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This volume contains research presented at the third annual meeting of the Society for 
Computation in Linguistics (SCiL), held in New Orleans, January 2-5, 2020, in 
conjunction with the annual meeting of the Linguistic Society of America.  
 
Research was submitted to be reviewed either in the form of a paper, or as an abstract. 
The oral presentations, or talks, at the conference included both papers and abstracts. The 
papers presented as talks are the first 17 papers listed in the proceedings, and the 
remaining 23 papers were presented as posters. Authors of accepted abstracts were given 
the option of publishing an extended version; these follow the papers, and are themselves 
followed in this volume by abstracts that are published in their original two-page length.  
 
In total, we received 82 submissions to the conference, 30 abstracts and 52 papers. 21 
submissions were selected for oral presentation (26%) and 35 for poster presentation 
(43%). We asked authors to provide gender information on a voluntary basis at 
submission time. Of the submissions for which we received gender information (72), 39 
(54%) included a female author. 27 (48%) of the accepted submissions included a female 
author, and 10 (56%) of the submissions accepted as talks included a female author.  
 
We thank our reviewers for their indispensable help in selecting the research for 
presentation at the conference: 
 

Adam Albright, Eric Bakovic, Timothy Baldwin, Michael Becker, Emily M. 
Bender, Leon Bergen, Oliver Bonami, Sam Bowman, Jonathan Brennan, Lucas 
Champollion, Jane Chandlee, Rui Chaves, Alexander Clark, Jennifer Culbertson, 
Robert Daland, Philippe de Groote, Brian Dillon, Ewan Dunbar, Daniel Edmiston, 
Micha Elsner, Robert Frank, Richard Futrell, Matt Goldrick, Kyle Gorman, 
Thomas Graf, John Hale, Yiding Hao, Bruce Hayes, Jeff Heinz, Nick Huang, Tim 
Hunter, William Idsardi, Adam Jardine, Roni Katzir, Racy King, Christo Kirov, 
Andras Kornai, Sandra Kuebler, Andrew Lamont, Tal Linzen, Giorgio Magri, 
Fred Mailhot, Rob Malouf, Andrea E. Martin, Kevin Mcmullin, Emily Morgan, 
Aleksei Nazarov, Max Nelson, Tim O'Donnell, Alexis Palmer, Martha Palmer, 
Ellie Pavlick, Lisa Pearl, Laurel Perkins, Christopher Potts, Omer Preminger, 
Brandon Prickett, Ezer Rasin, Siva Reddy, James Rogers, Asad Sayeed, Thomas 
Schatz, Nathan Schneider, Andrea Sims, Caitlin Smith, Edward Stabler, Mark 
Steedman, Tom Wasow, Bonnie Webber, Aaron Steven White, Adina Williams, 
Colin Wilson 

 
Thanks also to Tom Maxfield and Joe Pater for logistical help. 
 
SCiL 2020 also included a plenary session on “Computation and Meaning” with invited 
talks by Ellie Pavlick (Brown University) and Christopher Potts (Stanford University). As 



part of SCiL 2020 there was also an NSF-funded workshop on “Formal Language Theory 
in Linguistics”, which included several special sessions: a keynote address by Jeffrey 
Heinz (Stony Brook University), a special abstract-reviewed ‘works in progress’ session 
of talks, tutorials by Alëna Aksënova (Stony Brook University) and Kyle Gorman 
(CUNY), and mentoring events aimed at young researchers in computational linguistics. 
Further information can be found at our website: https://blogs.umass.edu/scil/scil-2020/.  
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JO QIPOPMPHZ JT UIF BCTFODF PG EFUBJMFE DSPTT�
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HVBHFT XJUIPVU HSBNNBUJDBM GJOBM EFWPJDJOH
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5IFSF BSF TFWFSBM DIBMMFOHFT JO VTJOH XPSE
MJTUT GPS SFTFBSDI JO QIPOPMPHZ� 'JSTU BOE NPTU
PCWJPVTMZ
 TPNF QSPDFEVSF OFFET UP CF BQQMJFE
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*"31" #BCFM DPSQPSB
 XF BTTFTTFE XIFUIFS JU
XPVME CF QPTTJCMF UP USBOTMBUF UIFN UP QIPOF�
NJD SFQSFTFOUBUJPOT� *U JT EJGGJDVMU UP SFDPOTUSVDU
TUSFTT SFMJBCMZ
 TP XF EJE OPU USZ UP DBQUVSF UIJT
JOGPSNBUJPO� 8F TVDDFTTGVMMZ DSFBUFE SVMFT UIBU
XPVME USBOTMBUF UIF GPMMPXJOH MBOHVBHFT 	DPSQVT
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5IF USBOTMBUJPO QSPDFEVSF JOWPMWFE DSFBUJOH
SFHVMBS FYQSFTTJPOT UIBU XPVME NBUDI MFUUFST UP
UIFJS DPSSFTQPOEJOH TFHNFOUT
 DPOEJUJPOFE CZ
UIF DPOUFYU JO XIJDI UIFZ XFSF VTFE
 XJUI UIF
NPTU TQFDJGJD DPOUFYU UBLJOH QSFDFEFODF PWFS
MFTT TQFDJGJD DPOUFYUT� 'JOBMMZ
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FEJUJOH PQFSBUJPOT XFSF VTFE F�H� UP USFBU HFN�
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 SBUIFS UIBO UIF TBNF TFHNFOU SFQFBU�
JOH UXJDF 	F�H� /t,t/
� 5IF USBOTMBUJPO QSPDF�
EVSFT XFSF WFSJGJFE BHBJOTU SFGFSFODF USBOTMBUJPO
XPSET GPS UIPTF MBOHVBHFT� 5IF GVMM USBOTMBUJPO
QSPDFEVSF
 UIF USBOTMBUJPO DPEF
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VTFE UP USBOTMBUF FBDI MBOHVBHF BSF BMM BWBJMBCMF
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� 1FSJQIFSBM TFHNFOUT BSF MJLFMZ UP
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 BT UIFZ BQQFBS JO WFSZ GFX
XPSE UZQFT� 5IFSFGPSF
 XF SFNPWFE BMM TFH�
NFOUT UIBU PDDVSSFE NPSF UIBO �� UJNFT MFTT
GSFRVFOUMZ UIBO UIF NPTU GSFRVFOU TFHNFOU 	CZ
UPLFO
� 5IJT TUFQ JT DSVDJBM CFDBVTF NBOZ BM�
QIBCFUT 	F�H� 5BNJM
 QSPWJEF NFBOT UP SFQSFTFOU
TPVOET UIBU BSF OPU QBSU PG UIF CBTJD QIPOFNJD
JOWFOUPSZ PG UIF MBOHVBHF� 5IF EPXO TJEF JT UIBU

TPNF OPO�QFSJQIFSBM QIPOFNFT DPVME BMTP CF FY�
DMVEFE CZ UIJT QSPDFEVSF� )BE XF QSPDFTTFE
"NFSJDBO &OHMJTI 	GPS XIJDI PVS USBOTMBUJPO QSP�
DFEVSF DPVME OPU CF VTFE
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5IFTF QSPQFSUJFT BSF NPSF TQBSTF
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BSF FYQFDUFE UP TIPX NPSF CJBT BDSPTT DPSQPSB
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TBNF QSPQFSUJFT JO UIF PUIFS DPSQVT� 8F DIPTF
1FBSTPO DPSSFMBUJPOT CFDBVTF UIF WBMVFT PG UIF
EJGGFSFOU QSPQFSUJFT BSF FYQFDUFE UP CF DPOTJT�
UFOU BDSPTT DPSQPSB
 SBUIFS UIBO IBWJOH UIF TBNF
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XFSF IJHIFS UIBO UPLFO GSFRVFODZ DPSSFMBUJPOT

XIJDI NFBOT UIBU BOTXFSJOH RVFTUJPOT TVDI BT
iIPX NBOZ XPSET IBWF UIBU TFHNFOUw XPVME
CF MFTT DPSQVT�EFQFOEFOU UIBO BTLJOH iIPX GSF�
RVFOU UIBU TFHNFOU JT�w 'JHVSF � JMMVTUSBUFT UIF SF�
MBUJPOTIJQ CFUXFFO TFHNFOU GSFRVFODJFT BDSPTT
UIF 0QFO 4VCUJUMFT BOE $SāCBEÙO
 BOE 'JHVSF
� JMMVTUSBUFT UIF SFMBUJPOTIJQ CFUXFFO TFHNFOU
GSFRVFODJFT BDSPTT *"31" #BCFM BOE $SāCBEÙO�
'JHVSFT � BOE � JMMVTUSBUF UIF SFMBUJPOTIJQ PG
TFHNFOU JOGPSNBUJWJUZ CFUXFFO 0QFO 4VCUJUMFT
BOE $SāCBEÙO
 BOE CFUXFFO *"31" #BCFM BOE
$SāCBEÙO
 SFTQFDUJWFMZ� "MM GPVS GJHVSFT TIPX
UIBU MPX DPSSFMBUJPO JT VTVBMMZ DFOUFSFE BSPVOE
TQFDJGJD TFHNFOUT SBUIFS UIBO BMM TFHNFOUT� 'PS
JOTUBODF
 5BNJM /iː/ JT B MPU NPSF GSFRVFOU JO 0QFO
4VCUJUMFT UIBO JO $SāCBEÙO� 5IJT JT MJLFMZ EVF UP
UIF VOEFS�SFQSFTFOUBUJPO PG UIF XPSET நீங்கள்
BOE நீ 
 /niːnkaɭ/ BOE /niː/ SFTQFDUJWFMZ
 CPUI PG
XIJDI BSF TFDPOE QFSTPO QSPOPVOT
 CFDBVTF UIFZ
BSF MFTT GSFRVFOU JO XSJUUFO DPSQPSB UIBO JO TQP�
LFO DPSQPSB 	SBOL �� BOE ��
 WT� � BOE ��
 SFTQFD�
UJWFMZ
� 4VDI EJTDSFQBODJFT XFSF NPSF MJLFMZ
UP BGGFDU TFHNFOUT XIPTF UZQF GSFRVFODJFT XFSF
MPX UIBO TFHNFOUT XIPTF UZQF GSFRVFODJFT XFSF
IJHI
 BT WFSJGJFE JO B QPTU�IPD DPSSFMBUJPO UFTU CF�
UXFFO UIF BCTPMVUF EJGGFSFODF CFUXFFO UIF FTUJ�
NBUFT BOE UIFJS UZQF GSFRVFODZ 	BMXBZT QPTJUJWF

TUBUJTUJDBMMZ TJHOJGJDBOU JO �� PVU PG UIF �� DPN�
QBSJTPOT XF IBWF
�

5BCMF �� 0QFO 4VCUJUMFT WT� $SāCBEÙO DPSSFMBUJPO CFUXFFO
JOGPSNBUJPO�UIFPSFUJD QSPQFSUJFT� 'PS FWFSZ QSPQFSUZ
 XF
QSPWJEF UIF 1FBSTPO S DPSSFMBUJPO
 BOE JO QBSFOUIFTFT
 UIF
NFEJBO BCTPMVUF EJGGFSFODF JO CJUT�

-BOHVBHF 4FH� UZQF GSFR� 4FH� UPLFO GSFR 4FH� JOGPSNBUJWJUZ
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��� #JHSBN�MFWFM QSPQFSUJFT

5IF SFTVMUT BSF TVNNBSJ[FE JO 5BCMF � GPS 0QFO
4VCUJUMFT BOE $SāCBEÙO
 BOE JO 5BCMF � GPS
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'JHVSF �� 4FHNFOU JOGPSNBUJWJUZ DPSSFMBUJPO CFUXFFO
*"31" #BCFM BOE $SāCBEÙO JOGPSNBUJWJUZ� #PUI BYFT BSF
JO CJUT�

5BCMF �� *"31" #BCFM WT� $SāCBEÙO DPSSFMBUJPO CFUXFFO
JOGPSNBUJPO�UIFPSFUJD QSPQFSUJFT� 'PS FWFSZ QSPQFSUZ
 XF
QSPWJEF UIF 1FBSTPO S DPSSFMBUJPO
 BOE JO QBSFOUIFTFT
 UIF
NFEJBO BCTPMVUF EJGGFSFODF JO CJUT�

-BOHVBHF 4FH� UZQF GSFR� 4FH� UPLFO GSFR 4FH� JOGPSNBUJWJUZ
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*"31" #BCFM BOE $SāCBEBO�

"T FYQFDUFE
 UIF DPSSFMBUJPOT XFSF PWFSBMM
MPXFS BU UIF CJHSBN MFWFM UIBO BU UIF TFHNFOUBM
MFWFM
 MJLFMZ EVF UP TQBSTJUZ JTTVFT UIBU XF LOPX
FYJTU BU UIF XPSE MFWFM 	%BMBOE
 ����
� )PXFWFS

GPSNPTU MBOHVBHFT
 UIF DPSSFMBUJPOTXFSF TUJMM JN�
QSFTTJWFMZ IJHI
 BU 1FBSTPO S���� BOE S���� GPS
CJHSBN UZQF GSFRVFODZ
 SFQSFTFOUBUJWF PG 0QFO
4VCUJUMFT BOE *"31" #BCFM�T DPSSFMBUJPOT XJUI
$SāCBEÙO SFTQFDUJWFMZ
 BOE 1FBSTPO S���� BOE
S���� GPS CJHSBN UPLFO GSFRVFODJFT
 SFQSFTFOUB�
UJWF PG 0QFO 4VCUJUMFT BOE *"31" #BCFM�T DPS�
SFMBUJPOT XJUI $SāCBEÙO SFTQFDUJWFMZ� 'PS SFGFS�
FODF
 BTTVNJOH UIBU UIF JOIFSFOU OPJTF PG BO FY�
QFSJNFOUBM QPQVMBUJPO JT 4%�� BOE UIF TBNQMJOH
OPJTF FRVBMT 4%���
 UIF DPSSFMBUJPO CFUXFFO UFTU
BOE SFUFTU PG UIF TBNF JOEJWJEVBM JT FYQFDUFE UP
CF BSPVOE 1FBSTPO S����

5BCMF �� 0QFO 4VCUJUMFT WT� $SāCBEÙO DPSSFMBUJPO CFUXFFO
UZQF BOE UPLFO GSFRVFODJFT GPS CJHSBNT� 'PS FWFSZ QSPQ�
FSUZ
 XF QSPWJEF UIF 1FBSTPO S DPSSFMBUJPO
 BOE JO QBSFO�
UIFTFT
 UIF NFEJBO BCTPMVUF EJGGFSFODF JO CJUT�

-BOHVBHF � CJHSBN UZQFT #JHSBN UZQF GSFR� #JHSBN UPLFO GSFR
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5BCMF �� *"31" #BCFM WT� $SāCBEÙO DPSSFMBUJPO CFUXFFO
UZQF BOE UPLFO GSFRVFODJFT GPS CJHSBNT� 'PS FWFSZ QSPQ�
FSUZ
 XF QSPWJEF UIF 1FBSTPO S DPSSFMBUJPO
 BOE JO QBSFO�
UIFTFT
 UIF NFEJBO BCTPMVUF EJGGFSFODF JO CJUT�

-BOHVBHF � CJHSBN UZQFT #JHSBN UZQF GSFR� #JHSBN UPLFO GSFR
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� %JTDVTTJPO

��� %JGGFSFODFT BDSPTT DPSQPSB BOE
DPSQVT�VTBCJMJUZ

8F XFSF DPODFSOFE UIBU UIF MPXFS DPSSFMBUJPOT
CFUXFFO *"31" #BCFM BOE $SāCBEÙO
 SFMBUJWF
UP UIF DPSSFMBUJPOT CFUXFFO 0QFO 4VCUJUMFT BOE
$SāCBEBO
 XFSF EVF UP UIF TNBMMFS TJ[F PG UIF
DPSQVT� $PIFO 1SJWB BOE +BFHFS 	����
 SFQPSU
DPSSFMBUJPOT UIBU BQQSPYJNBUF ���� GPS TFHNFOU
GSFRVFODZ XJUI BT GFX BT ���
��� XPSE UPLFOT

B UISFTIPME OFBSMZ BMM PG PVS DPSQPSB QBTTFE 	FY�
DFQU 0QFO 4VCUJUMFT GPS 5BHBMPH
� 5P WFSJGZ UIBU
DPSQVT TJ[F JT OPU BO JTTVF XF SBO B QPTU�IPD
BOBMZTJT UP QSFEJDU TFHNFOU DPSSFMBUJPOT 	'JTIFS�
USBOTGPSNFE
 VTJOH MPH GSFRVFODJFT GSPN UIF UXP
DPOUSJCVUJOH DPSQPSB� &YDFQU GPS B NBSHJOBM
FGGFDU GPS UPLFO GSFRVFODJFT JO 0QFO 4VCUJUMFT

UIFSF XBT OP DPSSFMBUJPO� 8F EJE PCTFSWF TVC�
TUBOUJBMMZ NPSF JOUFSKFDUJPOT
 GBMTF�TUBSUT
 MPBO�
XPSET
 BOE DPOWFSTBUJPO�TUBSUJOH � FOEJOH JO
*"31" #BCFM UIBO JO FJUIFS $SāCBEÙO PS 0QFO
4VCUJUMFT
 XIJDI JT UP CF FYQFDUFE HJWFO UIF UZQF
PG UIF DPSQVT� 8F BSF OPU TVSF XIZ EJGGFSFOU
MBOHVBHFT TIPX UIJT FGGFDU UP EJGGFSFOU FYUFOUT

CVU HJWFO UIF OVNCFS PG DPNQBSJTPOT XF IBWF
 JU
XPVME TFFN UIBU UIF MPXFS CPVOEBSZ PO XJUIJO�
MBOHVBHF DPSSFMBUJPOT JT TUJMM IJHI FOPVHI UP TVQ�
QPSU UIF TUVEZ PG QIPOPMPHJDBM QSPQFSUJFT VTJOH
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Abstract

Truth Value Judgment Task experiments
(TVJTs) are a common means of investigat-
ing pragmatic competence, particularly with
regards to scalar inference. We present a novel
quantitative linking function from pragmatic
competence to participant behavior on TVJTs,
based upon a Bayesian probabilistic model
of linguistic production. Our model captures
a range of observed phenomena on TVJTs,
including intermediate responses on a non-
binary scale, population and individual-level
variation, participant endorsement of false ut-
terances, and variation in response due to so-
called scalar diversity.

1 Introduction

In Truth Value Judgment Task experiments
(TJVTs), participants are asked whether a given
sentence is, e.g., ‘right’ or ‘wrong’ (or ‘true’ or
‘false’, etc.), often in a context of evaluation. In
the field of experimental pragmatics, participant
judgments in TVJT paradigms have been partic-
ularly important for investigating pragmatic com-
petence, especially as it relates to scalar implica-
ture (Noveck, 2001; Noveck and Posada, 2003;
Bott and Noveck, 2004; De Neys and Schaeken,
2007; Geurts and Pouscoulous, 2009; Chemla and
Spector, 2011; Degen and Goodman, 2014; De-
gen and Tanenhaus, 2015). On the traditional view
of pragmatic competence and its link to TVJT re-
sponses, scalar implicature is assumed - following
Grice (1975) - to be a binary and categorical phe-
nomenon, in the sense that a given utterance is as-
sumed to categorically either give rise to an impli-
cature or not, depending on contextual, cognitive,
and linguistic factors. To experimentalists oper-
ating on this assumption, a participant’s judgment
on a particular trial in a TVJT reflects whether or
not a scalar implicature was computed in context.

For example, a ‘wrong’ judgment of the sen-
tence John ate pizza or a sandwich, in a context in
which the stronger utterance alternative John ate

pizza and a sandwich is true and equally relevant,
is typically interpreted as a “pragmatic” judgment:
participants must have recognized that in such a
context, the or-sentence is true yet underinforma-
tive. Pragmatically enriching it to John didn’t eat

both pizza and a sandwich via scalar inference
makes it contextually false. Conversely, an answer
of ‘right’ on this view reflects a “literal” semantic
interpretation whereby the implicature is not com-
puted (i.e. John ate pizza or a sandwich - and pos-

sibly both).
This linking assumption underpins the vast ma-

jority of TVJT literature relating to scalar infer-
ence (Noveck, 2001; Papafragou and Musolino,
2003; Geurts and Pouscoulous, 2009; Doran et al.,
2012; Potts et al., 2015). In an early example, Pa-
pafragou and Musolino (2003) observe that chil-
dren accept true but underinformative sentences in
a TVJT at a relatively high rate relative to adults,
and that this rate is modulated by the particular
linguistic scale invoked on a given trial of the ex-
periment (i.e. some/all vs. finish/start vs. cardinal
numbers). The authors argue from this result that
scalar implicature computation is dependent upon
linguistic scale as well as on a child’s recognition
of the communicative goals of her interlocutor.

Though widely employed, this linking assump-
tion for TVJTs is associated with a host of prob-
lems discussed by Jasbi et al. (2019). Follow-
ing those authors as well as Tanenhaus (2004),
we take these open problems to be indicative of
a larger issue in linguistics, namely that the link-
ing hypotheses which bridge linguistic theory and
experimentally-elicited behavior are often under-
developed, underspecified, or (in some cases) ab-
sent in experimental studies. In the service of
providing a proof of concept for how this is-



sue may be addressed by future researchers, we
propose and evaluate a novel account of partici-
pant response in TVJT paradigms based on an ex-
plicit and quantitatively specified linking function
rooted in a probabilistic theory of pragmatic com-
petence. The general idea is that participants’ re-
sponses in TVJT experiments are related to the
probability with which a cooperative pragmatic
speaker would have produced the observed utter-
ance (e.g., John ate pizza or a sandwich) in or-
der to communicate the meaning presented to par-
ticipants as fact (e.g., that John ate both pizza
and a sandwich). This probabilistic production

based view departs substantially from the previous
widespread assumption that truth-value judgments
are a measure of interpretation.

Before turning to the specifics of the account,
we briefly review some of the open problems in
the TVJT literature that motivate the re-thinking
of linking functions in TVJT paradigms:

Intermediate judgments: When provided
more than two response options in a TVJT, a siz-
able proportion of participants rates underinfor-
mative sentences using the intermediate response
options - for example, as only ‘kind of [right
/ wrong]’, or ‘neither [right nor wrong]’. Kat-
sos and Bishop (2011), for example, provided
participants with three response options and ob-
served substantial selection of the intermediate op-
tion. They interpreted the choice of this inter-
mediate option as being the result of the com-
putation of an implicature, but a priori, there is
no reason to favor this linking assumption over
one whereby the intermediate response is associ-
ated with a literal semantic interpretation. More
generally, it is not clear how the outputs of a bi-
nary model of scalar implicature (i.e. implicature
or ¬implicature) should relate to non-binary re-
sponses on TVJTs.

Population-level variation: In order to explain
behavioral variation in contexts where one expects
a scalar inference, an adherent to the categorical
view of scalar implicature must stipulate that a)
not all participants calculated the implicature; or
b) some participants who calculated the implica-
ture showed divergent behavior due to some in-
dependent mechanism which masked the ‘correct’
implicature behavior; or some combination of (a)
and (b). However, and despite the prevalence of
variation at the population level in reported TVJT
experiments, even a qualitative analysis of this

kind of variation is largely absent from the exper-
imental scalar implicature literature.

Scalar diversity: Doran et al. (2012), following
Papafragou and Musolino (2003) inter alia, report
that judgments of true but underinformative sen-
tences vary according to the particular linguistic
material contained within the sentence, in partic-
ular the relevant linguistic scale. They conclude
that variation among scalar implicatures is a func-
tion of the scale itself (see also van Tiel et al. 2014
for further support for scale-based scalar diversity
in a non-TVJT paradigm).

Whether this variation is truly due to inherent
features of the linguistic scale (or, e.g., prior world
knowledge, or other linguistic material, or other
confounding features of the experimental context)
is an open question which warrants investigation
beyond the scope of this paper. Below, we an-
alyze data from a TVJT where different rates of
exhaustive interpretation were observed between
a putative lexical scale (<and, or>) and a putative
ad-hoc, context-dependent pragmatic scale. Our
analysis of the data suggests that in this instance,
(at least some) variation at the level of linguistic
scale may be reduced to more general aspects of
pragmatic competence.

Endorsement of false utterances: Invariably,
a proportion of participants in TVJTs accepts
strictly false sentences. For example, in the study
we analyze below, a substantial number of par-
ticipants rated conjunctions A ^ B as partially
correct in contexts where only A was true. The
most common approaches to this type of data
are either to use it as the basis of an exclu-
sion criterion or to simply consider it meaning-
less noise. Doran et al. (2012), for example, ex-
clude participants whose performance deviates by
more than two standard deviations from the mean
response on ‘control’ sentences whose semantic
contents are consistent with the context of evalua-
tion (and which do not admit of potentially contra-
dictory pragmatic enrichments) or whose seman-
tic contents contradict the context. Katsos and
Bishop (2011) report that 2.5% of false sentences
in their experiment were endorsed by child partic-
ipants. On the standard linking assumption, these
data are difficult to make sense of, but we will
show that they are within the scope of a satisfac-
tory analysis of TVJT behavior.

The remainder of the paper is structured as fol-
lows: in Section 2, we summarize the results



Condition Response Options

Binary ‘Right’, ‘Wrong’
Ternary ‘Right’, ‘Neither’, ‘Wrong’

Quaternary ‘Right’, ‘Kinda Right’, ‘Kinda
Wrong’,‘Wrong’

Quinary ‘Right’, ‘Kinda Right’, ‘Neither’, ‘Kinda
Wrong’, ‘Wrong’

Table 1: Response-option conditions of Jasbi et
al. (2019)’s TVJT study.

of a recently reported TVJT study that exempli-
fies the features discussed above: intermediate
judgments, population-level variation, scalar di-
versity, and participant endorsement of false ut-
terances. Section 3 presents our novel quantita-
tive model of the data from that study. Building
on insights from the Bayesian probabilistic litera-
ture on pragmatic competence (Frank and Good-
man, 2012; Goodman and Stuhlmüller, 2013), we
model participants as making judgments about a
soft-optimal pragmatic speaker whose production
choices are a function of utterances’ contextual in-
formativeness. On our analysis, participants fur-
thermore expect that the speaker sometimes pro-
duce strictly false utterances that are nonetheless
somewhat contextually useful. We show that this
analysis provides broader empirical coverage over
the traditional assumptions discussed above.1

2 TVJT Data

2.1 Experiment Materials, Design and

Procedure

Jasbi et al. (2019) report the results of a TVJT de-
signed to test whether linking hypothesis and num-
ber of response options modulate the researcher’s
inferences about scalar implicature rates. In their
study, number of response options varied between
two and five as a between-subjects manipulation.
Conditions are summarized in Figure 1. Partici-
pants (n = 200) were first shown six cards (Table
2) featuring one or two of the following animals: a
cat, a dog, and an elephant. On every trial, partic-
ipants saw one of the six cards, and a blindfolded
cartoon character Bob made guesses as to what an-
imals were on the card. Participants were asked
to rate Bob’s guesses using the response options
available in their particular condition.

Bob made the following guess types: simple
declaratives (e.g., There is a cat), conjunctions
(e.g., There is a cat and a dog), and disjunctions

1Data and code for all analyses and graphs are available
at http://github.com/bwaldon/tvjt_linking.

Table 2: Cards used in Jasbi et al. (2019)’s TVJT.

(e.g., There is a cat or a dog). Card types were
crossed with guess types in this study such that a
card containing an animal X could be presented
with a guess of There is an X, There is an X or a Y

(where Y is some animal distinct from X), There is

an X and a Y, or There is a Y; cards containing two
animals X and Y could be presented with a guess
of There is an X, There is an X or a Y, There is an

X and a Y, or There is a Z (where Z is some animal
distinct from X and Y).

The researchers elicited 3 judgments per partic-
ipant for each combination of card and guess type.

2.2 Results and Discussion

Proportions of responses for each card-guess type
in each response-option condition are shown in
Figure 1, with rows presenting behavior aggre-
gated across one and two-card conditions.

The results of the study illustrate the sev-
eral open empirical issues associated with TVJTs
more generally. First, participants routinely re-
ported intermediate judgments between ‘Right’
and ‘Wrong’ in those conditions where intermedi-
ate response options were available. In the Qua-
ternary and Quinary response-option conditions,
for example, the intermediate judgment of ‘Kinda
Right’ was the single most-selected response op-
tion in two-animal card conditions where Bob’s
guess was true but underinformative (i.e. either
a simple delcarative or a disjunction).

The results also exemplify the issue of
population-level variation: for example, al-
though behavioral patterns are otherwise fairly
categorical in the Binary condition, participant
judgments were roughly split between ‘Right’ and
‘Wrong’ for underinformative uses of disjunc-
tion on two-animal card conditions. A visual in-
spection of the results suggests even more varia-
tion in the population as number of response op-
tions increase. The authors furthermore reported
individual-level variation: qualitatively similar
trials (e.g. two trials involving underinforma-
tive disjunction) sometimes received different re-

http://github.com/bwaldon/tvjt_linking


Figure 1: Model predictions (light bars) plotted against empirical results (dark bars) from Jasbi et al.’s (2019)
TVJT study. Error bars indicate 95% multinomial confidence intervals. Red and green bars indicate false and true
trials, respectively; blue bars indicate implicature trials.

sponses from the same participant.
Comparison of judgments of true but underin-

formative simple declaratives (i.e. There is an X)
to judgments of true but underinformative disjunc-
tions (i.e. There is an X or a Y) on two-animal
card conditions revealed some amount of scalar

diversity. Following Horn (1972), exposure to the
disjunctive connective or canonically activates an
informationally-stronger scalemate and as a prag-
matic alternative to give rise to an exclusive in-
terpretation. In contrast, the pragmatic scale in
the case of the simple declarative is constructed
in a more context-dependent manner. To illus-
trate, in a two-animal card context where the card
features both a cat and a dog, the listener consid-
ers a partially-ordered pragmatic scale of cat and

dog, cat, and dog, where the conjunction outranks
its scalemates in terms of informational strength.
Thus, an utterance of cat activates cat and dog as
an alternative to give rise to an the exhaustive in-
terpretation (There is only a cat on the card).

In the Binary and Ternary conditions, under-

informative uses of or resulted in substantially
higher rates of ‘Wrong’ responses than did under-
informative simple declaratives, suggesting that
at the population level, or was interpreted more
exhaustively than the simple declarative. How-
ever, this pattern was reversed in the Quaternary
and Quinary conditions, in which underinforma-
tive simple declaratives were more likely to be
considered only ‘Kinda Right’ and less likely to be
considered simply ‘Right’ compared to underin-
formative disjunctions. This pattern suggests that
in the Quaternary and Quinary conditions, simple
declaratives were interpreted more exhaustively
than disjunctions.

Finally, the data in the Quaternary and Quinary
conditions also reveal substantial participant en-

dorsement of false utterances. Note specifi-
cally that in one-animal card trials, the conjunctive
guess (e.g. cat and dog) is strictly false; thus, we
might naı̈vely expect a priori that participants cat-
egorically judge these utterances to be ‘Wrong’ in
all conditions. Yet when given the option to rate



this sentence ‘Kinda Right’ or ‘Kinda Wrong’,
participants often did so. In all other conditions
where the utterance was strictly false (e.g. a guess
of elephant for a card containing a cat or a cat and
dog), behavior was effectively categorical. That is,
rates of endorsement of false utterances varied ac-
cording to the particular way in which the sentence
was false in context.

In sum, the data collected by Jasbi et al. (2019)
reflect a range of behavioral patterns unaccounted
for by the traditional categorical view of scalar
inference and corresponding standard linking as-
sumptions. Below, we report an analysis of their
data that aims to predict these phenomena.

3 Analysis

3.1 Cognitive model

Our analysis implements a proposal outlined by
Jasbi et al. (2019), couched in the Rational
Speech Act (RSA) framework (Frank and Good-
man, 2012; Goodman and Stuhlmüller, 2013).
RSA provides a Bayesian, probabilistic account
of pragmatic competence. In RSA, the pragmatic
inferences drawn by listeners are represented as
probability distributions over meanings which the
speaker plausibly intended to convey with a given
observed utterance. The probability of this lis-
tener (L1) attributing an intended meaning m to a
speaker who produces an utterance u is calculated
from a prior probability distribution over potential
world states Pw as well as from L1’s expectations
about the linguistic behavior of the speaker S1.
PL1(m|u) / PS1(u|m) · Pw(m)

PS1 is modeled as a probability distribution over
possible utterances given the speaker’s commu-
nicative intentions m. This speaker produces ut-
terances that soft-maximize utility, where utility
is defined via a tradeoff between an utterance’s
cost C and its contextual informativeness, calcu-
lated from the representation of a literal listener L0

whose interpretation of an utterance u is in turn a
function of the truth conditional meaning [[u]](m)
and of her prior expectations Pw(m) regarding the
likelihood of possible world states. The extent to
which the speaker maximizes utility is modulated
by a parameter ↵ – the greater ↵, the more the
speaker produces utterances that maximize utility.
PS1(u|m) / e↵(lnL0(m|u)�C(u))

PL0(m|u) / [[u]](m) · Pw(m)
In RSA (and contra the traditional view), prag-

matic inferences are not categorical computations
of enriched meanings over the semantic denota-
tions of utterances. For example, exclusive inter-
pretations of or are represented in RSA as a pos-
itive shift in the posterior probability of an exclu-
sive meaning, relative to its prior probability.

In other words, ‘implicature’ is not a theoreti-
cal construct in the RSA framework, absent addi-
tional stipulations regarding how to go from prob-
ability distributions to binary, categorical infer-
ences. This is an advantage: providing a proba-
bilistic representation of both the speaker’s utter-
ance choices and the listener’s resulting posterior
beliefs after observing an utterance puts us one
step closer to accounting for the quantitative be-
havioral patterns observed in tasks such as TVJTs.

3.2 Behavioral model

Jasbi et al. (2019) proposed but did not system-
atically test a simple linking hypothesis: rather
than providing one response if an implicature is
computed and another if it isn’t, a participant in
a TVJT experiment provides a particular response
to an utterance u if the probability of u given a
meaning represented by m lies within a particular
probability interval on the distribution PS1(u|m).2

The participant is modeled as a responder R, who
in a binary forced-choice task between ‘Right’
and ‘Wrong’ responds ‘Right’ to an utterance u in
world m just in case PS1(u|m) meets or exceeds
some probability threshold ✓:

R(u,m, ✓) =

(
‘Right’ iff PS1(u|m) � ✓

‘Wrong’ otherwise

The model is extended straightforwardly to an
experiment in which participants have a third re-
sponse option (e.g. ‘Neither’), as in the Ternary
condition. In this case, the model specifies two
probability thresholds: ✓1, the minimum standard
for an utterance in a given world state to count as
‘Right’, and ✓2, the minimum standard for ‘Nei-
ther’. Thus, in the Ternary condition:

R(u,m, ✓) =

8
><

>:

‘Right’ iff PS1(u|m) � ✓1

‘Neither’ iff ✓1 > PS1(u|m) � ✓2

‘Wrong’ otherwise
Applying a similar logic allows for the speci-

fication of linking hypotheses for TVJTs with an

2Following Degen and Goodman (2014), the authors ar-
gue that conceptually, behavior on TVJTs is better modeled
as a function of an agent’s representation of a pragmatic
speaker rather than of a pragmatic listener.



arbitrary number of response options.
The intuition behind the threshold model is as

follows: participants should disprefer utterances
that are relatively unexpected. Thus, high S1 pro-
duction probability for a given utterance in context
makes it more likely that the utterance receives a
positive evaluation in the TVJT – expressed by
ordered response options above ‘Wrong’. Con-
versely, the more unexpected an utterance is, the
more likely it is to be judged as ‘Wrong’. Underin-
formative utterances of the sort that have tradition-
ally been used to assess ‘implicature rates’ are pre-
cisely the kinds of utterances that are unexpected
from informative speakers and are therefore likely
to be rated as ‘Wrong’.

Here, we assess the quality of this linking hy-
pothesis on the dataset from Jasbi et al. (2019).
To that end, we first specify the space of possi-
ble meanings and utterances that inform a partici-
pant’s pragmatic competence in this task. We as-
sume that participants have uniform prior expecta-
tions of seeing any of the six possible cards in the
experiment. We further assume that participants
have uniform prior expectations of a speaker pro-
ducing any of the four utterance types with which
a card may have been crossed. For example, if
the card featured either just a cat or both a cat and
a dog, we represent the participant as having uni-
form prior expectations of a speaker producing the
guesses elephant, cat, dog, cat and dog, or cat or

dog (that is, we do not posit a cost asymmetry be-
tween possible utterances).3

For illustrative purposes, the ‘Simple Bayesian’
bars in Figure 2 display marginal distributions
over possible utterances produced by S1 given
these assumptions for the utterance and meanings
priors, as well as an arbitary value of 1 for the op-
timality parameter ↵, and given that the speaker
intends either to communicate the meaning that
(just) a cat is on the card or that both a cat and
a dog are. The speaker distributions reveal two
conceptual issues for the threshold response model
proposed by Jasbi et al (2019).

First, the probability of S1 producing the strictly
false guess of cat and dog should be zero if the
card contains just a cat. This is because the lit-
eral listener probability PL0 of inferring the ‘only
cat’ meaning given cat and dog is zero by virtue

3We include dog as a possible guess because we posit
that participants have no reason a priori to expect the other
true and underinformative simple declarative - cat - over this
equally informative guess in two-animal card conditions.

of the fact that the utterance is strictly false in this
world state. Thus, any model of response that is
a function of PS1 as specified predicts that partic-
ipants categorically rate the cat and dog guess as
‘Wrong’ in this context, contrary to what is ob-
served in the Quaternary and Quinary conditions.

Second, the probability of producing disjunc-
tions is lower than the probability of produc-
ing simple declarative guesses in two-animal card
contexts. This asymmetry is advantageous in
the case of the Binary and Ternary response
data: assuming a threshold for ‘Right’ posi-
tioned between PS1(cat or dog|cat and dog) and
PS1(cat|cat and dog), we predict correctly that
underinformative simple declaratives should be
judged ‘Right’ more often than underinformative
disjunctions. But the asymmetry in S1 probabil-
ities therefore predicts the wrong pattern of re-
sponses on corresponding trials in the Quaternary
and Quinary conditions.

We argue that these two seemingly disparate
issues can be mediated by a common solution.
In particular, we propose a revision to the sim-
ple Bayesian inference story above, whereby
pragmatically-competent listeners either expect
speaker productions as directly sampled from the
PS1 distribution, or that those utterance production
probabilities inform a second conditional proba-
bility distribution of utterances given utterances,
the ‘Partial Truth’ utterance distribution PSPT :

PSPT (u
0|u) /

P
m2JuK

PS1(u
0|m)4

The ‘Partial Truth’ distribution is a generalized
way of modeling a speaker who makes assertions
that are sometimes strictly false in light of her in-
tended meaning. Recall that the semantic con-
tent of any possible utterance choice made by S1

is a set of possible worlds and is therefore con-
sistent with meanings unintended by the speaker.
SPT models the speaker’s soft-optimal produc-
tion probabilities given these unintended mean-
ings, renormalizing the pragmatic speaker’s pro-
duction probabilities over all possible worlds con-
sistent with utterance choices sampled from PS1 .

4For our implementation of SPT , we restrict the distribu-
tion such that u0 must entail (or be entailed by) u in order to
have probability above 0. Without this restriction, SPT could
in principle assign high probability to utterances which have
no relevance to the question under discussion (i.e. “What ani-
mals are on the card?”), by virtue of those utterances’ asserta-
bility in worlds consistent with u. A systematic exploration
of the linguistic alternatives available to S1 (as well as SPT )
is a question we must leave to future work.



Figure 2: Simulated S1 production probabilities.

To illustrate: suppose a speaker intends to com-
municate that many (but not all) of the X are Y,
and has quantifier choices many and all. The only
possible utterance choice for the simple Bayesian
S1 speaker is many, which is semantically consis-
tent with the intended meaning. But the lower-
bounded quantifier many is also semantically con-
sistent with an ‘all of the X are Y’ meaning, which
in turn is consistent with the utterance choice all.
By SPT , we have some nonzero expectation that
the speaker will use all to communicate the ‘many
(but not all) of the X are Y’ meaning.5 Thus, a
pragmatic listener who hears all from the ‘Par-
tial Truth’ speaker will have a nonzero expectation
that all should receive an imprecise, non-maximal
interpretation. In other words, SPT provides a
generalized way of formalizing ‘loose-talk’ pro-
duction behavior (Lasersohn, 1999).6

The ‘Partial Truth’ bars in Figure 2 visual-
ize marginal distributions over utterances given
an arbitrary 0.6 probability that the speaker sam-
ples from the PSPT distribution after sampling
from PS1 . The ‘Partial Truth’ speaker assigns
nonzero probability to a guess of cat and dog

even when the speaker’s intended meaning is the
single-animal cat card, largely due to the fact that
the optimal guess in this context (cat) is truth-
conditionally consistent with a two-animal card
that makes cat and dog both true and pragmat-
ically optimal.7 Moreover, this speaker assigns

5The effect of this is similar to the use of QUD projection
functions for hyperbolic interpretations (Kao et al., 2014).

6Formalizing this production behavior is different from
analyzing why imprecision exists (indeed, is pervasive) in lin-
guistic communication. For the time being, we present this
‘loose-talk’ speaker model without a thorough assessment of
its explanatory power.

7Because cat or dog is a possible S1 production, and this
choice lies in an entailment relation with the simple declar-

greater probability to a guess of cat or dog in two-
animal contexts and down-weights the probability
of producing simply cat: the optimal utterance in
this context (cat and dog) is consistent with sev-
eral world states in which the disjunction cat or

dog is assertable and with relativley fewer worlds
in which cat is assertable.

3.3 Quantitative model evaluation

We now turn to a quantitative assessment of the
threshold model of response, having addressed
two ways in which the unenriched S1 represen-
tation would fail to qualitatively capture behav-
ioral patterns in Jasbi et al (2019)’s TVJT study.
Additionally, following Jasbi et al., we recognize
that if threshold values were made to be com-
pletely invariant across trials of the experiment,
then the model would make the undesirable pre-
diction that every participant should have exactly
the same response in a given trial type. To allow
for population-level variation, the model respon-
der makes a response by comparing the speaker
probability against thresholds that are generated
from sampling from Gaussian distributions. We
thus allow for both population-level and individual
level-variation, on the assumption that this sam-
pling procedure takes place whenever a participant
is asked to evaluate an utterance in the TVJT.8

In order to evaluate the RSA-based thresh-
old model, we conducted a Bayesian data analy-
sis. This allowed us to simultaneously generate
model predictions and infer likely parameter val-
ues, by conditioning on the TVJT data from Jasbi
et al. (separately for each of the four response-
option conditions of the experiment) and integrat-
ing over the free parameters. Each model assumes
uniform priors over utterances and world states as
above. We infer the Gaussian threshold distribu-
tion parameters and alpha optimality parameters
from uniform priors over parameter values using
MCMC sampling (observing - for every sample
of possible parameter values the expected propor-
tion of responses in that trial type and comparing
that distribution to the empirically-observed pat-
tern of response).9 Additionally, for the Quater-

ative guess dog, we also assign some probability to dog as a
guess in this context - albeit lower probability than is assigned
to the conjunctive guess cat and dog.

8We also introduce a random noise term in the parameter
estimation such that the simulated responder makes random
guesses on 1% of trials. This noise term is removed when
running the model forward to make predictive estimations.

9We used WebPPL (Goodman and Stuhlmüller, 2014) for



Binary condition
↵ � µ✓1

1.22 0.125 0.073
Ternary condition
↵ � µ✓1 µ✓2

1.38 0.076 0.061 0.011
Quaternary condition
↵ � µ✓1 µ✓2 µ✓3 PT
2.75 0.159 0.277 0.101 0.048 0.797

Quinary condition
↵ � µ✓1 µ✓2 µ✓3 µ✓4 PT
4.38 0.099 0.184 0.042 0.005 0.002 0.437

Table 3: MAP estimates obtained from Bayesian data
analysis, where ↵ is the optimality parameter, � and
µ are Gaussian threshold distribution parameters, and
PT is the probability with which the speaker samples
from PSPT rather than directly from PS1 .

nary and Quinary conditions, we infer from a uni-
form prior the probability with which the speaker
samples from PSPT after sampling from PS1 . The
intuition for restricting the ‘Partial Truth’ manipu-
lation to these conditions is that the behavioral pat-
terns which this manipulation is intended to cover
are only observed in these conditions.10

Posterior distributions over the parameter val-
ues are displayed in Figure 3, and model pre-
dictions using maximum a posteriori (MAP) esti-
mates of the parameter values (Table 3) are plot-
ted against Jasbi et al. (2019)’s results in Fig-
ure 1. Qualitatively, the model addresses each of
the desiderata for an empirically adequate linking
function discussed above. In all conditions, the
model makes predictions for the full range of re-
sponse options available to participants – thus ad-
dressing the issue of intermediate judgments. At
the same time, the model addresses the issue of
population-level variation: sampling threshold
values from Gaussian distributions allows differ-
ent judgments in the population for a given utter-
ance (while keeping the speaker production prob-
ability of that utterance constant).

Recall that in the Quaternary and Quinary con-
ditions, there was an asymmetry in the judgment
of underinformative disjunctions versus underin-

MCMC inference, with 5000 samples (plus a lag of 10 iter-
ations between samples) and a burn-in time of 20,000 itera-
tions. We computed maximum a posteriori values from the
marginal posterior distributions over parameter values using
the density function in R.

10We speculate that there may be a link between increasing
the number of response options and participants’ increased
expectation of Partial Truth speaker behavior, which may
have been strengthened by the fact that the Quaternary and
Quinary conditions explicitly made reference to gradient lev-
els of correctness (i.e. ‘Kinda Right’ / ‘Kinda Wrong’). But
this speculation warrants future investigation.

formative simple declaratives. The model makes
use of the ‘Partial Truth’ speaker function in order
to adjust the underlying speaker production proba-
bilities - and hence the distribution of predicted re-
sponse options - for these utterances. The ‘Partial
Truth’ function also boosts the production prob-
ability of strictly false conjunctions, allowing the
model to predict responses other than ‘Wrong’ for
this trial type. Thus, the ‘Partial Truth’ enrich-
ment helps to address both scalar diversity and
endorsement of false utterances.11

The correlation between empirical observations
and model predictions is high (Adj. R2 > 0.9
in all conditions), suggesting that the threshold
responder model is a good model of TVJT be-
havior overall. Nevertheless, the model makes
some undesirable predictions. For example, it
over-predicts rates of ‘Neither’ responses in the
Quinary condition. Empirically, this response
tended to be disfavored relative to positive and
negative response options, for example in the case
of strictly false cat and dog guesses. The model
assumes that the labeling of the response options
should have no particular effect on selection, but
future work should engage with this assumption.

4 Discussion and Conclusion

Based on a single underlying probabilistic model
of pragmatic competence, the presented thresh-
old responder model provides a level of empiri-
cal coverage for TVJT data unavailable to existing
linking models rooted in the categorical view of
scalar implicature. The contribution of this paper
is twofold: methodologically, we present this anal-
ysis as a proof-of-concept approach to modeling
TVJT data for researchers in experimental seman-
tics/pragmatics. We see the presented behavioral
model as a starting point for future quantitative an-
alytic work in the TVJT domain – a model against
which future models may be assessed.12

On the theoretical side, the cognitive model that
forms the basis for the behavioral model is non-
neutral in its assumptions. In particular, it as-
sumes that TVJT behavior is the result of rea-
soning about probabilistic utterance choices that

11We leave further investigation of the ‘Partial Truth’ func-
tion - in particular its extension to an analysis of linguistic
imprecision as sketched above - to future work.

12For example, one could in principle link the thresh-
old model to pragmatic listener probabilities of meanings
given utterances rather than to speaker production probabili-
ties given intended meanings (as we do in this paper).



Figure 3: Normalized marginal posterior distributions over parameter values for the threshold responder model in
each experimental condition. Note that the posterior distribution for the optimality parameter ↵ has been rescaled
for the purposes of this visualization.

are the result of trading off (contextual) utterance
informativeness and cost. Under this view, not
only does TVJT behavior not quantify implica-
ture rates; the very notion of an implicature evap-
orates. Rather than finding this undesirable, we
believe that this framework allows for more rigor-
ous engagement with the complexities of linking
theoretical constructs to behavior (see also Franke
2016), an area of some dearth in experimental se-
mantics/pragmatics.

—

References

Lewis Bott and Ira Noveck. 2004. Some utterances
are underinformative: The onset and time course
of scalar inferences. Journal of Memory and Lan-

guage, 51(3):437–457.

Emmanuel Chemla and Benjamin Spector. 2011. Ex-
perimental evidence for embedded scalar implica-
tures. Journal of Semantics, 28(3):359 – 400.

Wim De Neys and Walter Schaeken. 2007. When peo-
ple are more logical under cognitive load - dual task
impact on scalar implicature. Experimental Psy-

chology, 54(2):128–133.

Judith Degen and Noah D Goodman. 2014. Lost your
marbles? The puzzle of dependent measures in ex-
perimental pragmatics. In Proceedings of the 36th

Annual Conference of the Cognitive Science Society,
pages 397–402.

Judith Degen and Michael K. Tanenhaus. 2015. Pro-
cessing scalar implicature A constraint-based ap-
proach. Cognitive Science, 39(4):667–710.

Ryan Doran, Gregory Ward, Meredith Larson, Yaron
McNabb, and Rachel E. Baker. 2012. A novel exper-
imental paradigm for distinguishing between what is
said and what is implicated. Language, 88:124–154.

Michael C. Frank and Noah D Goodman. 2012. Pre-
dicting pragmatic reasoning in language games. Sci-

ence, 336:998.

Michael Franke. 2016. Task types, link functions &
probabilistic modeling in experimental pragmatics.
In Preproceedings of Trends in Experimental Prag-

matics.

Bart Geurts and Nausicaa Pouscoulous. 2009. Em-
bedded implicatures?!? Semantics and Pragmatics,
2:1–34.

Noah D Goodman and Andreas Stuhlmüller. 2013.
Knowledge and implicature: modeling language un-
derstanding as social cognition. Topics in Cognitive

Science, 5(1):173–84.

https://doi.org/10.1016/j.jml.2004.05.006
https://doi.org/10.1016/j.jml.2004.05.006
https://doi.org/10.1016/j.jml.2004.05.006
https://doi.org/10.1027/1618-3169.54.2.128
https://doi.org/10.1027/1618-3169.54.2.128
https://doi.org/10.1027/1618-3169.54.2.128
https://doi.org/10.1111/cogs.12171
https://doi.org/10.1111/cogs.12171
https://doi.org/10.1111/cogs.12171
https://doi.org/10.3765/sp.2.4
https://doi.org/10.3765/sp.2.4
https://doi.org/10.1111/tops.12007
https://doi.org/10.1111/tops.12007


Noah D Goodman and Andreas Stuhlmüller. 2014.
The Design and Implementation of Probabilistic
Programming Languages. http://dippl.org.
Accessed: 2019-8-8.

Herbert Paul Grice. 1975. Logic and conversation.
Syntax and Semantics, 3:41–58.

Laurence Horn. 1972. On the Semantic Properties

of the Logical Operators in English. Ph.D. thesis,
UCLA.

Masoud Jasbi, Brandon Waldon, and Judith Degen.
2019. Linking hypothesis and number of response
options modulate inferred scalar implicature rate.
Frontiers in Psychology, 10:189.

Justine Kao, J. Wu, Leon Bergen, and Noah D Good-
man. 2014. Nonliteral understanding of num-
ber words. Proceedings of the National Academy

of Sciences of the United States of America,
111(33):12002–12007.

Napoleon Katsos and Dorothy V M Bishop. 2011.
Pragmatic tolerance: implications for the acquisi-
tion of informativeness and implicature. Cognition,
120(1):67–81.

Peter Lasersohn. 1999. Pragmatic halos. Language,
pages 522–551.

Ira Noveck. 2001. When children are more logical than
adults: experimental investigations of scalar impli-
cature. Cognition, 78(2):165–188.

Ira Noveck and Andres Posada. 2003. Characterizing
the time course of an implicature: an evoked poten-
tials study. Brain and Language, 85(2):203–210.

Anna Papafragou and Julien Musolino. 2003. Scalar
implicatures: experiments at the semanticspragmat-
ics interface. Cognition, 86:253–282.

Christopher Potts, Daniel Lassiter, Roger Levy, and
Michael C Frank. 2015. Embedded implicatures
as pragmatic inferences under compositional lexical
uncertainty. Journal of Semantics, 33(1975):755–
802.

Michael K. Tanenhaus. 2004. On-line sentence pro-
cessing: past, present and future. In Manuel Car-
reiras and Charles Clifton, editors, On-line sen-

tence processing: ERPS, eye movements and be-

yond, pages 371–392. Psychology Press, London,
UK.

Bob van Tiel, Emiel van Miltenburg, Natalia Ze-
vakhina, and Bart Geurts. 2014. Scalar diversity.
Journal of Semantics.

—

http://dippl.org
https://doi.org/10.3389/fpsyg.2019.00189
https://doi.org/10.3389/fpsyg.2019.00189
https://doi.org/10.1073/pnas.1407479111
https://doi.org/10.1073/pnas.1407479111
https://doi.org/10.1016/j.cognition.2011.02.015
https://doi.org/10.1016/j.cognition.2011.02.015
https://doi.org/10.1016/S0093-934X(03)00053-1
https://doi.org/10.1016/S0093-934X(03)00053-1
https://doi.org/10.1016/S0093-934X(03)00053-1
https://doi.org/10.1093/jos/ffv012
https://doi.org/10.1093/jos/ffv012
https://doi.org/10.1093/jos/ffv012
https://doi.org/10.1093/jos/ffu017


What Don’t RNN Language Models Learn
About Filler-Gap Dependencies?

Rui P. Chaves
Linguistics Department

University at Buffalo – SUNY
rchaves@buffalo.edu

Abstract

In a series of experiments Wilcox et al.
(2018, 2019b) provide evidence suggesting
that general-purpose state-of-the-art LSTM
RNN language models have not only learned
English filler-gap dependencies, but also some
of their associated ‘island’ constraints (Ross,
1967)). In the present paper, I cast doubt on
such claims, and argue that upon closer inspec-
tion filler-gap dependencies are learned only
very imperfectly, including their associated is-
land constraints. I conjecture that the LSTM
RNN models in question have more likely
learned some surface statistical regularities in
the dataset rather than higher-level abstract
generalizations about the linguistic mecha-
nisms underlying filler-gap constructions.

1 Introduction

Recurrent Neural Networks (RNNs) are a class of
abstract neural network where the connections be-
tween nodes consist of a directed graph along a
temporal sequence. This architecture allows node
outputs at current time step to depend on the cur-
rent input as well as on the previous output state.
Thus, the network can exhibit temporal dynamic
behavior, since the internal state of the system is a
kind of memory that can be used to process sub-
sequent input. Such models are therefore well-
suited for natural language tasks, among others.
RNNs with a Long Short-Term Memory (LSTM)
architecture have a far more elaborate and selec-
tive form of memory. A common LSTM node is
composed of a cell, an input gate, an output gate
and a forget gate. Such gates enable RNN nodes
to remember values over arbitrary time intervals
and the three gates regulate the flow of informa-
tion into and out of the nodes.

LSTM RNNs are therefore better suited than
plain RNNs to model long-distance dependencies
of the kind found in natural languages (Linzen

et al., 2016; Gulordava et al., 2018; Bernardy and
Lappin, 2017). This includes filler-gap dependen-
cies like (1), where the wh-phrase what is inter-
preted as the object of do, even though the two
words are separated by four clausal boundaries as
indicated by square brackets.

(1) Whati do you think [the students will say
[they believe [the TA claimed [he was trying
to do i]]]]?

I refer to the ‘extracted’ phrase as the filler and
to the canonical position where it would otherwise
be realized as the gap, signaled via an underscore.
The filler-gap dependency is the semantic and syn-
tactic linkage that must be established between the
filler and its in situ canonical location in order for
such utterances to be interpretable.

1.1 Learning Filler-Gap dependencies
Recently, Chowdhury and Zamparelli (2018) pro-
vide some evidence that LSTM RNNs can store
information about the filler phrase, and detect that
the probability of the sentence-final NP in exam-
ples like (2) is low because of the presence of a
filler-gap dependency.

(2) Whoi should Mia discuss i / *this candidate.

Wilcox et al. (2018) improve on this work,
and propose a Surprisal-based (Hale, 2001; Levy,
2008) differences-within-differences design to
measure the ability of the RNN to learn filler-gap
dependencies, using a factorial design as in (3).

(3) a. I know that the lion devoured a gazelle at
sunrise.
[NO WH-LICENSOR, NO GAP]

b.*I know what the lion devoured a gazelle
at sunrise.
[WH-LICENSOR, NO GAP]



c.*I know that the lion devoured at sunrise.
[NO WH-LICENSOR, GAP]

d. I know whati the lion devoured i at sun-
rise.
[WH-LICENSOR, GAP]

Wilcox et al. define S(w) as the surprisal of a
given word w, estimated in terms of the log in-
verse probability of w according to the RNN’s hid-
den state softmax activation h before consuming
w, given all previous words in the sentence:

(4) S(w) = �log2 p(w|h)

If the model has learned to represent filler-gap
dependencies, then the surprisal of the proposi-
tion at in (3a) should be a small number, since
the probability of at in this context is high, and
the surprisal of ‘at’ in (3b) should be a large num-
ber, since the probability of ‘at’ in this context is
low. Consequently, their difference S(3b)�S(3a)
should yield a large positive number. Similarly,
S(3d)� S(3c) should yield a large negative num-
ber, and the full licensing interaction (S(3b) �
S(3a)) � (S(3d) � S(3c)) should be a large pos-
itive number. This licensing interaction represents
how well the network learns both parts of the li-
censing relationship: a positive wh-licensing inter-
action means the model represents a filler-gap de-
pendency between the wh-word and the gap site;
a licensing interaction indistinguishable from zero
indicates no such dependency. Wilcox et al. find
that typical models show about 4 bits of licensing
interaction in simple examples like (3).

Using this design, Wilcox et al. (2019b) found
that LSTM RNNs can maintain filler-gap depen-
dencies across up to four clausal boundaries, not
unlike the ones in (1). Two models were used
for these experiments: (i) the model in Gulordava
et al. (2018) – henceforth the Gulordava model –
which was trained on 90 million tokens of English
Wikipedia, and has two hidden layers of 650 units
each; and (ii) Jozefowicz et al. (2016) – hence-
forth the Google model – which was trained on
the One Billion Word Benchmark (Chelba et al.,
2013), has two hidden layers with 8196 units each,
and employs a character-level convolutional neu-
ral network.

But more recently Da Costa and Chaves (2020)
shows that the Gulordava and Google LSTM mod-
els have learned filler-gap dependencies only very
imperfectly. In particular, the models completely
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Figure 1: Surprisal at the gap-agreeing verb in ‘which’
interrogatives across embedding levels (LSTM RNNs)

failed to learn that filler-gap constructions also im-
pose agreement dependencies like those in (5). In
such constructions, the singular/plural number in-
formation of the extracted phrase must match that
of the verb from which the extraction takes place.

(5) a. They wondered which lawyer I think you
said was/*were upset.

b. They wondered which lawyers I think you
said *was/were upset.

Following the same factorial approach and code
of Wilcox et al. (2018), Da Costa and Chaves
(2020) extracted the softmax activation of the
verbs were/was in 20 items like those illustrated
in (6), up to four levels of clausal embedding.

(6) a. Someone wondered which lawyer(s) I
think was/were ...
[Nsg/pl , LEVEL1, Vsg/pl]

b. Someone wondered which lawyer(s) I
think you said was/were ...
[Nsg/pl , LEVEL2, Vsg/pl]

c. Someone wondered which lawyer(s) I
think you said you thought was/were ...
[Nsg/pl , LEVEL3, Vsg/pl]

d. Someone wondered which lawyer(s) who
people believe I think you said you
thought was/were ...
[Nsg/pl , LEVEL4, Vsg/pl]

The results in Figure 1 show that both the Gu-
lordava and the Google models failed. Had the



LSTM RNNs succeeded at this task, the condi-
tions where the noun and verb agree (i.e. Npl-Vpl

and Nsg-Vsg) would be lower in surprisal than
the conditions where the agreement is mismatched
(i.e. Npl-Vsg and Nsg-Vpl). Note also that in the
Google model surprisal increased with the level of
embedding, so that the correct verb form is more
unexpected in level 4 than the incorrect verb forms
in levels 1 and 2. Da Costa and Chaves (2020)
tested other types of construction and the results
are equally bad, suggesting that the Gulordava and
Google models have not learned the morphosyntax
of filler-gap dependencies, even though they were
trained on datasets larger than what a child learner
is exposed to; according to Atkinson et al. (2018),
children begin to exhibit adult-like active forma-
tion of filler-gap dependencies by age 6.

1.2 Learning Island Constraints
Wilcox et al. (2018, 2019b) in addition claim
that the Gulordava and Google models have
learned certain constraints on filler-gap dependen-
cies known as Islands (Ross, 1967). In partic-
ular, Wilcox et al. claim that the models learn
that the subordinate clauses introduced by whether
have reduced acceptability as in (7a), that relative
clauses and adverbial adjuncts are difficult to ex-
tract from as in (7b,c), and that conjuncts and the
left branches of NP are not possible to extract, as
in (7d,e). All reported examples below are from
Wilcox et. al experiments. Square brackets indi-
cate the island-establishing environments.

(7) a.* I know what Alex said [whether your
friend devoured at the party].
(Wh-Island)

b.*I know (that/what/who) the family bought
the painting [that depicted last year].
(Complex NP Constraint Island)

c.*I know what the patron got mad [after
the librarian placed on the wrong shelf].
(Adjunct Constraint Island)

d.*I know what the man bought [the painting
and ] at the antique shop.
(Conjunct Constraint island)

e.*I know what color you bought [ car] last
week.
(Left Branch Constraint island)

However, Wilcox et.’s claims are too strong.
First, most of these island constraints are more

complex than Wilcox et. al’s discussion suggest,
and before it cannot be claimed that a model learns
island constraints before all the associated condi-
tions are shown to have been learned as well. For
example, the Conjunct Constraint is but a piece
of a larger set of constraints that are specific to
coordination, known as the Coordinate Structure
Constraint (CSC). The CSC consists of the Con-
junct Constraint, the Element Constraint, the ATB
Exception, and the Asymmetric Exception; see
Kehler (2002, Ch.5) for a detailed overview and an
account of most of these constraints that is based
on pragmatic discourse relations.

The Complex NP Constraint (CNPC) is simi-
larly complex. First, it is not restricted to relative
clauses: nouns that semantically introduce propo-
sitional complements like in the claim that Robin
stole a book also induce such extraction limita-
tions (e.g. *Whati did you reject the claim [that
Robin stole i]?’). Second, it is also known that
the CNPC vanishes in presentational relatives (i.e.
in relatives that express assertions rather than pres-
supposed content), as we discuss below.

Moreover, some of the island constraints that
Wilcox et al. probed are know to be weakened
when the island phrase is untensed, and vanish al-
together if there is a secondary (i.e. ‘parasitic’) gap
outside the adjunct (Engdahl, 1983); see Phillips
(2006) for experimental evidence. In sum, there is
a complex array of facts that still need to be tested.

Finally, the Left Branch Constraint (LBC) items
that Wilcox et al. used, like (7e), have a critical
confound. The sentences are not licit even without
the extraction (i.e. *what color car). And since the
sentences are ill-formed, with or without extrac-
tion, it remains unclear whether the RNNs have or
not learned the LBC.

But even conceding that the results are over-
all on the right track, there is one final problem.
Both the Gulordava and Google models failed to
learn that extraction from subject phrases (phrasal
or clausal) is hampered, as illustrated in (8).

(8) a.*I know who [the painting by ] fetched a
high price at auction.
(Subject Constraint Island)

b.*I know who [for the seniors to defeat ]
will be trivial.
(Sentential Subject Constraint Island)

The difficulty in learning clausal Subject Island ef-
fects is unexpected because such islands are much



stronger than Wh-islands. Not only the oddness
induced by a Wh-island constraint violation is less
pronounced than that of clausal Subject islands,
but also because counterexamples to the former
are much easier to find. Compare (7) with the ac-
ceptable counterpart in (9).

(9) Which shoes are you wondering [whether
you should buy ]?

See Abrusán (2014, Ch.4) for strong evidence that
Wh-islands and their exceptions are contingent on
subtle semantic-pragmatic factors, not syntax. In-
deed, there is growing evidence that many island
constraints are at least in part due to non-syntactic
factors, including pragmatics and processing bi-
ases; see Chaves and Putnam (2020) for a de-
tailed overview. For example, counterexamples
have been noted in the literature to all of the is-
land constraints probed by Wilcox et al., with the
exception of the Conjunct Constraint and the Left
Branch Constraint islands; see Hofmeister and Sag
(2010) and references cited. This includes Sub-
ject Islands involving VP subjects, as in the at-
tested data in (10). See Huddleston et al. (2002,
1093,1094), Santorini (2007), and Chaves (2013)
for more attestations.

(10) a. In his bedroom, which [to describe as
small] would be a gross understatement,
he has an audio studio setup.
[pipl.com/directory/name/Frohwein/Kym]

b. They amounted to near twenty thousand
pounds, which [to pay ] would have ru-
ined me. (Benjamin Franklin, William
Temple Franklin and William Duane.
1834. Memoirs of Benjamin Franklin, vol
1. p.58)
[archive.org/details/membenfrank01frankrich]

c. The (...) brand has just released their S/S
2009 collection, which [to describe as
noticeable] would be a sore understate-
ment.
[missomnimedia.com/2009/page/2/?s=art+radar&
x=0&y=0]

d. Because this does purport to be a food
blog, I will move from the tv topic to the
food court itself, which [to describe as
impressive] would be an understatement.
[phillyfoodanddrink.blogspot.com/2008/06/foodies-
food-court.html]

All of these counterexamples involve restrictive
relative clauses, suggesting that the Subject Con-
dition is sensitive to pragmatics (Abeillé et al.,
2018; Chaves and Dery, 2019).

The point here is a cautionary one: many is-
land constraints are not absolute, and come with
a complex array of patterns, many of which are
still poorly understood. It cannot be claimed that
a given language model has learned an island con-
straint before showing that both the negative and
the positive cases (if any exist) have been correctly
learned as well.

Note also that the Gulordava and the Google
models did not perform in the same way at learn-
ing these island constraints: whereas the Google
model failed to learn CNPC islands when the word
‘that’ appears instead of ‘who/what’, the Gulor-
dava model failed to learn Wh-Islands. The perfor-
mance of the Google was not significantly better
that Gulordava’s even though the former was orig-
inally trained with ten times more data than the
latter, contained ten times as many hidden units,
and used character CNN embeddings. This again
suggests that something fundamental about filler-
gap dependencies is being missed.

The question then becomes: are these mod-
els actually learning filler-gap dependencies or are
they simply learning surface-based contingencies
that have little to do with the underlying syntactic
and semantic mechanisms that cause island phe-
nomena? As Jo and Bengio (2017) demonstrate,
neural networks tend to learn surface statistical
regularities in the dataset rather than higher-level
abstract concepts; for adversarial research show-
ing this to be the case in the language domain
see Jia and Liang (2017) and Iyyer et al. (2018),
for instance. Indeed, Marvin and Linzen (2018)
found that LSTM RNNs fail to learn reflexive pro-
noun agreement and negative polarity licensing,
and Wilcox et al. (2019a) showed that such mod-
els learn center-embedding dependencies only im-
perfectly. In the remainder of this paper the same
models, code and licensing interaction approach
of Wilcox et al. (2018) is used to provide evidence
suggesting that these LSTM RNNs merely capture
partial and superficial morphosyntactic properties
of filler-gap dependency constraints. The present
results are consistent with those of Wilcox et al.
(2019a), in which these models are not fully able
to suppress expectations for gaps inside at least
some island environments and recover them later.



2 Extraction from Relative Clauses

Wilcox et al. (2018) found that evidence suggest-
ing that both the Google and the Gulordava models
have learned the CNPC. However, the CNPC is not
without principled exceptions. It is well-known
that CNPC effects systematically vanish in exis-
tential relative clauses (Erteschik-Shir and Lappin,
1979; McCawley, 1981; Chung and McCloskey,
1983) as in (11). See Kush et al. (2013) for exper-
imental evidence that existential relatives are not
island inducing syntactic environments.

(11) a. This is the kind of weather that there are
[many people who like ].
(Erteschik-Shir and Lappin, 1979)

b. There were several old rock songs that she
and I were [the only two who knew ].
(Chung and McCloskey, 1983)

c. John is the sort of guy that I don’t know
[a lot of people who think well of ].
(Culicover, 1999, 230)

d. Which diamond ring did you say there
was [nobody in the world who could buy

]? (Pollard and Sag, 1994, 206)

Such relatives are special in that they express as-
sertions rather than presupposed content, and the
extraction is thus arguably acceptable because the
referent that is questioned is part of the content
that is asserted and at-issue (Goldberg, 2013). It
should be relatively easy for the models to use the
there be sequence as a cue that these constructions
are different from other relatives. If Google and
Gulordova’s RNN models have learned the CNPC
rather than superficial contingencies then the ex-
istence of a second gap inside an existential rela-
tive should not cause a large spike in surprisal and
the licensing interaction should be small, or ide-
ally, close to zero. For this purpose 18 experimen-
tal items were taken from Kush et al. (2013) and
adapted to the present task, using the methodology
as Wilcox et al. A sample is in (12).1

(12) a. It was known that there were many math-
ematicians who worked on the project for
years.
[NO WH-LICENSOR, NO GAP]

1Only verbs that strongly require complements were em-
ployed, and that-relatives were avoided given that the models
have difficulty with them according to Wilcox et al. (2018).
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Figure 2: Licensing Interaction in Existential Relatives

b.*This was the problem which there were
many mathematicians who worked on the
project for years.
[WH-LICENSOR, NO GAP]

c.*It was known that there were many math-
ematicians who worked on for years.
[NO WH-LICENSOR, GAP]

d. This was the problem which there were
many mathematicians who worked on

for years.
1 [WH-LICENSOR, GAP]

Ideally, the no-gap condition interaction S(12b)�
S(12a) should be a positive number, and the gap
condition interaction S(12d) � S(12c) a negative
number. As the graphs in Figure 2 indicate, this is
what was found for the Gulordava model, but not
for Google’s. In the latter, the no-gap condition is
indistinguishable from zero (t = -0.75, p = 0.46)
suggesting that the latter model overlooks the sub-
ject gap. That said, the full wh-licensing interac-
tion values are clearly positive, and in the order
of about 1.5 bits. This is much lower than the 4
bits found by Wilcox et al. (2018), but nonethe-
less suggests that at least some aspects of the filler-
gap dependency are detected by the models. Many
other attempts were made to arrive at stronger re-
sults, with different materials, but the results in-
variably had similar outcomes, with the ‘no-gap’
bars either being indistinguishable from zero or
negative. I now move on to islands which are not
as strongly correlated with surface cues.
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3 Extraction from Adjunct Clauses

Wilcox et al. (2018) probed the strongest type of
adjunct island (tensed adjuncts), traditionally re-
garded as exceptionless since Huang (1982). But
recent work has revealed that exceptions do exist;
see Kluender (1998, 267), Truswell (2011, 175,
ft.1), Levine and Hukari (2006, 287), and Gold-
berg (2006, 144). For example, Sprouse et al.
(2016) found no evidence of an island effect in ex-
amples like (13), in terms of sentence acceptability
rating, but found strong evidence of island effects
in other adjunct island examples.

(13) I called the client [who]i the secretary wor-
ries [if the lawyer insults i].
(Sprouse et al., 2016)

Similarly, Müller (2017) experimentally shows
that Swedish conditional adjuncts seem to yield
much weaker island effects than causal adjuncts,
and Kohrt et al. (2018) found experimental evi-
dence that (non-clausal) English adjunct islands
are contingent on semantic factors. In more recent
work, Chaves and Putnam (2020) provide experi-
mental evidence suggesting that Mueller’s results
likely extend to English as well. Chaves and Put-
nam (2020) report a sentence acceptability exper-
iment with 24 items falling into three conditions,
illustrated in (14).

(14) a. Whoi did Sue blush [when she saw i]?
[TEMPORAL ADJUNCT]

b. Whati did Tom get mad [because Phil for-
got to say i]? [CAUSAL ADJUNCT]

c. Whati does Evan get grumpy [if he is told
to do i]? [CONDITIONAL ADJUNCT]

I what follows I briefly describe this experiment
in more detail, with the aim of repurposing the

items for a counterpart experiment using the Gu-
lordava and Google models. Each item was in-
terspersed and pseudo-randomized with 36 filler
phrases, half of which are ungrammatical, as illus-
trated in (15). The grammatical distractors were
immediately followed by Yes/No comprehension
questions, and the mean comprehension question
accuracy was 86%.

(15) a.*Who does the union identify as having
most recently fired from ?

b. What did the editor recommend should be
revised ?

Chaves and Putnam analyzed data from 38 English
native speakers, who were asked to rate the accept-
ability of each experimental item on a 5-point Lik-
ert scale. There was a wide range of acceptability
scores, from fairly high in the acceptability scale
to very low, as seen in Figure 3. The (aggregate)
ratings for the grammatical (G) and the ungram-
matical (U) distractors are included, for compar-
ison. Conditional adjuncts were clustered at the
high end of the ratings, temporal adjuncts in the
middle, and causal adjuncts at the bottom.

I now describe how the stimuli from this ex-
periment was repurposed to the same task that
Wilcox et al. (2018) employed. The top 5 human-
rate rated items (High Acceptability condition) re-
ceived a mean acceptability of 3.30 (SD = 0.2),
and the bottom human-rated 5 rated items (Low
Acceptability condition) received a mean accept-
ability of 1.95 (SD = 0.13). These 10 items were
selected and adapted to the 3 ⇥ 2 ⇥ 2 factorial li-
censing interaction methodology of Wilcox et al.
(2018). The counterparts of the item in (14c) are
shown in (16) and (17) for illustration. In a nut-
shell, all items were embedded under ‘I know’ and
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Figure 4: Effect of extraction site on wh-licensing interaction for adjunct islands, across high/low acceptability

all proper names were replaced with pronouns. In
the Object condition there is no adjunct clause.

(16) a. I know that they usually are told to do the
homework in the morning.
[OBJECT, NO WH-LICENSOR, NO-GAP]

b.*I know what they usually are told to do
the homework in the morning.
[OBJECT, WH-LICENSOR, NO-GAP]

c.*I know that they usually are told to do in
the morning.
[OBJECT, NO WH-LICENSOR, GAP]

d. I know what they usually are told to do
in the morning.

[OBJECT, WH-LICENSOR, GAP]

In the Adjunct back condition there is an adjunct
clause at the end of the sentence, as in (17). Fol-
lowing Wilcox et al. (2018), there was a third
condition where the adverbial clause is fronted,
and appears immediately after the complementizer
that rather than at the end of the utterance.

(17) a. I know that the kids get grumpy if they
are told to do the homework in the morn-
ing.
[ADJUNCT BACK, NO WH-LICENSOR, NO-GAP]

b.*I know what the kids get grumpy if they
are told to do the homework in the morn-
ing.
[ADJUNCT BACK, WH-LICENSOR, NO-GAP]

c.*I know that the kids get grumpy if they are
told to do in the morning.
[ADJUNCT BACK, NO WH-LICENSOR, GAP]

d. I know what the kids get grumpy if they
are told to do in the morning.
[ADJUNCT BACK, WH-LICENSOR, GAP]

If the Gulordava and Google models have learned
the subtleties of the tensed Adjunct Constraint
then the filler-gap dependencies in the High Ac-
ceptability condition items should have a signif-
icantly lower surprisal than the Low Acceptabil-
ity condition items. In order to access this, the
surprisal of the word after the critical region was
measured. Focusing on the object items first, inter-
actions of the type S(16b)�S(16a) should ideally
result in a positive number, however, for both High
acceptability or Low acceptability items. This was
the case in the Google model, but not for the Gu-
lordava model, as Figure 4 shows; perhaps the lat-
ter model discovered that a gap after the preposi-
tion in (16b) is not necessarily out of the question.
S(16d)�S(16c) yielded the expected highly neg-
ative values, as illustrated by the long teal bars.

Moving on to the Adjunct back items, the inter-
actions of the type S(17b)�S(17a) should ideally
result in a positive number as usual, contrary to
fact, and S(17d)� S(17c) should ideally result in
a negative number in the High acceptability condi-
tion and cancel out in the Low acceptability condi-
tions. Neither result occurred because the interac-
tion values were centered around zero. The full li-
censing interaction (S(17b)�S(17a))�(S(17d)�
S(17c)) is shown in Figure 5. None of the Ad-
junct front/back High/Low conditions is statisti-
cally distinguishable from zero, although signifi-
cance is approached (t = 2.73, p = 0.052) in the
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Figure 5: Full licensing interaction for Adjunct Islands

case of Adjunct front High for Gulordava.
In sum, all extractions from clausal adjuncts

are ultimately deemed islands environments by the
models, contrary to the human judgments.

4 Extraction from Negative Phrases

Negative Islands are perhaps the clearest type of
island in which semantic and pragmatic factors
play a key role. Consider the examples in (18).

(18) a.*Which country weren’t you born in ?

b.*How many kids don’t you have ?

c.*How fast didn’t John drive ?

The question in (18a) presupposes that the ad-
dressee was born in all countries but one, which
is contrary to world knowledge, and therefore in-
felicitous (Kuno and Takami, 1997). Hence, the
oddness vanishes if the verb is not a one-time pred-
icate, as in (19).

(19) Which country haven’t you visited yet?

The oddness of the degree questions in (18b,c)
is due to an analogous reason; see Abrusán (2011)
for detailed discussion. It is again clear that the
oddness is caused by semantic factors, since the
introduction of existential modals makes the island
effect vanish (Fox and Hackl, 2006):

(20) a. How many kids can’t you have ?
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Figure 6: Wh-licensing in negative phrases

b. How fast is John required not to drive ?

In order to evaluate whether RNNs are sensi-
tive to such effects 14 items were constructed in a
2⇥2⇥2 design, as illustrated in (21). The verb is
negated in items in the negative (NEG) condition.

(21) a. I wonder if the owner of the truck has
(not) driven at this speed during the race.
[NO WH-LICENSOR, POS/NEG, NO GAP]

b.*I wonder how fast the owner of the truck
has (not) driven at this speed during the
race. [WH-LICENSOR, POS/NEG, NO GAP]

c.*I wonder if the owner of the truck has
(not) driven at during the race. [NO

WH-LICENSOR, POS/NEG, GAP]

d. I wonder how fast the owner of the truck
has (*not) driven at during the race.
[WH-LICENSOR, POS/NEG, GAP]

The results are shown in Figure 6. The inter-
action S(21b) � S(21a) should have resulted in
a moderate-to-large positive numbers, regardless
of the presence of negation. In other words, the
red bars should be positive and not overlap with
zero. This was not true of either model, espe-
cially for Gulordava. Conversely, S(21d)�S(21c)
should have yielded a moderate-to-large negative
number in the pos(itive) condition but obtain a sig-
nificantly higher value in the neg(ative) condition
(ideally, close to zero). However, there was no sta-
tistically significant difference between the inter-
action values across the two island conditions (pos
and neg) for the Google model (t = 0.3, p = 0.73)
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nor for the Gulordava model (t = 1.11, p = 0.27).
The full interactions are shown in Figure 7. Had
Negative Islands been learned, the teal bars would
be centered around zero, like those in in Figure 5.

