for 26% (188 S;,,,s),
4 Turkers used same strategy (labeled as 4,1 on X-
axis) and so on.

We observe when the S;,,,s are marked by strong
subjective words e.g., “great”, “best”, etc., they



have been replaced in 90% of cases as lexical
antonyms (e.g., “great” — “terrible”). In addition,
the majority of adjectives are used in attributive
position (i.e., “lovely neighbor is vacuuming at
night”), thus blocking paraphrases involving pred-
icate negation. However, not all strong subjec-
tive words guarantee the use of direct opposites
in the H;¢s (e.g., “flattering” — “not flattering”;
See Table 1). The choice of strategies may also
depend upon the target of ironic situation (Ivanko
and Pexman, 2003). We implement the bootstrap-
ping algorithm from Riloff et al. (2013) to iden-
tify ironic situations in S;;,,s that are rephrased by
Lexical antonym strategy. We find utterances con-
taining stereotypical negative situations regarding
health issues (e.g., “having migraines”, “getting
killed by chemicals”) and other undesirable nega-
tive states such as “oversleeping”, “luggage lost”,
“stress in life” are almost always interpreted via
lexical antonym strategy.

Utterances where all five Turkers used simple
negation, if negative particles are positioned in
the ironic message with a sentential scope (e.g.,
“not a biggie”, “not awkward”) then they are sim-
ply omitted in the interpretations. This trend can
be explained according to the inter-subjective ac-
count of negation types (Verhagen, 2005). Sen-
tential negation leads the addressee to open up an
alternative mental space where an opposite predi-
cation is at stake.

7 Related Work

Most NLP research on verbal irony or sarcasm has
focused on the task of sarcasm detection treating
it as a binary classification task using either the ut-
terance in isolation or adding contextual informa-
tion such as conversation context, author context,
visual context, or cognitive features (Gonzilez-
Ibanez et al., 2011; Liebrecht et al., 2013; Wallace
et al., 2014; Zhang et al., 2016; Ghosh and Veale,
2016; Schifanella et al., 2016; Xiong et al., 2019;
Castro et al., 2019). Unlike this line of work,
our research focuses on how the hearer interprets
an ironic message. The findings from our study
could have multiple impacts on the sarcasm de-
tection task. First, interpretation strategies open
up a scope of “graded interpretation” of irony in-
stead of only a binary decision (i.e., predicting the
strength of irony). Second, nature of semantic in-
congruence and stereotype irony situations can be
useful features in irony detection.

Recently, Peled and Reichart (2017) proposed
a computational model based on SMT to gen-
erate interpretations of sarcastic messages. We
aim to deepen our understanding of such inter-
pretations by introducing a typology of linguis-
tic strategies. We study the distribution of these
strategies via both hearer-dependent and message-
dependent interpretations. Psycholinguistics stud-
ies that have dealt with the hearers’ perception,
have mainly focused on how ironic messages are
processed: through the analysis of reaction times
(Gibbs, 1986; Katz et al., 2004), the role of situa-
tional context (Ivanko and Pexman, 2003) and in
tackling speaker-hearer social relations by anno-
tating ironic texts from different genres (Burgers,
2010). However, no attention has been paid to cor-
relations between how ironic message is expressed
and how it is interpreted by the hearer, including
what linguistic strategies the hearers employ.

8 Conclusions

We leveraged a crowdsourcing task to obtain a
dataset of ironic utterances paired with the hearer’s
verbalization of their interpretation. We proposed
a typology of linguistic strategies for verbal irony
interpretation and designed computational mod-
els to capture these strategies with good perfor-
mance. Our study shows (1) Turkers mostly adopt
lexical antonym and negation strategies to inter-
pret speaker’s irony, (2) interpretations are corre-
lated to stereotype ironic situations, and (3) irony
expression (explicit vs. implicit incongruity and
absence or presence of markers) influences the
choice of interpretation strategies and match with
different explanatory theories (the Gricean ap-
proach links up better with explicit incongruity,
while Relevance Theory with the implicit one).
The latter can have an impact on irony detection
by bringing out more discriminative semantic and
pragmatic features.
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Abstract

The interpredictability of the inflected forms
of lexemes is increasingly important to ques-
tions of morphological complexity and typol-
ogy, but tools to quantify and visualize this as-
pect of inflectional organization are lacking,
inhibiting effective cross-linguistic compari-
son. In this paper I use metrics from graph
theory to describe and compare the organiza-
tional structure of inflectional systems. Graph
theory offers a well-established toolbox for de-
scribing the properties of networks, making it
ideal for this purpose. Comparison of nine lan-
guages reveals previously unobserved gener-
alizations about the typological space of mor-
phological systems. This is the first paper to
apply graph-theoretic tools to the goal of in-
flectional typology.

1 Introduction

Morphological typology has long classified lan-
guages in terms of how words are built out of
morphemes. A typical formulation defines three
or four types: isolating, agglutinative, fusional,
and sometimes polysynthetic. More nuanced work
seeks to break the types down into their compo-
nent properties, with languages compared based
on clusters of these (Plank, 1999). This newer ap-
proach is better able to capture cross-linguistic di-
versity, but it gives priority to the same aspects of
morphological structure as the traditional classifi-
cation scheme: syntagmatic relationships between
formal elements (e.g. how many morphemes there
are per word, known as the degree of synthesis
(Comrie, 1981)), and the extent to which form-
meaning mappings are isomorphic (e.g. as op-
posed to the language having inflection classes).
Morphological typologies built on these pri-
orities fail to capture important aspects of mor-
phological structure, corresponding to a distinc-
tion between two broad notions of morphological
complexity that Ackerman and Malouf (2013) call

Enumerative Complexity (E-complexity) and Inte-
grative Complexity (I-complexity). E-complexity
has to do with the size of a morphological system,
e.g., the number of cells in lexemes’ paradigms,
the system’s degree of synthesis, or the number of
its inflection classes. I-complexity, on the other
hand, has to do with the predictability of the in-
flected forms of lexemes. A morphological system
is I-complex to the extent that the inflected forms
of a newly encountered lexeme are unpredictable.
This is a function of the distribution of elements in
the system. Even systems with high E-complexity,
such as a large number of inflection classes, may
have low I-complexity, if morphological elements
are distributed in ways that make them predictable
(Ackerman and Malouf, 2013; Cotterell et al., to
appear; Wurzel, 1989). I-complexity is thus ori-
ented to the internal organization of inflectional
systems, rather than their size. However, this orga-
nization is not captured by traditional typological
measures.

In this paper I adopt metrics from graph the-
ory, using them to describe and compare the in-
ternal organization of inflectional systems.! I an-
alyze inflection classes as nodes in a network that
are connected by the morphological structure that
they have in common; two classes are connected if
they use same exponent(s) to realize a set of mor-
phosyntactic values. Conceptualized in this way,
inflectional networks reflect the distribution of ex-
ponents in a language’s inflectional system, and by
extension, the internal organization of that system.
Graph theory offers an established, widely applied
toolkit for describing the properties of networks,
making it a natural choice for application. While
some interesting and previously unobserved gen-
eralizations emerge from comparison of different
languages’ inflectional networks, the primary goal
of this paper is to demonstrate the usefulness of

"Data and code are available at
https://github.com/sims120/inflectional-networks.



STOL MESTO KNIGA KOST’

‘table’  ‘place’  ‘book’  ‘bone’

ACC.SG stol mesto knigu kost’
INS.SG stolom mestom knigoj kost’ju
DAT.PL stolam mestam knigam kostjam
Table 1: Partial inflectional paradigms of Russian

nouns: three paradigm cells that differ in how infor-
mative they are about inflection class membership

applying graph-theoretic tools to inflectional data,
and to outline some specific ways to quantify and
compare inflectional systems.

Section 2 motivates an approach to typolog-
ical comparison based on the paradigmatic dis-
tribution of exponents within an inflectional sys-
tem. Section 3 gives a formal definition of an in-
flectional network. Section 4 discusses method-
ological choices. Section 5 introduces a variety
of standard graph-theoretic measures, illustrating
them using Russian noun inflection. Section 6
then compares nine languages’ inflectional sys-
tems based on a couple of these measures, show-
ing that their organization exhibits cross-linguistic
diversity but also notable commonalities. Finally,
Section 7 offers some conclusions and future di-
rections.

2 Internal organization as a basis for
inflectional typology

Work in the abstractive Word and Paradigm tra-
dition (Blevins, 2006) emphasizes the paradig-
matic or ‘external’ dimension of morphological
structure: distributions of inflected word-forms
within and across paradigms, and how these give
rise to competition among inflectional exponents.
In this view, word-internal/syntagmatic structure
(e.g. stem-affix relations) is a byproduct of the
ways in which words are paradigmatically related
within and across inflectional paradigms (Acker-
man et al., 2016; Blevins, 2016).

In the inter-paradigmatic direction, a central
question has to do with how inflected forms
cue inflection class membership — the so-called
Paradigm Cell Filling Problem (Ackerman et al.,
2009). Table 1 illustrates the issue using a sub-
set of the inflected forms of Russian nouns. (For
the moment I assume a typical, four-class descrip-
tion of Russian nouns, although I will ultimately
employ a more robust representation in Sections 5
and 6.) In Russian, the accusative singular expo-

nent -u (as in knig-u ‘book-ACC.SG’) is fully infor-
mative about inflection class membership, which
is to say, about what the other forms of the same
lexeme are. If a competent adult speaker encoun-
ters a neologism ending in -u and knows that it
is accusative singular, all other forms of the noun
are predictable (ignoring stress placement). How-
ever, inflected forms are not guaranteed to be fully
(or at all) informative in this way. Instrumen-
tal singular -om is partially informative: the new
word must belong to either the STOL class or the
MESTO class, but the observed form does not re-
solve which. The dative plural exponent -am is
uninformative, since it appears in every inflection
class. The distributions of inflected forms across
classes thus determine how and the extent to which
allomorphs cue inflection class membership. They
likewise define a pattern of relatedness among lex-
emes, and by extension inflection classes, and re-
flect the internal organization of the inflectional
system.

This internal organization has been of particular
interest in work that seeks to quantify inflectional
complexity. From an I-complexity perspective, the
Paradigm Cell Filling Problem is a significant is-
sue because neither child (Lignos and Yang, 2016)
nor adult (Bonami and Beniamine, 2016) speech
input is sufficient to observe all inflected forms of
all lexemes. Speakers must therefore be able to
productively predict and generate unobserved in-
flected forms. The complexity of an inflectional
system is a function of the difficulty of this task,
given some partial knowledge of a lexeme (Stump
and Finkel, 2013).

Estimates of the I-complexity of inflectional
systems based on paradigmatic relations — essen-
tially, proportional analogy — have been calcu-
lated in set-theoretic (Stump and Finkel, 2013)
and information-theoretic terms (Ackerman et al.,
2009; Ackerman and Malouf, 2013; Bonami and
Beniamine, 2016; Mansfield, 2016; Parker and
Sims, to appear; Sims and Parker, 2016; Stump
and Finkel, 2013). Sequence-to-sequence neural
network models for inflection have also been em-
ployed (Cotterell et al., to appear; Malouf, 2017).
Using conditional entropy, Parker (2016) esti-
mates the complexity of the Russian nominal sys-
tem at between 0.5 and 0.6 bits, depending on how
much detail about Russian inflectional outcomes is
included in the analysis.

This notion of inflectional complexity has also



been extended to cross-linguistic comparison.
Ackerman and Malouf (2013)[436] propose the
Low Entropy Conjecture: “...enumerative mor-
phological complexity is effectively unrestricted,
as long as the average conditional entropy, a mea-
sure of integrative complexity, is low...” The Low
Entropy Conjecture is posited to be a universal
constraint on morphological I-complexity, driven
by speakers’ need to be able to solve the Paradigm
Cell Filling Problem. Other work has suggested a
trade-off between I-complexity and E-complexity
(Cotterell et al., to appear). Importantly, however,
both suggest that I-complexity reveals commonali-
ties among languages’ inflectional systems that are
not captured by typological approaches focused on
E-complexity.

As a basis for cross-linguistic comparison, the
notion of I-complexity thus reflects something dif-
ferent about morphological structure than tradi-
tional measures do. It is also inextricably rooted in
the internal organization of inflectional systems —
in particular, the distribution of allomorphs across
lexemes and classes. Yet tools for directly ex-
amining this organization are lacking.” Previous
work largely boils the distributional properties of
an inflectional system down to an estimate of its
complexity as a whole (as with Parker’s estimate
for Russian nouns). While this is appropriate to
some goals, single-value measures have the same
problem found with all averages: many different
distributions can produce the same average. As
a basis for comparison across languages this of-
fers an incomplete picture of the extent to which
languages are similar or different (Elsner et al.,
submitted). Moreover, languages seem to differ in
the extent to which paradigmatic relations (propor-
tional analogy) are important to maintaining low
I-complexity (Sims and Parker, 2016), suggesting
the need to directly investigate a system’s organi-
zation, and not only its resulting complexity.

These issues highlight the need to drill down on
the distributional properties of individual morpho-
logical elements. Tools are needed for the descrip-
tion of individual systems at that level that offer a
basis for meaningful cross-linguistic comparison.

3 Inflectional systems as networks

I define an inflection class system as an undirected
graph G = (V, £), where the set V of nodes con-

2However, Beniamine (2018) is notable for the use of net-
work visualization.

Figure 1: Network graph of the partial set of Russian
noun forms shown in Table 1

sists of the inflection classes of the language and
the set £ of edges consists of unordered pairs of
elements in V. In particular, elements in £ are
defined by exponence shared among pairs of el-
ements in V. Taking the partial set of inflected
forms from Table 1 as a simplified example, there
are four inflection classes (thus, V(G) = {STOL,
MESTO, KNIGA, KOST’}). The classes are dis-
tinct overall, but all four have the exponent -am
in dative plural, the classes of STOL and KOST’
both lack an overt accusative singular exponent,
and STOL and MESTO both have -om in instrumen-
tal singular. These overlaps define six edges £(G)
= {STOL-MESTO, STOL-KOST’, STOL-KNIGA,
MESTO-KOST’, MESTO-KNIGA, KOST’-KNIGA},
as visualized in Figure 1.3

Furthermore, the weight of an edge is defined
as the number of cells in which two classes over-
lap. This is shown as a heavier line for the edges
connecting nodes STOL and MESTO, and STOL and
KOST’. Edge weight captures the observation that
classes that overlap in more cells are more simi-
lar to each other. In language change, these are
more likely to analogically influence each other.
Edges can thus be thought of as paths of analogical
reasoning— more specifically, the edges represent
potential pivots for inflection class shift.

4 Segmentation and the definition of
classes

The number of inflection classes a given language
is analyzed as having is predicated on a segmenta-
tion of its words into stems and exponents. Mor-

3All network graphs in this paper were plotted with the
igraph package (Csardi and Nepusz, 2006) in R (R Core
Team, 2019). This package was also used to calculate clus-
tering coefficient, shortest path length, and betweenness cen-
trality, as described in Section 5 below.



phological segmentation has long presented ana-
lytic challenges for description and typology (Be-
niamine et al., 2017a; Hockett, 1947; Nida, 1949),
formal theory (Matthews, 1972; Spencer, 2012),
and computational modeling (Goldsmith, 2001,
2010; Harris, 1970; Manning, 1998). Encoder-
decoder neural models of inflection (Faruqui et al.,
2016; Kann and Schiitze, 2016; Malouf, 2017; Sil-
fverberg and Hulden, 2018) have recently become
popular in part because they are able to sidestep
questions of how words should be segmented into
morphological units and how to define discrete in-
flection classes. However, it is difficult to identify
and interpret the latent representations that neural
network models of inflection actually learn. The
analyses below are instead based on manual seg-
mentation, which has the advantage of being max-
imally linguistically interpretable.*

In what follows I use a global segmentation
strategy (Beniamine et al., 2017b), in which the
‘stem’ is the maximal continuous string shared by
all inflected forms of a lexeme. There are two ex-
ceptions to this principle: 1) Suprasegmental ma-
terial (e.g. tone) is analyzed separately from seg-
mental material, allowing globally shared segmen-
tal material to be identified as part of the stem,
even when suprasegmental material is different
from one inflected form to another. Suprasegmen-
tal material that is not shared by all inflected forms
of a lexeme is assigned to the exponent. 2) Purely
automatic phonology (e.g. of the type that is vowel
harmony in Turkish, or vowel reduction in Rus-
sian) is ignored. This method results in bits of
form that linguists often classify as stem allomor-
phy (morphophonological alternations, stem ex-
tensions, theme vowels, stress shift, etc.) being
assigned to the exponent.’