5 Discussion

The claim that sate-of-the-art LSTM RNNs mod-
els have learned filler-gap dependencies and is-
lands is premature on both linguistic and exper-
imental grounds. First, the linguistic constraints
in question are far more complex than what ex-
tant studies consider. Second, there is evidence
that these models only learn partial contingen-
cies about filler-gap dependencies, which suggests
that the actual linguistic mechanism that underlies
such long-distance phenomena is not accessible to
the model.

The problem is arguably not due to a lack of
data. The training datasets for Gulordava and
Google are unrealistically large when compared to
the amount of linguistic input the average child is
exposed to (Atkinson et al., 2018). Similarly, the
problem is not likely to be due to lack of expres-
sivity, since this kind of model is Turing-complete;
see Siegelmann and Sontag (1995) and Siegel-
mann (1999, 29–58) for proofs and examples, as
well as Hornik et al. (1989) and Lu et al. (2017)
for detailed discussion about Cybenko’s universal
approximation theorem.

The present findings suggest that model size and
training regimen yield diminishing returns, and
that there is a more fundamental factor prevent-
ing such systems to learn filler-gap dependencies.
The problem likely stems from the fact that filler-

gap dependencies are not merely surface string
patterns: they involve rich morphological, syntac-
tic and semantic dependencies which crucially in-
teract with pragmatics and world knowledge, thus
far absent from training. Most crucially, many is-
land phenomena seems to be sensitive to semantic
and pragmatic constraints, including the Subject
Constraint (Chaves and Dery, 2019; Abeillé et al.,
2018), the Adjunct Constraint (Truswell, 2011;
Müller, 2017; Kohrt et al., 2018; Goldberg, 2013),
the Complex NP Constraint (Erteschik-Shir and
Lappin, 1979; Goldberg, 2013), the Coordinate
Structure Constraint (Kehler, 2002, Ch.5), Wh-
Islands Abrusán (2014, Ch.4), Negative Islands
(Abrusán, 2011), among others. See Chaves and
Putnam (2020) for extensive discussion of these
and other island effects.

In sum, it not clear how current neural models
can learn island constraints from stringsets alone,
precisely because of the subtle semantic and prag-
matic properies that underpin the phenomena in
question. The present findings are consistent with
the fact that Marvin and Linzen (2018) found that
LSTM RNNs fail to learn other complex phenom-
ena such as reflexive pronoun agreement, negative
polarity licensing, and center-embedding depen-
dencies (Wilcox et al., 2019a).

All experimental items and statistical anal-
ysis scripts are made available online at
https://github.com/RuiPChaves/LSTM-RNN-
unbounded-dependency-experiments. The code to
run the models is the same as Wilcox et al. (2018).
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Birkhäuser, Boston, MA.

Hava T. Siegelmann and E. Sontag. 1995. On the com-
putational power of neural nets. Journal of Com-
puter and Systems Sciences, 50(1):132–150.

Jon Sprouse, Ivano Caponigro, Ciro Greco, and Carlo
Cecchetto. 2016. Experimental syntax and the vari-
ation of island effects in english and italian. Natural
Language & Linguistic Theory, 34(1):307–344.

Robert Truswell. 2011. Events, Phrases and Ques-
tions. Oxford: Oxford University Press.

Ethan Wilcox, Roger Levy, and Richard Futrell. 2019a.
Hierarchical representation in neural language mod-
els: Suppression and recovery of expectations. In
Proceedings of Blackbox NLP at ACL, page pp.10.

Ethan Wilcox, Roger P. Levy, Takashi Morita, and
Richard Futrell. 2018. What do rnn language mod-
els learn about filler-gap dependencies? In Proceed-
ings of the Workshop on Analyzing and Interpreting
Neural Networks for NLP.

Ethan Wilcox, Roger P. Levy, Takashi Morita, and
Richard Futrell. 2019b. What syntactic structures
block dependencies in RNN language models? In
Proceedings of the 41st Annual Meeting of the Cog-
nitive Science Society (CogSci).

https://www.aclweb.org/anthology/D18-1151
https://www.aclweb.org/anthology/D18-1151


Probing RNN Encoder-Decoder Generalization of Subregular Functions
using Reduplication

Max Nelson
Department of Linguistics

University of Massachusetts Amherst
manelson@umass.edu

Hossep Dolatian
Department of Linguistics

Institute for Advanced Computational Science
Stony Brook University

hossep.dolatian@stonybrook.edu

Jonathan Rawski
Department of Linguistics

Institute for Advanced Computational Science
Stony Brook University

jonathan.rawski@stonybrook.edu

Brandon Prickett
Department of Linguistics

University of Massachusetts Amherst
bprickett@umass.edu

Abstract

This paper examines the generalization abil-
ities of encoder-decoder networks on a class
of subregular functions characteristic of natu-
ral language reduplication. We find that, for
the simulations we run, attention is a necessary
and sufficient mechanism for learning gener-
alizable reduplication. We examine attention
alignment to connect RNN computation to a
class of 2-way transducers.

1 Introduction

Reduplication is a cross-linguistically common
morphological process (Moravcsik, 1978; Rubino,
2005). It is estimated that total reduplication and
partial reduplication occur in 85% and 75% of the
world’s languages, respectively (Rubino, 2013).
Total reduplication places no bound on the size of
the reduplicant while partial does.

1. (a) wanita ! wanita⇠wanita (Indonesian)
‘woman ! women’

(b) guyon ! gu⇠guyon (Sundanese)
‘to jest ! to jest repeatedly’

Morphological and phonological processes are
sufficiently characterized by the regular class of
languages and functions, and effectively com-
puted by finite-state transducers (FSTs) (Johnson,
1972; Kaplan and Kay, 1994; Koskenniemi, 1984;
Roark and Sproat, 2007). In finite-state calcu-
lus, an FST can process the input string either
once in one direction (1-way FST), or multiple

times by going back and forth (2-way FST). 1-
way FSTs compute rational functions, while 2-
way FSTs are more expressive, computing regu-
lar functions (Engelfriet and Hoogeboom, 2001;
Filiot and Reynier, 2016).1 Most morphological
and phonological processes are in fact restricted
to subclasses of rational functions and their cor-
responding 1-way FSTs (Chandlee, 2014, 2017;
Chandlee and Heinz, 2018). The exception is to-
tal reduplication, which is uncomputable by 1-
way FSTs due to its unboundedness (Culy, 1985;
Sproat, 1992). It needs the power of 2-way FSTs,
and requires subclasses of the regular functions
(Dolatian and Heinz, 2018b).

This paper uses these subregular functions that
characterize reduplication to probe the learning
and generalization capacities of Recurrent Neu-
ral Network (RNN) architectures. While given
infinite computational power, RNNs can simu-
late Turing machines (Siegelmann, 2012), many
RNN classes and their gating mechanisms are ac-
tually expressively equivalent to weighted finite-
state acceptors (Rabusseau et al., 2019; Peng et al.,
2018). Furthermore, growing evidence suggests
that RNNs and other sequential networks prac-
tically function as subregular automata (Merrill,
2019; Weiss et al., 2018).

We extend these subregular characterizations to

1In the French literature on formal language theory, 1-way
FSTs compute rational functions. In contrast, most work in
American computer science calls this class the regular func-
tions. We follow French conventions because we also discuss
2-way FSTs which compute regular functions in their system.



test encoder-decoder (ED; Sutskever et al., 2014)
networks. We use a typology of reduplication pat-
terns computed by subregular 2-way FSTs (Dola-
tian and Heinz, 2019) to probe the ability of the
networks to learn patterns of varying complex-
ity. Our results suggest that when adding atten-
tion (Bahdanau et al., 2014) to these models, not
only do they successfully learn and generalize all
of the attested reduplication patterns that we test,
but the attention acts in an alignment suggestive
of the subregular 2-way FSTs. In contrast, lack of
attention prohibits learning of the functions, and
the generalization is suggestive of 1-way FSTs.
This provides a principled glimpse into the inter-
pretability of these networks on well-understood
computational grounds, motivated by linguistic in-
sight (Rawski and Heinz, 2019).

The paper proceeds as follows. §2 overviews
the computation and learnability of reduplication.
Methods, results, and discussion are in §3,§4,§5,
respectively. Conclusions are in §6.

2 Background

2.1 Computing reduplication
As stated, reduplication is characterized by differ-
ent subclasses of regular functions and computed
by their corresponding FSTs, forming the hierar-
chy shown in Figure 1. 1-way FSTs compute ra-
tional functions. They are widely used in com-
putational linguistics and NLP (Roche and Sch-
abes, 1997; Beesley and Karttunen, 2003; Roark
and Sproat, 2007). 2-way FSTs are more pow-
erful. They exactly compute regular functions,
which mathematically correspond to string-to-
string transductions using Monadic Second Order
logic (Engelfriet and Hoogeboom, 2001), making
them the functional counterpart of the regular lan-
guages (Büchi, 1960). They have mostly been
used outside of NLP (Alur and Černý, 2011).

Regular functions2-way FST =

Rational functions1-way FST =

Seq

C-Seq

ISL OSL

C-OSL

Figure 1: Hierarchy of subregular functions

When defined over a 1-way FST, all partial
reduplicative functions are computable by Sub-
sequential (Seq) functions (Chandlee and Heinz,
2012; Chandlee, 2017), which are computed by
deterministic 1-way FSTs. Total reduplication is
uncomputable by 1-way FSTs because there is no
bound on the size of the reduplicant (Culy, 1985),
so its output language is at least Mildly Context-
Sensitive (Seki et al., 1991, 1993).

Over 2-way FSTs, both partial and total redu-
plication can be alternatively computed by a con-
catenation of subclasses of regular functions that
are analogous to 1-way FST subclasses.2 Al-
most all reduplicative processes, including to-
tal reduplication, are computed by Concatenated-
Sequential (C-Seq) functions, which are concate-
nations of Seq functions (Dolatian and Heinz,
2018a,b). Most reduplication processes are suffi-
ciently characterized by C-Seq functions because
they can almost always be decomposed into two
concatenated Seq functions: one to produce the
reduplicant via truncation Trunc(x), and one to
produce an identical copy of the base ID(x). Fig-
ure 2 shows such a division of a reduplicated word
gu⇠guyon (1b). 3 Figure 2 shows this division of
a reduplicated word gu⇠guyon (1b).

guyon

gu ⇠ guyon

Trunc(x ) ID(x )

Figure 2: Initial-CV reduplication as a concatenation
of subsequential functions.

Seq functions as 1-way FSTs and C-Seq func-
tions as 2-way FSTs both compute partial redupli-
cation, but differ in their origin semantics (Dola-
tian and Heinz, 2018b), the finite-state analog to
alignment (Bojańczyk, 2014). Consider a func-
tion f , an FST T which computes f , and an input-
output pair (x, y) such that f(x) = y. Given some
substring yj in y, the origin information of yj with
respect to T is the position xi in x such that the

2See Alur et al. (2014) on the use of concatenation as a
function combinator.

3 Chandlee (2017) and Dolatian and Heinz (2018a)’s re-
sults are actually stronger. Over 1-way FSTs, most par-
tial reduplicative processes are Input-Strictly Local (ISL)
functions, a subclass of Seq functions. Over 2-way FSTs,
most reduplicative processes are the concatenation of Output-
Strictly Local (C-OSL) functions, a subclass of C-Seq.



Finite-state transducer Origin information
1-way a.i a.ii

q0start q1 q2

q3

q4 qf
(o:o) (t:t)

(p:p)

(a:a⇠ta)

(a:a⇠pa)

(⌃ : ⌃)

(n:n)
p a t

p a p a t

2-way b.i b.ii

q0start q1 q2

q3 q4 qf

(o:�:+1) (C:C:+1)

(V:V:-1)

(⌃:⌃:-1)
(o:⇠:+1)

(⌃:⌃:+1)

(n:�:+1)

p a t

p a p a t

Figure 3: FSTs and origin information for initial-CV reduplication

FST’s input-read head is in position xi of the in-
put x when the FST outputs the substring yj .

To illustrate, consider initial-CV copying:
f(pat) = papat. This function is computable
by either the 1-way FST in Figure 3.a.i or the 2-
way FST in Figure 3.b.i. The input is flanked by
the end boundaries o,n. The 1-way FST implic-
itly advances from left-to-right on the input string.
The 2-way FST advances left-to-right via the ex-
plicit +1 direction parameter until it produces the
first CV string (=the reduplicant). After that, it
moves right-to-left via the -1 direction parameter
and reaches the start boundary o. It then advances
left-to-right and outputs the base.4 For the input-
output pair (pat, papat), the 1-way FST generates
an ‘alignment’ or origin information such that the
entire second copy ‘pa’ is associated or generated
from the vowel ‘a’ in the input (Figure 3.a.ii). In
contrast, the 2-way FST generates the alignment
in Figure 3.b.ii where the second output ‘p’ is as-
sociated with the input consonant ‘p’. The role of
origin semantics and alignment acts as a diagnos-
tic for understanding whether the neural networks
we probe behave more like a 1-way or 2-way FST.

2.2 Learning reduplication
Chandlee et al. (2015) and Dolatian and Heinz
(2018a) respectively show that ISL (Seq) and C-
OSL (C-Seq) reduplicative processes are provably
learnable by inducing their corresponding 1-way
or 2-way FSTs in polynomial time and data. For

4See the appendix for more details on 2-way FSTs.

Dolatian and Heinz (2018a), their proof relies on
making the training data ‘boundary enriched’ with
the reduplicative boundary symbol ⇠, e.g. the
training data for initial-CV reduplication is {(pat,
pa⇠pat), (mara, ma⇠mara), etc.}. They hypothe-
size that learning without the boundary ⇠ is tanta-
mount to learning morpheme segmentation.

Gasser (1993) used simple RNNs to model
reduplication and copying functions, finding that
they could not properly learn reduplicative pat-
terns. However, Prickett et al. (2018) found that
ED networks, a class of RNNs that have per-
formed well on a number of other morphologi-
cal tasks (Cotterell et al., 2016; Kirov and Cot-
terell, 2018) could learn simple reduplicative pat-
terns. These patterns used training data that did
not represent a realistic language learning sce-
nario, since all words had the same length and syl-
lables were limited to a CV structure. We test the
extent to which ED networks are capable of learn-
ing more realistic reduplicative functions. We find
that vanilla EDs, like Prickett et al.’s, struggle to
scale to realistic data, while EDs augmented with
an attention mechanism easily acquire complex,
natural-language-based reduplication patterns.

3 Methods

3.1 Data
We use a library of C-Seq transducers derived
from the typology of natural language reduplica-
tion patterns (Dolatian and Heinz, 2019) to gener-
ate sets of input-output mappings which we use to



query several ED architectures.
The typology exhibits multiple parameters and

distinctions. Already mentioned was the distinc-
tion between partial and total reduplication: copy-
ing a bounded substring of the input gu⇠guyon
(1b) vs. copying the entire potentially unbounded
input wanita ! wanita⇠wanita (1a).

For partial reduplication, one subparameter is
whether the reduplicant has a fixed size or a vari-
able size that is still smaller than some fixed nat-
ural number. Fixed-sized partial reduplication
is the most common pattern, e.g. initial CV-
copying: gu⇠guyon (1b) (Moravcsik, 1978; Ru-
bino, 2005). One instantiation of variable-length
partial reduplication is copying the initial foot
(2(a)i) (Marantz, 1982), or syllable (2(b)i) (Hau-
gen, 2005), which used to be unattested (Moravc-
sik, 1978). Another subparameter is whether
the reduplicant is adjacent to the segments it
copied (1b) or non-adjacent, i.e. wrong-sided (2c).
Wrong-sided reduplication is controversial (Nel-
son, 2003) but attested (Riggle, 2004).

2. (a) i. (dimu)rU ! dimu⇠dimurU (Yidin)
‘house’ ! ‘houses’

ii. (gindal)ba ! gindal⇠gindalba
‘lizard sp.’ ! ‘lizards’

(b) i. vu.sa ! vu⇠vusa (Yaqui)
‘awaken’ ! ‘awaken (habitual)’

ii. vam.se ! vam⇠vamse
‘hurry’ ! ‘hurry (habitual)’

(c) qanga ! qanga⇠qan (Koryak)
‘fire’ ! ‘fire (absolute)’

Over 1-way FSTs, adjacent partial reduplication
and foot/syllable copying are ISL while wrong-
sided reduplication is Seq. Over 2-way FSTs, total
reduplication and all the above partial reduplica-
tion functions are C-OSL, a subclass of C-Seq.5

We tested multiple patterns, including partial
initial and wrong-sided reduplication of the first
two syllables, total reduplication, and partial ini-
tial reduplication of the first two segments. For
each pattern, the models are given base strings
as input and trained to reproduce the base string
along with its reduplicant (i.e. a right or left con-
catenated fully or partially copied form). For all
patterns, 10,000 input-output pairs are generated,
7,000 of which are used to train the models while
the remaining 3,000 are held out to test model

5Foot and syllable copying are C-OSL if the input is
marked by syllable/foot boundaries; otherwise they’re C-Seq.

generalization. For clarity the ⇠ symbol is used
throughout this paper to denote the boundary be-
tween a base and its reduplicant, however no such
boundary is present in the model’s training data.

3.2 Models
Many ED networks were built and trained on the
datasets described above. EDs are composed of
a recurrent encoder, which sequentially processes
an input string to yield a vector representation of
the sequence in Rn, and a recurrent decoder which
takes the encoded representation of the input as a
starting state and continues producing outputs un-
til it produces a target stop symbol or reaches an
experimenter-defined maximum length. The use
of recurrent layers in both in the encoder and de-
coder allows EDs to map variable-length input se-
quences to variable-length output sequences, with
no necessary relationship between the length of
the input and target output (Sutskever et al., 2014).

Simple (SRNN) and gated (GRU) recurrence
relations were tested as the encoder and decoder
recurrent layers.6 In SRNN layers the network’s
state at any timepoint, ht, is dependent only on the
input at that timepoint and the network’s state at
the previous timepoint (Elman, 1990).

ht = tanh(Wxxt + bih +Whht�1 + bhh) (1)

Consequently, in an SRNN there is only one
path for the forward and backward propogation
of information. This leads to potential problems
for SRNNs in representing long-distance depen-
dencies (Bengio et al., 1994) and problems with
the backward flow of information during training
(Hochreiter et al., 2001). GRU layers have a series
of gates, called the reset rt, update zt, and new nt

gates, which create an alternative path of informa-
tion flow (Cho et al., 2014), as shown in (2).

rt =�(Wirxt + bir +Whrht�1 + bhr)

zt =�(Wizxt + biz +Whzht�1 + bhz)

nt =tanh(Winxt + bin + rt � (Whnht�1 + bhn))

ht =(1� zt)� nt + zt � ht�1

(2)

In a classic ED architecture, the encoded repre-
sentation of the input is the only piece of infor-

6GRU layers have been shown to behave comparably
to LSTMs, despite having fewer parameters (Chung et al.,
2014). One difference between GRU and LSTM comes from
(Weiss et al., 2018), who suggests that LSTMs are able to
learn arbitrary anbn patterns while GRUs are not.



mation that is passed from the encoder to the de-
coder. This forces all necessary information in
the input to be stored in this vector and preserved
throughout the decoding process. In all experi-
ments presented below, the target outputs consist
of a concatenated reduplicant and base. Because
the model must reproduce the base. it must pre-
serve the identity of all phonemes in the input se-
quence. In order to test the ability of the model
to learn the reduplicative function independent of
its ability to store segment identities over arbitrar-
ily long spans, a global weighted attention mech-
anism was incorporated into some of the models.
This is a key point of departure from previous at-
tempts to model reduplication with ED networks.

Attention allows the decoder to selectively at-
tend to the hidden states of the encoder by learning
a set of weights, Watt, which map the decoder’s
current state to a set of weights over timesteps in
the input, and then concatenating the current de-
coder hidden state, ht, the weighted combination
of all encoder hidden states to yield a new current
decoder state, htt (Bahdanau et al., 2014; Luong
et al., 2015). This is illustrated in Equation 3,
where E is a matrix of size input length ⇥ hid-
den dimensionality such that the ith row contains
the encoder hidden state at timepoint i.

htt = CAT(ht,�(Wattht)
TE) (3)

In this way, the decoder can pull information
directly from the encoder by learning an alignment
between the output and input representations.

The next section presents the results of train-
ing networks with either SRNN or GRU recurrent
layers with and without an attention mechanism
and then testing their ability to generalize the tar-
get pattern. All networks are trained to minimize
phoneme level cross-entropy.

4 Results

In this section, we test ED networks on their abil-
ity to learn partial (§4.1,4.3) and total reduplica-
tion (4.2). Within partial reduplication, we test if
they can learn adjacent reduplication vs. wrong-
sided reduplication, and fixed-size vs. variable-
length reduplication.

4.1 Partial reduplication
One simplifying assumption of previous work is
that the reduplicant is a fixed-length substring of
the base. This section tests the extent to which ED

networks are able to learn reduplicative functions
that copy a variably sized substring of the base in
a way that is sensitive to linguistic structure which
is not explicitly encoded in the training data.

Models were trained on initial and wrong-sided
reduplication in which the reduplicant consisted
of the first two-syllables in the word. Syllables
were defined to be as onset-maximizing as possi-
ble and complex onsets and codas were included
in the training data. This means that, for words
with more than two syllables, the target redupli-
cant included everything between the left edge
of the word and the right edge of the second
vowel (initial: tasgatri!tasga⇠tasgatri, wrong-
sided: tasgatri!tasgatri⇠tasgat). For words with
only one or two vowels the reduplicant was the
entire word (tasgat!tasgat⇠tasgat). Due to the
variable presence of onsets and codas, both simple
and complex, reduplicants in these test cases vary
in length between 2 and 10 phonemes, and may
contain either 1 or 2 vowels.

In order for the model to learn this pattern, it
must learn to identify which phonemes are conso-
nants and which are vowels, must learn the syllab-
ification rules, and must learn to handle the one-
syllable exceptional case. Table (1) shows the gen-
eralization accuracy for the tested network archi-
tectures on datasets instantiating this pattern. As
will be discussed in §4.3, the success of networks
without attention is partially dependent on char-
acteristics of the target language, namely the size
of the language’s segment inventory and permit-
ted string lengths. To highlight these effects, re-
sults are reported from a representative small lan-
guage, which has 10 unique phonemes and permits
bases of between 3 and 9 segments, and a large
language, which has 26 unique phonemes and per-
mits bases of between 3 and 15 segments.

Non-attention Attention
Small Large Small Large

Initial SRNN 0.107 0.000 0.997 0.990
GRU 0.787 0.234 1.000 1.000

wrong-sided SRNN 0.001 0.000 0.995 0.994
GRU 0.682 0.236 1.000 1.000

Table 1: Generalization accuracy by network type for
all four languages that were tested.

The results suggest that the attention-based
models are able to learn and generalize both initial
and wrong-sided two-syllable reduplication pat-
terns in a way that is robust to recurrence rela-



tion and language size. Non-attention GRU mod-
els show mild success in the small language, but
seem heavily affected by language size, a result
that will be explored thoroughly in §4.3. Non-
attention RNN models are unable to learn the pat-
terns in any of the simulations we ran.

The attention-based models are able to learn an
alignment between the input and output that al-
lows them to pull information directly from the
input during decoding, sidestepping a potential
information bottleneck at the encoded represen-
tation. To illustrate the alignment functions, an
SRNN trained on two-syllable initial reduplication
was used to make predictions about novel forms
and the attention weights were stored. Figure (4)
plots the attention weights for this model at ev-
ery step in decoding for the three-syllable word
pastapo and the two-syllable word spaftof (‘<’
and ‘>’ represent start-of-sequence and end-of-
sequence tokens, respectively).

Figure 4: Attention weights over input (horizontal) at
each time step of correct decoding of reduplicated form
(vertical) for two-syllable initial reduplication of the
words pastapo and spaftof. Darker squares indicate a
lower weight on the alignment between two timesteps.

The attention weights confirm that the model
learned an alignment between corresponding
phonemes in the input and output. A single
phoneme in the input has an output correspondent
in both the base and reduplicant. These examples
also illustrate the model’s ability to i) identify the
cut-off point for the reduplicant even when it is not
explicitly marked and to ii) identify exceptional
cases where the word is only two syllables and
thus the reduplicant consists of material past the
second vowel. In pastapo the model cuts off the
reduplicant after the second vowel and in spaftof
the model correctly includes the coda consonant
because the word consists of only two syllables.

This section showed that attention-based mod-
els can learn initial and wrong-sided reduplication
even when the pattern is complicated by sensitiv-
ity to linguistic structure that results in variable-
length reduplicants. Once the network has learned
enough structure to perform syllabification, the
two-syllable partial reduplicative function is C-
Seq. The next section examines the extent to
which these networks learn unbounded copying,
i.e. total reduplication.

4.2 Total reduplication

We test the ability of ED networks to learn
and generalize total reduplication: wanita !
wanita⇠wanita (1a). As mentioned, total redu-
plication is not a rational function and is uncom-
putable with a 1-way FST, since there is no upper
bound on the size of the copied string. However, it
is a C-Seq function and computable by the corre-
sponding 2-way FST. Total reduplication is thus a
crucial test case for the RNN behavior.

As in §4.1, SRNN and GRU models with
and without attention are trained on large and
small languages where small languages have 10
phonemes and base lengths between 3 and 9 seg-
ments, and large languages have 26 phonemes and
base lengths between 3 and 15 segments.

Non-attention Attention
Small Large Small Large

SRNN 0.046 0.0 0.999 0.985
GRU 0.705 0.211 0.999 0.995

Table 2: Generalization accuracy by network type on
both the large and small total reduplication patterns.

Table 2 shows the generalization accuracy for
all network configurations. The results are nearly
identical to those for the partial reduplication pat-
terns in §4.1. Attention models can robustly learn
the pattern, with negligible effects of recurrence
relation or language size. Without attention, no
model fully succeeds in generalizing the total
reduplication pattern, with the best performance
coming from the GRU on the small language.

These results show that attention-based models
can learn a generalizable total reduplication func-
tion as well as they can learn partial reduplication
functions. This means that attention-based ED
network generalization does not distinguish be-
tween total and partial reduplication, despite glar-
ing functional and automata-theoretic differences



in the functions themselves. This clearly sug-
gests that an RNN architecture that can learn both
functions necessarily computes a C-Seq function,
which properly includes both processes. Further-
more, as discussed in §5, the interpretability of
the corresponding FST characterization (2-way vs
1-way) and its origin semantics provides a direct
computational link to the attention mechanism of
these RNN architectures.

4.3 Alphabet size and string length effects
As shown so far, network architecture is not the
only factor that influences a network’s ability to
learn a target reduplicative function. The compo-
sition of the target language, in terms of the num-
ber of segments in the language and the number of
permitted string lengths, can have a dramatic ef-
fect on model behavior.

The effect of model architecture and language
composition was investigated by testing the extent
to which all network configurations could learn
simple reduplication pattern while systematically
varying the size of the segment inventory and per-
mitted base lengths in the data. The reduplica-
tive function chosen for these tests copied a fixed-
window of two segments for initial reduplication:
guyon!gu⇠guyon. This was chosen because it is
typologically well-attested (Moravcsik, 1978; Ru-
bino, 2005, 2013) and also predicted to be the sim-
plest reduplication pattern for the network to learn
(since it is insensitive to linguistic structure and
has a fixed-length reduplicant).

Data that followed this pattern was gener-
ated for languages with 10, 18, and 26 unique
phonemes in their inventory and which permit
bases to vary from 3 to between 5 and 10 seg-
ments. These results are shown in Figure (5).7 The
top panel shows the effect of alphabet size; string
lengths are fixed between 3 and 8. The bottom
panel, which shows the effect of string lengths; al-
phabet size is fixed at 26. The lines paralleling 1.0
in the top panel show that the ability of attention-
based models to learn the target function is robust
to alphabet size. The lines paralleling 1.0 in the
bottom panel illustrate that attention-based mod-
els are similarly robust to string length variation.

In contrast, the non-attention models show large
effects of alphabet size and string length. The non-

7The reported results are from initial reduplication with a
window size of two segments, however, wrong-sided redupli-
cation and a larger window size of three were also tested with
nearly identical results.

Figure 5: Effect on varying alphabet size and maximum
string length, with minumum string length fixed at 3, on
generalization accuracy.

attention SRNN shows very limited success. It is
able to generalize with a very limited number of
string lengths; but when maximum string length
exceeds 7, it is no longer able to learn the target
function at all. Consequently, the accuracy of the
SRNN in the top panel, where maximum string
length is fixed at 9, is stuck at 0.0 across all al-
phabet sizes.

The effects of both string length and alphabet
size are also visible for the non-attention GRU.
In the top panel, where maximum string length
is fixed at 9, a decrease in generalization accu-
racy as a function of alphabet size is observed.
The effect of maximum string length on the non-
attention GRU is less dramatic than on the SRNN,
but the GRU still displays a decrease from near
ceiling accuracy with lengths between 3 and 5, to
⇠ 0.60 when lengths range between 3 and 10.

The sensitivity of non-attention SRNN and
GRU models to alphabet size and string length are
likely a result of the fact that these models are
unable to directly reference the input during de-
coding and must pass all information through the
encoder bottleneck. This hypothesis is strength-
ened by the fact that, without attention, the GRU
performs much better than the SRNN. The GRU
has extra gates between timepoints which aid in
the long-distance preservation of information, mit-
igating the bottleneck problem to an extent. How-



ever, while this assists the GRU network, it is not
enough to make alphabet size and word length
non-issues. The non-attention GRU is similar in
architecture to the LSTM model of Prickett et al.
(2018), with a slightly different training objective,
suggesting that their model would similarly have
difficulty scaling up.

The lack of a difference between the attention-
based GRU and SRNN corroborates the idea that
when this information bottleneck is not an issue
both architectures are capable of learning general-
izable reduplication.

5 Discussion

5.1 Origin semantics and alignment

As explained in §2.1, partial reduplication can be
computed as a function with either 1-way or 2-way
FSTs. However, the two finite-state algorithms
differ in their origin semantics or alignment. The
alignment difference is simulated by the attention-
based RNNs. The alignments learned by attention-
based models for partial reduplication in §4.1 and
§4.3 are analogous to the origin semantics com-
puted by the 2-way FST. We illustrate in Figure 6.

p a t

p a p a t

Figure 6: (left): Attention weights over input (hori-
zontal) at each time step of correct decoding of redu-
plicated form (vertical) for the mapping pat!pa⇠pat.
Darker squares indicate a lower weight on the align-
ment between two timesteps. (right): Origin semantics
of 2-way FST from Figure 3b.ii.

While both Seq and C-Seq functions sufficiently
characterize partial reduplication, this 2-way-like
alignment suggests that the RNNs are generaliz-
ing C-Seq functions (see Fig. 4 for other exam-
ples). This extends to total reduplication (§4.2)
whose alignment when learned by the attention-
based RNNs suggests the same origin information
as 2-way FSTs. These results hint at the expressiv-
ity of the ED models, explicitly connecting their

computations to the 2-way automata characteriz-
ing this subregular class.

5.2 Generality of copying mechanisms
The results suggest that the same general-purpose
mechanism can be used to model both partial and
total reduplication. The attention-based RNNs
learned both processes with near-equal ease and
generalizability and the same tools. This learn-
ing result fits well with reduplicative typology and
theory. Partial and total reduplication are typo-
logically and diachronically linked. If a language
has partial reduplication, then it almost always has
total reduplication, often because the former de-
veloped from the latter (Rubino, 2013). Because
of this dependence, certain linguistic theories use
the same mechanisms to generate both processes
(Inkelas and Zoll, 2005).

Computationally, our result fits with the charac-
terization of reduplication over 2-way FSTs (Dola-
tian and Heinz, 2018b) but not over 1-way FSTs
(Chandlee et al., 2012). Because total reduplica-
tion cannot be modeled by a 1-way FSTs, some
suggest that total and partial reduplication are on-
tologically different and should be computed with
separate mechanisms (Roark and Sproat, 2007;
Chandlee, 2017). In contrast, when computed over
2-way FSTs, both reduplicative processes fall un-
der the same subclass of C-Seq functions.

5.3 Scaling problems
The results from §4.3 shows that attention-based
RNNs could equally well learn a partial redupli-
cation function regardless of alphabet size input
size. In contrast, attention-less RNNs suffer. For
an attention-less RNN, learning initial-CV copy-
ing with a small alphabet over smaller words is
significantly easier then learning it with a larger
alphabet over larger words. Their scaling diffi-
culty is reminiscent of 1-way FST treatments of
partial reduplication. To compute partial redupli-
cation, 1-way FSTs can suffer a significant state
explosion as alphabet size or reduplicant size in-
creases. This is why some call 1-way FSTs ‘bur-
densome models’ for partial reduplication (Roark
and Sproat, 2007, 54). 2-way FSTs do not suffer
from state explosion (Dolatian and Heinz, 2018b).

6 Conclusions

We showed that RNN encoder-decoder networks
with attention can learn partial and total redupli-



cation patterns. Non-attention models exhibited
mixed success in learning generalizable reduplica-
tion functions in a way that was dependent on al-
phabet size and string length, suggesting that their
failure is attributable to the information bottleneck
between encoder and decoder rather than an in-
ability to learn the target function. This corrob-
orates the finding by Weiss et al. (2018) that re-
current networks’ expressive power is restricted in
practice, and shows the fruitfulness of using well-
understood subregular classes to probe this expres-
sivity.
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A Appendix

The definition and illustration for 2-way FSTs are
taken from Dolatian and Heinz (2018b). We use
o,nas the start and end boundaries.

3) Definition: A 2-way, deterministic FST is a
six-tuple (Q,⌃n,�, q0, F, �) such that:

Q is a finite set of states,
⌃n = ⌃[ {o,n} is the input alphabet,
� is the output alphabet,
q0 2 Q is the initial state,
F ✓ Q is the set of final states,
� : Q ⇥ ⌃ ! Q ⇥ �⇤ ⇥ D is the
transition function where the direction
D = {�1, 0,+1}.

For a survey on legitimate configurations in a 2-
way FSTs, its computational properties, and com-
plexity diagnostics, please see Dolatian and Heinz
(2018b).

To illustrate 2-way FSTs, Figure 7 shows a 2-
way FST for total reduplication. The 2-way oper-
ates by:

1. reading the input tape once from left to right
in order to output the first copy,

2. going back to the start of the input tape by
moving left until the start boundary o is
reached,

3. reading the input tape once more from left to
right in order to output the second copy.

Specifically, this figure is interpreted as follows.
The symbol ⌃ stands for any segment in the alpha-
bet except for {o,n}. The arrow from q1 to itself
means this 2-way FST reads ⌃, writes ⌃, and ad-
vances the read head one step to the right on the
input tape. The boundary symbol ⇠ is a symbol
in the output alphabet �, and is not necessary. We
include it only for illustration.

We show an example derivation in Figure 8 for
the input-output pair (wanita, wanita⇠wanita) (1a

using the 2-way FST in Figure 7. The derivation
shows the configurations of the computation for
the input wanita and is step by step. Each tuple
consists of four parts: input string, output string,
current state, transition. In the input string, we
underline the input symbol which FST will read
next. The output string is what the 2-way FST has
outputted up to that point. The symbol � marks
the empty string. The current state is what state
the FST is currently in. The transition represents
the used transition arc from input to output. In the
first tuple, there is no transition arc used (N/A).
But for other tuples, the form of the arc is:

input state
input symbol:output string��������������!

direction
output state

http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215


q0start q1 q2 q3 qf
(o,�,+1)

(⌃,⌃,+1)

(n,�,-1)

(⌃,�,-1)

(o,⇠,+1)

(⌃,⌃,+1)

(n,�,+1)

Figure 7: 2-way FST for total reduplication.

Outputting the first copy
1. (owanitan, �, q0 , N/A) 9. (owanitan, wanita⇠, q2, q1

n:⇠��!
-1

q2)

2. (owanitan, �, q1, q0
o:���!
+1

q1) 10. (owanitan, wanita⇠, q2, q2
⌃:���!
-1

q2)

3. (owanitan, w, q1, q1
⌃:⌃��!
+1

q1) 11. (owanitan, wanita⇠, q2, q2
⌃:���!
-1

q2)

4. (owanitan, wa, q1, q1
⌃:⌃��!
+1

q1) 12. (owanitan, wanita⇠, q2, q2
⌃:���!
-1

q2)

5. (owanitan, wan, q1, q1
⌃:⌃��!
+1

q1) 13. (owanitan, wanita⇠, q2, q2
⌃:���!
-1

q2)

6. (owanitan, wani, q1, q1
⌃:⌃��!
+1

q1) 14. (owanitan, wanita⇠, q2, q2
⌃:���!
-1

q2)

7. (owanitan, wanit, q1, q1
⌃:⌃��!
+1

q1) 11. ( owanitan, wanita⇠, q2, q2
⌃:���!
-1

q2)

8. (owanitan, wanita, q1, q1
⌃:⌃��!
+1

q1)

Outputting the second copy
12. ( owanitan, wanita⇠, q3, q2

o:���!
+1

q3) 15. ( owanitan, wanita⇠wani, q3, q3
⌃:⌃��!
+1

q3)

13. ( owanitan, wanita⇠w, q3, q3
⌃:⌃��!
+1

q3) 15. ( owanitan, wanita⇠wanit, q3, q3
⌃:⌃��!
+1

q3)

14. ( owanitan, wanita⇠wa, q3, q3
⌃:⌃��!
+1

q3) 16. ( owanitan, wanita⇠wanita, q3, q3
⌃:⌃��!
+1

q3)

14. ( owanitan, wanita⇠wan, q3, q3
⌃:⌃��!
+1

q3) 17. ( owanitan, wanita⇠wanita, qf , q3
n:n��!
+1

qf )

Figure 8: Derivation of wanita!wanita⇠wanita.
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Abstract

We perform statistical analysis of the phe-
nomenon of neology, the process by which
new words emerge in a language, using large
diachronic corpora of English. We investigate
the importance of two factors, semantic spar-
sity and frequency growth rates of semantic
neighbors, formalized in the distributional se-
mantics paradigm. We show that both factors
are predictive of word emergence although we
find more support for the latter hypothesis. Be-
sides presenting a new linguistic application
of distributional semantics, this study tackles
the linguistic question of the role of language-
internal factors (in our case, sparsity) in lan-
guage change motivated by language-external
factors (reflected in frequency growth).1

1 Introduction

Natural languages are constantly changing as the
context of their users changes (Aitchison, 2001).
Perhaps the most obvious type of change is the in-
troduction of new lexical items, or neologisms (a
process called “neology”). Neologisms have var-
ious sources. They are occassionally coined out
of whole cloth (grok). More frequently, they are
loanwords from another language (tahini), derived
words (unfriend), or existing words that have ac-
quired new senses (as when web came to mean
‘World Wide Web’ and then ‘the Internet’). While
neology has long been of interest to linguists (§2),
there have been relatively few attempts to study it
as a global, systemic phenomenon. Computational
modeling and analysis of neology is the focus of
our work.

What are the factors that predict neology? Cer-
tainly, social context plays a role. Close interac-
tion between two cultures, for example, may re-
sult in increased borrowing (Appel and Muysken,

1The code and word lists are available at https://
github.com/ryskina/neology

2006). We hypothesize, though, that there are
other factors involved—factors that can be mod-
eled more directly. These factors can be under-
stood in terms of supply and demand.

Bréal (1904) introduced the idea that the dis-
tribution of words in semantic space tends to-
wards uniformity. This framework predicts that
new words would emerge where they would re-
pair uniformity—where there was a space not oc-
cupied by a word. This could be viewed as supply-
driven neology. Next, demand plays a role as well
as supply (Campbell, 2013): new words emerge
in “stylish” neighborhoods, corresponding to do-
mains of discourse that are increasing in impor-
tance (reflected by the increasing frequency of the
words in those neighborhoods).

We operationalize these ideas using distribu-
tional semantics (Lenci, 2018). To formalize the
hypothesis of supply-driven neology for compu-
tational analysis, we measure sparsity of areas

in the word embedding space where neologisms
would later emerge. The demand-driven view of
neology motivates our second hypothesis: neigh-

borhoods in the embedding space containing

words rapidly growing in frequency are more
likely to produce neologisms. Both hypotheses are
defined more formally in §3.

Having formalized our hypotheses in terms of
word embeddings, we test them by comparing the
distributions of the corresponding metrics for a set
of automatically identified neologisms and a con-
trol set. Methodology of the word selection and
hypothesis testing is detailed in §4. We discuss the
results in §5, demonstrating evidence for both hy-
potheses, although the demand-driven hypothesis
has more significant support.

2 Background

Neology Specific sources of neologisms have been
studied: lexical borrowing (Taylor and Grant,

https://github.com/ryskina/neology
https://github.com/ryskina/neology


2014; Daulton, 2012), morphological derivation
(Lieber, 2017), blends or portmanteaus (Cook,
2012; Renner et al., 2012), clippings, acronyms,
analogical coinages, and arbitrary coinages, but
these studies have tended to look at neologisms
atomistically, or to explicate the social conditions
under which a new word entered a language rather
than looking at neologisms in systemic context.

To address this deficit, we look back to the sem-
inal work of Michel Bréal, who introduced the
idea that words exist in a semantic space. His
work implies that, other things being equal, the
semantic distribution of words tends towards uni-
formity (Bréal, 1904). This is most explicit in his
law of differentiation, which states that near syn-
onyms move apart in semantic space, but has other
implications as well. For example, this principle
predicts that new words are more likely to emerge
where they would increase uniformity. This could
be viewed as supply-driven neology—new words
appear to fill gaps in semantic space (to express
concepts that are not currently lexicalized).

In linguistic literature neology is often associ-
ated with new concepts or domains of increasing
importance (Campbell, 2013). Just as there are
factors that predict where houses are built other
than the availability of land, there are factors that
predict where new words emerge other than the
availability of semantic space. Demand, we hy-
pothesize, plays a role as well as supply.

Most existing computational research on the
mechanisms of neology focuses on discovering
sociolinguistic factors that predict acceptance of
emerging words into the mainstream language and
growth of their usage, typically in online social
communities (Del Tredici and Fernández, 2018).
The sociolinguistic factors can include geogra-
phy (Eisenstein, 2017), user demographics (Eisen-
stein et al., 2012, 2014), diversity of linguistic
contexts (Stewart and Eisenstein, 2018) or word
form (Kershaw et al., 2016). To the best of our
knowledge, there is no prior work focused on
discovering factors predictive of the emergence
of new words rather than modeling their lifecy-
cle. We model language-external processes indi-
rectly through their reflection in language, thereby
capturing phenomena evident of our hypotheses
through linguistic analysis.
Distributional semantics and language change

Word embeddings have been successfully used for
different applications of the diachronic analysis

of language (Tahmasebi et al., 2018). The clos-
est task to ours is analyzing meaning shift (track-
ing changes in word sense or emergence of new
senses) by comparing word embedding spaces
across time periods (Kulkarni et al., 2015; Xu and
Kemp, 2015; Hamilton et al., 2016; Kutuzov et al.,
2018). Typically, embeddings are learned for dis-
crete time periods and then aligned (but see Bam-
ler and Mandt, 2017). There has also been work
on revising the existing methodology, specifically
accounting for frequency effects in embeddings
when modeling semantic shift (Dubossarsky et al.,
2017).

Other related questions where distributional se-
mantics proved useful were exploring the evolu-
tion of bias (Garg et al., 2018) and the degrada-
tion of age- and gender-predictive language mod-
els (Jaidka et al., 2018).

3 Hypotheses

This section outlines the two hypotheses we intro-
duced earlier from the linguistic perspective, for-
malized in terms of distributional semantics.

Hypothesis 1 Neologisms are more likely to
emerge in sparser areas of the semantic space.
This corresponds to the supply-driven neology
hypothesis: we assume that areas of the space
that contain fewer semantically related words are
likely to give birth to new ones so as to fill in
the ‘semantic gaps’. Word embeddings give us
a natural way of formalizing this: since seman-
tically related words have been shown to popu-
late the same regions in embeddings spaces, we
can approximate semantic sparsity (or density) of
a word’s neighborhood as the number of word vec-
tors within a certain distance of its embedding.

Hypothesis 2 Neologisms are more likely to
emerge in semantic neighborhoods of growing
popularity. Here we formalize our demand-driven
view of neology, which assumes that growing fre-
quency of words in a semantic area is a reflection
of its growing importance in discourse, and that
the latter is in turn correlated with emergence of
neologisms in that area. In terms of word em-
beddings, we again consider nearest word vectors
as the word’s semantic neighbors and quantify the
rate at which their frequencies grow over decades
(formally defined in §4.4).



4 Methodology

Our analysis is based on comparing embedding
space neighborhoods of neologism word vectors
and neighborhoods of embeddings of words from
an alternative set. Automatic selection of neolo-
gisms is described in §4.2, and in §4.4 we detail
the factors we control for when selecting the alter-
native set. In §4.1 we describe the datasets used in
our experiments. Our data is split into two large
corpora, HISTORICAL and MODERN; we addition-
ally require the HISTORICAL corpus to be split into
smaller time periods so that we can estimate word
frequency change rate. Embedding models are
trained on each of the two corpora, as described in
§4.3. We compare the neighborhoods in the HIS-
TORICAL embedding space, but due to the nature
of our neologism selection process, many neolo-
gisms might not exist in the HISTORICAL vocab-
ulary. To locate their neighborhoods, we adapt
an approach from prior work in diachronic anal-
ysis with word embeddings: we learn an orthog-
onal projection between HISTORICAL and MOD-
ERN embeddings to align the two spaces in or-
der to make them comparable (see Hamilton et al.,
2016), and use projected vectors to represent ne-
ologisms in the HISTORICAL space. Finally, §4.5
describes the details of hypothesis testing: statis-
tics we choose to quantify our two hypotheses and
how their distributions are compared.

4.1 Datasets

We use the Corpus of Historical American English
(COHA, Davies, 2002) and the Corpus of Contem-
porary American English (COCA, Davies, 2008),
large diachronic corpora balanced by genre to re-
flect the variety in word usage. COHA data is split
into decades; we group COHA documents from
18 decades (1800-1989) to represent the HISTOR-
ICAL English collection and use full COCA 1990-
2012 corpus as MODERN.

The obtained HISTORICAL split contains 405M
tokens of 2M types, and MODERN contains 547M
tokens of 3M types.2

4.2 Neologism selection

We rely on a usage-based approach to extract the
set of neologisms for our analysis, choosing the

2Statistics accompanying the corpora state that entire
COHA dataset contains 385M words, and COCA contains
440M words; we assume the discrepancy is explained by to-
kenization differences.

words based on their patterns of occurrence in our
datasets. It can be seen as an approximation to se-
lecting words based on their earliest recorded use
dates, as these dates are also determined based on
the words’ usage in historical corpora. This anal-
ogy is supported by the qualitative analysis of the
obtained set of neologisms, as discussed in §6.

We limit our analysis to nouns, an open-class
lexical category. We identify nouns in our cor-
pora using a part-of-speech dictionary, collected
from a POS-tagged corpus of English Wikipedia
data (Wikicorpus, Reese et al., 2010), and select
words that are most frequently tagged as ‘NN’.

We additionally filter candidate neologisms to
exclude words that occur more frequently in cap-
italized than lowercased form; this heuristic helps
us remove proper nouns missed by the POS tagger.

We select a set of neologisms by picking words
that are substantially more frequent in the MOD-
ERN corpus than in the HISTORICAL one. It is
important to note that while we use the term “ne-
ologism,” implying a word at the early stages of
emergence, with this method we select words that
have entered mainstream vocabulary in MODERN
time but might have been coined prior to that. We
consider a word w to be a neologism if its ra-
tio fm(w)/fh(w) is greater than a certain thresh-
old; here fm(·) and fh(·) denote word frequencies
(normalized counts) in MODERN and HISTORI-
CAL data respectively. Empirically we set the fre-
quency ratio threshold equal to 20.

We rank words satisfying these criteria by their
frequency in the MODERN corpus and select the
first 1000 words to be our neologism set; this is
to ensure that we only analyze words that subse-
quently become mainstream and not misspellings
or other artifacts of the data.

4.3 Embeddings

Our hypothesis testing process involves inspecting
semantic neighborhoods of neologisms in the HIS-
TORICAL embedding space. However, many neol-
ogisms are very infrequent or nonexistent in the
HISTORICAL data, so we approximate their vec-
tors in the HISTORICAL space by projecting their
MODERN embeddings into the same coordinate
axes.

We learn Word2Vec Skip-Gram embed-
dings3 (Mikolov et al., 2013) of the two corpora

3Hyperparameters: vector dimension 300, window size 5,
minimum count 5.



and use orthogonal Procrustes to learn the aligning
transformation:

R = argmin
⌦

k⌦W(m) �W(h)k,

where W(h),W(m) 2 R|V |⇥d are the word em-
bedding matrices learned on the HISTORICAL and
MODERN corpora respectively, restricted to the in-
tersection of the vocabularies of the two corpora
(i.e. every word embedding present in both spaces
is used as an anchor). To project MODERN word
embeddings into the HISTORICAL space, we mul-
tiply them by the obtained rotation matrix R.

4.4 Control set selection

To test our hypotheses, we collect an alternative
set of words and analyze how certain statistical
properties of their neighbors differ from those of
neighbors of neologisms. At this stage it is im-
portant to control for non-semantic confounding
factors that might affect the word distribution in
the semantic space. One such factor is word fre-
quency: it has been shown that embeddings of
words of similar frequency tend to be closer in the
embedding space (Schnabel et al., 2015; Faruqui
et al., 2016), which results in very dense clus-
ters, or hubs, of words with high cosine similar-
ity (Radovanović et al., 2010; Dinu et al., 2014).
We choose to also restrict our control set to only
include words that did not substantially grow or
decline in frequency over the HISTORICAL pe-
riod in order to prevent selecting counterparts that
only share similar frequency in the MODERN sub-
corpus (e.g., due to recent topical relevance), but
exhibit significant fluctuation prior to that period.
In particular, we refrain from selecting words that
emerged in language right before our HISTORI-
CAL-MODERN split.

We create the alternative set by pairing each ne-
ologism with a non-neologism counterpart that ex-
hibits a stable frequency pattern, while controlling
for word frequency and word length in characters.
Length is chosen as an easily accessible correlate
to other factors for which one should control, such
as morphological complexity, concreteness, and
nativeness. We perform the pairing only to ensure
that the distribution of those properties across the
two sets is comparable, but once the selection pro-
cess is complete we treat control words as a set
rather than considering them in pairs with neolo-
gisms.

Following Stewart and Eisenstein (2018), we
formalize frequency growth rate as the Spear-
man correlation coefficient between timesteps
{1, . . . , T} and frequency series f(1:T )(w) of word
w. In our setup, timesteps {1, . . . , 18} enumer-
ate decades from 1810s to 1980s, and ft(·) denote
word frequencies in the corresponding t-th decade
of the HISTORICAL data.

Formally, for each neologism wn we select
a counterpart wc satisfying the following con-
straints:

• Frequencies of the two words in the
corresponding corpora are comparable:
fm(wn)/fh(wc) 2 (1 � �, 1 + �), where �
was set to 0.25;

• The length of the two words is identical up to
2 characters;

• The Spearman correlation coefficient rs be-
tween decades {1, . . . , 18} and the control
word frequency series f(1:18)(wc) is small:
|rs

�
{1 : 18}, f(1:18)(wc)

�
|  0.1

These words, which we will refer to as stable,
make up our default and most restricted control
set. We will also compare neologisms to a re-
laxed control set, omitting the stability constraint
on the frequency change rate but still controlling
for length and overall frequency, to see how ne-
ologisms differ from non-neologisms in a broader
perspective.

4.5 Experimental setup

We evaluate our hypotheses by inspecting neigh-
borhoods of neologisms and their stable con-
trol counterparts in the HISTORICAL embedding
space, viewing them as proxy for neighborhoods
in the underlying semantic space. Since many ne-
ologisms are very infrequent or nonexistent in the
HISTORICAL data, we approximate their vectors
in the HISTORICAL space with their MODERN em-
beddings projected using the transformation de-
scribed in §4.3. The neighborhood of a word w is
defined as the set of HISTORICAL words for which
cosine similarity between their HISTORICAL em-
beddings and vw exceeds the given threshold ⌧ ;
vw denotes a projected MODERN embedding if w
is a neologism or a HISTORICAL embedding if it
is a control word.4

4Cosine similarity is chosen as our distance metric since it
is traditionally used for word similarity tasks in distributional
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(a) Semantic neighborhood of the word renewables.
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(b) Semantic neighborhood of the word pesto.

Figure 1: Neighborhoods of projected MODERN embeddings of two neologisms (shown in red), renewables and
pesto, in the HISTORICAL embedding space, visualized using t-SNE (Maaten and Hinton, 2008). Figure 1a shows
an example of a neighborhood exhibiting frequency growth: words like synfuel or privatization have been used
more towards the end of the HISTORICAL period. The neighborhood also includes natural-gas that can be seen as
representing a concept to be replaced by renewables. The word pesto (Figure 1b) is projected into a neighborhood
of other food-related words, most of which are also loanwords, several from the same language; it also has its
hypernym sauce as one of its neighbors.

The two factors we need to formalize are se-
mantic sparsity of the neighborhoods and increase
of popularity of the topic that the neighborhood
represents. We use sparsity in the embedding
space as a proxy for semantic sparsity and ap-
proximate growth of interest in a topic with fre-
quency growth of words belonging to it (i.e. em-
bedded into the corresponding neighborhood). For
the neighborhood of each word w, we compute the
following statistics, corresponding to our two hy-
potheses:

1. Density of a neighborhood d(w, ⌧): num-
ber of words that fall into this neighborhood
d(w, ⌧) = |{u : cosine(vw, vu) � ⌧}|

2. Average frequency growth rate of a neigh-
borhood r(w, ⌧): as defined in the previous
subsection, we compute the Spearman corre-
lation coefficient between timesteps and fre-
quency series for each word in the neighbor-
hood and take their mean:

r(w, ⌧) =
1

d(w, ⌧)
⇥

⇥
X

u:cosine(vw,vu)�⌧

rs
�
{1 : 18}, f(1:18)(u)

�

In our tests, we compare the values of those
metrics for neighborhoods of neologisms and

semantics (Lenci, 2018). We have also observed the same
results when repeating the experiments with the Euclidean
distance metric.

neighborhoods of control words and estimate the
significance of each of the two factors for a range
of neighborhood sizes defined by the threshold ⌧ .
We test whether means of the distributions of those
statistics for the neologism and the control set dif-
fer and whether each of the two is significant for
classifying words into neologisms and controls.

As mentioned in §4.2, our vocabulary is re-
stricted to nouns, and we only consider vocab-
ulary noun neighbors when evaluating the statis-
tics.5 Since we project all neologism word vectors
from MODERN to HISTORICAL embedding space,
for neologisms occurring in the HISTORICAL cor-
pus we might find a HISTORICAL vector of the ne-
ologism itself among the neighbors of its projec-
tion; we exclude such neighbors from our analy-
sis. We cap the number of nearest neighbors to
consider at 5,000, to avoid estimating statistics on
overly large sets of possibly less relevant neigh-
bors.

5 Results

Following the experimental setup described in
§4.5, we estimate the contribution of each of
the hypothesized factors employing strictly con-
strained and relaxed control sets. We start by ana-
lyzing how the distributions of those statistics dif-
fer for neologisms and stable controls, both by

5Here we refer to the vocabulary of words participating in
our analysis, not the embedding model vocabulary; embed-
dings are trained on the entire corpora.
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(b) Average frequency growth rate of HISTORICAL word
vectors in the neighborhoods of neologisms and stable con-
trol set words.

Figure 2: Number of HISTORICAL word vectors within a certain cosine distance of a word and average growth
rate of frequency (represented by Spearman correlation coefficient) of those HISTORICAL words, averaged across
neologism (darker) and stable control word (lighter) sets. Projected neologism vectors appear in lower-density
neighborhoods compared to control words, and neighbors of neologisms exhibit a stronger growth trend than those
of the control words, especially in smaller neighborhoods.

comparing their sample means and by more rigor-
ous statistical testing. We also evaluate the signifi-
cance of the factors using generalized linear mod-
els for both stable and relaxed control sets.

5.1 Comparison to stable control set

First, we test our hypotheses on 720 neologism-
stable control word pairs (not all words are paired
in the stable control setting due to its restrictive-
ness).

Figure 2 demonstrates the values of density and
frequency growth rate for a range of neighborhood
sizes, averaged over neologism and control sets.
Both results conform with our hypotheses: Fig-
ure 2a shows that on average the projected neol-
ogism has fewer neighbors than its stable coun-
terpart, especially for larger neighborhoods, and
Figure 2b shows that, on average, frequencies
of neighbors of a projected neologism grow at a
faster rate than those of a counterpart. Interest-
ingly, we find that neighbors of stable controls still
tend to exhibit small positive growth rate. We at-
tribute it to the general pattern that we observed:
about 70% of words in our vocabulary have posi-
tive frequency growth rate. We believe this might
be explained by the imbalance in the amount of
data between decades (e.g. 1980s sub-corpus has
20 times more tokens than 1810s): some words
might not occur until later in the corpus because of
the relative sparsity of data in the early decades.

As we can see from Figure 2a, neighborhoods
of larger sizes (corresponding to lower values of

the threshold) may contain thousands of words, so
the statistics obtained from those neighborhoods
might be less relevant; we might only want to
consider the immediate neighborhoods, as those
words are more likely to be semantically related to
the central word. It is notable that the difference in
the growth trends of the neighbors is substantially
more prominent for smaller neighborhoods (Fig-
ure 2b): average correlation coefficient of immedi-
ate neighbors of stable words also falls into stable
range as we defined it, while immediate neighbors
of neologisms exhibit rapid growth.

5.2 Statistical significance

To estimate the significance and relative contribu-
tion of the two factors, we fit a generalized lin-
ear model (GLM) with logistic link function to the
corresponding features of neologism and control
word neighborhoods:6

y(w) ⇠ (1 + exp(��(⌧)
0 �

� �(⌧)
d · d(w, ⌧)� �(⌧)

r · r(w, ⌧)))�1

where y is a Bernoulli variable indicating whether
the word w belongs to the neologism set (1) or
the control set (0), and ⌧ is the cosine similarity
threshold defining the neighborhood size.

Table 1 shows how the coefficients and p-values
for the two statistics change with the neighbor-
hood size. We found that when comparing with

6We use the implementation provided in the MATLAB
Statistics and Machine Learning Toolbox.



Neighborhood size
Stable control set Relaxed control set

Density Growth Density Growth

�(⌧)
d ⇥ 104 p-value �(⌧)

r ⇥ 10 p-value �(⌧)
d ⇥ 104 p-value �(⌧)

r p-value

Large (⌧ = 0.35) 1.98 8.25⇥ 10�5 1.84 2.35⇥ 10�80 �1.07 5.63⇥ 10�4 0.61 2.83⇥ 10�34

Medium (⌧ = 0.45) 0.20 8.29⇥ 10�1 1.16 2.92⇥ 10�80 �3.67 4.00⇥ 10�10 0.46 6.19⇥ 10�46

Small (⌧ = 0.55) 6.90 2.90⇥ 10�2 0.70 1.61⇥ 10�68 �8.92 4.01⇥ 10�5 0.28 1.19⇥ 10�36

Table 1: Values of the GLM coefficients and their p-values for different neighborhood cosine similarity thresholds
⌧ . �(⌧)

d and �(⌧)
r denote the coefficients for density and average frequency growth respectively for neighborhoods

defined by ⌧ . Comparing the results for the stable and relaxed control sets, we find that for the stable controls
density is only significant in larger neighborhoods, but without the stability constraint both factors are significant
for all neighborhood sizes.

the stable control set, average frequency growth
rate of the neighborhood was significant for all
sizes, but neighborhood density was significant at
level p < 0.01 only for the largest ones.7 We at-
tribute this to the effect discussed in the previous
section: difference in average frequency growth
rate between neighbors of neologisms and stable
words shrinks as we include more remote neigh-
bors (Figure 2b), so for large neighborhoods fre-
quency growth rate by itself is no longer predictive
enough.

We also evaluate the significance of features
for the relaxed control set without the stability
constraint on 1000 neologism-control pairs. We
have repeated the experiment with 5 different ran-
domly sampled relaxed control sets (results for
one showed in Table 1). For medium-sized neigh-
borhoods (0.4  ⌧  0.5) density variable is
always significant at p < 0.01, but densities of
largest and smallest neighborhoods were rejected
in several runs. With more variance in the con-
trol set, differences in neighborhood frequency
growth rate between neologisms and controls are
less prominent than in the stable setting, so density
plays a more important role in prediction.8

Growth feature weights �(⌧)
r are always positive

and density feature weights �(⌧)
d are negative in the

relaxed setting (where density is significant). This
matches our intuition that neighborhood frequency
growth and sparsity are predictive of neology.

Comparing sample means of density and growth
rates between neologisms and each of the 5 ran-
domly selected relaxed control sets (as we did

7Applying Wilcoxon signed-rank test to the series of
neighborhood density and frequency growth values for ne-
ologism and stable control sets showed the same results.

8Detailed results of the regression analysis and collinear-
ity tests can be found in the repository. No evidence of
collinearity was found in any of the experiments.

for stable controls in Figure 2) demonstrated that
neologisms still appear in sparser neighborhoods
than the controlled counterparts. The difference
in frequency growth rate between the neologism
and control word neighborhoods is also observed
for all control sets (although it varies noticeably
between sets), but it no longer exhibits an inverse
correlation with neighborhood size.

6 Discussion

We have demonstrated that our two hypotheses
hold for the set of words we automatically se-
lected to represent neologisms. To establish va-
lidity of our results, we qualitatively examine the
obtained word list to see if the words are in fact
recent additions to the language. We randomly
sample 100 words out of the 1000 selected ne-
ologisms and look up their earliest recorded use
in the Oxford English Dictionary Online (OED,
2018). Of those 100 words, eight are not defined
in the dictionary: they only appear in quotations
in other entries (bycatch (quotation from 1995),
twentysomething (1997), cross-sex (1958), etc.) or
do not occur at all (all-mountain, interobserver,
off-task). Of the remaining 92 words, 78 have been
first recorded after the year 1810 (i.e. since the be-
ginning of the HISTORICAL timeframe), 44 have
been first recorded in the twentieth century, and
21 words since 1950. However, some of the words
dating back to before 19th century have only been
recorded in their earlier, possibly obsolete sense:
for example, while there is evidence of the word
software being used in 18th century, this usage
corresponds to its obsolete meaning of ‘textiles,
fabrics’, while the first recorded use in its currently
dominant sense of ‘programs essential to the oper-
ation of a computer system’ is dated 1958. To ac-
count for such semantic neologisms, we can count



the first recorded use of the newest sense of the
word; that gives us 82, 58 and 31 words appear-
ing since 1810, 1900 and 1950 respectively.9 This
leads us to assume that most words selected for
our analysis have indeed been neologisms some-
time over the course of the HISTORICAL time.

We would also like to note that the results of
this examination may be skewed due to factors
for which lexicography may not account: for ex-
ample, many words identified as neologisms are
compound nouns like countertop or soundtrack
that have been written as two separate words or
joined with a hyphen in earlier use. There is
also considerable spelling variation in loanwords,
e.g. cuscusu, cooscoosoos, kesksoo were used in-
terchangeably before the form couscous was ac-
cepted as the standard spelling. Specific word
forms might also have different life cycles: while
the word music existed in Middle English, the plu-
ral form musics in a particular sense of ‘genres,
styles of music’ is much more recent.

Qualitative examination of the neologism set re-
veals that new words tend to appear in the same
topics; for example, many words in our set were
related to food, technology, or medicine. This
indirectly supports our second hypothesis: rapid
change in these spheres makes it likely for related
terms to substantially grow in frequency over a
short period of time. One example of such a neigh-
borhood is shown in Figure 1a: the neologism re-
newables appeared in a cluster of words related
to energy sources — a topic that has been more
discussed recently. There is also some correlation
between the topic and how new words are formed
in it: most food neologisms are so-called cultural
borrowings (Weinreich, 2010), when the name
gets loaned from another culture together with the
concept itself (e.g. pesto, salsa, masala), while
many technology neologisms are compounds of
existing English morphemes (e.g. cyber+space,
cell+phone, data+base).

We also consider nearest neighbors
(HISTORICAL words with highest cosine sim-
ilarity) of the neologisms to ensure that they
are projected into the appropriate parts of the
embedding space. Examples of nearest neighbors
are shown in Table 2. We saw different patterns
of how the concept represented by the neologism

9For all words that have one or more senses marked as
a noun, we only consider those senses. Out of the 92 listed
words, only three do not have nominal senses, and for two
more usage as a noun is marked to be rare.

Neologism Nearest HISTORICAL neighbors
email telegram letter
pager beeper phone

blogger journalist columnist
sitcom comedy movie

spokeswoman spokesman director
sushi caviar risotto
rehab detoxification aftercare

Table 2: Nearest HISTORICAL neighbors of projected
MODERN embeddings for a sample of emerging words.
We can see that words get projected into semanti-
cally relevant neighborhoods, and nearest neighbors
can even be useful for observing the evolution of a con-
cept (e.g. pager:beeper).

relates to concepts represented by its neighbors.
For example, some terms for new concepts
appear next to related concepts they succeeded
and possibly made obsolete: e.g. email:letter,
e-book:paperback, database:card-index. Other
neologisms emerge in clusters of related concepts
they still equally coexist with: hip-hop:jazz,
hoodie:turtleneck; most cultural borrowings fall
under this type (see the neighborhood of pesto in
Figure 1b). Both those patterns can be viewed as
examples of a more general trend: one concept
takes place of another related one, whether in
terms of fully replacing it or just taking its place
as the dominant form.

Other interesting effects we observed include
lexical replacement (a new word form replacing
an old one without a change in meaning, e.g.
vibe:ambience), tendency to abbreviate terms as
they become mainstream (biotech:biotechnology,
chemo:chemotherapy), and the previously men-
tioned changes in spellings of compounds
(lifestyle:life-style, daycare:day-care).

7 Conclusion

We have shown that our two hypothesized fac-
tors, semantic neighborhood sparsity and its aver-
age frequency growth rate, play a role in determin-
ing in what semantic neighborhoods new words
are likely to emerge. Our analyses provide more
support for the latter, conforming with prior lin-
guistic intuition of how language-external factors
(which this factor implicitly represents) affect lan-
guage change. We also found evidence for the for-
mer, although it was found less significant.

Our contributions are manifold. From a com-
putational perspective, we extend prior research



on meaning change to a new task of analyzing
word emergence, proposing another way to ob-
tain linguistic insights from distributional seman-
tics. From the point of view of linguistics, we
approach an important question of whether lan-
guage change is affected by not only language-
external factors but language-internal factors as
well. We show that internal factors—semantic
sparsity, specifically—contribute to where in se-
mantic space neologisms emerge. To the best
of our knowledge, our work is the first to use
word embeddings as a way of quantifying seman-
tic sparsity. We have also been able to operational-
ize one kind of external factor, technological and
cultural change, as something that can been mea-
sured in corpora and word embeddings, paving the
way to similar work with other kinds of language-
external factors in language change.

An admittable limitation of our analysis lies
in its restricted ability to account for polysemy,
which is a pervasive issue in distributional seman-
tics studies (Faruqui et al., 2016). As such, se-
mantic neologisms (existing words taking on a
novel sense) were not a subject of this study, but
they introduce a potential future direction. Addi-
tional properties of word’s neighbors can also be
correlated with word emergence, both language-
internal (word abstractness or specificity) and ex-
ternal; these can also be promising directions for
future work. Finally, our future plans include
exploration of how features of semantic neigh-
borhoods are correlated with word obsolescence
(gradual decline in usage), using similar semantic
observations.
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Abstract

It is well-known that the acceptability judg-
ments at the core of current syntactic theories
are continuous. However, an open debate is
whether the source of such gradience is situ-
ated in the grammar itself, or can be derived
from extra-grammatical factors. In this paper,
we propose the use of a top-down parser for
Minimalist grammars (Stabler, 2013; Kobele
et al., 2013; Graf et al., 2017), as a formal
model of how gradient acceptability can arise
from categorical grammars. As a test case, we
target the acceptability judgments for island
effects collected by Sprouse et al. (2012a).

1 Introduction

The human judgments linguists use to evaluate the
adequacy of syntactic theories fall in a wide, non-
binary spectrum of acceptability — a fact well-
known from the early days of generative gram-
mar (Chomsky, 1956, 1965, a.o.). Nonetheless,
mainstream syntax has long claimed that gram-
matical knowledge is, at its core, categorical, and
that gradience in acceptability judgments comes
from extra-grammatical factors (Sprouse, 2007,
a.o.). However, the rise of experimental methods
in theoretical syntax has renewed the question of
whether gradience should be integrated in gram-
matical theories directly, for instance in the form
of probabilistic models (Keller, 2000; Crocker and
Keller, 2005; Sorace and Keller, 2005; Lau et al.,
2014, 2015, 2017).

As the relation between grammaticality and
acceptability is not transparent, constructing a
well-specified theory of how gradient acceptabil-
ity arises from grammatical knowledge is clearly
valuable. From an empirical perspective, how-
ever, categorical approaches seem to be at a disad-
vantage when compared to gradient grammatical
models rooted in quantitative, probabilistic frame-
works.

There is an abundance of well-known propos-
als about the way syntactic structure and cogni-
tive resources can be integrated to derive connec-
tions between acceptability and processing diffi-
culty (e.g., Yngve, 1960; Wanner and Maratsos,
1978; Rizzi, 1990; Rambow and Joshi, 2015; Gib-
son, 2000; McElree et al., 2003; Lewis and Va-
sishth, 2005, a.o.). However, few models based
on current grammatical formalisms have been im-
plemented in precise computational frameworks
(cf. Boston, 2010). In order to have a complete
theory of how acceptability judgments correlate
to categorical grammars, what seems to be neces-
sary is a formal model of the syntactic structures
licensed by said grammars, and a theory of how
such structures interact with extra-grammatical
factors to derive differences in acceptability. This
would make it possible to test how assumptions
about fine-grained syntactic details lead to quan-
tifiable predictions for the gradient acceptability of
individual sentences (Stabler, 2013; Sprouse et al.,
2018).

Here, we suggest that a parser for Minimal-
ist grammars (MGs; Stabler, 2013), coupled with
complexity metrics measuring memory usage (Ko-
bele et al., 2013; Graf et al., 2017, a.o.), is an effec-
tive model to address these issues. The MG parser
has been used in the past to study which aspects of
grammar drive processing cost for a vast set of off-
line processing asymmetries cross-linguistically
(Gerth, 2015; Graf et al., 2017; Zhang, 2017).
Given the ability of MGs to encode rich syntactic
analyses, the MG parser is especially sensitive to
fine-grained grammatical information, and thus is
able to generate quantitative predictions especially
suited to our purposes.

In particular, we relate sentence acceptability to
sentence structure by specifying: 1) a formalized
theory of syntax in the form of MGs; 2) a parser as
a model of how the structural representation of a



sentence is built from its linear form; 3) a linking
theory between structural complexity and accept-
ability in the form of metrics measuring memory
usage. As a proof-of-concept for the validity of the
linking theory, we model the acceptability judg-
ments for three types of syntactic islands, using
as a baseline the judgments reported in (Sprouse
et al., 2012a).

Importantly, our main aim is not to settle the
debate of whether gradience should be found in
the grammar itself, or in the interaction between
grammar and external factors (if such a debate
could ever be settled). What we offer is a formal-
ized, testable model of the latter hypothesis, in the
hope of providing ground for a more principled in-
vestigation of categorical grammaticality and con-
tinuous acceptability.

2 MG Parsing

2.1 MGs

MGs (Stabler, 1997, 2011) are a lexicalized,
mildly context-sensitive formalism incorporating
the structurally rich analyses of Minimalist syntax
— the most recent version of Chomsky’s transfor-
mational grammar.

An MG grammar is a set of lexical items (LIs)
consisting of a phonetic form and a finite, non-
empty string of features. LIs are assembled via two
feature checking operations: Merge and Move. In-
tuitively, Merge encodes subcategorization, while
Move encodes long-distance movement depen-
dencies. Here, we avoid most of the technical de-
tails of the formalism, and we limit our discussion
to a general description of the data structures de-
fined by these grammars.

MGs’ derivation trees encode the sequence of
Merge and Move operations required to build
the phrase structure tree for a specific sentence
(Michaelis, 1998; Harkema, 2001). In a traditional
derivation tree, all leaf nodes are labeled by LIs,
while unary and binary branching nodes are la-
beled as Move or Merge, respectively. However, as
the details of the feature calculus are irrelevant to
us, we adopt a simpler representation that discards
the feature annotation of LIs, and labels internal
nodes as standard in minimalist syntax. We also
explicitly include dashed arrows indicating move-
ment relations.1

1Note that, due to the fact that intermediate landing sites
for moved phrases do not affect the traversal strategy, we do
not explicitly highlight them with movement arrows.

The fundamental difference between a phrase
structure tree and a derivation tree is that in the
latter, moved phrases remain in their base position,
and their landing site must be fully reconstructed
via the feature calculus (cf. Fig. 1a and Fig. 1b).
As a concequence, the final word order of a sen-
tence is not directly reflected in the order of the
leaf nodes in a derivation tree.

Importantly, MG derivation trees form a regular
tree language, and thus can be regarded as a simple
variant of context-free grammars (CFG), allowing
us to exploit some of CFGs more established pars-
ing algorithms.

2.2 Top-down MG Parsing

We follow recent sentence processing results, and
adopt Stabler (2013)’s top-down parser for MGs.
This parser is a variant of a standard depth-first,
top-down parser for CFGs: it takes as input the
string representation of a sentence, hypothesizes
the structure top-down, verifies that the words in
the structure match the input string, and outputs an
encoding of the sentence structure in the form of
a derivation tree. Importantly, the surface order of
lexical items in the derivation tree is not the phrase
structure tree’s surface order. Thus, simple top-to-
bottom and left-to-right scanning of the leaf nodes
yields the wrong word order. While scanning the
nodes then, the MG parser must also keep track of
the derivational operations which affect the linear
word order.

Memory plays a crucial role in this procedure:
if a node is hypothesized at step i, but cannot be
worked on until step j, it must be stored for j� i
steps in a priority queue. To make this traversal
strategy transparent to the reader, we adopt Ko-
bele et al. (2013)’s notation, in which each node
in the tree is annotated with an index (superscript)
and an outdex (subscript). Intuitively, the annota-
tion indicates for each node in the tree when it is
first conjectured by the parser (index) and placed
in the memory queue, and at what point it is con-
sidered completed and flushed from memory (out-
dex). Consider the tree in Fig. 1b, explicitly an-
notated with the parsing steps. The node does is
hypothesized at step 3. However, which engineer
comes before it in the input, so does has to wait
until step 12 to be flushed out of the queue.

Finally, note that Stabler’s parser was originally
given a search beam discarding the most unlikely
predictions. Here though, we are not interested
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Figure 1: Phrase structure tree (a), and annotated MG derivation tree (b) for Which engineer does Elmo like?.
Boxed nodes in (b) are those with tenure value greater than 2, following (Graf and Marcinek, 2014).

in the cost of choosing among alternative parsing
choices, and want to focus on the specific contri-
bution of the grammar to memory usage. Thus,
we assume that the parser is equipped with a per-
fect oracle, which always makes the right choices
when constructing a tree (Kobele et al., 2013). Es-
sentially, the MG model employs a deterministic
parsing strategy, where ambiguity has no role.

2.3 Measuring Memory Usage

Recently, Stabler (2013)’s MG parser has been
used to investigate which aspect of grammatical
structure affect off-line processing difficulty (Ko-
bele et al., 2013; Graf and Marcinek, 2014; Gerth,
2015; Graf et al., 2017, a.o.).

In order to allow for psycholinguistic predic-
tions, the behavior of the parser is related to pro-
cessing difficulty via complexity metrics measur-
ing how the structure of a tree affects memory. The
MG model refers to three main notions of mem-
ory usage (Graf et al., 2017): (a) how long a node
is kept in memory (tenure); (b) how many nodes
must be kept in memory (payload); (c) how much
information is stored in a node (size).

Tenure and payload for each node n in the tree
can be easily computed via the node annotation
scheme of Kobele et al.: a node’s tenure is equal
to the difference between its index and its outdex;
the payload of a derivation tree is computed as the
number of nodes with a tenure strictly greater than

2 (boxed nodes in our tree annotation scheme).2

For instance, tenure for the node does in Fig. 1b is
computed as 12�3 = 9.

Defining size in an informal way is slightly
trickier, as it was originally based on how infor-
mation about movers is stored by Stabler’s top-
down parser (for a technical discussion, see Graf
et al., 2015). In practice, size measures the hier-
archical length of a movement dependency, and is
computed as the index of a mover minus the in-
dex of its target site. Considering again the tree in
Fig. 1b, the size of Elmo is 6�3 = 3.

In order to contrast derivations, past work has
used these general concepts to define a vast set
of complexity metrics measuring processing dif-
ficulty over a full tree (Kobele et al., 2013). For
instance, tenure can be associated to metrics like
MAXT := max({tenure-of(n)}) and SUMT :=
Ân tenure-of(n). MAXT measures the maximum
amount of time any node stays in memory dur-
ing processing, while SUMT measures the over-
all amount of memory usage for all nodes whose
tenure is not trivial. It thus captures total memory
usage over the course of a parse. As an illustrative
example, consider one last time the tree in Fig. 1b.
Tenure in this tree is mostly driven by the move-
ment of the embedded object, thus MAXT is mea-

2We refer to tenure values  2 as trivial, since it arises
naturally from the binary nature of derivation trees, and it’s
not due to extra waiting time in the priority queue (Graf and
Marcinek, 2014).



sured at does and it is equal to 12�3 = 9. Similar
metrics can be defined for size. For instance, in
Fig. 1b SUMS is given by the length of the ob-
ject movement and the length of the subject move-
ment: (8�1)+(6�3) = 10.

These metrics have been surprisingly successful
in accounting for a vast array of different process-
ing phenomena, such as right embedding vs. cen-
ter embedding, nested dependencies vs. crossing
dependencies, as well as a set of contrasts involv-
ing relative clauses (Graf and Marcinek, 2014;
Graf et al., 2015). However, Graf et al. (2015)
argue that a better approach would make use of
ranked metrics of the type hM1,M2, . . . ,Mni. Such
rankings work in a way similar to constraint rank-
ing in Optimality Theory (Prince and Smolensky,
2008): a lower ranked metric matters only if all
higher ranked metric have failed to pick out a
unique winner (e.g., if two constructions result in
a tie over MAXT). Following this idea, Graf et al.
(2017) show that when complexity metrics are al-
lowed to be ranked in such a way the space of pos-
sible metrics quickly explodes (up to 1600 distinct
metrics). Considering the total number of possible
metrics, it is conceivable that some metric com-
bination could explain any hypothetical process-
ing asymmetry — thus reducing the explanatory
power of the model. However, this does not seem
to be the case. Graf et al. (2017) rule out the vast
majority of these metrics, by showing their insuf-
ficiency in accounting for some crucial construc-
tions across a variety of grammatical analyses.

Here then, we rely on previous work and fo-
cus on the predictions made by a ranked version
of hMAXT, SUMSi in comparing memory bur-
den for contrasting sentences (Zhang, 2017; Liu,
2018; Lee, 2018; De Santo, 2019; De Santo and
Shafiei, 2019). In addition, our core linking hy-
pothesis connects processing difficulty to accept-
ability by assuming that higher memory cost im-
plies lower acceptability.

3 Gradient Acceptability in Syntactic

Islands

Given the metrics’ sensitivity to minor differences
in syntactic structure, the MG parser’s predictions
are the most interpretable when used to compare
the relative complexity of minimally different sen-
tences. Careful comparisons across sentences as
similar as possible in their underlying syntactic
structure seem also to be desirable if we want to

understand the source of gradient variation in ac-
ceptability judgments. For these reasons, we chose
to model the data on the acceptability of syntactic
islands collected by Sprouse et al. (2012a) (hence-
forth SWP), in a first investigation of the viability
of the parser as a model of gradient acceptability.

Syntactic islands are well-known in linguistics
(Chomsky, 1965; Ross, 1968) as a set of phe-
nomena in which the acceptability of a sentence
is degraded, in relation to the interaction of a
long-distance dependency and its syntactic con-
text. Consider the following sentences:

(1) a. Whati did John say Bill saw ti ?
b. Whati did John have dinner before Bill

saw ti?

In 1a, what is displaced from its lower position
as the object of the verb saw to a sentence initial
position. In 1b, this same displacement cannot take
place, as what is inside an adjunct clause (headed
by because). Thus, 1b is considered ill-formed
by native speakers of standard American English.
Since displacing an element from inside an ad-
junct leads to ungrammaticality, adjunct clauses
are classic example of island structures.

SWP conducted an extensive investigation of
the acceptability of island constructions, by col-
lecting formal acceptability judgments for four
island types using a magnitude estimation task.
The acceptability contrasts in this study are opti-
mal for our purposes for multiple reasons. First,
while a categorical grammar would predict a bi-
nary split in sentence acceptability (violates an
island/doesn’t violate an island), the continuous
scale the estimation task was based upon revealed
a spectrum of gradient judgments. Second, the
stimuli in SWP’s design were based on a (2⇥ 2)
factorial definition of island effects, and explic-
itly identify two structural factors that might af-
fect acceptability: 1) the length of a movement de-
pendency; 2) the presence of a so-called “island
construction” (Kluender and Kutas, 1993). This
careful dimensional decomposition of the test sen-
tences, coupled with the continuous scale of the
judgment task, resulted in a set of well-defined
pairwise comparisons ideal for the MG parser’s
modeling approach.

In what follows, we test whether the gradient
of acceptability shown in SWP’s data is predicted
by a parser grounded in a rich categorical gram-
mar. Before proceeding with our analysis though,
it seems to be important to make an additional note



about our aims. An expert reader might know that
there is an ongoing debate in the literature about
the nature of islands effects (see, for instance,
Hofmeister et al., 2012a; Sprouse et al., 2012b;
Hofmeister et al., 2012b, and references therein)
— with classical syntactic accounts rooting them
in grammatical constraints, while others arguing
that such effects can be reduced to a conspiracy of
processing factors.

Importantly, we are not attempting to reduce
these effects to processing demands and, at least
at this stage, it is not our purpose to directly en-
gage with this debate. For the same reasons, we
do not investigate the super-additivity found in
SWP’s paper, as we are not interested in modeling
the grammaticality of an island violation per-se.
Relatedly, we do not claim that the acceptability
of island violations is purely syntactic in nature,
as it has been shown to be sensitive to a variety
of semantic factors (Truswell, 2011; Kush et al.,
2018; Kohrt et al., 2018, a.o.). Crucially, we are
“just” interested in exploring the idea that the gra-
dient component of acceptability judgments arises
due to processing factors. We focus on islands ef-
fects exclusively because of the optimal baseline
offered by SWP’s data.

We will return to the question of whether our
model could give any insights into the question of
separating processing and grammatical contribu-
tions to island effects in Sec. 5.

4 Modeling Results

SWP focused on English wh-movement depen-
dencies to explore four types of islands con-
structions: Subject, Adjunct, Complex NP, and
Whether islands. Since the MG parser is only sen-
sitive to structural differences, in this paper we ig-
nore the case of Whether islands and concentrate
on the remaining three cases. Table 1 presents a
summary of all modeling contrasts in the paper,
compared with the experimental results of SWP.3

4.1 Subject Island: Case 1

First, we model Subject islands as in SWP’s
Experiment 1, comparing 4 sentence types
across 2 conditions: subject/object extraction, and
island/non-island. Note that here island does not
imply a violation, but refers to the presence of an
island structure (Kluender and Kutas, 1993).

3All scripts are available at https://github.com/CompLab-
StonyBrook/mgproc.

Island Type Sprouse et al. (2012) MG Parser

Subject Island
Case 1

2b > 2a X
2b > 2d X
2b > 2c X
2a > 2c X
2a > 2d X
2c > 2d 2c < 2d

Subject Island
Case 2

3a > 3b X
3a > 3c X
3a > 3d X
3b > 3d X
3c > 3b X
3c > 3d X

Adjunct Island

4a > 4b X
4a > 4c X
4a > 4d X
4b > 4d X
4c > 4b X
4c > 4d X

Complex NP
Island

5a > 5b X
5a = 5c X
5a > 5d X
5b > 5d X
5c > 5b X
5c > 5d X

Table 1: Summary of results (as pairwise compar-
isons) from (Sprouse et al., 2012a), and corresponding
parser’s predictions (x > y: x more acceptable than y).

(2) a. What do you think the speech interrupted
t? Obj/Non Island

b. What do you think t interrupted the
show? Subj/Non Island

c. What do you think the speech about
global warming interrupted the show
about t? Obj/Island

d. What do you think the speech about t in-
terrupted the show about global warm-
ing? Subj/Island

Annotated MG derivation trees for these sen-
tences are shown in Fig. 2 (object/subject with no
island) and Fig. 3 (with island).4 The parser’s pre-
dictions (via MAXT) overall match the experimen-
tal results (see Table 1).5

4Due to space constraints, annotated derivations are
provided just for the Subject island case, as an illustrative ex-
ample. Derivations for all other island types can be easily re-
constructed from standard minimalist analyses of the test sen-
tences (e.g., Adger, 2003). Source files can also be found at
https://github.com/aniellodesanto/mgproc/tree/master/islands.

5When a wh-element is displaced from an embedded po-
sition, we avoid intermediate landing sites due to successive
cyclicity. As intermediate movement steps do not affect the

https://github.com/CompLab-StonyBrook/mgproc
https://github.com/CompLab-StonyBrook/mgproc
https://github.com/aniellodesanto/mgproc/tree/master/islands
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Figure 2: Annotated derivation trees for (a) 2a (object, non-island) and (b) 2b (subject, non-island).

The factorial design of the original study helps
us understand the model’s predictions. The con-
trast between 2b and 2a,2d is correctly captured
by MAXT. This is due to the wh-element spanning
a longer, more complex structure comprising the
whole embedded DP subject in the Island cases.
Compare 2a and 2b, both with highest tenure on
do (14 and 11, respectively — cf. Tbl. 2). In 2a, do
is conjectured after what has been scanned from
the input. But then it cannot be flushed out of
memory until what is confirmed in its base posi-
tion as the embedded complement. In 2b, do only
has to wait until the embedded subject position is
reached, and then it is discarded from memory.

Consider now 2c. Here the highest tenure is on
the embedded T head, which has to wait for the
wh-element in object position, and then for the
whole complex DP in subject position, before it
can finally be flushed out of the queue. The longer
wh-dependency in the object case explains once
again why 2b is preferred over 2c, and the addi-
traversal strategy, this choice does not significantly change
our results (cf. Zhang, 2017).

Clause Type Ex. # MaxT SumS

Obj./Non Island 2a 14/do 19
Subj./Non Island 2b 11/do 14
Obj./Island 2c 23/T2 22
Subj./Island 2d 15/do 20
Short/Non Island 3a 5/C 9
Long/Non Island 3b 11/do 14
Short/ Island 3c 11/T2 9
Long/ Island 3d 17/T2 20

Table 2: Summary of MAXT (value/node) and SUMS
by test sentence for Subject island in case 1 and 2 (T2
marks the embedded T head.)

tional complexity of the DP subject is crucial in
driving the 2b > 2c contrast.

Finally, there is one case in which parser’s
predictions and experimental data disagree: the
contrast between subject and object extraction in
the island condition (2c vs 2d). The parser pre-
dicts that 2c should be more acceptable than 2d
(Subj/Island > Obj/Island). This is not surprising,
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Figure 3: Annotated derivation trees for the test sentences in (a) 2c (object, island) and (b) 2d (subject, island).

as the memory metrics pick up on the additional
length of the extraction in the object case, and thus
obviously predict the preference for a subject gap.
However, SWP show Obj/Island > Subj/Island —
which is expected from a theoretical perspective
since 2d is the ungrammatical condition (i.e., there
is an extraction out of an island).

We will come back to the significance of this
mismatch in Sec. 5. Crucially for our main claim
though, the parser correctly predicts the gradient
of acceptability for those conditions that, accord-
ing to a categorical grammar, should all be equiv-
alent (i.e., those containing no forbidden extrac-
tion).

4.2 Subject Island: Case 2

The previous section suggests that, when a gram-
matical violation coincides with processing factors
(e.g., length of a dependency), parser and human
judgments should match on all contrasts. Luck-

ily, SWP offer us the chance to test such a pre-
diction, with a second set of subject island sen-
tences. SWP’s Experiment 2 compares a short de-
pendency and long dependency (matrix vs embed-
ded extraction in the original paper), again in an
island and non-island condition.

(3) a. Who t thinks the speech interrupted the
primetime TV show? Short/Non Island

b. What do you think t interrupted the
primetime TV show? Long/Non Island

c. Who t thinks the speech about global
warming interrupted the primetime TV
show? Short/Island

d. What do you think the speech about t in-
terrupted the primetime TV show?

Long/Island

As expected, parser’s preferences and experi-
mental data fully match in this case, as the un-
grammatical condition (3d) is also the one in



which the movement dependency is the longest.
Here however, deriving the correct preferences re-
quires the ranking of hMAXT,SUMSi, instead of
just MAXT alone (note also that SUMS by itself
would not suffice, as it would not predict 3a >
3c, cf. Tbl. 2). Such a ranking also preserves the
results in the previous section, which fully relied
on MAXT. Interestingly, note how MAXT val-
ues for 3b (Long/Non Island) and 3c (Short/ Is-
land) tie here, as the additional structural com-
plexity of 3c does not interact with the main move-
ment dependency (who raising from Spec,TP to
Spec,CP). Moreover, the Short/Non Island (3a)
and Short/Island (3c) conditions have very similar
structures (with an extraction out of the main sub-
ject). Nonetheless, the memory metrics are able
to capture subtle differences in the way the parser
goes through the two sentences (arguably captur-
ing the “island construction” cost of (Kluender and
Kutas, 1993)).

4.3 Adjunct and Complex NP Islands

So far, we have been successful in replicating
SWP’s acceptability judgments via the MG parser.
However, we might wonder whether this success
is due to something peculiar in the way the Sub-
ject island test cases interact with the MG parsing
strategy. Thus, we tested the MG parser on Ad-
junct and Complex NP islands, again using as a
baseline the results in SWP’s Experiment 1. The
test sentences for the adjunct case were as follows:

(4) a. Who t thinks that John left his briefcase
at the office? Short/Non Island

b. What do you think that John left t at the
office? Long/Non Island

c. Who t laughs if John leaves his briefcase
at the office? Short/Island

d. What do you laugh if John leaves t at the
office? Long/Island

As for Subject islands in case 2,
hMAXT,SUMSi correctly predicts the pattern
of acceptability reported by SWP, matching the
empirical results across all conditions (cf. Tbl. 1).
Similar results are obtained for the Complex NP
island, with test sentences as follows:

(5) a. Who t claimed that John bought a car?
Short/Non Island

b. What did you claim that John bought t?
Long/Non Island

Clause Type Ex. # MaxT SumS

Short/Non Island 4a 13/PP 10
Long/Non Island 4b 17/PP 18
Short/Island 4c 13/PP 11
Long/Island 4d 21/PP 28
Short/Non Island 5a 5/C 9
Long/Non Island 5b 13/did 19
Short/Island 5c 5/C 9
Long/Island 5d 15/did 21

Table 3: Adjunct Island and Complex NP Island:
MAXT (value/node) and SUMS values by test sentence.

c. Who t made the claim that John bought
a car? Short/Island

d. What did you make the claim that John
bought t? Long/Island

Once more, the parser matches the acceptability
preferences reported in SPW correctly in all con-
ditions. Particularly interesting is the absence of a
contrast between 4a and 4c. This is again due to
the absence of a real interaction between the addi-
tional structural complexity of the island and the
main movement dependency. The fact that this re-
sults in a tie stresses how movement dependencies
and structural complexity conspire with the top-
down strategy of the MG parser in non-trivial ways
to drive memory cost.

5 Discussion

This paper argues for an MG parser as a good, non
probabilistic formal model of how gradient accept-
ability can be derived from categorical grammars.
In doing so, we provide one of the first quanti-
tative models of how processing factors and fine-
grained, minimalist-like grammatical information
can conspire to modulate acceptability. As a proof-
of-concept, we replicated the gradient acceptabil-
ity scores for the island effects in (Sprouse et al.,
2012a). These results are certainly preliminary, but
the success of the parser on this baseline is encour-
aging.

As mentioned in the Introduction, many hy-
potheses have been formulated in the past about
the way memory and grammatical factors con-
spire to produce processing differences across sen-
tences. Thus, it is reasonable to wonder what are
the benefits of the particular linking hypothesis
implemented here. As we pointed out before, one
of the main advantages of our model is the tight
connection between the parser behavior and the



rich grammatical information encoded in the MG
derivation trees. This allows for rigorous evalua-
tions of the cognitive claims made by modern syn-
tactic theories.

In line with recent work using the MG parser as
a model of processing difficulty, Section 4 focused
on the predictions made by MAXT and SUMS,
Clearly, one could easily conceive of metrics that
take different syntactic information into account
(for example, by counting the amount of bound-
ing nodes or phases). However, tenure and size
arguably rely on the simplest possible connection
between memory, structure, and parsing behavior
— as they exclusively refer to the geometry of
a derivation tree, without additional assumptions
about the nature of its nodes.

Of course, a question remains about the cogni-
tive plausibility of such metrics. While this model
is certainly not the first to formalize memory cost
as associated to the length of movement depen-
dencies, the previous discussion highlighted how
size-centered metrics do not simply depend on the
length of a movement steps. Instead, they pick
up on the non-trivial changes in the behavior of
the parser, based on how long-distance dependen-
cies interact with local structural configurations.
Thus, they cannot trivially be identified with other
length-based measures (cf. Gibson, 1998; Ram-
bow and Joshi, 2015, a.o.). As previous work
points out, in the future it will be important to ex-
plore the relation between these complexity met-
rics, and psychological insights about the nature
of human memory mechanisms (De Santo, 2019).

Similarly, as one reviewer suggests, it would be
interesting to see whether SPW’s results can be de-
rived from different cognitive hypotheses; for in-
stance by implementing in the MG model the va-
riety of constraints explored by Boston (2012) for
a dependency parser. Moreover, in this study we
employ a deterministic parser to exclusively focus
on the relation between structural complexity and
memory usage. However, it is known that struc-
tural and lexical frequency influence islands’ ac-
ceptability (Chaves and Dery, 2019, a.o.). Thus,
informative insights would come from imple-
menting information-theoretical complexity met-
rics over the MG parser (Hale, 2016), and explore
the predictions of expectation-based approaches.

Obviously, the target judgments modeled here
are part of a restricted set. Future studies in this
sense will benefit from wider comparisons among

minimally different variants of acceptable and un-
acceptable sentences (cf. Sprouse et al., 2013,
2016). As mentioned, the nature of the model
makes comparisons beyond pairs of minimal sen-
tences hard to interpret. However, in future it
might be possible to define normalization mea-
sures for memory metrics computed over sen-
tences with widely different underlying structures.

Finally, in Section 3 we avoided discussing the
nature of island effects, as we do not mean for the
MG model to address the debate of whether island
violations are reducible to processing factors, or
are instead tied to core grammatical constraints.
Importantly, while this approach might superfi-
cially be construed as a reductionist theory, it is
not: for instance, the MG parser by itself is not
able to explain the difference between sentences
that are simply hard to process, and sentences con-
sidered unacceptable/ungrammatical. Thus, the
model is theoretically neutral with respect to
grammatical or reductionist frameworks.

However, consider the first case of Subject is-
lands we analyzed in Sec. 4. The parser produced
the right predictions for all test sentences except
when, in the presence of an island construction,
the longest movement dependency and the island
violation did not coincide (2c and 2d). This mis-
match is not only explained, but it is actually ex-
pected, if we embrace a grammatical theory of is-
land constraints. Under such theory, 2d is prefer-
able from a processing perspective (as it involves
shorter dependencies), but its acceptability is low-
ered by the fact that it violates a grammatical con-
straint, while 2c does not.

While we have to be careful in formulating hy-
potheses based on a single data point, this contrast
suggests that the MG model could help us investi-
gate those aspects of acceptability that are funda-
mentally tied to grammatical constraints.
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Abstract

An evolutionary model of pattern learning
in the MaxEnt OT/HG framework is de-
scribed in which constraint induction and con-
straint weighting are consequences of repro-
duction with variation and differential fitness.
The model is shown to fit human data from
published experiments on both unsupervised
phonotactic (Moreton et al., 2017) and super-
vised visual (Nosofsky et al., 1994) pattern
learning, and to account for the observed re-
versal in difficulty order of exclusive-or vs.
gang-effect patterns between the two experi-
ments. Different parameter settings are shown
to yield gradual, parallel, connectionist- and
abrupt, serial, symbolic-like performance.

1 Introduction

Some constraints in natural-language grammars
must be induced from phonological data, such
as constraints which refer to specific lexemes,
(e.g., McCarthy and Prince 1993; Fukazawa 1999;
Pater 2000; Ota 2004; Pater 2007; Coetzee and
Pater 2008; Pater 2009; Becker 2009), to spe-
cific lexical strata, inflectional paradigms, or other
language-particular lexical classes, (e.g., Benua
1997; Alderete 1999; Ito and Mester 2001; Flack
2007a; Inkelas 2008), or to phonetically arbitrary
sound classes that do not recur across languages
(e.g., Bach and Harms 1972; Anderson 1981;
Buckley 2000), as well as those which enforce id-
iosyncratic requirements (e.g., Prince and Smolen-
sky 1993, 101). 1

⇤The author is indebted for comments and suggestions
to Katya Pertsova, Jennifer Smith, participants in the UNC-
Chapel Hill P-Side caucus, and three anonymous SCiL re-
viewers. The research was supported in part by NSF BCS
1651105, “Inside phonological learning”, to E. Moreton and
K. Pertsova.

1Constraint induction from phonetics is a separate issue,
and is not addressed here; see, e.g., Hayes 1999; Smith 2002;
Flack 2007b.

How and when are phonological markedness
constraints induced? Proposals in the Optimal-
ity Theory/Harmonic Grammar literature fall into
two main categories: exhaustive search, in which
the learner considers all of a set of possible con-
straints, keeping those that best satisfy criteria
(Hayes and Wilson, 2008; Wilson and Gallagher,
2018), and error-patching, in which the learner
identifies a particular error type and makes a
constraint against it (Adriaans and Kager, 2010;
Pizzo, 2013; Pater, 2014).2

Here we discuss an alternative, evolution.
Evolution-based algorithms are attractive because
they are both an established technology for effi-
ciently searching large, inconveniently-shaped hy-
pothesis spaces (Bäck, 1996; Eiben and Smith,
2003; De Jong, 2006), and the basis of a leading
account of human creativity in art, engineering,
science, and other domains (Campbell, 1960; Si-
monton, 1999; Dietrich and Haider, 2015). In the
specific model considered here, Winnow-MaxEnt-
Subtree Breeder, constraints interact via Max
Ent Harmonic Grammar (Goldwater and Johnson,
2003), but weights are population sizes, weight
update is population growth or shrinkage in re-
sponse to fitness-based selection, and constraints
are innovated via mutation and recombination.

The paper is structured as follows. §2 de-
scribes the model (the “Winnow-MaxEnt-Subtree
Breeder”). §3 illustrates some of its properties us-
ing a simplified “toy” example (Simulation 1). §4
quantifies a necessary condition for learnability in
terms of the learning rate, the mutation rate, and
the number of critical constraints. §§5 and 6 il-
lustrate how the model accounts for human data
from two published experiments which tested for-
mally analogous patterns but found very different

2A learner using positive rather than negative constraints
can identify correct forms and make constraints that reward
them (Boersma and Pater, 2007).



results, the unsupervised phonotactic learning of
Moreton et al. (2017) and the supervised visual
pattern learning of Nosofsky et al. (1994). Ap-
propriate parameter settings cause the model to
act in the first case more like a connectionist net
(e.g., Gluck and Bower 1988b,a) and in the sec-
ond case more like a serial, rule-based hypothesis-
tester (e.g., Nosofsky et al. 1994; Ashby et al.
2011; Goodwin and Johnson-Laird 2013). §7 sug-
gests further empirical tests of the model.

2 Winnow-MaxEnt-Subtree Breeder

The anatomy of Winnow-MaxEnt-Subtree
Breeder will be briefly described here. It
is based on a model described in Moreton
(2010b,a,c) and analyzed in Moreton (2019),
which it modifies and extends.3. Source code
and a replication kit can be found at https:
//users.castle.unc.edu/~moreton/
Software/SCiL2020ReplicationKit/.

2.1 Constraints and candidates

Consubstantiality of candidates and constraints.
Candidates are represented using prosodic and
Feature-Geometric trees familiar from existing
phonological theory (Goldsmith, 1976; McCarthy,
1981; Sagey, 1990; Clements and Hume, 1995) —
in this paper, a slightly simplified version of the
feature system in Gussenhoven and Jacobs (2005,
Ch. 5). A box marks the head ; L and R mark left
and right constituent boundaries. A constraint is a
representational subtree, rooted at a PrWd, which
describes a locus of violation (or satisfaction de-
pending on the polarity of the constraint). Fig-
ure 1 depicts a micro-constraint that implements
ONSET, à la Smith (2006). Any notational variant
of this micro-constraint would belong to the same
macro-constraint.

Meta-constraints. Since constraints are con-
substantial with representations, they can evalu-
ate each other. Winnow-MaxEnt-Subtree Breeder
therefore allows the user to define metaconstraints,
constraints which award a fitness bonus or penalty
to other constraints. These can be used to prevent
ill-formed constraints (e.g., *[+high][+low]), or to
gently encourage or discourage constraints of par-
ticular types (e.g., those that mention “salient” fea-
tures, or express particular phonetic principles).

3Erratum for that SCiL paper: p. 5, below Eqn. 35, “�
log x” should be “⇡ log x”.

ONSET Matches once in it
-1

- PrWd -

L Syllable -

[Root]

L PrWd R

L Syllable R

[Root]
.[Place]
..[Dor]
...[+hi]
...[-bk]
...[-lo]
.[-nas]
.[-cons]
.[+approx]
.[+son]
.[-lat]
.[+cont]
.[Lar]
..[-spr
gl]
..[+voi]

[Root]
.[Place]
..[Cor]
...[+ant]
...[-dist]
.[-nas]
.[+cons]
.[-approx]
.[-son]
.[-lat]
.[-cont]
.[Lar]
..[+spr
gl]
..[-voi]

Figure 1: A constraint uses a subtree to describe a locus
of violation.

2.2 Learning constraint “weights”

Weights are population sizes. In a Harmonic
Grammar framework (Legendre et al., 1990), we
can, without changing candidate harmonies, re-
place any constraint Ci of weight wi with wi/⇣

constraints that each contribute ⇣ to harmony. For
example, if ⇣ = 0.01, a MAX constraint of
weight 3.5 can be replaced by 350 micro-MAX’s,
each of which has weight 1 and whose marks are
multiplied by 0.01. In Winnow-MaxEnt-Subtree
Breeder, all constraints are micro-constraints of
fixed weight 1. The harmony of a candidate x is

h(x) =
X

c

⇣c(x) (1)

Luce/MaxEnt choice rule. Given the experi-
menter’s intended winner x

+ and intended loser
x
�, the learner chooses x+ with a probability that

depends on the harmonies of the candidates.

Pr(x+ | x+, x�) = e
h(x+)

eh(x
+) + eh(x

�)
(2)

This is the two-alternative Luce choice rule
(Luce, 1959, 23) applied to the exponentiated
harmonies, i.e., a conditional Maximum Entropy
model (Goldwater and Johnson, 2003; Jäger,
2007; Hayes and Wilson, 2008). The generaliza-
tion to k alternatives is straightforward. The total
harmony available in the system is thus N⇣, limit-
ing performance.

Macro-constraints. The algorithm itself is cog-
nizant only of micro-constraints. For analytic

https://users.castle.unc.edu/~moreton/Software/SCiL2020ReplicationKit/
https://users.castle.unc.edu/~moreton/Software/SCiL2020ReplicationKit/
https://users.castle.unc.edu/~moreton/Software/SCiL2020ReplicationKit/


Expected Effect on
di Favors offspring oi population of [ci]
�1 loser 1/(1 + ⌘) < 1 shrinks

0 neither 1 stays same
+1 winner 1 + ⌘ > 1 grows

Table 1: Effect of error on offspring of micro-constraint
and population of macro-constraint.

convenience, we, looking in from outside, can
classify two micro-constraints ci, cj as belonging
to the same macro-constraint if they assign the
same scores to all candidates in the representa-
tional space. In the example above, the 350 micro-
MAX’s belong to a macro-constraint with a pop-
ulation size of 350 and an effective weight of
3.5. Macro-constraint membership is an equiva-
lence relation, so we can write [ci] for the macro-
constraint containing the micro-constraint ci.

Weight update is reproduction. When an error
occurs, each micro-constraint ci produces an ex-
pected number of offspring given by

oi = (1 + ⌘)di (3)
where ⌘ is a learning-rate parameter and di =
ci(x+)�ci(x�) is the difference between the win-
ner’s and loser’s score on ci. (The quantity oi is
the fitness of ci.) In particular, ci produces boic
offspring with certainty, and one more with prob-
ability oi � boic. E.g., if ci is binary (awards 0 or
1 marks), then Table 1 shows the expected num-
ber of offspring of the micro-constraint and the ef-
fect on the population size of the macro-constraint.
This update rule induces a variant of the Winnow-
2 algorithm (Littlestone, 1988; Moreton, 2019),
first mentioned as a possible HG learning algo-
rithm by Magri (2013).

If “soft” meta-constraints (those that assign fi-
nite marks) are specified, they add an offset to oi

equal to ⇣ times the total score they assign to ci.

2.3 Evolving constraints

The initial constraint population is set by the user.
Thereafter, on each error, the population is com-
pletely replaced via the following procedure.

Breeding. For each micro-constraint ci in the
pre-error population P , oi · s identical clone off-
spring are made and deposited in the reproductive
population R. Here s is the “clutch size” parame-
ter, 1 by default, which allows the absolute number
of offspring to be varied while maintaining the rel-
ative proportions belonging to differently-fit par-
ents.

Recombination. Of the constraints in R, b� ·
|R| + 0.5c are randomly selected to be recombi-
nant breeders, partitioning R into B (recombinant
breeders) and R � B (parthenogenetic breeders).
The offspring population O is initialized to equal
R � B. For each breeder ci 2 B, another breeder
cj 2 B of equal or greater fitness (oi  oj) is
selected, and the two constraints are combined as
described in Moreton (2019) to make a new con-
straint ci,j , which is then added to O. (Recombi-
nation is not used in the simulations described in
this paper.)

Mutation. Of the constraints in O, bµ|O|+0.5c
are randomly selected to undergo mutation. Mu-
tation is undirected, i.e., the probability of a par-
ticular mutation is independent of its effect on fit-
ness (just as in the Minimum Description Length
learner of Rasin and Katzir 2016). Mutation pro-
ceeds recursively, starting with the highest node in
the constraint. Mutation operations differ between
node genera (Table 2). At each node, every oper-
ation that can apply to that node first has a chance
to apply. Then the algorithm visits each actual or
potential dependent of the node, and applies recur-
sively to it. A potential dependent of a unary fea-
ture is any currently unrealized dependent feature;
e.g., an unfilled [ant] slot under [+Cor]. A poten-
tial dependent of a prosodic category is an inter-
val between two of its actual constituents, count-
ing the category’s own boundaries as constituents.
For example, the PrWd in [��]PrWd has two actual
dependents (the two �s) and three potential ones:
[
`
�
`
�
`
]PrWd. Mutation could add another � node

at any or all of the three potential dependents.
After mutation has applied to a constraint, the

mutant and the original are compared, and if they
are identical, or if the mutant receives marks from
a “hard” meta-constraint (one that assigns marks
of �1), mutation is re-attempted until an actual
mutant is achieved. The number of mutants pro-
duced on each error is thus Nsµ.

The probability of each operation can be set in-
dividually. In the present simulations, all are set
to the same probability ⇡, except those for Gain
head, Lose head, and Duplicate constituent, which
are set to 0. The larger ⇡ is, the more the mutant
will differ from the parent.

A micro-constraint which is lost from the popu-
lation and later re-innovated returns with its old fit-
ness value, rather than the default fitness of 1 given
to novel micro-constraints. (This design choice is



Invert polarity: Change the sign of the mark
given by a constraint.

Add constituent: Applied to a potential depen-
dent in a PrWd (syllable), adds a syllable
node (segment node) there. (E.g., [��]PrWd
has three potential dependents, marked here
with ^s: [^�^�^]PrWd. Each ^ could mu-
tate into another syllable.)

Delete constituent: Applied to a syllable node
(segment node), deletes it.

Duplicate constituent: Applied to a syllable or
segment, makes an adjacent duplicate copy
of the syllable or segment, including all of its
dependents.

Gain head: Applied to a PrWd (syllable), des-
ignates one of its syllables (segments) as the
head, or moves the head if there already is
one.

Lose head: Applied to a PrWd (syllable), makes
it headless by undesignating the existing head
(if any)

Flip anchor: Applied to a prosodic boundary
marker, toggles it (between - and L, or be-
tween - and R).

Gain unary: Applied to a potential unary fea-
ture (e.g., the empty position under a [+Place]
node where [+Cor] could go), adds that unary
feature.

Lose unary: Applied to an actual unary feature,
deletes it along with all of its dependents.

Gain binary: Applied to a potential binary fea-
ture (e.g., the empty position under a [+Cor]
node where [±ant] could go), adds that fea-
ture (with + and � values equally likely).

Lose binary: Applied to an actual binary feature,
deletes it.

Invert binary coefficient: Applied to an actual bi-
nary feature, changes + to � and vice versa.

Table 2: List of mutation operations.

crucial to the success of Simulation 3 in §6.)

Memorization. With probability pmem, the
learner creates a new micro-constraint that gives
+1 mark to the candidate that should have won, or
�1 mark to the candidate that should not have (the
experimenter can set a switch, mem_polarity).
This constraint is cloned nmem times, and the
clones are added to O. (In all simulations in this
paper, pmem = 0.)

Population adjustment. The resulting offspring

population is adjusted in size to meet the tar-
get size of N . The default method (random ad-
justment) is to randomly delete or clone micro-
constraints, with equal probability. An alterna-
tive (fitness-based adjustment) is to choose the
fittest N offspring, with ties broken randomly. The
adjusted population then completely replaces the
previous generation.

The parameters are listed in Table 3. In all
the simulations reported here, the parameters were
fixed across trials within a simulation, although in
fact they can be varied from trial to trial.

N Number of micro-constraints in population.
⇣ Weight quantum.
⌘ Learning rate.
µ Mutation rate.
s Clutch size.
pmem Probability to memorize winner/loser as con-

straint.
nmem Number of copies of winner/loser memorized.
mem_polarity Memorize winner or loser?
meta Meta-constraint set
mut Mutation probabilities (see Table 2)
rec Recombination parameters (not discussed here)

Table 3: List of simulation parameters.

3 Simulation 1: 2AFC phonological

learning (toy example)

Since new macro-constraints arise by mutation
out of old ones, existing macro-constraints should
prime discovery of new ones that are similar to
them. Since high-weighted (populous) macro-
constraints initiate more mutations, new macro-
constraints should tend to be mutants of (hence,
similar to) high-weighted old ones. And be-
cause approximate solutions can prosper when the
learner has not yet discovered the precise con-
straints, an approximately-right constraint can fo-
cus the learner’s mutational searching on its own
neighborhood.

We illustrate these general principles of the
model’s behavior using a stripped-down “toy”
example. The stimulus space is the set of all
(C)V (C) where C is one of /p, t, k/ and V =
/u/ . Pattern A has two place restrictions on the
coda; Pattern B has one on the coda and one on
the onset (Table 4).

To make analysis easier, � is set to 0 to make
all reproduction asexual (this is true througout this
paper). The mutation distance between the criti-
cal constraints in Condition A is then 2 (from *[–
syll, +Lab]]� to *[–syll, +Dor]]�: delete [+Lab],



Pattern A

Unviolated *[–syll, +Dor]]� (=NODORCODA)
constraints *[–syll, +Lab]]� (=NOLABCODA)
Positive u, ut, pu, put, tu, tut, ku, kut
Negative up, uk, pup, puk, tup, tuk, kup, kuk

Pattern B

Unviolated *[–syll, +Dor]]� (=NODORCODA)
constraints *�[[–syll, +Lab] (=NOLABONS)
Positive u, up, ut, tu, tup, tut, ku, kup, kut
Negative uk, pu, pup, put, tuk, kuk

Table 4: Phonotactic patterns for Simulation 1.

insert [+Dor]), while that between those in Con-
dition B is 4 (from *[–syll, +Lab]]� to *�[[–syll,
+Dor]: delete [+Lab], insert [+Dor], unset right
boundary, set left boundary). The same holds
for other micro-constraints that instantiate these
macro-constraints, because they likewise occur in
pairs (e.g., with a useless [+nas] feature added to
both). Discovering either critical constraint should
therefore prime discovery of the other better in the
A condition than in the B condition. Concretely,
we expect that in Condition A, as compared to
Condition B, (1) time between discovery of the
two constraints will be smaller, and (2) the weights
of the two constraints will be more strongly corre-
lated (because they co-exist for longer).

The simulation parameters were set as follows:
learning rate ⌘ = 0.25, mutation rate µ = 0.05,
a population of N = 200 constraints initialized to
*(L PrWd R), weight quantum ⇣ = 0.05. The
individual probabilities of the mutation operations
Add constituent, Delete constituent, Flip anchor,
Gain unary, Lose unary, Gain Binary, Lose binary,
Invert binary coefficient were set to ⇡ = 0.005,
and all the others to 0. The time limit was 1024
trials, and 100 replications of each condition were
run. Non-discovery was coded as 1, so aggregate
results are reported as medians, not means.

Prediction (1): Time between discovery smaller
in A than B: The median number of trials
that elapsed between discovery of the two crit-
ical constraints was 2.8 times greater in Condi-
tion B than in Condition A, as shown in Table
5. The difference was significant by a Wilcoxon-
Mann-Whitney rank-sum test (U = 2657.5, p =
0.003082, using wilcox.test in R’s stats li-
brary, R Core Team 2018).

Prediction (2): Weights of the two constraints
more strongly correlated in A than B: Because
discovery is more simultaneous in Condition A,

Discovery of
*�[[–syll, +Lab] or Abs.

*[–syll, +Dor]]� *[–syll, +Lab]]� diff.
A 237 243 114
B 313 316 322

Table 5: Median trials to and between discovery of crit-
ical constraints in Simulation 1, Conditions A vs. B.

the critical macro-constraints’ weights develop
more asymmetrically in Condition B. The mean
correlation between the weights of *[–syll, +Dor]
and the other critical macro-constraint was 0.72 in
Condition A, 0.56 in Condition B (significantly
different by a Wilcoxon-Mann-Whitney rank-sum
test, U = 4761, p = 0.0003484. Non-discovery
meant no correlation could be computed for 5 of
the A and 24 of B simulations.).

Attention-like effects: Clues in the data can
cause the learner to search some regions of con-
straint space more intensively. Here, the constraint
*[–syll, +Dor]]� (i.e., NODORSALCODA, critical
in A and B conditions) is one mutation away from
*[–syll]]� (i.e., NOCODA). The latter constraint
is discovered early and simultaneously in both A

and B (see Table 6). It is better supported by the
training data in A (4 out of 8 positive vs. 0 out of
8 negative stimuli) than in B (3 out of 8 positive
vs. 1 out of 8 negative). Once discovered, its pop-
ulation grows for longer in A than in B, peaking
at 59 micro-constraints on Trial 305 vs. 23 micro-
constraints on Trial 260. Between discovery and
peak, the *[–syll]]� population grew at a rate of
59/(305 � 24) = 0.21 micro-constraints per trial
in Condition A, but only 23/(259� 24) = 0.10 in
Condition B, i.e., half as fast. More population in
*[–syll]]� means more opportunities to spawn *[–
syll, +Dor]]�, and indeed that constraint is found
sooner in Condition A (estimate is 72 trials by
Wilcoxon-Mann-Whitney test, U = 2657.5, p =
0.003082). Across all 99 replications in Condi-
tion A in which both constraints were discovered,
a mean of 47% of all instances of *[–syll, +Dor]]�
were immediate offspring of *[–syll]]�. The anal-
ogous figures for Condition B are 91 and 8.7%.

Speaking anthropomorphically, we might say
that the A learner “notices” that codas matter,
i.e. up-weights *[–syll]]�. That “directs its at-
tention” to the coda position (by allowing the ap-
proximate solution *[–syll]]� to elbow out other
constraints). This “focused attention” results in
a more-intensive search among neighbors of *[–



syll]]�, which soon finds both critical constraints.
Thus, R&D work that helps find one constraint
also helps find the other. The critical constraints
then outcompete the approximate constraint and
drive its weight down. In the B condition, it
takes longer to discover the critical constraint be-
cause the mutant population is divided between
constraints targeting the onset and coda positions,
i.e., the data does not “call attention” to one posi-
tion more than the other.

Median trial number
Event A B

*[–syll]]� discovered 24 24
*[–syll]]� population peaks 305 260

(peak pop. size) (59) (23)
*[–syll, +Dor]]� discovered 237 312

Table 6: Discovery of *[–syll]]� (NOCODA) primes
discovery of *[–syll, +Dor]]� (NODORSALCODA) in
Simulation 1.

4 Mutation, learning, and complexity in

a monostratal grammar

The pattern in Simulation 1 can be captured by a
monostratal grammar: The two macro-constraints
handle disjoint, exhaustive subsets of the pattern,
and are not critically ranked (weighted) relative to
each other. In the general monostratal case, there
are n critical macro-constraints in the minimal so-
lution, with [ck] having exclusive responsibility for
Trial Type k. Suppose that the learner has already
found them all, and that ⇣ and N are big enough
that growth in the population of any critical macro-
constraint comes mainly at the expense of non-
critical constraints (assumed to be neutral). We
will see that ⌘ and µ impose an upper bound on n.

Let rk be the probability that when the next er-
ror occurs, it will occur on Trial Type k. Then
the expected proportional change in the popula-
tion size wk of [ck] is the expected product of
its rates of growth through reproduction and of
shrinkage through mutation. If we assume what
is typically the case, that mutation turns a critical
constraint into another critical constraint negligi-
bly often, then on the next error, [ck] reproduces
with probability rk and then shrinks by mutation
with probability 1:

E
⇥
w

0
k/wk

⇤
= rk(1 + ⌘)(1� µ) + (1� rk)(1� µ)

= (1 + rk⌘)(1� µ)

(4)

where w
0
k is the updated wk.

When the learning algorithm converges,
E [w0

k/wk] � 1 for all k, i.e., all of the macro-
constraint weights are either constant, or else
increasing at the expense of the neutral con-
straints. Setting E [w0

k/wk] = 1 and solving for
rk yields the critical value

r
⇤ =

1

⌘

µ

1� µ
(5)

If rk < r
⇤, then w

0
k < wk. Hence, a necessary

condition for convergence is 8k : rk � r
⇤. But

since the rk’s add to 1, there must be at least one k
such that rk  1/n. Hence a stable final grammar
exists only if

n  ncrit = ⌘
1� µ

µ
(6)

In Simulation 1, ⌘ and µ were chosen so that
ncrit = 0.25 · (1 � 0.05)/0.05 = 4.74 > 2 = n,
and indeed, the average proportion correct for the
last 16 trials was above 0.95 in both the A and
B conditions. To illustrate the effect of varying
ncrit, the simulation was re-run with all combi-
nations of ⌘ 2 {0.1, 0.15, 0.25, 0.3} and µ 2
{0.025, 0.05, 0.1, 0.15}. Figure 2 shows the re-
sults in terms of proportion correct on the last 16
trials (of 2048). For ncrit > 2, the median — in-
deed, the lower quartile — is never below 0.9. For
ncrit even slightly below 2, performance drops off
rapidly.

The reproduction and mutation rates thus fix
an upper bound on the number of critical macro-
constraints in a learnable monostratal grammar.
A pattern which minimally requires more than

Figure 2: Proportion correct on the last 16 trials as a
function of ncrit, Simulation 1, Condition A. Vertical
line marks ncrit = 2.



ncrit macro-constraints cannot be learned at all.
A pattern which can be expressed with ncrit or
fewer macro-constraints cannot be learned using
an equivalent monostratal grammar that has more,
e.g., one relying on parochial constraints or stim-
ulus memorization.

5 Simulation 2: Unsupervised

phonological learning (Moreton et al.,

2017)

When the population size N is large, and the
weight quantum ⇣ is small, the learner approxi-
mates a constraint-based model in which the con-
straint set contains all possible constraints up to
a certain size, whose weights vary continuously.
The reason is that the mutants created on any er-
ror will sample the space of possible constraints
densely. Simulation 2 illustrates this point.

In many lab experiments, phonotactic learning
is unsupervised: Participants are trained by ex-
posure to pattern-conforming stimuli only. Since
Winnow-MaxEnt learns from winner-loser pairs,
the learner must somehow generate its own loser
on each trial.

A straightforward way to do that is for the
learner to sample from the probability distribution
specified by its current grammar. If the sample
differs from the presented stimulus (virtually cer-
tain, regardless of how well the pattern has been
learned), the stimulus and sample are used as x

+

and x
� in Equation 3. Since x+ is always pattern-

conforming, but x
� is sometimes not, macro-

constraints enforcing the pattern prosper (i.e., gain
population relative to other constraints).

The hypothesis is tested by simulating three
different conditions from a published experiment
(Moreton et al., 2017, Exp. 1). The stimulus space
consisted of the 256 possible C1V1C2V2 stimuli
for which the consonants were one of [t d k g] and
the vowels one of [i æ u O] . Human participants
were familiarized by hearing and repeating aloud
32 pattern-conforming stimuli in pseudo-random
order such that each stimulus occurred 4 times.
They then did 32 test trials in which they heard
two novel stimuli, one pattern-conforming and one
not, and were asked to choose the conforming
stimulus.

Three specific patterns were chosen for the sim-
ulation, each instantiating a different pattern type
in the classification of Shepard et al. (1961, see
Figure 3). The pattern “C1 is voiceless” belongs

to Type I, a simple, one-feature affirmation. The
pattern “C1 and C2 disagree in voicing” is of Type
II, an if-and-only-if (equivalently, an exclusive-or)
combination of two features. Finally, the pattern
“at least two of: (1) C2 is velar, (2) C1 is voice-
less, (3) V2 is back” is of Type IV, a three-feature
“gang effect”.

• N
• N

� M
� M

• N
• N

� M
� M

• N
• N

� M
� M

I II IV

Figure 3: Pattern Types I, II, and IV of Shepard et al.
(1961), illustrated using visual stimuli. Type I is de-
fined by a single feature (“the figure is black”); Type
II is an iff/xor relation between two features (“black iff
round”); and Type IV is a three-feature gang effect (“at
least two of white, triangular, small”).

For each pattern, 32 conforming training stim-
uli, 32 conforming test stimuli, and 32 non-
conforming test stimuli were randomly chosen.
Each of the three patterns can be learned to perfec-
tion with n = 8 or fewer macro-constraints. The
simulation parameters were set at ⌘ = 0.33, µ =
0.025 (satisfying Equation 6 for n = 8), ⇣ = 0.05,
and N = 2000 constraints. The values were cho-
sen by trial and error to approximate human per-
formance. The test task for human participants
was to decide which of each test pair was “a word
in the language you were studying”. In the simu-
lation, this was implemented by attaching to each
training and test stimulus a [+real] feature. The
constraint set was initialized to equal proportions
of *[+real] and *[-real]. The learner got
as many training and test trials as did the humans.
100 replications of each simulation were run.

Simulation results are shown in Table 7 along-
side human performance. The numbers are simi-
lar, and the proportion of pattern-conforming test-
phase responses decreases in the order I > IV >

II .



Pattern type
I II IV

Sim. 0.83± 0.13 0.48± 0.02 0.60± 0.05
Human 0.73± 0.12 0.57± 0.11 0.70± 0.09

Table 7: Proportion pattern-conforming responses in
the test phase (± 1 s.d., not s.e.m.) for Simulation 2
and human data (Moreton et al., 2017, Table 5), show-
ing I > IV > II order.

6 Simulation 3: Supervised visual

learning (Nosofsky et al., 1994)

When the population size N is small and the
weight quantum ⇣ is large, the Winnow-MaxEnt-
Subtree Breeder approximates a serial hypothesis-
tester that keeps trying one categorical rule after
another until it finds one that works. This is illus-
trated in Simulation 3.

The human experiment to be replicated is that
of Nosofsky et al. (1994). The stimulus space con-
sisted of eight geometric figures varying on three
binary dimensions (shape, shading, and size, as in
Figure 3). A pattern was an assignment of four
stimuli to Category A, and four to B. On each
trial, the participant saw a figure, classified it as A
or B, and received right/wrong feedback. Train-
ing continued until the participant had responded
correctly on 32 consecutive trials, or reached a
limit of 400 trials. The difficulty order, in terms
of trials to criterion or errors to criterion, was
I < II < IV .

Many hypothesis-testing models in the concept-
learning literature account for this difficulty order
by positing a bias towards syntactically-simple hy-
potheses (Shepard et al., 1961; Nosofsky et al.,
1994; Feldman, 2006; Ashby et al., 2011; Good-
win and Johnson-Laird, 2013). The bias in
Winnow-MaxEnt-Subtree Breeder has a different
origin.

It can be seen from Figure 3 that a correct gram-
mar of the Type I problem can be made with just
two macro-constraints: *[-wug][+black]
and *[+wug][-black]. These constraints
designate the top face of the cube as a wug
(i.e., pattern-conforming) and the bottom face
as a non-wug. The smallest correct Type II
grammar needs four constraints, one for each
of the back-to-front edges of the cube (e.g.,
*[-wug][+black][+circle]). The small-
est correct Type IV grammar needs six constraints,
one for each of the edges radiating from the cen-

tral wug or non-wug stimulus.4 A small N should
therefore favor Type I over Type II, and Type II
over Type IV. For the grammar to give human-like
near-categorical responses with so few constraints,
the weight quantum ⇣ must be large, so that each
constraint has the effect of a categorical rule.

The parameters for Simulation 3 were adjusted
by trial and error to the values N = 7, ⇣ = 12, ⌘ =
1, µ = 1,⇡ = 1/2. Clutch size was set to 12.
Fitness-based selection was turned on so that the
fittest N of the offspring were chosen. The high
mutation rate and large clutch size should have
the effect of making the offspring population be
a diverse random sample of the 54 possible con-
straints. Any micro-constraint in the sample which
has previously been seen to favor a loser will be
assigned its previous (negative) fitness, and hence
be eliminated from the offspring set by fitness-
based selection. (Here is where the learner’s mem-
ory for the fitness of extinct micro-constraints,
mentioned above in §2.3, is crucial.) The result
should be that, as the simulation progresses, in-
valid micro-constraints are gradually discovered
and permanently eliminated from consideration,
so that the offspring population becomes more and
more a random sample of size 7 from the valid
constraints.

In the Type I condition, there are 2 valid faces,
8 valid edges, and 8 valid corners, and a correct
grammar can be made in many ways: from the 2
faces, from 1 face plus 4 edges, from 1 face plus 3
edges plus 2 corners, etc. In the Type II condition,
there are 4 valid edges and 8 valid corners, and a
correct grammar can be made from the 4 edges, or
3 edges plus 2 corners, or 2 edges plus 4 corners.
In the Type IV condition, there are 6 valid edges
and 8 valid corners, and a correct grammar can
only be made from the 6 edges, or from 5 edges
plus 2 corners, or from 2 faces plus 2 copies of
each of 2 corners. Hence a random sample of size
N = 7 is more likely to solve Type I than Type II,
and Type II than Type IV.

The results of the simulation (100 replications)
are shown in Table 8. The order of difficulty is
the same for the learner as for the humans (who
are about 40% faster in all conditions). Chang-
ing the model parameters has caused Types II and
IV to change places with respect to Simulation
2. Smaller values of N amplify the advantage of

4Alternatively, Type IV can be expressed with two face
constraints, plus two copies of each of two corner constraints
to override the face constraints, which is still six constraints.



% participants Mean trials
reaching criterion to criterion

I II IV I II IV
Sim. 100 98 74 68 161 210
Human 100 100 100 44 85 127

Table 8: Attainment of criterion performance (32 con-
secutive correct responses in 400 trials) for Simulation
3 and human participants (Nosofsky et al., 1994, 356).
Mean trials to criterion excludes cases where criterion
was not reached. There were 100 replications.

Type II over Type IV. For N  5, no Type IV sim-
ulations reach criterion.

7 Discussion

The Winnow-MaxEnt-Subtree Breeder links
phonological learning theoretically with other
kinds of pattern learning and with creativity in
other domains, thus spawning future research
questions (e.g., whether mutation is undirected,
or sensitive to the demands of the problem; Si-
monton 1999; Dietrich and Haider 2015; whether
recombination — sexual reproduction — is em-
pirically motivated, etc.). A more immediate task
is to test its empirical adequacy for phonological
learning. This section suggests some places to
start.

Abruptness. The learning curve in the large-
N /small-⇣ case is predicted to be more abrupt
when the pattern depends on induced constraints
rather than preexisting ones from UG or L1 (More-
ton, 2019). Complex patterns require a high learn-
ing rate ⌘ and/or low mutation rate µ (see §4).
Lower µ means longer intervals between con-
straint discoveries, while higher ⌘ means faster
population growth following discoveries; hence,
complex patterns are predicted to be learned as
a series of sudden acquisitions of individual sub-
patterns. I know of no experimental evidence
bearing directly on either prediction, but abrupt-
ness is a familiar aspect of first-language acqui-
sition (“across-the-board” changes, e.g., Smith
1973; Macken and Barton 1978; Vihman and
Velleman 1989; Barlow and Dinnsen 1998; Levelt
and van Oostendorp 2007; Gerlach 2010; Becker
and Tessier 2011; Guy 2014), and been observed
in lab-learned phonology (Moreton and Pertsova,
2016). Individual learning curves for many com-
plex non-linguistic skills show discontinuities al-
ternating with gradual power-law improvements
(Haider and Frensch, 2002; Bourne, Jr. et al.,

2010; Gray and Lindstedt, 2017; Donner and
Hardy, 2015).

Priming. As seen in Simulation 1, a target
grammar in the large-N /small-⇣ case is found
sooner when the relevant macro-constraints are
separated by fewer mutations, because finding one
constraint generates mutants that are helpful in
finding the next. The acquisition of a constraint
thus primes acquisition of similar constraints. It
may be relevant that, in a sample from P-Base
(Mielke, 2008), Carter (2017) found that lan-
guages tend to re-use phonological features: The
probability that a language which uses Feature
F in N phonologically-active classes uses it in
N + 1 classes increases with N (a preferential-
attachment process).

Nepotism. A weighty macro-constraint in
the large-N /small-⇣ case generates many mu-
tant offspring, thereby maintaining related macro-
constraints at higher weights than justified by their
usefulness. Hence learners should show emergent
effects of constraints that are mutationally close
to high-weighted ones. In adult segment-class
learning, generalization to untrained segments is
stronger when they are more similar to trained
segments (Cristiá et al., 2013). Prickett (2018)
showed that GMECCS (a gradient-ascent Maxi-
mum Entropy learner, Pater and Moreton 2012;
Moreton et al. 2017) underpredicts that differ-
ence, but that the fit can be improved by making
weight updates “leak” between featurally-similar
constraints. Nepotism may furnish a mechanism
to cause such leakage.

Cognitive realism. Human participants re-
port different approaches, including intuition, rote
memorization, and explicit reasoning. Differences
in self-reported approach correlate with differ-
ences in objective measures such as pattern-type
difficulty order, learning-curve shape, and abil-
ity to verbalize the pattern (Moreton and Pertsova
2016, Moreton and Pertsova, in prep.). Simula-
tions 2 and 3 illustrated parameter settings corre-
sponding to intuition (large N , small ⇣, random
selection) and to a rudimentary sort of reasoning
(small N , large ⇣, fitness-based selection), and the
pmem parameter enables stimulus memorization. It
would be desirable to know if intermediate com-
binations of parameter values correspond to types
of human performance, how parameter values are
linked to experimental conditions, and whether the
number of parameters can safely be reduced.
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Abstract
Human communication often involves the use
of verbal irony or sarcasm, where the speakers
usually mean the opposite of what they say.
To better understand how verbal irony is ex-
pressed by the speaker and interpreted by the
hearer we conduct a crowdsourcing task: given
an utterance expressing verbal irony, users are
asked to verbalize their interpretation of the
speaker’s ironic message. We propose a ty-
pology of linguistic strategies for verbal irony
interpretation and link it to various theoreti-
cal linguistic frameworks. We design com-
putational models to capture these strategies
and present empirical studies aimed to answer
three questions: (1) what is the distribution
of linguistic strategies used by hearers to in-
terpret ironic messages?; (2) do hearers adopt
similar strategies for interpreting the speaker’s
ironic intent?; and (3) does the type of seman-
tic incongruity in the ironic message (explicit
vs. implicit) influence the choice of interpreta-
tion strategies by the hearers?

1 Introduction

It is well understood that recognizing whether a
speaker is ironic or sarcastic is essential to under-
standing their actual sentiments and beliefs. For
instance, the utterance “pictures of holding ani-
mal carcasses are so flattering” is an expression
of verbal irony, where the speaker has a nega-
tive sentiment towards “pictures of holding animal
carcasses”, but uses the positive sentiment word
“flattering”. This inherent characteristic of ver-
bal irony is called semantic incongruity — incon-
gruity between the literal evaluation and the con-
text (e.g., between the positive sentiment words
and the negative situation in this example). Most
NLP research on verbal irony or sarcasm has fo-
cused on the task of sarcasm detection treating

⇤Part of the research was carried out while Debanjan was
a Ph.D. candidate at Rutgers University.

it as a binary classification task using either the
utterance in isolation or adding contextual infor-
mation such as conversation context, author con-
text, visual context, or cognitive features (Davi-
dov et al., 2010; Maynard and Greenwood, 2014;
Wallace et al., 2014; Joshi et al., 2015; Bamman
and Smith, 2015; Muresan et al., 2016; Amir et al.,
2016; Mishra et al., 2016; Ghosh and Veale, 2017;
Felbo et al., 2017; Ghosh et al., 2017; Hazarika
et al., 2018; Tay et al., 2018; Ghosh et al., 2018;
Oprea and Magdy, 2019). Such approaches have
focused their analysis on the speakers’ beliefs and
intentions for using irony (Attardo, 2000). How-
ever, sarcasm and verbal irony are types of inter-
actional phenomena with specific perlocutionary
effects on the hearer (Haverkate, 1990). Thus, we
argue that, besides recognizing the speaker’s sar-
castic/ironic intent, it is equally important to un-
derstand how the hearer interprets the speaker’s
sarcastic/ironic message. For the above utterance,
the strength of negative sentiment perceived by
the hearer depends on whether they interpret the
speaker’s actual meaning as “picture . . . are not
flattering” vs. “pictures . . . are so gross” (Table
1). The intensity of negative sentiment is higher in
the latter interpretation than in the former. Kreuz
(2000) noted that most studies in linguistics and
psychology have conducted experiments analyz-
ing reaction times (Gibbs, 1986; Katz et al., 2004)
or situational context (Ivanko and Pexman, 2003),
featuring a setup with in vitro data aimed at testing
the validity of specific theories of irony. Instead,
our study adopts a naturalistic approach to under-
stand hearers’ reception of irony looking at what
linguistic strategies are recurrently used by hear-
ers to interpret the non-literal meaning underlying
ironic utterances.

We leverage the crowdsourcing task introduced
by Ghosh et al. (2015) for their work on detect-
ing whether a word has a literal or sarcastic in-



terpretation, later adopted by Peled and Reichart
(2017). The task is framed as follows: given
a speaker’s ironic message, five annotators (e.g.,
Turkers on Amazon Mechanical Turk (MTurk))
are asked to verbalize their interpretation of the
speaker’s ironic message (i.e., their understand-
ing of the speaker’s intended meaning) (see Ta-
ble 1; Sim denotes the speaker’s ironic message,
while Hint denotes the hearer’s interpretation of
that ironic message). The crowdsourcing experi-
ments are reported in Section 2.

The paper makes three contributions. First, we
propose a data-driven typology of linguistic strate-
gies that hearers use to interpret ironic messages
and discuss its relevance in verifying theoretical
frameworks of irony (Section 4). Second, we pro-
pose computational models to capture these strate-
gies (Section 5). Third, we present two studies
that aim to answer two questions: (1) does the
type of semantic incongruity in the ironic mes-
sage (explicit vs. implicit; see Section 3) influ-
ence the choice of interpretation strategies by the
hearers? (Section 6.2); (2) do interpretation strate-
gies of verbal irony vary by hearers? We make all
datasets and code available.1

2 Datasets of Speakers’ Ironic Messages
and Hearers’ Interpretations

To generate a parallel dataset of speakers’ ironic
messages and hearers’ interpretations we conduct
a crowdsourcing experiment. Given a speaker’s
ironic message (Sim), five Turkers (hearers) on
MTurk are asked to verbalize their interpretation
of the speaker’s ironic message (i.e., their un-
derstanding of the speaker’s intended meaning)
(Hint). The design of the MTurk task was first in-
troduced by Ghosh et al. (2015), who use the re-
sulting dataset to identify words that can have both
a literal and a sarcastic sense. Peled and Reichart
(2017) employed similar design to generate a par-
allel dataset to use for generating interpretations of
sarcastic messages using machine translation ap-
proaches. They use skilled annotators in comedy
writing and literature paraphrasing and give them
the option not to rephrase (we refer to Peled and
Reichart (2017)’s dataset as SIGN ). We perform
this new crowdsourcing task and do not rely en-
tirely on the above two datasets for two reasons:
(1) we focus on verbal irony, and (2) we always
require an interpretation from the Turkers. Un-

1https://github.com/debanjanghosh/interpreting verbal irony

like the above two studies, the main goal of our
research is to analyze the linguistics strategies em-
ployed by hearers in interpreting verbal irony.

We collected messages that express verbal irony
from Twitter using the hashtags #irony, #sarcas-
tic, and #sarcasm. We chose Twitter as a source
since the presence of the hashtags allows us to se-
lect sentences where the speaker’s intention was
to be ironic. Furthermore, even though Twitter
users cannot be considered representative of the
entire population, they are unlikely to be skewed
with respect to topics or gender. We manually
checked and kept 1,000 tweets that express verbal
irony. We do not draw any theoretical distinction
between sarcasm and irony since we cannot as-
sume that Twitter users also differentiate between
#irony and #sarcasm, blurred even in scholarly lit-
erature. The Turkers were provided with detailed
instructions and examples of the task including the
standard definition of verbal irony taken from the
Merriam-Webster dictionary (“use of words to ex-
press something other than and especially the op-
posite of the literal meaning”). We decided to
suggest them a guiding definition for two reasons.
First, hearers do not usually focus on literal vs.
non literal meaning, as shown by studies measur-
ing processing times for both types of statements
(Inhoff et al., 1984). Therefore, when asked to
rephrase the speakers’ intended meaning, hearers
would have probably come up with sentences ex-
pressing the speaker’s imagined discursive goals,
rather than disclosing their perceived literal mean-
ing. Second, it is reasonable to assume that Turk-
ers would have looked up the standard meaning of
ironic utterance given by an online dictionary to
ease up their task, possibly coming up with biased
definitions.

The Turkers were instructed to consider the en-
tire message in their verbalization to avoid asym-
metry in length between the Sim and Hint. We
obtained a dataset of 5,000 Sim-Hint pairs where
five Turkers rephrase each Sim. A total of 184
Turkers participated in the rephrasing task. Ta-
ble 1 shows examples of speaker’s ironic messages
(Sim) and their corresponding hearers’ interpreta-
tions (Hi

int
). Next, we ran a second MTurk task

to verify whether the generated Hint messages are
plausible interpretations of the ironic messages.
This time we employ three Turkers per task and
only Turkers who were not involved in the con-
tent generation task were allowed to perform this



Sim H1
int H2

int H3
int

1. Ed Davey is such a pas-
sionate, inspiring speaker

Ed Davey is a boring, unin-
spiring speaker

Ed Davey is such a dull,
monotonous speaker

Ed Davey is not a passion-
ate, inspiring speaker

2. can’t believe how much
captain America looks like
me

I wish I looked like Cap-
tain America. I need to lose
weights

can’t believe how much
captain America looks dif-
ferent from me

I don’t, but I wish I looked
like Captain America

3. Pictures of you holding
dead animal carcasses are
so flattering

Hate hunting season and
the pictures of you holding
dead animal are so gross

Pictures of you holding
dead animal carcasses is an
unflattering look

Pictures of you holding
dead animal carcasses are
not flattering

Table 1: Examples of speaker’s ironic messages (Sim) and interpretations given by 3 Turkers (Hi
int).

task. We observe that Turkers labeled 5% (i.e., 238
verbalizations) of Hints as invalid and low qual-
ity (e.g., wrong interpretation). For both tasks, we
allowed only qualified Turkers (i.e., at least 95%
approval rate and 5,000 approved HITs), paid 7
cents/task and gave sixty minutes to complete each
task. The final dataset contains 4,762 pairs Sim-
Hint.

3 Semantic Incongruity in Ironic
Messages: Explicit vs. Implicit

Attardo (2000) and later Burgers (2010) distin-
guish between two theoretical aspects of irony:
irony markers and irony factors. Irony markers are
meta-communicative signals, such as interjections
or emoticons that alert the reader that an utterance
might be ironic. In contrast, irony factors cannot
be removed without destroying the irony, such as
the incongruity between the literal evaluation and
its context (“semantic incongruity”). Incongruity
expresses the contrast between the conveyed senti-
ment (usually, positive) and the targeted situation
(usually, negative). This contrast can be explicitly
or implicitly expressed in the ironic message.

Following Karoui et al. (2017), we consider
that semantic incongruity is explicit, when it
is lexicalized in the utterance itself (e.g., both
the positive sentiment word(s) and the negative
situation are available to the reader explicitly).
On Twitter, beside sentiment words, users often
make use of hashtags (e.g., “Studying 5 subjects
. . . #worstsaturdaynight”) or an image (e.g., “En-
couraging how Police feel they’re above the law.
URL”; the URL shows a police car not paying
parking) to express their sentiment. We consider
these cases as explicit, since the incongruity is
present in the utterance even if via hashtags or
other media. For implicit incongruity, we con-
sider cases where one of the two incongruent terms
(“propositions” in Karoui et al. (2017)) is not lex-
icalized and has to be reconstructed from the con-

text (either outside word knowledge or a larger
conversational context). For example “You are
such a nice friend!!!”, or “Driving in Detroit is fun
;)” are cases of ironic messages where the seman-
tic incongruity is implicit. Based on these def-
initions of explicit and implicit incongruity, two
expert annotators annotated the Sim-Hint dataset
(1000 ironic messages) as containing explicit or
implicit semantic incongruity. The inter-annotator
agreement was =0.7, which denotes good agree-
ment similar to Karoui et al. (2017). The annota-
tion showed that 38.7% of the ironic messages are
explicit, while 61.3% are implicit. In the following
section we propose a typology of linguistic strate-
gies used in hearers’ interpretations of speakers’
ironic messages and in section 6.2 we discuss the
correlation of linguistic strategies with the type of
semantic incongruity.

4 Interpreting Verbal Irony: A Typology
of Linguistic Strategies

Given the definition of verbal irony, we would
expect that Turkers’ interpretation of speaker’s
ironic message will contain some degree of op-
posite meaning with respect to what the speaker
has said. However, it is unclear what linguistic
strategies the Turkers will use to express that. To
build our typology, from the total set of Sim-Hint

pairs obtained through crowdsourcing (i.e., 4,762
pairs; see Section 2) we selected a dev set of 500
Sim-Hint pairs. Our approach does not assume any
specific theory or irony, but it is data-driven: a lin-
guist expert in semantics and pragmatics analyzed
the dev set to formulate the lexical and pragmatic
phenomena attested in the data. The assembled
typology is, thus, the result of a bottom-up proce-
dure. A Sim-Hint pair can be annotated with more
than one strategy. The core linguistic strategies are
explained below and synthesized in Table 2.



Typology Distribution (%)
Antonyms
- lexical antonyms (42.2)
- antonym phrases (6.0)
Negation
- simple negation (28.4)
Antonyms OR Negation
- weakening sentiment (23.2)
- interrogative ! declarative (5.2)
- desiderative constructions (2.8)
Pragmatic inference (3.2)

Table 2: Typology of linguistic strategies and their
distribution (in %) over the dev set

4.1 Linguistic Strategies
Lexical and phrasal antonyms: This category
contains lexical antonyms (e.g., “love” $ “hate”,
“great” $ “terrible”) as well as indirect antonyms
(Fellbaum, 1998), where the opposite meaning can
only be interpreted in context (e.g., “passionate
speaker” ! “boring speaker”; Table 1). Although
the typical antonym of “passionate” is “unpassion-
ate”, “boring” works in this context as a lexical
opposite since a speaker who is passionate entails
that he is not boring. Besides lexical antonyms,
Turkers sometimes use antonym phrases (e.g., “I
can’t wait” ! “not looking forward”, “I like (to
visit ER)” ! “I am upset (to visit ER) ”).

Negation: Here, Turkers negate the main pred-
icate. This strategy is used in the presence of
copulative constructions where the predicative ex-
pression is an adjective/noun expressing sentiment
(e.g., “is great” ! “is not great”) and of verbs ex-
pressing sentiment (e.g., “love” ! “do not love”)
or propositional attitudes (e.g., “I wonder” ! “I
don’t wonder”).

Weakening the intensity of sentiment: The use
of negation and antonyms is sometimes accom-
panied by two strategies that reflect a weakening
of sentiment intensity. First, when Sim contains
words expressing a high degree of positive sen-
timent, the hearer’s interpretation replaces them
with more neutral ones (e.g., “I love it” ! “I don’t
like it”). Second, when Sim contains an intensi-
fier, it is eliminated in the Turkers’ interpretation.
Intensifiers specify the degree of value/quality ex-
pressed by the words they modify (Méndez-Naya,
2008) (e.g., “cake for breakfast. so healthy” !
“cake for breakfast. not healthy”).

Interrogative to Declarative Transformation
(+ Antonym/Negation): This strategy, used

mostly in conjunction with the negation or
antonym strategies, consists in replacing the inter-
rogative form with a declarative form, when Sim is
a rhetorical question (for brevity, RQ) (e.g., “don’t
you love fighting?” ! “I hate fighting”).

Counterfactual Desiderative Constructions:
When the ironic utterance expresses a posi-
tive/negative sentiment towards a past event (e.g.,
“glad you relayed this news”) or an expressive
speech act (e.g., “thanks X that picture needed
more copy”) the hearer’s interpretation of intended
meaning is expressed through the counterfactual
desiderative constructions I wish (that) p (“I wish
you hadn’t relayed . . . ”, “I wish X didn’t copy
. . . ”). Differently from antonymic phrases, this
strategy stresses on the failure of the speaker’s
expectation more than on their commitment to the
opposite meaning.

Pragmatic Inference: In addition to the above
strategies, there are cases where the interpretation
calls for an inferential process to be recognized.
For instance, “made 174 this month . . . I’m gonna
buy a yacht!” ! “made 174 this month . . . I am
so poor”. The distribution of the strategies on the
dev set is represented in Table 2.

4.2 Links to Theoretical Frameworks
In linguistic literature many different approaches
to irony have been provided. Here we focus on
the three accounts (w.r.t. examples from Sim-Hint

corpus) that bear a different views on pragmatic
factors. According to Grice (1975), ironic mes-
sages are uttered to convey a meaning opposite
to that literally expressed, flouting the conversa-
tional maxim of quality “do not say what you be-
lieve to be false”. In verbal irony, the violation
of the maxim is frequently signaled by “the oppo-
site” of what is said literally (e.g., intended mean-
ing of “carcasses are flattering” is they are gross;
Table 1). The linguistic strategies of antonyms
(e.g. “worst day of my life”) and simple nega-
tion (“yeap we totally dont drink alcohol every
single day”[...]) cover the majority of the Sim-
Hint corpus and seem to fit the Gricean (Grice,
1975) account of irony, since the hearer seems
to have primarily recognized the presence of se-
mantic incongruity. However, as touched upon
by Giora (1995), antonyms and direct negation
are not always semantically equivalent strategies,
since the second sometimes allows a graded inter-
pretation: if “x is not encouraging”, it is not nec-



essarily bad, but simply “x < encouraging”. Such
an implicature is available exclusively with items
allowing mediated contraries, such as sentiment
words (Horn, 1989). Direct negation with senti-
ment words implies that just one value in a set is
negated, while the others are potentially affirmed.
The spectrum of interpretations allowed by nega-
tion as a rephrasing strategy indicates that hearers
recognize that the relevance of the ironic utterance
in itself plays a role next to what the utterances
refers to (if the rephrased utterance is intended
as “x is not encouraging at all”, the perceived ir-
relevance of the corresponding ironic utterance is
more prominent than in “x is not very encourag-
ing”). The fact that the interpretation of irony has a
propositional scope is even clearer when the ironic
sentence in interrogative form (“and they all lived
happily ever after ?”) is rephrased as a declara-
tive (e.g. “I doubt they all lived happily ever af-
ter”): the hearers recognizes that the question has
a rhetoric value since otherwise contextually irrel-
evant. The intentional falsehood of Gricean anal-
ysis is also not deemed by Sperber and Wilson
(1986); Wilson and Sperber (2012) as a necessary
and sufficient condition for irony. According to
their theory of echoic mentioning, irony presup-
poses the mention to the inappropriateness of the
entire sentence: in asserting “awesome weather in
Scotland today” the speaker does not simply want
to express that the weather was horrible but he
signals that assuming that the weather would be
nice was irrelevant and, thus, ridiculous. Kreuz
and Glucksberg (1989) expand the Relevance The-
ory approach talking about echoic reminding to
account for cases such as “could you be just a
little louder, please? My baby isn’t trying to
sleep” where the extreme politeness reminds the
hearer that the question is indeed a request and
that the mother bears a certain stance and has cer-
tain expectations towards the addressee. Simi-
larly, the use of the pragmatic inference strategy
cannot be fully explained in Gricean terms: the
rephrase “made 174 this month . . . I am so poor”
for “made 174 this month . . . I am gonna buy a
yatch” more than pointing to the presence of lex-
ical incongruity, show that the hearers knows for
background knowledge that the assertion of “buy-
ing a yatch” is completely irrelevant in the con-
text of a low salary situation. Rephrasing strate-
gies using counterfactual desiderative construc-
tions (e.g. “I really wish my friends and fam-

ily would check up on my after yesterday’s near
death experience”) show, instead, that the interpre-
tation of irony involves an echoic reminding to the
speaker’s (social) expectations which failed to be
fulfilled. Overall, using the results of our crowd-
sourcing experiment with main existing theories
of irony, it turns out that the theories have a com-
plementary explanatory power. In Section 6.2 we
investigate weather this situation might relate to
the presence of explicit/implicit irony.

5 Empirical Analysis of Interpretation
Strategies

Here our goal is to perform a comparative em-
pirical analysis to understand how hearers inter-
pret verbal irony. To accomplish this, we pro-
pose computational models to automatically de-
tect these linguistic strategies in two datasets: (1)
Sim -Hint dataset and (2) the SIGN dataset. As
stated in Section 2, albeit for a different purpose,
the task designed in Peled and Reichart (2017) is
identical to ours: they used a set of 3,000 sarcas-
tic tweets and collected five interpretation verbal-
ization, including an option to just copy the orig-
inal message if it was not deemed ironic. They
used workers skilled in comedy writing and liter-
ature paraphrasing. SIGN contains 14,970 pairs.
To evaluate our models, we asked two annotators
to annotate two test sets of 500 pairs each from
the Sim -Hint and the SIGN dataset (i.e., denoted
by SIGNtest), respectively. Note, the test set for
the Sim -Hint has no overlap with the dev set of
500 Sim-Hint pairs used to identify the strategies
(Section 4). Agreement between the annotators for
both sets is high with  > 0.9. In SIGNtest, 79
instances were just copies of the original message,
which we eliminated, thus the SIGNtest contains
only 421 instances.

5.1 Computational Methods

Lexical Antonyms. To detect whether an Sim-
Hint pair uses the lexical antonyms strategy, we
first need to build a resource of lexical antonyms.
We use the MPQA sentiment Lexicon (Wilson
et al., 2005), Hu and Liu (2004)’s opinion lexi-
con, antonym pairs from Mohammad et al. (2013),
antonyms from WordNet, and pairs of oppo-
site verbs from Verbocean (Chklovski and Pantel,
2004).

Given this lexicon of lexical antonyms, the task
is now to detect whether a given Sim-Hint pair



dev test SIGNtest

Strategies P R F1 P R F1 P R F1
Lex ant 89.0 95.7 92.2 97.2 89.9 93.4 89.4 97.9 93.5
Simple neg 92.0 89.4 90.7 88.3 88.3 88.3 93.3 91.2 92.2
AN weaksent 93.6 87.9 90.7 95.0 91.9 93.4 93.3 87.5 90.3
ANI!D 53.1 65.4 58.6 80.0 0.44 57.2 85.7 70.6 77.4
AN desiderative 100.0 92.9 96.3 100.0 100.0 100.0 100.0 66.7 80.0
AntPhrase+PragInf 86.2 53.2 65.8 70.7 85.3 77.4 89.5 68.0 77.3

Table 3: Evaluation of Computational Methods on dev, test and SIGNtest set (in %)

uses the lexical antonyms strategy. We use a
heuristic approach based on word-alignment and
dependency parsing (similar to contradiction de-
tection (De Marneffe et al., 2008)). Word-to-word
alignments between Sim-Hint are extracted using
a statistical machine translation (SMT) alignment
method - IBM Model 4 with HMM alignment
from Giza++ (Och and Ney, 2004). We consider
a lexical antonym strategy if: 1) antonym words
are aligned; 2) they are the roots of the respec-
tive dependency trees or if the nodes modified
by the lexical antonyms are the same in their re-
spective trees (e.g., ‘can you show any more of
steelers” ! “show less of steelers”, the candi-
date lexical antonyms are more and less and they
are the objects of the same predicate in Sim-Hint:
show). Out of 211 Sim-Hint pairs that are marked
as having lexical antonym strategy (dev set), 12
instances are identified by only the dependency
parses, 67 instances by the word-alignments, and
100 instances by both (P/R/F1 scores are 92.1%,
77.7% and 84.3%), respectively on dev dataset.
However, sometimes both dependency and word-
alignment methods fail. In “circling down the
bowl. Yay” ! “circling down the bowl. aw-
ful”, although the lexical antonyms yay and aw-
ful exist, neither the alignment nor the dependency
trees can detect it (25 such instances in the dev
set). To account for this, after having run the
dependency and alignment methods, we also just
search whether a Sim-Hint pair contains a lexical
antonym pair. This improves the final recall and on
the dev set we achieve 89.0% precision, 95.7% re-
call, and 92.2% F1 on dev dataset (Lex ant Strat-
egy; Table 3 show results both on dev and the
test sets). Note, just searching whether a lexical
antonym pair is present in a Sim-Hint pair results
in low precision (58.6%) but high recall (80%).

Simple negation. This strategy (denoted as
Simple neg in Table 3 and Table 4) involves iden-
tifying the presence of negation and its scope.
Here, however, the scope of negation is con-

strained since generally Turkers negated only a
single word (i.e., “love” ! “not love”). Thus our
problem is easier than the general problem of find-
ing the scope of negation (Li and Lu, 2018; Qian
et al., 2016; Fancellu et al., 2016). We use 30
negation markers from Reitan et al. (2015) to find
negation scope in tweets. We first detect whether a
negation marker appears in either Hint or Sim, but
not in both (negation can appear in Sim for ironic
blame) If the marker is used, we extract its parent
node from the dependency tree, and if this node is
also present in the other utterance, then Negation
strategy is selected. For instance, in “looks just
like me” ! “does not look like me”, the negation
not is modifying the main predicate looks in Hint,
which is also the main predicate in Sim (words are
lemmatized). In the next section, we discuss if the
parent nodes are not the same but similar and with
different sentiment strength.

Weakening the intensity of sentiment. The
first strategy — replacing words expressing a high
degree of positive/negative sentiment with more
neutral ones (‘I love being sick” ! “I don’t like
being sick)—, is applied only in conjunction with
the negation strategy. We measure the differ-
ence in strength using the Dictionary of Affect
(Whissell et al., 1986). Out of 31 Sim-Hint pairs
in the dev set, we automatically identify 28 inter-
pretations that use this approach. For the second
strategy — removing the intensifier (I am really
happy” ! “I am disappointed’) —, we first deter-
mine whether the intensifier exists in Sim and is
eliminated from Hint. We use only adjective and
adverb intensifiers from Taboada et al. (2011), pri-
marily to discard conjunctions such as “so” (“no
water so I can’t wash . . . ”). This strategy is used
together with both lexical antonyms and Simple
negation strategies. For a candidate Sim-Hint pair,
if the lexical antonym strategy is selected and aS
and aH are the lexical antonyms, we determine
whether any intensifier modifies aS and no inten-
sifier modifies aH . If the Negation strategy is se-



lected, we identify the negated term in the Hint

and then search its aligned node from the Sim us-
ing the word-word alignment. Next, we search in
the Sim if any intensifier is intensifying the aligned
term. The strategies are denoted as AN weaksent
in Table 3 and Table 4.

Interrogative to Declarative Transformation
(+ Antonym/Neg). To capture this strategy we
need to determine first if the verbal irony was ex-
pressed as a rhetorical question. To build a clas-
sifier to detect RQ, we collect two categories of
tweets (4K each) (1) tweets labeled with #sarcasm
or #irony that also contain “?”, and (2) information
seeking tweets containing “?”. We train a binary
classifier using SVM RBF Kernel with default pa-
rameters. The features are Twitter-trained word
embeddings (Ghosh et al., 2015), modal verbs,
pronouns, interrogative words, negations, and po-
sition of “?” in a tweet. We evaluate the training
model on the dev data and the P/R/F1 are 53.2%,
65.4%, and 58.6%, respectively (in future work
we plan to develop more accurate models for RQ
detection). Once we detect the ironic message
was expressed as a RQ, we identify the specific
interpretation strategy accompanying the trans-
formation from interrogative to declarative form:
antonym or negation. These combined strategies
are denoted as ANI!D in Table 3 and Table 4.

Desiderative Constructions: Currently, we use
a simple regular expression “I [w]⇤ wish” to cap-
ture counterfactual cases (AN desiderative in Ta-
bles 3 and Table 4).

Note, when the Simple negation and lexical
antonyms strategies are combined with other strat-
egy (e.g., removing of intensifier), we consider
this combined strategy for the interpretation of
verbal irony and not the simple negation or lexical
antonym strategy (i.e., we do not double count).