Once a segmentation into stem and exponent
is made, defining classes is a trivial matter: two
words belong to the same inflection class if and
only if the full sets of their exponents are iden-
tical. This method results in microclasses in the
terminology of Beniamine et al. (2017b), which

*A goal for the future is to expand the methods
and code to include automatic segmentation of words
into stems and exponents, e.g. through integration
with the Qumin software package (Beniamine, 2018):
https://github.com/XachaB/Qumin

SMultiple exponents are treated as a single, combined ex-
ponent. To the extent that each of multiple exponents has a
separate distribution, an analysis in terms of multilayer net-
works (Bianchoni, 2018) would likely be needed to capture
this. Multilayer network representations are more complex
and I leave this extension for the future.

tend to be large in number, relative to classi-
cal descriptions. For example, descriptions of
the Russian nominal system tend to posit either
three (Vinogradov et al., 1952) or four (Corbett,
1982) (macro)classes, whereas the method used
here produces 87 (micro)classes.®

Since this is a somewhat unusual analytic
choice, it requires some justification. In defining
inflection classes, linguists tend to abstract away
from morphophonological alternations, especially
if phonologically conditioned, preferring to de-
fine classes based (solely, ideally) on lexically-
conditioned, suppletive exponents. This mini-
mizes the number of inflection classes posited.
However, there are at least four reasons to adopt a
maximally inclusive definition of exponents, and a
more robust number of classes.

First, returning to the Paradigm Cell Filling
Problem and the notion of I-complexity, to ‘solve’
the PCFP speakers must predict entire word-
forms. Limiting what counts as an exponent may
lead to overestimation or underestimation of the I-
complexity of inflectional systems (Elsner et al.,
submitted; Sims, 2015). This is important because
the graph-theoretic approach to inflectional typol-
ogy argued for in this paper is motivated exactly
by a desire to better understand how I-complexity
relates to the internal organization of inflectional
systems, and the extent of cross-linguistic diver-
sity in this respect.

Second, the line between morphology and
phonology cannot always be drawn in a principled
and pre-theoretic way. The choice to define expo-
nents in a maximally inclusive way is not theory-
neutral, to be sure — it is philosophically aligned
with the Word and Paradigm framework. But to
the extent that it errs, it does so consistently on
the side of representing inflection classes as overly
distinct. This is preferable to erring in the opposite
direction because we can ask about the extent to
which microclasses group into macroclasses, but if
we abstract away from morphological differences
and thus fail to distinguish two classes in the first
place, we will never be able to detect any inter-

®As a reviewer observed, suppletive material is all as-
signed to the exponent, resulting in maximal differentia-
tion from other classes and potentially increasing not only
the number of classes, but the prevalence of disconnected
subgraphs. Indeed, exactly this situation is encountered in
Russian nouns (see Section 5), showing that segmentation
choices affect the representation of the network to some de-
gree. However, it is not clear that there is a ‘right’” or ‘wrong’
choice in this respect.



Figure 2: Inflection class system of Russian nouns (87
classes). Nodes size represents the log type frequency
of the class. Node color reflects betweenness centrality
(darker = more central). Edge color and thickness are
according to weight: edges connecting nodes (classes)
with the same exponents in more than half of cells are
black (N > 7); edges connecting nodes with the same
exponents in exactly half of cells (N=6) are thick gray;
weaker edges are thin gray.

esting aspects of inflectional organization that the
abstracted-away-from differences constitute.

Third, as a practical matter, a global segmen-
tation strategy can be applied in a uniform way
across languages and requires a minimum of an-
alytic/theoretical assumptions (Beniamine et al.,
2017b), evading potential problems created by the
use of different analytic methods for different lan-
guages.

Finally, and perhaps most importantly, differ-
ent kinds of allomorphy tend to be found in dif-
ferent types of morphological systems (e.g. ag-
glutinative vs. fusional) (Plank, 1999). Includ-
ing some kinds of allomorphy and excluding oth-
ers thus runs the risk of introducing systematic
bias into cross-linguistic comparisons of inflection
class organization.

In the following section I illustrate how stan-
dard measures for network description can be used
to quantify the organizational structure of the Rus-
sian nominal inflectional system.

5 Network properties of Russian nouns

The inflection class network for Russian nouns is
shown in Figure 2. Following Parker (2016), the
underlying morphological analysis includes not
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Figure 3: Correlation between node degree and mean
edge weight for Russian nouns. The red line shows a
quadratic regression fit.

just regular and productive inflectional suffixes,
but also irregular suffixes, stress alternations, stem
extensions, defectiveness (no inflected form for a
given paradigm cell), and uninflectedness (only
one form for all paradigm cells). Node size reflects
the log type frequency of the class (i.e. the log
number of lexemes it contains), based on 43,486
nouns in Zaliznjak (1977). Node color indicates
betweenness centrality, discussed below. Edges
are colored according to their weight.

5.1 Number of nodes, edges, and connected
components

Basic descriptive statistics for the Russian nom-
inal inflectional network include the number of
its nodes (|V(G)| = 87), the number of its edges
(I€(G)| = 2660), and how many connected com-
ponents it has. A connected component is a sub-
graph containing all of the nodes that are con-
nected via a path. The Russian noun system has
two components. One has two nodes that differ
from each other only in accusative (the result of
animacy-conditioned allomorphy), exemplified by
REBENOK °‘child, baby’ (NOM.PL rebjata), which
has a unique suppletive stem alternation -onOk ~
-at.” The remaining 85 classes belong to the other
connected component.

5.2 Degree distribution and edge weight

Node degree is the number of edges K that are
connected to a node. In Russian, the large majority
of classes have || > 50.

"Capital O in -onOk indicates a fleeting vowel.



The relationship between node degree and edge
weight is shown in Figure 3.8 The quadratic na-
ture of the distribution (R?> = 0.55, p < 0.0001)
probably partly reflects limitations on the extent
to which classes can overlap but remain distinct.
Classes with both high degree and high edge
weight are likely targets for merger, which may
explain the relative lack of such classes in Russian
nouns. However, interestingly, there is no such re-
striction for low degree nodes, for which it is en-
tirely possible to overlap with few other classes
(low degree), but in many cells (high edge weight).
The ways in which Russian nouns overlap thus do
not appear to reflect random sampling from the
full space of possibilities.’

5.3 Clustering coefficient

As is evident visually in Figure 2, Russian inflec-
tion classes form clusters: groups of nodes with
high-density ties. This clustering is why Rus-
sian is typically described as having three of four
classes: there are few general inflectional patterns,
but many words with small deviations from these.

Clustering demonstrates one reason why node
connectivity patterns affect system complexity.
On the one hand, classes with high-density ties
interfere with each other analogically. It might
therefore seem that a greater density of edges in
a network would lead monotonically to greater
system complexity. However, when classes clus-
ter, the interfering classes have mostly the same
exponence. Strong clustering can thus actually
lead to good interpredictability of forms for the
majority of cells, even in a strongly connected
network. It turns out there is no uniform rela-
tionship between the number of edges in a graph
(or their weight) and the complexity of an inflec-
tional system (Parker and Sims, to appear). This
makes clustering an important network property
for cross-linguistic comparison.

In an undirected network, the local clustering
coefficient C; of a node v; with k neighbors is de-
fined as:

_ 2|{ejk : vj,vp € Ny, ej1, € E}
ki(ki — 1)

C;

8The regression line excludes two nodes with degree of 1
and edge weight of 10. These are the same two nodes that be-
long to a separate component. If these are instead analyzed as
a single class with a cross-cutting paradigm condition (Baer-
man et al., 2017), the merged class has degree of 0.