Phrasal antonyms and pragmatic inference:
Identifying phrasal antonyms and pragmatic in-
ference is a complex task, and thus we propose
a method of phrase matching based on phrase
extraction via unsupervised alignment technique
in SMT. We use IBM Model 4 with HMM
(Giza++; (Och and Ney, 2000)), phrase extraction
via Moses (Koehn et al., 2007) and the IRST tool
to build the required language models. As post-
processing, we first remove phrase pairs obtained
from the Sim-Hint bitext that are also present in
the set of extracted phrases from the Hint-Hint

Strategies Sim-Hint SIGN
Lex ant 2,198 (40.0) 9,691 (51.8)
Simple neg 1,596 (29.1) 3,827 (20.5)
AN weaksent 895 (16.3) 2,160 (11.6)
ANI!D 329 (6.0) 933 (5.0)
AN desiderative 92 (1.7) 86 (0.5)
AntPhrase+PragInf 357 (6.5) 1912 (10.1)

Table 4: Distribution of interpretation strategies on
two datasets (in %)

bitext. This increases the likelihood of retaining
semantically opposite phrases, since phrases ex-
tracted from the Hint-Hint bitext are more likely
to be paraphrastic. Second, based on the transla-
tion probability scores �, for phrase e if we have
a set of aligned phrases fset we reject phrases
that have � scores less than 1

size(fset)
. Finally,

11,200 phrases are extracted from the Sim-Hint

bitext. The low recall for this strategy is ex-
pected since there are too many ways that users
can employ pragmatic inference or rephrase the
utterance without directly using any antonym or
negation. In future, we will explore neural MT
(Cho et al., 2014) and use external data to gen-
erate more phrases. Since we have not manually
evaluated these phrase pairs, we only use this strat-
egy after we have tried all the remaining strategies
(AntPhrase+PragInf in Table 3 and Table 4).

5.2 Results and Distribution of Linguistic
Strategies

The performance of the models is similar on both
test and SIGNtest sets, showing consistently
good performance (Table 3; 90% F1 for all strate-
gies, except the AntPhrase+PragInf and ANI!D).
Given these results, we can now apply these mod-
els to study the distribution of these strategies in
the entire datasets (Table 4). The strategy distri-
bution between our dataset Sim-Hint and SIGN
dataset is similar and matches the distribution on
the manual annotations on the dev dataset in Ta-
ble 2. The sum of the strategies can exceed the
total number of the pairs since a tweet can con-
tain several ironic sentences that are interpreted
by Turkers. For instance, in “Dave too nice . . . a
nice fella” ! “Dave not nice . . . a mean fella” we
observe the application of two strategies, lexical
antonyms (e.g., nice ! mean) and negation (e.g.,
nice ! not nice).



6 Discussion

6.1 Hearer-dependent Interpretation
Strategies

We investigate how hearers adopt strategies for in-
terpreting the speaker’s ironic intent. To imple-
ment this study, we selected three Turkers (e.g.,
H1, H2, and H3; In Table 1, Hi

int
are generated

by the correspondent Turker Hi), from our crowd-
sourced data, who were able to rephrase at least
five hundred identical Sim messages. Note, we
cannot carry this experiment on the SIGN dataset
(Peled and Reichart, 2017) because the annotators’
information is absent there.

Although the three Turkers choose lexical
antonym and simple negation as two top choices,
there is some variation among them. H1 and
H2 choose antonyms more frequently than nega-
tion while in contrary Turker H3 choose negation
more than antonyms, sometime combined with the
weakening of sentiment strategy. As we mentioned
in Section 4.2, antonyms and direct negation are
not semantically equivalent strategies since the lat-
ter, allows a graded interpretation: if “x is not in-
spiring”, it is not necessarily bad, but simply “x <
inspiring” (Giora, 1995). In Table 1, the Sim-Hint

pair “passionate” ! “boring” and “flattering” !
“gross” (interpretation of H1) have more contrast
than the pair “passionate” ! “not passionate” and
“so flattering” ! “not flattering” (interpretation of
H3). This suggests that H1 perceive the intensity
of negative sentiment towards the target of irony
(“Ed Davey” and “picture of dead animals”, re-
spectively) higher than Turker H3. All three Turk-
ers have chosen the remaining strategies with sim-
ilar frequencies.

6.2 Message-dependent Interpretation
Strategies

Interpretation Strategies and the Type of Se-
mantic Incongruity: We investigate whether
the type of semantic incongruity in the ironic mes-
sage (explicit vs. implicit; see Section 3) influ-
ences the choice of interpretation strategies by the
hearers. To do this, we looked at Sim-level distri-
bution of interpretation strategies used by the hear-
ers for the same ironic message Sim. Table 5 rep-
resents the correlation of linguistic strategies with
the type of semantic incongruity (explicit vs. im-
plicit) as well as the presence and absence of irony
markers.

We notice that Turkers use lexical antonyms

Strategies incongruity marker
Exp. Imp. + �

Lex ant 48.5 34.8 35.7 42.2
Simple neg 24.9 32.3 28.9 30.0
AN weaksent 14.3 17.6 15.7 16.8
ANI!D 5.9 6.1 12.3 3.1
AN desiderative 1.3 1.9 0.9 2.0
AntPhrase+PragInf 5.2 7.1 6.2 6.6

Table 5: Rephrasing Strategies against Incongru-
ency and Irony Markers on Sim-Hint dataset (in
%)

Figure 1: Strategies selected per message (in %)

as interpretation strategy more when the seman-
tic incongruity is explicit than implicit (48.5% vs.
34.8%): the presence of explicit sentiment trig-
gered the use of the antonym strategy. In contrary
they use simple negation more when the semantic
incongruity is implicit than explicit.

We also analyze the interpretation strategies
w.r.t. to the presence (+) or absence (�) of irony
markers. We implement various morpho-syntactic
as well as typographic markers (similar to (Ghosh
and Muresan, 2018)) to identify the presence of
markers. We observe that Lex ant strategy is
used more in cases where the markers are ab-
sent. In Sim-Hint, markers are present twice as
much in the case of implicit (21%) than explicit
incongruity (10%). This finding validates (Burg-
ers et al., 2012) who argued speakers will likely
use markers to signal their ironic intent in implicit
incongruity.

Message interpreted the same by all hearers:
In Figure 1, the vertical columns (purple: Sim-
Hint and grey: SIGN ) depict the distribution (in
%) of tweets strategy-wise. In Sim-Hint dataset,
for 17% of messages (124 Sims) all five Turkers
use the same strategy to interpret the Sims (labeled
as 5 on the X-axis), whereas for 26% (188 Sims),
4 Turkers used same strategy (labeled as 4,1 on X-
axis) and so on.

We observe when the Sims are marked by strong
subjective words e.g., “great”, “best”, etc., they



have been replaced in 90% of cases as lexical
antonyms (e.g., “great” ! “terrible”). In addition,
the majority of adjectives are used in attributive
position (i.e., “lovely neighbor is vacuuming at
night”), thus blocking paraphrases involving pred-
icate negation. However, not all strong subjec-
tive words guarantee the use of direct opposites
in the Hints (e.g., “flattering” ! “not flattering”;
See Table 1). The choice of strategies may also
depend upon the target of ironic situation (Ivanko
and Pexman, 2003). We implement the bootstrap-
ping algorithm from Riloff et al. (2013) to iden-
tify ironic situations in Sims that are rephrased by
Lexical antonym strategy. We find utterances con-
taining stereotypical negative situations regarding
health issues (e.g., “having migraines”, “getting
killed by chemicals”) and other undesirable nega-
tive states such as “oversleeping”, “luggage lost”,
“stress in life” are almost always interpreted via
lexical antonym strategy.

Utterances where all five Turkers used simple
negation, if negative particles are positioned in
the ironic message with a sentential scope (e.g.,
“not a biggie”, “not awkward”) then they are sim-
ply omitted in the interpretations. This trend can
be explained according to the inter-subjective ac-
count of negation types (Verhagen, 2005). Sen-
tential negation leads the addressee to open up an
alternative mental space where an opposite predi-
cation is at stake.

7 Related Work

Most NLP research on verbal irony or sarcasm has
focused on the task of sarcasm detection treating
it as a binary classification task using either the ut-
terance in isolation or adding contextual informa-
tion such as conversation context, author context,
visual context, or cognitive features (González-
Ibáñez et al., 2011; Liebrecht et al., 2013; Wallace
et al., 2014; Zhang et al., 2016; Ghosh and Veale,
2016; Schifanella et al., 2016; Xiong et al., 2019;
Castro et al., 2019). Unlike this line of work,
our research focuses on how the hearer interprets
an ironic message. The findings from our study
could have multiple impacts on the sarcasm de-
tection task. First, interpretation strategies open
up a scope of “graded interpretation” of irony in-
stead of only a binary decision (i.e., predicting the
strength of irony). Second, nature of semantic in-
congruence and stereotype irony situations can be
useful features in irony detection.

Recently, Peled and Reichart (2017) proposed
a computational model based on SMT to gen-
erate interpretations of sarcastic messages. We
aim to deepen our understanding of such inter-
pretations by introducing a typology of linguis-
tic strategies. We study the distribution of these
strategies via both hearer-dependent and message-
dependent interpretations. Psycholinguistics stud-
ies that have dealt with the hearers’ perception,
have mainly focused on how ironic messages are
processed: through the analysis of reaction times
(Gibbs, 1986; Katz et al., 2004), the role of situa-
tional context (Ivanko and Pexman, 2003) and in
tackling speaker-hearer social relations by anno-
tating ironic texts from different genres (Burgers,
2010). However, no attention has been paid to cor-
relations between how ironic message is expressed
and how it is interpreted by the hearer, including
what linguistic strategies the hearers employ.

8 Conclusions

We leveraged a crowdsourcing task to obtain a
dataset of ironic utterances paired with the hearer’s
verbalization of their interpretation. We proposed
a typology of linguistic strategies for verbal irony
interpretation and designed computational mod-
els to capture these strategies with good perfor-
mance. Our study shows (1) Turkers mostly adopt
lexical antonym and negation strategies to inter-
pret speaker’s irony, (2) interpretations are corre-
lated to stereotype ironic situations, and (3) irony
expression (explicit vs. implicit incongruity and
absence or presence of markers) influences the
choice of interpretation strategies and match with
different explanatory theories (the Gricean ap-
proach links up better with explicit incongruity,
while Relevance Theory with the implicit one).
The latter can have an impact on irony detection
by bringing out more discriminative semantic and
pragmatic features.
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Abstract

The interpredictability of the inflected forms
of lexemes is increasingly important to ques-
tions of morphological complexity and typol-
ogy, but tools to quantify and visualize this as-
pect of inflectional organization are lacking,
inhibiting effective cross-linguistic compari-
son. In this paper I use metrics from graph
theory to describe and compare the organiza-
tional structure of inflectional systems. Graph
theory offers a well-established toolbox for de-
scribing the properties of networks, making it
ideal for this purpose. Comparison of nine lan-
guages reveals previously unobserved gener-
alizations about the typological space of mor-
phological systems. This is the first paper to
apply graph-theoretic tools to the goal of in-
flectional typology.

1 Introduction

Morphological typology has long classified lan-
guages in terms of how words are built out of
morphemes. A typical formulation defines three
or four types: isolating, agglutinative, fusional,
and sometimes polysynthetic. More nuanced work
seeks to break the types down into their compo-
nent properties, with languages compared based
on clusters of these (Plank, 1999). This newer ap-
proach is better able to capture cross-linguistic di-
versity, but it gives priority to the same aspects of
morphological structure as the traditional classifi-
cation scheme: syntagmatic relationships between
formal elements (e.g. how many morphemes there
are per word, known as the degree of synthesis
(Comrie, 1981)), and the extent to which form-
meaning mappings are isomorphic (e.g. as op-
posed to the language having inflection classes).

Morphological typologies built on these pri-
orities fail to capture important aspects of mor-
phological structure, corresponding to a distinc-
tion between two broad notions of morphological
complexity that Ackerman and Malouf (2013) call

Enumerative Complexity (E-complexity) and Inte-
grative Complexity (I-complexity). E-complexity
has to do with the size of a morphological system,
e.g., the number of cells in lexemes’ paradigms,
the system’s degree of synthesis, or the number of
its inflection classes. I-complexity, on the other
hand, has to do with the predictability of the in-
flected forms of lexemes. A morphological system
is I-complex to the extent that the inflected forms
of a newly encountered lexeme are unpredictable.
This is a function of the distribution of elements in
the system. Even systems with high E-complexity,
such as a large number of inflection classes, may
have low I-complexity, if morphological elements
are distributed in ways that make them predictable
(Ackerman and Malouf, 2013; Cotterell et al., to
appear; Wurzel, 1989). I-complexity is thus ori-
ented to the internal organization of inflectional
systems, rather than their size. However, this orga-
nization is not captured by traditional typological
measures.

In this paper I adopt metrics from graph the-
ory, using them to describe and compare the in-
ternal organization of inflectional systems.1 I an-
alyze inflection classes as nodes in a network that
are connected by the morphological structure that
they have in common; two classes are connected if
they use same exponent(s) to realize a set of mor-
phosyntactic values. Conceptualized in this way,
inflectional networks reflect the distribution of ex-
ponents in a language’s inflectional system, and by
extension, the internal organization of that system.
Graph theory offers an established, widely applied
toolkit for describing the properties of networks,
making it a natural choice for application. While
some interesting and previously unobserved gen-
eralizations emerge from comparison of different
languages’ inflectional networks, the primary goal
of this paper is to demonstrate the usefulness of

1Data and code are available at
https://github.com/sims120/inflectional-networks.



STOL MESTO KNIGA KOST’
‘table’ ‘place’ ‘book’ ‘bone’

ACC.SG stol mesto knigu kost’
INS.SG stolom mestom knigoj kost’ju
DAT.PL stolam mestam knigam kostjam

Table 1: Partial inflectional paradigms of Russian
nouns: three paradigm cells that differ in how infor-
mative they are about inflection class membership

applying graph-theoretic tools to inflectional data,
and to outline some specific ways to quantify and
compare inflectional systems.

Section 2 motivates an approach to typolog-
ical comparison based on the paradigmatic dis-
tribution of exponents within an inflectional sys-
tem. Section 3 gives a formal definition of an in-
flectional network. Section 4 discusses method-
ological choices. Section 5 introduces a variety
of standard graph-theoretic measures, illustrating
them using Russian noun inflection. Section 6
then compares nine languages’ inflectional sys-
tems based on a couple of these measures, show-
ing that their organization exhibits cross-linguistic
diversity but also notable commonalities. Finally,
Section 7 offers some conclusions and future di-
rections.

2 Internal organization as a basis for
inflectional typology

Work in the abstractive Word and Paradigm tra-
dition (Blevins, 2006) emphasizes the paradig-
matic or ‘external’ dimension of morphological
structure: distributions of inflected word-forms
within and across paradigms, and how these give
rise to competition among inflectional exponents.
In this view, word-internal/syntagmatic structure
(e.g. stem-affix relations) is a byproduct of the
ways in which words are paradigmatically related
within and across inflectional paradigms (Acker-
man et al., 2016; Blevins, 2016).

In the inter-paradigmatic direction, a central
question has to do with how inflected forms
cue inflection class membership – the so-called
Paradigm Cell Filling Problem (Ackerman et al.,
2009). Table 1 illustrates the issue using a sub-
set of the inflected forms of Russian nouns. (For
the moment I assume a typical, four-class descrip-
tion of Russian nouns, although I will ultimately
employ a more robust representation in Sections 5
and 6.) In Russian, the accusative singular expo-

nent -u (as in knig-u ‘book-ACC.SG’) is fully infor-
mative about inflection class membership, which
is to say, about what the other forms of the same
lexeme are. If a competent adult speaker encoun-
ters a neologism ending in -u and knows that it
is accusative singular, all other forms of the noun
are predictable (ignoring stress placement). How-
ever, inflected forms are not guaranteed to be fully
(or at all) informative in this way. Instrumen-
tal singular -om is partially informative: the new
word must belong to either the STOL class or the
MESTO class, but the observed form does not re-
solve which. The dative plural exponent -am is
uninformative, since it appears in every inflection
class. The distributions of inflected forms across
classes thus determine how and the extent to which
allomorphs cue inflection class membership. They
likewise define a pattern of relatedness among lex-
emes, and by extension inflection classes, and re-
flect the internal organization of the inflectional
system.

This internal organization has been of particular
interest in work that seeks to quantify inflectional
complexity. From an I-complexity perspective, the
Paradigm Cell Filling Problem is a significant is-
sue because neither child (Lignos and Yang, 2016)
nor adult (Bonami and Beniamine, 2016) speech
input is sufficient to observe all inflected forms of
all lexemes. Speakers must therefore be able to
productively predict and generate unobserved in-
flected forms. The complexity of an inflectional
system is a function of the difficulty of this task,
given some partial knowledge of a lexeme (Stump
and Finkel, 2013).

Estimates of the I-complexity of inflectional
systems based on paradigmatic relations – essen-
tially, proportional analogy – have been calcu-
lated in set-theoretic (Stump and Finkel, 2013)
and information-theoretic terms (Ackerman et al.,
2009; Ackerman and Malouf, 2013; Bonami and
Beniamine, 2016; Mansfield, 2016; Parker and
Sims, to appear; Sims and Parker, 2016; Stump
and Finkel, 2013). Sequence-to-sequence neural
network models for inflection have also been em-
ployed (Cotterell et al., to appear; Malouf, 2017).
Using conditional entropy, Parker (2016) esti-
mates the complexity of the Russian nominal sys-
tem at between 0.5 and 0.6 bits, depending on how
much detail about Russian inflectional outcomes is
included in the analysis.

This notion of inflectional complexity has also



been extended to cross-linguistic comparison.
Ackerman and Malouf (2013)[436] propose the
Low Entropy Conjecture: “...enumerative mor-
phological complexity is effectively unrestricted,
as long as the average conditional entropy, a mea-
sure of integrative complexity, is low...” The Low
Entropy Conjecture is posited to be a universal
constraint on morphological I-complexity, driven
by speakers’ need to be able to solve the Paradigm
Cell Filling Problem. Other work has suggested a
trade-off between I-complexity and E-complexity
(Cotterell et al., to appear). Importantly, however,
both suggest that I-complexity reveals commonali-
ties among languages’ inflectional systems that are
not captured by typological approaches focused on
E-complexity.

As a basis for cross-linguistic comparison, the
notion of I-complexity thus reflects something dif-
ferent about morphological structure than tradi-
tional measures do. It is also inextricably rooted in
the internal organization of inflectional systems –
in particular, the distribution of allomorphs across
lexemes and classes. Yet tools for directly ex-
amining this organization are lacking.2 Previous
work largely boils the distributional properties of
an inflectional system down to an estimate of its
complexity as a whole (as with Parker’s estimate
for Russian nouns). While this is appropriate to
some goals, single-value measures have the same
problem found with all averages: many different
distributions can produce the same average. As
a basis for comparison across languages this of-
fers an incomplete picture of the extent to which
languages are similar or different (Elsner et al.,
submitted). Moreover, languages seem to differ in
the extent to which paradigmatic relations (propor-
tional analogy) are important to maintaining low
I-complexity (Sims and Parker, 2016), suggesting
the need to directly investigate a system’s organi-
zation, and not only its resulting complexity.

These issues highlight the need to drill down on
the distributional properties of individual morpho-
logical elements. Tools are needed for the descrip-
tion of individual systems at that level that offer a
basis for meaningful cross-linguistic comparison.

3 Inflectional systems as networks

I define an inflection class system as an undirected
graph G = (V, E), where the set V of nodes con-

2However, Beniamine (2018) is notable for the use of net-
work visualization.

Figure 1: Network graph of the partial set of Russian
noun forms shown in Table 1

sists of the inflection classes of the language and
the set E of edges consists of unordered pairs of
elements in V . In particular, elements in E are
defined by exponence shared among pairs of el-
ements in V . Taking the partial set of inflected
forms from Table 1 as a simplified example, there
are four inflection classes (thus, V(G) = {STOL,
MESTO, KNIGA, KOST’}). The classes are dis-
tinct overall, but all four have the exponent -am

in dative plural, the classes of STOL and KOST’
both lack an overt accusative singular exponent,
and STOL and MESTO both have -om in instrumen-
tal singular. These overlaps define six edges E(G)
= {STOL-MESTO, STOL-KOST’, STOL-KNIGA,
MESTO-KOST’, MESTO-KNIGA, KOST’-KNIGA},
as visualized in Figure 1.3

Furthermore, the weight of an edge is defined
as the number of cells in which two classes over-
lap. This is shown as a heavier line for the edges
connecting nodes STOL and MESTO, and STOL and
KOST’. Edge weight captures the observation that
classes that overlap in more cells are more simi-
lar to each other. In language change, these are
more likely to analogically influence each other.
Edges can thus be thought of as paths of analogical
reasoning— more specifically, the edges represent
potential pivots for inflection class shift.

4 Segmentation and the definition of
classes

The number of inflection classes a given language
is analyzed as having is predicated on a segmenta-
tion of its words into stems and exponents. Mor-

3All network graphs in this paper were plotted with the
igraph package (Csardi and Nepusz, 2006) in R (R Core
Team, 2019). This package was also used to calculate clus-
tering coefficient, shortest path length, and betweenness cen-
trality, as described in Section 5 below.



phological segmentation has long presented ana-
lytic challenges for description and typology (Be-
niamine et al., 2017a; Hockett, 1947; Nida, 1949),
formal theory (Matthews, 1972; Spencer, 2012),
and computational modeling (Goldsmith, 2001,
2010; Harris, 1970; Manning, 1998). Encoder-
decoder neural models of inflection (Faruqui et al.,
2016; Kann and Schütze, 2016; Malouf, 2017; Sil-
fverberg and Hulden, 2018) have recently become
popular in part because they are able to sidestep
questions of how words should be segmented into
morphological units and how to define discrete in-
flection classes. However, it is difficult to identify
and interpret the latent representations that neural
network models of inflection actually learn. The
analyses below are instead based on manual seg-
mentation, which has the advantage of being max-
imally linguistically interpretable.4

In what follows I use a global segmentation
strategy (Beniamine et al., 2017b), in which the
‘stem’ is the maximal continuous string shared by
all inflected forms of a lexeme. There are two ex-
ceptions to this principle: 1) Suprasegmental ma-
terial (e.g. tone) is analyzed separately from seg-
mental material, allowing globally shared segmen-
tal material to be identified as part of the stem,
even when suprasegmental material is different
from one inflected form to another. Suprasegmen-
tal material that is not shared by all inflected forms
of a lexeme is assigned to the exponent. 2) Purely
automatic phonology (e.g. of the type that is vowel
harmony in Turkish, or vowel reduction in Rus-
sian) is ignored. This method results in bits of
form that linguists often classify as stem allomor-
phy (morphophonological alternations, stem ex-
tensions, theme vowels, stress shift, etc.) being
assigned to the exponent.5

Once a segmentation into stem and exponent
is made, defining classes is a trivial matter: two
words belong to the same inflection class if and
only if the full sets of their exponents are iden-
tical. This method results in microclasses in the
terminology of Beniamine et al. (2017b), which

4A goal for the future is to expand the methods
and code to include automatic segmentation of words
into stems and exponents, e.g. through integration
with the Qumin software package (Beniamine, 2018):
https://github.com/XachaB/Qumin

5Multiple exponents are treated as a single, combined ex-
ponent. To the extent that each of multiple exponents has a
separate distribution, an analysis in terms of multilayer net-
works (Bianchoni, 2018) would likely be needed to capture
this. Multilayer network representations are more complex
and I leave this extension for the future.

tend to be large in number, relative to classi-
cal descriptions. For example, descriptions of
the Russian nominal system tend to posit either
three (Vinogradov et al., 1952) or four (Corbett,
1982) (macro)classes, whereas the method used
here produces 87 (micro)classes.6

Since this is a somewhat unusual analytic
choice, it requires some justification. In defining
inflection classes, linguists tend to abstract away
from morphophonological alternations, especially
if phonologically conditioned, preferring to de-
fine classes based (solely, ideally) on lexically-
conditioned, suppletive exponents. This mini-
mizes the number of inflection classes posited.
However, there are at least four reasons to adopt a
maximally inclusive definition of exponents, and a
more robust number of classes.

First, returning to the Paradigm Cell Filling
Problem and the notion of I-complexity, to ‘solve’
the PCFP speakers must predict entire word-
forms. Limiting what counts as an exponent may
lead to overestimation or underestimation of the I-
complexity of inflectional systems (Elsner et al.,
submitted; Sims, 2015). This is important because
the graph-theoretic approach to inflectional typol-
ogy argued for in this paper is motivated exactly
by a desire to better understand how I-complexity
relates to the internal organization of inflectional
systems, and the extent of cross-linguistic diver-
sity in this respect.

Second, the line between morphology and
phonology cannot always be drawn in a principled
and pre-theoretic way. The choice to define expo-
nents in a maximally inclusive way is not theory-
neutral, to be sure – it is philosophically aligned
with the Word and Paradigm framework. But to
the extent that it errs, it does so consistently on
the side of representing inflection classes as overly
distinct. This is preferable to erring in the opposite
direction because we can ask about the extent to
which microclasses group into macroclasses, but if
we abstract away from morphological differences
and thus fail to distinguish two classes in the first
place, we will never be able to detect any inter-

6As a reviewer observed, suppletive material is all as-
signed to the exponent, resulting in maximal differentia-
tion from other classes and potentially increasing not only
the number of classes, but the prevalence of disconnected
subgraphs. Indeed, exactly this situation is encountered in
Russian nouns (see Section 5), showing that segmentation
choices affect the representation of the network to some de-
gree. However, it is not clear that there is a ‘right’ or ‘wrong’
choice in this respect.



Figure 2: Inflection class system of Russian nouns (87
classes). Nodes size represents the log type frequency
of the class. Node color reflects betweenness centrality
(darker = more central). Edge color and thickness are
according to weight: edges connecting nodes (classes)
with the same exponents in more than half of cells are
black (N � 7); edges connecting nodes with the same
exponents in exactly half of cells (N=6) are thick gray;
weaker edges are thin gray.

esting aspects of inflectional organization that the
abstracted-away-from differences constitute.

Third, as a practical matter, a global segmen-
tation strategy can be applied in a uniform way
across languages and requires a minimum of an-
alytic/theoretical assumptions (Beniamine et al.,
2017b), evading potential problems created by the
use of different analytic methods for different lan-
guages.

Finally, and perhaps most importantly, differ-
ent kinds of allomorphy tend to be found in dif-
ferent types of morphological systems (e.g. ag-
glutinative vs. fusional) (Plank, 1999). Includ-
ing some kinds of allomorphy and excluding oth-
ers thus runs the risk of introducing systematic
bias into cross-linguistic comparisons of inflection
class organization.

In the following section I illustrate how stan-
dard measures for network description can be used
to quantify the organizational structure of the Rus-
sian nominal inflectional system.

5 Network properties of Russian nouns

The inflection class network for Russian nouns is
shown in Figure 2. Following Parker (2016), the
underlying morphological analysis includes not

Figure 3: Correlation between node degree and mean
edge weight for Russian nouns. The red line shows a
quadratic regression fit.

just regular and productive inflectional suffixes,
but also irregular suffixes, stress alternations, stem
extensions, defectiveness (no inflected form for a
given paradigm cell), and uninflectedness (only
one form for all paradigm cells). Node size reflects
the log type frequency of the class (i.e. the log
number of lexemes it contains), based on 43,486
nouns in Zaliznjak (1977). Node color indicates
betweenness centrality, discussed below. Edges
are colored according to their weight.

5.1 Number of nodes, edges, and connected
components

Basic descriptive statistics for the Russian nom-
inal inflectional network include the number of
its nodes (|V(G)| = 87), the number of its edges
(|E(G)| = 2660), and how many connected com-
ponents it has. A connected component is a sub-
graph containing all of the nodes that are con-
nected via a path. The Russian noun system has
two components. One has two nodes that differ
from each other only in accusative (the result of
animacy-conditioned allomorphy), exemplified by
REBËNOK ‘child, baby’ (NOM.PL rebjata), which
has a unique suppletive stem alternation -onOk ⇠
-at.7 The remaining 85 classes belong to the other
connected component.

5.2 Degree distribution and edge weight
Node degree is the number of edges K that are
connected to a node. In Russian, the large majority
of classes have |K| > 50.

7Capital O in -onOk indicates a fleeting vowel.



The relationship between node degree and edge
weight is shown in Figure 3.8 The quadratic na-
ture of the distribution (R2 = 0.55, p < 0.0001)
probably partly reflects limitations on the extent
to which classes can overlap but remain distinct.
Classes with both high degree and high edge
weight are likely targets for merger, which may
explain the relative lack of such classes in Russian
nouns. However, interestingly, there is no such re-
striction for low degree nodes, for which it is en-
tirely possible to overlap with few other classes
(low degree), but in many cells (high edge weight).
The ways in which Russian nouns overlap thus do
not appear to reflect random sampling from the
full space of possibilities.9

5.3 Clustering coefficient
As is evident visually in Figure 2, Russian inflec-
tion classes form clusters: groups of nodes with
high-density ties. This clustering is why Rus-
sian is typically described as having three of four
classes: there are few general inflectional patterns,
but many words with small deviations from these.

Clustering demonstrates one reason why node
connectivity patterns affect system complexity.
On the one hand, classes with high-density ties
interfere with each other analogically. It might
therefore seem that a greater density of edges in
a network would lead monotonically to greater
system complexity. However, when classes clus-
ter, the interfering classes have mostly the same
exponence. Strong clustering can thus actually
lead to good interpredictability of forms for the
majority of cells, even in a strongly connected
network. It turns out there is no uniform rela-
tionship between the number of edges in a graph
(or their weight) and the complexity of an inflec-
tional system (Parker and Sims, to appear). This
makes clustering an important network property
for cross-linguistic comparison.

In an undirected network, the local clustering
coefficient Ci of a node vi with k neighbors is de-
fined as:

Ci =
2|{ejk : vj , vk 2 Ni, ejk 2 E}|

ki(ki � 1)

8The regression line excludes two nodes with degree of 1
and edge weight of 10. These are the same two nodes that be-
long to a separate component. If these are instead analyzed as
a single class with a cross-cutting paradigm condition (Baer-
man et al., 2017), the merged class has degree of 0.

9Although there is not space in this paper to dive fur-
ther into this issue, other languages show different degree-
to-weight distributions.

where Ni is the neighborhood of vi, specifically,
the set of nodes to which vi is directly connected
by an edge. The local clustering coefficient of
vi is thus the total number of edges among vi’s
neighbors, divided by the total possible number of
edges among neighbors. The global clustering co-
efficient of a system is the mean calculated over
all Ci; values range between 0 and 1. The Rus-
sian nominal network has a global clustering coef-
ficient of 0.816 (s.d. = 0.147).

5.4 Mean shortest path length

The path length between two nodes is the number
of edges that must be followed to get from one
to the other. Path length, like clustering coeffi-
cient, thus reflects patterns of network connectiv-
ity. Since edges in the inflectional network repre-
sent paths of analogical reasoning, the length of a
path between a pair of nodes can be interpreted as
being related to the likelihood of analogical inter-
ference between those classes, with low numbers
indicating greater potential interference.

Since the Russian nominal network is not fully
connected, the mean shortest path length for Rus-
sian nouns is here calculated within component.
(Across components there are no paths, so short-
est path length is infinite.) When calculated with-
out edge weight (using a breadth-first search algo-
rithm), the Russian network has a mean shortest
path length of 1.249 (s.d. = 0.134) and when cal-
culated taking edge weight into account (using the
Dijkstra algorithm), the mean shortest path length
is 8.929 (s.d. = 1.42).10

5.5 Betweenness centrality

We might also want to know which nodes are
most central in the network. Central nodes are
ones that are most likely to have shortest paths
traverse them, often by virtue of them being con-
nected to maximally separate parts of the network.
As such, they are classes that are disproportion-
ately likely to create pivots among classes that are
more distinct, relative to other nodes in the net-

10Shortest path length calculated over weighted edges
seeks to minimize edge weight, treating edge weight as dis-
tance or cost. In the Russian nominal network, however, edge
weight reflects similarity: more similar classes are connected
by heavier edges. This would, oddly, result in the algorithm
finding paths through maximally dissimilar classes. Edge
weights were thus reversed for calculations of path length.
Since Russian nouns have 12 cells, the maximum possible
edge weight is 11. An edge weight of 11 was transformed to
a value of 1, 10 was transformed to 2, etc.



Figure 4: Correlation between node size and between-
ness centrality for Russian nouns

work, putting those classes’ exponents into poten-
tial analogical competition.

Betweenness centrality is calculated based on
the set of shortest paths between vi and vj , for all
possible values of i and j (where i 6= j). The be-
tweenness centrality of a node vk is the number of
shortest paths in that set that include vk, where k
6= i, j. In Figure 2 nodes are colored according
to their betweenness centrality value, with darker
red indicating more centrality. Figure 4 shows the
betweenness centrality of classes as a function of
their log type frequency.

Notice that low type frequency noun classes in
Russian may be either high or low in centrality, but
high type frequency classes have only low central-
ity. The nodes with the highest betweenness cen-
trality turn out to be ones that are mostly regular
but have irregularities that cross-cut the conven-
tional classes in one or a few cells in the paradigm
(especially, stress shift, vowel-zero alternation,11

or an irregular nominative plural). Classes with
the lowest betweenness centrality may also have
low type frequency and exhibit irregularity, but
in a different way: they are either uninflected or
have unique stem extensions that serve to differ-
entiate them from most other classes in most cells.
Betweenness centrality thus reveals two different
kinds of irregularity in Russian nouns, with differ-
ent connectivity profiles within the network.

The distribution in Figure 4 is consistent with
the observation by Sims and Parker (2016) that
low type frequency classes contribute dispropor-
tionately to the unpredictability (complexity) of

11E.g. NOM.SG otec ‘father’, GEN.SG otc-a.

Figure 5: Inflection class system of Greek nouns

Figure 6: Inflection class system of Nuer nouns

the Russian nominal system; Stump and Finkel
(2013) make a similar generalization based pri-
marily on Icelandic verbs. However, it is seems
likely that the true underlying issue has to do with
how classes are embedded in their network – the
effect is driven by classes with high betweenness
centrality, which are themselves likely to have low
type frequency.

6 Cross-linguistic comparison

I now turn to look at how these network mea-
sures might be used as a basis for typological
comparison. Table 2 gives summary information

Figure 7: Inflection class system of Palantla Chinantec
verbs



Language Family Cells Classes Lexemes Sources
Chinantec verbs Oto-Manguean 24 101 838 (Merrifield and Anderson, 2007)
French verbs Indo-European 49 65 6,485 (Stump and Finkel, 2013)
Greek nouns Indo-European 6 48 25,370 (Sims, 2015; Idryma Manoli Tri-

antafyllidi, 1998)
Icelandic verbs Indo-European 30 146 1,034 (Stump and Finkel, 2013; Jörg, 1989)
Kadiwéu verbs Mataco-Guaicura 5 57 364 (Baerman et al., 2015; Griffiths,

2002)
Nuer nouns Nilotic 6 25 252 (Baerman, 2012)
Russian nouns Indo-European 12 87 43,486 (Parker, 2016; Zaliznjak, 1977)
Seri verbs Isolate 4 254 952 (Baerman, 2016; Moser and Marlett,

2010)
Võro verbs Uralic 9 23 4,668 (Baerman, 2014; Iva, 2007)

Table 2: Summary properties of the languages under investigation. Where more than one data sources is listed, the
first is the direct source; the second is the original source

and sources for nine inflectional systems inves-
tigated here: Palantla Chinantec verbs, French
verbs, Greek nouns, Icelandic verbs, Kadiwéu
verbs, Nuer nouns, Russian nouns, Seri nouns, and
Võro verbs. See Sims and Parker (2016) for fur-
ther information about these data sets. This rep-
resents an opportunistic sample; it is not genet-
ically or geographically balanced. This section
focuses on comparing mean shortest path length
and global clustering coefficient across these lan-
guages. A comparison based on the other met-
rics is left to future work for reasons of space, but
the example is illustrative of how graph-theoretic
measures can lead to new generalizations about
the typological space of morphological systems.

Impressionistically, the diversity of the nine lan-
guages is striking. In addition to differing substan-
tially in how many paradigm cells and classes they
have, Figures 5 through 7 show the inflectional
networks for Greek, Nuer, and Palantla Chinan-
tec. The Greek nouns are connected by relatively
fewer and weaker edges whereas the Nuer nouns
are robustly connected. Additionally, nodes clus-
ters into distinct groups in Palantla Chinantec, like
in Russian.

Interestingly, however, when we turn to mea-
sures of shortest path length and clustering coeffi-
cient, an emergent pattern is evident. For shortest
path length and clustering coefficient, direct com-
parison across languages is not meaningful be-
cause the sizes of the inflectional systems (num-
ber of nodes and edges) differ. More meaningful
is a comparison between the inflectional systems
and randomized versions of those systems. Simu-

Figure 8: Comparison of real and simulated (resam-
pled) inflection class systems according to mean short-
est path length and global clustering coefficient

lated languages were generated by randomly sam-
pling with replacement from the set of exponents
for each paradigm cell, assigning them to classes.
The exponents for each paradigm cell were sam-
pled separately. The resulting simulated systems
have the same number of allomorphs and classes
as the real systems, but the paradigmatic relations
that define the internal organization of the system
have been randomly shuffled.

The results are shown in Figure 8.12 (For the
simulated languages, mean values from 100 ran-

12A version based on weighted edges, in which the distri-
bution of weights from each real language was sampled with
replacement and assigned at random to edges, produced qual-
itatively similar results.



domizations are shown.) The real systems differ
from the simulated systems primarily in cluster-
ing, with the real languages exhibiting relatively
more clustering as path length increases. Notably,
for Nuer and Võro there is no meaningful differ-
ence between the real and simulated versions in
either clustering or path length. This is equivalent
to saying that Nuer and Võro lack (non-random)
inflection class structure.

The closer the mean shortest path length of a
network is to a value of 1, the closer that net-
work necessarily is to forming a single large clus-
ter, since every node is directly connected to every
other node. This is what we see in Nuer and Võro.
In contrast, networks with relatively long average
path length values are relatively sparsely popu-
lated with edges (compare Figure 5 to Figure 6).
In inflectional terms, this translates to classes that
are more distinct. This sparsity gives more oppor-
tunity for (non-random) clustering. At the same
time, it is not true that these networks must cluster
to a significant degree, as the divergence between
the real and the simulated languages shows.

The fact that in many languages, microclasses
can be grouped into successively larger macro-
classes is not a new observation (Brown and Hip-
pisley, 2012; Dressler et al., 2006), but the gener-
alization that some types of languages (i.e. ones
whose networks are relatively sparsely populated
with edges) are more likely to have this property
is a new typological observation. But why do lan-
guages with greater average path length also em-
ploy significant amounts of clustering? Here it is
not possible to do more than speculate in a broad
way, but one possibility is that inflection classes
that are more distinct are more likely to fracture
over time as a result of independent changes (e.g.
sound change), leaving groups of closely related
but not identical classes. When classes are more
distinct to begin with, such changes may be more
likely to result in clustering. Further work would
be needed to examine this possibility. But what-
ever the reason for the emergent pattern in Figure
8, it shows the ability of graph-theoretic measures,
when applied to inflectional typology, to unearth
new empirical generalizations about the internal
organization of inflectional systems.

7 Conclusions

While traditional approaches to inflectional typol-
ogy have focused on the size of inflectional sys-

tems, this does not capture their internal organi-
zation, particularly as related to the predictabil-
ity of inflected forms (also called the system’s I-
complexity). I have argued for thinking of in-
flectional systems as networks in which the nodes
are classes and the edges are exponents that two
classes have in common. This allows for tools
from graph theory to be applied to the task of de-
scribing the internal organization of inflectional
systems in their full richness.

The cross-linguistic comparison in section 6
highlighted the possibility of using graph-theoretic
measures to compare the network structure of in-
flection class systems. The measures employed
here offer a fundamentally different basis for ty-
pology than in traditional approaches and revealed
novel generalizations about the typological space
of morphological systems. In particular, clustering
emerged as a common property.

Future work should focus on identifying which
graph-theoretic measures are most useful for
cross-linguistic comparison of morphological sys-
tems. Additionally, as has already been demon-
strated in other domains (e.g. transportation net-
works), node connectivity profiles not only de-
fine classes of networks, but affect the dynamics
of a network differently (Guimerà et al., 2007).
This hints at the possibility of better predicting in-
flectional change. Ultimately, graph theory offers
a promising basis for inflectional typology, and
more.
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Abstract

How does knowledge of one language’s mor-
phology influence learning of inflection rules
in a second one? In order to investigate this
question in artificial neural network models,
we perform experiments with a sequence-to-
sequence architecture, which we train on dif-
ferent combinations of eight source and three
target languages. A detailed analysis of the
model outputs suggests the following conclu-
sions: (i) if source and target language are
closely related, acquisition of the target lan-
guage’s inflectional morphology constitutes an
easier task for the model; (ii) knowledge of a
prefixing (resp. suffixing) language makes ac-
quisition of a suffixing (resp. prefixing) lan-
guage’s morphology more challenging; and
(iii) surprisingly, a source language which ex-
hibits an agglutinative morphology simplifies
learning of a second language’s inflectional
morphology, independent of their relatedness.

1 Introduction

A widely agreed-on fact in language acquisition
research is that learning of a second language (L2)
is influenced by a learner’s native language (L1)
(Dulay and Burt, 1974; Kellerman, 1979). A lan-
guage’s morphosyntax seems to be no exception
to this rule (Bliss, 2006), but the exact nature of
this influence remains unknown. For instance, it
is unclear whether it is constraints imposed by the
phonological or by the morphosyntactic attributes
of the L1 that are more important during the pro-
cess of learning an L2’s morphosyntax.

Within the area of natural language processing
(NLP) research, experimenting on neural network
models just as if they were human subjects has
recently been gaining popularity (Ettinger et al.,
2016, 2017; Kim et al., 2019). Often, so-called
probing tasks are used, which require a specific
subset of linguistic knowledge and can, thus, be

walk eat

Inf dance eat
3rdSgPres dances eats
PresPart dancing eating
Past danced ate
PastPart danced eaten

Table 1: Paradigms of the English lemmas dance and
eat. dance has 4 distinct inflected forms; eat has 5.

leveraged for qualitative evaluation. The goal is
to answer the question: What do neural networks
learn that helps them to succeed in a given task?

Neural network models, and specifically
sequence-to-sequence models, have pushed the
state of the art for morphological inflection –
the task of learning a mapping from lemmata to
their inflected forms – in the last years (Cotterell
et al., 2016). Thus, in this work, we experiment
on such models, asking not what they learn, but,
motivated by the respective research on human
subjects, the related question of how what they
learn depends on their prior knowledge. We
manually investigate the errors made by artificial
neural networks for morphological inflection in
a target language after pretraining on different
source languages. We aim at finding answers to
two main questions: (i) Do errors systematically
differ between source languages? (ii) Do these
differences seem explainable, given the properties
of the source and target languages? In other
words, we are interested in exploring if and
how L2 acquisition of morphological inflection
depends on the L1, i.e., the ”native language”, in
neural network models.

To this goal, we select a diverse set of eight
source languages from different language fami-
lies – Basque, French, German, Hungarian, Ital-
ian, Navajo, Turkish, and Quechua – and three tar-



get languages – English, Spanish and Zulu. We
pretrain a neural sequence-to-sequence architec-
ture on each of the source languages and then fine-
tune the resulting models on small datasets in each
of the target languages. Analyzing the errors made
by the systems, we find that (i) source and tar-
get language being closely related simplifies the
successful learning of inflection in the target lan-
guage, (ii) the task is harder to learn in a prefix-
ing language if the source language is suffixing –
as well as the other way around, and (iii) a source
language which exhibits an agglutinative morphol-
ogy simplifies learning of a second language’s in-
flectional morphology.

2 Task

Many of the world’s languages exhibit rich inflec-
tional morphology: the surface form of an indi-
vidual lexical entry changes in order to express
properties such as person, grammatical gender, or
case. The citation form of a lexical entry is re-
ferred to as the lemma. The set of all possible
surface forms or inflections of a lemma is called
its paradigm. Each inflection within a paradigm
can be associated with a tag, i.e., 3rdSgPres is
the morphological tag associated with the inflec-
tion dances of the English lemma dance. We dis-
play the paradigms of dance and eat in Table 1.

The presence of rich inflectional morphology is
problematic for NLP systems as it increases word
form sparsity. For instance, while English verbs
can have up to 5 inflected forms, Archi verbs have
thousands (Kibrik, 1998), even by a conservative
count. Thus, an important task in the area of mor-
phology is morphological inflection (Durrett and
DeNero, 2013; Cotterell et al., 2018), which con-
sists of mapping a lemma to an indicated inflected
form. An (irregular) English example would be

(eat,PAST) ! ate

with PAST being the target tag, denoting the past
tense form. Additionally, a rich inflectional mor-
phology is also challenging for L2 language learn-
ers, since both rules and their exceptions need to
be memorized.

In NLP, morphological inflection has recently
frequently been cast as a sequence-to-sequence
problem, where the sequence of target (sub-)tags
together with the sequence of input characters con-
stitute the input sequence, and the characters of
the inflected word form the output. Neural models

define the state of the art for the task and obtain
high accuracy if an abundance of training data is
available. Here, we focus on learning of inflection
from limited data if information about another lan-
guage’s morphology is already known. We, thus,
loosely simulate an L2 learning setting.

Formal definition. Let M be the paradigm slots
which are being expressed in a language, and w
a lemma in that language. We then define the
paradigm ⇡ of w as:

⇡(w) =
n�

fk[w], tk
�o

k2M(w)
(1)

fk[w] denotes an inflected form corresponding to
tag tk, and w and fk[w] are strings consisting of
letters from an alphabet ⌃.

The task of morphological inflection consists of
predicting a missing form fi[w] from a paradigm,
given the lemma w together with the tag ti.

3 Model

3.1 Pointer–Generator Network

The models we experiment with are based on a
pointer–generator network architecture (Gu et al.,
2016; See et al., 2017), i.e., a recurrent neural
network (RNN)-based sequence-to-sequence net-
work with attention and a copy mechanism. A
standard sequence-to-sequence model (Bahdanau
et al., 2015) has been shown to perform well
for morphological inflection (Kann and Schütze,
2016) and has, thus, been subject to cognitively
motivated experiments (Kirov and Cotterell, 2018)
before. Here, however, we choose the pointer–
generator variant of Sharma et al. (2018), since it
performs better in low-resource settings, which we
will assume for our target languages. We will ex-
plain the model shortly in the following and refer
the reader to the original paper for more details.

Encoders. Our architecture employs two sepa-
rate encoders, which are both bi-directional long
short-term memory (LSTM) networks (Hochreiter
and Schmidhuber, 1997): The first processes the
morphological tags which describe the desired tar-
get form one by one.1 The second encodes the se-
quence of characters of the input word.

1In contrast to other work on cross-lingual transfer in deep
learning models we do not employ language embeddings.



Attention. Two separate attention mechanisms
are used: one per encoder LSTM. Taking all re-
spective encoder hidden states as well as the cur-
rent decoder hidden state as input, each of them
outputs a so-called context vector, which is a
weighted sum of all encoder hidden states. The
concatenation of the two individual context vec-
tors results in the final context vector ct, which is
the input to the decoder at time step t.

Decoder. Our decoder consists of a uni-
directional LSTM. Unlike a standard sequence-
to-sequence model, a pointer–generator network
is not limited to generating characters from
the vocabulary to produce the output. Instead,
the model gives certain probability to copying
elements from the input over to the output. The
probability of a character yt at time step t is
computed as a sum of the probability of yt given
by the decoder and the probability of copying yt,
weighted by the probabilities of generating and
copying:

p(yt) = ↵pdec(yt) + (1� ↵)pcopy(yt) (2)

pdec(yt) is calculated as an LSTM update and a
projection of the decoder state to the vocabulary,
followed by a softmax function. pcopy(yt) corre-
sponds to the attention weights for each input char-
acter. The model computes the probability ↵ with
which it generates a new output character as

↵ = �(wcct + wsst + wyyt�1 + b) (3)

for context vector ct, decoder state st, embed-
ding of the last output yt�1, weights wc, ws, wy,
and bias vector b. It has been shown empirically
that the copy mechanism of the pointer–generator
network architecture is beneficial for morphologi-
cal generation in the low-resource setting (Sharma
et al., 2018).

3.2 Pretraining and Finetuning
Pretraining and successive fine-tuning of neural
network models is a common approach for han-
dling of low-resource settings in NLP. The idea is
that certain properties of language can be learned
either from raw text, related tasks, or related lan-
guages. Technically, pretraining consists of esti-
mating some or all model parameters on examples
which do not necessarily belong to the final target
task. Fine-tuning refers to continuing training of
such a model on a target task, whose data is often

limited. While the sizes of the pretrained model
parameters usually remain the same between the
two phases, the learning rate or other details of the
training regime, e.g., dropout, might differ. Pre-
training can be seen as finding a suitable initializa-
tion of model parameters, before training on lim-
ited amounts of task- or language-specific exam-
ples.

In the context of morphological generation, pre-
training in combination with fine-tuning has been
used by Kann and Schütze (2018), which proposes
to pretrain a model on general inflection data and
fine-tune on examples from a specific paradigm
whose remaining forms should be automatically
generated. Famous examples for pretraining in the
wider area of NLP include BERT (Devlin et al.,
2019) or GPT-2 (Radford et al., 2019): there, gen-
eral properties of language are learned using large
unlabeled corpora.

Here, we are interested in pretraining as a sim-
ulation of familiarity with a native language. By
investigating a fine-tuned model we ask the ques-
tion: How does extensive knowledge of one lan-
guage influence the acquisition of another?

4 Experimental Design

4.1 Target Languages

We choose three target languages.
English (ENG) is a morphologically impover-

ished language, as far as inflectional morphology
is concerned. Its verbal paradigm only consists of
up to 5 different forms and its nominal paradigm
of only up to 2. However, it is one of the most fre-
quently spoken and taught languages in the world,
making its acquisition a crucial research topic.

Spanish (SPA), in contrast, is morphologically
rich, and disposes of much larger verbal paradigms
than English. Like English, it is a suffixing lan-
guage, and it additionally makes use of internal
stem changes (e.g., o ! ue).

Since English and Spanish are both Indo-
European languages, and, thus, relatively similar,
we further add a third, unrelated target language.
We choose Zulu (ZUL), a Bantoid language. In
contrast to the first two, it is strongly prefixing.

4.2 Source Languages

For pretraining, we choose languages with differ-
ent degrees of relatedness and varying morpholog-
ical similarity to English, Spanish, and Zulu. We



ENG SPA ZUL EUS FRA DEU HUN ITA NAV TUR QVH

20A Fusion of Selected Inflectional Formatives 0 0 0 0 0 0 0 1 0 0 0
21A Exponence of Selected Inflectional Formatives 0 1 0 1 0 2 1 3 3 1 1
21B Exponence of Tense-Aspect-Mood Inflection 0 1 0 0 1 0 0 2 2 0 0
22A Inflectional Synthesis of the Verb 0 1 1 1 1 0 1 2 2 3 4
23A Locus of Marking in the Clause 0 1 2 1 3 0 0 4 4 0 0
24A Locus of Marking in Possessive Noun Phrases 0 0 0 0 0 0 0 1 1 2 0
25A Locus of Marking: Whole-language Typology 0 1 1 1 1 0 1 2 2 1 0
25B Zero Marking of A and P Arguments 0 0 0 0 0 0 0 1 1 0 0
26A Prefixing vs. Suffixing in Inflectional Morphology 0 0 1 2 0 0 0 0 1 0 0
27A Reduplication 0 0 1 2 0 0 2 0 0 2 1
28A Case Syncretism 0 1 2 0 1 1 3 4 2 3 3
29A Syncretism in Verbal Person/Number Marking 0 0 0 1 0 0 1 2 1 1 1

Table 2: WALS features from the Morphology category. 20A: 0=Exclusively concatenative, 1=N/A. 21A: 0=No
case, 1=Monoexponential case, 2=Case+number, 3=N/A. 21B: 0=monoexponential TAM, 1=TAM+agreement,
2=N/A. 22A: 0=2-3 categories per word, 1=4-5 categories per word, 2=N/A, 3=6-7 categories per word, 4=8-9
categories per word. 23A: 0=Dependent marking, 1=Double marking, 2=Head marking, 3=No marking, 4=N/A.
24A: 0=Dependent marking, 1=N/A, 2=Double marking. 25A: 0=Dependent-marking, 1=Inconsistent or other,
2=N/A. 25B: 0=Non-zero marking, 1=N/A. 26A: 0=Strongly suffixing, 1=Strong prefixing, 2=Equal prefixing
and suffixing. 27A: 0=No productive reduplication, 1=Full reduplication only, 2=Productive full and partial redu-
plication. 28A: 0=Core cases only, 1=Core and non-core, 2=No case marking, 3=No syncretism, 4=N/A. 29A:
0=Syncretic, 1=Not syncretic, 2=N/A.

limit our experiments to languages which are writ-
ten in Latin script.

As an estimate for morphological similarity we
look at the features from the Morphology category
mentioned in The World Atlas of Language Struc-
tures (WALS).2 An overview of the available fea-
tures as well as the respective values for our set of
languages is shown in Table 2.

We decide on Basque (EUS), French (FRA),
German (DEU), Hungarian (HUN), Italian (ITA),
Navajo (NAV), Turkish (TUR), and Quechua
(QVH) as source languages.

Basque is a language isolate. Its inflectional
morphology makes similarly frequent use of pre-
fixes and suffixes, with suffixes mostly being at-
tached to nouns, while prefixes and suffixes can
both be employed for verbal inflection.

French and Italian are Romance languages, and
thus belong to the same family as the target lan-
guage Spanish. Both are suffixing and fusional
languages.

German, like English, belongs to the Ger-
manic language family. It is a fusional, predom-
inantly suffixing language and, similarly to Span-
ish, makes use of stem changes.

Hungarian, a Finno-Ugric language, and Turk-
ish, a Turkic language, both exhibit an agglutina-
tive morphology, and are predominantly suffixing.
They further have vowel harmony systems.

2https://wals.info

Navajo is an Athabaskan language and the only
source language which is strongly prefixing. It fur-
ther exhibits consonant harmony among its sibi-
lants (Rice, 2000; Hansson, 2010).

Finally, Quechua, a Quechuan language spoken
in South America, is again predominantly suffix-
ing and unrelated to all of our target languages.

4.3 Hyperparameters and Data
We mostly use the default hyperparameters by
Sharma et al. (2018).3 In particular, all RNNs have
one hidden layer of size 100, and all input and out-
put embeddings are 300-dimensional.

For optimization, we use ADAM (Kingma and
Ba, 2014). Pretraining on the source language
is done for exactly 50 epochs. To obtain our fi-
nal models, we then fine-tune different copies of
each pretrained model for 300 additional epochs
for each target language. We employ dropout (Sri-
vastava et al., 2014) with a coefficient of 0.3 for
pretraining and, since that dataset is smaller, with
a coefficient of 0.5 for fine-tuning.

We make use of the datasets from the CoNLL–
SIGMORPHON 2018 shared task (Cotterell et al.,
2018). The organizers provided a low, medium,
and high setting for each language, with 100,
1000, and 10000 examples, respectively. For all
L1 languages, we train our models on the high-
resource datasets with 10000 examples. For fine-

3github.com/abhishek0318/
conll-sigmorphon-2018

https://wals.info
github.com/abhishek0318/conll-sigmorphon-2018
github.com/abhishek0318/conll-sigmorphon-2018


EUS FRA DEU HUN ITA NAV TUR QVH

ENG 45.8 76.1 82.0 85.6 84.7 53.2 81.7 68.3
SPA 23.9 53.3 53.8 58.2 56.9 33.1 52.0 49.0
ZUL 10.8 17.1 23.0 23.0 21.9 13.6 24.9 10.7

Table 3: Test accuracy.

EUS FRA DEU HUN ITA NAV TUR QVH

ENG 44.2 75.8 81.4 84.5 84.3 50.8 81.6 67.3
SPA 24.5 55.1 54.8 61.0 58.3 33.6 51.9 51.8
ZUL 12.4 21.8 24.5 25.7 22.2 13.8 28.7 12.2

Table 4: Validation accuracy.

tuning, we use the low-resource datasets.

5 Quantitative Results

In Table 3, we show the final test accuracy for all
models and languages. Pretraining on EUS and
NAV results in the weakest target language inflec-
tion models for ENG, which might be explained
by those two languages being unrelated to ENG
and making at least partial use of prefixing, while
ENG is a suffixing language (cf. Table 2). In con-
trast, HUN and ITA yield the best final models
for ENG. This is surprising, since DEU is the lan-
guage in our experiments which is closest related
to ENG.

For SPA, again HUN performs best, followed
closely by ITA. While the good performance of
HUN as a source language is still unexpected, ITA
is closely related to SPA, which could explain the
high accuracy of the final model. As for ENG,
pretraining on EUS and NAV yields the worst fi-
nal models – importantly, accuracy is over 15%
lower than for QVH, which is also an unrelated
language. This again suggests that the prefixing
morphology of EUS and NAV might play a role.

Lastly, for ZUL, all models perform rather
poorly, with a minimum accuracy of 10.7 and
10.8 for the source languages QVH and EUS, re-
spectively, and a maximum accuracy of 24.9 for
a model pretrained on Turkish. The latter result
hints at the fact that a regular and agglutinative
morphology might be beneficial in a source lan-
guage – something which could also account for
the performance of models pretrained on HUN.

6 Qualitative Results

For our qualitative analysis, we make use of the
validation set. Therefore, we show validation set
accuracies in Table 4 for comparison. As we can

see, the results are similar to the test set results for
all language combinations. We manually annotate
the outputs for the first 75 development examples
for each source–target language combination. All
found errors are categorized as belonging to one
of the following categories.

Stem Errors

• SUB(X): This error consists of a wrong
substitution of one character with another.
SUB(V) and SUB(C) denote this happening
with a vowel or a consonant, respectively.
Letters that differ from each other by an ac-
cent count as different vowels.
Example: decultared instead of decultured

• DEL(X): This happens when the system om-
mits a letter from the output. DEL(V) and
DEL(C) refer to a missing vowel or conso-
nant, respectively.
Example: firte instead of firtle

• NO CHG(X): This error occurs when in-
flecting the lemma to the gold form requires a
change of either a vowel (NO CHG(V)) or a
consonant (NO CHG(C)), but this is missing
in the predicted form.
Example: verto instead of vierto

• MULT: This describes cases where two or
more errors occur in the stem. Errors con-
cerning the affix are counted for separately.
Example: aconcoonaste instead of acondi-
cionaste

• ADD(X): This error occurs when a letter
is mistakenly added to the inflected form.
ADD(V) refers to an unnecessary vowel,
ADD(C) refers to an unnecessary consonant.
Example: compillan instead of compilan

• CHG2E(X): This error occurs when inflect-
ing the lemma to the gold form requires a
change of either a vowel (CHG2E(V)) or a
consonant (CHG2E(C)), and this is done, but
the resulting vowel or consonant is incorrect.
Example: propace instead of propague

Affix Errors

• AFF: This error refers to a wrong affix. This
can be either a prefix or a suffix, depending
on the correct target form.
Example: ezoJulayi instead of esikaJulayi



EUS FRA DEU HUN ITA NAV QVH TUR

SUB(V) 2 2 0 2 2 2 0 3
DEL(C) 5 2 1 1 1 8 2 1
DEL(V) 6 1 2 0 2 5 4 1
NO CHG(V) 1 1 0 1 1 2 3 1
MULT 18 3 3 0 1 13 13 0
ADD(V) 0 0 0 0 0 2 0 0
CHG2E(V) 0 0 0 0 0 0 0 0
ADD(C) 5 0 0 0 0 3 0 0
CHG2E(C) 0 0 0 0 0 0 0 0
NO CHG(C) 0 0 0 0 0 0 0 0

AFF 10 8 3 5 5 9 9 8
CUT 0 0 1 0 0 0 0 0

REFL 0 0 0 0 0 0 0 0
REFL LOC 0 0 0 0 0 0 0 0
OVERREG 1 1 1 1 1 1 1 1

Stem 37 9 6 4 7 35 22 6
Affix 10 8 4 5 5 9 9 8
Misc 1 1 1 1 1 1 1 1

Table 5: Error analysis for ENG as the model’s L2.

• CUT: This consists of cutting too much of
the lemma’s prefix or suffix before attaching
the inflected form’s prefix or suffix, respec-
tively.
Example: irradiseis instead of irradiaseis

Miscellaneous Errors

• REFL: This happens when a reflective
pronoun is missing in the generated form.
Example: doliéramos instead of nos
doliéramos

• REFL LOC: This error occurs if the reflec-
tive pronouns appears at an unexpected posi-
tion within the generated form.
Example: taparsebais instead of os tapabais

• OVERREG: Overregularization errors occur
when the model predicts a form which would
be correct if the lemma’s inflections were reg-
ular but they are not.
Example: underteach instead of undertaught

6.1 Error Analysis: English
Table 5 displays the errors found in the 75 first
ENG development examples, for each source lan-
guage. From Table 4, we know that HUN > ITA
> TUR > DEU > FRA > QVH > NAV > EUS,
and we get a similar picture when analyzing the
first examples. Thus, especially keeping HUN and
TUR in mind, we cautiously propose a first con-
clusion: familiarity with languages which exhibit

an agglutinative morphology simplifies learning of
a new language’s morphology.

Looking at the types of errors, we find that EUS
and NAV make the most stem errors. For QVH
we find less, but still over 10 more than for the re-
maining languages. This makes it seem that mod-
els pretrained on prefixing or partly prefixing lan-
guages indeed have a harder time to learn ENG in-
flectional morphology, and, in particular, to copy
the stem correctly. Thus, our second hypotheses
is that familiarity with a prefixing language might
lead to suspicion of needed changes to the part of
the stem which should remain unaltered in a suf-
fixing language. DEL(X) and ADD(X) errors are
particularly frequent for EUS and NAV, which fur-
ther suggests this conclusion.

Next, the relatively large amount of stem errors
for QVH leads to our second hypothesis: language
relatedness does play a role when trying to pro-
duce a correct stem of an inflected form. This is
also implied by the number of MULT errors for
EUS, NAV and QVH, as compared to the other
languages.

Considering errors related to the affixes which
have to be generated, we find that DEU, HUN and
ITA make the fewest. This further suggests the
conclusion that, especially since DEU is the lan-
guage which is closest related to ENG, language
relatedness plays a role for producing suffixes of
inflected forms as well.

Our last observation is that many errors are not
found at all in our data sample, e.g., CHG2E(X)
or NO CHG(C). This can be explained by ENG
having a relatively poor inflectional morphology,
which does not leave much room for mistakes.

6.2 Error Analysis: Spanish

The errors committed for SPA are shown in Table
6, again listed by source language. Together with
Table 4 it gets clear that SPA inflectional morphol-
ogy is more complex than that of ENG: systems
for all source languages perform worse.

Similarly to ENG, however, we find that most
stem errors happen for the source languages EUS
and NAV, which is further evidence for our previ-
ous hypothesis that familiarity with prefixing lan-
guages impedes acquisition of a suffixing one. Es-
pecially MULT errors are much more frequent
for EUS and NAV than for all other languages.
ADD(X) happens a lot for EUS, while ADD(C) is
also frequent for NAV. Models pretrained on either



EUS FRA DEU HUN ITA NAV QVH TUR

SUB(V) 7 1 4 4 3 4 3 4
DEL(C) 4 0 0 0 0 1 1 0
DEL(V) 4 0 1 0 0 2 0 0
NO CHG(V) 6 7 6 5 5 3 5 6
MULT 8 2 0 0 0 9 0 2
ADD(V) 4 2 0 0 0 0 1 0
CHG2E(V) 1 0 0 1 0 1 1 0
ADD(C) 3 1 1 0 0 3 0 1
CHG2E(C) 0 0 1 0 0 1 0 0
NO CHG(C) 0 0 0 0 1 0 1 0

AFF 35 29 27 23 26 35 31 30
CUT 9 1 2 1 1 8 3 1

REFL 2 0 2 0 1 2 1 1
REFL LOC 0 2 0 2 1 0 1 1
OVERREG 0 0 0 0 0 0 0 0

Stem 37 13 13 10 9 24 12 13
Affix 44 30 29 24 27 43 34 31
Misc 2 2 2 2 2 2 2 2

Table 6: Error analysis for SPA as the model’s L2.

language have difficulties with vowel changes,
which reflects in NO CHG(V). Thus, we conclude
that this phenomenon is generally hard to learn.

Analyzing next the errors concerning affixes,
we find that models pretrained on HUN, ITA,
DEU, and FRA (in that order) commit the fewest
errors. This supports two of our previous hy-
potheses: First, given that ITA and FRA are both
from the same language family as SPA, related-
ness seems to be benficial for learning of the sec-
ond language. Second, the system pretrained on
HUN performing well suggests again that a source
language with an agglutinative, as opposed to a
fusional, morphology seems to be beneficial as
well.

6.3 Error Analysis: Zulu
In Table 7, the errors for Zulu are shown, and Ta-
ble 4 reveals the relative performance for differ-
ent source languages: TUR > HUN > DEU >
ITA > FRA > NAV > EUS > QVH. Again, TUR
and HUN obtain high accuracy, which is an ad-
ditional indicator for our hypothesis that a source
language with an agglutinative morphology facil-
itates learning of inflection in another language.

Besides that, results differ from those for ENG
and SPA. First of all, more mistakes are made
for all source languages. However, there are also
several finer differences. For ZUL, the model
pretrained on QVH makes the most stem errors,
in particular 4 more than the EUS model, which
comes second. Given that ZUL is a prefixing lan-

EUS FRA DEU HUN ITA NAV QVH TUR

SUB(V) 3 2 1 3 0 6 7 1
DEL(C) 4 6 1 4 6 3 2 2
DEL(V) 1 7 0 2 2 0 3 1
NO CHG(V) 2 0 0 0 0 1 1 0
MULT 30 8 13 10 11 21 31 9
ADD(V) 0 1 1 3 1 2 0 2
CHG2E(V) 0 0 0 0 0 0 0 0
ADD(C) 1 3 1 6 4 2 1 1
CHG2E(C) 0 0 0 0 0 0 0 0
NO CHG(C) 0 2 1 1 1 0 0 1

AFF 59 52 52 53 53 55 57 52
CUT 1 3 2 5 3 2 3 4

REFL 0 0 0 0 0 0 0 0
REFL LOC 0 0 0 0 0 0 0 0
OVERREG 0 0 0 0 0 0 0 0

Stem 41 29 18 29 25 35 45 17
Affix 60 55 54 58 56 57 60 56
Misc 0 0 0 0 0 0 0 0

Table 7: Error analysis for ZUL as the model’s L2.

guage and QVH is suffixing, this relative order
seems important. QVH also committs the highest
number of MULT errors.

The next big difference between the results for
ZUL and those for ENG and SPA is that DEL(X)
and ADD(X) errors, which previously have mostly
been found for the prefixing or partially prefixing
languages EUS and NAV, are now most present
in the outputs of suffixing languages. Namely,
DEL(C) occurs most for FRA and ITA, DEL(V)
for FRA and QVH, and ADD(C) and ADD(V) for
HUN. While some deletion and insertion errors
are subsumed in MULT, this does not fully explain
this difference. For instance, QVH has both the
second most DEL(V) and the most MULT errors.

The overall number of errors related to the affix
seems comparable between models with different
source languages. This weakly supports the hy-
pothesis that relatedness reduces affix-related er-
rors, since none of the pretraining languages in our
experiments is particularly close to ZUL. How-
ever, we do find more CUT errors for HUN and
TUR: again, these are suffixing, while CUT for
the target language SPA mostly happened for the
prefixing languages EUS and NAV.

6.4 Limitations
A limitation of our work is that we only include
languages that are written in Latin script. An inter-
esting question for future work might, thus, regard
the effect of disjoint L1 and L2 alphabets.

Furthermore, none of the languages included in



our study exhibits a templatic morphology. We
make this choice because data for templatic lan-
guages is currently mostly available in non-Latin
alphabets. Future work could investigate lan-
guages with templatic morphology as source or
target languages, if needed by mapping the lan-
guage’s alphabet to Latin characters.

Finally, while we intend to choose a diverse set
of languages for this study, our overall number of
languages is still rather small. This affects the gen-
eralizability of the results, and future work might
want to look at larger samples of languages.

7 Related Work

Neural network models for inflection. Most
research on inflectional morphology in NLP
within the last years has been related to the SIG-
MORPHON and CoNLL–SIGMORPHON shared
tasks on morphological inflection, which have
been organized yearly since 2016 (Cotterell et al.,
2016). Traditionally being focused on individ-
ual languages, the 2019 edition (McCarthy et al.,
2019) contained a task which asked for transfer
learning from a high-resource to a low-resource
language. However, source–target pairs were pre-
defined, and the question of how the source lan-
guage influences learning besides the final accu-
racy score was not considered. Similarly to us,
Gorman et al. (2019) performed a manual error
analysis of morphological inflection systems for
multiple languages. However, they did not investi-
gate transfer learning, but focused on monolingual
models.

Outside the scope of the shared tasks, Kann
et al. (2017) investigated cross-lingual transfer
for morphological inflection, but was limited to a
quantitative analysis. Furthermore, that work ex-
perimented with a standard sequence-to-sequence
model (Bahdanau et al., 2015) in a multi-task
training fashion (Caruana, 1997), while we pre-
train and fine-tune pointer–generator networks.
Jin and Kann (2017) also investigated cross-
lingual transfer in neural sequence-to-sequence
models for morphological inflection. However,
their experimental setup mimicked Kann et al.
(2017), and the main research questions were
different: While Jin and Kann (2017) asked
how cross-lingual knowledge transfer works dur-
ing multi-task training of neural sequence-to-
sequence models on two languages, we investigate
if neural inflection models demonstrate interesting

differences in production errors depending on the
pretraining language. Besides that, we differ in the
artificial neural network architecture and language
pairs we investigate.

Cross-lingual transfer in NLP. Cross-lingual
transfer learning has been used for a large vari-
ety NLP of tasks, e.g., automatic speech recog-
nition (Huang et al., 2013), entity recognition
(Wang and Manning, 2014), language modeling
(Tsvetkov et al., 2016), or parsing (Cohen et al.,
2011; Søgaard, 2011; Ammar et al., 2016). Ma-
chine translation has been no exception (Zoph and
Knight, 2016; Ha et al., 2016; Johnson et al.,
2017). Recent research asked how to automati-
cally select a suitable source language for a given
target language (Lin et al., 2019). This is similar
to our work in that our findings could potentially
be leveraged to find good source languages.

Acquisition of morphological inflection. Fi-
nally, a lot of research has focused on human
L1 and L2 acquisition of inflectional morphology
(Salaberry, 2000; Herschensohn, 2001; Housen,
2002; Ionin and Wexler, 2002; Weerman et al.,
2006; Zhang and Widyastuti, 2010).

To name some specific examples, Marqués-
Pascual (2011) investigated the effect of a stay
abroad on Spanish L2 acquisition, including learn-
ing of its verbal morphology in English speak-
ers. Jia (2003) studied how Mandarin Chinese-
speaking children learned the English plural mor-
pheme. Nicoladis et al. (2012) studied the English
past tense acquisition in Chinese–English and
French–English bilingual children. They found
that, while both groups showed similar produc-
tion accuracy, they differed slightly in the type of
errors they made. Also considering the effect of
the native language explicitly, Yang and Huang
(2004) investigated the acquisition of the tense-
aspect system in an L2 for speakers of a native
language which does not mark tense explicitly.

Finally, our work has been weakly motivated by
Bliss (2006). There, the author asked a question
for human subjects which is similar to the one we
ask for neural models: How does the native lan-
guage influence L2 acquisition of inflectional mor-
phology?

8 Conclusion and Future Work

Motivated by the fact that, in humans, learning of a
second language is influenced by a learner’s native



language, we investigated a similar question in ar-
tificial neural network models for morphological
inflection: How does pretraining on different lan-
guages influence a model’s learning of inflection
in a target language?

We performed experiments on eight different
source languages and three different target lan-
guages. An extensive error analysis of all fi-
nal models showed that (i) for closely related
source and target languages, acquisition of tar-
get language inflection gets easier; (ii) knowledge
of a prefixing language makes learning of inflec-
tion in a suffixing language more challenging, as
well as the other way around; and (iii) languages
which exhibit an agglutinative morphology facili-
tate learning of inflection in a second language.

Future work might leverage those findings to
improve neural network models for morphological
inflection in low-resource languages, by choosing
suitable source languages for pretraining.

Another interesting next step would be to inves-
tigate how the errors made by our models compare
to those by human L2 learners with different na-
tive languages. If the exhibited patterns resemble
each other, computational models could be used to
predict errors a person will make, which, in turn,
could be leveraged for further research or the de-
velopment of educational material.
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Abstract

While expressions have traditionally been bi-
narized as compositional and noncomposi-
tional in linguistic theory, Multiword Expres-
sions (MWEs) demonstrate finer-grained dis-
tinctions. Using Association Measures like
Pointwise Mutual Information and Dice’s Co-
efficient, MWEs can be characterized as hav-
ing different degrees of conventionalization
and predictability. Our goal is to investi-
gate how these gradiences could reflect cog-
nitive processes. In this study, fMRI record-
ings of naturalistic narrative comprehension is
used to probe to what extent these computa-
tional measures and the cognitive processes
they could operationalize are observable dur-
ing on-line sentence processing. Our results
show that Dice’s Coefficent, representing lexi-
cal predictability, is a better predictor of neural
activation for processing MWEs. Overall our
experimental approach demonstrates how we
can test the cognitive plausibility of compu-
tational metrics by comparing it against neu-
roimaging data.

1 Introduction

Multiword Expressions (MWEs) are word clus-
ters or expressions formed by more than a single
word. Siyanova-Chanturia (2013) provides exam-
ples of MWEs in English to illustrate the wide va-
riety among these expressions, as seen in Table 1.
While they are a heterogenous family of expres-
sions, what unifies them is a lack of compositional
linguistic analysis and psycholinguistic evidence
has been given for their predictability and conven-
tionalization. Our unique approach is to adapt dif-

⇤Co-first authors contributed equally to this work.

ferent computational metrics to describe the het-
erogeneity within these MWEs and whether it is
observable at the brain level.

MWE comprehension was shown to be distinct
from other kinds of language processing. For in-
stance, it is well-established at the behavioral level
that MWEs are produced and understood faster
than matched control phrases due to their fre-
quency, familiarity, and predictability (Siyanova-
Chanturia and Martinez, 2014), in accordance
with incremental processing from a psycholinguis-
tic perspective (Clark and Wilkes-Gibbs, 1986;
Clark and Marshall, 2002; Hale, 2006; Levy,
2008).This would follow if MWEs were remem-
bered as chunks, in the sense of (Miller, 1956) that
was later formalized by (Laird et al., 1986; Rosen-
bloom and Newell, 1987). In this study we investi-
gate to what extent MWEs are processed as chunks
or built-up compositionally during online sentence
processing. By repurposing metrics which are tra-
ditionally used to identify collocations in corpus
linguistics, we utilize them to investigate the dif-
ferent levels of compositionality within MWEs at
the brain level.

Linguistic phenomena Examples
fixed phrases per se, by and large
noun compounds black coffee, cable car
verb compounds give a presentation, come along
binomials heaven and hell, safe and sound
complex prepositions in spite of
idioms break the ice, spill the beans

Table 1: A wide variety of linguistic phenomena that
are considered to be MWEs.

Earlier neuroimaging work on compositional-



ity and lexical prediction by Willems et al. (2016)
have addressed this issue in a broader sense using
computational measures of entropy and surprisal.
In natural language processing, MWEs have also
been shown to have graded levels of composition-
ality (Salehi et al., 2015).

From a human language processing perspec-
tive, as Titone and Connine (1999) and Bhat-
tasali et al. (2018) have discussed previously, these
MWEs cannot simply be sorted into bipartite cate-
gories depending on whether they are processed
as chunks or compositionally. Using the spe-
cific case of idioms, the authors in the first pa-
per argue against an exclusively noncompositional
or compositional approach and propose a hybrid
approach to these expressions that ascribes non-
compositional and compositional characteristics
to these expressions. In a similar vein, the authors
in the second paper provide neuroimaging evi-
dence to show that these expressions fall along a
graded spectrum and could be differentiated based
on various aspects. Moreover, MWEs could be
further distinguished based on predictability, mod-
ifiability, conventionalization, semantic opacity,
among other aspects.

In this study, we utilize two Association Mea-
sures, Pointwise Mutual Information and Dice’s
Coefficient to capture respectively the degree
of conventionalization and degree of predictabil-
ity within these expressions. Furthermore, we
probe whether these computational measures and
their hypothesized cognitive instantiations are dis-
cernible at the cerebral level during naturalistic
sentence processing.

2 Background

2.1 MWEs: A Gradient Approach

While Association Measures are commonly used
in computational linguistics to identify MWEs
since ngrams with higher scores are likely to
be MWEs (Evert, 2008), in this study they are
adapted as a gradient predictor to describe the
MWEs within the text.

Krenn (2000) suggests that PMI and Dice are
better-suited to identify high-frequency colloca-
tions whereas other association measures such as
log-likelihood are better at detecting medium to
low frequency collocations. Since MWEs are
inherently high-frequency collocations (i.e., the
words in an MWE tend to co-occur frequently with
each other), these two association measures were

chosen to describe the strength of association be-
tween the identified word clusters (cf. identifica-
tion method in Al Saied et al. (2017)).

2.1.1 Pointwise Mutual Information

The first measure we use is Pointwise Mutual In-
formation (PMI) (Church and Hanks, 1990). Intu-
itively, its value is high when the word sequence
under consideration occurs more often together
than one would have expected, based on the fre-
quencies of the individual words (Manning et al.,
1999). MWEs that receive a higher PMI score
are seen as more conventionalized (Ramisch et al.,
2010). Formally, PMI is a log-ratio of observed
and expected counts:

PMI = log2
c(w1

n)

E(w1
n)

(1)

2.1.2 Dice’s Coefficient

The second measure used in this study is Dice’s
Coefficient (Dice, 1945; Sørensen, 1948). Dice’s
coefficient is used to identify rigid MWEs with
strong association (Evert, 2008; Smadja et al.,
1996). It is the ratio of the frequency of the se-
quence over the sum of the unigram frequency of
the words in the sequence. E.g., for a bigram the
two ratios are averaged by calculating their har-
monic mean. The harmonic mean only assumes a
value close to 1 (the largest possible Dice score)
if there is a strong prediction in both directions,
from w1 to w2 and vice versa. The association
score will be much lower if the relation between
the two words is asymmetrical.

This measure takes into account the length of
the MWEs and the value ranges between 0 and 1:

Dice =
n⇥ c(w1

n)

⌃n
i=1c(wi)

(2)

A higher value for the Dice Coefficient indi-
cates that the two tokens do not occur together by
chance. While PMI is systematically higher at the
end of a word cluster Dice is not. Since Dice co-
efficient focuses on cases of very strong associa-
tion rather than the comparison with independence
as PMI does, it can be interpreted as a measure
of predictability (Evert, 2008). Moreover, com-
pared to PMI, Dice coefficient captures words co-
occurrence in a certain order.



2.2 Association Measures as a Cognitively

Plausible Metric

While earlier work has focused on individual types
of MWEs, this study investigates the cognitive
processes underlying the comprehension of het-
erogeneous MWEs differing along the lexical as-
sociation of the words that compose them. Specif-
ically, it is hypothesized that different association
measures would map onto different cognitive as-
pects of MWEs, such as how predictable they are,
how cohesive they are, how conventionalized they
are, how frozen they are etc.

MWE PMI Dice

boa constrictor 7.935 10
fairy tale 6.165 6.422
coloured pencil 6.545 1.926
heart skipped a beat 10 0.001
gesture of weariness 5.125 0.001
object of curiosity 5.096 0.001
a dirty trick 5.603 0.001
united states 1.859 0.005
against all odds 6.012 0.013
sense of urgency 6.255 0.004
christmas tree 4.485 1.233
good morning 3.783 1.433
find out 3.479 1.240
come into 3.067 0.683

Table 2: Example of MWEs with two Association Mea-
sures: Pointwise Mutual Information and Dice’s Coef-
fecient. Values highlighted in dark green indicate high
scores while values highlighted in light green indicate
low scores.