°Although there is not space in this paper to dive fur-
ther into this issue, other languages show different degree-
to-weight distributions.

where V; is the neighborhood of v;, specifically,
the set of nodes to which v; is directly connected
by an edge. The local clustering coefficient of
v; is thus the total number of edges among v;’s
neighbors, divided by the total possible number of
edges among neighbors. The global clustering co-
efficient of a system is the mean calculated over
all C;; values range between 0 and 1. The Rus-
sian nominal network has a global clustering coef-
ficient of 0.816 (s.d. = 0.147).

5.4 Mean shortest path length

The path length between two nodes is the number
of edges that must be followed to get from one
to the other. Path length, like clustering coeffi-
cient, thus reflects patterns of network connectiv-
ity. Since edges in the inflectional network repre-
sent paths of analogical reasoning, the length of a
path between a pair of nodes can be interpreted as
being related to the likelihood of analogical inter-
ference between those classes, with low numbers
indicating greater potential interference.

Since the Russian nominal network is not fully
connected, the mean shortest path length for Rus-
sian nouns is here calculated within component.
(Across components there are no paths, so short-
est path length is infinite.) When calculated with-
out edge weight (using a breadth-first search algo-
rithm), the Russian network has a mean shortest
path length of 1.249 (s.d. = 0.134) and when cal-
culated taking edge weight into account (using the
Dijkstra algorithm), the mean shortest path length
is 8.929 (s.d. = 1.42).10

5.5 Betweenness centrality

We might also want to know which nodes are
most central in the network. Central nodes are
ones that are most likely to have shortest paths
traverse them, often by virtue of them being con-
nected to maximally separate parts of the network.
As such, they are classes that are disproportion-
ately likely to create pivots among classes that are
more distinct, relative to other nodes in the net-

0Shortest path length calculated over weighted edges
seeks to minimize edge weight, treating edge weight as dis-
tance or cost. In the Russian nominal network, however, edge
weight reflects similarity: more similar classes are connected
by heavier edges. This would, oddly, result in the algorithm
finding paths through maximally dissimilar classes. Edge
weights were thus reversed for calculations of path length.
Since Russian nouns have 12 cells, the maximum possible
edge weight is 11. An edge weight of 11 was transformed to
a value of 1, 10 was transformed to 2, etc.
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Figure 4: Correlation between node size and between-
ness centrality for Russian nouns

work, putting those classes’ exponents into poten-
tial analogical competition.

Betweenness centrality is calculated based on
the set of shortest paths between v; and v;, for all
possible values of 7 and j (where i # j). The be-
tweenness centrality of a node vy, is the number of
shortest paths in that set that include vy, where k
= 4,7. In Figure 2 nodes are colored according
to their betweenness centrality value, with darker
red indicating more centrality. Figure 4 shows the
betweenness centrality of classes as a function of
their log type frequency.

Notice that low type frequency noun classes in
Russian may be either high or low in centrality, but
high type frequency classes have only low central-
ity. The nodes with the highest betweenness cen-
trality turn out to be ones that are mostly regular
but have irregularities that cross-cut the conven-
tional classes in one or a few cells in the paradigm
(especially, stress shift, vowel-zero alternation,'!
or an irregular nominative plural). Classes with
the lowest betweenness centrality may also have
low type frequency and exhibit irregularity, but
in a different way: they are either uninflected or
have unique stem extensions that serve to differ-
entiate them from most other classes in most cells.
Betweenness centrality thus reveals two different
kinds of irregularity in Russian nouns, with differ-
ent connectivity profiles within the network.

The distribution in Figure 4 is consistent with
the observation by Sims and Parker (2016) that
low type frequency classes contribute dispropor-
tionately to the unpredictability (complexity) of

"E.g. NOM.SG otec ‘father’, GEN.SG ofc-a.
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Figure 6: Inflection class system of Nuer nouns

the Russian nominal system; Stump and Finkel
(2013) make a similar generalization based pri-
marily on Icelandic verbs. However, it is seems
likely that the true underlying issue has to do with
how classes are embedded in their network — the
effect is driven by classes with high betweenness
centrality, which are themselves likely to have low
type frequency.

6 Cross-linguistic comparison

I now turn to look at how these network mea-
sures might be used as a basis for typological
comparison. Table 2 gives summary information

Figure 7: Inflection class system of Palantla Chinantec
verbs



Language Family Cells Classes Lexemes Sources

Chinantec verbs  Oto-Manguean 24 101 838 (Merrifield and Anderson, 2007)

French verbs Indo-European 49 65 6,485 (Stump and Finkel, 2013)

Greek nouns Indo-European 6 48 25,370  (Sims, 2015; Idryma Manoli Tri-
antafyllidi, 1998)

Icelandic verbs  Indo-European 30 146 1,034 (Stump and Finkel, 2013; Jorg, 1989)

Kadiwéu verbs Mataco-Guaicura 5 57 364 (Baerman et al., 2015; Griffiths,
2002)

Nuer nouns Nilotic 6 25 252 (Baerman, 2012)

Russian nouns Indo-European 12 87 43,486 (Parker, 2016; Zaliznjak, 1977)

Seri verbs Isolate 4 254 952 (Baerman, 2016; Moser and Marlett,
2010)

Voro verbs Uralic 9 23 4,668 (Baerman, 2014; Iva, 2007)

Table 2: Summary properties of the languages under investigation. Where more than one data sources is listed, the

first is the direct source; the second is the original source

and sources for nine inflectional systems inves-
tigated here: Palantla Chinantec verbs, French
verbs, Greek nouns, Icelandic verbs, Kadiwéu
verbs, Nuer nouns, Russian nouns, Seri nouns, and
Voro verbs. See Sims and Parker (2016) for fur-
ther information about these data sets. This rep-
resents an opportunistic sample; it is not genet-
ically or geographically balanced. This section
focuses on comparing mean shortest path length
and global clustering coefficient across these lan-
guages. A comparison based on the other met-
rics is left to future work for reasons of space, but
the example is illustrative of how graph-theoretic
measures can lead to new generalizations about
the typological space of morphological systems.

Impressionistically, the diversity of the nine lan-
guages is striking. In addition to differing substan-
tially in how many paradigm cells and classes they
have, Figures 5 through 7 show the inflectional
networks for Greek, Nuer, and Palantla Chinan-
tec. The Greek nouns are connected by relatively
fewer and weaker edges whereas the Nuer nouns
are robustly connected. Additionally, nodes clus-
ters into distinct groups in Palantla Chinantec, like
in Russian.

Interestingly, however, when we turn to mea-
sures of shortest path length and clustering coeffi-
cient, an emergent pattern is evident. For shortest
path length and clustering coefficient, direct com-
parison across languages is not meaningful be-
cause the sizes of the inflectional systems (num-
ber of nodes and edges) differ. More meaningful
is a comparison between the inflectional systems
and randomized versions of those systems. Simu-
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Figure 8: Comparison of real and simulated (resam-
pled) inflection class systems according to mean short-
est path length and global clustering coefficient

lated languages were generated by randomly sam-
pling with replacement from the set of exponents
for each paradigm cell, assigning them to classes.
The exponents for each paradigm cell were sam-
pled separately. The resulting simulated systems
have the same number of allomorphs and classes
as the real systems, but the paradigmatic relations
that define the internal organization of the system
have been randomly shuffled.

The results are shown in Figure 8.'> (For the
simulated languages, mean values from 100 ran-

12A version based on weighted edges, in which the distri-
bution of weights from each real language was sampled with
replacement and assigned at random to edges, produced qual-
itatively similar results.



domizations are shown.) The real systems differ
from the simulated systems primarily in cluster-
ing, with the real languages exhibiting relatively
more clustering as path length increases. Notably,
for Nuer and Voro there is no meaningful differ-
ence between the real and simulated versions in
either clustering or path length. This is equivalent
to saying that Nuer and Voro lack (non-random)
inflection class structure.

The closer the mean shortest path length of a
network is to a value of 1, the closer that net-
work necessarily is to forming a single large clus-
ter, since every node is directly connected to every
other node. This is what we see in Nuer and Voro.
In contrast, networks with relatively long average
path length values are relatively sparsely popu-
lated with edges (compare Figure 5 to Figure 6).
In inflectional terms, this translates to classes that
are more distinct. This sparsity gives more oppor-
tunity for (non-random) clustering. At the same
time, it is not true that these networks must cluster
to a significant degree, as the divergence between
the real and the simulated languages shows.