Thus, these association measures are used and
adapted to describe different facets of MWEs. As
presented above, PMI is taken to quantify the de-
gree of conventionalization within these MWEs
(Ramisch et al., 2010). Dice is taken to repre-
sent the degree of predictability of these MWEs
(Evert, 2008). In Table 2, we can compare these
measures on a set of identified word clusters. For
example, expressions like object of curiosity, ges-
ture of weariness, and heart skipped a beat would
be considered highly conventionalized given their
high PMI score but less predictable, given their
low Dice score. As per these metrics, both boa

constrictor and fairy tales are highly convention-
alized and highly predictable whereas expressions
like united states and come into are neither highly
conventionalized nor highly predictable.

If we visually compare these scores for all 669
unique MWEs, as in Figure 1 below, we can also
notice an interesting pattern. The values for PMI
are spread across the axis and thus, the expres-
sions are along a graded spectrum of convention-
alized and have more fine-grained distinctions. On
the other hand, since Dice is used to identify rigid
MWEs, it tends to cluster the expressions around
each end of the spectrum. We interpret these two
different distributions of variance as enabling us to
model different cerebral activation patterns of lex-
ical association in MWEs processing at the brain
level. Thus we repurpose Dice and PMI to repre-
sent different ongoing lexical processes.

Wiechmann (2008) also gave a cognitive di-
mension to the idea of association measures in or-
der to investigate the association between a verb
and its syntactic frames. He evaluated the mea-
sures against how well it could predict human
reading behavior in an eye-tracking study. Our
approach is similar to Wiechmann’s cognitive-
oriented approach since we also compare differ-
ent association measures and test it against neu-
ral data, instead of behavioral data. An earlier
study by Bhattasali et al. (2018) has illustrated
how PMI specifically can be used to show not only
the graded spectrum of compositionality within
MWEs, but also how the more cohesive expres-
sions implicate memory-related areas whereas the
less cohesive expressions implicate well-known
syntactic structure-building areas.

3 fMRI Study

3.1 Method

Participants hear the story over headphones while
they are in the scanner. The sequence of neuroim-
ages collected during their session becomes the
dependent variable in a regression against word-
by-word predictors, derived from the text of the
story (cf. Table 3).

3.2 Stimuli & MWE Identification

The English audio stimulus was Antoine de Saint-
Exupéry’s The Little Prince, translated by David
Wilkinson and read by Nadine Eckert-Boulet. It
constitutes a fairly lengthy exposure to naturalis-
tic language, comprising 19,171 tokens; 15,388



Figure 1: Comparing Pointwise Mutual Information (in blue) with Dice’s Coefficient (in red); the former illustrates
more fine-grained gradience; scaled up for visual purposes

words and 1,388 sentences, and lasting over an
hour and a half.

Within this text, 669 MWEs were identified us-
ing a transition-based MWE analyzer (Al Saied
et al., 2017). Al Saied et al. use unigram and
bigram features, word forms, POS tags and lem-
mas, in addition to features such as transition his-
tory and report an average F-score 0.524 for this
analyzer across 18 different languages which re-
flects robust cross-linguistic performance. The
analyzer was trained on examples from the Chil-
dren’s Book Test (CBT) from the Facebook bAbI
project (Hill et al., 2015) to keep the genre consis-
tent with our literary stimulus. This corpus con-
sists of text passages that are drawn from the Chil-
dren’s section of Project Gutenberg, a free online
text repository. External lexicons were also used
to supplement the MWEs found with the analyzer.
The external lexicons included the Unitex lexicon
(Paumier et al., 2009), the SAID corpus (Kuiper
et al., 2003), the Cambridge International Dictio-
nary of Idioms (White, 1998), and the Dictionary
of American Idioms (Makkai et al., 1995).

3.3 Participants

56 participants were scanned and 5 of them were
excluded since they had incomplete scanning ses-
sions. Participants included were fifty-one volun-
teers (32 women and 19 men, 18-37 years old)

with no history of psychiatric, neurological, or
other medical illness or history of drug or alco-
hol abuse that might compromise cognitive func-
tions. All strictly qualified as right-handed on the
Edinburgh handedness inventory (Oldfield, 1971).
They self-identified as native English speakers and
gave their written informed consent prior to par-
ticipation, in accordance with Cornell University
IRB guidelines.

3.4 Presentation

Participants listened to the entire audiobook for 1
hour and 38 minutes. The story had nine chap-
ters and at the end of each chapter the partici-
pants were presented with a multiple-choice ques-
tionnaire with four questions (36 questions in to-
tal), concerning events and situations described in
the story. These questions served to confirm par-
ticipants’ comprehension. They were viewed via
a mirror attached to the head coil and answered
through a button box. The entire session lasted
around 2.5 hours.

3.5 Data Collection

Imaging was performed using a 3T MRI scan-
ner (Discovery MR750, GE Healthcare, Milwau-
kee, WI) with a 32-channel head coil at the Cor-
nell MRI Facility. Blood Oxygen Level Depen-
dent (BOLD) signals were collected using a T2



-weighted echo planar imaging (EPI) sequence
(repetition time: 2000 ms, echo time: 27 ms, flip
angle: 77deg, image acceleration: 2X, field of
view: 216 x 216 mm, matrix size 72 x 72, and
44 oblique slices, yielding 3 mm isotropic voxels).
Anatomical images were collected with a high res-
olution T1-weighted (1 x 1 x 1 mm3 voxel) with
a Magnetization-Prepared RApid Gradient-Echo
(MP-RAGE) pulse sequence.

4 Data Analysis

4.1 Preprocessing

fMRI data is acquired with physical, biological
constraints and preprocessing allows us to make
adjustments to improve the signal to noise ratio.
Primary preprocessing steps were carried out in
AFNI version 16 (Cox, 1996) and include motion
correction, coregistration, and normalization to
standard MNI space. After the previous steps were
completed, ME-ICA (Kundu et al., 2012) was used
to further preprocess the data. ME-ICA is a de-
noising method which uses Independent Compo-
nents Analysis to split the T2*-signal into BOLD
and non-BOLD components. Removing the non-
BOLD components mitigates noise due to motion,
physiology, and scanner artifacts (Kundu et al.,
2017).

4.2 Statistical Analysis

The research questions presented above in sec-
tion 2 motivates a statistical analysis that performs
a comparison where fMRI signal is modeled in
two General Linear Models (GLM) : one by Dice
scores tagged on the identified MWEs (Model 2)
versus one where PMI scores are quantifying the
conventionality of each MWE in the Little Prince
(Model 1).

fMRI data were analyzed in the following way:
for each subject, and at each brain location (voxel),
the time course of activation was submitted to a
multiple linear regression that estimated the spe-
cific effect of each predictor (cf. 4.2.1), after
convolution by a standard hemodynamic response
(Poldrack et al., 2011).

The effects of the predictors - the increase in r2

associated to them - were then submitted to sec-
ond level analyses to test for significance at the
group level. Model comparisons using root-means
square (r2) maps was carried out using a Python
pipeline in order to evaluate the goodness of fit of
the two Association Measures with BOLD signal

(cf. 4.2.2).

4.2.1 GLM Analyses: Single-subject statistics

At the single-subject level, the observed time-
course of the brain’s hemodynamic response
(BOLD - Blood Oxygenation Level Dependent) in
each voxel was modeled by the predictors in Table
3 including one of the two Association Measures
under analysis calculated as illustrated in formulas
given in 2.1), and time-locked at the offset of each
word or MWE in the audio-book⇤.

The predictors shown in Table 3 were convolved
using SPM’s canonical HRF (Hemodynamic Re-
sponse Function, Friston et al. (2007)). The two
neuroimaging models (i.e. with PMI or with Dice)
also included four control variables (confounds) as
shown in Table 3.

Model 1: with PMI We regressed the word-
by-word predictors described below against
fMRI timecourses recorded during passive story-
listening in a whole-brain analysis. For each of the
15,388 words in the story, their timestamps were
estimated using Praat TextGrids (Boersma, 2002).
MWEs were identified, as described in §3.2 and
all 669 unique MWEs were annotated with their
PMI score. This score is based on corpus fre-
quency counts from the Corpus of Contemporary
English (Davies, 2008), and were calculated using
mwetoolkit (Ramisch et al., 2010; Ramisch,
2012) and the formula given above in 2.1. COCA
is a large, genre-balanced corpus of American En-
glish and contains contains more than 560 mil-
lion words of text, equally divided among spoken,
fiction, popular magazines, newspapers, and aca-
demic texts.

Additionally, we entered four regressors of non-
interest into the regression analysis: word offset,
word frequency (Brysbaert and New, 2009), pitch,
intensity which serve to improve the sensitivity,
specificity and validity of activation maps (Bull-
more et al., 1999; Lund et al., 2006). These predic-
tors were added to ensure that conclusions about
MWE processing would be specific to the cogni-
tive processes they were taken to instantiate, as
opposed to more general aspects of speech per-
ception. Specifically, lexical frequency of each
word was added as a covariate of non-interest,
to statistically factor out effects of general word
frequency, that may correlate with other types of

⇤For more details about the hemodynamic response,
please see chapter 2 of Kemmerer (2014).



Predictors Description
Association Measure PMI or DICE Word-by-word on MWEs (§2.1)
Word rate Tags the offset of each spoken word in time
Word frequency Word-by-word log-frequency in movie subtitles
F0 Fundamental frequency of the narrator’s voice, which reflects pitch

RMS amplitude Root Mean Square Amplitude of the narrators voice, which reflects
intensity, an acoustic correlate of volume

Table 3: Predictors used in the fMRI Analysis.

expectations. To control for sentence-level and
phrase-level compositional processes, we included
a regressor formalizing syntactic structure build-
ing based on a bottom-up parsing algorithm (Hale,
2014), as determined by the Stanford parser (Klein
and Manning, 2003). Controlling for structural
composition allows us to isolate and focus our in-
vestigation on noncompositional processing, as in
MWEs. These regressors were not orthogonal-
ized.

Model 2: with Dice Model 2 is similar to Model
1 and uses the same predictors. However, in-
stead of PMI scores, the MWEs were annotated
with their corresponding Dice’s coefficient scores.
These were also calculated using corpus frequency
counts from COCA and the mwetoolkit.

4.2.2 r
2

Model comparison

The research questions presented above in section
2 motivates a statistical analysis that performs a
comparison where fMRI signal on MWEs is mod-
eled in the above presented GLMs by PMI versus
Dice measures.

r
2

model comparison For every subject, we
compute how much the inclusion of each variable
of interest (i.e. Dice and PMI) increases the cross-
validated r2. Hence, the r2 scores represent the
variance explained in each voxel by the variable
instantiating the MWE processing Dice or PMI re-
spectively provide.

Group-level statistics To compare the impact
of the two variables on fMRI signal explanation
(i.e. r2 increase of each variable), we performed
a paired t-test on each individual r2 brain map,
and obtained the map in Figure 2 showing where
one of the variables explains significantly better
the signal than the other (see clusters on Table 4).

5 Results - Fit with fMRI signal

We performed an r2 comparison to test which As-
sociation Measure on MWEs provided the better
fit to the fMRI signal recorded during The Little
Prince.

Dice vs. PMI The two different Association
Measure were tested (Dice and PMI), and Dice,
taken to represent the degree of predictability, was
shown to be the best fitting the BOLD signal of
these two models. Figure 2 (clusters coordinates
and statistics, cf. Table 4), shows the signifi-
cance (z-scores after Bonferroni correction with p
< 0.05) of the difference in r2 scores with a cluster
threshold of 10 voxels.

Of the two Association Measures , the Dice
measure (i.e. degree of predictability) had a sig-
nificant predictive value in well-known language
areas such as temporal regions, although mainly
right-lateralized.

6 Discussion

The present neuroimaging study offers a first ex-
perimental grounding to the fact that a computa-
tional measure instantiating lexical prediction has
a better fit with brain activity elicited by process-
ing MWEs in certain regions of the language net-
work. In both anterior and posterior portions of
language network - and specifically in temporal
areas - this lexical knowledge based process has
a significant predictive value.

This result is in line with earlier work on lex-
ical prediction with computational measures like
entropy and surprisal by Willems et al. (2016)
where temporal regions were identified together
with right lateralized frontal ones.

Assuming Dice operationalizes some predictive
processes within complex lexical items, these pre-
dictive processes are plausibly linked to higher de-
mands in semantic combinatorial operations, as



Regions for Dice >PMI Cluster size MNI Coordinates z-scores
(in voxels) x y z

R Superior Temporal Gyrus (BA 38) 47 48 10 -26 5.80
R Middle Temporal Gyrus 84 54 -18 -10 6.09
R Middle Temporal Gyrus (BA 22) 98 48 -36 2 5.85
R Superior Temporal Gyrus (BA 22) 70 48 -12 2 5.83
R Middle Temporal Gyrus (BA 22) 16 58 -46 2 5.14
L Superior Temporal Gyrus 13 -62 -18 6 5.64
R Superior Frontal Gyrus 10 20 56 12 5.53
R Inferior Frontal Gyrus (BA 45) 10 48 20 14 5.64
L Supramarginal Gyrus 22 -56 -56 22 5.37
R Inferior Parietal Lobule/
Superior Temporal Gyrus (BA 40) 10 62 -46 22 5.44

R Inferior Parietal Lobule/
Superior Temporal Gyrus (BA 40) 16 54 -46 22 5.45

R Superior Frontal Gyrus 35 20 42 34 5.69
R Cingulate Gyrus 17 2 -34 34 5.85
R Precenus 22 32 -72 36 5.76
L Inferior Parietal Lobule 12 -34 -58 46 5.17

Table 4: Significant clusters for Dice’s Coefficient versus Pointwise Mutual Information after Bonferroni correction
with p < 0.05, based on R2 analysis in §4.2.2, and shown in Figure 2

.

Figure 2: Z-map showing regions having a significant effect for Dice’s coefficient versus Pointwise Mutual Infor-
mation after Bonferroni correction with p < 0.05



reported in previous neuroimaging studies inves-
tigating semantic combinatorial processes through
comparing meaningful and less meaningful word
combinations (Price et al., 2015; Graves et al.,
2010). Crucially, the graded psycholinguistic
measures about lexical combination tested in these
studies elicit similar areas as the regions where
a better fit to the fMRI signal is observed in the
present study.

Based on the formula, Dice helped us to factor
out effects of length in longer MWEs and provided
us with a more abstract measure given its bidirec-
tional association. This could be a reason that it
was a better fit to the BOLD signal, compared to
PMI which is biased based on the length of the ex-
pression.

Lastly, Dice’s Coefficient is a more rigid mea-
sure of lexical association compared to Pointwise
Mutual Information, as seen in Fig. 1. Hence,
Dice clusters highly predictable expressions ver-
sus less predictable ones, giving rise to two main
groups. PMI displays more fine-grained distinc-
tions overall (compared to Dice) and thus, captures
the spectrum of compositional gradience within
these MWEs as shown in a previous neuroimag-
ing study. Bhattasali et al. (2018) showed that in-
creasing values of PMI activates the network of
syntactic building. However, the fact that Dice is
the better fit between the two is interesting since it
suggests that a bimodal distribution of gradience
is cognitively more plausible than a fine-tuned ap-
proach to gradience, specifically in posterior tem-
poral areas. Thus, this paves the way for further in-
vestigations regarding which computational mea-
sures are more cognitively pertinent to grasp a bet-
ter understanding of human cognition and its neu-
ral substrates.

7 Conclusion & Further Work

Overall, this study examines MWEs through the
lens of two different Association Measures, Point-
wise Mutual Information and Dice’s Coefficent.
We investigate to what extent these computa-
tional measures, operationalizing conventionaliza-
tion and predictability, and their underlying cogni-
tive processes are observable during on-line sen-
tence processing. Our results show that Dice’s Co-
efficient, formalizing the degree of predictability,
is a better predictor of cerebral activation for pro-
cessing MWEs and this suggests it is a more cog-
nitively plausible computational metric in tempo-

ral areas where previous neuroimaging literature
identified lexical predictive processes.

Apart from Association Measures, a future ap-
proach would be to investigate different metrics
to capture other nuances between these MWEs.
There are alternate approaches to describes MWEs
such as word space models, based on distribu-
tional semantics, which could also serve as a met-
ric of compositionality for these noncompositional
word clusters. This type of metric would uti-
lize the distributional patterns of words collected
over large text data to represent semantic similar-
ity between words in terms of spatial proximity
(Sahlgren, 2006).
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Abstract

Several computational models have been de-
veloped to detect and analyze dialect variation
in recent years. Most of these models assume
a predefined set of geographical regions over
which they detect and analyze dialectal varia-
tion. However, dialect variation occurs at mul-
tiple levels of geographic resolution ranging
from cities within a state, states within a coun-
try, and between countries across continents.
In this work, we propose a model that enables
detection of dialectal variation at multiple lev-
els of geographic resolution obviating the need
for a-priori definition of the resolution level.
Our method DIALECTGRAM, learns dialect-
sensitive word embeddings while being ag-
nostic of the geographic resolution. Specifi-
cally it only requires one-time training and en-
ables analysis of dialectal variation at a cho-
sen resolution post-hoc – a significant depar-
ture from prior models which need to be re-
trained whenever the pre-defined set of regions
changes. Furthermore, DIALECTGRAM ex-
plicitly models senses thus enabling one to es-
timate the proportion of each sense usage in
any given region. Finally, we quantitatively
evaluate our model against other baselines on a
new evaluation dataset DialectSim (in En-
glish) and show that DIALECTGRAM can ef-
fectively model linguistic variation.

1 Introduction

Studying regional variation of language is cen-
tral to the field of sociolinguistics. Traditional
approaches (Labov, 1980; Milroy, 1992; Taglia-
monte, 2006; Wolfram and Schilling, 2015) focus
on rigorous manual analysis of linguistic data col-
lected through time-consuming and expensive sur-
veys and questionnaires. The evolution of the In-
ternet and social media now enables studying lin-
guistic variation at a scale thus overcoming some

⇤Equal contribution.

of the scalability challenges faced by survey based
methods. Consequently, computational methods
to detect and analyze geographic variation in lan-
guage have been proposed (Eisenstein et al., 2010,
2011, 2014; Bamman et al., 2014; Kulkarni et al.,
2015b)

However, most prior work suffers from three
limitations: First, previous models (Kulkarni
et al., 2015b) such as Frequency Model, Syntactic
Model, and GEODIST all rely on pre-defined re-
gional classes to model linguistic changes (an ex-
ception is (Eisenstein et al., 2010) which focuses
on lexical variation). The use of pre-defined re-
gional classes limits the flexibility of these base-
line models because dialect changes can be ob-
served at various geographic resolutions. Sec-
ond, previous models do not explicitly model the
sense distribution of each word. In this work, we
address these limitations by proposing a model
DIALECTGRAM that enables analysis at multi-
ple geographic resolutions while explicitly mod-
eling word senses (see Figures 1 - 4). Given a
corpus which can be associated with geographi-
cal regions, DialectGram first induces the number
of senses for each word using a non-parametric
Bayesian model (Bartunov et al., 2016). This step
requires no apriori knowledge of the geographic
resolution1. Having inferred the senses of each
word, we show how to detect and analyze dialec-
tal variation at any chosen geographic resolution
by clustering usages in any given region based on
their sense usage.

To summarize, our contributions are:

• Multi-resolution Model: We introduce DI-
ALECTGRAM, a method to study the geo-
graphic variation in language across multiple

1The only requirement is that the corpus be geo-tagged so
that analysis can be conducted post-hoc at any desired reso-
lution.



levels of resolution without assuming knowl-
edge of the geographical resolution apriori.

• Explicit Sense modeling: DIALECTGRAM
predicts how likely each sense of a word is
used in a context thus enabling a more precise
modeling of linguistic change.

• Corpus and Validation Set: We build a new
English Twitter corpus Geo-Tweets2019
for training dialect-sensitive word embed-
dings. Furthermore, we construct a new val-
idation set DialectSim for evaluating the
quality of English region-specific word em-
beddings between UK and USA.

2 Related Work

Linguistic variation. In the past, sociologists
and linguists have been studying linguistic change
by designing experiments to manually collect
data (Labov, 1980; Milroy, 1992) and conduct-
ing variation analysis (Tagliamonte, 2006). Sev-
eral works (Eisenstein et al., 2010; Gulordava
and Baroni, 2011; Kim et al., 2014; Jatowt and
Duh, 2014; Kulkarni et al., 2015a,b; Kenter et al.,
2015; Gonçalves and Sánchez, 2016; Donoso
and Sanchez, 2017; Lucy and Mendelsohn, 2018;
Shoemark et al., 2019) have used different com-
putational models to study dialect variations with
respective to geography, gender, and time.

Eisenstein et al. (2010) is one of the first to
tackle the linguistic variation problem with com-
putational models. They design a multi-level gen-
erative model that uses latent topic and geographic
variables to analyze lexical variation in English.
This latent variable model is able to generate an
author’s geographic location based on the author’s
text. To quantitatively evaluate the models, they
compute the physical distance between the predic-
tion and the true location. Similarly, Gonçalves
and Sánchez (2016) apply K-means method to
cluster the geographic lexical superdialects assum-
ing a list of pre-defined set of words that are
known to demonstrate lexical variation. This was
followed by Gonçalves and Sánchez (2016) who
propose two metrics to calculate the linguistic dis-
tance between geographic regions. That is, instead
of using the physical distance between the pre-
dicted and the true location, they compute cosine
similarities or Jensen-Shannon Divergence (JSD)
to evaluate the model quantitatively.

Recently, Kulkarni et al. (2015b) building on
the work of (Bamman et al., 2014) propose a word

embeddings based model GEODIST model for ro-
bustly modeling dialectal variation and focuses
on capturing semantic changes between dialects.
Nevertheless, a pre-defined set of regions is re-
quired for the model to update region-specific em-
beddings. For instance, Kulkarni et al. (2015b) as-
sume that English exhibits dialectal variation be-
tween the US and UK, and train the network to
learn two sets of word embeddings for the two
regions. However, a model trained using this
data cannot be used to analyze dialectal variation
across states or any other level of resolution with-
out a re-training from scratch. To learn how En-
glish changes within each state, Kulkarni et al.
(2015b) would need to tag each US tweet with a
state name and train the model again. Moreover,
the model does not explicitly capture senses of a
word but only learns region specific embeddings.

Word Sense Disambiguation. The problem
of detecting dialectal variants of a word can be
viewed broadly in terms of word sense induction
where the different word senses can roughly cor-
respond to usages in different regions. For in-
stance, the word pants usually refer to underwear
in the US versus trousers in the UK, suggest-
ing two senses for pants. Consequently, we dis-
cuss the most relevant work on word sense induc-
tion as well. Reisinger and Mooney (2010) is the
first paper that modifies the single prototype vec-
tor space model to obtain multi-sense word em-
beddings with average cluster vectors as proto-
types. Many works (Huang et al., 2012; Neelakan-
tan et al., 2014; Tian et al., 2014; Chen et al., 2014)
are later dedicated to combine Skip-gram, cluster-
ing algorithm, and linguistic knowledge to learn
word senses and embeddings jointly. Bartunov
et al. (2016) adopt a non-parametric Bayesian ap-
proach and propose the Adaptive Skip-gram (Ada-
Gram) model, which is able to induce word senses
without assuming any fixed number of prototypes.
As we will see in the following sections, we build
on precisely this approach to model regional vari-
ation.

3 Data

3.1 Geo-Tweets2019 Corpus
We create a new corpus, Geo-Tweets2019,
which consists of English tweets2 during April and
May in 2019 from the United States and the United
Kingdom. Each tweet includes the user ID, the

2We use the Tweepy toolkit.



Word US Meaning UK Meaning

flat smooth and even; without marked lumps or indentations apartment
flyover flypast, ceremonial aircraft flight elevated road section
pants trousers underwear
lift elevator raise
football soccer American football

Table 1: Examples of words that have different meanings in American and British English

published time, the geographic location, and tweet
text. We have around 2M tweets from the US and
1M from the UK. We preprocessed the tweets with
the tweet tokenizer from Eisenstein et al., 2010
and regular expressions. Finally, we filtered out
URL’s, emojis, and other irregular uses of English
to shrink the size of vocabulary and to facilitate
the training of word vectors. Statistics can be seen
in Table 2.

Number US UK Total

tweet 2,075,394 1,088,232 3,163,626
token 41,637,107 22,012,953 63,650,060
term 865,784 469,570 1,167,790

Table 2: Statistics of Geo-Tweets2019

3.2 DialectSim Validation Set
To evaluate the models, we construct a new val-
idation set DialectSim, which comprises of
words with same or shifted meanings in the US
and the UK. To build this validation set, we first
crawled a list of words that show different mean-
ings from the Wikipedia page3 and pick 341 words
that appear more than 20 times in our corpus in
the UK and the US. Table 1 presents three ex-
amples in the dataset. In order to generate bal-
anced positive and negative samples, we sample
another 341 negative examples randomly from our
Geo-Tweets2019 dataset. A minimum fre-
quency of 20 is also used for negative sampling.
These negative cases were manually verified by
each of the three authors independently. Finally,
we split the dataset into training set with 511
samples (75%) and testing set with 171 samples
(25%).

4 Models

4.1 Baseline Models
Frequency Model. One baseline method to detect
whether there are significant changes between us-

3
https://en.wikipedia.org/wiki/Lists_

of_words_having_different_meanings_in_

American_and_British_English

age in two regions is to count the occurrence of a
word in the US and the UK tweets. We have im-
plemented this Frequency Model as described in
Kulkarni et al. (2015b).

Syntactic Model. A more nuances approach
compared to the frequency based approach is to
detect change in syntactical roles across regions.
The Syntactic Model (Kulkarni et al., 2015b) takes
Part-of-Speech (POS) tag into consideration as
well. More specifically, if a word is used equally
frequently in both countries, but the their POS us-
ages are different, then we consider the meaning of
two words as different between two countries. We
use the CMU ARK Twitter Part-of-Speech Tag-
ger4 for POS tagging.

GEODIST (Skip-gram) Model. The main
idea of GEODIST model (which can detect se-
mantic changes) (Kulkarni et al., 2015b) is to
learn region-specific word embeddings and use
boot-strapping to estimate confidence scores on
detected changes. Instead of learning a single
vector to represent a word, this model aims to
jointly learn a global embedding �MAIN(w) as
well as (multiple) differential embeddings �ri(w)
for each word w in the vocabulary with R =
(r1, r2, . . . ) geographical regions exactly as de-
scribed in (Bamman et al., 2014). In particular, the
region-specific embedding is defined as the sum of
the global embedding and the differential embed-
ding for that region: �ri(w) = �MAIN(w)+ �ri(w).
The objective function is to minimize the nega-
tive log-likelihood of the context word given the
center word conditioned on the region. We use
stochastic gradient descent method (Bottou, 1991)
to update the model parameters. We implement
our own GEODIST model in PyTorch.

4.2 DialectGram Model

We construct a new model for detecting dialec-
tal changes which we called DIALECTGRAM (Di-
alectal Adaptive Skip-gram). The model first
learns multi-sense word embeddings using Ada-

4
http://www.cs.cmu.edu/˜ark/TweetNLP/

https://en.wikipedia.org/wiki/Lists_of_words_having_different_meanings_in_American_and_British_English
https://en.wikipedia.org/wiki/Lists_of_words_having_different_meanings_in_American_and_British_English
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Figure 1: Dialectal variation of gas across countries.
Tweets that contain gas with predicted sense “gaseous
substance” are illustrated as blue circles; tweets that
contain gas with predicted sense “gasoline” are plotted
as red circles.

Figure 2: Dialectal variation of flat across countries.
Tweets that contain flat with predicted sense “apart-
ment” are illustrated as red circles; tweets that contain
flat with predicted sense “smooth and even” are plotted
as blue circles.

Figure 3: Dialectal variation of buffalo across US states.
Here we show for each state, the proportion of sense 1
usage (Buffalo city) in blue. Grey indicates that the state
contains no tweet using the word buffalo in our corpus.

Figure 4: Dialectal variation of pop across US states.
Here we show for each state, the proportion of sense 2
usage (soft drink, soda) in red. Grey indicates that the
state contains no tweet using the word pop in our corpus.

gram (Bartunov et al., 2016) through training on
the region-agnostic corpus. Once sense specific
embeddings are obtained, based on the chosen res-
olution the model composes region-specific word
embeddings by taking a weighted average of sense
embeddings. At last, the model calculates the dis-
tance between region-specific word embeddings
of the same word to determine whether a signif-
icant change exists. Our method is described suc-
cinctly in Algorithm 1.

Compared to the GEODIST model which
needs predefined geographic label to update
the region-specific embeddings, DIALECTGRAM
learns multi-sense word embeddings on our
dataset without any knowledge of the underlying
regions.For instance, DialectGram automatically
induces and learns the two senses of the word flat
which could mean an apartment or level land cor-
responding to usages in the UK and US respec-
tively.

Implementation details We train our model on
our Geo-Tweets2019 corpus to learn word sense
embeddings using the Julia implementation of

Algorithm 1 Use DIALECTGRAM to Compose
Region-specific Embeddings
Input: w word
Output: er weighted region embedding for w

1: Load the trained DIALECTGRAM model
2: Build Indexr on Corpus from region r
3: for s, p 2 GETSENSEPRIORS(w) do
4: Sc[s] 0, Sp[s] p . Note: Sc is sense

counts, Sp is sense priors
5: end for
6: for all c 2 GETCONTEXTS(w) do
7: s DISAMBIGUATE(w, c)
8: Sc[s] Sc[s] + 1
9: end for

10: er  GETWEIGHTEDVECTOR(Sc, Sp)

AdaGram5 and then implement the inference al-
gorithm in Python. To obtain a word’s region-
specific embedding in a place, we first use DI-
ALECTGRAM to predict the dominant sense for the
word in each tweet from a region and use weighted
average of the sense embeddings as the region-
specific word embedding er. We use the fol-

5
https://github.com/sbos/AdaGram.jl

https://github.com/sbos/AdaGram.jl


lowing hyper-parameter settings: min_freq =
20, window_size = 10, dimension =
100, maximum_prototype = 30, ↵ = 0.1,
epoch = 1, sense_threshold = 1e � 17.
It is worth noting that a large ↵ (the underlying
Dirichlet process) may lead to too many senses for
some words and a small ↵, on the contrary, results
in too few senses.

To measure the significance of the dialectal
change, Kulkarni et al. (2015b) propose an un-
supervised method to detect words with statis-
tically significant meaning changes. However,
given that we have access to the humanly cu-
rated DialectSim dataset, we evaluate the mod-
els on the list of annotated words using a sim-
ple thresh-holding model (where the thresh-hold
parameter is learned from training data). Specif-
ically, We evaluate both Skip-gram models (i.e.
GEODIST and DIALECTGRAM) by calculating
the Manhattan distance6 between a word’s region-
specific embeddings7.

5 Results

5.1 Qualitative Analysis
We investigate the words that GEODIST model
predicts to have a significant dialectal change be-
tween the two regions. For example, the word
mate is one of the top 20 words in our vocabu-
lary if we sort the vocabulary by the Manhattan
distance between the US and the UK embeddings
from high to low. However, words like draft are
predicted to have different regional meanings but
not labelled as “significant” in DialectSim. We
further discuss this issue in section 5.2.3.

We select some words with significantly differ-
ent meanings between the UK and the US. In our
DIALECTGRAM model, we select the most fre-
quent 2 senses, which usually account for more
than 99% usage variation of a word, and plot a
heat map on world map.

The word maps in Figure [1, 2] suggest that the
usage of gas and flat are different in the UK and
in the US. Gas is used commonly as petrol and re-
lated to gas station in the US, but in the UK, gas
usually refers to air and natural gas. Flat could re-
fer to apartment but in the US this meaning is not
as common as in the UK. The same model can also

6We tried euclidean and cosine distance as well, but use
Manhattan distance since it yielded the best results out of the
three metrics.

7Our models, validation set and code are available at:
https://github.com/yuxingch/DialectGram.

be used at a different resolution level (across US
states). For example, given the word buffalo, we
show the most dominant senses where Buffalo City
(in blue) and the buffalo sauce sense (in white).
Similarly for the word pop, we observe that the
Midwest area and the Pacific Northwest are more
reddish, indicating people are more likely to use
the word for soft drink, soda, while people in other
areas like to use it to describe a certain type of mu-
sic – pop music 8.

5.2 Quantitative Results
Our training corpus Geo-Tweets2019 has over
three million tweets from US and UK. However,
we still observed that micro-level analyses at a res-
olution lower than the state level required more
data samples. Therefore, we only present the
country-level and state-level analysis here (note
that we do not need to train the model to learn
embeddings again when we change resolutions for
our analyses).

For each model, we defined a score function
that takes in one word and return a real number
denoting its difference in meanings between the
UK and the US. We fit a simple threshold model
that maximizes the accuracy on training set. Then
we test the model performance on testing set. The
results are shown in Table 4.

5.2.1 Frequency Model
We observed that Frequency Model is more sen-
sitive to word difference between two countries:
football in the UK is same as soccer in the US,
causing an imbalanced frequency of term football
between both countries. However, it can not detect
some semantic changes of words if the semantic
change preserves frequency for both countries: flat
has similar frequency in both countries, despite
the fact that flat could mean apartment in the UK,
whereas this usage is uncommon in the US. This
model does not suffer from an over-fitting prob-
lem, because the model is fairly simple and the
parameter space is quite small. However the Fre-
quency model is susceptible to a high false posi-
tive rate.

5.2.2 Syntactic Model
Syntactic Model performs the worst among all the
models. It still gets slightly higher precision than

8We normalized the data points by filtering out states
where the number of tweets is less than 15 since a small num-
ber of data points can suffer from high variance.

https://github.com/yuxingch/DialectGram


word sense 1 neighbors sense 2 neighbors

gas industrial, masks, electric car, station, bus
flat kitchen, shower, window shoes, problems, temperatures

buffalo syracuse, hutchinson chicken, fries, seafood
subway starbucks, restaurant, mcdonalds 1mph, commercial, 5kmh

Table 3: Neighbors of sense embeddings for selected words. This shows DIALECTGRAM is able to learn semantic
variations of words.

Model Acc Prec Recall F1

Frequency 0.5600 0.5600 0.5887 0.5568
Syntactic 0.5263 0.5714 0.4828 0.5233
GEODIST 0.6432 0.7424 0.5810 0.6518

DIALECTGRAM 0.6667 0.6837 0.6438 0.6632

Table 4: Test performance. Acc, Prec means accuracy
and precision. DIALECTGRAM has better accuracy, re-
call, and F1 score than GEODIST.

the Frequency Model on test set because it gets
some dialectal syntactic changes correct. There
are two reasons for its bad performance. First, it is
limited by the performance of POS Tagger. Sec-
ond many word sense changes do not alter POS
tags. For example, pants refers to underwear in
the UK while it refers to jeans in the US, and both
of them are nouns.

5.2.3 GEODIST Model
As mentioned in Section 5.1, GEODIST model is
able to detect dialect changes. The accuracy on
the test set beats the previous two baseline models
(0.6432 versus 0.5600 and 0.5263), as shown in
Table 4. It also outperforms the baseline models in
terms of precision and F1 score. In fact, GEODIST
model has the highest precision among all models,
including the DIALECTGRAM model that will be
discussed in the next section. We also notice that
the recall on the test set is the lowest. The high
precision with low recall indicates that for those
changes that GEODIST model is very conserva-
tive and misses some words that actually have sig-
nificant dialectal changes. For example, the differ-
ence between the two region-specific embeddings
of the word pants is predicted to be not signifi-
cant, while pants does have different meanings in
the UK and the US (Table 1).

5.2.4 DialectGram Model
DialectGram outperforms the GEODIST model in
accuracy, recall, and F1 score. However, its pre-
cision is lower than that of the GEODIST and
Frequency Model. However, this is already im-

pressive given the fact that DialectGram does not
require pre-determined geographic labels and en-
ables analysis at different geographic resolutions
post-hoc (after the model is trained). One reason
for DIALECTGRAM’s lower performance in preci-
sion compared to GEODIST model is that it over-
estimates the number of senses (learning senses
that overlap). For example the word gas in Table
3, we sometimes have an additional sense charac-
terized by words such as air, house, pipe. This
sense seems to be a mix of sense 1, gaseous sub-
stance, and sense 2, gasoline. The average number
of senses is controlled by ↵ which we pick based
on the model’s performance on the training set, but
we acknowledge that smarter search strategies for
↵ could be employed.

6 Conclusion

In this work, we proposed a novel method to detect
linguistic variations on multiple resolution lev-
els. In our new approach, we use DIALECTGRAM
to train multiple sense embeddings on region-
agnostic data, compose region-specific word em-
beddings, and determines whether there is a signif-
icant dialectal variation across regions for a word.
In contrast to baseline models, DIALECTGRAM
does not rely on the region-labels for training
multi-sense word embeddings. The use of region-
agnostic data allows DIALECTGRAM to conduct
multi-resolution analysis with one-time training.
We also construct Geo-Tweets2019, a new
corpus from online Twitter users in the UK and
US for training word embeddings. To validate
our work, we also contribute a new validation set
DialectSim for explicitly measuring the per-
formance of our models in detecting the linguis-
tic variations between the US and the UK. This
validation set allows for more precise compari-
son between our method (DIALECTGRAM) and
previous methods including Frequency Model,
Syntactic Model, and GEODIST model. On
DialectSim, our method achieves better per-



formance than the previous models in accuracy,
recall, and F1 score. Through linguistic analysis,
we also found that DIALECTGRAM model learns
rich linguistic changes between British and Amer-
ican English. Finally, we conclude by noting the
method can be easily extended to temporal or anal-
ysis of language at multi-resolution levels.
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Internacional de Lingüı́stica Iberoamericana, pages
65–75.

Kristina Gulordava and Marco Baroni. 2011. A dis-
tributional similarity approach to the detection of
semantic change in the google books ngram cor-
pus. In Proceedings of the GEMS 2011 workshop
on geometrical models of natural language seman-
tics, pages 67–71.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In ACL.

Adam Jatowt and Kevin Duh. 2014. A framework for
analyzing semantic change of words across time. In
Proceedings of the 14th ACM/IEEE-CS Joint Con-
ference on Digital Libraries, pages 229–238. IEEE
Press.

Tom Kenter, Melvin Wevers, Pim Huijnen, and
Maarten De Rijke. 2015. Ad hoc monitoring of
vocabulary shifts over time. In Proceedings of the
24th ACM international on conference on informa-
tion and knowledge management, pages 1191–1200.
ACM.

Yoon Kim, Yi-I Chiu, Kentaro Hanaki, Darshan Hegde,
and Slav Petrov. 2014. Temporal analysis of lan-
guage through neural language models. arXiv
preprint arXiv:1405.3515.

Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and
Steven Skiena. 2015a. Statistically significant de-
tection of linguistic change. In Proceedings of the
24th International Conference on World Wide Web,
pages 625–635. International World Wide Web Con-
ferences Steering Committee.

Vivek Kulkarni, Bryan Perozzi, and Steven Skiena.
2015b. Freshman or fresher? quantifying the
geographic variation of internet language. arXiv
preprint arXiv:1510.06786.

William Labov. 1980. Locating language in time and
space. Academic Press New York.

Li Lucy and Julia Mendelsohn. 2018. Using sentiment
induction to understand variation in gendered online
communities. arXiv preprint arXiv:1811.07061.

James Milroy. 1992. Linguistic variation and change:
On the historical sociolinguistics of English. B.
Blackwell.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In EMNLP.

Joseph Reisinger and Raymond J. Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In HLT-NAACL.



Philippa Shoemark, Farhana Ferdousi Liza, Dong
Nguyen, Scott A Hale, and Barbara McGillivray.
2019. Room to glo: A systematic comparison of se-
mantic change detection approaches with word em-
beddings.

Sali A Tagliamonte. 2006. Analysing sociolinguistic
variation. Cambridge University Press.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilis-
tic model for learning multi-prototype word embed-
dings. In COLING.

Walt Wolfram and Natalie Schilling. 2015. American
English: dialects and variation, volume 25. John
Wiley & Sons.



A principled derivation of Harmonic Grammar

Giorgio Magri

SFL, CNRS, University of Paris 8
magrigrg@gmail.com

Abstract

Phonologists focus on a few processes at the
time. This practice is motivated by the in-
tuition that phonological processes factorize
into clusters with no interactions across clus-
ters (e.g., obstruent voicing does not inter-
act with vowel harmony). To formalize this
intuition, we factorize a full-blown repre-
sentation into under-specified representations,
each encoding only the information needed by
the corresponding phonological cluster. And
we require a grammar for the original full-
blown representations to factorize into gram-
mars that handle the under-specified represen-
tations separately, independently of each other.
Within a harmony-based implementation of
constraint-based phonology, HG is shown to
follow axiomatically from this grammar fac-
torizability assumption.

1 Introduction

In constraint-based phonology, the best surface re-
alization of an underlying form is the one with
the smallest vector of constraint violations. How
should constraint violation vectors be ordered to
select the smallest? In other words, what is the
proper model of constraint interaction? The lit-
erature has addressed this question by comparing
competing ways of ordering constraint vectors on
specific test cases. Yet, the predictions of a class
of orderings on a specific test case depend on the
choice of a specific constraint set. The conclusions
reached are thus threatened to be overturned when
a different constraint set is adopted.

An alternative, more principled approach starts
instead from general formal properties that a
grammar must satisfy in order to qualify as nat-
ural language phonology. And it deduces ax-
iomatically from these desiderata what a suitable
class of orderings of constraint violation vectors
should look like. If this axiomatic deduction of
the mode of constraint interaction holds indepen-
dently of the constraint set, we will have untied the
knot between the issue of determining the proper

constraint set and the issue of characterizing the
proper mode of constraint interaction.

This paper illustrates this research strategy. To
set the background, section 2 recalls the frame-
work of constraint-based phonology, indepen-
dently of the choice of a specific mode of con-
straint interaction. Section 3 shows that a full-
blown phonological representation often factor-
izes into multiple under-specified representations.
And that these under-specified representations do
not interact, in the sense that the constraint vio-
lations of the full-blown representations are sim-
ply the sum of the violations of the correspond-
ing under-specified representations. In this case
a grammar should factorize into multiple gram-
mars that handle the under-specified representa-
tions separately, without these factor grammars
interacting with each other. This factorizability
condition formalizes the intuition that phonolog-
ical processes factorize into small non-interacting
clusters (e.g., obstruent voicing does not interact
with vowel harmony), whereby phonologists can
focus on a few processes at the time. Section 4
shows that a constraint-based grammar is indeed
factorizable as long as the mode of constraint in-
teraction satisfies a natural additivity condition.
Section 5 finally shows that HG’s weighted dishar-
mony function can be derived axiomatically from
this additivity condition. This result yields a prin-
cipled justification of the HG mode of constraint
interaction, which holds independently of any spe-
cific constraint set for any specific test case.

2 Constraint-based grammars

We assume that the core object of phonological
theory is a phonological mapping, namely a pair
(x, y) consisting of an underlying form x and a sur-
face realization y (but see for instance Burzio 1996
for alternatives). To describe a specific phono-
logical system, we start with a representational

framework R that lists all the phonological map-
pings which are relevant for the system consid-



R =

8
>>><

>>>:

(/CV/, [CV]) (/CV/, [CVC]) (/CV/, [V]) (/CV/, [VC])

(/CVC/, [CV]) (/CVC/, [CVC]) (/CVC/, [V]) (/CVC/, [VC])

(/V/, [CV]) (/V/, [CVC]) (/V/, [V]) (/V/, [VC])

(/VC/, [CV]) (/VC/, [CVC]) (/VC/, [V]) (/VC/, [VC])

9
>>>=

>>>;
C =

8
>><

>>:

C1 = ONSET
C2 = DEP
C3 = CODA
C4 = MAX

9
>>=

>>;

Figure 1: Representational framework R and constraint set C of the BSS (Prince and Smolensky 1993/2004).

ered. To illustrate, the representational framework
R for the Basic Syllable System (BSS; Prince
and Smolensky 1993/2004) consists of the sixteen
mappings listed in figure 1.

We scan all the phonological mappings listed in
a representational framework R, extract their un-
derlying forms, and collect them into the base set

B(R). To illustrate, the base of the BSS repre-
sentational framework R in figure 1 consists of
the four underlying syllable types /CV/, /CVC/, /V/,
and /VC/. For every underlying form x in the base
B(R), we scan all the phonological mappings in
R that feature this underlying form x and collect
their surface forms into the candidate set R(x).
To illustrate, the underlying forms of the BSS all
share the candidate set consisting of the four sur-
face syllable types [CV], [CVC], [V], and [VC].

A constraint C assigns to each phonological
mapping (x, y) in the representational framework
R a number C(x, y). This number C(x, y) is in-
terpreted as a count of some undesirable phono-
logical structure: an offending cluster, a mismatch
between corresponding segments, etcetera. This
number C(x, y) is thus assumed to be a non-
negative integer. This constraint integrality as-

sumption captures the intuition that the proper-
ties relevant for phonology (contrary to phonet-
ics) are discrete in nature. This assumption will
play a crucial role in Section 5. We assume a set
C consisting of a finite number n of constraints
C1, . . . , Cn. It effectively represents a mapping
(x, y) as the n-dimensional constraint violation

vector C(x, y) = (C1(x, y), . . . , Cn(x, y)). We
denote by C(R) the set of the constraint vectors
of all mappings in the representational framework
R. To illustrate, a constraint set for the BSS con-
sists of the n = 4 constraints listed in figure 1.

The underlying and surface forms in the repre-
sentational framework R are discrete objects (but
see Smolensky, Goldrick, and Mathis 2014): fi-
nite strings constructed out of a finite number of
discrete segments, or auto-segmental graphs con-
structed out of a finite number of feature values,
etcetera. Dealing with discrete objects is difficult

because only very little “structure” is defined on
them. To circumvent this difficulty, constraint-
based phonology “represents” the discrete phono-
logical mappings in R as the set C(R) of numer-
ical constraint violation vectors and thus imports
into phonology the rich structure defined on num-
bers and vectors thereof (Haussler 1999).

For instance, numbers can be ordered based on
their size. This ordering can be extended from sin-
gle numbers to vectors in many different ways.
Thus, let � be some order defined among n-
dimensional vectors. The inequality a � b says
that the vector a is smaller than the vector b. The
constraint-based grammar (CBG) correspond-
ing to this order � is the function G� = G

R, C
� that

realizes each underlying form x in the base B(R)
as the surface form y = G�(x) in the candidate set
R(x) with the smallest constraint violation vector
C(x, y). That is, the inequality C(x, y) � C(x, z)
holds for every other candidate z in R(x) (we as-
sume that such a candidate y always exists).

To illustrate, let us consider an arbitrary sub-
set S ✓ {1, ..., n} that singles out the dimen-
sions/constraints that are deemed relevant. The
relation �S defined in (1) for any two vectors
a = (a1, ..., an) and b = (b1, ..., bn) is a partial
order among n-dimensional vectors.

a �S b iff ak  bk for every k 2 S (1)
We focus on the representational framework R
and the constraint set C for the BSS in figure 1. We
focus next on the order �S among 4-dimensional
vectors corresponding to the set S = {C1, C3}.
The corresponding CBG G

R, C
�S

maps all underly-
ing forms to [CV]. This makes sense: if only the
two markedness constraints C1 = ONSET and
C3 = CODA are singled out as relevant by the set
S, the smallest constraint vector is always the one
corresponding to the unmarked surface form [CV].

3 Factorizable representations

3.1 Underspecification

A phonological representation x encodes a certain
amount of phonological information. Often, this
information can be split into two representations x0



(/CV/, [CV]) (/CV/, [V]) (/V/, [V]) (/V/, [CV]) (/2V/, [2V])

(/CV/, [CVC]) (/CV/, [VC]) (/V/, [VC]) (/V/, [CVC]) (/2V/, [2VC])

(/CVC/, [CVC]) (/CVC/, [VC]) (/VC/, [VC]) (/VC/, [CVC]) (/2VC/, [2VC])

(/CVC/, [CV]) (/CVC/, [V]) (/VC/, [V]) (/VC/, [CV]) (/2VC/, [2V])

(/CV2/, [CV2]) (/CV2/, [V2]) (/V2/, [V2]) (/V2/, [CV2])

R =

R0 =

= R00

Figure 2: Factorization of the representational framework R of the BSS into two frameworks R0 and R00 under-specified for
codas and for onsets, respectively

and x00. These two representations x0 and x00 indi-
vidually encode less information than the original
representation x. In other words, they are under-

specified relative to the original representation
(Steriade 1995). Yet, these two under-specified
representations x0 and x00 together encode the same
information as the full-blown representation x. In
other words, the full-blown representation x fac-

torizes into these two under-specified representa-
tions x0 and x00, whereby we write x = x0x00.

To illustrate again with the BSS, we note that a
syllable type such as VC can be represented as the
tree x on the left hand side of (2). This tree comes
with the two sub-trees x0 and x00 on the right hand
side. These sub-trees can be interpreted as rep-
resentations underspecified for codas and for on-
sets, respectively. We will denote these sub-trees
compactly as V2 and 2VC. The full-blown sylla-
ble x = VC thus factorizes into these two under-
specified representations x0 = V2 and x00 = 2VC.

�

OSET

;

RHYME

NUC

V

CODA

C| {z }
x

=

�

OSET

;

RHYME

| {z }
x0

RHYME

NUC

V

CODA

C|{z}
x00

(2)

Feature-based phonology provides a natural
strategy to factorize full-blown representations
into under-specified representations. For instance,
the round mid vowel can be represented as the tu-
ple of feature values x = [+round� high� low].
This tuple comes with sub-tuples such as x0 =
[+round] and x00 = [�high� low]. These sub-
tuples can be interpreted as representations under-
specified for height and for rounding, respectively.
The full-blown vowel x thus factorizes into these
two under-specified representations x0 and x00.

[+round �high �low]| {z }
x

= [+round]| {z }
x0

[�high �low]| {z }
x00

(3)

3.2 Representational assumptions

A framework R of full-blown representations fac-

torizes into two frameworks R0 and R00 of under-
specified representations provided R is the set of
all and only the mappings (x0x00, y0y00) that factor-
ize into two mappings (x0, y0) and (x00, y00) from R0

and R00, as in (4). In the sense that x0x00 and y0y00

are underlying and surface full-blown representa-
tions that factorize into the underlying and surface
under-specified representations x0, x00 and y0, y00.

R = R0R00=

⇢
(x0x00, y0y00)

����
(x0, y0) 2 R0

(x00, y00) 2 R00

�
(4)

Equivalently, the base of the full-blown represen-
tational framework R factorizes into the bases of
the under-specified representational frameworks
R0 and R00, namely B(R) = B(R0)B(R00). And
the candidate sets of R factorize into the corre-
sponding candidate sets of R0 and R00, namely
R(x0x00) = R0(x0)R00(x00).

To illustrate, let us consider again the repre-
sentational framework R for the BSS in figure
1. We consider next the representational frame-
work R0 that consists of the four mappings that
can be assembled out of the two representations
CV2 and V2 that specify whether the onset is filled
or empty but are under-specified for codas. And
the representational framework R00 that consists
of the four mappings that can be assembled out of
the two representations 2V and 2VC that specify
whether the coda is filled or empty but are under-
specified for onsets. As indicated by the dotted
lines in figure 2, each full-blown mapping in R
factorizes into the two under-specified mappings
in R0 and R00 that sit in the same column and the
same row. We conclude that condition (4) holds
and that the framework R of full-blown syllable
representations therefore factorizes into the two
frameworks R0 and R00 of syllable representations
under-specified for codas and for onsets.

As a second example, let us consider the rep-
resentational framework R consisting of the 36



(/i/, [i]) (/i/, [u]) (/u/, [i]) (/u/, [u]) (/+high, �low/, [+high, �low])

(/i/, [e]) (/i/, [6]) (//u, [a]) (/u/, [6]) (/+high, �low/, [�high, �low])

(/i/, [a]) (/i/, [6]) (/u/, [a]) (/u/, [6]) (/+high, �low/, [�high, +low])

(/e/, [i]) (/e/, [u]) (/o/, [i]) (/o/, [u]) (/�high, �low/, [+high, �low])

(/e/, [e]) (/e/, [o]) (/o/, [e]) (/o/, [o]) (/�high, �low/, [�high, �low])

(/e/, [a]) (/e/, [6]) (/o/, [a]) (/o/, [6]) (/�high, �low/, [�high, +low])

(/a/, [i]) (/a/, [u]) (/6/, [i]) (/6/, [u]) (/�high, +low/, [+high, �low])

(/a/, [e]) (/a/, [o]) (/6/, [e]) (/6/, [o]) (/�high, +low/, [�high, �low])

(/a/, [a]) (/a/, [6]) (/6/, [a]) (/6/, [6]) (/�high, +low/, [�high, +low])

(/�rnd/, [�rnd]) (/�rnd/, [+rnd]) (/+rnd/, [�rnd]) (/+rnd/, [+rnd])

R =

R0 =

= R00

Figure 3: Factorization of the representational framework R for full-blown vowels into two frameworks R0 and R00 under-
specified for height and for rounding, respectively

mappings that can be assembled out of the six
vowels a, e, i, 6, o, and u. We consider next
the representational framework R0 that consists of
the four mappings that can be assembled out of
the two representations [+round] and [�round] un-
derspecified for height. And the representational
framework R00 that consists of the nine mappings
that can be assembled out of the the three repre-
sentations [+high, �low], [�high, �low], and [�high,
+low] underspecified for rounding. As indicated by
the dotted lines in figure 3, each full-blown map-
ping in R factorizes into the two under-specified
mappings in R0 and R00 that sit in the same column
and the same row. We conclude that condition
(4) holds and that the framework R of full-blown
vowel representations therefore factorizes into the
two frameworks R0 and R00 of vowel representa-
tions under-specified for height and for rounding.

3.3 No interaction

We consider a constraint set C for the mappings
(x, y) in the full-blown representational frame-
work R. We assume that each constraint C in this
constraint set C can be extended to the mappings
(x0, y0) and (x00, y00) in the under-specified factor
representational frameworks R0 and R00 in such
a way that condition (5) holds. It says that the
number of violations C(x0x00, y0y) that a constraint
C assigns to a full-blown mapping (x0x00, y0y) is
the sum of the number of violations C(x0, y0) and
C(x00, y00) that it assigns to the two under-specified
factor mappings (x0, y0) and (x00, y00). In other
words, no violations are created nor lost when the
under-specified representations are assembled to-
gether into the full-blown representations.

C(x0x00, y0y) = C(x0, y0) + C(x00, y00) (5)

Suppose that this condition (5) holds for every
underlying representation x0x00 in the base set
B(R) = B(R0)B(R00), for every surface rep-
resentation y0y00 in the candidate set R(x0x00) =
R0(x0)R00(x00), and for every constraint C in the
constraint set C. In other words, the set C(R) of
constraint vectors of R is the sum of the sets C(R0)
and C(R00) of constraint vectors of R0 and R00,
namely C(R) = C(R0) + (R00). In this case, we
say that the two under-specified representational
frameworks R0 and R00

do not interact relative to
the constraint set C.

To illustrate, let us consider again the represen-
tational framework R and the constraint set C for
the BSS in figure 1. The set C(R) of the constraint
violation vectors of the sixteen mappings in the
representational framework R is listed in figure
4. We extend the n = 4 constraints to the under-
specified mappings in the two factor representa-
tional frameworks R0 and R00 straightforwardly as
follows. The constraint C1 = ONSET assigns zero
violations to the four mappings in the factor repre-
sentational framework R00 under-specified for on-
sets. The constraint C3 = CODA assigns zero
violations to the four mappings in the other fac-
tor representational framework R0 under-specified
for codas. The other two constraints C2 = DEP
and C4 = MAX simply count epenthetic and
deleted consonants and thus assign violations to
mappings in both factor representational frame-
works. The corresponding sets C(R0) and C(R00)
of constraint vectors are listed at the bottom and
on the left of figure 4. As indicated by the dotted
lines, each constraint violation vector in C(R) is
the (component-wise) sum of the constraint vio-
lation vectors in C(R0) and C(R00) that sit in the



ONSET

DEP

CODA

MAX

(/CV/,[CV])2

64
0
0
0
0

3

75

(/CV/, [CVC])2

64
0
1
1
0

3

75

(/CVC/, [CV])2

64
0
0
0
1

3

75

(/CVC/, [CVC])2

64
0
0
1
0

3

75

(/CV2/, [CV2])2

64
0
0
0
0

3

75

(/CV/, [V])2

64
1
0
0
1

3

75

(/CV/, [VC])2

64
1
1
1
1

3

75

(/CVC/, [V])2

64
1
0
0
2

3

75

(/CVC/, [VC])2

64
1
0
1
1

3

75

(/CV2/, [V2])2

64
1
0
0
1

3

75

(/V/, [V])2

64
1
0
0
0

3

75

(/V/, [VC])2

64
1
1
1
0

3

75

(/VC/, [V])2

64
1
0
0
1

3

75

(/VC/, [VC])2

64
1
0
1
0

3

75

(/V2/, [V2])2

64
1
0
0
0

3

75

(/V/, [CV])2

64
0
1
0
0

3

75

(/V/, [CVC])2

64
0
2
1
0

3

75

(/VC/, [CV])2

64
0
1
0
1

3

75

(/VC/, [CVC])2

64
0
1
1
0

3

75

(/V2/, [CV2])2

64
0
1
0
0

3

75

(/2V/, [2V])2

64
0
0
0
0

3

75

(/2V/, [2VC])2

64
0
1
1
0

3

75

(/2VC/, [2V])2

64
0
0
0
1

3

75

(/2VC/, [2VC])2

64
0
0
1
0

3

75

C(R) =

C(R0) =

= C(R00)

Figure 4: The constraints for the representational framework R of the BSS can be extended to the factor frameworks R0 and
R00 in such a way that the constraint vectors in C(R) are the sums of the constraint vectors in C(R0) and C(R00).

same column and the same row. We conclude
that condition (5) holds and that the two under-
specified frameworks R0 and R00 therefore do not
interact relative to the constraint set C.

4 Factorizable grammars

4.1 Factorizability

We consider a CBG G� = G
R, C
� corresponding

to some representational framework R, some set
C of n constraints for this representational frame-
work R, and some order � among n-dimensional
vectors. We assume that the full-blown represen-
tational framework R factorizes into two frame-
works R0 and R00 of under-specified representa-
tions and we consider some suitable extension of
the constraint set C to R0 and R00. Using the same
vector order �, we construct the CBGs G

0
� =

G
R0
, C

� and G
00
� = G

R00
, C

� for the under-specified
representational frameworks R0 and R00. We say
that the original grammar G� factorizes into the
two grammars G

0
� and G

00
� provided the identity

(6) holds for any under-specified underlying rep-
resentations x0 and x00 in the base sets B(R0) and

B(R00) (see also Magri 2013). In this case, we
also write G� = G

0
�G

00
�.

G�(x
0x00) = G

0
�(x

0)G00
�(x

00) (6)
This identity (6) says that an underlying represen-
tation x0x00 that factorizes into two under-specified
underlying representations x0 and x00 admits a sur-
face realization G�(x0x00) that itself factorizes into
the two under-specified surface representations
G

0
�(x

0) and G
00
�(x

00). In other words, the job done
by the grammar G� can be outsourced to two
grammars G0

� and G
00
� that each carry out half of

it independently from the other.

To illustrate, we consider again the representa-
tional framework R for the BSS and its factors
R0 and R00 in figure 2. The grammar G in fig-
ure 5 tolerates empty onsets but deletes codas. We
consider next the grammar G0 for representations
under-specified for codas that tolerates empty on-
sets. And the grammar G

00 for representations
under-specified for onsets that deletes codas. As
indicated by the dotted lines, each full-blown map-
ping in G factorizes into the two under-specified
mappings in G

0 and G
00 that sit in the same column



(/CV/, [CV]) (/V/, [V]) (/2V/, [2V])

(/CVC/, [CV]) (/VC/, [V]) (/2VC/, [2V])

(/CV2/, [CV2]) (/V2/, [V2])

G=

G
0=

=G
00

Figure 5: Factorization of the grammar G into two grammars
G0 and G00.

and the same row. We conclude that condition (6)
holds and that the grammar G for full-blown syl-
lable representations therefore factorizes into the
two grammars G0 and G

00 for syllable representa-
tions under-specified for codas and for onsets.

Consider instead the grammar G in figure 6. It
tolerates empty onsets and codas as long as they
do not co-occur, as /VC/ is neutralized to [V] rather
than faithfully realized as [VC]. This grammar does
not factorize: onsets and codas cannot be han-
dled independently. Indeed, it is easy to verify
that, no matter what we replace the red question
mark in figure 6 with, the factorizability identity
(6) fails. This grammar G in figure 6 would be
easy to get as a CBG corresponding to a marked-
ness constraint set that contains a constraint that
selectively penalizes the doubly-marked syllable
type [VC]. But such a constraint does not satisfy the
constraint condition (5): it would not penalize the
underspecified surface representations y0 = [V2]
and y00 = [2VC] but it would penalize the corre-
sponding full-blown representation y0y00 = [VC].
In other words, the two underspecified representa-
tions do interact relative to such a constraint set.

4.2 Additive orders

An order � among n-dimensional vectors is ad-

ditive provided it satisfies the implication (7) for
any three vectors a, b, and c (Anderson and Feil
1988). This implication (7) captures the intuition
that, if a is smaller than b and if the same quantity
c is added to both, the resulting sum a+ c ought to
be smaller than the sum b + c (all vector sums are

(/CV/, [CV]) (/V/, [V]) (/2V/, [2V])

(/CVC/, [CVC]) (/VC/, [V]) (/2VC/, ??)

(/CV2/, [CV2]) (/V2/, [V2])

G=

G
0=

=G
00

Figure 6: An example of grammar G that does not factorize
into two grammars G0 and G00.

component-wise).
If a � b, then a + c � b + c. (7)

To illustrate, this additivity condition (7) is sat-
isfied by the vector order �S defined in (1), for
any choice of the set S ✓ {1, . . . , n}. Although
this additivity condition (7) feels intuitive, it easy
to construct orders that flout it. To illustrate, let
a � b provided the sum of squared components
of the vector a = (a1, . . . , an) is smaller than
the sum of squared components of the vector b =
(b1, . . . , bn), namely a

2
1+ . . .+a

2
n < b

2
1+ . . .+b

2
n.

The resulting order � is not additive.

4.3 Establishing factorizability

The following proposition says that additivity of
a vector order is sufficient to ensure that the cor-
responding CBG factorizes (see Prince 2015 for a
special case of this result; see Magri and Storme
2020 for a different phonological justification of
additive vector orders). Additivity can also be
shown to be necessary, in the sense that for any
order which is not additive we can construct a cor-
responding CBG that fails to factorize. Additivity
thus provides a complete answer to the problem of
characterizing grammatical factorizability.
Proposition 1 Consider a framework R of full-
blown representations that factorizes into two
frameworks R0 and R00 of under-specified repre-
sentations, namely R = R0R00 in the sense of
condition (4) in subsection 3.2. Consider a set
C of n constraints for the full-blown framework
R that can be extended to the two under-specified
frameworks R0 and R00 in such a way that the ad-
ditivity condition (5) in subsection 3.3 holds. Fi-
nally, consider an order � among n-dimensional
vectors that satisfies the additivity condition (7) in
subsection 4.2. The corresponding CBG G

R, C
� for

the full-blown representational framework R then
factorizes into the two CBGs GR0

, C
� and G

R00
, C

� for
the under-specified representational frameworks
R0 and R00. 2

To illustrate, we have seen in figure 2 that the
representational framework R for the BSS factor-
izes into the two frameworks R0 and R00 of sylla-
ble representations under-specified for codas and
for onsets, respectively. Furthermore, we have
seen in figure 4 that the constraint set C for the
BSS can be extended to these two under-specified
frameworks R0 and R00 in such a way that the ad-
ditivity condition (5) holds. Finally, we have seen
in subsection 4.2 that the vector order �S defined



in (1) is additive for any subset S. Proposition 1
thus ensures that the CBG G

R,C
�S

factorizes.

4.4 Proof of proposition 1

Let us suppose that the two CBGs G
0
� = G

R0
, C

�
and G

00
� = G

R00
, C

� realize the under-specified un-
derlying strings x0 and x00 as the under-specified
surface strings y0 and y00 in the candidate sets
R0(x0) and R00(x00), namely G

0
�(x

0) = y0 and
G

00
�(x

00) = y00. The full-blown surface representa-
tion y0y00 belongs to the candidate set R(x0x00) be-
cause of the inclusion R(x0x00) ◆ R0(x0)R00(x00).
We need to show that y0y00 is indeed the surface
realization of the full-blown underlying represen-
tation x0x00 according to the CBG G� = G

R, C
� ,

namely G�(x0x00) = y0y00.
To this end, let us consider a candidate z in

the candidate set R(x0x00) different from the can-
didate y0y00. This candidate z must factorize as z =
z0z00 into some candidates z0 and z00 from R0(x0)
and R00(x00), because of the inclusion R(x0x00) ✓
R0(x0)R00(x00). The assumption z 6= y0y00 means
that z0 6= y0 or z00 6= y00 (or both). Without loss of
generality, we assume z0 6= y0.

Since z0 6= y0, the assumption G
0
�(x

0)= y0 says
that the constraint violation vector C(x0, y0) of the
winner mapping (x0, y0) is smaller than the con-
straint violation vector C(x0, z0) of the loser map-
ping (x0, z0), as in (8).

C(x0, y0) � C(x0, z0) (8)
Let us now turn to the other two candidates y00

and z00. If they are different as well, we rea-
son analogously that the constraint violation vec-
tor C(x00, y00) of the winner mapping (x00, y00) must
be smaller than the constraint violation vector
C(x00, z00) of the loser mapping (x00, z00), as in (9).

C(x00, y00) � C(x00, z00) (9)
If instead these two candidates y00 and z00 are iden-
tical, their constraint violation vectors C(x00, y00)
and C(x00, z00) coincide, as stated in (10).

C(x00, y00) = C(x00, z00) (10)

Since the order � satisfies the additivity condi-
tion (7), the inequality (8) and the identity (10) can
be summed together into the inequality (11).

C(x0, y0)+C(x00, y00) � C(x0, z0)+C(x00, z00) (11)
Suppose instead that it is the inequality (9) that
holds rather than the identity (10). In this case,
we note that the additivity condition (7) entails the
variant in (12) for any four vectors a, b, c, d. In

fact, the assumption a � b in the antecedent of
(12) ensures that a + c � b + c through the addi-
tivity condition (7). Analogously, the assumption
c � d ensures that b+ c � b+d. The consequent
a + c � b + d then follows by transitivity of �.

If a � b and c � d, then a + c � b + d (12)
Since the vector order � satisfies condition (12),
the inequalities (8) and (9) can be summed to-
gether yielding once again the inequality (11).

By assumption, the two under-specified repre-
sentational frameworks R0 and R00 do not inter-
act relative to the constraint set C, in the sense of
condition (5). Thus, the sum of the constraint vio-
lation vectors C(x0, y0) and C(x00, y00) on the left
hand side of the inequality (11) coincides with
the constraint violation vector C(x0x00, y0y00) of the
corresponding full-blown mapping (x0x00, y0y00).
Analogously for the right hand side, whereby the
inequality (11) can be rewritten as (13).

C(x0x00, y0y00) � C(x0x00, z0z00) (13)
By (13), the constraint violation vector of the can-
didate y0y00 is smaller than that of any competing
candidate z = z0z00. The CBG G� thus realizes
the full-blown underlying representation x0x00 as
the full-blown surface representation y0y00, namely
G�(x0x00) = y0y00 as desired.

5 HG and factorizability

5.1 Disharmony functions

Let us consider a particularly natural way of order-
ing numerical vectors. We start from a function H

that assigns to each vector a a number H(a) called
its disharmony. Any two vectors a and b can then
be ordered based on their disharmonies H(a) and
H(b) as in (14): the smaller (and thus better) vec-
tor is the one with the smaller disharmony.

a �H b iff H(a) < H(b) (14)
The disharmony function H thus effectively de-
fines a partial strict order �H among vectors.

Crucially, there exist numerical orders that are
not induced by any disharmony function H . In the
sense that condition (14) fails for some vectors, no
matter how the disharmony function H is chosen.
For instance, that can be shown to be case for the
vector order �S defined in (1), whenever the set
S has cardinality larger than one. The restriction
to vector orders that are induced by disharmony
functions is therefore substantive.



5.2 Additive disharmony functions

Proposition 1 says that the condition (7) that a
vector order � be additive is phonologically sub-
stantive because it ensures that the corresponding
CBG G� factorizes. We are thus led to the follow-
ing question: which assumptions on the dishar-
mony function H suffice to ensure that the cor-
responding vector order �H defined through (14)
satisfies this phonologically substantive additivity
condition (7)? We will now see that it suffices to
assume that the disharmony of the sum a + b of
two vectors a and b is equal to the sum of their
disharmonies, as stated in (15).

H(a + b) = H(a) +H(b) (15)

Indeed, let us assume that the numerical order
�H induced by a disharmony function H satisfies
the antecedent of the additivity implication (7),
namely a �H b. By definition (14), this means
in turn that the disharmony H(a) of the smaller
vector a is smaller than the disharmony H(b) of
the larger vector b, as in (16a). Let H(c) be the
disharmony of the vector c. Whatever this num-
ber H(c) looks like, it can be added to both sides
of the disharmony inequality H(a) < H(b) with-
out affecting it, yielding (16b). By the assumption
(15) that the disharmony of a sum is the sum of the
disharmonies, we can rewrite our inequality as in
(16c). Finally, we use again the connection (14)
between the disharmony function H and the cor-
responding numerical order �H to reinterpret the
disharmony inequality H(a + c) < H(b + c) as
the vector inequality a + c �H b + c required by
the consequent of the additivity implication (7).

a �H b ()
(a)() H(a) < H(b)
(b)() H(a) +H(c) < H(b) +H(c)
(c)() H(a + c) < H(b + c)
(d)() a + c �H b + c

(16)

5.3 Deriving HG’s disharmony function

The two preceding subsections have motivated nu-
merical orders defined though disharmony func-
tions which satisfy the identity (15) whereby the
disharmony of a sum of vectors is the sum of their
disharmonies. We now explore the phonological
implications of this assumption (15) by computing
the disharmony of the constraint violation vector
C(x, y) of an arbitrary mapping (x, y) as in (17).

In step (17a), we have recalled that the compo-

nents of the constraint violation vector C(x, y) are
the n constraint violations C1(x, y), . . . , Cn(x, y).
In step (17b), we have baroquely rewritten this
constraint violation vector C(x, y) as the sum of
many vectors: the vector with the 1st component
equal to one and all other components equal to
zero, repeated C1(x, y) times; the vector with the
2nd component equal to one and all other compo-
nents equal to zero, repeated C2(x, y) times; and
so on, down to the vector with the nth compo-
nent equal to one and all other components equal
to zero, repeated Cn(x, y) times.

We now make the crucial assumption that the
disharmony function H is additive. This means in
particular that the disharmony of a sum of vectors
is the sum of their disharmonies (the identity (15)
extends trivially from two to an arbitrary finite
number of vectors), yielding the identity (17c). Fi-
nally, let us call w1 the disharmony of the vector
with the 1st component equal to one and all other
components equal to zero; let us called w2 the
disharmony of the vector with the 2nd component
equal to one and all other components equal to
zero; and so on. The disharmony of the constraint
vector C(x, y) can thus be described as the sum
of the constraint violations C1(x, y), . . . , Cn(x, y)
rescaled by w1, . . . , wn, as stated in (17d).

In conclusion, the reasoning in (17) shows that
a disharmony function H that satisfies the addi-
tivity condition (15) is the one assumed in HG
(Legendre et al. 1990b,a; Smolensky and Legen-
dre 2006). And the HG weights w1, . . . , wn can
be interpreted as the disharmony of the base vec-

tors that have one component equal to one and all
other components equal to zero. These base vec-
tors have no phonological meaning (they cannot
be interpreted as constraint violation vectors). The
reasoning in (17) thus illustrates the advantage of
construing CBGs rather abstractly as in section 2,
in terms of orders defined among arbitrary vectors.

5.4 The role of constraint integrality

As anticipated in section 2, the constraints used
in phonology are assumed to only take (nonnega-
tive) integer values, interpreted as numbers of vi-
olations. This assumption formalizes the intuition
that the properties relevant to phonology are dis-

crete—contrary to the properties relevant to pho-
netics, which are instead continuous and thus can-
not be quantified through just integers. This con-

straint integrality assumption yields a number
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(d)
= C1(x, y)w1 + C2(x, y)w2 + . . .+ Cn(x, y)wn

(17)
of finiteness effects when coupled with plausible
assumptions on orders among n-dimensional vec-
tors. For instance, Magri (2019) shows that (when
coupled with a restriction to vector orders that are
monotone), constraint integrality ensures that all
candidate sets can be assumed to be finite without
loss of generality.

The reasoning in (17) illustrates another finite-
ness effect of the constraint integrality assump-
tion. Indeed, this reasoning crucially relies on
the fact that the constraint violation vector C(x, y)
can be expressed as a sum of a certain number
of base vectors. Obviously, this decomposition
is only possible because the components Ck(x, y)
of a constraint violation vector are integers but
would fail otherwise.1 The reasoning in (17) can
thus be interpreted as another finiteness effect of
the constraint integrality assumption: when this
constraint integrality assumption is coupled with
a restriction to numerical orders defined through
additive disharmony functions, it ensures that the
disharmony function admits a finite representa-
tion in terms of a finite number n of weights
w1, . . . , wn.

6 Conclusions

A phonological representation often factorizes
into multiple under-specified representations that
each encode only some of the information en-

1 This reasoning (17) is essentially the proof of the Fun-
damental Theorem of Linear Algebra (Strang 2006), whereby
a linear function between finite dimensional spaces admits a
matrix representation. The only twist is that we do not need
linearity (namely additivity plus homogeneity) but additivity
suffices, because we are only dealing with integral vectors.

coded by the original full-blown representation.
We assume that these under-specified representa-
tions do not interact, in the sense that the number
of constraint violations incurred by a mapping of
full-blown representations coincides with the sum
of the numbers of constraint violations incurred
by the factor mappings of under-specified repre-
sentations. In this case, we want a phonological
grammar that handles full-blown representations
to factorize into multiple grammars that handle
the under-specified representations independently
of each other. This paper has shown that the HG

implementation of constraint-based phonology

follows from this factorizability desideratum

plus the restriction to disharmony-based or-

ders. The latter assumption does not seem to ad-
mit a phonological justification but it is quite nat-
ural from a formal perspective. We conclude that
HG admits a principled derivation from axioms
that are phonologically or formally motivated (for
alternative justifications of the HG framework, see
Smolensky and Legendre 2006, and especially
chapters 6 and 9). The proposed derivation cru-
cially relies on the constraint-integrality assump-
tion that phonologically relevant properties are
discrete. Apart from this constraint-integrality as-
sumption, the reasoning holds without any sub-
stantive assumptions on the constraint set.
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Paul Smolensky and Géraldine Legendre. 2006. The
Harmonic Mind. MIT Press, Cambridge, MA.

Donca Steriade. 1995. Underspecification and marked-
ness. In John Goldsmith, editor, The handbook
of Phonological Theory, pages 114–174. Blackwell,
Oxford.

Gilbert Strang. 2006. Linear Algebra and its applica-
tions. Thomson Brooks/Cole.



Modeling unsupervised phonetic and phonological learning in Generative
Adversarial Phonology
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Abstract
This paper models phonetic and phonologi-
cal learning as a dependency between random
space and generated speech data in the Gener-
ative Adversarial Neural network architecture
and proposes a methodology to uncover the
network’s internal representation that corre-
sponds to phonetic and phonological features.
A Generative Adversarial Network (Goodfel-
low et al. 2014; implemented as WaveGAN
for acoustic data by Donahue et al. 2019) was
trained on an allophonic distribution in En-
glish, where voiceless stops surface as aspi-
rated word-initially before stressed vowels ex-
cept if preceded by a sibilant [s]. The net-
work successfully learns the allophonic alter-
nation: the network’s generated speech signal
contains the conditional distribution of aspira-
tion duration. Additionally, the network gener-
ates innovative outputs for which no evidence
is available in the training data, suggesting that
the network segments continuous speech sig-
nal into units that can be productively recom-
bined. The paper also proposes a technique for
establishing the network’s internal representa-
tions. We identify latent variables that directly
correspond to presence of [s] in the output. By
manipulating these variables, we actively con-
trol the presence of [s], its frication amplitude,
and spectral shape of the frication noise in the
generated outputs.

1 Introduction

Modeling phonetic and phonological data with
neural networks has seen a rapid increase in the
past few years (Alderete et al. 2013; Avcu et al.
2017; Alderete and Tupper 2018; Mahalunkar and
Kelleher 2018; Weber et al. 2018; Dupoux 2018;
Prickett et al. 2019; Pater 2019, for cautionary
notes, see Rawski and Heinz 2019). The major-
ity of existing computational models in phonol-
ogy, however, model learning as symbol manipu-
lation and operate with discrete units—either with

completely abstract made-up units or with discrete
units that feature some phonetic properties that
can be approximated as phonemes. This means
that either the phonetic and phonological learn-
ing are modeled separately or one is assumed to
have already been completed with a pre-assumed
level of abstraction (Martin et al., 2013; Dupoux,
2018). This is true for both proposals that model
phonological distributions or derivations (Alderete
et al., 2013; Prickett et al., 2019) and featural or-
ganizations (Faruqui et al., 2016; Silfverberg et al.,
2018).

Most models in the subset of the proposals that
operate with continuous phonetic data assume at
least some level of abstraction and operate with
already extracted features (e.g. formant values)
on limited “toy” data (e.g. Pierrehumbert 2001;
Kirby and Sonderegger 2015 for a discussion, see
Dupoux 2018). Guenther and Vladusich (2012),
Guenther (2016) and Oudeyer (2001, 2002, 2005,
2006), for example, propose models that use sim-
ple neural maps that are based on actual corre-
lates of neurons involved in speech production in
the human brain (based on various brain imaging
techniques). Their models, however, do not oper-
ate with raw acoustic data (or require extraction of
features in a highly abstract model of articulators;
Oudeyer 2005, 2006), require a level of abstrac-
tion in the input to the model, and do not model
phonological processes — i.e. allophonic distri-
butions. Phonological learning in most of these
proposals is thus modeled as if phonetic learning
(or at least a subset of phonetic learning) had al-
ready taken place: the initial state already includes
phonemic inventories, phonemes as discrete units,
feature matrices that had already been learned, or
extracted phonetic values.

Prominent among the few models that operate
with raw phonetic data are Gaussian mixture mod-
els for category-learning or phoneme extraction



(Schatz et al., 2019; Lee and Glass, 2012). Schatz
et al. (2019) propose a Dirichlet process Gaus-
sian mixture model that learns categories from
raw acoustic input in an unsupervised learning
task. The primary purpose of the proposal in
Schatz et al. (2019) is modeling perception and
categorization: they model how a learner is able
to categorize raw acoustic data into sets of dis-
crete categorical units that have phonetic values
(i.e. phonemes). No phonological processes are
modeled in the proposal.

Recently, neural network models for unsuper-
vised feature extraction have seen success in mod-
eling acquisition of phonetic features from raw
acoustic data (Kamper et al., 2015). The model
in Shain and Elsner (2019), for example, is an au-
toencoder neural network that is trained on pre-
segmented acoustic data. The model takes as an
input segmented acoustic data and outputs values
that can be correlated to phonological features.
Learning is, however, not completely unsuper-
vised as the network is trained on pre-segmented
phones. Thiollière et al. (2015) similarly propose
an architecture that extracts units from unsuper-
vised speech data. These proposals, however, do
not model learning of phonological distributions,
but only of feature representations, and crucially
are not generative, meaning that the models do not
output innovative data, but try to replicate the in-
put as closely as possible (e.g. in the autoencoder
architecture).

As argued below, the model based on a Genera-
tive Adversarial network learns not only to gen-
erate innovative data that closely resemble hu-
man speech, but also learns internal representa-
tions that resemble phonological features simulta-
neously with unsupervised phonetic learning from
raw acoustic data. Additionally, the model is gen-
erative and outputs both the conditional allophonic
distributions in the data and innovative data that
can be compared to productive outputs in human
speech acquisition.

1.1 A Generative Adversarial model of
phonology

The advantage of the GAN architecture (Good-
fellow et al., 2014; Radford et al., 2015; Don-
ahue et al., 2019) is that learning is completely
unsupervised and that phonetic learning is simul-
taneous with phonological learning in its broadest
sense. A network that models learning of phonet-

ics from raw data and shows signs of learning dis-
crete phonological units at the same time is likely
one step closer to reality than models that oper-
ate with symbolic computation and assume pho-
netic learning had already taken place and is inde-
pendent of phonology and vice versa. The Gen-
erator’s outputs can be approximated as the basis
for articulatory targets in human speech that are
sent to articulators for execution. The latent vari-
ables in the input of the Generator can be mod-
eled as featural representation that the Generator
learns to output into a speech signal by attempting
to maximize the error rate of a Discriminator net-
work that distinguishes between real data and gen-
erated outputs. The Discriminator network thus
has a parallel in human speech perception, pro-
duction, and acquisition: the imitation principle
(Nguyen and Delvaux, 2015). The Discriminator’s
function is to enforce that the Generator’s outputs
resemble (but not replicate) the inputs as closely
as possible. The GAN network thus incorporates
both the pre-articulatory production elements (the
Generator) as well as the perceptual element (the
Discriminator) in speech acquisition. While other
neural network architectures might be appropriate
for modeling phonetic and phonological learning,
GAN is unique in that it is a generative model with
the production-perception loop parallel and that,
unlike for example autoencoders, generates inno-
vative data rather than data that resembles the in-
put as closely as possible. To our knowledge, this
is the first proposal that tests whether neural net-
works are able to learn an allophonic distribution
based on raw acoustic data.

We train a Generative Adversarial Network ar-
chitecture implemented for audio files in Donahue
et al. (2019) (WaveGAN; which is based on DC-
GAN; Radford et al. 2015) on continuous raw
speech data that contains information for an al-
lophonic distribution: word-initial pre-vocalic as-
piration of voiceless stops (["phIt] ⇠ ["spIt]). The
data is curated in order to control for non-desired
effects, which is why only sequences of the shape
#TV and #sTV (T = stop, V = vowel) are fed to
the model. This allophonic distribution is uniquely
appropriate for testing learnability in a GAN set-
ting, because the dependency between the pres-
ence of [s] and duration of VOT is not strictly lo-
cal. To be sure, the dependency is local in phono-
logical terms, as [s] and T are two segments and
immediate neighbors, but in phonetic terms, a pe-



riod of closure intervenes between the aspiration
and the period (or absence thereof) of frication
noise of [s].

The hypothesis of the computational experi-
ment presented in Section 3 is the following: if
VOT duration is conditioned on the presence of [s]
in output data generated from noise by the Gener-
ator network, it means that the Generator network
has successfully learned a phonetically non-local
allophonic distribution. Because the allophonic
distribution is not strictly local and not automatic,
but has to be learned and actively controlled by
speakers, evidence for this type of learning is
considered phonological learning in the broadest
sense. Conditioning the presence of a phonetic
feature based on the presence or absence of a
phoneme that is not automatic is, in most mod-
els, considered part of phonology and is derived
with phonological computation. That the tested
distribution is non-automatic and has to be ac-
tively controlled by the speakers is evident from
L1 acquisition: failure to learn the distribution
results in longer VOT durations in the sT condi-
tion documented in L1 acquisition (McLeod et al.,
1996; Bond, 1981). Additional evidence that the
GAN’s learning resembles phonemic representa-
tions (such as presence of [s]) is obtained from
recovering the networks’ internal representations
(see below and Section 3.2).

This paper also proposes a technique for es-
tablishing the Generator’s internal representations.
What neural networks actually learn is a challeng-
ing question with no easy solutions. The inabil-
ity to uncover networks’ representations has been
used as an argument against neural network ap-
proaches to linguistic data (Rawski and Heinz,
2019). We argue that internal representation of
a network can be, at least partially, uncovered.
By regressing annotated dependencies between
the Generator’s latent space and output data, we
identify values in the latent space that correspond
to linguistically meaningful features in generated
outputs. This paper demonstrates that manipu-
lating the chosen values in the latent space have
phonetic and phonological effects in the generated
outputs, such as the presence of [s] and the ampli-
tude of its frication. In other words, the GAN net-
work learns to use random noise as an approxima-
tion of phonetic and phonological features. This
paper proposes that dependencies, learned during
training in a latent space that is limited by some

interval, extend beyond that interval. This crucial
step allows for the discovery of several phonetic
properties.

2 Materials

2.1 The model: Donahue et al. (2019) based
on Radford et al. (2015)

Generative Adversarial Networks, proposed by
Goodfellow et al. (2014), have seen a rapid ex-
pansion in a variety of tasks, including but not
limited to computer vision and image generation
(Radford et al., 2015). The main characteristic
of GANs is the architecture that involves two net-
works: the Generator network and the Discrimina-
tor network (Goodfellow et al., 2014). The Gener-
ator network is trained to generate data from ran-
dom noise, while the Discriminator is trained to
distinguish real data from the outputs of the Gener-
ator network (Figure 1). The Generator is trained
to generate data that maximizes the error rate of
the Discriminator network. The training results in
a Generator (G) network that takes random noise
as its input (e.g. multiple variables with uniform
distributions) and outputs data such that the Dis-
criminator is inaccurate in distinguishing the gen-
erated from the real data.

Applying the GAN architecture on time-series
data such as a continuous speech stream faces sev-
eral challenges. Recently, Donahue et al. (2019)
proposed an implementation of a Deep Convolu-
tional Generative Adversarial Network proposed
by Radford et al. (2015) for audio data (Wave-
GAN); the model along with the code in Donahue
et al. (2019) was used for training in this paper.
The model takes one-second long raw audio files
as inputs, sampled at 16 kHz with 16-bit quanti-
zation. The audio files are converted into a vector
and fed to the Discriminator network as real data.
Instead of the two-dimensional 5 ⇥ 5 filters, the
WaveGAN model uses one-dimensional 1⇥25 fil-
ters and larger upsampling (Donahue et al., 2019).
The main architecture is preserved as in DCGAN,
except that an additional layer is introduced in or-
der to generate longer samples. The Generator net-
work takes as input z, a vector of one hundred uni-
formly distributed variables (z ⇠ U (�1,1)) and
outputs 16,384 data points, which constitutes the
output audio signal. The network has five 1D
convolutional layers (Donahue et al., 2019). The
Discriminator network takes 16,384 data points
(raw audio files) as its input and outputs a sin-
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Figure 1: A diagram showing the Generative Adversar-
ial architecture as proposed in Goodfellow et al. (2014);
Donahue et al. (2019) and trained on data from the
TIMIT database in this paper.

gle logit. The initial GAN design as proposed
by Goodfellow et al. (2014) trained the Discrim-
inator network to distinguish real from generated
data. Training such models, however, faced sub-
stantial challenges (Donahue et al., 2019). Don-
ahue et al. (2019) implement the WGAN-GP strat-
egy (Arjovsky et al., 2017; Gulrajani et al., 2017),
which means that the Discriminator is trained “as
a function that assists in computing the Wasser-
stein distance” (Donahue et al., 2019). The Wave-
GAN model (Donahue et al., 2019) uses ReLU ac-
tivation in all but the last layer for the Generator
network, and Leaky ReLU in all layers in the Dis-
criminator network (as recommended for DCGAN
in Radford et al. 2015). For exact dimensions of
each layer and other details of the model, see Don-
ahue et al. (2019).

2.2 Training data
The model was trained on the allophonic distri-
bution of voiceless stops in English. Voiceless
stops /p, t, k/ surface as aspirated [ph, th, kh] in
English in word-initial position when immediately
followed by a stressed vowel (Lisker, 1984; Iver-
son and Salmons, 1995; Vaux, 2002; Vaux and
Samuels, 2005; Davis and Cho, 2006). If an alve-
olar sibilant [s] precedes the stop, however, the as-
piration is blocked and the stop surfaces as unaspi-
rated [p, t, k] (Lisker, 1984). A minimal pair
illustrating this allophonic distribution is ["phIt]
‘pit’ vs. ["spIt] ‘spit’. The most prominent pho-
netic correlate of this allophonic distribution is the
difference in Voice Onset Time (VOT) duration
(Abramson and Whalen, 2017) between the aspi-
rated and unaspirated voiceless stops.

The model was trained on data from the TIMIT
database (Garofolo et al., 1993).1 The training

1Donahue et al. (2019) trained the model on the SC09 and
TIMIT databases, but the results are not useful for model-
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Figure 2: Waveforms and spectrograms (0–8,000 Hz)
of a typical generated samples of #TV (left) and #sTV
(right) sequences from a Generator trained after 12,255
steps.

data consist of 16-bit .wav files with 16 kHz sam-
pling rate of word initial sequences of voiceless
stops /p, t, k/ (= T) that were followed by a vowel
(#TV) and word initial sequences of /s/ + /p, t, k/,
followed by a vowel (#sTV). The training data in-
cludes 4,930 sequences with the structure #TV and
533 sequences with the structure #sTV (5,463 to-
tal). Both stressed and unstressed vowels are in-
cluded in the training data, as this condition cru-
cially complicates learning and makes the task for
the neural network more challenging.

3 Experiment

3.1 Model: 12,255 steps

The Generator network after 12,255 steps (⇠ 716
epochs) generates an acoustic signal that appears
close to actual speech data. The number of train-
ing steps was chosen manually as a compromise
between output interpretability and the number of
epochs, where we try to approximately maximize
the first and minimize the latter parameter. Fig-
ure 2 illustrates a typical generated sample of #TV
(left) and #sTV (right) structures with a substantial
difference in VOT durations.

To test whether the Generator learns the condi-
tional distribution of VOT duration, the generated
samples were annotated for VOT duration. VOT
duration was measured from the release of closure
to the onset of periodic vibration with clear for-
mant structure. Altogether 96 generated samples
were annotated; 62 in which no period of frica-
tion of [s] preceded and 34 in which [s] precedes
the TV sequence. The generated data were fit to
a linear model with only one predictor: presence
of [s] (STRUCTURE). Place of articulation or fol-

ing phonological learning, because the model is trained on a
continuous speech stream and the generated sample fails to
produce analyzable results for phonological purposes.



lowing vowel were not added in the model, be-
cause they are often difficult to recover. STRUC-
TURE is a significant predictor of VOT duration:
F(1) = 53.1, p < 0.0001. The estimates for In-
tercept (duration of VOT when no [s] precedes)
are b = 56.2 ms, t = 25.74, p < 0.0001. VOT is
on average 26.8 ms shorter if [s] precedes the TV
sequence and this difference is significant (b =
�26.8 ms, t =�7.29, p < 0.0001).

While VOT duration is significantly shorter if
[s] precedes the #TV sequence in the generated
data, the model shows clear traces that the learning
is incomplete and that the generator network fails
to learn the distribution categorically at 12,255
steps. The three longest VOT durations in the
#sTV condition in the generated data are 68.3
ms, 75.7 ms, and 76.2 ms. In all three cases the
VOT is longer than the longest VOT duration of
any #sTV sequence in the training data (longest
is 65 ms). This generalization holds even in pro-
portional terms (i.e. while controlling for “speech
rate”): the generated data contains the highest ra-
tio between the VOT duration and the frication du-
ration of [s].

Longer VOT duration in the #sTV condition in
the generated data compared to training data is not
the only violation of the training data that the Gen-
erator outputs and that resembles linguistic behav-
ior in humans. Occasionally, the Generator out-
puts a linguistically valid #sV sequence for which
no evidence was available in the training data. The
minimal duration of closure in #sTV sequences
in the training data is 9.2 ms, the minimal dura-
tion of VOT is 9.4 ms. All sequences contain-
ing a [s] from the training data were manually in-
spected, and none of them contain a #sV sequence
without a period of closure and VOT. Homorganic
sequences of [s] followed by an alveolar stop [t]
(#stV) are occasionally acoustically similar to the
sequence without the stop (#sV) because frication
noise from [s] carries onto the homorganic alve-
olar closure which can be very short. However,
there is a clear fall and a second rise of noise am-
plitude after the release of the stop in #stV se-
quences. Figure 3 shows one case of the Gen-
erator network outputting a #sV sequence with-
out any stop-like fall of the amplitude. In other
words, the Generator network outputs a linguis-
tically valid sequence #sV without any evidence
for existence of this sequence in the training data.
Similarly, the Generator occasionally outputs a se-
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Figure 3: Waveforms and spectrograms (0–8000 Hz)
of two innovative generated outputs of the shape #sV
and #TTV. The sample on the left was generated after
16,715 steps.

quence with two stops (two periods of aspiration
noise with intervening short period of closure) and
a vowel (#TTV) (Figure 3).

Measuring overfitting is a substantial problem
for Generative Adversarial Networks with no con-
sensus on the most appropriate quantitative ap-
proach to the problem (Goodfellow et al., 2014;
Radford et al., 2015). The danger with overfit-
ting in a GAN architecture is that the Genera-
tor network would learn to fully replicate the in-
put. Donahue et al. (2019) test overfitting on mod-
els trained with a substantially higher number of
steps (200,000) compared to our model (12,255)
and presents evidence that GAN models trained
on audio data do not overfit even with substan-
tially higher number of training steps. The best ev-
idence against overfitting is precisely the fact that
the Generator network outputs samples that sub-
stantially violate output distributions.

3.2 Establishing internal representations

Establishing internal representations of a neural
network is a challenging task (Lillicrap and Ko-
rding, 2019). Below, we propose a technique for
uncovering dependencies between the network’s
latent space and generated data based on logistic
regression. This method has the potential to shed
light on the network’s internal representations: us-
ing the proposed technique, we can estimate how
the network learns to map latent space into pho-
netically and phonologically meaningful units in
the generated data.

To identify dependencies between the latent
space and generated data, we correlate annota-
tions of the output data with the variables in the
latent space. As a starting point, we choose
to identify correlates of the most prominent fea-
ture in the training data: presence or absence of
[s]. Any number of other phonetic features can



be correlated with this approach; applying this
technique to other features and other alternations
should yield a better understanding of the net-
work’s learning mechanisms. Focusing on more
than the chosen feature, however, is beyond the
scope of this paper.

We propose a method based on logistic regres-
sion. First, 3,800 outputs from the Generator net-
work trained after 12,255 steps were generated and
manually annotated for presence or absence of [s].
271 outputs (7.13%) were annotated as involving a
segment [s]. Frication that resembled [s]-like aspi-
ration noise after the alveolar stop and before high
vowels was not annotated as including [s]. Innova-
tive outputs such as an #[s] without the following
vowel or #sV sequences were annotated as includ-
ing an [s].

The annotated data together with values of la-
tent variables for each generated sample (z) were
fit to a logistic regression generalized additive
model (using the mgcv package; Wood 2011 in R
Core Team 2018) with the presence or absence of
[s] as the dependent variable (binomial distribu-
tion of successes and failures) and smooth terms
of latent variables (z) as predictors of interest (es-
timated as penalized thin plate regression splines;
Wood 2011). Generalized additive models were
chosen in order to avoid assumptions of linear-
ity: it is possible that latent variables are not lin-
early correlated with features of interest in the
output of the Generator network. The initial full
model (FULL) includes smooths for all 100 vari-
ables in the latent space that are uniformly dis-
tributed within the interval (�1,1) as predictors.

To reduce the number of variables, models with
different shrinkage techniques are refit and com-
pared: the latent variables for further analysis are
then chosen based on combined results of differ-
ent extratory models. We refit the model with
various modifications: with modified smooth-
ing penalty (MODIFIED); with original smoothing
penalty, but with an additional penalty for each
term if all smoothing parameters tend to infinity
(SELECT; Wood 2011); and with manual removal
of non-significant terms by Wald test for each term
(EXCLUDED).

The estimated smooths appear mostly linear.
We also fit the data to a linear logistic regression
model (LINEAR) with all 100 predictors. To re-
duce the number of predictors, another model is
fit (LINEAR EXCLUDED) with those predictors re-

moved that do not improve fit.
To identify latent variables with highest corre-

lation with [s] in the output, we extract estimates
for each term from the generalized additive mod-
els and estimates of slopes from the linear model.
Figure 4 plots those values. The plot points to a
substantial difference between the highest seven
predictors and the rest of the latent space. Seven
latent variables are thus identified (z5, z11, z49, z29,
z74, z26, z14) as potentially having the largest ef-
fect on presence or absence of [s] in output. Lasso
regression (Simon et al., 2011) and Random For-
est models (Liaw and Wiener, 2002) give almost
identical results.

To conduct an independent generative test of
whether the chosen values correlate with [s] in
the output data of the Generator network, we set
values of the seven identified predictors (z5, z11,
z49, z29, z74, z26, z14) to the marginal value of 1 or
�1 (depending on whether the correlation is pos-
itive or negative) and generated 100 outputs. Al-
together seven values in the latent space were thus
manipulated, which represents only 7% of the en-
tire latent space. Of the 100 outputs with manip-
ulated values, 73 outputs included a [s] or [s]-like
element, either with the stop closure and vowel or
without them. The rate of outputs that contain [s]
is thus significantly higher when the seven values
are manipulated to the marginal levels compared
to randomly chosen latent space. In the output data
without manipulated values, only 271 out of 3800
generated outputs (or 7.13%) contained an [s].
The difference is significant (c2(1) = 559.0, p <
0.00001).

High proportions of [s] in the output can be
achieved with manipulation of single latent vari-
ables, but the values need to be highly marginal,
i.e. extend well beyond the training space. Setting
the z11 value outside the training interval to �15,
for example, causes the Generator to output [s] in
87 out of 100 generated (87%) sequences, which
is again significantly more than with random input
(c2(1) = 792.7, p < 0.0001). When z11 is �25,
the rate goes up to 96 out of 100, also significantly
different from random inputs (c2(1) = 959.8, p <
0.0001).

While there is a consistent drop in estimates
of the regression models after the seven identified
variables (Figure 4) and while several independent
generation tests confirm that the seven variables
correspond the to presence of [s] in the output,
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the cutoff point between the seven variables and
the rest of the latent space is still somewhat ar-
bitrary. It is likely that other latent variables di-
rectly or indirectly influence the presence of [s] as
well: the learning at this point is not yet categor-
ical and several dependencies not discovered here
likely affect the results. Nevertheless, further ex-
plorations of the latent space suggest the variables
identified with the logistic regression (and other)
models (Figure 4) are indeed the main variables
involved with the presence or absence of [s] in the
output.

3.3 Interpolation and phonetic features
We further explore whether the mapping between
the uniformly distributed input (z) variables can be
associated with specific phonetic or phonological
features in that output. The crucial step in this
direction is to explore values of the latent space
beyond the training interval, i.e. beyond (�1,1).
Crucially, we observe that the Generator network,
while being trained on latent space limited to the
interval (�1,1), learns representations that ex-
tend this interval. Even if the input latent vari-
ables (z) exceed the training interval, the Gener-
ator network outputs samples that closely resem-
ble human speech. Furthermore, the dependen-
cies learned during training extend outside of the
(�1,1) interval. Exploring phonetic properties at
these marginal values might reveal the actual un-
derlying function of each latent variable.

To explore phonetic correlates of the seven la-
tent variables, we set each of the seven variables
separately to the marginal value �4.5 and interpo-
late to its opposite marginal value 4.5 in 0.5 incre-
ments, while keeping randomly-sampled values of
the other 99 latent variables z constant. The ±4.5
value was chosen based on manual inspection of
generated samples: amplitude rises of [s] gradu-
ally weaken when variables have a value greater
than ±3.5. Seven sets of generated samples are
thus created, one for each of the seven z values
(with the other 99 z-values randomly sampled, but
kept constant for all seven manipulated variables).
Each set contains a subset of 19 generated outputs
that correspond to the interpolated variables from
�4.5 to 4.5 in 0.5 increments. Twenty-nine such
sets containing an [s] in at least one set are ex-
tracted for analysis.

A clear pattern emerges in the generated data:
the latent variables identified as corresponding to
the presence of [s] via regression (Figure 4) have
direct phonetic correlates and cause changes in
amplitude and presence/absence of frication noise
of [s] when each of the seven values in the latent
space are manipulated to the chosen values, in-
cluding values that exceed the training interval. In
other words, by manipulating the identified latent
variables, we control the presence/absence of [s]
in the output as well as the amplitude of its frica-
tion noise.

Figure 5 illustrates this effect. Frication noise of
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Figure 5: Waveforms and two spectrograms (both 0�
8,000 Hz) of generated data with z11 variable manipu-
lated and interpolated. The values on the left of wave-
forms indicate the value of z11. The two spectrograms
represent the highest and the lowest value of z11. A
clear attenuation of the frication noise is visible until
complete disappearance.

[s] gradually decreases by increasing the value of
z11 until it completely disappears. The exact value
of z11 for which the [s] disappears differs across
examples and likely interacts with other features.
It is possible that frication noise in the training has
a higher amplitude in some conditions, which is
why such cases require a higher magnitude of ma-
nipulation of z11. The figure also shows that as
the frication noise of [s] disappears, aspiration of a
stop in what appears to be a #TV sequences starts
surfacing and replaces the frication noise of [s].
Occasionally, frication noise of [s] gradually trans-
forms into aspiration noise. The exact transforma-
tion is likely dependent on the 99 other z-variables
held constant and their underlying phonetic effect.
Regardless of the underlying phonetic effect of the
other variables in the latent space, we can force [s]
in the output when generating data and manipulat-
ing the chosen variables.

To test the significance of the effects of the
seven identified features on the presence of [s]
and the amplitude of its frication noise, the 29
generated sets of 19 outputs (with z-value from
�4.5 to 4.5) for each of the seven variables were
analyzed. The outputs were manually annotated
for [s] and the following vowel. Outputs gradu-
ally change from #sTV to #TV. Only sequences
containing an [s] were analyzed; as soon as [s]
stops in the output, annotations were stopped and
the outputs were not further analyzed. For each
data point, maximum intensity of the fricative and
the vowel was extracted in Praat (Boersma and
Weenink, 2015; Lennes, 2003) with a 13.3 ms
window length.
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Figure 6: (a) Plots of ratios of maximum intensity be-
tween the frication of [s] and phonation of the vowel in
#sTV sequences across the seven variables and (b) pre-
dicted values with 95% CIs of the ratio based on beta
regression generalized additive model.

To test whether the decreased frication noise is
not part of a general effect of decreased ampli-
tude, we perform significance tests on the ratio
of maximum intensity between the frication noise
of [s] and the following vowel in the #sTV se-
quences. Figure 6 plots the ratio of maximum in-
tensity of the fricative divided by the sum of two
maximum intensities: of the fricative ([s]) and of
the vowel (V). The manipulated z-values are addi-
tionally normalized to the interval [0,1], where 0
represents the most marginal value with [s] (usu-
ally ±4.5; referred to as STRONG henceforth) and
1 represents the last value before [s] disappears
(WEAK). Note that the point at which [s] is not
present in the output anymore, but the vowel still
surfaces (which would yield the ratio at 0) is not
included in the model.

The data were fit to a beta regression general-
ized additive mixed model (Wood 2011) with ran-
dom smooths for (i) trajectory and for (ii) value of
other variables in the latent space of the Genera-
tor network, see Figure 6. All smooths (except for
z74) are significantly different from 0 and the plots
show a clear negative trajectory.

The seven variables thus strongly correspond to
the presence or absence of [s] in the output; by
manipulating the chosen variables to the identified
values we can attenuate frication noise of [s] and
cause its presence or complete disappearance in
the generated data. Again, the discovery of these



features is possible because we extend the initial
training interval and test predictions on marginal
values.

Interpolation of latent variables reveals that the
presence of [s] is not controlled by a single latent
variable, but by at least seven of them. The dif-
ferent latent variables that correspond to the pres-
ence of [s], however, are not phonetically vacu-
ous: individually, they have distinct phonetic cor-
respondences. The generated samples reveal that
the variables’ secondary effect (besides outputting
[s] and controlling its intensity) is likely reflected
in spectral properties of the frication noise. The
seven variables are thus similar in the sense that
manipulation of their values results in the presence
of [s] by controlling its frication noise. They cru-
cially differ, however, in the effects on the spectral
properties of the outputs.

To test this prediction, spectral properties of the
output fricatives are analyzed in the same 29 sets
of generated samples. Spectral properties of the
generated fricatives are generally not significantly
different at the value of z right before [s] disap-
pears from the outputs. As values of z increase
toward the marginal levels (in most cases, ±4.5),
however, clear differentiation in spectral proper-
ties emerge between the seven z-variables. The
trajectory for center of gravity, for example, sig-
nificantly differs between z11 and most of the other
six variables. Overall kurtosis is significantly dif-
ferent when z11 is manipulated, compared to, for
example, z26 and z29. Similarly, while z74 does not
significantly attenuate amplitude of [s], it signifi-
cantly differs in skew trajectory of [s]. The main
function of z74 is thus likely in its control of spec-
tral properties of frication of [s] (e.g. skew).

In sum, manipulating the latent variables that
correspond to [s] in the output not only atten-
uates frication noise (when vocalic amplitude is
controlled for) and causes [s] to surface or disap-
pear from the output, but the different z-variables
likely correspond to different phonetic features of
the frication noise. By setting the values to the
marginal levels well beyond the training interval,
however, significant differences emerge both in
overall levels as well as in trajectories of COG,
kurtosis, and skew. It is thus likely that the vari-
ables collectively control the presence or absence
of [s], but that individually, they control vari-
ous phonetic features — spectral properties of the
frication noise.

4 Conclusion

The results of this paper suggest that we can
model phonology not only with rules (Chomsky
and Halle, 1968), finite-state automata (Heinz,
2010; Chandlee, 2014), input-output optimiza-
tion (Prince and Smolensky, 1993/2004), or with
neural network architecture that already assumes
some level of abstraction (see Section 1), but as the
dependency between the latent space and gener-
ated data in Generative Adversarial Networks that
are trained in an unsupervised manner from raw
acoustic data. We train a Generative Adversarial
Network (as implemented in Donahue et al. 2019
based on DCGAN architecture; Radford et al.
2015); the results of the computational experiment
suggest that the network learns the conditional al-
lophonic distribution of VOT duration. To the
author’s knowledge, this is the first paper testing
learning of allophonic distributions in an unsuper-
vised manner from raw acoustic data using neu-
ral networks. This paper also proposes a tech-
nique that identifies variables that correspond to
the presence of [s] in the output and shows that by
manipulating these values, we can generate data
with or without [s] in the output as well as control
its intensity and spectral properties of its frication
noise. While at least seven latent variables con-
trol the presence of [s], each of them has a pho-
netic function that controls spectral properties of
the frication noise. The proposed technique thus
suggests that the Generator network learns to en-
code phonetic and phonological information in its
latent space.

Training GAN networks on further processes
and on languages other than English should yield
more information about learning representations
of phonetic and phonological processes. This pa-
per outlines methodology for establishing inter-
nal representations and testing predictions against
generated data, but represents just a first step in
a broader task of establishing learning representa-
tion of phonetic and phonological data in a Gener-
ative Adversarial framework of phonology.
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Abstract

Computational models of phonotactics share
much in common with language models,
which assign probabilities to sequences of
words. While state of the art language mod-
els are implemented using neural networks,
phonotactic models have not followed suit. We
present several neural models of phonotactics,
and show that they perform favorably when
compared to existing models. In addition, they
provide useful insights into the role of rep-
resentations on phonotactic learning and gen-
eralization. This work provides a promising
starting point for future modeling of human
phonotactic knowledge.

1 Introduction and background

1.1 Phonotactics
Research on phonotactics deals broadly with two
questions: what kinds of knowledge do speakers
have about about the phonotactics of their lan-
guage, and how is this knowledge acquired? (e.g.,
Chomsky and Halle, 1965) One important out-
come of this work has been to show that phono-
tactic judgements are not categorical, but exhibit
gradience: i.e., some possible words are bet-
ter than others. For example, while /wIs/ and
/ploUmf/ are both judged as being possible En-
glish words by speakers, the former is consistently
judged to be a ‘better’ English word than the lat-
ter (Albright and Hayes, 2003; Albright, 2009).
Phonotactic modelling studies have tried to build
computational models of phonotactic knowledge
that agree with gradient human phonotactic judge-
ments. These models provide insight into the
structure of phonological knowledge, which as-
pects of the data are considered by the learner
when constructing their phonological grammar,
and what biases constrain the forms these gram-
mars may take (e.g., Hayes and Wilson, 2008; Al-

bright, 2009; Daland et al., 2011; Futrell et al.,
2017; Jarosz and Rysling, 2017).

1.2 Phonotactics and language modeling
The task undertaken by models of phonotactics
is similar in many respects to the more general
task of language modeling. A language model as-
signs probabilities to sequences of words, defin-
ing a probability distribution over word sequences
(e.g., Jurafsky and Martin, 2008). A simple form
of language modeling calculates n-gram probabil-
ities based on corpus frequencies, and uses these
to assign probabilities to longer sequences.

Phonotactic models, and models of related tasks
such as word segmentation (e.g., Schrimpf and
Jarosz, 2014), often frame the problem as one of
language modeling over sounds rather than words.
They attempt to assign probabilities to phoneme
sequences that distinguish licit and illicit forms,
correspond to gradient human judgements, or fa-
cilitate some task such as word segmentation.
These models almost invariably operate on some
version of n-grams, though they differ in whether
they consider segments (e.g., Jelinek, 1999; Vite-
vitch and Luce, 2004; Jurafsky and Martin, 2008),
phonological features (e.g., Albright, 2009), com-
binations of the two (e.g., Albright, 2009; Futrell
et al., 2017), or larger prosodic structures (e.g.,
Coleman and Pierrehumbert, 1997; Yang, 2004;
Swingley, 2005; Phillips and Pearl, 2015) to be the
primitives from which sequences are built.

While early language models relied on the same
types of variations on the n-gram employed by
phonotactic learners, language modeling in NLP
has seen a shift away from count-based, paramet-
ric n-gram models. Bengio et al. (2003) intro-
duced a neural n-gram model which still makes
predictions based on a fixed-size history window,
but uses a neural network to generate the proba-
bility function from the history rather than simple



n-gram counts. Bengio et al. (2003) also intro-
duced the idea of learning word embeddings while
optimizing for the language modeling task: vector
representations of words that are determined based
on the word’s distribution in the training data.

One shortcoming of n-gram models, neural or
otherwise, is that the context window is fixed and
specified by the researcher. This is particularly
problematic for cases in which long-distance de-
pendencies are numerous and can operate over ar-
bitrary distances. To mitigate this issue, Mikolov
et al. (2010) introduced Recurrent Neural Network
Language Models (RNNLMs). These networks
make use of recurrent connections to store in-
formation over potentially unbounded distances.1

The idea of training recurrent networks on next
element prediction dates to the introduction of
RNNs in Elman (1990), where RNNs trained on
next letter prediction were shown to learn simple
phonotactic patterns like CV alternation.

Part of what the RNNLM learns is what infor-
mation in the history should be considered when
processing the current word. In this way RNNLMs
trained on a language modeling objective are able
to base predictions on all preceding information
rather than just the previous n words.

The RNNLM and its descendants, including
LSTM language models (Sundermeyer et al.,
2012) and deep contextual language models (Pe-
ters et al., 2018), have yielded dramatic im-
provements in performance on language model-
ing benchmarks, but have seen little application
as phonotactic models until recently. Silfverberg
et al. (2018) show that phoneme representations
learned with neural methods developed for word
embeddings (Word2Vec) cluster in ways that cor-
respond to phonetic properties, and can be used
to predict sound analogies. Mirea and Bicknell
(2019), in a recent application of the language
modeling objective to phonotactic learning, train
LSTM language models on an English lexicon,
and demonstrate the potential value of neural LMs
as phonotactic learners.

1.3 The goals of this paper

The primary goal of this paper is to show that rel-
atively simple neural network architectures devel-
oped for language modeling can be easily adapted
to serve as phonotactic models, and that these

1Though in practice RNNs cannot capture arbitrarily
long-distance dependencies (Bengio et al., 1994).

Figure 1: Schematic sRNN architecture

models perform favorably when compared to ex-
isting models. In addition, we will show that the
adoption of these neural models allows theoreti-
cal predictions about the role of representations in
phonotactic grammars to be tested in ways that are
not straightforward with existing models. We will
demonstrate this on three phonemic data sets that
exhibit phonotactic properties that have proven in-
teresting or challenging for past models of phono-
tactics, and for phonological theory in general.

2 Model architectures

The RNNLM for phonotactic learning aims to
define a probability distribution over upcoming
phonemes given a representation of all preced-
ing phonemes. We will focus on Simple Recur-
rent Neural Network (sRNN) variants of the mod-
els (Elman, 1990). sRNNs are a type of RNN
in which the network’s state at any timepoint is
dependent only on the current input and the net-
work’s state at the immediately preceding time-
point (Fig. 1). The computation of the vector rep-
resenting the network’s state at time t, ht, is shown
in (1).

ht = tanh(Wxxt +Whht�1 + bh) (1)

xt is the embedding vector corresponding to the
phoneme input at time t, Wx and Wh are weight
matrices for the input and previous state vectors
respectively, and bh is a bias vector. ht is then
used to produce a probability distribution over
phonemes, ŷt, which is the model’s prediction of
the identity of the segment that will appear at time
t+ 1. ŷt is calculated as

ŷt = �(Wyht) (2)

where Wy is a weight matrix and �(z) is the soft-
max function:

�(zi) =
ezi

PK
j=1 e

zj
(3)

for i = 1, . . . ,K.



Because the model makes predictions about up-
coming data, it is able to use the same data to gen-
erate and validate its predictions, allowing unsu-
pervised learning. At every phoneme, the cross-
entropy loss is assessed between the predicted dis-
tribution before encountering that phoneme and
the phoneme’s one-hot encoded identity y:

L(y, ŷ) = �y · log(ŷ) (4)

All models are trained in minibatches of 64 words,
which are padded to have the same length as the
longest word in the batch. Loss is aggregated
across each batch and backpropagated to update
Wx, Wh, Wy, and bh. Models are optimized with
Adam, a variant of stochastic gradient descent that
maintains individual, adaptive learning rates for all
parameters (Kingma and Ba, 2014).

We build and test two distinct types of models,
both of which are variants of an RNNLM, differ-
ing in their representations of phonemes. In both
cases, segment identities represented by one-hot
vectors are mapped to columns of an embedding
weight matrix WE . These vectors serve as the in-
puts xt for the computation in (1).

In featural models, the embedding vectors cor-
respond to traditional ternary feature matrices,
taken from the feature sets defined in Hayes
(2009). We selected non-redundant subsets of
these features for each language, and used them to
construct a vector for each phoneme which spec-
ifies each feature value as positive (1), negative
(�1), or underspecified (0). For example, the vec-
tor for English /b/ will have a 1 entry for the fea-
ture [VOICE], a �1 for [CONTINUANT], and a 0
for [HIGH], reflecting that [b] is a voiced non-
continuant that is unspecified for height. These
vectors are fixed during the learning process.

In embedding models, the columns of WE can
take on any value in Re, where e is a hyperparam-
eter of the model. WE is randomly initialized and
optimized alongside other model parameters, fol-
lowing Bengio et al. (2003). This allows the mod-
els to learn segment representations from distribu-
tional information in a way that improves perfor-
mance on the language modeling objective.

Embedding models have significantly more pa-
rameters than feature models. This makes direct
comparison of the two classes of models diffi-
cult, and increases the risk that embedding mod-
els overfit. To mitigate this, and to produce more
interpretable embeddings, we also report results

from models where the input and output embed-
dings are tied, following Press and Wolf (2017).
The embedding weight matrix WE maps a one-
hot vector of length n representing a phoneme’s
identity to a vector of length e. The output weight
matrix Wy maps a hidden state vector h to a vec-
tor of length n, representing a distribution over
phoneme identities. Tied embeddings require that
|h| = e, which allows for shared weights such that
WE = W T

y . This functions as a kind of regulariza-
tion by restricting model parameters, forcing every
mapping to and from the probability distribution
over phonemes to use the same set of weights.

Hyperparameter settings were chosen to op-
timize performance while facilitating compari-
son across models. Embedding models of vari-
ous sizes were evaluated on a randomized 60/40
training/development split of the English data.
The model that assigned the highest likelihood to
the development data had 24-dimensional embed-
dings and 64-dimensional hidden states. These
parameters were used for all embedding models.
For consistency, the featural models also have 64-
dimensional hidden states. Tied embedding mod-
els are trained with 24-dimensional embeddings
and hidden states, ensuring a similar number of pa-
rameters to featural models. For English, there are
9,320 parameters in the embedding model, 2,248
in the featural model, and 2,200 in the tied em-
bedding model. The number of parameters in the
featural model varies slightly between languages.

The featural and embedding models instantiate
different predictions about the kinds of represen-
tations used in phonotactic grammars: the featu-
ral model assumes that subsegmental representa-
tions refer only to phonetic properties, while the
embedding models allow these representations to
be more abstract, conditioned on how each seg-
ment patterns in the observed data. Comparison of
these models allows us to computationally investi-
gate questions that are of theoretical interest to the
field, such as to what extent different types of rep-
resentation help or hinder the learning of phono-
tactic patterns (particularly those involving pho-
netically unnatural classes), and the importance of
representations for generalization. We return to
these points in the discussion in Section 7.

3 Evaluation data sets

We evaluate the models on three phonotactic data
sets that exhibit phenomena that have proved



challenging for previous models of phonotactics,
or pose challenges for phonological theory more
generally. These are Finnish vowel harmony
(Section 4), Cochabamba Quechua laryngeal co-
occurrence restrictions (Section 5), and English
sonority projection (Section 6). Previous work
suggests that models trained based on type fre-
quency better predict human behavior than those
trained on token frequency (Bybee, 1995; Albright
and Hayes, 2003; Jarosz et al., 2017). We there-
fore do not take lexical frequency into account.

We compare the neural models against the
Hayes and Wilson phonotactic learner (henceforth
H&W; Hayes and Wilson, 2008). H&W is a com-
monly employed baseline in studies of phonotactic
learning, and its use here allows the present work
to be situated with respect to these studies (e.g.,
Albright, 2009; Daland et al., 2011; Futrell et al.,
2017; Jarosz and Rysling, 2017).

H&W learns a set of featural constraints and
associated weights from a training data set,
and combines these constraints using a maxi-
mum entropy framework to assign probabilities
to sequences of phonemes. We restrict con-
straint definitions to bigram or trigram windows.
The Finnish and Cochabamba Quechua models
learned 400 constraints, while the English model
learned 600. H&W allows the analyst to spec-
ify tiers of segments over which constraints may
be learned, facilitating the identification of long-
distance phonotactic patterns. We compare results
with and without a vowel tier for Finnish, and do
not employ tiers for the other data sets.

Following Hayes and Wilson (2008), word
scores for H&W are reported as maxent values
(P ⇤), which for a word x is calculated as

P ⇤(x) = exp
⇣
�

NX

i=1

wiCi(x)
⌘

(5)

where N is the number of constraints, wi is the
weight of the ith constraint, and Ci(x) is the num-
ber of times word x violates the ith constraint.
Maxent values are proportional to probabilities:
higher values indicate higher probabilities.

The RNNLM word scores are reported as
perplexity (⇢), which is the exponentiated en-
tropy, or inverse of the mean log likelihood, of all
phonemes in the test word.

⇢(x) = exp
⇣
�

|x|X

i=1

1

|x| log2(p(xi))
⌘

(6)

Harmonic Disharmonic
lumo tumæ
hærø mæntu
mekkottastu vastekipæ
pømønøritæ testurovevy

Table 1: Examples of harmonic and disharmonic
Finnish nonce words in IPA.

Lower perplexities indicate higher probabilities.
The process of training H&W and the sRNN

models is non-deterministic. H&W uses random
sampling in the learning process, while the sRNN
models have randomly initialized weights. We
therefore report the mean scores from training and
testing each model 10 times on each data set.

The model implementation and data sets are
freely available online for use in future research.2

4 Finnish

4.1 Background
The first language we examine is Finnish. Finnish
famously exhibits vowel backness harmony (e.g.,
Kiparsky, 1973; Ringen and Heinämäki, 1997;
Goldsmith and Riggle, 2012). The language con-
tains three classes of vowels: the front vowels
{y, ø, æ}, the back vowels {u, o, a}, and the trans-
parent vowels {i, e}. We refer to the set of front
and back vowels as the harmonizing vowels. The
vowels in a word generally agree in backness: that
is, a word contains only transparent vowels and
either front or back vowels. This restriction mani-
fests in both root forms and affixing morphology.

This pattern is of interest because it is a long-
distance phonotactic restriction. Not only can
a number of consonants intervene between vow-
els, but an arbitrary number of transparent vowels
may intervene between harmonizing vowels. This
poses problems for n-gram models, which may
not be able to detect illicit vowel subsequences if
they are too far apart. We predict that the neu-
ral models will be better able to distinguish har-
monic from disharmonic forms, particularly when
sequences of transparent vowels occur.

4.2 Data
There is no publicly available corpus of tran-
scribed Finnish. Because Finnish orthography is
very close to a phonemic transcription, we instead

2https://github.com/MaxAndrewNelson/
Phonotactic_LM

https://github.com/MaxAndrewNelson/Phonotactic_LM
https://github.com/MaxAndrewNelson/Phonotactic_LM


Harm. Disharm. d
H&W tier (P ⇤) 0.00179 0.00105 0.46
H&W no tier (P ⇤) 0.802 0.708 0.23
Feat (⇢) 12.32 18.04 0.87
Emb (⇢) 14.97 25.93 0.86
Tied Emb (⇢) 11.03 14.42 0.79

Table 2: Average scores assigned by the models for
Finnish harmonic and disharmonic words, along with
effect size (Cohen’s d).

use as training data a word list published by the
Institute for the Languages of Finland.3 We re-
moved 584 words containing marginally attested
characters, leaving 93,821 words in the corpus.

To test the models, we generated 20,000 nonce
words, 10,000 harmonic and 10,000 disharmonic,
ranging in length from 2–5 vowels (Table 1). Both
sets are balanced for length. To ensure our mod-
els based their scores primarily on the harmony
of words, we excluded CV sequences that were
described to be impossible by a Finnish grammar
(Suomi et al., 2008), and also excluded several CV
sequences that were marginally attested in the cor-
pus.4 Syllables were either CV or CVC, with CC
clusters drawn from the most common sequences
in the corpus: /st/, /nt/, /tt/, and /kk/.

Because the test data is artificially generated,
we perform no significance tests on these results.
The size of the test set is arbitrary and conse-
quently the power of the tests can be arbitrarily
manipulated. Instead, we report effect sizes in
the form of Cohen’s d, which is the difference in
group means expressed in units of pooled standard
deviation (Cohen, 1988).

4.3 Results

The results are shown in Table 2. All models as-
sign lower probabilities (lower maxent values and
higher perplexities) to disharmonic forms. Co-
hen’s d indicates that the RNNLMs make this dis-
tinction more robustly: by the heuristics in Co-
hen (1988), the featural and embedding models
display a large effect size between harmonic and
disharmonic scores (d � 0.8), and the tied model
displays a medium effect size (d � 0.5), while
the H&W models display a small effect size (d �
0.2). Allowing H&W to use a vowel tier produces
a greater distinction between harmonic and dishar-

3http://kaino.kotus.fi/sanat/
nykysuomi/

4These sequences are /fy/, /jø/, /fø/, /gø/, /fæ/, /gy/, /dø/,
/gæ/, /bæ/, /by/, and /vø/.

Span Harm. Disharm. d
H&W (P ⇤) 1 0.00145 0.00131 0.12
tier 2 0.00138 0.00133 0.05

3 0.00176 0.00196 0.16
H&W (P ⇤) 1 0.746 0.707 0.09
no tier 2 0.741 0.706 0.08

3 0.804 0.758 0.13
Feat (⇢) 1 12.58 16.71 0.64

2 13.10 16.31 0.38
3 14.15 15.59 0.11

Emb (⇢) 1 15.79 21.21 0.57
2 17.00 19.05 0.33
3 16.47 18.94 0.20

Tied Emb (⇢) 1 11.49 13.42 0.61
2 11.77 12.69 0.39
3 11.75 12.61 0.36

Table 3: Model results for Finnish separated by the
longest span of transparent vowels that intervene be-
tween two harmonizing vowels.

monic forms, though it substantially lowers the av-
erage maxent values assigned in the test corpus.

Table 3 shows that the models exhibit different
performance on forms where harmonizing vowels
are separated by one (e.g., [nøgihæ]; n = 4189),
two (e.g., [jæsemehøpø]; n = 644), or three (e.g.,
[hydekistitø]; n = 91) transparent vowels. All
models assign worse scores on average to dishar-
monic words, with the exception of the H&W
tiered model, which assigns slightly higher scores
to disharmonic words that contain spans of three
transparent vowels. In addition, all models differ-
entiate between harmonic and disharmonic forms
less robustly as the maximum span of transpar-
ent vowels increases. In general, however, the
RNNLMs are better able to differentiate between
harmonic and disharmonic forms containing trans-
parent vowels: the effect sizes for both H&W
models on all spans is negligible (d < 0.2), while
it is medium for all RNNLMs on spans of 1, and
small on spans of 2 and 3. The exception is the
featural model on spans of 3, which makes a negli-
gible distinction. This suggests that the RNNLMs
are better able to capture long distance dependen-
cies than n-gram based models like H&W, even
without the stipulation of a vowel tier.

5 Cochabamba Quechua

5.1 Background
The second language we examine is Cochabamba
Quechua (CQ).5 CQ has three series of stops
(plain voiceless, aspirate, and ejective) at five
places of articulation (labial, dental, postalveolar,

5Thanks to Gillian Gallagher for this data.

http://kaino.kotus.fi/sanat/nykysuomi/
http://kaino.kotus.fi/sanat/nykysuomi/


initial medial prohibited
t’anta Rit’i *tant’a
k’aÙa saÙ’a *kaÙ’a
phawaj mosqhoj *posqhoj
qhari ´imphi *Ùimphi

Table 4: Legal and prohibited laryngeal co-occurrence
patterns in Cochabamba Quechua (Gallagher, 2019).

velar, and uvular). These series participate in a
laryngeal co-occurrence restriction in root forms:
ejective and aspirated stops may occur either root-
initially or root-medially, but they must be the first
stop in the root (Table 4). Plain stops can occur
following any type of stop (Gallagher, 2019).

The plain uvular stop in CQ is not realized as
[q], but rather as [K], a voiced uvular continu-
ant. Gallagher (2019) provides phonetic, experi-
mental, and phonological evidence that this pho-
netically disparate class (the plain stops plus [K])
is active in speakers’ synchronic grammars. CQ
speakers preferred licit forms that do not violate
the above laryngeal co-occurrence restriction to il-
licit forms that do, and they do not distinguish be-
tween k-initial and K-initial illicit forms. For ex-
ample, *[kap’a] and *[Kap’a] are both judged as
ill-formed by speakers, despite the latter appear-
ing to satisfy the laryngeal co-occurrence restric-
tion. Thus [K] appears to pattern as a plain stop,
despite being phonetically voiced and continuant.

This pattern is of interest because the set of
plain stops that block the occurrence of subsequent
aspirates and ejectives is a phonetically disparate
class that cannot be captured with a conventional
feature system, assuming [K] is specified with fea-
tures that reflect its phonetic realization. That is,
the set of plain stops can only be specified by using
disjunction between sets of features. This is pri-
marily because [K] is [+continuant], while the re-
maining plain stops are [–continuant]. We predict
that the phonotactic models that use phonetic fea-
tures may exhibit poorer performance on this pat-
tern: specifically, we expect K-initial illicit forms
to receive better scores than k-initial illicit forms.

5.2 Data

We trained H&W and our three RNNLMs on a
data set consisting of 2,468 CQ root forms. The
data included two allophonic patterns related to
uvular sounds: the vowels /i/ and /u/ surface as
[e] and [o] respectively when adjacent to uvulars,

Licit Illicit (k) Illicit (K)
H&W (P ⇤) 0.67 0.28 0.30
Feat (⇢) 4.91 8.45 7.42
Emb (⇢) 4.89 8.45 7.55
Tied Emb (⇢) 4.91 8.28 7.16

Table 5: Model results for Cochabamba Quechua

and the sonorants /´/, /w/, /j/, and /r/ surface in
uvularized forms before uvular sounds. These
allophones were replaced by phonemic represen-
tations. This was done for the sake of allow-
ing a smaller set of input segments and features
to H&W, which scales poorly as the number of
possible featurally-defined classes increases. This
sanitization does not bear on the laryngeal co-
occurrence pattern we are interested in. In addi-
tion, H&W recommends training on at least 3,000
input forms: we listed the frequency of each root
as 2 in the input corpus to achieve this.

The trained models were tested on a set of 75
licit and illicit forms from Experiment 2 in Gal-
lagher (2019). These forms were broken down
into three classes: licit forms (e.g., [wap’a] or
[pasi]), [k]-initial illicit forms (e.g., *[kap’a]), and
[K]-initial illicit forms (e.g., *[Kap’a]). To deter-
mine whether the models assign significantly dif-
ferent scores to licit forms and the two types of il-
licit forms, we ran Kruskall-Wallis tests on each of
the models with scores as the dependent variable
and legality (licit vs. k-initial illicit vs. K-initial il-
licit) as the independent variable. Kruskall-Wallis
tests, which are the non-parametric equivalent of
ANOVAs, were used because the scores violated
several of the assumptions made by ANOVAs,
such as normality of residuals. Post-hoc Dunn
tests with Bonferroni correction were performed
to identify significant pairwise differences.

5.3 Results

The results are shown in Table 5. Legality has a
significant effect on score for all models (H&W:
�2 = 14.53, p < 0.001; Feat: �2 = 52.90,
p < 0.001; Emb: �2 = 53.17, p < 0.001; Tied:
�2 = 52.57, p < 0.001). The H&W learner suc-
cessfully distinguishes between licit and k-initial
(p < 0.01) and K-initial (p < 0.05) illicit forms,
and does not make a distinction between k-initial
and K-initial illicit forms (p > 0.05). Similarly,
all of the neural models are able to distinguish be-
tween licit and k-initial illicit forms (all models:



p < 0.001) and licit and K-initial illicit forms (all
models: p < 0.001), and not distinguish between
k-initial and K-initial illicit forms (all models: p >
0.05). Contrary to our prediction, laryngeal co-
occurrence restrictions in CQ are learned by all
models tested, even though this pattern makes ref-
erence to a phonetically disparate class. We can
examine the models in more detail to gain insight
into how this pattern is encoded in each case.

H&W cannot learn constraints that treat the
plain stop series as a single class, because it can-
not be uniquely specified by a feature matrix.
The similar treatment of k-initial and K-initial il-
licit forms results from multiple constraints that
target different subsets of the plain stop se-
ries. For example, H&W consistently learned two
high ranking constraints: *[–son, –cont]V[+CG],
which penalizes illicit forms of a particu-
lar shape, except those with initial [K]; and
*[+dorsal, –syl]V[+CG], which penalizes only k-
initial and K-initial illicit forms of this shape (as
well as legal but unattested forms like [xap’a]).

We may gain some insight into the neural mod-
els by comparing phoneme representations within
each model using cosine similarity. Cosine sim-
ilarity is the cosine of the angle between a pair
of vectors: it is 1 when the vectors point in the
same direction, 0 when they are orthogonal, and
�1 when they point in opposite directions. We
compare the embedding of [K] with the mean of
the embeddings of the classes of continuant and
non-continuant consonants, which provide a rep-
resentation of a ‘typical’ member of each class.

Table 6 shows that the representations of [K] in
the embedding models are more similar to the non-
continuant consonants, while in the featural model
it is more similar to the continuant consonants. We
return to this point in the discussion.

6 English

6.1 Background
The final phenomenon used to evaluate the neu-
ral models is English sonority projection. There
is a strong preference cross-linguistically for syl-
lables to have a sonority profile which increases
monotonically from the left edge to the nucleus
and then decreases from the nucleus to the right
edge. This is known as the Sonority Sequencing
Principle (SSP; Selkirk, 1984).

Effects of the SSP have been observed in ac-
ceptability judgments of novel words containing

continuant non-continuant
Featural [K] 0.62 0.51
Emb [K] –0.20 0.31
Tied Emb [K] –0.26 0.19

Table 6: Cosine similarities between the embedding of
[K] and the mean embedding of the classes of continu-
ant and non-continuant consonants in CQ. Learned em-
beddings are taken from individual runs of the models.

unattested clusters in Korean (Berent et al., 2008),
Mandarin (Ren et al., 2010), English (Albright,
2007; Daland et al., 2011), and Polish (Jarosz and
Rysling, 2017). The apparent universality of these
effects and the fact that they apply to unattested
clusters have led to a debate over whether these
observations should be accounted for by an in-
nate bias towards SSP conforming clusters (Berent
et al., 2007, 2008), lexical statistics (Daland et al.,
2011), or a combination of the two (Jarosz and
Rysling, 2017).

We test our models on this case for two rea-
sons. First, sonority sequencing is widely stud-
ied, particularly in English. This allows us to draw
upon well-established experimental and modeling
work to evaluate our results. Second, Daland et al.
showed that the models that are best able to pre-
dict sonority projection from lexical statistics must
have access to syllable structure and some form of
subsegmental representation (for them, phonolog-
ical features). Comparison of our featural and em-
bedding models will allow us to test whether these
representations must be based on phonetic proper-
ties, or if they may be learned statistically.

6.2 Data
All models were trained on 133,852 phonemi-
cally transcribed words in the Carnegie Mellon
University Pronouncing Dictionary (CMU: Weide,
1998). Stress assignment information was re-
moved. Words were not syllabified.

Trained models were evaluated against publicly
available experimental results from Daland et al.
(2011). These results come from an experiment
designed to test the extent to which the sonor-
ity profile of onset clusters affects speaker ac-
ceptability judgements. Participants were tasked
with choosing between pairs of nonsense words
which each consisted of attested, unattested, and
marginally attested English onset clusters of vary-
ing sonority profiles paired with one of six phono-
tactically licit tails. The onset clusters and tails



tested are shown in Table 7. The total set of words
contains 96 forms: each of the 48 onsets paired
with two of the tails. For each word, Daland et al.
(2011) derive an aggregate goodness score. This
score reflects the proportion of trials in which a
word containing that cluster was chosen over its
competitor.

Onsets Tails
Attested Marginal Unattested
tw tr sw gw Sl pw zr mr -AtIf
Sr pr pl vw Sw tl dn km -ibId
kw kr kl Sn Sm fn ml nl -AsIp
gr gl fr vl bw dg pk lm -EpId
fl dr br dw fw ln rl lt -igIf
bl sn sm vr Tw rn rd rg -EzIg

Table 7: Stimuli from Daland et al. (2011).

6.3 Results
Trained models were used to score the stimuli
in Table 7. The success of a model was deter-
mined by the linear correlation between the mean
of the model’s scores across runs and the good-
ness scores derived from human judgements. Ta-
ble 8 reports the correlation coefficients (Pearson’s
r). Following Daland et al. (2011), we report
separate coefficients for words containing attested,
unattested, and marginal onset clusters, as well as
global correlation coefficients. The maxent values
produced by H&W are positively correlated with
probability, while the perplexities produced by the
neural models are inversely proportional to prob-
ability. We therefore present correlations as abso-
lute values for the sake of readability.

Overall Attested Unattested Marginal
H&W (H) 0.759 0.000 0.686 0.362
Feat 0.868 0.354 0.823 0.551
Emb 0.866 0.365 0.765 0.609
Tied Emb 0.853 0.491 0.738 0.664

Table 8: Correlation coefficients between model and
human ratings of novel words containing attested, unat-
tested, or marginally attested complex onsets.

All of the neural models correlate better with
human judgements than H&W on every partition
of the data. The high correlations between neu-
ral and human judgements across all partitions of
the data demonstrate that subsegmental represen-
tations based on the phonetic properties of sounds
are not necessary to effectively learn the SSP: suit-

able embeddings can also be learned solely from
lexical statistics. This is in agreement with the
findings of Mirea and Bicknell (2019), although
they do not partition the data by onset type.

This is not to say, however, that there are no
differences in performance between prespecified
and learned embeddings. There is a tendency for
the embedding models to fit observed clusters bet-
ter (the attested and marginal partitions), while the
featural model appears to generalize to unattested
forms more effectively.

Because the available data from Daland et al.
(2011) is aggregated, we are unable to use boot-
strap methods to estimate the ceiling correlation
coefficient, which would shed light on the extent
to which human judgements would be expected to
correlate with other human judgements.

Overall Attested Unattested Marginal
H&W 0.83 0.000 0.76 0.02

Table 9: Correlation coefficients between model and
human judgements from the best performing model in
Daland et al. (2011).

Neural models not only outperform our imple-
mentation of H&W, but perform comparably to
Daland et al.’s best reported model result (Ta-
ble 9), which used a version of H&W that was sup-
plied with syllable structure. Overall these results
suggest that neural phonotactic language models
are able to predict aggregate human behavior as
well or better than existing models even when pro-
vided with less structured input data, and that this
performance does not crucially depend on whether
subsegmental representations correspond to pho-
netic properties.

7 Discussion and conclusion

RNN language models can learn and general-
ize phonotactic patterns as well as or better than
H&W across all cases considered here. The use
of RNNs is particularly beneficial in the cases of
Finnish and English. In Finnish, the ability of the
RNN models to represent long distance dependen-
cies allowed them to better generalize the harmony
pattern to novel forms. In English, H&W gen-
erally assigns perfect scores to attested and (to a
lesser extent) marginal forms, while the RNNLMs
assign scores which better correlate with human
judgements. Although prediction of human judge-
ments is not the only goal of phonotactic model-



ing, it is an important one, and we believe these
are useful improvements.

Comparing the performance of the models
tested in this paper also provides predictions rele-
vant to theories of universal vs. language-specific
features (e.g., Mielke, 2008; Archangeli and Pul-
leyblank, 2018; Mayer and Daland, in press), and
how this relates to the division of phonological la-
bor between constraints and representations. The
general success of the embedding models across
tasks suggests these patterns may be effectively
learned with no reference to segments’ phonetic
properties. However, it is also true that the mod-
els where segments were represented in terms of
their phonetic properties were able to learn pat-
terns involving a phonetically disparate class. The
existence of such classes is a central motivation for
theories of learned features.

H&W captures the CQ pattern by learning a set
of constraints that, acting in tandem, produce the
correct pattern. This is reminiscent of the phono-
logical conspiracies raised by Kisseberth (1970),
in that the homogeneous behavior of the plain stop
series (including [K]) emerges from the interac-
tion of a set of apparently independent constraints,
rather than a unified treatment by the grammar.
The featural RNNLM also lacks a unified repre-
sentation of this class, and we may assume the ho-
mogeneous behavior is generated by the processes
applied to the representations (though these pro-
cesses are computationally different from H&W).
The embedding models, on the other hand, shift
some of the work onto the representations, learn-
ing embeddings for [K] that reflect distributional
rather than phonetic properties.

Thus these models characterize different hy-
potheses about how phonetically disparate classes
are distributed between representations and pro-
cesses (e.g., rules or constraints) in the grammar.
Although the performance of the featural and em-
bedding models is indistinguishable for CQ, the
results from English suggest that phonetic features
may allow the models to generalize more effec-
tively, at the expense of a poorer fit to observed
data (see, e.g., Mitchell, 1980). We are optimistic
that further modeling (perhaps combining fixed
and learned embeddings) and comparison with hu-
man judgements will provide additional insight.

Another contribution of this paper is to show
that sRNNs are able to learn phonotactic patterns
as effectively as more complex models such as

LSTMs (cf. Mirea and Bicknell, 2019). Phono-
tactic patterns are generally less complex than
the syntactic/semantic patterns central to language
modeling research (Heinz and Idsardi, 2013), and
sRNNs may provide an appropriate fit to this com-
plexity. For example, Weiss et al. (2018) demon-
strate that, unlike LSTMs, sRNNs are unable to
learn the anbn pattern, which is known to be
phonotactically unattested (Eisner, 1997; Lamont,
2019). We anticipate for this reason that the use
of more advanced models, such as attention-based
language models (Vaswani et al., 2017), will not
necessarily entail better performance on phonotac-
tic learning and generalization.

Much work remains to be done. A concern with
RNNLMs is that they are not as transparent as
models like H&W, and are therefore of less the-
oretical value. Developing methods to gain in-
sight into what these models have learned, such as
probe or clustering tasks, is an important next step
for their application to phonotactic learning. Such
tasks can negate the interpretability problems as-
sociated with neural networks and allow access to
what linguistic information is being encoded (e.g.,
Alishahi et al., 2019; Nelson and Mayer, 2019).

In particular, we have only shown that these
models match human-like behavior in aggregate.
It will be useful to explore how they deviate from
human behavior in specific cases. We also note
that the neural models we present here operate
from left-to-right, and may have difficulty with re-
gressive phonotactic patterns. Bidirectional RNNs
(Schuster and Paliwal, 1997) have the potential to
overcome this limitation.

The power of neural models as statistical learn-
ers provides a valuable tool for work on the learn-
ability of linguistic phenomena by allowing us to
begin determining the upper limit on what is learn-
able from lexical statistics alone, and how differ-
ent representational assumptions guide this learn-
ing. We share Pater (2019)’s enthusiasm for the
ongoing integration of neural research with lin-
guistic theory as a supplement to more traditional
methodology.
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Abstract

Graf and Mayer (2018) analyze the process of
Sanskrit /n/-retroflexion (nati) from a subreg-
ular perspective. They show that nati, which
might be the most complex phenomenon in
segmental phonology, belongs to the class
of input-output tier-based strictly local lan-

guages (IO-TSL). However, the generative ca-
pacity and linguistic relevance of IO-TSL is
still largely unclear compared to other recent
classes like the interval-based strictly piece-

wise languages (IBSP: Graf, 2017, 2018). This
paper shows that IBSP has a much harder time
capturing nati than IO-TSL, due to two major
shortcomings: namely, the requirement of an
upper bound on relevant segments, and a lack
of descriptive succinctness.

1 Introduction

Research in computational phonology has deter-
mined that all phonological patterns fit in the
class of finite-state languages (Kaplan and Kay,
1994). The study of subregular phonology ex-
plores tighter characterizations of phonological
phenomena in the form of subclasses of the reg-
ular languages. This furnishes lower and up-
per complexity bounds for phonological compu-
tations, which in turn provides new insights for
typology and learnability — see Heinz 2018 and
references therein.

One phenomenon that has proven to be par-
ticularly complex is /n/-retroflexion in Sanskrit,
also known as nati. The nasal /n/ undergoes
retroflexion whenever it appears immediately be-
fore a sonorant and a retroflex exists somewhere
to its left. While this interaction of local and non-
local factors is already unusual, the true complex-
ity of the process comes from various blocking ef-
fects. It has been known since Graf (2010) that
nati — when viewed as a phonotactic constraint

on surface forms — is star-free. Recently, an al-
ternative upper bound has been established in the
form of input-output tier-based strictly local lan-

guages (IO-TSL; Graf and Mayer, 2018).

IO-TSL is an extension of the empirically well-
supported class TSL (Heinz et al., 2011). Whereas
subclasses of IO-TSL enjoy independent empirical
support (De Santo and Graf, 2019; Mayer and Ma-
jor, 2018), the only empirical motivation for IO-
TSL itself is nati. The formal properties of IO-
TSL are also not well-understood. It is not even
known whether IO-TSL is a subclass of the star-
free languages. By contrast, the class of interval-

based strictly piecewise languages (IBSP; Graf,
2017, 2018) is properly star-free, handles a wide
range of phonotactic phenomena, and has even
been applied to syntax (Shafiei and Graf, 2019).
For all these reasons, an IBSP analysis of nati

would be a valuable addition to the current IO-
TSL description, and might furthermore shed light
on how these two classes differ.

In this paper, I argue that nati belongs to the in-
tersection closure of IBSP, but the resulting gram-
mar is much more convoluted than the IO-TSL
analysis. While the basic cases of nati are very
natural from an IBSP perspective, the interactions
of blocking effects are hard to capture due to two
limitations of IBSP’s notion of open slots: the in-
ability to force a segment to always appear in an
open slot, and the inability to mark an open slot as
optional. These insights might prove useful for a
future proof separating IBSP and IO-TSL.

The structure of the paper is as follows: IBSP is
formally defined in Sec. 2, adapting the more gen-
eral format proposed in Graf (2018). Sec. 3 then
walks the reader through the nati analysis, start-
ing from the simplest case and refining the IBSP
grammar with each new complication. Sec. 4 re-
flects on the status of the analysis and what lim-



itations of IBSP make nati so difficult to account
for.

2 Preliminaries

Graf (2017) first defined the class of interval-

based strictly piecewise (IBSP) string languages
as an extension of the strictly piecewise (SP) lan-
guages (Rogers et al., 2010). IBSP enriches SP
with locality domains, and the checking of SP-
dependencies is limited to these locality domains.
IBSP properly subsumes SP, but also the classes
SL and TSL, all three of which play a major role
in subregular phonology. Graf (2018) further gen-
eralizes the format of locality domains to account
for phenomena that had previously been analyzed
in terms of I-TSL. Only this more general version
can handle nati.

Intuitively, an IBSP interval involves definitions
of I) the left and right domain edge, II) a finite
number k of open slots, and III) the fillers that
can occur between open slots. Fillers and do-
main edges are defined through k-intervals, also
called k-vals. The IBSP grammar also supplies
a list of forbidden k-grams. A string is well-
formed iff there is no way to instantiate the k-val
in such a manner that the configuration of open
slots matches a forbidden k-gram.

While IBSP is originally defined in terms
of first-order logic (Graf, 2017), I adopt the
newer definition of Shafiei and Graf (2019) as it
also subsumes the generalized intervals of Graf
(2018). Note that · in definition 2.2 denotes
string concatenation lifted to sets, i.e. S · T :=
{st | s 2 S, t 2 T}.

Definition 2.1 (k-val). A segmented k-interval

(k � 0) over alphabet ⌃, or simply segmented k-
val, is a tuple hL,R, Fii0ik such that:

• L,R ✓ ⌃[{"} specify the left edge and right
edge, respectively, and

• Fi ✓ ⌃ specifies the i-th filler slot.

Definition 2.2 (IBSP-k). Let ⌃ be some fixed al-
phabet and o,n /2 ⌃ two distinguished symbols.
An IBSP-k grammar over ⌃ [ {o,n} is a pair
G := hi, Si, where i is a segmented k-val over
⌃ [ {o,n} and S ✓ (⌃ [ {o,n})k is a set of
forbidden k-grams. A string s 2 ⌃⇤ is generated
by G iff there is no k-gram u1...uk 2 S such that

oksnk is a member of the language

(⌃ [ {o,n})⇤ · L · F ⇤
0 · {u1} · F ⇤

1 · {u2}·
. . . · F ⇤

k�1 · {uk} · F ⇤
k ·R · (⌃ [ {o,n})⇤

The language L(G) is the set of all s 2 ⌃⇤ that
are generated by G. A stringset L is IBSP-k iff
L = L(G) for some IBSP-k grammar G.

The reader may skip ahead to (1) and (2) for a
depiction of a concrete IBSP interval and its appli-
cation to an illicit string.

In IBSP, all possible instantiations of a locality
domain must be evaluated. If at least one of them
yields a match for an illicit k-gram, the whole
string is discarded. By default, fillers allow each
open slot to be arbitrarily far away from the next
one. However, adjacency of the i-th and i + 1-th
open slot can be enforced by stipulating Fi+1 = ;.
Here, Fi+1 refers to the subset of ⌃ that is allowed
in the filler between the i-th and i + 1-th slots.
The subset is empty if nothing is allowed in that
filler. This is not to be confused with the string lan-
guage corresponding to the i+ 1-th filler, which is
F ⇤
i+1 = {"}. Mixing such empty fillers with nor-

mal fillers allows IBSP to capture phonotactic con-
straints in which local and non-local dependencies
interact. As we will see next, this is not needed for
the simplified version of nati, but will be crucial
once the full range of facts is considered (Sec. 3.3
and subsequent sections).

3 Data and Analysis

Nati is a left-to-right long-distance assimilation
process with a single trigger, a single target, and
several conditions for blocking. While nati is usu-
ally described as a process — i.e. a mapping from
underlying forms to surface forms — I treat it as
a phonotactic phenomenon. That is to say, nati

is reanalyzed as a constraint on the distribution of
[n] in surface forms, making it a matter of string
languages rather than string transductions. This is
in line with the previous work done by Graf and
Mayer (2018), which will henceforth be referred
to as G&M.

The discussion starts with the simplest cases of
nati and continually refines the IBSP description
as new data is considered. The final version is pre-
sented in Sec. 3.5.

Several notational conventions will be adopted
for the remainder of this paper: Sanskrit exam-
ples have their triggers and targets bolded, while



active blockers are underlined. All the examples
are taken from G&M and Ryan (2017). Since
the phonotactic perspective forgoes any notion of
underlying forms, I will only use square brackets
to denote surface segments throughout this paper.
IBSP interval diagrams are represented in a picto-
rial fashion: domain edges are large, green rectan-
gles, fillers are vertically offset boxes in red, and
open slots are blue squares.

3.1 Long-distance assimilation

Nati starts out with the basic constraint that a nasal
target /n/ becomes [ï] when preceded arbitrarily
far to the left by a non-lateral retroflex continu-
ant in {/õ/, /õ

"

/, /õ:
"

/, /ù/}. G&M formalize this as
the constraint “no [n] may appear in the context
R · · · ”, where R is one of the triggers listed in
the preceding sentence.

G&M’s constraint is easily expressed in terms
of IBSP. Our grammar consists of a single for-
bidden unigram, which is n. By keeping word
edges ($) and string edges ({o,n}) distinct, IBSP
enables us to instantiate intervals across multiple
words in a string, if desired. I will use $ instead of
n for now as this does not commit us as to whether
the string consists of a single phonological word or
a sequence of words. But as discussed in Sec. 4, it
may eventually be necessary to use the string edge
n instead. For now, the use of the word edge $,
along with banning the appearance of $ in fillers,
captures that nati cannot apply across word bound-
aries.

(1) IBSP interval (Version 1)
¬$ ¬$

R n $

For the sake of succinctness, the interval above
lists the forbidden unigram directly in the open
slot. While this is non-standard, I believe it makes
the analysis easier to follow once the complexity
of the intervals starts to increase.

Tab. 1 lists some data points that are relevant
for this base case. The form of the instrumental
singular suffix /-e:na/ alternates based on whether
the root it attaches to contains a trigger for nati.
For the sake of exposition, I also include an illicit
nonce variation, indicated by the gloss “N/A”.

Form Gloss Nati? Licit?
ká:m-e:na ‘by desire’ 7 3

manuùj-e:ïa ‘by human’ 3 3
manuùj-e:na N/A 3 7

Table 1: Forms showing basic nati

(Ryan, 2017, p. 305)

The reader may wonder why an analogous
nonce form ká:m-e:ïa is not included in Tab. 1. In
this nonce form, /n/ would undergo nati without a
suitable trigger, which should be illicit. However,
this presupposes a view of nati as a process. From
the perspective of phonotactics, it is not obvious
that this nonce form is actually illicit because [ï]

can occur independently of nati. The phonotactics
of nati only concern the distribution of [n], not [ï],
so only the former need to be considered here.

Let us now see how the locality domain in (1)
captures the well-formedness of the first two forms
in Tab. 1 while also ruling out the illicit nonce
form. First, ká:m-e:na is well-formed because it
lacks a retroflex, so there is no suitable left edge
for the interval in (1). Hence the locality domain
cannot be established at all, so there are no open
slot configurations to check against the list of for-
bidden unigrams. As a result, the string is well-
formed.

The second example is manuùj-e:ïa, which does
allow for numerous instantiations of the interval.
In all instantiations, the interval spans from [ù]

to the right word edge, and the only difference is
what segments make up the fillers and which one
ends up in the open slot. Since manuùj-e:ïa does
not contain any [n], the open slot never matches
the forbidden unigram. Consequently, this string
is also deemed well-formed. In contrast to the first
example, where well-formedness followed from
the inability to instantiate any locality domain, this
example allows for many distinct instantiations
but none of them yield a forbidden configuration
of open slots.

This leaves us with the illicit manuùj-e:na. It
works exactly like the second case, except that
now there is an instantiation that results in a match
with the forbidden unigram n. This particular in-
stantiation is depicted below.

(2) IBSP interval: manuùj-e:na
¬$ ¬$

ù
j e:

n
a

$manu



So far, IBSP has not done anything that could
not be accomplished by simpler means, e.g. an SP
grammar. As we start adding on conditions and
exceptions, though, IBSP intervals will quickly
become indispensable.

3.2 Unconditional blocking by intervening
coronals

We now turn to the first of the nati-blocking ef-
fects: /n/-retroflexion can be blocked if a coronal
segment appears between trigger and target. The
set of relevant coronals includes retroflexes but ex-
cludes the glide [j] as the latter is both a sonorant
and a coronal — see Ryan (2017) for further dis-
cussion. Tab. 2 lists a particular example of coro-
nal blocking, an illicit nonce form, and a nonce
form that illustrates what the surface form would
look like if coronals were not blockers.

Form Gloss Nati? Blocking? Licit?
Vaõï-ana:nam no gloss 7 3 3
Vaõm-ana:nam N/A 7 7 7
Vaõï-aïa:nam N/A 3 N/A 3

Table 2: Forms showing blocking by intervening
coronals (Hansson, 2001, p. 227)

In G&M, the forbidden context for [n] is up-
dated to RC · · · , where C matches every seg-
ment that is not a coronal, including [j]. To repre-
sent this in IBSP, we modify the first filler in (1)
so that it may not contain any coronals either. If
a string contains a coronal, it must go in the open
slot or the second filler. Either way, no subsequent
[n] can appear in the open slot, and consequently
the string will be deemed well-formed.

(3) IBSP interval (Version 2)
¬$,¬C ¬$

R n $

At the same time, strings without coronals will still
be judged illicit. This is illustrated below for the
nonce form Vaõm-ana:nam.

(4) IBSP interval: Vaõm-ana:nam
¬$,¬C ¬$

õ
m a

n
a: n a m

$Va

Note that [ï] itself is a coronal blocker, so any
subsequent [n] in a word loses its eligibility as
a target for nati. The only exception to this is

geminate [nn] sequences where both [n] become
retroflexed. However, this could also be treated
as a separate process of progressive local assimi-
lation. I put this issue aside for now, but it will be
revisited in Sec. 4.

3.3 Mandatory adjacency to sonorant

In order for [n] to undergo nati, it must also be
immediately followed by a vowel, a glide, [m], or
[n] itself. More succinctly, the following segment
must be a non-liquid sonorant (Whitney, 1889).
For example, in the form bõahman, nati does not
apply as [n] occurs at the very end of the word
without any subsequent sonorant. Similarly, nati

does not apply in caõ-a-n-ti, in this case because
[t] is not a sonorant. Sanskrit has some nasals be-
sides [m] and [n] that are non-liquid sonorants, but
since those cannot follow [n] for independent rea-
sons (Emeneau, 1946) they do not matter for the
purposes of this paper.

Form Gloss Nati? Sonorant? Licit?
caõ-a-n-ti ‘wander (3Pl)’ 7 7 3
bõahman ‘brahman’ 7 7 3
bõahmana N/A 7 3 7

Table 3: Forms showing mandatory adjacency
to sonorant; (Hansson, 2001, p.229) and (Ryan,
2017, p. 318)

G&M represent the new illicit context for [n]

as RC · · · S, where S is a suitable sonorant. We
will use the same definition of S to add a second
open slot to the interval in (3). The list of illicit
unigrams is now expanded to illicit bigrams. It is
no longer just [n] that is forbidden, but rather any
bigram of the form nS. Keep in mind that coronal
blocking is still active, though.

(5) IBSP interval (Version 3)
¬$,¬C none ¬$

R n S $

The descriptor none in the second filler of (5) indi-
cates that F1 ⇢ ⌃ is ; (and thus F ⇤

1 = {"}). That
is to say, this filler cannot contain any symbols at
all and the first and second open slot must always
be adjacent.

Let us verify that the first two examples in Tab. 3
are still well-formed given the grammar in (5). Be-
low is an example of one possible interval estab-
lished in caõ-a-n-ti.



(6) IBSP interval: caõ-a-n-ti
¬$,¬C none ¬$

õ
a

n t
i $ca

This is the only interval that could possibly cause
the IBSP grammar to reject the string, since the
first open slot is filled by n. However, as the sec-
ond open slot is not a sonorant, the open slot con-
figuration does not match any of the forbidden bi-
grams. The well-formedness of bõahman follows
for the very same reason: there is no way of in-
stantiating the locality domain so that the two open
slots would contain [n] and a sonorant, respec-
tively.

At the same time, bõahmana is correctly ruled
out as illicit.

(7) IBSP interval: bõahmana

¬$,¬C none ¬$

õ a h m a
n a $b

3.4 Conditional blocking by preceding velar
and labial plosives

Coronal consonants are not the only blockers of
nati: velar and labial plosives also block its ap-
plication, but only if I) the plosive immediately
precedes the target nasal, and II) a left root bound-
ary (

p
) occurs somewhere between the trigger and

the plosive. Based on the data given in G&M and
Ryan (2017), I assume that for a given word, an
interval instantiated within the word never has to
contend with more than one

p
— this will be elab-

orated on in Sec. 4. Blocking is contingent on
both conditions being met, as is exemplified by the
data in Tab. 4. In põa-

p
mi:ï-a:-ti, nati still occurs

across a left root boundary due to the absence of
a plosive immediately before [n]. In

p
õug-ïá, nati

can target an n after an immediately preceding ve-
lar plosive [g] because the left root boundary does
not occur between the triggering retroflex and the
plosive. Only in (ab

H
i-)põa-

p
g

H
n-an-ti does nati

fail as there is both a plosive and a root boundary,
both of which occur in the relevant positions.

Form Gloss Nati? Licit?
põa-

p
mi:ï-a:-ti ‘vanishes (3s)’ 3 3p

õug-ïá ‘break (pass. part.)’ 3 3

(abHi-)põa-
p

gHn-an-ti ‘broken’ 7 3

Table 4: Forms showing conditional blocking by
preceding plosives (Ryan, 2017, p. 319, 321)

In response to this additional complication,
G&M update the banned context to R↵ · · · . Here
↵ is any string that neither contains a coronal nor
matches · · ·

p
· · ·P , with P denoting a velar or

labial plosive. It is at this point that the complex-
ity of our IBSP treatment ramps up significantly.
We must now introduce open slots whose only pur-
pose is to be sensitive to the conditional presence
of certain segments. By setting up the fillers in
such a way that root boundaries and immediately
preceding plosives can only go into open slots, we
can ensure that the grammar is always aware of
these segments if they occur in the string. The list
of forbidden k-grams is then set up in such a fash-
ion that open slot configurations that start with a
root boundary and a plosive are exempt from nati.
This is a very unusual use of open slots and fillers,
and I am unaware of any other IBSP-analysis that
has to resort to this trick.

The concrete steps are as follows. First, two ad-
ditional open slots must be included between the
trigger and target. Open slot 1 detects the pres-
ence of a left root boundary somewhere arbitrarily
to the left of [n]. Open slot 2 detects the presence
of a velar/labial plosive immediately before an [n].
For readability, graphical depictions of longer in-
tervals will now be broken up across two lines.