The fact that in many languages, microclasses
can be grouped into successively larger macro-
classes is not a new observation (Brown and Hip-
pisley, 2012; Dressler et al., 2006), but the gener-
alization that some types of languages (i.e. ones
whose networks are relatively sparsely populated
with edges) are more likely to have this property
is a new typological observation. But why do lan-
guages with greater average path length also em-
ploy significant amounts of clustering? Here it is
not possible to do more than speculate in a broad
way, but one possibility is that inflection classes
that are more distinct are more likely to fracture
over time as a result of independent changes (e.g.
sound change), leaving groups of closely related
but not identical classes. When classes are more
distinct to begin with, such changes may be more
likely to result in clustering. Further work would
be needed to examine this possibility. But what-
ever the reason for the emergent pattern in Figure
8, it shows the ability of graph-theoretic measures,
when applied to inflectional typology, to unearth
new empirical generalizations about the internal
organization of inflectional systems.

7 Conclusions

While traditional approaches to inflectional typol-
ogy have focused on the size of inflectional sys-

tems, this does not capture their internal organi-
zation, particularly as related to the predictabil-
ity of inflected forms (also called the system’s I-
complexity). I have argued for thinking of in-
flectional systems as networks in which the nodes
are classes and the edges are exponents that two
classes have in common. This allows for tools
from graph theory to be applied to the task of de-
scribing the internal organization of inflectional
systems in their full richness.

The cross-linguistic comparison in section 6
highlighted the possibility of using graph-theoretic
measures to compare the network structure of in-
flection class systems. The measures employed
here offer a fundamentally different basis for ty-
pology than in traditional approaches and revealed
novel generalizations about the typological space
of morphological systems. In particular, clustering
emerged as a common property.

Future work should focus on identifying which
graph-theoretic measures are most useful for
cross-linguistic comparison of morphological sys-
tems. Additionally, as has already been demon-
strated in other domains (e.g. transportation net-
works), node connectivity profiles not only de-
fine classes of networks, but affect the dynamics
of a network differently (Guimera et al., 2007).
This hints at the possibility of better predicting in-
flectional change. Ultimately, graph theory offers
a promising basis for inflectional typology, and
more.
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Abstract

How does knowledge of one language’s mor-
phology influence learning of inflection rules
in a second one? In order to investigate this
question in artificial neural network models,
we perform experiments with a sequence-to-
sequence architecture, which we train on dif-
ferent combinations of eight source and three
target languages. A detailed analysis of the
model outputs suggests the following conclu-
sions: (i) if source and target language are
closely related, acquisition of the target lan-
guage’s inflectional morphology constitutes an
easier task for the model; (ii) knowledge of a
prefixing (resp. suffixing) language makes ac-
quisition of a suffixing (resp. prefixing) lan-
guage’s morphology more challenging; and
(iii) surprisingly, a source language which ex-
hibits an agglutinative morphology simplifies
learning of a second language’s inflectional
morphology, independent of their relatedness.

1 Introduction

A widely agreed-on fact in language acquisition
research is that learning of a second language (L.2)
is influenced by a learner’s native language (L1)
(Dulay and Burt, 1974; Kellerman, 1979). A lan-
guage’s morphosyntax seems to be no exception
to this rule (Bliss, 2006), but the exact nature of
this influence remains unknown. For instance, it
is unclear whether it is constraints imposed by the
phonological or by the morphosyntactic attributes
of the L1 that are more important during the pro-
cess of learning an L2’s morphosyntax.

Within the area of natural language processing
(NLP) research, experimenting on neural network
models just as if they were human subjects has
recently been gaining popularity (Ettinger et al.,
2016, 2017; Kim et al., 2019). Often, so-called
probing tasks are used, which require a specific
subset of linguistic knowledge and can, thus, be

walk eat
Inf dance eat
3rdSgPres dances eats
PresPart dancing  eating
Past danced ate
PastPart danced eaten

Table 1: Paradigms of the English lemmas dance and
eat. dance has 4 distinct inflected forms; eat has 5.

leveraged for qualitative evaluation. The goal is
to answer the question: What do neural networks
learn that helps them to succeed in a given task?

Neural network models, and specifically
sequence-to-sequence models, have pushed the
state of the art for morphological inflection —
the task of learning a mapping from lemmata to
their inflected forms — in the last years (Cotterell
et al., 2016). Thus, in this work, we experiment
on such models, asking not what they learn, but,
motivated by the respective research on human
subjects, the related question of how what they
learn depends on their prior knowledge. We
manually investigate the errors made by artificial
neural networks for morphological inflection in
a target language after pretraining on different
source languages. We aim at finding answers to
two main questions: (i) Do errors systematically
differ between source languages? (ii) Do these
differences seem explainable, given the properties
of the source and target languages? In other
words, we are interested in exploring if and
how L2 acquisition of morphological inflection
depends on the L1, i.e., the “native language”, in
neural network models.

To this goal, we select a diverse set of eight
source languages from different language fami-
lies — Basque, French, German, Hungarian, Ital-
ian, Navajo, Turkish, and Quechua — and three tar-



get languages — English, Spanish and Zulu. We
pretrain a neural sequence-to-sequence architec-
ture on each of the source languages and then fine-
tune the resulting models on small datasets in each
of the target languages. Analyzing the errors made
by the systems, we find that (i) source and tar-
get language being closely related simplifies the
successful learning of inflection in the target lan-
guage, (ii) the task is harder to learn in a prefix-
ing language if the source language is suffixing —
as well as the other way around, and (iii) a source
language which exhibits an agglutinative morphol-
ogy simplifies learning of a second language’s in-
flectional morphology.

2 Task

Many of the world’s languages exhibit rich inflec-
tional morphology: the surface form of an indi-
vidual lexical entry changes in order to express
properties such as person, grammatical gender, or
case. The citation form of a lexical entry is re-
ferred to as the lemma. The set of all possible
surface forms or inflections of a lemma is called
its paradigm. Each inflection within a paradigm
can be associated with a tag, i.e., 3rdSgPres is
the morphological tag associated with the inflec-
tion dances of the English lemma dance. We dis-
play the paradigms of dance and eat in Table 1.
The presence of rich inflectional morphology is
problematic for NLP systems as it increases word
form sparsity. For instance, while English verbs
can have up to 5 inflected forms, Archi verbs have
thousands (Kibrik, 1998), even by a conservative
count. Thus, an important task in the area of mor-
phology is morphological inflection (Durrett and
DeNero, 2013; Cotterell et al., 2018), which con-
sists of mapping a lemma to an indicated inflected
form. An (irregular) English example would be

(eat, PAST) — ate

with PAST being the target tag, denoting the past
tense form. Additionally, a rich inflectional mor-
phology is also challenging for L2 language learn-
ers, since both rules and their exceptions need to
be memorized.

In NLP, morphological inflection has recently
frequently been cast as a sequence-to-sequence
problem, where the sequence of target (sub-)tags
together with the sequence of input characters con-
stitute the input sequence, and the characters of
the inflected word form the output. Neural models

define the state of the art for the task and obtain
high accuracy if an abundance of training data is
available. Here, we focus on learning of inflection
from limited data if information about another lan-
guage’s morphology is already known. We, thus,
loosely simulate an L2 learning setting.

Formal definition. Let M be the paradigm slots
which are being expressed in a language, and w
a lemma in that language. We then define the
paradigm 7 of w as:

m(w) = { (filuw], te) } (M

ke M(w)

fr|w] denotes an inflected form corresponding to
tag ¢, and w and fi[w] are strings consisting of
letters from an alphabet 3.

The task of morphological inflection consists of
predicting a missing form f;[w] from a paradigm,
given the lemma w together with the tag ¢;.

3 Model

3.1 Pointer—Generator Network

The models we experiment with are based on a
pointer—generator network architecture (Gu et al.,
2016; See et al., 2017), i.e., a recurrent neural
network (RNN)-based sequence-to-sequence net-
work with attention and a copy mechanism. A
standard sequence-to-sequence model (Bahdanau
et al., 2015) has been shown to perform well
for morphological inflection (Kann and Schiitze,
2016) and has, thus, been subject to cognitively
motivated experiments (Kirov and Cotterell, 2018)
before. Here, however, we choose the pointer—
generator variant of Sharma et al. (2018), since it
performs better in low-resource settings, which we
will assume for our target languages. We will ex-
plain the model shortly in the following and refer
the reader to the original paper for more details.