(8) IBSP interval (Version 4)
¬$,¬C, ¬

p
¬$,¬C, ¬

p

none none ¬$

R 1 2

n S $

The filler before the third open slot is set to none so
that it can only be filled by whatever segment im-
mediately precedes [n]. The fillers surrounding the
first open slot are more complex. The ban against
coronals is carried over from coronal blocking, but
in addition these fillers may not contain a root
boundary either. As a result, a root boundary that
occurs somewhere between the triggering retroflex
and a suitable plosive is forced into the first open
slot. The conjunction of all these factors ensures
that if a string contains a suitable root boundary
and plosive, they will always occur in the first two
open slots.

In the next step, we expand the list of forbidden
bigrams of the form nS to forbidden 4-grams of
the form �nS. Here � represents a large number
of bigrams. As nati is only blocked whenever the



first open slot is a root boundary and the second
open slot is a plosive, nS is illicit if:

1. the first open slot is not a root boundary, or

2. the second open slot is not a plosive, or

3. both 1 and 2 hold.

Hence � corresponds to any combination of seg-
ments that matches one of the three conditions
above.

If the first two open slots in an instantiated in-
terval do not match �, nati will not be enforced,
capturing the described blocking effect. This is il-
lustrated below for (ab

H
i-)põa-

p
g

H
n-an-ti.

(9) IBSP interval: (ab
H
i-)põa-

p
g

H
n-an-ti

¬$,¬C, ¬
p

¬$,¬C, ¬
p

none none ¬$

õ
a p

gH

n a
n t i $

(abHi-)p

Any configuration where the first two open slots
are not

p
and a plosive will match �, triggering a

nati violation if the remaining two open slots are
filled by [n] and a sonorant. As a concrete exam-
ple, consider the nonce form põa-

p
mi:n-a:-ti.

(10) IBSP interval: põa-
p

mi:n-a:-ti
¬$,¬C, ¬

p
¬$,¬C, ¬

p

none none ¬$

õ
a p m

i:

n a:
t i $

p

The reader is urged to verify for themselves that
the remaining forms in Tab. 4 are handled cor-
rectly by this grammar.

An additional bug arises in that the introduction
of new open slots has created an “escape hatch”
for coronals. In previous versions, a coronal had
to go into the first or second open slot, or the third
filler. These are now the third and fourth open slot
and the fifth filler. While coronals are still banned
in the first and second filler, they could go into
the first or second open slot. Since � currently
matches coronals, too, we no longer capture coro-
nal blocking. Fortunately, the fix is easy. We fur-
ther restrict the shape of � so that it does not match
any open slot configuration with a coronal. Over-
all, this leaves the following patterns for �:

1 2p
¬P ^ ¬C

¬
p

^ ¬C P
¬
p

^ ¬C ¬P ^ ¬C

Figure 1: Open slots in � s.t. nS is illicit

Given a list of suitable list of segments for San-
skrit, � can be compiled out into a list of bigrams.
These bigrams are then prefixed with every possi-
ble instantiation of nS to arrive the list of forbid-
den 4-grams.

3.5 Conditional blocking by following
retroflex

Even though the grammar in (8) is already fairly
complicated, it still does not handle the last layer
of nati: if a retroflex appears arbitrarily far to
the right of the target [n], /n/-retroflexion may be
blocked. Blocking only occurs when both of the
following two conditions are met: I) a left root
boundary intervenes between the trigger and the
target, and II) there is no coronal between the tar-
get [n] and blocking retroflex. Condition II) is par-
ticularly peculiar. Essentially, the appearance of
a coronal consonant between [n] and its follow-
ing retroflex blocks the blocking of nati by said
retroflex, so that nati applies as usual.

Form Gloss Nati? Licit?
põa-

p
naù-úum ‘to vanish (inf.)’ 7 3

põa-
p

ïe:-tõ
"

‘leader’ 3 3

põ-ïa-k-ùi ‘unite (2s)’ 3 3

Table 5: Forms showing conditional blocking by
following retroflex (Ryan, 2017, p. 325)

The form põa-
p

naù-úum in Tab. 5 shows the fol-
lowing retroflex acting as a blocker when a left
root boundary intervenes between [õ] and [n]. On
the other hand, the retroflex is not a blocker in põa-p

ïe:-tõ

"

, due to the coronal intervening between
[n] and [õ]. Finally, põ-ïa-k-ùi is a case where the
retroflex does not block in the absence of an inter-
vening root boundary.

We can follow the same approach as in Sec. 3.4
to handle this complication. That is to say, we in-
clude yet another two conditional slots following
the target nasal, and its mandatory adjacent sono-
rant. As the interval now gets exceedingly long,
graphical depictions have to be broken up again
across multiple lines.



(11) IBSP interval (Version 5, Final)
¬$,¬C, ¬

p
¬$,¬C, ¬

p

none none

¬$,¬C ¬$, ¬C ¬R

R 1 2

n S

3 4 $

This time, open slot 3 tracks the presence of
a coronal, and open slot 4 indicates whether a
retroflex is present. Once again we have to forbid
these segments in the neighboring fillers to ensure
that if such a segment is present, it must go into
one of these open slots.

We then expand the list for forbidden 4-grams
to forbidden 6-grams. The 4-gram pattern �nS is
expanded to �nS�0. Just like � describes the illicit
segments for 1 and 2, �0 handles open slots 3 and
4 in (11). However, �0 cannot be described inde-
pendently of � as the relevance of slots 3 and 4 for
blocking depends on the presence of a root bound-
ary in open slot 1. Hence the options for � and �0

have to be specified in conjunction in order to rep-
resent the conditions needed for nati to apply (i.e.
cases where it fails to be blocked):

1 2 3 4p
¬P ^ ¬C ¬C ¬R

¬
p

^ ¬C ¬P ^ ¬C ¬C ¬R
¬
p

^ ¬C P ¬C ¬Rp
¬P ^ ¬C C ¬R

¬
p

^ ¬C ¬P ^ ¬C C ¬R
¬
p

^ ¬C P C ¬Rp
¬P ^ ¬C C R

¬
p

^ ¬C ¬P ^ ¬C C R
¬
p

^ ¬C P C R

Figure 2: Open slots in � ^ �0 s.t. nS is illicit

The interval in (11), with the list of forbidden 6-
grams above in Figure 2, is the final version of the
IBSP grammar for nati (although other potential
variants are discussed in Sec. 4). This is a good
point to reevaluate some of the earlier data points.
For example, we can model some examples that
illustrate conditional blocking of intervening ve-
lar/labial plosives like so:

(12) IBSP interval: põa
p

mi:na:ti
¬$,¬C, ¬

p
¬$,¬C, ¬

p

none none

¬$,¬C ¬$, ¬C ¬R

õ
a p m

i:

n a:

t i $

p

The instantiated locality domain looks quite sim-
ilar to its previous iteration in (10). The main
difference is that rather than having [t] and [i] in
the filler following the nS sequence, those seg-
ments are pushed into the open slots that check
for the presence of an anti-blocking coronal and/or
blocking retroflex. The configuration of condi-
tional slots matches

p
, ¬P^¬C, ¬C, ¬R, which

is one that enforces nati. Consequently, the pres-
ence of an [n] in the open slot where it is forbidden
causes the string to be rejected. If [n] had under-
gone nati as required, the string would not have
been deemed illicit by the grammar.

The string põa-
p

g
H
n-an-ti, on the other hand, is

still well-formed. Even when [n] appears in the
open slot, this does not yield an illicit configura-
tion of open slots due to the presence of a root
boundary in open slot 1 and a plosive in open slot
2.

(13) IBSP interval: (abHi-)põa-
p

gHn-an-ti
¬$,¬C, ¬

p
¬$,¬C, ¬

p

none none

¬$,¬C ¬$, ¬C ¬R

õ
a p

gH

n a

n t
i $

(abHi-)p

4 Discussion and conceptual remarks

The IBSP analysis developed over the course of
Sec. 3 is with a doubt convoluted, much more so
than the analysis in terms of IO-TSL. In contrast to
IO-TSL, it also hinges on several idealizations that
cannot be eliminated without further complicating
the grammar. I will briefly sketch the most impor-
tant issues here, in particular those that highlight
the shortcomings of IBSP relative to IO-TSL.



At a high level of abstraction, the strategy em-
ployed in this paper boils down to a few simple
tricks:

1. Furnish an open slot for every type of seg-
ment that can potentially matter for the de-
pendency.

2. If an open slot needs to track the presence of
some segment of type X , do not allow the
surrounding fillers to contain X .

3. Whatever implicational relations hold be-
tween the relevant segments are compiled out
into a list of forbidden k-grams.

While each step is conceptually simple, the sheer
number of open slots and potential combinations
of segments make proving that this approximation
of nati is IBSP a daunting task. In addition, the
first two strategies have serious drawbacks as they
respectively impose a lower bound on the number
of segments in the string, and an upper bound on
how many segments of a specific type may occur
in a specific part of the interval.

Let us consider the problem of a lower bound
first. As more and more factors were incorporated
into the analysis, more and more open slots had
to be added to make the interval sensitive to the
presence of any segments that might affect well-
formedness. However, as the number of open slots
grows, shorter strings are automatically consid-
ered well-formed. This is because IBSP trivially
allows any string in which the interval cannot be
instantiated. An interval with 6 open slots, for ex-
ample, cannot be instantiated in a string that only
consists of 5 symbols. In IBSP, a high number
of interacting factors makes it difficult to regulate
short strings.

As a remedy, Graf (2017) allows strings to be
padded out by additional edge markers to enforce
the required minimal length of strings. We could
take a similar approach, and modify the right in-
terval boundary to be the string edge rather than
the word edge. As long as each string only rep-
resents a single phonological word rather than a
string of words, the string edge is a viable replace-
ment for the word edge. It is still far from obvious,
though, that padding out can solve the problem
of words where only one segment occurs between
the retroflex trigger and the targeted [n]. Recall
that the current interval posits two open slots, and
hence at least two segments between them. While

there might be some way to add even more open
slots so that [n] can be “shifted” to the left and also
occur in one of the first two open slots, this would
render the account entirely opaque to human intu-
ition.

In the other direction, IBSP also runs into an
undesirable upper bound limit. For instance, coro-
nals cannot go into the first or second filler, leaving
only the first open slots as an option for a coronal
that is somewhere to the left of [n] but not adjacent
to it. If a string contains two coronals, neither one
of which is adjacent to [n], the interval cannot be
instantiated at all. In this case, this is unproblem-
atic since coronals would block nati anyways, so
either way the string is deemed well-formed. The
situation is reversed, however, with coronals after
[n], which undo blocking of nati by a retroflex.
If a string contains two coronals between [n] and
such a retroflex, the interval will not be instanti-
ated and the string will incorrectly be treated as
well-formed. Similarly, if more than one retroflex
occurs between the sonorant following target [n]

and the right interval boundary, the interval can-
not evaluate the string. Again, one could fix these
issues by adding more open slots and modifying
the list of forbidden k-grams, but this would exac-
erbate the lower bound problem with short strings.
It once again would make the grammar unintelli-
gible.

Whether nati is actually IBSP thus cannot be
answered definitively — it depends on how one
generalizes from the finite data to an infinite sam-
ple. For the available data, it is certainly possible
to construct the interval and the list of k-grams in a
suitable manner, although it may be very difficult
to verify the correctness of the analysis by hand.
Once one generalizes from the data to allow an ar-
bitrary number of coronals and retroflexes, IBSP
may prove insufficient.

The latter point also holds for the intersection
closure of IBSP. Suppose that each case of nati is
given its own IBSP grammar, and that these gram-
mars are arranged in such a fashion that the in-
tervals for simpler cases cannot be established in
the more complex cases. For instance, the inter-
val in (5) could be amended so that the first filler
may not contain a left root boundary and the last
filler may not contain any retroflex. The interval
then cannot be instantiated in any strings where
these complicating factors are present, limiting it
only to simple cases of nati. This solves the lower



bound problem, because shorter strings are now
regulated by one of the IBSP grammars for sim-
pler cases of nati. At full generality, however,
the upper bound problem remains. For instance,
sensitivity to retroflexes requires that retroflexes
may not be fillers, and thus the interval’s ability
to accommodate retroflexes depends on its num-
ber of open slots. As there can be only a finite
number of open slots, the number of retroflexes is
finitely bounded. Intersection closure can increase
that bound to any desired k, but it will always be
bounded. Consequently, the intersection closure
of IBSP can handle the attested nati data, but not
necessarily the most natural generalization of this
data.

There are also several minor issues of data anal-
ysis, such as the status of geminates. As men-
tioned in Sec. 3.2, geminate [n] becomes gemi-
nate [ï] under nati. This is not captured by the
current grammar, but corresponding modifications
could be made. If geminate [n:] is modeled as un-
derlying /nn/, the list of forbidden 6-grams can
be modified to also block [ïn]. Then, [ïï] would
be the only possible surface form. On the other
hand, if [n:] is a single symbol, then the 6-grams
must be modified such that [n:] is forbidden even
if the following segment is not a sonorant, since
the geminate acts as its own sonorant (metaphori-
cally speaking). These are minor issues compared
to the much more substantive problem of how con-
ditional sensitivity to a segment may sometimes
entail an upper bound on the number of those seg-
ments in IBSP.

For all these reasons, IBSP does not provide an
insightful or elegant perspective of nati, in par-
ticular compared to G&M’s IO-TSL treatment.
Nonetheless, the IBSP of view of nati has iden-
tified several issues that are relevant for subregu-
lar research, most prominently the specific short-
comings of IBSP in comparison to IO-TSL. These
have not been noticed before because most phono-
logical phenomena only require sensitivity to two
or three segments. We now face the question of
how one should treat analyses that diverge depend-
ing on how one generalizes from the finite data
sample. The intersection closure of IBSP can han-
dle all generalizations of nati as long as there is
an upper bound on the number of relevant seg-
ments (retroflexes, coronals, left root boundaries),
whereas IO-TSL requires no such upper bounds.
Which one of the two is a more appropriate char-

acterization? It may be the case that the bounds
we find in the available data are not an artifact of
a finite data sample, but indicators of a principled
bound to the limits of IBSP (see Joshi (2000) for a
similar argument in syntax).

Finally, there is the issue of succinctness and
elegance and to what extent they should be a crite-
rion in the classification of empirical phenomena.
This is a long-standing debate: if X is computa-
tionally simpler than Y , but only Y provides for
a natural description, which one of the two is a
better model of the relevant linguistic factors? Of
course, formal language theory is well-served by
having both X and Y as descriptions of the phe-
nomenon, but if we regard subregular complexity
as an abstract gauge of the cognitive machinery
(cf. Rogers and Pullum, 2011), X and Y may em-
body vastly different claims.

5 Conclusion

I have argued that a phonotactic pattern as com-
plex as nati, which can be viewed as an inter-
action between local and non-local dependencies
with intervening material that provides blocking
effects, can be modeled with the intersection clo-
sure of IBSP. However, the details depend on spe-
cific assumptions about the data, and the proposed
account is fairly complicated and lacks linguistic
naturalness. These drawbacks highlight specific
limitations of IBSP relative to IO-TSL, and might
be useful for future work on the relation between
the two.

Future work could revisit my findings along two
dimensions. On a formal level, it might be pos-
sible to extend IBSP grammars with mechanisms
that allow for more succinct descriptions without
increasing generative capacity. From a linguistic
perspective, one might try to reassess the empiri-
cal status of nati with respect to which of its com-
ponents are most natural under an IBSP-analysis.
If these aspects turn out to be on empirically solid
ground, this might provide indirect evidence for
IBSP as a model of natural language phonotactics.
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Abstract 

A general method for mining discourse for 
occurrences of the rules of inference would 
be useful in a variety of natural language 
processing applications.  The method 
described here has its roots in Rhetorical 
Structure Theory (RST).  An RST analysis 
of a rule of inference can be used as an 
exemplar to produce a relational complex 
in the form of a nested relational 
proposition.  This relational complex can 
be transformed into a logical expression 
using the logic of relational propositions.  
The expression can then be generalized as 
a logical signature for use in logic-mining 
discourse for instances of the rule.  
Generalized logical signatures reached in 
this manner appear to be grounded in 
identifiable logical relationships with their 
respective rules of inference.   Thus, from a 
text, it is possible to identify a rhetorical 
structure, and from the structure, a 
relational proposition, and from the 
relational proposition, a generalized logical 
signature, and from the signature, the rule 
of inference residing within the text. The 
focus in this paper is on modus tollens and 
its variants, but the method is extensible to 
other rules as well.   

1 Introduction 

Recognizing occurrences of rules of inference in 
discourse is difficult for humans and computers 
alike.  A method for doing so would be valuable for 
natural language processing, discourse analysis, 
and studies in logic and argumentation. Potter 
(2018)  showed that some standard rules, including 
modus ponens, disjunctive syllogism, and some 
basic logical operations are directly accessible 
using Rhetorical Structure Theory (RST).  This 

arises as a result of direct mappings between RST 
relations, corresponding relational propositions, 
and the rules of inference.  For others there is no 
direct correspondence.  This is because the rules of 
inference rules tend to manifest, not as individual 
relations, but as relational complexes, which may 
be embedded within deeply nested relational 
propositions.   

This paper provides a description of a method 
for using RST to discover occurrences of modus 
tollens in natural discourse.  The paper will extend 
this method to biconditional elimination, 
particularly as it relates to valid forms of denying 
the antecedent.  Identifying relational complexes 
associated with these rules will support the 
specification of generalized logical signatures that 
can be used in logic-mining texts. While the 
method defined here is limited to modus tollens 
and its variants, it provides guidance for 
investigating other rules of inference, such as 
hypothetical syllogism and dilemma, and may lead 
to a general methodology for signature-based logic 
mining.  This also suggests the possibility of 
discovering rules of inference present in discourse 
but not recognized in the literature of classical 
logic. 

The approach described here presumes the 
availability of RST analyses, created, either 
interactively using tools such as O’Donnell’s 
(1997) RSTTool or Zeldes’ (2016) rstWeb, or 
computationally (e.g., Corston-Oliver, 1998; 
Hernault, Prendinger, duVerle, & Ishizuka, 2010; 
Pardo, Nunes, & Rino, 2004; Soricut & Marcu, 
2003).  These RST analyses may be restated as 
nested relational propositions, and these 
propositions can be used to generate the underlying 
logical organization of the text (Potter, 2018).  
Discovery of inference rule instantiations within 
this logical expression proceeds by aligning logical 
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signatures with structural constituents of the 
comprehensive expression. 

Lest there be any confusion as to the scope of 
this study, note that the objective here is not to 
develop a system of reasoning based on linguistic 
form, as in natural logic (MacCartney & Manning, 
2009; Van Benthem, 1986), nor is it concerned with 
the logical forms of imperatives, questions, and 
statements, nor with the relationship between 
grammar and reasoning (Lakoff, 1970).  The scope 
of this study concerns the discovery of occurrences 
of rules of inference as presented in discourse, as 
manifested in rhetorical structures, and with 
particular focus on modus tollens.  Consistent with 
the fundamentals of RST, it is a logic of intended 
effect.  

The remaining sections of this paper are as 
follows.  First, a brief review of RST is presented 
using an analysis of a relevant example.  This is 
followed by an overview of the logic of relational 
propositions, showing how complexes of nested 
relational propositions provide the basis for logical 
signatures useful in logic mining.  Four generalized 
signatures for modus tollens are discussed, 
consisting of canonical, evidential, biconditional, 
and antithetical signatures.  This includes a brief 
analysis concerning inference rule identification 
for incomplete relational complexes.  Following 
this analysis is an explanation for how the logical 
signatures derived from discourse can be used to 
validate the rules of inference they serve to 
instantiate.  The paper concludes with a discussion 
of the results and directions for future study.  
Relevant literature will be cited in passim. 

2 RST Analysis of a Relevant Example 

Rhetorical Structure Theory (RST) is an account 
of textual coherence (Mann & Thompson, 1988).  
It is used for describing texts in terms of the 
relations that hold among the text spans comprising 
the text.  An RST relation consists of three parts: a 
satellite, a nucleus, and a relation.  The satellite and 
nucleus are text spans, which are either elementary 
discourse units or subordinate RST relations.  The 
distinction between satellite and nucleus arises as a 
result of the asymmetry of the relations.  Within a 
relation, the nucleus is more salient than the 
satellite.  A key consideration in defining nuclearity 
is the concept of locus of intended effect.   The 
locus of intended effect may be in the nucleus, the 
satellite, or shared between the two.  Locating the 
effect is important for the logical analysis of RST 

relations, particularly in implicative relations 
where the locus of intended effect will usually be 
the implicand (Potter, 2018). 

Figure 1 shows an example of an RST analysis.  
The text is a short passage from J. L. Austin’s 
translation of Frege’s Foundations of Arithmetic 
(1884/1980, p. 37).  The text presents an argument 
against the claim that numbers are merely ideas 
without objective reality.  Frege begins by stating 
that he disagrees with a claim made by the 
mathematician Oskar Schlömilch, that numbers are 
ideas, not things.  Frege supports his statement first 
by conceding that if numbers were merely ideas, 
then mathematics would be part of psychology.  
The CONDITION relation is used to indicate the 
dependency of the nucleus on the satellite. But this 
conditional is rejected using a comparison of 
mathematics with astronomy.  This analogy is used 
as EVIDENCE for rejecting Schlömilch’s position.  
That Frege’s argument is an application of modus 
tollens 

(((p → q) � ¬q) → ¬p) 

and that the RST structure presented here maps to 
the rule of inference may be intuitively apparent.  
However, as will be developed in this paper, this 
need not, and in most cases cannot, be merely a 
matter of intuition.  

3 The Logic of Relational Propositions 

It has been argued that Rhetorical Structure Theory 
is incapable of representing inferential patterns, 
because argumentative and rhetorical relations are 
said to be orthogonal to one another, and because 
RST relations provide little or no indication of 
alignment with the rules of inference (Budzynska, 
Janier, Reed, & Saint-Dizier, 2016).  However, the 
structure of an RST analysis reflects the structure 
of its argument.  EVIDENCE is evidential, 
MOTIVATION is motivational, and ENABLEMENT is 

 
Figure 1: RST Analysis of Frege’s Argument 

Against Psychologism 



 
	

enabling.  This would suggest the logic and 
reasoning are not too far below the surface.  As 
shown by Potter (2018), for any RST relation there 
is a corresponding logical form, and these forms 
combine to construct logical expressions that map 
to RST tree structures and serve as logical 
interpretations of the organization of a text.  The 
approach used for deriving these interpretations is 
based on discourse entities known as relational 
propositions.  Relational propositions are implicit 
assertions that arise between clauses within a text 
and are essential to the effective functioning of the 
text (Mann & Thompson, 1986a, 1986b, 2000).  
RST and relational propositions provide parallel 
accounts of discourse coherence.  While RST 
identifies structures of coherence relations among 
the spans within a text, relational propositions treat 
these relations as implicit relational acts that 
account for how the text functions (Mann & 
Thompson, 1986b).   

A relational proposition consists of a predicate 
and a pair of discourse units.  The predicate 
corresponds to the RST relation, and the units 
correspond to the satellite and nucleus.  In this 
paper relational propositions are specified using a 
functional notation.  This permits concise 
representation of nested relational propositions. 
For example, the relational proposition for the RST 
analysis of the Frege argument shown in Figure 1 
is as follows: 

evidence(concession(condition(2,3),4),1) 

where each elementary discourse unit is identified 
numerically in order of appearance in the text.  
Each relational predicate is associated with a 
logical form.  In the above relational proposition, 
the condition predicate is defined as material 
implication,  (s → n).  The satellite materially 
implies the nucleus.  Granted, there are persuasive 
arguments in favor of treating condition as 
biconditional (e.g., Geis & Zwicky, 1971; Horn, 
2000; Karttunen, 1971; Moeschler, 2018; van der 
Auwera, 1997a, 1997b); however, for the purpose 
of logic mining the biconditional interpretation of 
condition will frequently be unnecessary, and 
preserving the distinction conditional and 
biconditional can be a useful. 

With the CONCESSION predicate, the writer 
acknowledges a perceived incompatibility between 
the situations presented in the satellite and nucleus 
and uses this acknowledgement to forestall 
objections that might otherwise have arisen as a 

result of the perceived incompatibility.  By pre-
empting the objection, the writer smooths the way 
to increasing the reader’s positive regard for the 
situation presented in the nucleus. Logically then, 
we can say that it is not the case that the satellite 
provides grounds for rejecting the nucleus: ¬(s → 
¬n).  Upon neutralizing this objection, the writer 
further invites the reader to infer from this the 
claim presented by the nucleus. The reasoning thus 
becomes an instance of modus ponens in which the 
condition of the major premise is a negated 
conditional statement: 

(((¬(s → ¬n) → n) � ¬(s → ¬n)) → n) 

With the EVIDENCE predicate, the satellite 
provides evidence in support of the nucleus.  For 
the relation to achieve its intended effect, the reader 
must accept the satellite and recognize its 
implicative relationship with the nucleus. If the 
antecedent is believable, the consequent will also 
be believable.  To achieve its effect, EVIDENCE 
requires that the antecedent (i.e. the satellite) be 
asserted.  Hence the logical form of EVIDENCE is 
modus ponens: 

(((s → n) � s) → n) 

The three logical forms (condition, concession, 
and evidence), corresponding to the relations used 
in the Frege analysis,  can be used to construct the 
logical expression of the nested relational 
proposition, which expands to the following valid 
argument: 

((((((¬((2 → 3) → ¬4) → 4) � ¬((2 → 3) → ¬4)) 
→ 4) → 1) � (((¬((2 → 3) → ¬4) → 4) � ¬((2 
→ 3) → ¬4)) → 4)) → 1) 

Using this technique, it is possible to generate 
logical expressions for any RST analysis.  While 
the resulting expressions can be complex, they are 
constructed from the simple logical forms defined 
for each of the relational predicates. As will be 
detailed in Section 4, these forms are generalizable 
as logical signatures that may be used in mining 
texts for occurrences of  rules of inference. 

Note that discourse units used in relational 
propositions need not be truth-functional in the 
restrictive sense of the term. Although it is 
common practice present logic in terms of truth 
values and truth functions, these semantics are 
arbitrary, and we could just as well speak of on and 
off,  + and -, 1 and 0, yes and no, open and closed, 
satisfiability and unsatisfiability, or any other 
bivalent conceptualization, including belief and 



 
	

disbelief, positive and negative regard, desire and 
indifference, interest and disinterest, understanding 
and misunderstanding, or ability and inability.  To 
the extent that the primitives of RST can be 
understood in terms of bivalent values, they are 
amenable to logical treatment.   

4 Relational Complexes 

As noted earlier, some inference rules manifest as 
single relational predicate, but this is not always the 
case.  Modus tollens requires multiple predicates, 
and these predicates may be combined in various 
ways.  Each of these combinations, for any given 
instance, is a relational complex.  A relational 
complex may then be generalized and normalized 
to create a signature, or logical pattern that may 
then be used to locate other instances of the rule in 
discourse.  

The generalization process consists in replacing 
the numeric unit identifiers with normalized  
alphabetic variables. Normalization consists in 
identifying discourse units that are sufficiently 
similar semantically to indicate material 
equivalence or negation.  This paper makes no 
attempt to define a technology for measuring 
semantic textual similarity.  There are already 
numerous research efforts in that area.  For 
example, Finch, Hwang, and Sumita (2005) 
repurposed machine translation evaluation 
methods to determine sentence-level semantic 
equivalence, Tsatsaronis, Varlamis, and 
Vazirgiannis (2010) developed a measure of 
semantic relatedness which capitalizes on a word-
to-word semantic relatedness measure and 
extended it to measure the relatedness between 
texts, and Sultan, Bethard, and Sumner (2015) 
developed supervised and unsupervised systems 
for measuring sentence similarity.  Addressing 
negation detection, Basile, Bos, Evang, and 
Venhuizen (2012) used discourse representation 
structures for negation detection, and Harabagiu, 
Hickl, and Lacatusu (2006) interpreted negation 
using a combination of overt and indirectly 
licensed negation.  For the present study, 
normalizations are hand-crafted. Thus, for the 
generalized signature 

((((((¬((p → q) → ¬r) → r) � ¬((p → q) → ¬r)) 
→ r) → s) � (((¬((p → q) → ¬r) → r) � ¬((p → 
q) → ¬r)) → r)) → s) 

the normalized logical form, with double negations 
removed is: 

((((((¬((p → q) → q) → ¬q) � ¬((p → q) → q)) 
→ ¬q) → ¬p) � (((¬((p → q) → q) → ¬q) � 
¬((p → q) → q)) → ¬q)) → ¬p) 

We can use this logical form as a template for 
identifying comparable relational propositions 
within texts, keeping in mind that any of the 
elements of the expression may refer recursively to 
lower level complex expressions.  To the extent 
that the comparisons align, the logical expressions 
for each relational proposition will comprise the 
sought-after relational complexes, which provide 
the basis for the logical signature.   

5 Canonical Modus Tollens 

Modus tollens is a valid argument of the form: 

(((p → q) � ¬q) → ¬p) 

The categorical premise (¬q) denies the 
consequent of the conditional premise, implying 
the negation of the antecedent (¬p).  Figure 2 
shows an RST analysis of a Wikipedia example of 
modus tollens. As shown, the writer concedes that 
the conditional relationship between Rex as a 

chicken and Rex as a bird holds, but rejects the 
proposition that he is a bird.  From this, we may 
reason, Rex is no chicken. The relational 
proposition for this structure is  

condition(conjunction(condition(1,2),3),4) 

And the relational complex for this proposition 
therefore is: 

(((1 → 2) � 3) → 4) 

This may be generalized and normalized to 

(((p → q) � ¬q) → ¬p) 

which is modus tollens.  Stated canonically, the 
RST relations are subject matter, rather than 
presentational, because there is no intent to 
influence an inclination in the reader.  In practice, 
however, modus tollens is commonly used as an 

 
Figure 2: Rhetorical Structure of Modus Tollens 

 



 
	

act of persuasion.  This leads to the evidential and 
antithetical signatures for modus tollens. 

6 Evidential Modus Tollens 

When the writer uses modus tollens with the intent 
to influence the reader’s beliefs, the EVIDENCE 
relation may be employed.  This intended effect 
adds to the complexity of the logical structure of 
the argument.  This occurs in Frege’s argument 
against the claim that numbers are merely ideas 
without objective reality, introduced earlier.  
Frege’s argument, shown in Figure 1, relies on 
modus tollens for its validity.   EVIDENCE is used 
to link the argument’s  premises to the conclusion.  
As specified by the definition of modus tollens, the 
argument starts with a conditional premise: 

If number were an idea, then arithmetic would 
be psychology,   

followed by a categorical premise that denies the 
consequent of the conditional premise, 

But arithmetic is no more psychology than, 
say, astronomy is, 

and a conclusion that infers the denial of the 
antecedent of the conditional premise: 

I cannot agree with Schloemilch…when he 
calls number the idea of the position of an item 
in a series.  

The relational proposition for the Frege analysis,  

evidence(concession(condition(p,q),r),s) 

generalizes to the logical expression: 

((((((¬((p → q) → q) → ¬q) � ¬((p → q) → q)) 
→ ¬q) → ¬p) � (((¬((p → q) → q) → ¬q) � 
¬((p → q) → q)) → ¬q)) → ¬p) 

Any analysis that matches this generalized 
signature will be an instantiation of the modus 
tollens rule of inference.  That this is so is 
supported in part by the signature’s derivation from 
an exemplar of modus tollens, and is further 
supported, as will be discussed in detail in Section 
9, by the realization that the rule of inference is 
deducible from the signature.  That is to say, for 
any such argument, the canonical rule is logically 
implicit within the RST analysis, and therefore 
within the text. 

7 Biconditional Modus Tollens 

The CONDITION relation sometimes represents a 
biconditional logical relation.  This is apparent in 
part from the definition of the relation as specified 
by Mann and Thompson (1987), that realization of 
the situation presented in the nucleus (the 
consequent) depends upon the realization of the 
situation presented in the satellite (the antecedent), 
and it is also observable in the text they used as 
their example of the relation:  

N: Employees are urged to complete new 
beneficiary designation forms for retirement or 
life insurance benefits 

S: whenever there is a change in marital or 
family status. 

A change in marital or family status is the 
condition under which employees are urged to 
complete new beneficiary designation forms. The 
reader recognizes that the realization of the nucleus 

depends on the realization of satellite.  If there is 
no change in status, there is no need to complete 
new forms.  If the satellite remains unrealized, so 
will the nucleus.  Thus, the relation is biconditional 
(s « n). 

Occurrences of the biconditional as modus 
tollens may employ the counterfactual in the 
antecedent.   The counterfactual contains the denial 
of the antecedent within the antecedent itself.  In 
the example shown in Figure 3, Donald Trump 
argues that if he wanted to win the war in 
Afghanistan,  he could do so within a week.  The 
counterfactuality of the antecedent indicates that he 
does not wish to do so, with the implication that we 
therefore cannot do so.  This interpretation leads to 
a relational proposition defined not only on the 
basis of the explicit rhetorical structure, but the 
implicit relations as well: 

condition(conjunction(condition(1,2),[3]),[4]) 

which normalizes to the biconditional modus 
tollens: (((p ↔ q) � ¬p) → ¬q).  When the 

 
Figure 3: Counterfactual Modus Tollens 

 



 
	

normalization process indicates denial of the 
antecedent, the charitable interpretation will be that 
the CONDITION relation is being used as 
biconditionally.  Not only may the denial of the 
antecedent be implicit, the consequent itself may 
be implicit.  Incomplete conditionals such as  

1. If only Miss Hawkins would get a job…  

have an implicit implicative potentiality.  While 
this example leaves much to the reader’s 
imagination, with assistance from context provided 
by the writer, or from the reader’s world 
knowledge (Elder & Savva, 2018),  a pragmatic 
conjecture such as  

2. [then surely her situation would be 
improved.] 

3. [But, alas, she has not gotten a job.] 
4. [And so her situation remains unimproved.] 

seems plausible, and results in the relational 
complex: 

cause(concession(condition(1,[2]),[3]),[4]) 

As constructed, the inference relies on denying the 
antecedent.  Hence it is another example of 
biconditional modus tollens.  However, the logic 
differs from the previous example, due to the use 
of the cause predicate instead of condition.  The 
cause predicate has the same logical form as 
evidence, and as such is used to link the argument’s 
premises to the conclusion.  Clearly, however, the 
more fragmentary the information, the greater the 
risks of conjecture, and the greater risk of false 
positives.   

8 Antithetical Modus Tollens 

ANTITHESIS is used as part of a modus tollens 
relational complex in a manner rhetorically similar 
to CONCESSION.  This is perhaps owing to the 

similarity of the two relations (Stede, 2008).  In the 
example shown in Figure 4, the structure follows 
the familiar pattern of modus tollens, but now the 

CONDITION is a satellite of the ANTITHESIS rather 
than of CONCESSION.  The logical form, and hence 
the signature, is disjunctive syllogism,  

((((p → q) � ¬q) � ¬(p → q)) → ¬q) 

Thus ANTITHESIS, when the satellite is conditional, 
is modus tollens.  Alternatively, the CAUSE relation 
may be used as satellite to the ANTITHESIS relation, 
as shown in Figure 5.  This text is interesting in 

several respects.  From the logical perspective, 
there are arguments within arguments such that the 
consequences of one become the condition of 
another.  And counterfactual conditionality is used 
to implement a strategy of reductio ad absurdum, 
such that the conclusion of the text indicates its 
own negation.  Logic mining is useful in sorting 
this out. The text divides conveniently into two 
parts.  Units 1-3 implement the causal variety of 
antithetical modus tollens: 

((((((p → q) � p) → q) � r) � ¬(((p → q) � 
p) → q)) → r) 

That this is an occurrence of antithetical modus 
tollens can be realized by evaluating the causal 
argument to obtain its result, q, so that the 
expression becomes 

(((q � r) � ¬q) → r) 

which when normalized becomes a signature for 
antithetical modus tollens: 

(((p � q) � ¬p) → q) 

As discussed below in Section 9, modus tollens is 
provable using disjunctive syllogism.  An 
alternative approach would be to realize that if ((p 
→ q) � p), as indicated by CAUSE, then the 
CONDITION (p → q) holds as well.  The same 
approach can be used for segments 3-5. The if-then 
statement of 3-4 is coded as a RESULT, because it 

 
Figure 4: ANTITHESIS as Modus Tollens 

 

 
Figure 5: The Cause-Antithesis Modus Tollens 

 



 
	

is the antecedent of the condition that is salient in 
this text.  Segment 3, or r, situated conditionally 
within the argument, is the negation of “that is not 
the case.” The consequent, provided in 4-5, 
provides the reductio ad absurdum.   That is, if 
“that were the case,” untenable results would 
follow. 

9 The Significance of Signatures 

The question will arise as to the significance of 
logical signatures.  Are they grounded in 
identifiable logical relationships with their 
respective rules of inference, or is the 
correspondence between signatures and rules 
simply a happy coincidence?  Both signatures and 
rules are valid arguments, both share the same 
elementary propositions, and both reach the same 
conclusion.  It would therefore be useful to 
determine whether the rules of inference are 
deducible from the signatures, and if not, what the 
nature of the relationship is.  So now we can 
examine each the signatures introduced above and 
determine their relationship to modus tollens.  The 
signatures to be considered include canonical, 
evidential, biconditional, and antithetical modus 
tollens.  For canonical modus tollens, the signature 
maps directly to the inference rule; it is indeed 
simply a statement of the rule, (((p → q) � ¬q) → 
¬p).  Evidential modus tollens is a more interesting 
case.  It has already been shown that the logical 
signature for  

evidence(concession(condition(p,q),r),s) 

is 

((((((¬((p → q) → q) → ¬q) � ¬((p → q) → q)) 
→ ¬q) → ¬p) � (((¬((p → q) → q) → ¬q) � 
¬((p → q) → q)) → ¬q)) → ¬p) 

This expression contains two occurrences of the 
valid argument 

(¬((p → q) → q) → ¬q) 

We evaluate and replace those occurrences with 
their consequent, ¬q, resulting in   

(((((¬q � ¬((p → q) → q)) → ¬q) → ¬p) � 
((¬q � ¬((p → q) → q)) → ¬q)) → ¬p) 

which contains two occurrences of the valid 
argument 

((¬q � ¬((p → q) → q)) → ¬q) 

for which we also substitute the consequent, ¬q, 
resulting in the valid argument 

(((¬q → ¬p) � ¬q) → ¬p) 

for which the implicant 

((¬q → ¬p) � ¬q) 

is materially equivalent to the implicant of modus 
tollens: 

((¬q → ¬p) � ¬q) ↔ ((p → q) � ¬q) 

Thus the evidential interpretation effectively 
reduces to modus tollens.  This is applicable to the 
logical forms of each of the modus ponens 
presentational relations, including BACKGROUND, 
ENABLEMENT, EVIDENCE, JUSTIFY, MOTIVATION, 
and PREPARATION, as well as the causal relations.  

The presentational version of biconditional 
modus tollens operates similarly.   The relational 
proposition 

evidence(concession(condition(p,q),r),s) 

normalizes to 

((((((¬((p ↔ q) → p) → ¬p) � ¬((p ↔ q) → p)) 
→ ¬p) → ¬q) � (((¬((p ↔ q) → p) → ¬p) � 
¬((p ↔ q) → p)) → ¬p)) → ¬q) 

The modus ponens 

(((¬((p ↔ q) → p) → ¬p) � ¬((p ↔ q) → p)) → 
¬p) 

occurs twice within this expression.  Replacing this 
with its consequent,  ¬p, yields 

(((¬p → ¬q) � ¬p) → ¬q) 

which is modus tollens.  This is applicable to 
biconditional occurrences of the same RST 
relations as evidential modus tollens, except that 
the categorical premise normalizes to the negation 
of the antecedent of the conditional premise, rather 
than the consequent.  It is by this means that this 
biconditional modus tollens can be distinguished 
from evidential modus tollens. 

The relational proposition of antithetical modus 
tollens is antithesis(condition(p,q),r) for which the 
generalized signature is  

((((p → q) � ¬q) � ¬(p → q)) → ¬q) 

Since one of the proofs of modus tollens is based 
on disjunctive syllogism, it can be shown that 
modus tollens follows from the normalized 
expression.  The major premise of the disjunctive 



 
	

syllogism, ((¬p � q) � ¬q), implies (p → q), so 
that if it is the case that 

(((¬p � q) � ¬q) → (p → q)) 

it follows that both the premise and the conclusion 
hold, 

(((¬p � q) � ¬q) � (p → q)) 

and it is a tautology that  
 (((¬p � q) � ¬q) � (p → q)) ↔  
((p → q) � ¬q) 

Thus, modus tollens may be inferred from the 
logical signature for antithesis(condition(p,q),r). 
And thus, the evidential, biconditional, and 
antithetical signatures can be used, not only to 
discover instances of modus tollens in discourse, 
they are grounded in the rule of inference they are 
designed to detect.   

10 Conclusion  

This exploration of modus tollens has shown how 
relational propositions can be used to support 
discourse logic-mining using logical signatures as 
a means for discovering occurrences of standard 
rules of inference in discourse.  In addition to 
modus tollens, several other signatures that serve 
as indicators of rules of inference have been noted.  
EVIDENCE and other pragmatic and causal 
relations map directly to modus ponens, and 
ANTITHESIS implements disjunctive syllogism.  
Further research is needed to determine what 
additional signatures can be identified.  These 
would provide a rich set of resources for logic-
mining discourse and reduce the need for ad hoc 
procedures for inference rule identification and 
would eventually support a greater capability for 
automated analysis. 

Automated identification of inference rules 
within discourse would require development and 
integration of several capabilities.  Although there 
has been significant work in automated detection 
of RST relations (e.g., Corston-Oliver, 1998; 
Hernault et al., 2010; Pardo et al., 2004; Soricut & 
Marcu, 2003), such a capability would need to 
generate output as nested relational propositions of 
complex structures.  Prototype software already 
exists for generating logical expressions from 
nested relational propositions of arbitrary size and 
complexity (Potter, 2018).  A unification algorithm 
could be used for identifying instantiations of 
inference rules in nested relational propositions.  

The generalized signatures would subsume 
instances of inference rules in a relational 
proposition. Subsumption would succeed when the 
proposition contains a logical structure isomorphic 
with the signature.  The signature would need to 
match both simple and composite spans, so that 
instantiation could occur at any level within the 
structure. 

Using RST as the starting point for inference 
rule discovery simplifies the task, but also delimits 
it.  These delimitations arise not so much the result 
of well-known concerns about the validity of RST 
(e.g., Asher & Lascarides, 2003; Budzynska et al., 
2016; Grosz & Sidner, 1986; Knott, Oberlander, 
O'Donnell, & Mellish, 2001; Moore & Pollack, 
1992; Sanders, Spooren, & Noordman, 1992; 
Webber, Stone, Joshi, & Knott, 2003; Wiebe, 1993; 
Wolf & Gibson, 2005), but out of a fundamental 
feature of the theory—namely that it is a theory of 
coherence relations.  Perhaps this delimitation is an 
asset.  By basing the concept of logic-mining on a 
theory of coherence relations, it is by definition 
constrained to discursive inferences discoverable 
within a text.  The granularity of analysis being at 
the clausal level, the inferences discoverable 
among these clauses are propositional.  A benefit 
of this is that many problems in natural language 
inferencing, such as those described by Lakoff 
(1970), van Benthem (2008),  MacCartney (2009) 
and Karttunen (2015), e.g., determining logical 
relationships among arbitrarily selected assertions, 
are avoided.  They are avoided not because they do 
not exist, for indeed they do, but because they need 
not come to the surface.  A practical solution for 
logic-mining texts for rules of inference should be 
both useful and interesting, and perhaps the 
techniques arising from this work will contribute to 
solving grander challenges.  For now, the essence 
of logic-mining is that from a text, it is possible to 
identify a rhetorical structure, and from the 
structure, a relational proposition, and from the 
relational proposition, a generalized logical 
signature, and from the signature, the rule of 
inference residing within the text. 

References 

Asher, N., & Lascarides, A. (2003). Logics of 
conversation. Cambridge, UK: Cambridge 
University Press. 

Budzynska, K., Janier, M., Reed, C., & Saint-
Dizier, P. (2016). Theoretical foundations for 



 
	

illocutionary structure parsing. Argument & 
Computation, 7(1), 91-108.  

Corston-Oliver, S. H. (1998). Computing 
representations of the structure of written 
discourse. University of California, Santa 
Barbara, CA.    

Elder, C.-H., & Savva, E. (2018). Incomplete 
conditionals and the syntax-pragmatics 
interface. Journal of Pragmatics, 138, 45-59.  

Frege, G. (1884/1980). The foundations of 
arithmetic (J. L. Austin, Trans. 2nd Revised 
ed.). Evanstown, Ilinois: Northwestern 
University Press. 

Geis, M. L., & Zwicky, A. M. (1971). On invited 
inferences. Linguistic lnquiry, 2, 561-566.  

Grosz, B., & Sidner, C. (1986). Attention, 
intentions, and the structure of discourse. 
Computational Linguistics, 12(3), 175-204.  

Hernault, H., Prendinger, H., duVerle, D. A., & 
Ishizuka, M. (2010). HILDA: A Discourse 
parser using Support Vector Machine 
classification. Dialogue and Discourse, 1(3), 1-
33.  

Horn, L. R. (2000). From if to iff: Conditional 
perfection as pragmatic strengthening. Journal 
of Pragmatics, 32(3), 289-326.  

Karttunen, L. (1971). Counterfactual 
conditionals. Linguistic Inquiry, 2(4), 566-569.  

Karttunen, L. (2015). From natural logic to 
natural reasoning. In A. Gelbukh (Ed.), 
Computational Linguistics and Intelligent Text 
Processing (pp. 295-309). Cham: Springer 
International Publishing. 

Knott, A., Oberlander, J., O'Donnell, M., & 
Mellish, C. (2001). Beyond elaboration: The 
interaction of relations and focus in coherent 
text. In T. Sanders, J. Schilperoord, & W. 
Spooren (Eds.), Text Representation: Linguistic 
and Psycholinguistic Aspects (pp. 181-196). 
Amsterdam: John Benjamins. 

Lakoff, G. (1970). Linguistics and natural logic. 
Synthese, 1/2, 151-271.  

MacCartney, B. (2009). Natural language 
inference. Stanford University, Stanford.    

MacCartney, B., & Manning, C. D. (2009). An 
extended model of natural logic. Proceedings of 
the Eighth International Conference on 
Computational Semantics (pp. 140-156). 
Tilburg, The Netherlands: Association for 
Computational Linguistics. 

Mann, W. C., & Thompson, S. A. (1986a). 
Assertions from discourse structure. HLT '86: 
Proceedings of the workshop on strategic 
computing natural language (pp. 257-270). 

Morristown, NJ: Association for Computational 
Linguistics. 

Mann, W. C., & Thompson, S. A. (1986b). 
Relational propositions in discourse. Discourse 
Processes, 9(1), 57-90.  

Mann, W. C., & Thompson, S. A. (1987). 
Rhetorical structure theory: A theory of text 
organization (ISI/RS-87-190). Marina del Rey, 
CA: University of Southern California, 
Information Sciences Institute (ISI). 

Mann, W. C., & Thompson, S. A. (1988). 
Rhetorical structure theory: Towards a 
functional theory of text organization. Text, 
8(3), 243-281.  

Mann, W. C., & Thompson, S. A. (2000). Toward 
a theory of reading between the lines: An 
exploration in discourse structure and implicit 
communication. Paper presented at the Seventh 
International Pragmatics Conference, Budapest, 
Hungary. 

Moeschler, J. (2018). On the pragmatics of logical 
connectives: Are connectives truth-functional? 
In D. V. Olmen, T. Mortelmans, & F. Brisard 
(Eds.), Aspects of linguistic variation (pp. 207-
232). Berlin: De Gruyter. 

Moore, J. D., & Pollack, M. E. (1992). A problem 
for RST: The need for multi-level discourse 
analysis. Computational Linguistics, 18(4), 527-
544.  

O'Donnell, M. (1997). RST-Tool: An RST 
analysis tool. Proceedings of the 6th European 
Workshop on Natural Language Generation. 
Duisburg, Germany: Gerhard-Mercator 
University. 

Pardo, T. A. S., Nunes, M. d. G. V., & Rino, L. H. 
M. (2004). DiZer: An automatic discourse 
analyzer for Brazilian Portuguese. Advances in 
Artificial Intelligence – SBIA 2004 17th 
Brazilian Symposium on Artificial Intelligence, 
Sao Luis, Maranhao, Brazil, September 29-
Ocotber 1, 2004. Proceedings. Berlin: Springer. 

Potter, A. (2018). Reasoning between the lines: A 
logic of relational propositions. Dialogue and 
Discourse, 9(2), 80-110.  

Sanders, T. J. M., Spooren, W. P. M., & 
Noordman, L. G. M. (1992). Toward a 
taxonomy of coherence relations. Discourse 
Processes, 15, 1-35.  

Soricut, R., & Marcu, D. (2003). Sentence level 
discourse parsing using syntactic and lexical 
information. Paper presented at the Human 
Language Technology and North American 
Association for Computational Linguistics 
Conference (HLT/NAACL), Edmonton, 
Canada. 



 
	

Stede, M. (2008). Disambiguating rhetorical 
structure. Research on Language and 
Computation, 6(3), 311-332.  

Van Benthem, J. (1986). Natural logic. In J. Van 
Benthem (Ed.), Essays in logical semantics (pp. 
109-119). Dordrecht: Springer Netherlands. 

van Benthem, J. (2008). A brief history of natiural 
logic. Logic, Navya-Nyāya & applications: 
Homage to Bimal Krishna Matilal (pp. 21-42). 
Lomdon: College Publications. 

van der Auwera, J. (1997a). Conditional 
perfection. In A. Athanasiadou & R. Dirven 
(Eds.), On conditionals again (pp. 169-190). 
Amsterdam: Benjamins. 

van der Auwera, J. (1997b). Pragmatics in the last 
quarter century: The case of conditional 
perfection. Journal of Pragmatics, 27(3), 261-
274.  

Webber, B. L., Stone, M., Joshi, A., & Knott, A. 
(2003). Anaphora and discourse structure. 
Computational Linguistics, 29(4), 545-587.  

Wiebe, J. M. (1993). Issues in linguistic 
segmentation. Workshop on Intentionality and 
Structure in Discourse Relations, Association 
for Computational Linguistics (pp. 148-151). 
Columbus, Ohio: Association for 
Computational Linguistics. 

Wolf, F., & Gibson, E. (2005). Representing 
discourse coherence: A corpus-based analysis. 
Computational Linguistics, 31(2), 249-287.  

Zeldes, A. (2016). rstWeb – A browser-based 
annotation interface for Rhetorical Structure 
Theory and discourse relations. Proceedings of 
NAACL-HLT 2016 (Demonstrations) (pp. 1-5). 
San Diego, California: Association for 
Computational Linguistics. 

 

Appendix. Texts Cited 
Forgey, Q. (2019, July 22). Trump: I could win 

Afghanistan war 'in a week'. Politico.  
Retrieved from 
https://www.politico.com/story/2019/07/22/t
rump-afghanistan-war-1425692 

Frege, G. (1884/1980). The foundations of 
arithmetic (J. L. Austin, Trans. 2nd Revised 
ed.). Evanstown, Ilinois: Northwestern 
University Press. 

Goodman, L. (2014). Indefensible: A novel. New 
York: Atria. 

Lewis, P. J. (2003). Quantum mechanics and 
ordinary language: The fuzzy link. Philosophy 
of Science, 70(5), 1437-1446. 

Stead, C. (1945). For love alone. New York: 
Harcourt. 

Wikipedia contributors. (2019, July 23). Modus 
tollens. Wikipedia, The Free Encyclopedia.  
Retrieved from 
https://en.wikipedia.org/w/index.php?title=Mo
dus_tollens 

 

 

 



Unsupervised Formal Grammar Induction with Confidence

Jacob Collard
Cornell University

jacob@thorsonlinguistics.com

Abstract

I present a novel algorithm for minimally su-
pervised formal grammar induction using a
linguistically-motivated grammar formalism.
This algorithm, called the Missing Link algo-
rithm (ML), is built off of classic chart parsing
methods, but makes use of a probabilistic con-
fidence measure to keep track of potentially
ambiguous lexical items. Because ML uses
a structured grammar formalism, each step of
the algorithm can be easily understood by lin-
guists, making it ideal for studying the learn-
ability of different linguistic phenomena. The
algorithm requires minimal annotation in its
training data, but is capable of learning nu-
anced data from relatively small training sets
and can be applied to a variety of grammar for-
malisms. Though evaluating an unsupervised
syntactic model is difficult, I present an eval-
uation using the Corpus of Linguistic Accept-
ability and show state-of-the-art performance.1

1 Introduction

Most research on learning algorithms for natural
language syntax has focused on supervised pars-
ing, in which the parser learns from sentences in
the target language paired with a corresponding,
hand-constructed parse tree. Major natural lan-
guage corpora, such as the Penn Treebank (Mar-
cus et al., 1994) and the Universal Dependencies
framework (Nivre et al., 2016) exemplify this ten-
dency. This has allowed for highly performant
models for dependency parsing such as ClearNLP
(Choi and McCallum, 2013), CoreNLP (Manning
et al., 2014), Mate (Bohnet, 2010), and Turbo
(Martins et al., 2013), all of which have achieved
an accuracy of over 89% on standard evaluation
tasks (Choi et al., 2015).

1In the interest of reproducibility, the code used to gen-
erate these results is provided at https://github.com/
thorsonlinguistics/scil2020

Unsupervised learning for natural language pro-
cessing is a much more difficult task, as the algo-
rithm must explore the entire search space with
minimal confirmation of its hypotheses. Never-
theless, a number of algorithms have attempted to
solve the problem of unsupervised parsing. Most
of these rely on gold standard part of speech
tags (Headden III et al., 2009; Spitkovsky et al.,
2010), though there are some exceptions, such as
Spitkovsky (2011). Almost all unsupervised al-
gorithms for natural language syntactic process-
ing are based on dependency parsing; most of the
published literature on other grammar formalisms,
such as tree-adjoining grammar (TAG) and com-
binatory categorial grammars (CCG) is either su-
pervised or hand-engineered. Again, there are
some exceptions, such as (Bisk et al., 2015), which
learns CCGs using a small amount of initial part-
of-speech data. Edelman et al. (2003) also present
a model of unsupervised learning which blends
properties of construction grammars with tree-
adjoining grammars; however, their model has
not, as yet, been evaluated empirically.

Other models are only indirectly supervised;
the syntax of the target language is learned with-
out any syntactic annotations, but annotations may
be present representing other facts about the sen-
tence, such as its logical form. Notable examples
of this include work by Kwiatkowski et al. (2010;
2011) and Artzi and Zettlemoyer (2013).

Another recent innovation in unsupervised
learning is the introduction of pre-trained lan-
guage models for deep learning algorithms, such
as BERT (Devlin et al., 2018) and its relatives.
These algorithms can be pre-trained on raw text
in order to produce a language model which can
then be used to bootstrap learning for a wide vari-
ety of additional tasks. Though supervision may
be required by these downstream tasks, the un-
supervised component has been shown to greatly

https://github.com/thorsonlinguistics/scil2020
https://github.com/thorsonlinguistics/scil2020


improve learning. The representations that these
models produce are somewhat opaque; though
they have been shown to represent syntactic infor-
mation for some tasks (Goldberg, 2019), an exact
description of what the model is representing is
difficult to produce.

Though most of the above systems do not rely
on a strict notion of grammar formalism, in this
paper, I will argue that a well-defined grammar
formalism can produce strong results when used as
the basis for an unsupervised learning algorithm.
Dependence on a grammar formalism has a num-
ber of benefits. First, it means that each step of
the algorithm can be (relatively) easily understood
by humans. Each processing step either produces
a novel derivation for a sentence or reinforces an
old one, and each derivation conforms to the rules
of the given formalism. Thus, as long as the rules
of the formalism are understood, the meaning be-
hind each processing step can also be understood.
Second, using a grammar formalism ensures that
certain facts about the resulting grammar will al-
ways hold. For example, using CCG or TAG will
guarantee that the resulting grammar is in the class
of mildly context-sensitive languages. Third, us-
ing a grammar formalism means that the proper-
ties of the grammar formalism can be studied as
well. Though formalisms such as CCG and TAG
are weakly equivalent (Joshi et al., 1990), there
may be differences between the two formalisms
with respect to learning. Similarly, different vari-
ants of a particular formalism can be studied as
well. For example, different combinators can be
added or removed from CCG to produce different
learning results. By using the grammar formal-
ism as a core parameter in learning, the formalism
becomes an independent variable that can be ex-
plored.

In this paper I introduce an algorithm, called the
Missing Link algorithm (ML), which has several
interesting properties which, I argue, are beneficial
to the study of linguistics, grammar formalisms,
and natural language processing. These properties
include:

• Minimal supervision. The Missing Link al-
gorithm learns from raw, tokenized text. The
only annotation required is assurance of the
sentencial category, which is trivial for most
training sets and grammar formalisms.

• Formalism Dependence. The grammar for-
malism is the core motivator for learning and

parsing in Missing Link. This means that
the formalism can easily be replaced with an-
other and that the formalism can be studied
as a parameter.

• Interpretability. Due partly to formalism
dependence, the Missing Link algorithm is
highly interpretable. Each step of the algo-
rithm can be viewed as a derivation using the
input formalism.

• Performance. The Missing Link algorithm
performs well on an evaluation using linguis-
tic acceptability judgments. The results of
the evaluation are competitive with super-
vised algorithms such as BERT for the spe-
cific task used. Missing Link supplements
the input formalism with a model of confi-
dence for lexical entries that allows it to ro-
bustly handle potential ambiguity.

1.1 Related Work

The Missing Link algorithm builds off of rela-
tively simple models for grammar induction and
parsing. Parsing is done via a simple bottom-
up chart-based method (Younger, 1967; Kasami,
1965). Learning is done in a top-down fashion
using the same chart, with some extensions de-
scribed in Section 2.2.

The Missing Link algorithm is closely related to
the Unification-Based Learning (UBL) algorithm
described in Kwiatkowski et al. (2010). UBL
is an algorithm for semantic parsing, but the de-
composition operations used in Missing Link are
essentially the same as the higher-order unifica-
tion used in UBL, albeit applied directly to syn-
tactic categories instead of logical forms. Unlike
UBL, Missing Link ensures that every stop of pro-
cessing is interpretable; the probabilistic grammar
used in UBL can potentially obscure why individ-
ual parses are excluded.

2 The Missing Link Algorithm

There are two main stages to the Missing Link
algorithm: parsing and learning, which are per-
formed in order for every sentence in the training
set. As the algorithm processes more sentences, it
updates a lexicon, mapping words to their syntac-
tic categories and a probability representing how
confident the algorithm is that the given category
is valid in the target grammar.



2.1 Inputs
The core inputs to the Missing Link algorithm are:

• A grammar formalism, which defines a (pos-
sibly infinite) set of grammatical units E and
two functions: COMPOSE : E⇥E ! E⇤ and
DECOMPOSE : E ⇥ E ⇥ E ! (E ⇥ E)⇤. E
always contains a special null element 0 in-
dicating that the grammatical category is not
known.

• A collection of training examples. Each
training example consists of a tokenized sen-
tence and an annotation describing the possi-
ble grammatical categories of the sentence.

The two functions of the grammar formalism
determine the behavior of the parser and learner.
The COMPOSE function returns a collection of el-
ements in E that can be produced by combining
the two input elements. This typically represents
the basic structure-building operation of the given
formalism. In Minimalism, for example, it corre-
sponds to MERGE; in CCG, it corresponds to the
various combinators; in TAG to substitution and
adjunction, etc.

The DECOMPOSE function is essentially the in-
verse of COMPOSE. It returns the set of pairs of
elements that can be composed to produce a given
input. Though it takes three elements, only the
first, representing the root, is necessary. The sec-
ond arguments are supplied to force one or both
of the elements in the results to take a particular
value. This will become important to avoid ex-
ploring the entirety of the search space; when a
value is already known, the DECOMPOSE function
will maintain that value whenever possible.

Note that the input of Missing Link places some
restrictions on the types of formalisms that can be
used. In particular, the formalism does not carry
any language-specific information outside of the
lexicon – the formalism must be strongly lexical-
ized. Many major formalisms, including CCG and
TAG, adhere to this rule, though some formalisms,
such as standard context-free grammars, cannot be
represented by Missing Link. In addition, the re-
sults of DECOMPOSE and COMPOSE must be fi-
nite sets. Though this seems problematic for for-
malisms like CCG, where there are infinite ways
to compose two arbitrary elements to produce a
third, this can usually be avoided by schematiza-
tion. That is, instead of returning every possible

S ! 1
?

(S/b) ! 0.25
?

(S\a) ! 0.25
(S\a) ! 0.25

a ! 0.125
?

((S\a)/b) ! 0.5
((S\a)/b) ! 0.5

b ! 0.5
b ! 0.5

It might work

Figure 1: A chart showing the parse of the sentence It
might work. Parse values are given at the bottom of
each node, while learn values are given at the top.

result, the results can be summarized using vari-
ables.

2.2 The Chart
The Missing Link algorithm is built around a
CKY-style chart. The chart consists of cells rep-
resenting potential parses for each substring of the
sentence. In Missing Link, each cell stores two
separate analyses: one for the potential bottom-up
parses of the sentence, and one for the potential
top-down decompositions of the sentence, based
on the category assigned to the sentence. These
will be referred to as the “parse value” and the
“learn value” for each cell.

Both the parse value and the learn value are rep-
resented using the same data structure, which is
also used in the lexicon. This data structure maps
potential categories (elements of E according to
the target formalism) to probabilities, which repre-
sent the algorithm’s confidence that the given cate-
gory is valid for the corresponding substring. Note
that the sum of the probabilities for the different
categories is not necessarily 1: in the case where
the algorithm is certain that a substring is ambigu-
ous, the probabilities will sum to at least 2. Miss-
ing Link does not assign probabilities based on
frequency relative to other substrings, sentences,
or categories and makes no distinction between al-
ternative parses other than their probability of be-
ing grammatical.

An example chart is shown in Figure 1.

2.3 Parsing
For each sentence in the training data, the Missing
Link algorithm begins by looking up each word
in the lexicon. The results of the lookup are as-
signed to the parse value for the bottom cells of
the chart, which represent the length-1 substrings.
The algorithm then attempts to parse as much of
the sentence as possible. Initially, it will not be
possible to parse any sentences, as no words have
been introduced to the lexicon. However, as the



algorithm sees more sentences in the training set,
the lexicon will expand and the parses will become
more complete.

The parsing step is fairly typical for a proba-
bilistic CKY parser, proceeding in a bottom-up
direction by calling COMPOSE for each pair of
adjacent substrings. The only major difference
does not come from the parsing strategy per se,
but from necessary constraints on the formalisms
compatible with Missing Link.

The confidence values for subsequent cells in
the chart are determined under the assumption that
all assignments are independent. Thus, in most
cases, P (COMPOSE(A,B)) = P (A)P (B). If the
same category is found multiple times, these val-
ues are also treated as independent; thus, P (A) =
P (A1) + P (A2) � P (A1)P (A2), where A1 and
A2 are separate instances of the category A.

Once as much of the chart has been filled by
the parser as possible, the parse stage ends for that
sentence. The parse values of the cells are retained
when the chart is passed to the learning stage; in-
complete parses are used to inform the learning
stage. Even if the parse was successful, the learn-
ing stage still occurs, in order to update the sys-
tem’s confidence in the values used to produce the
successful parse.

2.4 Learning

The learning stage is similar to the parsing stage,
although it is somewhat more involved as it is able
to take advantage of the results of the parse to min-
imize its search space.

First, the learn value of the root of the chart is
initialized with the annotated category for the sen-
tence. Then, the algorithm proceeds in a top-down
manner calling DECOMPOSE on each cell and two
corresponding substrings. For the most part, this
proceeds in the same manner as the parsing stage,
except in a top-down direction. There are, how-
ever, a few differences.

The base probability for a learned category is
based on the probability of the root and the proba-
bility of any known sub-constituents.

When assigning probabilities in the learning
stage, the learner must contend with the fact that
there are multiple possibilities and no guarantee
that they are all valid. The learner must also con-
tend with the fact that there are multiple possible
tree structures. Since chart parsing deals only with
binary-branching trees, it is possible to calculate

the number of possible trees for a sentence of a
given length. The probability must then also be
modulated by the n � 1st Catalan number, where
n is the length of the substring corresponding to
the current cell.

Thus, the total probability for a given result is
equal to p

Cn�1l
where p is the base probability, Cn

is the nth Catalan number, n is the length of the
substring, and l is the number of results produced
by DECOMPOSE.

The results are also dependent on the parse val-
ues of the corresponding sub-constituents. If both
of the sub-constituents have known parse values,
then learning does not necessarily need to occur.
If these sub-constituents can be composed to pro-
duce at least one value in the current cell’s learn
value, then those sub-constituents will be added
to the learn values of their cells, with their origi-
nal probabilities. In other words, if the values are
known and can produce the target value, then no
additional learning needs to occur. If the target
value cannot be produced, then learning occurs as
normal, as if neither value were known.

A similar situation occurs when only one of
the sub-constituents is known. In this case,
DECOMPOSE is applied as normal, with the re-
striction that the known value remains constant.
If DECOMPOSE is successful, then the probabil-
ity remains constant as well. On the other hand, if
DECOMPOSE cannot learn any values, then the de-
composition is attempted again, as though neither
value were known.

2.5 Lexical Update

Once both parsing and learning have occurred for
a given sentence, the algorithm updates the lex-
icon based on the learned values for the length-1
substring cells in the chart. Since values in the lex-
icon are represented the same way as cells in the
chart, this is a fairly straightforward process. If
the category for a word in the current sentence is
the same as a category already in the lexicon, the
probability of the word is updated according to the
assumption that the two probabilities are indepen-
dent, as described above.

3 Implementing Combinatorial
Categorial Grammar

For the purposes of this paper, Combinatory Cat-
egorial Grammar (CCG) will be used as an ex-
ample formalism with Missing Link. CCG is an



efficiently parseable grammar formalism in which
all language-specific rules are stored in the lexicon
(Steedman and Baldridge, 2002).

To implement a formalism for Missing Link, it
is only necessary to define the set E, and the func-
tions COMPOSE and DECOMPOSE. In CCG, the set
E will be the set of categories, which is defined as
follows:

• Given a set A of atoms, if a 2 A, then a is a
category.

• If a and b are categories, then (a\b) and (a/b)
are categories. These are referred to as com-
plex or functional categories.

For the purposes of Missing Link, it is also nec-
essary to define one additional type of category:
the variable. In this paper, variables are repre-
sented using lowercase letters while atoms are rep-
resented using capital letters.

In this paper, I start with the variant of CCG
defined in Eisner (1996). In this variant, the
COMPOSE operator can be defined fairly straight-
forwardly using two combinators:

(X/Y) X|n · · · |2Z2|1Z1
> Bn

X|nZn · · · |2Z2|1Z1

X|n · · · |2Z2|1Z1 (X\Y)
< Bn

X|nZn · · · |2Z2|1Z1

These combinators, generalized forward com-
position and generalized backward composition,
respectively, result in a TAG-equivalent formal-
ism. I use Steedman’s result-first notation for
CCG categories and assume left-associativity un-
less disambiguated by parentheses.

The COMPOSE function for CCG can be defined
as simply taking two categories and returning the
results of either of these combinators. The excep-
tion is when one of the categories contains a vari-
able; in this case, if the variable can be assigned
to a value in the other category to produce a valid
combination, then it will be. For more details on
variables, see Section 3.2.

The DECOMPOSE, as the inverse of COMPOSE,
can be derived from the same combinators. In ef-
fect, the algorithm attempts to match as much of
the pattern as is available in order to construct the
rest of the proof. Any values which cannot be de-
termined concretely are replaced with variables.
For example, given the root X , this matches both
combinators where n = 0, allowing the function
to select ((X/a), a) and (b, (X\b)) as potential re-
sults.

3.1 Modalities
As written above, this formalism is performs
poorly with Missing Link. Though COMPOSE
and DECOMPOSE always produce finite results,
the generalized combinators prove problematic for
learning. This is because crossed composition
in CCG can result in permutation, which makes
it impossible for Missing Link to distinguish be-
tween certain alternatives involving functional cat-
egories.

For example, consider the first learning instance
involving a two-word sentence with no words
known. This will produce a derivation such as
the following, where multiple categories on a node
correspond to alternative hypotheses proposed by
Missing Link.

S

(S/a)
b

a
(S\b)

If the algorithm then attempts to parse this same
sentence (or any similar one), it will run into a
problem. Since the algorithm cannot tell which
hypothesis for the left node was originally paired
with which hypothesis for the right node, it is
forced to try all possibilities during composition.
This will result in the algorithm attempting to
compose (S/a) and (S\b). If a = S, then this can
compose according to the generalized composition
rules above, resulting in (S\b). However, the al-
gorithm has made a crucial mistake in assigning S
to the input type b. In fact, because these situa-
tions crop up whenever an atom or variable is de-
composed, this sort of assignment is exceedingly
common. In addition, because S is usually the
only concrete atomic category (other atoms must
be represented by clusters of variables, since Miss-
ing Link is unsupervised!), eventually all variables
tend to converge to S. This results in an incompre-
hensible grammar in which the only atom is S.

One possible solution would be to prevent hy-
potheses from composing with competing alterna-
tives (i.e., alternatives generated at the same time).
However, this solution would not be sufficient,
as the same situation could still occur with other
words – the pattern that created the first set of hy-
potheses will apply to other words as well. Thus,
convergence to S will still occur in these situa-
tions.

The solution that I used was to take advantage of



the slash modalities used in many CCG variants,
such as Baldridge (2002). These variants place
modalities on the slash categories that restrict their
application to certain combinators. I use four basic
modalities, taken from Steedman and Baldridge
(2002).

• Star (⇤): Categories with this slash can only
apply in simple applicative contexts (function
composition of all types is forbidden).

• Diamond (⇧): Categories with this slash can
compose only with categories of the same
slash direction.

• Cross (⇥): Categories with this slash can
compose only with categories of the opposite
slash direction.

• Dot (·): Categories with this slash can com-
pose with any other category.

Using these modalities restricts the cases where
certain compositions may occur. During learning,
the most restrictive category that applies to the
given decomposition is always used. For example,
the decomposition of S results in ((S/⇤a), a) and
(b, (S\⇤b)). Due to the restrictions on the modali-
ties, it is no longer possible to compose the results
using crossed composition: (S/⇤a) and (S\⇤b) are
incompatible! The problem of convergence to S
no longer exists, and the computational properties
of the formalism are maintained: crossed compo-
sition can still occur as a last resort, in cases where
it is clear that it can be derived.

As an aside, it is no accident that crossed com-
position was the cause of this issue. The permuta-
tions caused by crossed composition also make it
necessary in mildly context-sensitive CCGs to ac-
count for data in languages such as Swiss German
and Dutch. It is interesting, though not surprising,
that this comes with its own difficulties in learn-
ing.

3.2 Variables and State
As described in previous sections, this implemen-
tation of CCG for Missing Link uses variables to
represent categories whose exact value cannot be
determined. Though variables are necessary, they
also introduce additional complexity into the algo-
rithm. There are a few special notes that relate to
the treatment of variables in CCG.

The values of variables are stored in a global
state, which maps variable IDs to their values (if

a value is known). When a variable is evaluated
in parsing or learning, it is first resolved accord-
ing to the state. In most cases, a variable can-
not be resolved completely (the final representa-
tion will still contain one or more variables); this
is expected, as the algorithm is not able to induce
new atomic categories, it must instead make use
of variables that are designated to represent new
categories.

The value of a variable may be a complex cate-
gory, an atomic category, or another variable (the
latter case being used primarily to set two vari-
ables equal to one another). If a variable is set
equal to a complex category, it may be that the
complex category itself contains variables. This
creates the possibility of reference cycles, which
would produce undefined values. To avoid this,
every time an assignment is made, the algorithm
performs an occurs check to ensure that the as-
signment will not produce any reference cycles:
the new value is checked for any instances, direct
or indirect, of the variable. If there are any, the as-
signment cannot be completed and the algorithm
must try another alternative.

Once a variable is assigned a value, it is per-
manent. However, the algorithm is still free to in-
troduce a new variable by re-decomposing cate-
gories in future training samples, according to the
rules given in Section 2. Furthermore, if a vari-
able assignment fails within a combinator (due to
an occurs check), the state is rolled back to the
way it was before the combinator began process-
ing. This prevents known inconsistencies from
filling the state; though the state may still contain
inconsistencies, all values in the state are part of
a potential analysis. Any remaining inconsisten-
cies typically do not achieve high probability dur-
ing learning, as they cannot be used to successfully
parse many sentences.

4 Evaluation

Evaluating an unsupervised learning algorithm is
a difficult prospect. Though many unsupervised
syntactic learning algorithms are evaluated by
comparing the resulting dependency structures to
a gold standard, typically by ensuring that each
predicted dependency is directed in the same way
between the same two lexical units as the gold
standard dependency. However, comparison by
dependency structures is not always a good choice
for unsupervised learning algorithms. In particu-



lar, because one of the goals of Missing Link is to
provide a framework for analyzing grammar for-
malisms in an otherwise theory-independent man-
ner, it is undesirable to make use of any theory-
dependent analysis. Though dependencies may
be largely independent of theory, they still make
conventional decisions. For example, the Univer-
sal Dependencies project does not usually allow
functional categories to be heads, while alterna-
tives, such as Stanford Dependencies, do allow
functional heads. If the learning algorithm is free
to choose from the alternatives on its own, then it
cannot be accurately evaluated against such a stan-
dard.

To evaluate Missing Link, I therefore use a
secondary task. Similar to BERT (Devlin et al.,
2018), I use Missing Link as an unsupervised pre-
training algorithm for a downstream task. In this
case, I use linguistic acceptability (grammatical-
ity) judgments as the downstream task. This is an
ideal task for Missing Link, since Missing Link’s
confidence values essentially capture the notion of
probability that a sentence (or substring) is gram-
matical. I use the Corpus of Linguistic Accept-
ability (Warstadt et al., 2018) to provide the gold
standard and training data. The Corpus of Linguis-
tic Acceptability (CoLA) provides a basic classifi-
cation task in which sentences are annotated with
boolean grammaticality judgments – that is, each
sentence is either considered grammatical or not.
Missing Link will provide the pre-trained linguis-
tic model, and a simple logistic regression will use
Missing Link confidence values to classify the test
data.

4.1 Pre-Training

Before training the model, Missing Link is used
to pre-train a linguistic model of the target lan-
guage, in this case English. In order to keep the
conditions between the training set and the testing
set as close as possible, it is necessary to pre-train
Missing Link on a different dataset than the an-
notated linguistic acceptability data. In addition,
the corpus of linguistic acceptability is relatively
small. To this end, I pre-train Missing Link us-
ing the much larger Billion Words corpus (Chelba
et al., 2013).

For pre-training, I sorted the sentences of the
Billion Words corpus (BWB) in ascending order
by length. Missing Link is able to assign higher
confidence to words in shorter sentences. This al-

lows it to have a relatively small set of hypothe-
ses for many words that occur in shorter sentences,
which it can then use to better learn nearby words
in longer sentences. Sentences of length less than
3 were excluded, since most short sentences in
BWB are simple noun phrases or noisy punctu-
ation, which can confuse Missing Link. Sen-
tences of length greater than 10 were excluded as
well, since they tend to contribute little to Missing
Link’s confidence.

For practical reasons, I also restricted the num-
ber of categories learned for each cell in the chart
and lexical entry to 50, to improve efficiency while
still allowing for multiple simultaneous hypothe-
ses.

4.2 Training and Testing

Once the linguistic model is pre-trained, then it
can be used to train a logistic regression. To train
the logistic regression, Missing Link processes
each sentence in the CoLA training set, produc-
ing a confidence value for each potential senten-
tial category. If no parse is produced, or if S is
not in the results, then Missing Link is allowed to
learn from the sentence. By learning from sen-
tences where no valid parse was produced, Miss-
ing Link becomes robust to sentences where some
words were not in the original pre-training set. Af-
ter learning, Missing Link attempts to parse the
sentence again.

The confidence of the category S is used as one
independent variable for training the logistic re-
gression. The other independent variables are the
length of the sentence, whether the category S was
found (including after re-training), and whether re-
training was required. Longer sentences are in-
herently associated with lower probabilities due to
the independence assumptions used in composi-
tion. Sentences where the category S was never
found are also distinguished from sentences where
the probability of S was negligible; although both
are likely to indicate an ungrammatical sentence,
for long sentences, the distinction may be neces-
sary. Lastly, whether retraining was necessary is
a plausible predictor as well, since retraining indi-
cates that either some words are out of vocabulary
or the sentence could not be parsed with the previ-
ously learned categories.

Once the logistic regression has been fit to the
training data, the same process is applied to the
testing data in order to predict whether each sen-



Model MCC
MT-DNN 68.4
RoBERTa 67.8
XLNet-Large 67.8
GLUE Human Baseline 66.4
Missing Link 63.0
XLM 62.9
BERT-24 60.5

Table 1: CoLA Benchmark2

tence is grammatical or not.

5 Results and Conclusion

The Corpus of Linguistic Acceptability is eval-
uated using Matthews Correlation Coefficients,
since there are far more grammatical sentences in
the data than ungrammatical ones. A number of
other systems have been tested against CoLA and
can be used as benchmarks for Missing Link, since
the same training-testing split is used by all sys-
tems.

The results of the evaluation of Missing Link
as well as some of the top performing competi-
tors are given in Table 1. With an MCC of 63.0,
Missing Link does not advance the state-of-the-art
compared to deep learning models, but it does per-
form competitively. Given that Missing Link uses
only a basic logistic regression on top of the pre-
trained model, this presents evidence that Missing
Link is producing a reasonable grammar for the
data.

Given that Missing Link produces a reasonable
grammar, it can then be used for further study in
the fields of grammar formalisms and theoretical
linguistics. Different grammar formalisms can be
compared using the same core algorithm, allowing
for any variation in performance to be attributed to
properties of the grammar formalism. The algo-
rithm can also be used to explore specific linguis-
tic phenomena from a learning perspective. Given
two alternatives to a linguistic phenomenon, it is
possible to use Missing Link as one potential way
of distinguishing between the two. This presents a
new paradigm in linguistic research as a means of
exploring generative linguistics through a formal,
but nuanced, model of learning and learnability.
Missing Link is not necessarily the only algorithm
that supports this paradigm, but presents evidence

2These baselines are taken from the GLUE leaderboard at
the time of writing (Wang et al., 2019).

that such a paradigm is feasible for linguistic the-
ory.
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Abstract
Filler-gap dependencies are among the most
challenging syntactic constructions for com-
putational models at large. Recently, Wilcox
et al. (2018) and Wilcox et al. (2019b) pro-
vide some evidence suggesting that large-scale
general-purpose LSTM RNNs have learned
such long-distance filler-gap dependencies. In
the present work we provide evidence that
such models learn filler-gap dependencies only
very imperfectly, despite being trained on mas-
sive amounts of data. Finally, we compare the
LSTM RNN models with more modern state-
of-the-art Transformer models, and find that
these have poor-to-mixed degrees of success,
despite their sheer size and low perplexity.

1 Introduction

A flurry of recent work has shown that mod-
ern large-scale and general-purpose Long Short-
Term Memory (LSTM) Recurrent Neural Net-
works (RNN) achieve impressive results as com-
putational psycholinguistic models of human lan-
guage processing, such as Linzen et al. (2016),
Gulordava et al. (2018), Linzen and Leonard
(2018), van Schijndel and Linzen (2018), Futrell
et al. (2018), and Wilcox et al. (2019a)), to list
only a few. Some of this work has focused on
long-distance dependencies like (1), involving a
linkage between a wh-phrase and a gap. This is
one of the phenomena that Markovian language
models have always been inherently bad at.