Encoders. Our architecture employs two sepa-
rate encoders, which are both bi-directional long
short-term memory (LSTM) networks (Hochreiter
and Schmidhuber, 1997): The first processes the
morphological tags which describe the desired tar-
get form one by one.! The second encodes the se-
quence of characters of the input word.

'In contrast to other work on cross-lingual transfer in deep
learning models we do not employ language embeddings.



Attention. Two separate attention mechanisms
are used: one per encoder LSTM. Taking all re-
spective encoder hidden states as well as the cur-
rent decoder hidden state as input, each of them
outputs a so-called context vector, which is a
weighted sum of all encoder hidden states. The
concatenation of the two individual context vec-
tors results in the final context vector ¢;, which is
the input to the decoder at time step ¢.

Decoder. Our decoder consists of a uni-
directional LSTM. Unlike a standard sequence-
to-sequence model, a pointer—generator network
is not limited to generating characters from
the vocabulary to produce the output. Instead,
the model gives certain probability to copying
elements from the input over to the output. The
probability of a character y; at time step t is
computed as a sum of the probability of y; given
by the decoder and the probability of copying v,
weighted by the probabilities of generating and

copying:
p(yt) = apaec(ye) + (1 — a)peopy (y¢)  (2)

Pdec(yt) is calculated as an LSTM update and a
projection of the decoder state to the vocabulary,
followed by a softmax function. peopy(y:) corre-
sponds to the attention weights for each input char-
acter. The model computes the probability a with
which it generates a new output character as

a = o(weer + wss + wyY—1 + b) 3)

for context vector c¢;, decoder state s;, embed-
ding of the last output y;_1, weights w., ws, wy,
and bias vector b. It has been shown empirically
that the copy mechanism of the pointer—generator
network architecture is beneficial for morphologi-
cal generation in the low-resource setting (Sharma
et al., 2018).

3.2 Pretraining and Finetuning

Pretraining and successive fine-tuning of neural
network models is a common approach for han-
dling of low-resource settings in NLP. The idea is
that certain properties of language can be learned
either from raw text, related tasks, or related lan-
guages. Technically, pretraining consists of esti-
mating some or all model parameters on examples
which do not necessarily belong to the final target
task. Fine-tuning refers to continuing training of
such a model on a target task, whose data is often

limited. While the sizes of the pretrained model
parameters usually remain the same between the
two phases, the learning rate or other details of the
training regime, e.g., dropout, might differ. Pre-
training can be seen as finding a suitable initializa-
tion of model parameters, before training on lim-
ited amounts of task- or language-specific exam-
ples.

In the context of morphological generation, pre-
training in combination with fine-tuning has been
used by Kann and Schiitze (2018), which proposes
to pretrain a model on general inflection data and
fine-tune on examples from a specific paradigm
whose remaining forms should be automatically
generated. Famous examples for pretraining in the
wider area of NLP include BERT (Devlin et al.,
2019) or GPT-2 (Radford et al., 2019): there, gen-
eral properties of language are learned using large
unlabeled corpora.

Here, we are interested in pretraining as a sim-
ulation of familiarity with a native language. By
investigating a fine-tuned model we ask the ques-
tion: How does extensive knowledge of one lan-
guage influence the acquisition of another?

4 Experimental Design

4.1 Target Languages

We choose three target languages.

English (ENG) is a morphologically impover-
ished language, as far as inflectional morphology
is concerned. Its verbal paradigm only consists of
up to 5 different forms and its nominal paradigm
of only up to 2. However, it is one of the most fre-
quently spoken and taught languages in the world,
making its acquisition a crucial research topic.

Spanish (SPA), in contrast, is morphologically
rich, and disposes of much larger verbal paradigms
than English. Like English, it is a suffixing lan-
guage, and it additionally makes use of internal
stem changes (e.g., 0 — ue).

Since English and Spanish are both Indo-
European languages, and, thus, relatively similar,
we further add a third, unrelated target language.
We choose Zulu (ZUL), a Bantoid language. In
contrast to the first two, it is strongly prefixing.

4.2 Source Languages

For pretraining, we choose languages with differ-
ent degrees of relatedness and varying morpholog-
ical similarity to English, Spanish, and Zulu. We



|ENG SPA ZUL|EUS FRA DEU HUN ITA NAV TUR QVH

20A Fusion of Selected Inflectional Formatives 0
21A Exponence of Selected Inflectional Formatives
21B Exponence of Tense-Aspect-Mood Inflection

22A Inflectional Synthesis of the Verb

23A Locus of Marking in the Clause

24A Locus of Marking in Possessive Noun Phrases
25A Locus of Marking: Whole-language Typology
25B Zero Marking of A and P Arguments

26A Prefixing vs. Suffixing in Inflectional Morphology
27A Reduplication

28A Case Syncretism

29A Syncretism in Verbal Person/Number Marking

[eNelolooloBolololoRe)

0o o0 0 0 0 0 1 0 0 0
1 0 1 0 2 1 3 3 1 1
1 0 0 1 0 0 2 2 0 0
1 1 1 1 0 1 2 2 3 4
1 2 1 3 0 0 4 4 0 0
0o 0 0 0 0 0 1 1 2 0
1 1 1 1 0 1 2 2 1 0
0o 0 0 0 0 0 1 1 0 0
0 1 2 0 0 0 0 1 0 0
0 1 2 0 0 2 0 0 2 1
1 2 0 1 1 3 4 2 3 3
0o 0 1 0 0 1 2 1 1 1

Table 2: WALS features from the Morphology category. 20A: O=Exclusively concatenative, 1=N/A. 21A: 0=No
case, 1=Monoexponential case, 2=Case+number, 3=N/A. 21B: O=monoexponential TAM, 1=TAM+agreement,
2=N/A. 22A: 0=2-3 categories per word, 1=4-5 categories per word, 2=N/A, 3=6-7 categories per word, 4=8-9
categories per word. 23A: O=Dependent marking, 1=Double marking, 2=Head marking, 3=No marking, 4=N/A.
24A: 0=Dependent marking, 1=N/A, 2=Double marking. 25A: 0=Dependent-marking, 1=Inconsistent or other,
2=N/A. 25B: 0=Non-zero marking, 1=N/A. 26A: 0=Strongly suffixing, 1=Strong prefixing, 2=Equal prefixing
and suffixing. 27A: 0=No productive reduplication, 1=Full reduplication only, 2=Productive full and partial redu-
plication. 28A: 0=Core cases only, 1=Core and non-core, 2=No case marking, 3=No syncretism, 4=N/A. 29A:

0=Syncretic, 1=Not syncretic, 2=N/A.

limit our experiments to languages which are writ-
ten in Latin script.

As an estimate for morphological similarity we
look at the features from the Morphology category
mentioned in The World Atlas of Language Struc-
tures (WALS).Z An overview of the available fea-
tures as well as the respective values for our set of
languages is shown in Table 2.

We decide on Basque (EUS), French (FRA),
German (DEU), Hungarian (HUN), Italian (ITA),
Navajo (NAV), Turkish (TUR), and Quechua
(QVH) as source languages.

Basque is a language isolate. Its inflectional
morphology makes similarly frequent use of pre-
fixes and suffixes, with suffixes mostly being at-
tached to nouns, while prefixes and suffixes can
both be employed for verbal inflection.

French and Italian are Romance languages, and
thus belong to the same family as the target lan-
guage Spanish. Both are suffixing and fusional
languages.

German, like English, belongs to the Ger-
manic language family. It is a fusional, predom-
inantly suffixing language and, similarly to Span-
ish, makes use of stem changes.

Hungarian, a Finno-Ugric language, and Turk-
ish, a Turkic language, both exhibit an agglutina-
tive morphology, and are predominantly suffixing.
They further have vowel harmony systems.

https://wals.info

Navajo is an Athabaskan language and the only
source language which is strongly prefixing. It fur-
ther exhibits consonant harmony among its sibi-
lants (Rice, 2000; Hansson, 2010).

Finally, Quechua, a Quechuan language spoken
in South America, is again predominantly suffix-
ing and unrelated to all of our target languages.

4.3 Hyperparameters and Data

We mostly use the default hyperparameters by
Sharma et al. (2018).> In particular, all RNNs have
one hidden layer of size 100, and all input and out-
put embeddings are 300-dimensional.

For optimization, we use ADAM (Kingma and
Ba, 2014). Pretraining on the source language
is done for exactly 50 epochs. To obtain our fi-
nal models, we then fine-tune different copies of
each pretrained model for 300 additional epochs
for each target language. We employ dropout (Sri-
vastava et al., 2014) with a coefficient of 0.3 for
pretraining and, since that dataset is smaller, with
a coefficient of 0.5 for fine-tuning.

We make use of the datasets from the CoNLL—
SIGMORPHON 2018 shared task (Cotterell et al.,
2018). The organizers provided a low, medium,
and high setting for each language, with 100,
1000, and 10000 examples, respectively. For all
L1 languages, we train our models on the high-
resource datasets with 10000 examples. For fine-

3github.com/abhishek0318/
conll-sigmorphon—-2018
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|EUS FRA DEU HUN ITA NAV TUR QVH

45.8 76.1 82.0 85.6 84.7 53.2 81.7 68.3
239 533 53.8 582 56.9 33.1 52.0 49.0
10.8 17.1 23.0 23.0 219 13.6 249 10.7

ENG
SPA
ZUL

Table 3: Test accuracy.

‘EUS FRA DEU HUN ITA NAV TUR QVH

442 758 81.4 845 843 50.8 81.6 67.3
245 55.1 548 61.0 583 33.6 519 51.8
12.4 21.8 245 257 222 13.8 287 122

ENG
SPA
ZUL

Table 4: Validation accuracy.

tuning, we use the low-resource datasets.

5 Quantitative Results

In Table 3, we show the final test accuracy for all
models and languages. Pretraining on EUS and
NAV results in the weakest target language inflec-
tion models for ENG, which might be explained
by those two languages being unrelated to ENG
and making at least partial use of prefixing, while
ENG is a suffixing language (cf. Table 2). In con-
trast, HUN and ITA yield the best final models
for ENG. This is surprising, since DEU is the lan-
guage in our experiments which is closest related
to ENG.

For SPA, again HUN performs best, followed
closely by ITA. While the good performance of
HUN as a source language is still unexpected, ITA
is closely related to SPA, which could explain the
high accuracy of the final model. As for ENG,
pretraining on EUS and NAYV yields the worst fi-
nal models — importantly, accuracy is over 15%
lower than for QVH, which is also an unrelated
language. This again suggests that the prefixing
morphology of EUS and NAV might play a role.

Lastly, for ZUL, all models perform rather
poorly, with a minimum accuracy of 10.7 and
10.8 for the source languages QVH and EUS, re-
spectively, and a maximum accuracy of 24.9 for
a model pretrained on Turkish. The latter result
hints at the fact that a regular and agglutinative
morphology might be beneficial in a source lan-
guage — something which could also account for
the performance of models pretrained on HUN.

6 Qualitative Results

For our qualitative analysis, we make use of the
validation set. Therefore, we show validation set
accuracies in Table 4 for comparison. As we can

see, the results are similar to the test set results for
all language combinations. We manually annotate
the outputs for the first 75 development examples
for each source—target language combination. All
found errors are categorized as belonging to one
of the following categories.

Stem Errors

e SUB(X): This error consists of a wrong
substitution of one character with another.
SUB(V) and SUB(C) denote this happening
with a vowel or a consonant, respectively.
Letters that differ from each other by an ac-
cent count as different vowels.

Example: decultared instead of decultured

e DEL(X): This happens when the system om-
mits a letter from the output. DEL(V) and
DEL/(C) refer to a missing vowel or conso-
nant, respectively.

Example: firte instead of firtle

e NO_CHG(X): This error occurs when in-
flecting the lemma to the gold form requires a
change of either a vowel (NO_CHG(V)) or a
consonant (NO_CHG(C)), but this is missing
in the predicted form.

Example: verto instead of vierto

e MULT: This describes cases where two or
more errors occur in the stem. Errors con-
cerning the affix are counted for separately.
Example: aconcoonaste instead of acondi-
cionaste

e ADD(X): This error occurs when a letter
is mistakenly added to the inflected form.
ADD(V) refers to an unnecessary vowel,
ADD(C) refers to an unnecessary consonant.
Example: compillan instead of compilan

e CHG2E(X): This error occurs when inflect-
ing the lemma to the gold form requires a
change of either a vowel (CHG2E(V)) or a
consonant (CHG2E(C)), and this is done, but
the resulting vowel or consonant is incorrect.
Example: propace instead of propague

Affix Errors

o AFF: This error refers to a wrong affix. This
can be either a prefix or a suffix, depending
on the correct target form.

Example: ezoJulayi instead of esikaJulayi
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SUB(V) 2
DEL(C) 5
DEL(V)
NO_CHG(V)
MULT
ADD(V)
CHG2E(V)
ADD(C)
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CUT
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REFL_LOC
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Table 5: Error analysis for ENG as the model’s L2.

e CUT: This consists of cutting too much of
the lemma’s prefix or suffix before attaching
the inflected form’s prefix or suffix, respec-
tively.

Example: irradiseis instead of irradiaseis

Miscellaneous Errors

e REFL: This happens when a reflective
pronoun is missing in the generated form.
Example:  doliéramos instead of nos
doliéramos

e REFL_LOC: This error occurs if the reflec-
tive pronouns appears at an unexpected posi-
tion within the generated form.

Example: raparsebais instead of os tapabais

¢ OVERREG: Overregularization errors occur
when the model predicts a form which would
be correct if the lemma’s inflections were reg-
ular but they are not.
Example: underteach instead of undertaught

6.1 Error Analysis: English

Table 5 displays the errors found in the 75 first
ENG development examples, for each source lan-
guage. From Table 4, we know that HUN > ITA
> TUR > DEU > FRA > QVH > NAV > EUS,
and we get a similar picture when analyzing the
first examples. Thus, especially keeping HUN and
TUR in mind, we cautiously propose a first con-
clusion: familiarity with languages which exhibit

an agglutinative morphology simplifies learning of
a new language’s morphology.

Looking at the types of errors, we find that EUS
and NAV make the most stem errors. For QVH
we find less, but still over 10 more than for the re-
maining languages. This makes it seem that mod-
els pretrained on prefixing or partly prefixing lan-
guages indeed have a harder time to learn ENG in-
flectional morphology, and, in particular, to copy
the stem correctly. Thus, our second hypotheses
is that familiarity with a prefixing language might
lead to suspicion of needed changes to the part of
the stem which should remain unaltered in a suf-
fixing language. DEL(X) and ADD(X) errors are
particularly frequent for EUS and NAV, which fur-
ther suggests this conclusion.

Next, the relatively large amount of stem errors
for QVH leads to our second hypothesis: language
relatedness does play a role when trying to pro-
duce a correct stem of an inflected form. This is
also implied by the number of MULT errors for
EUS, NAV and QVH, as compared to the other
languages.

Considering errors related to the affixes which
have to be generated, we find that DEU, HUN and
ITA make the fewest. This further suggests the
conclusion that, especially since DEU is the lan-
guage which is closest related to ENG, language
relatedness plays a role for producing suffixes of
inflected forms as well.

Our last observation is that many errors are not
found at all in our data sample, e.g., CHG2E(X)
or NO_CHG(C). This can be explained by ENG
having a relatively poor inflectional morphology,
which does not leave much room for mistakes.

6.2 Error Analysis: Spanish

The errors committed for SPA are shown in Table
6, again listed by source language. Together with
Table 4 it gets clear that SPA inflectional morphol-
ogy is more complex than that of ENG: systems
for all source languages perform worse.

Similarly to ENG, however, we find that most
stem errors happen for the source languages EUS
and NAYV, which is further evidence for our previ-
ous hypothesis that familiarity with prefixing lan-
guages impedes acquisition of a suffixing one. Es-
pecially MULT errors are much more frequent
for EUS and NAV than for all other languages.
ADD(X) happens a lot for EUS, while ADD(C) is
also frequent for NAV. Models pretrained on either
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SUB(V) 7 1 4 4 3 4 3 4 SUB(V) 32 1 3 0 6 7 1
DEL(C) 4 0 0 0 0 1 1 0 DEL(C) 4 6 1 4 6 3 2 2
DEL(V) 4 0 1 0 0 2 0 0 DEL(V) 1 7 0 2 2 0 3 1
NOCHG(V) 6 7 6 5 5 3 5 6 NOCHGV) 2 0 0 0 0 1 1 0
MULT 8 2 0 0 0 9 0 2 MULT 30 8 13 10 11 21 31 9
ADD(V) 4 2 0 0 0 0 1 0 ADD(V) o 1 1 3 1 2 0 2
CHG2E(V) 1 0 0 1 0 1 1 o0 CHG2E(V) 0 0 0 0 0 0 0 O
ADD(C) 31 1 0 0 3 0 1 ADD(C) 1 3 1 6 4 2 1 1
CHG2E(C) 0 0 1 0 0 I 0 0 CHG2E(C) 0 0 0 0 0 0 0 O
NOCHGCO] 0 0 O o0 I 0 1 0 NOCHGC)| 0 2 1 1 1 0 0 1
AFF 35 29 27 23 26 35 31 30 AFF 59 52 52 53 53 55 57 52
CUT 9 1 2 1 1 8 3 1 CUT 1 3 2 5 3 2 3 4
REFL 2 0 2 0 1 2 1 1 REFL 00 0 0 0 0 0 O
REFLILOC| 0 2 ©0 2 1 0 1 1 REFLLOC| 0 0 O O 0 0 0 O
OVERREG| 0 0 O 0 0 0 O 0 OVERREG| 0 0 0O 0 0 0 0 0
Stem 37 13 13 10 9 24 12 13 Stem 41 29 18 29 25 35 45 17
Affix 44 30 29 24 27 43 34 31 Affix 60 55 54 58 56 57 60 56
Misc 2 2 2 2 2 2 2 2 Misc 0 0 0 0 0 0 0 O

Table 6: Error analysis for SPA as the model’s L2.

language have difficulties with vowel changes,
which reflects in NO_CHG(V). Thus, we conclude
that this phenomenon is generally hard to learn.

Analyzing next the errors concerning affixes,
we find that models pretrained on HUN, ITA,
DEU, and FRA (in that order) commit the fewest
errors. This supports two of our previous hy-
potheses: First, given that ITA and FRA are both
from the same language family as SPA, related-
ness seems to be benficial for learning of the sec-
ond language. Second, the system pretrained on
HUN performing well suggests again that a source
language with an agglutinative, as opposed to a
fusional, morphology seems to be beneficial as
well.

6.3 Error Analysis: Zulu

In Table 7, the errors for Zulu are shown, and Ta-
ble 4 reveals the relative performance for differ-
ent source languages: TUR > HUN > DEU >
ITA > FRA > NAV > EUS > QVH. Again, TUR
and HUN obtain high accuracy, which is an ad-
ditional indicator for our hypothesis that a source
language with an agglutinative morphology facil-
itates learning of inflection in another language.
Besides that, results differ from those for ENG
and SPA. First of all, more mistakes are made
for all source languages. However, there are also
several finer differences. For ZUL, the model
pretrained on QVH makes the most stem errors,
in particular 4 more than the EUS model, which
comes second. Given that ZUL is a prefixing lan-

Table 7: Error analysis for ZUL as the model’s L2.

guage and QVH is suffixing, this relative order
seems important. QVH also committs the highest
number of MULT errors.

The next big difference between the results for
ZUL and those for ENG and SPA is that DEL(X)
and ADD(X) errors, which previously have mostly
been found for the prefixing or partially prefixing
languages EUS and NAYV, are now most present
in the outputs of suffixing languages. Namely,
DEL(C) occurs most for FRA and ITA, DEL(V)
for FRA and QVH, and ADD(C) and ADD(V) for
HUN. While some deletion and insertion errors
are subsumed in MULT, this does not fully explain
this difference. For instance, QVH has both the
second most DEL(V) and the most MULT errors.

The overall number of errors related to the affix
seems comparable between models with different
source languages. This weakly supports the hy-
pothesis that relatedness reduces affix-related er-
rors, since none of the pretraining languages in our
experiments is particularly close to ZUL. How-
ever, we do find more CUT errors for HUN and
TUR: again, these are suffixing, while CUT for
the target language SPA mostly happened for the
prefixing languages EUS and NAV.

6.4 Limitations

A limitation of our work is that we only include
languages that are written in Latin script. An inter-
esting question for future work might, thus, regard
the effect of disjoint L1 and L2 alphabets.
Furthermore, none of the languages included in



our study exhibits a templatic morphology. We
make this choice because data for templatic lan-
guages is currently mostly available in non-Latin
alphabets. Future work could investigate lan-
guages with templatic morphology as source or
target languages, if needed by mapping the lan-
guage’s alphabet to Latin characters.

Finally, while we intend to choose a diverse set
of languages for this study, our overall number of
languages is still rather small. This affects the gen-
eralizability of the results, and future work might
want to look at larger samples of languages.

7 Related Work

Neural network models for inflection. Most
research on inflectional morphology in NLP
within the last years has been related to the SIG-
MORPHON and CoNLL-SIGMORPHON shared
tasks on morphological inflection, which have
been organized yearly since 2016 (Cotterell et al.,
2016). Traditionally being focused on individ-
ual languages, the 2019 edition (McCarthy et al.,
2019) contained a task which asked for transfer
learning from a high-resource to a low-resource
language. However, source—target pairs were pre-
defined, and the question of how the source lan-
guage influences learning besides the final accu-
racy score was not considered. Similarly to us,
Gorman et al. (2019) performed a manual error
analysis of morphological inflection systems for
multiple languages. However, they did not investi-
gate transfer learning, but focused on monolingual
models.

Outside the scope of the shared tasks, Kann
et al. (2017) investigated cross-lingual transfer
for morphological inflection, but was limited to a
quantitative analysis. Furthermore, that work ex-
perimented with a standard sequence-to-sequence
model (Bahdanau et al., 2015) in a multi-task
training fashion (Caruana, 1997), while we pre-
train and fine-tune pointer—generator networks.
Jin and Kann (2017) also investigated cross-
lingual transfer in neural sequence-to-sequence
models for morphological inflection. However,
their experimental setup mimicked Kann et al.
(2017), and the main research questions were
different: While Jin and Kann (2017) asked
how cross-lingual knowledge transfer works dur-
ing multi-task training of neural sequence-to-
sequence models on two languages, we investigate
if neural inflection models demonstrate interesting

differences in production errors depending on the
pretraining language. Besides that, we differ in the
artificial neural network architecture and language
pairs we investigate.

Cross-lingual transfer in NLP. Cross-lingual
transfer learning has been used for a large vari-
ety NLP of tasks, e.g., automatic speech recog-
nition (Huang et al., 2013), entity recognition
(Wang and Manning, 2014), language modeling
(Tsvetkov et al., 2016), or parsing (Cohen et al.,
2011; Sggaard, 2011; Ammar et al., 2016). Ma-
chine translation has been no exception (Zoph and
Knight, 2016; Ha et al., 2016; Johnson et al.,
2017). Recent research asked how to automati-
cally select a suitable source language for a given
target language (Lin et al., 2019). This is similar
to our work in that our findings could potentially
be leveraged to find good source languages.

Acquisition of morphological inflection. Fi-
nally, a lot of research has focused on human
L1 and L2 acquisition of inflectional morphology
(Salaberry, 2000; Herschensohn, 2001; Housen,
2002; Ionin and Wexler, 2002; Weerman et al.,
2006; Zhang and Widyastuti, 2010).

To name some specific examples, Marqués-
Pascual (2011) investigated the effect of a stay
abroad on Spanish L2 acquisition, including learn-
ing of its verbal morphology in English speak-
ers. Jia (2003) studied how Mandarin Chinese-
speaking children learned the English plural mor-
pheme. Nicoladis et al. (2012) studied the English
past tense acquisition in Chinese-English and
French—-English bilingual children. They found
that, while both groups showed similar produc-
tion accuracy, they differed slightly in the type of
errors they made. Also considering the effect of
the native language explicitly, Yang and Huang
(2004) investigated the acquisition of the tense-
aspect system 