(1) I know whoi the gardener reported the butler
said the hostess believed her aunt suspected
you delivered a challenge to i at the party.
(Wilcox et al., 2019b)

However, such long-distance dependencies
are accompanied by morphosyntactic constraints
which have not previously been tested, in particu-
lar, agreement constraints like those in (2).

(2) a. It was the lawyer who I think you said
was/*were upset.

b. It was the lawyers who I think you said
*was/were upset.

c. They wondered which lawyer I think you
said was/*were upset.

d. They wondered which lawyers I think you
said *was/were upset.

There are two different dependencies at work in
the these examples. One is between the filler
phrase who and the gap (i.e. the missing subject of
the embedded verb) and another between the head
noun lawyer(s) and the wh-phrase adjacent to it.
It is not possible to claim that LSTM RNN models
have learned English filler-gap dependencies with-
out showing that the associated morphosyntactic
constraints have also been learned. At the time of
this writing, LSTM RNNs are no longer the state-
of-the-art English language models. Transformer
(attention-based) models have obtained lower test-
time perplexity. In the present work we focus on
whether any of these neural language models have
truly learned long-distance agreement (filler-gap)
dependencies like those in (1) and (2).

The structure of the paper is as follows. First we
show that the same general-purpose LSTM RNN
models that Wilcox et al. (2019b) have claimed
to successfully cope with filler-gap dependencies
have not learned the morphosyntactic constraints
associated to such constructions, illustrated in (2).
Next, we compare these results with those of three
more recent transformer-based architectures that
have obtained better perplexity results, namely
Transformer-XL (Dai et al., 2019), BERT (Devlin
et al., 2018), XLNet (Yang et al., 2019), and Ope-
nAI GPT-2 (Radford et al., 2019).1

1All our materials, code, and analysis are available at
https://github.com/RuiPChaves/Transformers-FillerGap-
dependencies.

https://github.com/RuiPChaves/Transformers-FillerGap-dependencies
https://github.com/RuiPChaves/Transformers-FillerGap-dependencies


We acknowledge that these models are not di-
rectly comparable, and that the present results
should be taken with some caution because the
architectures are different (transformer vs. recur-
rent), as are the training objectives (masked lan-
guage modeling vs. non-masked language mod-
eling), evaluation methods (use of sentences pre-
fix + suffix vs. only prefix for language models),
and the training datasets. Nonetheless, we argue
that such a preliminary comparison is useful in
that is sheds some light on how well extremely
large neural models of English cope with perhaps
of the most historically vexing syntactic phenom-
ena in computational linguistics. As we shall see,
there is a wide range of variation in how accurately
the models cope with filler-gap dependencies, with
LSTM RNNs fairing among the worse. Our re-
sults are consistent with those reported by Gold-
berg (2019), which suggest that BERT is better
than LSTM RNNs at English subject-verb agree-
ment (Marvin and Linzen, 2018).

2 LSTM RNNs

Wilcox et al. (2019b) found evidence suggesting
that LSTM RNNs can maintain filler-gap depen-
dencies across up to at least four clausal bound-
aries like the one in (1). Two models were
used for these experiments. One was Gulordava
et al. (2018), henceforth the Gulordava model,
which was trained on 90 million tokens of En-
glish Wikipedia, and has two hidden layers of 650
units each. The second model was Jozefowicz
et al. (2016), henceforth the Google model, which
was trained on the One Billion Word Benchmark
(Chelba et al., 2013), has two hidden layers with
8196 units each, and uses the output of a character-
level Convolutional Neural Network as input to
the LSTM. One of the trademark properties of
filler-gap dependencies is that the morphosyntac-
tic properties imposed on the gap site are pre-
served by the filler phrase, as already illustrated in
(2). Here, the plural noun must be matched with
the plural verb form and the singular noun with the
singular verb. In what follows we examine how
well these dependencies are learned by the Gulor-
dava and Google models.

2.1 Experiment 1: agreement in clefts

Following basically the same experimental ap-
proach as Wilcox et al. (2018), we created 20 cleft
items using a 2⇥2⇥4 factorial design, for a total
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Figure 1: Surprisal of the gap-agreeing verb in ‘it’
clefts across 4 levels of embedding (LSTM RNNs)

of 320 sentences. All the conditions for an item
are illustrated in (3). Like Wilcox et al., we ex-
tracted the softmax activation of the critical verbs
were/was, given the prefix sentence, using basi-
cally the same code as Wilcox et al. (2018), made
available at https://osf.io/zpfxm/.

(3) a. It was the lawyer(s) who I think was/were
... [Nsg/pl , LEVEL1, Vsg/pl]

b. It was the lawyer(s) who I think you said
was/were ...
[Nsg/pl , LEVEL2, Vsg/pl]

c. It was the lawyer(s) who I think you said
you thought was/were ...
[Nsg/pl , LEVEL3, Vsg/pl]

d. It was the lawyer(s) who people believe I
think you said you thought was/were ...
[Nsg/pl , LEVEL4, Vsg/pl]

Finally, we converted the softmax values into sur-
prisal (i.e. the negative log probability), following
Wilcox et al. (2019b). See see Hale (2001) and
Levy (2008) for more discussion.

The results were rather weak, as shown by Fig-
ure 1. Had the RNNs succeeded at this task, then
the conditions where the noun and verb agree (i.e.
Npl-Vpl and Nsg-Vsg) would be lower in surprisal
than the conditions where the agreement is mis-
matched (i.e. Npl-Vsg and Nsg-Vpl). This was
generally not the case in either model. Finally, in
the larger Google model surprisal increased with
the level of embedding, so that the correct verb
form is more unexpected in level 4 than the incor-
rect verb forms in levels 1 and 2.

https://osf.io/zpfxm/
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Figure 2: Surprisal of the gap-agreeing verb in ‘which’
interrogatives across embedding levels (LSTM RNNs)

There is a general increase of surprisal as
clausal embedding increases, which in our view
may simply reflect the fact that multiple occur-
rences of embedded declarative clauses under
verbs of indirect discourse are rare. Overall, the
results suggest that these models have not learned
the morphosyntax of filler-gap dependencies.

2.2 Experiment 2: agreement in indirect
interrogatives

In order to assess if these results are specific to the
cleft construction, we converted the 20 items into
embedded interrogatives, effectively inverting the
order of the wh-phrase and the agreeing nominal
head, as (4) illustrates.

(4) a. Someone wondered which lawyer(s) I
think was/were ...
[Nsg/pl , LEVEL1, Vsg/pl]

b. Someone wondered which lawyer(s) I
think you said was/were ...
[Nsg/pl , LEVEL2, Vsg/pl]

c. Someone wondered which lawyer(s) I
think you said you thought was/were ...
[Nsg/pl , LEVEL3, Vsg/pl]

d. Someone wondered which lawyer(s) who
people believe I think you said you
thought was/were ...
[Nsg/pl , LEVEL4, Vsg/pl]

The outcome was the same, as Figure 2 illus-
trates, suggesting that our results are robust and
not specific to the type of filler-gap construction
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Figure 3: Surprisal of the gap-agreeing verb in ‘it’
clefts across embedding levels (Transformer-XL)

chosen. We conclude that the Gulordava and
Google models have not truly learned the mor-
phosyntax of filler-gap dependencies. In what fol-
lows we examine how more recent transformer-
based models fair at the same tasks.

3 Transformer-XL

Transformer-XL (Dai et al., 2019) has 24 mil-
lion parameters, an average attention span of
640 tokens, and 16 10-word transformer layers.
Transformer-XL is supposed to learn dependen-
cies that are about 80% longer than those learned
by RNNs but as Figure 3 shows, it did only
marginally better than the Google and the Gulor-
dava models when processing the same agreement
in clefts dataset from Experiment 1.

In fact, only in embedding level 1 was the sur-
prisal of agreeing N-V pairs statistically lower
than their non-agreeing counterparts (for Npl-Vpl
vs. Nsg-Vpl we have t = -2.39, p = 0.021, and
for Nsg-Vsg vs. Npl-Vsg we have t = -1.83, p =
0.068). For all other levels of embedding there
was no statistical difference in surprisal (p > 0.4),
except for level 3 where Npl-Vpl vs. Nsg-Vpl (t =
-2.13, p = 0.039). The model does equally bad
on the indirect interrogatives dataset from Experi-
ment 2, as Figure 4 illustrates.

3.1 Experiment 3: Filler-gap surprisal in
subject-inverted interrogatives

For completeness, we also tested Transformer-
XL’s ability to maintain a filler-gap dependency
without the interacting factor of subject-verb
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Figure 4: Surprisal of gap-agreeing verb in ‘which’ in-
terrogatives across embedding levels (Transformer-XL)

agreement. We created 20 items, in a 2 ⇥ 2 ⇥ 4
design, for a total of 320 sentences, as illustrated
in (5). We extracted the softmax value of the
masked post-gap region item (below, the preposi-
tion at). This experiment serves as the counterpart
of the experiments in Wilcox et al. (2019b) show-
ing LSTM RNNs can maintain filler-gap depen-
dencies across up to at least four clausal bound-
aries (diacritic ‘*’ not included in the input).

(5) a.*What did we talk about it at the party?
[WH-NOGAP, LEVEL1]

b. What did we talk about at the party?
[WH-GAP, LEVEL1]

c. Did we talk about it at the party?
[NOWH-NOGAP, LEVEL1]

d.*Did we talk about at the party?
[NOWH-GAP, LEVEL1]

The results confirm that Transformer-XL has a
poor representation for filler gap dependencies, as
seen in Figure 5. Already at one level of embed-
ding the surprisal of the (ungrammatical) nowh-
gap condition is lower than the grammatical nh-
gap counterpart, whereas it should be the other
way around. In levels 2 through 4 there is no sta-
tistical difference between any of the four condi-
tions.

3.2 Experiment 4: Filler-gap surprisal in
uninverted indirect interrogatives

In order to determine if the results of Experi-
ment 3 scale to other filler-gap constructions, we
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Figure 5: Surprisal of the post-gap region in inverted
interrogatives at embedding level 1 (Transformer-XL)

constructed non-inversion counterparts of the 20
items, illustrated in (6). As before, we extracted
the softmax activation of the critical verbs at the
end of the item, after the sentence prefix is pro-
cessed. The results were similar in that in no level
of embedding the correct surprisal pattern was ob-
served. See the materials for details.

(6) a. People wondered what we talked about it
at ... [WH-NOGAP, LEVEL1]

b. People wondered what we talked about
at ... [WH-GAP, LEVEL1]

c. People wondered if we talked about it at
... [NOWH-NOGAP, LEVEL1]

d. People wondered if we talked about at
... [NOWH-GAP, LEVEL1]

We conclude that the English Transformer-XL
model does much worse than the English LSTM
RNNs in coping with filler-gap dependencies.

4 BERT

Google’s Bidirectional Encoder Representations
from Transformers (BERT) is a transformer-based
model that learns bidirectional encoder word rep-
resentations via a masked language model training
objective, using 340 million parameters, 768 hid-
den layers, 24 transformer blocks, and 1020 word
context windows.

Using the same agreement in filler-gap depen-
dencies dataset used in Experiment 1, we probe
whether BERT assigns relative probability to plu-
ral and singular verb forms in such a way that this
consistent with the agreement information of the
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Figure 6: Surprisal of the gap-agreeing verb in ‘it’
clefts across 4 levels of embedding (BERT)

nominal antecedent at the top of the filler-gap de-
pendency. Like Goldberg (2019) and Wolf (2019),
we masked the verb and then extracted the softmax
values for both was and were, as shown in (7).

(7) a. It was the lawyer(s) who I think [MASK]
upset. [Nsg/pl , LEVEL1]

b. It was the lawyer(s) who I think you said
[MASK] upset. [Nsg/pl , LEVEL2]

c. It was the lawyer(s) who I think you
said you thought [MASK] upset. [Nsg/pl ,
LEVEL3]

d. It was the lawyer(s) who people believe I
think you said you thought [MASK] up-
set. [Nsg/pl , LEVEL4]

The results are much better than those obtained by
LSTM RNNs on the same items, as Figure 6 illus-
trates. The surprisal of the agreeing conditions is
systematically lower than that of the non-agreeing
conditions in all embeddings (all ps < 0.0001).

In the next experiment, the 20 items were con-
verted the which interrogative counterparts, analo-
gously to Experiment 2 above, where the agreeing
verb were masked, as seen in (8).

(8) a. Someone wondered which lawyer(s) I
think [MASK] upset. [Nsg/pl , LEVEL1]

b. Someone wondered which lawyer(s) I
think you said [MASK] upset. [Nsg/pl ,
LEVEL2]

c. Someone wondered which lawyer(s) I
think you said you thought [MASK] up-
set. [Nsg/pl , LEVEL3]
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Figure 7: Surprisal of the gap-agreeing verb in ‘which’
questions across embedding levels (BERT)

d. Someone wondered which lawyer(s)
who people believe I think you said
you thought [MASK] upset. [Nsg/pl ,
LEVEL4]

The results are in Figure 7, and are only weak in
embedding level 4, where neither condition is sta-
tistically different in the V-sg (t = 0.91, p = 0.36)
nor in the V-pl (t = 1.93, p = 0.06) conditions.

If BERT’s ability to maintain filler-gap depen-
dencies in memory is too superficial and eager,
then it may ignore the presence of a local subject,
and not recognize that a subject gap is grammatri-
cally impossible, as in (9).

(9) a.*It was the boys who I think she/he were
lost [Npl , Vpl , LEVEL1]

b.*It was the boy who I think we/they was
lost. [Nsg , Vsg , LEVEL1]

For example, if the model attempts to link boys

to the copula verb in (9a) despite the local sub-
ject pronoun, then the surprisal of were should be
higher than that of was. Similarly, if the model
attempts to link boy to the copula verb in (9b) de-
spite the local subject pronoun, then the surprisal
of was should be lower than that of were. The
presence of the pronoun makes the subject gap im-
possible, and BERT should be sensisitive to that.

We therefore inserted a pronoun in the gap site
of the 20 items used in the experiment immedi-
ately above, and made sure the verb agreed with
the fronted phrase, not the pronoun. What we
found was a complete reversal of the surprisal val-
ues. As Figure 8 shows, BERT suspends the filler-



1 2 3 4

V−pl V−sg V−pl V−sg V−pl V−sg V−pl V−sg

0

5

10

15

S
u
rp

ri
sa

l

FillerCondition N−pl N−sg

Figure 8: Surprisal of the (dis)agreeing verb in ‘it’
clefts across 4 levels of embedding (BERT)

gap linkages in the copula of examples like (9).
We conclude that BERTs processing of filler-gap
dependencies is not trivially shallow.

As in Experiments 3 and 4 above, we also ex-
amined BERT’s ability to maintain a filler-gap de-
pendency without the interacting factor of subject-
verb agreement. Using the same items as in §3.1
and §3.2, illustrated in (10), we extracted the soft-
max value of the masked post-gap region item (be-
low, the preposition at).

(10) a.*What did we talk about it at the party?
[WH-NOGAP, LEVEL1]

b. What did we talk about at the party?
[WH-GAP, LEVEL1]

c. Did we talk about it at the party?
[NOWH-NOGAP, LEVEL1]

d.*Did we talk about at the party?
[NOWH-GAP, LEVEL1]

As Figure 9 shows, BERT is able to repre-
sent the filler gap dependency up to four levels
of clausal embedding. Surprisal is highest when
there is a gap but no wh-phrase, and lower when
(i) there is no gap and no wh-phrase and (ii) when
there is a gap and a wh-phrase. The low sur-
prisal obtained for the case where there is no gap
and wh-phrase is more difficult to interpret, since
the model’s input has access to information about
clausal boundaries. In that sense, the surprisal is
lower than one would expect.

BERT faired equally well with the uninverted
indirect interrogative counterparts of (5), shown in

(11), which were identical to the items used in Ex-
periment 4 above; see §3.2.

(11) a.*People wondered what we talked about it
at the party. [WH-NOGAP, LEVEL1]

b. People wondered what we talked about
at the party. [WH-GAP, LEVEL1]

c. People wondered if we talked about it at
the party. [NOWH-NOGAP, LEVEL1]

d.*People wondered if we talked about at
the party. [NOWH-GAP, LEVEL1]

BERT’s masked language objective has an ad-
vantage over RNN models in that it has access to
input after the masked critical item, e.g. the string
the party in (5). We therefore ran a 2 ⇥ 2 ⇥ 4
variant of Experiment 6 in which the masked crit-
ical items were adverbs like yesterday, repeatedly,
again, and then, in sentence-final position:

(12) a.* What did we talk about it yesterday?
[WH-NOGAP, LEVEL1]

b. What did we talk about yesterday?
[WH-GAP, LEVEL1]

c. Did we talk about it yesterday?
[NOWH-NOGAP, LEVEL1]

d.* Did we talk about yesterday?
[NOWH-GAP, LEVEL1]

The results were radically different, as the sur-
prisal was essentially inverted as shown in Figure
10. This pattern remained the same in deeper em-
bedding levels, suggesting that BERT’s ability to
maintain filler-gap dependencies is brittle.

Finally, we also ran a variant of this experi-
ment where the 20 items were converted into em-
bedded interrogatives, without inversion. Again,
the masked critical items were the adverbs in
sentence-final position:

(13) a.* People wondered what we talked about it
repeatedly.
[WH-NOGAP, LEVEL 1]

b. People wondered what we talked about
repeatedly.

[WH-GAP, LEVEL 1]

c. People wondered if we talked about it re-
peatedly.
[NOWH-NOGAP, LEVEL 1]
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Figure 9: Surprisal of the post-gap region in subject-inversion interrogatives across embedding levels (BERT)
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Figure 10: Surprisal of the sentence-final adverb in
subject-inversion interrogatives, embedding 1 (BERT)

d.* People wondered if we talked about
repeatedly.

[NWH-GAP, LEVEL 1]

Now, the condition with the highest surprisal was
nwh-ngap, suggesting that the model does not ex-
pect sentence-final adverbs to follow pronouns in
the absence of a filler-gap dependency. The first
level of embedding is shown in Figure 11. BERT’s
modelling of filler-gap dependencies is better than
all other models surveyed so far but still brittle.

5 XLNet

XLNet (Yang et al., 2019) is like BERT in that
it uses a masked model training objective and
learns bidirectional contexts. Although XLNet is
claimed to achieve better results than BERT in a
number of tasks, we found that it performed worse
in the same experiments ran on BERT, failing to
provide clear evidence that filler-gap dependencies
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Figure 11: Surprisal of the sentence-final adverb in un-
inverted indirect interrogatives at embedding 1 (BERT)

are attended to. For example, XLNet did much
worse with clefts items, like those illustrated in
(8). As can be seen in Figure 12, there is a signifi-
cant overlap across subject-verb agreeing and non-
agreeing conditions. Had the model learned about
agreement in filler-gap dependencies, the surprisal
of V-pl (were) in the N-pl condition should be sig-
nificantly lower than that of V-pl in the N-sg con-
dition. Similarly, the surprisal of V-sg in the N-pl
condition should be significantly higher than that
of V-sg (was) in the N-sg condition.

Similarly poor results were found for the in-
terrogative subject-agreement items, like those in
(7), as Figure 13 indicates. As in the case of
Transformer-XL, there is little evidence that the
model attends to filler-gap dependencies at all.

6 GPT-2

Unlike Google’s BERT, the OpenAI GPT-2 model
uses the same training objective as LSTM RNNs.
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Figure 12: Surprisal of the gap-agreeing verb in ‘it’
clefts across 4 levels of embedding (XL-Net)

It is therefore possible to simply take the soft-
max activation of the word of interest after the
sentence is processed. Preliminary evaluations on
subject-verb agreement data by Wolf (2019) indi-
cate that an earlier version of GPT-2 was worse
than BERT on the Linzen et al. (2016) dataset but
better in the more complex Marvin and Linzen
(2018) dataset. In what follows, we report our
findings for the more recent 345 million parameter
version of GPT-2, hf. GPT-2 medium.

We begin with the 20 cleft items from Experi-
ment 1, illustrated in (3), and repeated in (14). As
before, we extracted the softmax activation of the
words was and were across all conditions and con-
verted the values to surprisal.

(14) a. It was the lawyer(s) who I think was/were
... [Nsg/pl , LEVEL1, Vsg/pl]

b. It was the lawyer(s) who I think you said
was/were ...
[Nsg/pl , LEVEL2, Vsg/pl]

c. It was the lawyer(s) who I think you said
you thought was/were ...
[Nsg/pl , LEVEL3, Vsg/pl]

d. It was the lawyer(s) who people believe I
think you said you thought was/were ...
[Nsg/pl , LEVEL4, Vsg/pl]

The GPT-2 medium results are shown in Figure
14, and are clearly superior to BERT’s. For all
levels of embedding, the agreeing conditions re-
ceived statistically lower surprisal than that of the
non-agreeing conditions. Notice how the differ-
ential across the conditions tends to diminish with
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Figure 13: Surprisal of the gap-agreeing verb in
‘which’ questions across embedding levels (XLNet)
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Figure 14: Surprisal of the gap-agreeing verb in ‘it’
clefts across 4 levels of embedding (GPT-2)

deeper clausal embeddings, suggesting that the de-
pendency is lost in deeper embeddings.

The dataset from Experiment 2 – consisting of
which embedded interrogative like those in (4), re-
peated here as (15) – yielded virtually the same
results, as shown in Figure 15. This suggests that
GPT-2 small is cross-constructionally robust up
four levels of clausal embedding.

(15) a. Someone wondered which lawyer(s) I
think was/were ...
[Nsg/pl , LEVEL1, Vsg/pl]

b. Someone wondered which lawyer(s) I
think you said was/were ...
[Nsg/pl , LEVEL2, Vsg/pl]

c. Someone wondered which lawyer(s) I
think you said you thought was/were ...
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Figure 15: Surprisal of the gap-agreeing verb in
‘which’ questions across levels of embedding (GPT-2)

[Nsg/pl , LEVEL3, Vsg/pl]

d. Someone wondered which lawyer(s) who
people believe I think you said you
thought was/were ...
[Nsg/pl , LEVEL4, Vsg/pl]

For completeness, we also examined GPT-2’s
ability to maintain a filler-gap dependency with-
out the interacting factor of subject-verb agree-
ment in both clefts and interrogatives, analogously
to what was done in Experiments 3 and 4. The
same items were used, and as in the LSTM RNN
and Transformer-XL cases we extracted the soft-
max activation of the word at the end of the item,
after the prefix string is processed.

As Figure 16 shows, GPT-2 medium performed
moderately well for the 20 cleft items (same data
as Experiment 3), though the results were not as
strong as BERT’s. One major difference is that
the surprisal of the wh-gap condition was system-
atically higher than that of the nwh-ngap condi-
tion. Ideally, the two should overlap. The rela-
tively high surprisal of the wh-ngap condition is
arguably due to the model maintaining expecta-
tions that the gap is further downstream in the sen-
tence. Still, the results overall suggest that the
filler-gap dependency is attended do.

The subject inversion counterpart of the 20
items (same data as Experiment 4) led to results
closer to BERTs, whereby the surprisal of the wh-
gap condition overlapped with that of nwh-ngap
condition (all p > 0.3), as seen in Figure 17.
In both of these experiments, the results were the
same in subsequent embeddings.
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Figure 16: Surprisal of the post-gap region in unin-
verted indirect interrogatives in embedding 1 (GPT-2)
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Figure 17: Surprisal of the post-gap region in inverted
interrogatives across in embedding 1 (GPT-2)

7 Discussion

Filler-gap dependencies still pose challenges for
general-purpose large-scale state-of-the-art neural
architectures. We show LSTM RNNs fair very
poorly, despite the results of Wilcox et al. (2018)
and Wilcox et al. (2019b). More modern models
like Transformer-XL and XLNet do even worse.

However, BERT and GPT-2 perform rather
well, although not without some mixed results.
For example, the performance differs significantly
across different kinds of filler-gap dependency,
which suggests that the models are somewhat brit-
tle even though they are extremely large, and
trained on enormous amounts of data.
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Abstract

A number of recent studies have investigated
the ability of language models (specifically,
neural network language models without syn-
tactic supervision) to capture syntactic depen-
dencies. In this paper, we contribute to this
line of work and investigate the neural network
learning of the Russian genitive of negation.
The genitive case can optionally mark direct
objects of negated verbs, but it is obligatory in
the existential copula construction under nega-
tion. We find that the recurrent neural net-
work language model we tested can learn this
grammaticality pattern, although it is not clear
whether it learns the locality constraint on the
genitive objects. Our results further provide
evidence that RNN models can distinguish be-
tween optionality and obligatoriness.

1 Introduction

Statistical language models are probability distri-
butions over sequences of words, which they learn
from large corpora during training. For any given
context, these models assign a probability to all of
its possible continuations: for a example, given the
context “he was eating soup with a. . . ”, language
models can predict that the word “spoon” is much
more likely to occur next than “shoe”.

A class of language models – Recurrent Neu-
ral Network (RNN) models – have been par-
ticularly successful on various applied language
tasks (Mikolov et al., 2010; Vinyals et al., 2015;
Kiperwasser and Goldberg, 2016; Bahdanau et al.,
2014). But what kind of linguistic knowledge
do these models capture? Arguably, human lan-
guage knowledge is comprised of more than word
co-occurrence statistics – it encompasses abstract
rules and generalizations that concern hierarchi-
cal structure. According to the argument from
the poverty of the stimulus (Chomsky, 1980), the
kind of structural knowledge that underlies hu-

man linguistic performance is impossible to de-
rive purely from the input language learners re-
ceive, since many structure-dependent linguistic
phenomena are too infrequent in the type of in-
put humans encounter during language acquisi-
tion. Therefore, according to the argument, human
sensitivity to the structure in language must be in-
nate.

Since neural networks do not possess this in-
nate bias – but perform applied natural language
tasks with high accuracy – they can provide a rich
source of information about the mechanisms un-
derlying hierarchical structure rule learning. A
number of questions need to be asked. How much
grammar can language models learn just from a
corpus? What are the limitations on the general-
izations they can make about hierarchical struc-
tures? Recently, several studies have addressed
these questions by testing RNNs’ performance
on structure-sensitive grammatical tasks. The re-
sults of these studies showed that RNNs can learn
subject-verb agreement (Linzen et al., 2016; Gu-
lordava et al., 2018; Ravfogel et al., 2018), filler-
gap dependencies (Wilcox et al., 2018), hierar-
chical rules of question formation (McCoy et al.,
2018), and the contexts that license negative polar-
ity items (Jumelet and Hupkes, 2018).

In this paper, we contribute to this line of re-
search by extending it to issues in Russian syn-
tax. What makes Russian compelling is that it
has rich morphology, which allows us to expand
the range of tasks that have been used in previ-
ous work to explore RNN learning of structural
dependencies. In particular, Russian has case-
marking alternations involving the genitive case:
along with the accusative case (which is typical
cross-linguistically), the genitive can mark direct
objects of transitive verbs. However, it is only li-
censed under negation, and is optional – the ac-
cusative case can be used in both affirmative and



negative clauses. The genitive also alternates with
the nominative case to mark the subjects of exis-
tential copula constructions, where it is obligatory

under negation. Nominative subjects are only al-
lowed with affirmative sentences. We spell out
these properties in more detail in the next section.

2 Background: Russian

genitive-of-negation

In Russian, direct objects are usually marked by
the accusative case, as is common in languages
with overt case marking:

(1) Uchitel
Teacher

proveril
graded

domasniye zadaniya
homeworksACC

“The teacher graded the homeworks.”

However, non-oblique arguments can receive
genitive case in the scope of sentential negation –
a phenomenon known as the genitive of negation
(Bailyn, 1997; Pesetsky, 1982; Paducheva, 2004;
Harves, 2002; Timberlake, 1975; Babby, 1980):

(2) Uchitel
Teacher

ne

neg

proveril
graded

domasniye zadaniya
homeworks.ACC

“The teacher did not grade the home-
works.”

(3) Uchitel
Teacher

ne

neg

proveril
graded

domasnih zadaniyj
homeworks.GEN

“The teacher did not grade the home-
works.”

If the sentence is affirmative, only the ac-
cusative case can be used to mark the direct object:

(4) * Uchitel
Teacher

proveril
graded

domasnih zadaniyj
homeworks.GEN

“The teacher graded the homeworks.”

Further, the genitive is only licensed when the
negation term is local: in sentences like (5), the
relative clause negation cannot license genitive
case-marking on the main verb object domasnih
zadaniyj. We will refer to this licensing pattern as
the LOCALITY CONSTRAINT.

(5) * Uchitel,
Teacher

kotoryj
who

ne
neg

lyubil
like

studentov,
students

proveril
graded

domasnih zadaniyj
homeworks.GEN

“The teacher, who didn’t like the students,
graded the homeworks.”

The genitive of negation is considered to be op-

tional in sentences like (3) (Kagan 2010, although

see Bailyn 1997; Harves 2002 for discussion), but
it is obligatory in the existential copula construc-
tion, where the genitive alternates with the nomi-
native case:

(6) (Bailyn, 1997)
a. Na

on
stole
table

net

neg

knig
books.GEN

“There are no books on the table.”
b. * Na

on
stole
table

net

neg

knigi
books.NOM

”There are no books on the table.”

3 Overview of experiments

Motivated by the observations in the previous sec-
tion, we explored how well language models can
capture the properties of the genitive of nega-
tion. We ran a series of experiments to study the
behavior of an RNN language model trained by
Gulordava et al. (2018). In Experiment 1, we
tested the language model on simple sentences
with case-marking alternation on direct objects,
finding that the model learned the grammaticality
pattern in (3–4). In Experiments 2–4, we tested
whether the model was sensitive to the structurally
defined scope of negation. We found that the
model correctly predicted the genitive-accusative
alternation even when there was no overt marking
of sentential scope. In Experiment 5, we tested
the model on the existential copula construction in
which the genitive case is obligatory under nega-
tion. Our results suggest that the model could dif-
ferentiate between the syntactic structures where
the genitive case is obligatory from those where it
is optional.

4 Methodology

To explore whether RNN language models can
capture the constraints on genitive-marked direct
objects, we studied the performance of the model
presented in Gulordava et al. (2018). The model
was trained on a 90-million-word corpus extracted
from the Russian Wikipedia and had two layers of
650 hidden LSTM units. Additionally, we trained
a 3-gram model on the same corpus to provide a
baseline for our experiment. The 3-gram model
which backs off to smaller n-grams using linear
interpolation.

Following previous work (Linzen et al., 2016;
Gulordava et al., 2018; Marvin and Linzen, 2018),
we assessed the model’s performance by exam-
ining the probabilities it assigned to grammatical



sentences from our dataset, compared to ungram-
matical ones. We used surprisal (Hale, 2001):

surprisal(wi) = �log P(wi | w1 . . . wi�1)

The higher the surprisal, the more unexpected
a word is under the model’s probability distribu-
tion. Since the sentences in (3) and (4) are min-
imally different from each other (the only differ-
ence being that the verb in (3) is negated), we
can directly compare the surprisal the model as-
signed to the genitive-marked objects in these sen-
tences. Assuming the probability distribution de-
fined by the model reflects the grammar of the gen-
itive of negation construction, we expected that the
genitive-marked object would be assigned higher
surprisal in (4), where it is not licensed by nega-
tion. Since accusative objects are grammatical
independently of polarity, we did not expect the
same difference between (1) and (2).

5 Experiments

5.1 Experiment 1: Simple sentences

5.1.1 Materials

We constructed a dataset of 64 sentences, each
consisting of a subject, a verb, and an object. For
each sentence, we included four versions which
varied in main verb polarity (positive or nega-
tive) and the case marking of the direct object (ac-
cusative or genitive), yielding a total of 256 ex-
perimental items. Examples (7a–7d) represent all
four conditions for one item in our dataset. Only
the sentence in (7b) is ungrammatical: both (7a)
and (7c) are grammatical because accusative ob-
jects are always licensed, and in (7d), the geni-
tive of negation is grammatical because it is within
the scope of a negated verb. In (7b), however, the
genitive-marked object is not licensed by negation,
which makes the whole sentence ungrammatical.

(7) a. positive-accusative

Vystavka
Exhibition

artista
of-artist

poterpela
suffered

proval
failure.ACC

“The artist’s exhibition was a failure.”
b. positive-genitive

* Vystavka
Exhibition

artista
of-artist

poterpela
suffered

provala
failure.GEN

“The artist’s exhibition was a failure.”
c. negative-accusative

Vystavka
Exhibition

artista
of-artist

ne

neg

poterpela
suffered

proval
failure.ACC

“The artist’s exhibition wasn’t a fail-
ure.”

d. negative-genitive

Vystavka
Exhibition

artista
of-artist

ne

neg

poterpela
suffered

provala
failure.GEN

“The artist’s exhibition wasn’t a fail-
ure.”

Given this pattern, we expected that the model
would assign higher surprisal to the word provala
‘failure.GEN’ in (7b) than in (7d), but there would
be no such difference for the word proval ‘fail-
ure.ACC’ in (7a) and (7c).

5.1.2 Results

LSTM Consistent with our predictions, the
genitive-marked direct objects were less surprising
when the verb was negated (see Figure 2a). Fig-
ure 3a shows that the difference between the pos-
itive and negative conditions is much bigger for
genitive-marked objects than for the accusative-
marked ones. This suggests the model learned that
the negative-polarity constraint only applies to ob-
jects marked by the genitive case.

We further tested this by running a linear mixed
effects model (Baayen et al., 2008) with the
model-assigned surprisal as the dependent vari-
able, and case, polarity, their interaction, and item
frequency as predictors. We found a main effect
of case (p = 0.004), as well as an interaction be-
tween case and polarity (p < 0.0001). Surprisal
was significantly affected by polarity for genitive-
marked objects (p < 0.0001), but not for ac-
cusative objects (p = 0.09).

Although we did not find a main effect of fre-
quency, we performed a follow-up analysis aimed
to rule out the possibility that unigram frequency
could be a confound for these results. Fig-
ure 1 shows that accusative-marked objects in our
dataset had much higher unigram frequency in the
training corpus than the genitive-marked objects.
To test for the presence of the frequency effects,
we re-ran the linear mixed effects analysis on sur-
prisal scores that we normalized by subtracting
the target word’s log frequency from its surprisal
score. The pattern remained the same: we found



main effects of frequency (p = 0.006) and, as be-
fore, of case (p = 0.004), as well as an interaction
between case and polarity (p < 0.0001).

N-gram We found a main effect of case (p <
0.0001) and frequency (p = 0.001), but not of po-
larity (p = 0.7). There was no interaction between
case and polarity (p = 0.8). Figure 4b shows there
was no difference between the positive and nega-
tive conditions for either case. We observed this
pattern in all experiments we ran, unless otherwise
stated.
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Figure 1. Average unigram frequency (word count di-
vided by the size of the training corpus) of accusative
and genitive objects from our dataset.

5.1.3 Discussion

Our results suggest that the model at least learned
to encode case: to predict the grammaticality pat-
tern in (7a–7d), the model needed to infer that
the grammaticality of the genitive case – but not
the accusative – is constrained by the presence of
negation.

However, these results alone are not sufficient
to conclude that the model was able to infer the
syntactic structure that licenses the genitive of
negation. Since our experimental items had SVO
word order, it could have instead learned a linear
rule where the genitive-marked object is allowed
whenever it follows negation. Instead, the locality
constraint would predict that the object in the gen-
itive case is licensed only when it is in the scope
of negation.

To test whether the model has learned the lo-
cality constraint, we ran a series of experiments
in which we modified our experimental sentences
to include the following distractors: (1) a negated
relative clause, while the genitive-marked object
was licensed by the negated main clause verb,
(2) a complement clause, whose polarity varied

between positive and negative, and whose main
clause was always negative, and (3) a negated par-
ticipial construction. We give a detailed descrip-
tion of these constructions in the following sec-
tions.

5.2 Experiment 2: Relative clauses

5.2.1 Materials

To test whether the model learned that the genitive
of negation is only licensed under the scope of sen-
tential negation, we modified the simple sentences
from our dataset to include a relative clause with
a negated verb. It is crucial for the model to in-
fer the syntactic structure of these sentences: the
model needs to be able to represent local scope in
order to correctly predict that (8b) is ungrammati-
cal – since the genitive-marked object in this case
is outside the scope of negation.

(8) a. * Vystavka
Exhibition

artista,
of-artist

kotoryj
who

ne

neg

lyubil
loved

vnimaniya
attention

publiki,
public

poterpela
suffered

provala
failure.GEN

“The exhibition of the artist, who
didn’t like public attention, was a fail-
ure.”

b. Vystavka
Exhibition

artista,
of-artist

kotoryj
who

ne

neg

lyubil
loved

vnimaniya
attention

publiki,
public

ne

neg

poterpela
suffered

proval
failure.GEN

“The exhibition of the artist, who
didn’t like public attention, was not a
failure.”

5.2.2 Results

LSTM The model’s surprisal was highest in the
positive-genitive condition (Figure 2b), suggest-
ing that genitive-marked direct objects were more
expected when they were licensed by the negated
main clause verb. We found main effects of case
(p = 0.01) and polarity (p = 0.04), and the two
terms interacted (p < 0.0001). Polarity signifi-
cantly affected both genitive-marked (p = 0.0001)
and accusative-marked (p = 0.04) objects. Fig-
ure 3b shows that for the accusative-marked ob-
jects, the difference between positive and negative
conditions was the inverse of the genitive case:
an accusative-marked object was more surprising
when the main clause verb was negated.

The analysis of frequency effects revealed that
normalized surprisal scores were significantly af-
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Figure 2. Surprisal averaged by condition (Experiments 1–4). Error bars indicate 95% confidence intervals.

fected by case (p = 0.01), frequency (p = 0.001),
and the interaction of case and polarity (p <
0.0001).

N-gram The trigram model’s performance was
the same as in Experiment 1.

5.2.3 Discussion

Our results suggest the model learned the genitive-
marked object was licensed only when it appeared
in the scope of negation – which in turn required
the representation of syntactic structure. If the
model had learned only the linear rule, it would
have assigned the same surprisal in both positive-
genitive and negative-genitive conditions, since
both linearly followed the negation in the scope
of the relative clause.

The main effect of polarity suggests that the
model possibly learned an interaction between
case and polarity, preferring accusative objects
with affirmative sentences and genitive objects un-
der negation.

5.3 Experiment 3: Complement clauses

5.3.1 Materials

In the previous experiment, the distractor (i.e. the
negation term that needed to be ignored) was al-

ways in the relative clause. This implies that
there are two possible interpretations of the re-
sults: 1) the model could represent the scope
of negation and apply it to the genitive licens-
ing rule, or 2) the model learned to ignore nega-
tion if it immediately followed the word kotoryj
‘that/who’, which marked the beginning of an em-
bedded clause. To rule out the second possibility,
we tested the model’s performance on sentences
with complement clauses. In this set of sentences,
the distractor was in the main clause, while the tar-
get word (the accusative- or genitive-marked di-
rect object) was in an embedded clause. The em-
bedded clause varied between positive and nega-
tive polarity – and only the latter licensed the gen-
itive object:

(9) a. * Zhurnalist
Journalist

ne

neg

znal
knew

chto
that

vystavka
exhibition

artista
of-artist

poterpela
suffered

provala
failure.GEN

“The journalist didn’t know that the
artist’s exhibition was a failure.”

b. Zhurnalist
Journalist

ne

neg

znal
knew

chto
that

vystavka
exhibition

artista
of-artist

ne

neg

poterpela
suffered

provala
failure.GEN
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(d) Participial construction

Figure 3. Within-item difference between positive and
negative conditions, averaged by case (Experiments 1–
4).

“The journalist didn’t know that the
artist’s exhibition was not a failure.”

5.3.2 Results

LSTM Average surprisal was lower for genitive-
marked objects when the embedded clause con-
tained a negated verb (Figure 2c), suggesting the
model learned to represent sentential scope and
did not mistake main clause negation for a licen-
sor. Average within-item difference between pos-
itive and negative conditions was also greater for
the genitive case (Figure 3c).

As before, we ran a linear mixed effects model
to test the significance of these findings. We
found a main effect of case (p = 0.0006), as
well as an interaction between case and polarity
(p < 0.0001). The surprisal the language model
assigned to genitive-marked objects was signifi-
cantly affected by the embedded clause’s polarity
(p < 0.0001), while there was no such effect for
the accusative case (p = 0.17).

Our analyses of surprisal scores normalized by
frequency revealed main effects of case (p =
0.0004) and frequency (0.002), as well as an in-
teraction between case and polarity (p < 0.0001).

N-gram The model’s performance was the same
as in Experiment 1.

5.3.3 Discussion

These results provide further evidence that the
model learned the locality constraint on genitive
licensing: although the main clause verb was
negated in all four conditions, the surprisal the
model assigned to the genitive-marked object was
reduced when the verb in the embedded clause was
negated as well.

5.4 Experiment 4: Participial constructions

5.4.1 Materials

Experiments 2 and 3 provide some evidence that
the model learned the scope constraint on the gen-
itive of negation. However, the sentences we
tested in these experiments contained overt cues
that indicated the scope of negation that the model
needed to ignore: in Experiment 1, the relative
pronoun kotoryj indicates the beginning of the rel-
ative clause, and in Experiment 2, the pronoun
chto indicates the beginning of the complement
clause. Would the model be able to identify the
scope of negation without these cues? We inves-
tigated this by testing the model’s performance on
the Russian participial construction, which has no
overt function words marking the scope of nega-
tion. We constructed an experimental set of sen-
tences which consisted of simple sentences such
as those in (7a-7d) with an active present or past
participle modifying the subject.

(10) a. * Ne

neg

poluchivshaya
received.PTCP

vnimaniya
attention

pressy
of-press

vystavka
exhibition

artista
of-artist

poterpela
suffered

provala
failure.GEN

“The artist’s exhibition, which did not
receive attention from press, was a
failure.”

b. Ne

neg

poluchivshaya
received.PTCP

vnimaniya
attention

pressy
of-press

vystavka
exhibition

artista
of-artist

ne

neg

poterpela
suffered

provala
failure.GEN

“The artist’s exhibition, which did not
receive attention from press, was not a
failure.”

In (10a), the genitive-marked object provala
‘failure’ is outside of the scope of negation, so we
expected that it would be more surprising than in



(10b), where the genitive is licensed by sentential
scope.

5.4.2 Results

LSTM Figure (2d) shows the model assigned
higher probability to genitive-marked objects
when they were licensed by a negated verb. A lin-
ear mixed effects analysis confirmed surprisal was
affected by case (p = 0.01), as well as the interac-
tion between case and polarity (p < 0.0001). Po-
larity was significant for genitive-marked objects
(p < 0.0001), but not for accusative-marked ones
(p = 0.098).

Surprisal scores normalized by frequency were
significantly affected by case (p = 0.01), fre-
quency (p = 0.003), and the interaction between
polarity and case (p < 0.0001).

N-gram The model’s performance was the same
as in Experiment 1.

5.4.3 Discussion

The model was able to capture the grammatical-
ity pattern in (10a–10b) despite the lack of overt
scope marking cues – suggesting that the model in
fact represents the scope of negation instead of re-
lying on cues such as function words introducing
embedded clauses.

5.5 Experiment 5: Existential copula

construction

5.5.1 Materials

In the experiments we have presented so far,
the genitive case was always optional: genitive-
marked direct objects were only grammatical in
the scope of sentential negation, while the ac-
cusative case was licensed whether the sentence
had positive or negative polarity. We expected
to see higher surprisal for genitive-marked objects
when they were outside of the scope of negation,
but we did not expect any polarity-related differ-
ence for the accusative case.

The situation is different in the Russian exis-
tential copula construction. First, in this con-
struction the case alternation concerns the subject,
which can be assigned the nominative or the gen-
itive case. Second, the genitive case is always
obligatory under negation. Finally, the nomina-
tive case marking is also constrained (unlike the
accusative with direct objects): subjects can only
receive nominative case when the sentence is af-
firmative. In other words, although in previous

examples only the positive genitive condition was
ungrammatical, in the case of the existential con-
struction the negative nominative condition is un-
grammatical as well:

(11) a. U
At

vystavki
exhibition

byl
was

proval
failure.NOM

“The exhibition was a failure.”
b. * U

At
vystavki
exhibition

byl
was

provala
failure.GEN

“The exhibition was a failure.”
c. * U

At
vystavki
exhibition

ne

neg

bylo
was

proval
failure.NOM

“The exhibition was not a failure.”
d. U

At
vystavki
exhibition

ne

neg

bylo
was

provala
failure.GEN

“The exhibition was not a failure.”

5.5.2 Results

LSTM A linear mixed-effects analysis revealed
main effects of polarity (p < 0.0001), case (p <
0.0001), and frequency (p = 0.0003). The inter-
action between case and polarity was significant as
well (p < 0.0001).

N-gram We found main effects of polarity (p =
0.001), case (p = 0.0007), and frequency (p <
0.0001). There was also a significant interaction
of case and polarity (p < 0.0001).

5.5.3 Discussion

The main effect of polarity shows that the model
learned constraints on both the nominative and the
genitive case: the genitive is licensed under nega-
tion and ungrammatical in affirmative sentences,
while the opposite is true for the nominative.

Further, within-item difference for both the
nominative and the genitive is much bigger than
in other experiments (Figure 5a) – which sug-
gests that the model distinguished between op-
tionality and obligatoriness. I.e., the magnitude
of surprisal was reduced in the positive-genitive
condition when it was optional under negation.
However, when it was required under negation,
genitive-marking with positive polarity was more
surprising.

Compared to previous experiments, there was a
stark difference in surprisal scores between posi-
tive and negative conditions. This could be due
to the fact that the the verb byt’ ‘to be’ always ap-
pears in 3rd person singular under negation, which
could have provided the model with an additional
cue that the genitive case is required.
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Figure 4. Surprisal averaged by condition (Experiments 5–6). Error bars indicate 95% confidence intervals.
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Figure 5. Within-item difference between positive and
negative conditions, averaged by case (Experiments 5–
6).

5.6 Experiment 6

5.6.1 Materials

In the grammatical sentences used in Experi-
ments 1–5, the genitive objects were directly pre-
ceded by the neg + main verb bigram, which left
open the possibility that the LSTM model relied
on this linear structure as a cue that the genitive
case was licensed. We constructed a new dataset
where the main verb was separated from the direct
object by a parenthetical (e.g. “to the surprise of
the press” in 12a-12b). If the model is learning the
locality rule correctly, this parenthetical should not
intervene with inferring the grammaticality pattern
in 12a-12b.

(12) a. * Vystavka
Exhibition

artista
of-artist

poterpela,
suffered

k
to

udivleniju
surprise

pressy,
of-press

provala
failure.GEN

“The artist’s exhibition was a failure,
to the surprise of the press.”

b. Vystavka
Exhibition

artista
of-artist

ne

neg

poterpela,
suffered

k
to

udivleniju
surprise

pressy,
of-press

provala
failure.GEN

“The artist’s exhibition wasn’t a fail-
ure, to the surprise of the press.”

5.6.2 Results

LSTM We found a main effect of case (p <
0.0004) and frequency (p = 0.01), but not of po-
larity (p = 0.6); there was no interaction between
case and polarity (p = 0.1). Figure 4b shows there
was almost no difference in surprisal the model as-
signed to the genitive objects licensed by negation
compared to those that were ungrammatical.

N-gram There was a main effect of frequency
(p < 0.0001), but not of case (p = 0.34) or polar-
ity (p = 0.96). There was no interaction between
case and polarity (0.97).

5.6.3 Discussion

In (12b), the negation term was local to the target
genitive object, but linearly separated from it. If
the model was correctly learning the locality con-
straint, it would be able to predict that the gen-
itive object provala is grammatical in (12a), but
not (12b). However, the model could not identify
the negation term as the licensor in these types of
sentences, assigning similar surprisal to the geni-
tive objects in (12a) and (12b). This result, how-
ever, may be due to the rarity of the parentheti-
cal sentences in the training corpus, and does not
necessarily imply the model was not learning the
constraint in Experiments 1–5.

6 General discussion and future work

In this paper, we have examined the ability of an
RNN language model to learn several properties



of the Russian genitive of negation. The genitive
of negation can optionally mark direct objects of
transitive verbs when the latter are negated, and
is obligatory with subjects of existential copula
constructions under negation.

To be able to learn the polarity constraint on
the genitive case, the model needed to represent
the scope of negation. In Experiments 2 and 3,
we tested this by introducing distractors to our
experimental items: negated relative clauses and
complement clauses that were not licensed by
sentential negation. We found that the model’s
performance matched our predictions, assigning
higher surprisal to those genitive-marked objects
that were outside of the scope of negation. The
results from Experiment 4 further suggest that the
model could represent the scope of negation with-
out relying on such cues as function words explic-
itly marking clause boundaries.

Our results from Experiment 5 provide some
evidence that the model could differentiate be-
tween optionality and obligatoriness. First, we
found that both the nominative and the geni-
tive case were significantly impacted by polar-
ity (while only the genitive was affected in other
types of sentences we tested). Second, for both
the nominative and the genitive case the average
within-item difference between positive and nega-
tive conditions was much bigger than in other ex-
periments. Taken together, these results suggest
that the model learned that the genitive of nega-
tion was obligatory in existential sentences.

The results of Experiment 6 reveal that the
model could not learn the locality constraint on
the genitive of negation when the linear distance
between the main verb and the direct object was
increased. We tested sentences where a parenthet-
ical intervened before the main verb and its ob-
ject, and the model did not differentiate between
the sentences in which the genitive object was li-
censed by a local negation term from those where
it was not. However, this finding does not neces-
sarily imply that the model did not learn the local-
ity constraint in Experiments 1–5. One possible
explanation for the model’s behavior on the task
in Experiment 6 is that constructions where a par-
enthetical intervenes between the main verbs and
its object are not frequent in a natural corpus.

Further, more evidence is needed to asses
whether the model could differentiate between
syntactic structures which optionally licensed the

genitive case from those where it was obligatory.
One limitation of our approach is that we used the
same metric for both optional and obligatory uses
of the genitive of negation: we compared the sur-
prisal the model assigned to grammatical and un-
grammatical sentences, and the negated sentences
with the genitive case were grammatical whether
the genitive was obligatory or optional. A possi-
ble direction for future work could involve a com-
parison of our results to human processing data
(e.g. as in Futrell and Levy 2018). Since surprisal
scores tend to correlate with reaction times (Smith
and Levy, 2013), we would expect our results to
match human performance.

Finally, our study only addressed some proper-
ties of the genitive of negation and only a subset of
the syntactic structures in which it can appear. We
haven’t looked, for instance, into the genitive case
marking of unaccusative subjects (13) and derived
subjects of passives (14) (Bailyn, 1997):

(13) (Babby, 1980)

Zdes’
here

ne
neg

rastet
grows

gribov
mushrooms.GEN

“No mushrooms grow here.”

(14) (Bailyn, 1997)

Ne
neg

bylo
was

polucheno
received

gazet
newspapers.GEN

“No newspapers were received.”

There is also a slight difference in meaning be-
tween the genitive and accusative direct objects
that we haven’t addressed: while accusative di-
rect objects usually receive a definite interpreta-
tion, the genitive ones have an existential or indef-
inite interpretation (Bailyn, 1997; Harves, 2002).

While future investigation into these issues is
needed to gain a full picture of neural network
learning of the genitive of negation, our study adds
to the growing body of evidence that RNN lan-
guage models do not need syntactic supervision or
a hierarchical bias to capture syntactic dependen-
cies. Whether the same is true for human language
learners remains to be seen.
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Abstract

In this paper, we conduct a magnetoen-
cephalography (MEG) lexical decision exper-
iment and computationally model morpho-
logical processing in the human brain, espe-
cially the Visual Word Form Area (VWFA)
in the visual ventral stream. Five neuro-
computational models of morphological pro-
cessing are constructed and evaluated against
human neural activities: Character Markov
Model and Syllable Markov Model as “amor-
phous” models without morpheme units, and
Morpheme Markov Model, Hidden Markov
Model (HMM), and Probabilistic Context-
Free Grammar (PCFG) as “morphous” models
with morpheme units structured linearly or hi-
erarchically. Our MEG experiment and com-
putational modeling demonstrate that “mor-
phous” models outperformed “amorphous”
models, PCFG was most neurologically accu-
rate among “morphous” models, and PCFG
better explained nested words with non-local
dependencies between prefixes and suffixes.
These results strongly suggest that morphemes
are represented in the human brain and parsed
into hierarchical morphological structures.

1 Introduction

Under the single-route decomposition model of
morphologically complex visual word recognition
(Taft, 1979, 2004; Taft and Forster, 1975), there
are three functionally different stages of morpho-
logical processing: morphological decomposition,
lexical access, and morphological recombination.
In the first stage of morphological decomposition,
morphologically complex words are visually de-
composed into component morphemes. In the sec-
ond stage of lexical access, meanings of decom-
posed morphemes are lexically retrieved from the
mental lexicon. In the last stage of morphological
recombination, retrieved meanings of decomposed
morphemes are semantically composed.

In the cognitive neuroscience literature,
Fruchter and Marantz (2015) employed magne-
toencephalography (MEG) to spatiotemporally
dissociate those stages of morphological process-
ing. Specifically, the first stage of morphological
decomposition has been indexed by evoked
response components such as M170 (Zweig
and Pylkkänen, 2009; Solomyak and Marantz,
2010; Lewis et al., 2011; Fruchter et al., 2013;
Gwilliams et al., 2016) or Type II (Tarkiainen
et al., 1999; Helenius et al., 1999) in the visual
ventral stream of the human brain (Pylkkänen
and Marantz, 2003; Hickok and Poeppel, 2007).
Moreover, Dehaene et al. (2005) proposed local
combination detectors (LCDs) where linguistic
units such as characters, syllables, and morphemes
are convolutionally represented and processed in
the visual ventral stream from posterior occipital
to anterior temporal cortices and, importantly,
morphemes have been localized to the left
fusiform gyrus known as the Visual Word Form
Area (VWFA; Cohen et al., 2000, 2002; Dehaene
et al., 2001, 2002). For example, Solomyak and
Marantz (2010) and Lewis et al. (2011) computed
transition probabilities from stems to suffixes (e.g.
P (Suffix|Stem)) to successfully predict neural
responses to real (e.g. teach-er) and pseudo (e.g.
corn-er) bimorphemic words, respectively. These
results have suggested that morphemes may be
neurologically real in the human brain.

However, “amorphous” models without mor-
pheme units have recently been proposed in the
morphological processing literature (Baayen et al.,
2011; Virpioja et al., 2017). For instance, Baayen
et al. (2011) and Milin et al. (2017) proposed
Naive Discriminative Learning (NDL), a connec-
tionist model with direct mappings from forms
to meanings, to explain morphological process-
ing without morpheme units. In addition, Virpioja
et al. (2017) and Hakala et al. (2018) employed



Morfessor, an unsupervised finite-state model with
statistically induced “morphs” (Creutz and Lagus,
2007), to predict human reaction times and neu-
ral responses without linguistically defined mor-
phemes. Furthermore, as correctly pointed out by
Libben (2003, 2006), bimorphemic words exclu-
sively tested in the previous literature (Zweig and
Pylkkänen, 2009; Solomyak and Marantz, 2010;
Lewis et al., 2011) cannot distinguish linear mor-
phological decomposition from hierarchical mor-
phological parsing (cf. Song et al., 2019; Oseki
et al., 2019). Therefore, whether morphemes are
represented in the human brain and, if so, pro-
cessed linearly or hierarchically remains to be em-
pirically investigated.

In this paper, we conduct an magnetoen-
cephalography (MEG) experiment where partic-
ipants perform visual lexical decision on mor-
phologically complex words and, generalizing the
computational modeling technique developed in
the sentence processing literature (Frank et al.,
2015; Brennan et al., 2016), computationally
model morphological processing in the human
brain, with special focus on the VWFA in the
visual ventral stream. Specifically, five neuro-
computational models of morphological process-
ing are constructed and evaluated against human
neural activities: Character Markov Model and
Syllable Markov Model as “amorphous” models
without morpheme units, and Morpheme Markov
Model, Hidden Markov Model (HMM), and Prob-
abilistic Context-Free Grammar (PCFG) as “mor-
phous” models with morpheme units structured
linearly or hierarchically.

2 Methods

2.1 Participants
The participants were 26 native English speak-
ers recruited at New York University. All partic-
ipants were right-handed according to the Edin-
burgh Handedness Inventory (Oldfield, 1971) and
with normal or corrected-to-normal vision. They
provided written informed consent and were paid
$15/hour for their participation. We excluded
6 participants based on their behavioral perfor-
mance: 3 participants excluded due to low accu-
racy (< 75%) and 3 participants excluded due to
slow (> 2000 ms) or fast mean reaction times (<
500 ms). Thus, 20 participants were included in
the statistical analyses (10 males and 10 females,
M = 28.4, SD = 9.27).

2.2 Stimuli
The stimuli were 800 morphologically complex
trimorphemic words and nonwords. The stim-
uli creation procedure consisted of several steps.
First, 600 trimorphemic words were created based
on the CELEX database (Baayen et al., 1995) in
accordance with syntactic (syntactic categories),
morphological (affix combinations), and phono-
logical (orthographic adjustments) selectional re-
strictions of derivational affixes, but without se-
mantic selectional restrictions explicitly taken into
consideration. In this sense, these trimorphemic
words are grammatical (“possible”) but not nec-
essarily acceptable (“actual”) words (cf. Halle,
1973; Bauer, 2014). These 600 trimorphemic
words were subcategorized into 300 linear words
[X [Y [Z

p
Root] Suffix] Suffix] with productive

derivational suffixes (Plag and Baayen, 2009) and
300 nested words [X Prefix [Y [Z

p
Root] Suf-

fix]] with productive derivational prefixes (Zirkel,
2010). Furthermore, these trimorphemic words
have zero surface frequencies in the CELEX
database, thereby enhancing the possibility that
those words have never been encountered by par-
ticipants and stored in the mental lexicon (Hay,
2003). Second, in order to weed out semantically
implausible words, 600 trimorphemic words were
normed with crowdsourced acceptability judg-
ment experiments, where participants judged them
on 1⇠7 Likert scale. Third, 500 trimorphemic
words (250 linear and 250 nested) with higher
acceptability judgments (> 3.5) and lower stan-
dard deviations (< 2.5) were selected and, cor-
respondingly, 500 trimorphemic nonwords (250
linear and 250 nested) were also created based
on the CELEX database in violation of syntactic
selectional restrictions of inner derivational suf-
fixes, resulting in 1000 trimorphemic words and
nonwords. Fourth, in order to ensure that words
and nonwords are correctly judged as such, 1000
trimorphemic stimuli were further normed with
crowdsourced lexical decision experiments, where
participants decided whether presented stimuli
were possible English words or not as quickly and
accurately as possible. Finally, 400 trimorphemic
words (200 linear and 200 nested) and 400 trimor-
phemic nonwords (200 linear and 200 nested) with
higher accuracies (> 75%) were selected, result-
ing in the balanced and extensively normed set of
800 trimorphemic stimuli to be tested in this ex-
periment. The stimuli are summarized in Table 1:



Linear Nested

Word

X

Y

Z
p

Digit

al

ly

n = 200 X

inter Y

Z
p

Culture

al

n = 200

Nonword

X

*Y

Z
p

Gulf

ion

al

n = 200 X

non *Y

Z
p

Kid

ion

n = 200

Table 1: Summary of stimuli. The horizontal dimension is morphological structure: linear vs. nested. The vertical
dimension is lexicality status: word vs. nonword. The asterisk (*) on subtrees (Y) of nonwords indicates that inner
derivational suffixes violate syntactic selectional restrictions on syntactic categories of roots.

2.3 Procedure
The experiment was conducted in the Neuro-
science of Language Lab at New York Univer-
sity, New York. Before MEG recording, each
participant’s head shape was digitized with a Pol-
hemus FastSCAN laser scanner (Polhemus, Ver-
mont, USA) and five fiducial points were marked
on his/her forehead, onto which marker coils were
attached during the recording. In order to famil-
iarize the participants with visual lexical decision,
the participants completed one practice block with
16 practice stimuli, 4 stimuli per each stimulus
type, that do not overlap with the target stimuli.
The task instructions were exactly the same as
the main experiment, but the participants received
feedback after each trial (“CORRECT” or “IN-
CORRECT”) during the practice block.

A 157-channel axial gradiometer whole-head
MEG system (Kanazawa Institute of Technology,
Kanazawa, Japan) recorded the MEG data contin-
uously at a sampling rate of 1000 Hz (1 datapoint
per each millisecond), while the participants lay in
a dimly lit magnetically shielded room (MSR) and
performed visual lexical decision. The MEG data
were filtered online between DC and 200 Hz with
a notch filter at 60 Hz. Five marker coils were at-
tached to the corresponding fiducial points marked
on the forehead and their positions were measured
before and after the main experiment, in order to
align the MEG data and head shapes and estimate

how much the participants moved during the MEG
recording. The main experiment itself lasted for
about 35 minutes.

The stimuli were presented with PsychoPy
package (Peirce, 2007, 2009) in Python. They
were projected on the screen approximately 50
cm away from the participants and presented in
white 30 lowercase Courier New font on a grey
background. The 800 stimuli were randomly dis-
tributed into 8 blocks of 100 stimuli with 25 stim-
uli from each stimulus type. First, the explanation
appeared on the screen: “In this experiment, you
will read English words and determine whether
you think they are possible English words. We are
not concerned with whether or not these words are
actual English words already listed in a dictionary.
Instead, we are interested in whether or not these
words could be used by a native speaker of En-
glish”. Then, the task instruction appeared on the
screen: “The experiment is about to begin. Please
fixate on the cross in the center of the screen. Re-
spond with your index finger if the string is word.
Respond with your middle finger if it is not a
word”. Each trial consisted of the fixation cross
(+) for 500 ms, the blank for 300 ms, and the stim-
ulus until the participants respond with their index
finger (YES) or middle finger (NO) of their left
hand. The inter-stimulus interval (ISI) followed
the standard normal distribution with the mean of
400 ms and the standard deviation of 100 ms.



2.4 Computational models
Five computational models were implemented
with Natural Language Tool Kit package (Bird
et al., 2009) in Python: Character Markov Mod-
els (Character), Syllable Markov Models (Syl-
lables), Morpheme Markov Models (Markov),
Hidden Markov Model (HMM), and Probabilis-
tic Context-Free Grammar (PCFG). Those mod-
els were trained on the entire CELEX database
via Maximum Likelihood Estimation with token
weighting and Lidstone smoothing at ↵ = 0.1. The
architectures of Markov Model, HMM, and PCFG
are summarized below.

2.4.1 Markov Model
Markov Models (also called n-gram models) are
defined by n-order Markov processes that com-
pute transition probabilities of linguistic units
(e.g. characters, syllables, morphemes) at posi-
tion i given i–n context (e.g. P (xi|xi�n, xi�1)).
Since the length of morphologically complex
words is inherently limited relative to syntacti-
cally complex sentences, Markov Models were
defined with n = 1 (i.e. bigram models),
which compute transition probabilities of lin-
guistic units at position i given the immediately
preceding unit (e.g. P (xi|xi�1)). For train-
ing, Markov Models were trained on character
strings (Character Markov Model), syllable strings
(Syllable Markov Model), and morpheme strings
(Morpheme Markov Model), respectively, where
character and morpheme strings were available
from the CELEX database, while syllable strings
were generated with syllabify module im-
plemented in Python by Kyle Gorman through
ARPABET transcriptions assigned by LOGIOS
Lexicon Tool in the Carnegie Mellon University
Pronouncing Dictionary. For testing, those trained
Markov Models then computed morpheme proba-
bilities of morphologically complex words equiv-
alent to their transition probabilities given the
Markov assumption. Markov Models are linear
models, which should accurately predict local de-
pendencies of linear words (e.g. digitally), but not
non-local dependencies of nested words (e.g. un-
predictable) because local dependencies (e.g. *un-
predict) are unattested in the training data.

2.4.2 Hidden Markov Model
HMMs generalize Markov Models with n-order
Markov processes defined over “hidden” linear
strings. HMMs compute transition probabilities of

part-of-speech (POS) tags at position i given i–n
context (e.g. P (ti|ti�n, ti�1)), and emission prob-
abilities of morphemes at position i given POS
tags at the same position i (e.g. P (mi|ti)). Like
Markov Models, HMMs were also defined with n
= 1, which compute transition probabilities of POS
tags at position i given the immediately preceding
POS tag (e.g. P (ti|ti�1)). For training, HMMs
were supervisedly trained on tagged morpheme
strings generated from morphological structures
available from the CELEX database (e.g. [(digit,
N), (al, A), (ly, B)]). For testing, those trained
HMMs then computed morpheme probabilities of
morphologically complex words as the ratio of
prefix probabilities at position k to position k–
1, where prefix probabilities are the sum of path
probabilities compatible with morphemes until po-
sition k (Rabinar, 1989). HMMs are linear mod-
els, which should accurately predict local depen-
dencies of linear words (e.g. N-A-B for digitally),
but also non-local dependencies of nested words
(e.g. unpredictable) if component local dependen-
cies (e.g. A-V for *unpredict) are attested in the
training data.

2.4.3 Probabilistic Context-Free Grammar
PCFGs generalize Context-Free Grammars
(CFGs) with probability distributions defined
over hierarchical structures. PCFGs compute
nonterminal probabilities of right-hand sides
given left-hand sides of nonterminal production
rules (e.g. P (rhs|lhs)), and terminal probabilities
of right-hand side terminals given left-hand
side nonterminals of terminal production rules
(e.g. P (mi|ti)), equivalent to HMM emission
probabilities. Nonterminal production rules are
head-lexicalized, which model syntactic selec-
tional restrictions of derivational affixes (e.g. N !
A ness). For training, PCFGs were supervisedly
trained on morphological structures available
from the CELEX database (e.g. [B [A [N digit] al]
ly]). For testing, those trained PCFGs then com-
puted morpheme probabilities of morphologically
complex words as the ratio of prefix probabili-
ties at position k to position k–1, where prefix
probabilities are the sum of tree probabilities
compatible with morphemes until position k (Ear-
ley, 1970; Stolcke, 1995). PCFGs are hierarchical
models, which should accurately predict not only
local dependencies of linear words (e.g. digitally),
but also non-local dependencies of nested words
(e.g. unpredictable).



2.5 Evaluation metrics
The information-theoretic complexity metric, sur-
prisal, was employed as linking hypothesis that
bridges the gap between representation and pro-
cessing (Hale, 2001; Levy, 2008). Surprisal of
morpheme m, I(m), is defined as Equation (1):

I(m) = log2
1

P (m)
= � log2 P (m) (1)

where P (m) is the probability of morpheme m
computed by computational models via respective
incremental algorithms. Surprisal was originally
proposed to explain behavioral measures such as
reading times in self-paced reading experiments
and fixation durations in eye-tracking experiments
(Boston et al., 2008; Demberg and Keller, 2008;
Roark et al., 2009; Frank and Bod, 2011; Fos-
sum and Levy, 2012). Recently, surprisal has also
been extended to neural measures like N400 com-
ponents in EEG experiments and BOLD signals
in fMRI experiments (Frank et al., 2015; Brennan
et al., 2016; Willems et al., 2016; Henderson et al.,
2016; Nelson et al., 2017; Lopopolo et al., 2017).

Assuming further that morphological process-
ing is incremental (cf. prefix stripping; Taft and
Forster, 1975; Stockall et al., 2019), we compute
surprisal of morphologically complex words as
cumulative surprisal, the cumulative sum of sur-
prisal of component morphemes. Cumulative sur-
prisal of word w, I(w), is defined as Equation (2):

I(w) = I(m1, ...,mn) =
nX

i=1

I(mi) (2)

where I(m) is the surprisal of morpheme m com-
puted by computational models.

Two evaluation metrics are then derived from
cumulative surprisal: neurological and error accu-
racies (cf. Frank et al., 2015; Sprouse et al., 2018).
The neurological accuracy of model M, NA(M),
is defined as Equation (3):

NA(M) = DB �DM (3)

where DB and DM are deviance defined as –2
times log-likelihoods of baseline and target mod-
els, respectively. Neurological accuracy quantifies
decreases in deviance (��D) and evaluates how
well computational models explain human neural
activities beyond control predictors included in the
baseline model (cf. Frank et al., 2015).

The error accuracy of model M, EA(M), is de-
fined as Equation (4):

EA(M) =
nX

i=1

|✏B(wi)|� |✏M (wi)| (4)

where ✏B(w) and ✏M (w) are residual errors of
baseline and target models for word w, respec-
tively. Error accuracy quantifies decreases in ab-
solute residual errors (��|✏|) and evaluates cost-
benefit tradeoffs of computational models (cf.
Sprouse et al., 2018). We compute error accura-
cies of computational models with respect to linear
and nested morphological structures to address the
question whether hierarchical models make better
predictions for nested words than linear models.

2.6 Statistical analyses
We performed linear mixed-effects regression
(Baayen et al., 2008) by averaging neural activi-
ties within the functionally defined region of inter-
est (fROI) based on spatiotemporal cluster permu-
tation regression (Maris and Oostenveld, 2007). In
the previous literature (cf. Gwilliams et al., 2016),
lemma frequency has been proposed as a signif-
icant predictor of the M170 and, thus, employed
as the predictor of interest for spatiotemporal re-
gression. Lemma frequency (cf. del Prado Martin
et al., 2004) is defined as the sum of frequencies
of words that share the same lemma. For example,
the lemma frequency of globalization is the sum of
frequencies of globe, global, globalize, and so on.
Spatiotemporal regression in the left inferior tem-
poral lobe and the 150-200 time window with log-
transformed lemma frequency as target predictor
and squared length as control predictor identified
the significant cluster where the clear M170 peak
can be observed, as shown in Figure 1. Finally,
the neural activities were averaged over space and
time within the fROI to compute by-trial dSPMs
(Dale et al., 2000), which were then exported to R
for mixed-effects regression.

Linear mixed-effects regression was imple-
mented with lme4 package (Bates et al., 2015)
in R. The baseline regression model was first fit-
ted with by-trial dSPMs as the dependent variable,
control predictors as fixed effects, and by-subject
and by-word random intercepts as random effects.
For each computational model, the target regres-
sion model was then fitted with cumulative sur-
prisal included as an additional fixed effect on top



Figure 1: fROI for linear mixed-effects regression. Left: spatial extent defined as the significant cluster identified
via spatiotemporal regression in the left inferior temporal lobe and the 150-200 time window with log-transformed
lemma frequency as target predictor and squared length as control predictor; Right: temporal extent averaged
over the significant cluster and categorized by linear and nested morphological structures. The x-axis is time in
milliseconds, while the y-axis is neural activities in dSPM (Dale et al., 2000). Color indicates two morphological
structures: yellow = linear, blue = nested. Pink vertical span marks the 150-200 ms time window.

of control predictors and random effects held con-
stant. The control predictor was squared length
(New et al., 2006) also included to functionally de-
fine the ROI. Mixed-effects models were fitted via
Maximum Likelihood Estimation with nlminb
optimizer in optimx package and the maximum
number of iterations R permits. Given that the
baseline and target models are minimally different
only in cumulative surprisal, computational mod-
els can be evaluated with nested model compar-
isons via log-likelihood ratio tests based on �2-
distribution with df = 1, where df is the difference
in number of parameters between nested models.

3 Results

3.1 Neurological accuracy
Neurological accuracies of computational models
are summarized in Figure 2, where the x-axis is
computational models and the y-axis is neurolog-
ical accuracies (i.e. decreases in deviance). The
horizontal dashed line is �2 = 3.84, the critical �2-
statistic at p = 0.05 with df = 1.

Nested model comparisons via log-likelihood
ratio tests revealed that while no “amorphous”
models were statistically significant, all “mor-
phous” models were statistically significant (p <
0.01). Among those “morphous” models, PCFG
was most neurologically accurate: PCFG (�2 =
8.48, p < 0.01) > Markov Model (�2 = 8.15, p
< 0.01) > HMM (�2 = 6.92, p < 0.01) > Charac-
ter (�2 = 0.19, ns) > Syllable (�2 = 0.02, ns).

3.2 Error accuracy
Error accuracies of computational models are
summarized in Figure 3, where the x-axis is com-
putational models and the y-axis is error accura-
cies (i.e. decreases in absolute residual errors),
categorized into linear and nested morphological
structures and averaged across individual deriva-
tional affixes. The horizontal dashed line indicates
a “tie” borderline where computational models do
not diverge from the baseline model. More posi-
tive and negative error accuracies mean better and
worse predictions relative to the baseline model.

For linear words, all neurologically accurate
“morphous” models made significant contribu-
tions, among which Markov Model made best pre-
dictions relative to the baseline model. For nested
words, interestingly, PCFG was the only computa-
tional model which reduced residual errors, while
linear models such as HMM and Markov Model
made only slight or even worse predictions rela-
tive to the baseline model, respectively.

4 Discussion

In summary, our MEG experiment and com-
putational modeling demonstrated that “mor-
phous” models of morphological processing out-
performed “amorphous” models and, importantly,
PCFG was most neurologically accurate among
those “morphous” models. We can conclude
from these results that morphemes are neurologi-
cally represented in the human brain (pace Baayen



Figure 2: Neurological accuracies of computational models. The x-axis is computational models, while the y-axis
is neurological accuracies (i.e. decreases in deviance). Points represent computational models: blue = Character
Markov Model, orange = Syllable Markov Model, yellow = Morpheme Markov Model, green = Hidden Markov
Model, purple = Probabilistic Context-Free Grammar. The horizontal dashed line is �2 = 3.84, the critical �2-
statistic at p = 0.05 with df = 1. All “morphous” models were statistically significant (p < 0.01).

et al., 2011; Milin et al., 2017) and parsed into
hierarchical morphological structures (pace Virpi-
oja et al., 2017; Hakala et al., 2018). In addi-
tion, this paper successfully generalized the com-
putational modeling technique developed in the
sentence processing literature (Frank et al., 2015;
Brennan et al., 2016) to morphological processing.

Moreover, error accuracies of computational
models indicated that PCFG better explained
nested words with non-local dependencies be-
tween prefixes and suffixes than linear models
such as Markov Model and HMM. This result fol-
lows straightforwardly from formal language the-
ory, where linear and nested words are finite-state
and context-free languages in the Chomsky hier-
archy (Hopcroft and Ullman, 1979; Partee et al.,
1990; Sipser, 1997), the former of which can be
modeled by both linear and hierarchical models,
but the latter of which can only be parsed by hi-
erarchical models like PCFG. Furthermore, from
the probabilistic perspective, linear models have
trouble with transition probabilities from prefixes
to roots in nested words (e.g. unpredictable) be-
cause prefixes (e.g. un-) and roots (e.g. predict)

form no morphological constitutes (e.g. *unpre-
dict) and thus never appear in the training data.

Now the theoretical question arises why low-
level visual evoked response components like
M170 in the visual ventral stream “know” high-
level linguistic representations like abstract hierar-
chical structures. One possibility is that, given the
functional connectivity between the left fusiform
gyrus and the left inferior frontal gyrus in visual
word recognition (Pammer et al., 2004), M170
can be modulated in a top-down feedback manner
by “Broca’s area”, the traditional “language” area
proposed to process abstract hierarchical struc-
tures (Friederici, 2002, 2012). This possibility be-
comes even less surprising if visual cortex can be
sensitive to abstract hierarchical structures (Dikker
et al., 2009). Therefore, the functional connectiv-
ity between the left fusiform and inferior frontal
gyri remains to be empirically investigated in the
future research (Carreiras et al., 2014; Woodhead
et al., 2014).

Nevertheless, there are several limitations with
our computational modeling. One of the several
important issues is that “amorphous” models in-



Figure 3: Error accuracies of computational models. The x-axis is computational models, while the y-axis is error
accuracies (i.e. decreases in absolute residual errors), categorized into linear (Left) and nested (Right) morpho-
logical structures and averaged across individual derivational affixes. The horizontal dashed line indicates a “tie”
borderline where computational models do not diverge from the baseline model, and more positive and negative
error accuracies mean better and worse predictions relative to the baseline model.

vestigated in this paper are too simplistic as com-
pared to computational models recently proposed
in the morphological processing literature such
as Naive Discriminative Learning (Baayen et al.,
2011; Milin et al., 2017) or Linear Discriminative
Learning (Baayen et al., 2018, 2019). Those state-
of-the-art computational models of morphological
processing remain to be constructed and evaluated
against human neural activities and computational
models investigated in this paper.

5 Conclusion

In this paper, we conducted a magnetoencephalog-
raphy (MEG) experiment where participants per-
formed visual lexical decision on morphologically
complex words and, generalizing the computa-
tional modeling technique developed in the sen-
tence processing literature (Frank et al., 2015;
Brennan et al., 2016), computationally modeled
morphological processing in the human brain,
with special focus on the VWFA in the visual
ventral stream. Five neuro-computational models
of morphological processing were constructed and
evaluated against human neural activities in order

to investigate whether morphemes are neurologi-
cally represented in the human brain and parsed
into hierarchical morphological structures: Char-
acter Markov Model and Syllable Markov Model
as “amorphous” models without morpheme units,
and Morpheme Markov Model, Hidden Markov
Model (HMM), and Probabilistic Context-Free
Grammar (PCFG) as “morphous” models with
morpheme units structured linearly or hierarchi-
cally. Our MEG experiment and computational
modeling demonstrated that “morphous” models
of morphological processing outperformed “amor-
phous” models, PCFG was most neurologically
accurate among those “morphous” models, and
PCFG better explained nested words with non-
local dependencies between prefixes and suffixes.
These results strongly suggest that morphemes
are neurologically represented in the human brain
and parsed into hierarchical morphological struc-
tures. In conclusion, neuro-computational model-
ing of natural language must be a promising fu-
ture direction in the cognitive computational neu-
roscience of language (Kriegeskorte and Douglas,
2018; Naselaris et al., 2018).
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Abstract

We investigate neg(ation)-raising inferences,
wherein negation on a predicate can be inter-
preted as though in that predicate’s subordi-
nate clause. To do this, we collect a large-
scale dataset of neg-raising judgments for ef-
fectively all English clause-embedding verbs
and develop a model to jointly induce the se-
mantic types of verbs and their subordinate
clauses and the relationship of these types to
neg-raising inferences. We find that some neg-
raising inferences are attributable to properties
of particular predicates, while others are at-
tributable to subordinate clause structure.

1 Introduction

Inferences that are triggered (at least in part) by
particular lexical items provide a rich test bed for
distinguishing the relative semantic contribution
of lexical items and functional structure. One class
of such inferences that has garnered extended at-
tention is neg(ation)-raising, wherein negation on
a predicate can be interpreted as though in that
predicate’s subordinate clause (Fillmore, 1963;
Bartsch, 1973; Horn, 1978; Gajewski, 2007). For
example, a neg-raising inference is triggered by
(1) while one is not triggered by (2).

(1) Jo doesn’t think that Bo left.
 Jo thinks that Bo didn’t leave.

(2) Jo doesn’t know that Bo left.
6 Jo knows that Bo didn’t leave.

Though accounts vary with respect to whether
neg-raising inferences are explained as a syntactic
or a pragmatic phenomenon, all associate these in-
ferences with particular predicates in some way or
other—e.g. think, believe, suppose, imagine, want,
and expect are often taken to be associated with
neg-raising inferences as a matter of knowledge
one has about those predicates, while say, claim,
regret, and realize are not (Horn, 1971, 1978).

One challenge for such approaches is that
whether a neg-raising inference is triggered varies
with aspects of the context, such as the predicate’s
subject—e.g. (3a) triggers the inference that the
speaker thinks Jo didn’t leave—and tense—e.g.
(3b) does not trigger the same inference as (3a).

(3) a. I don’t know that Jo left.
b. I didn’t know that Jo left.

While some kinds of variability can be captured
by standing accounts, other kinds have yet to be
discussed at all. For example, beyond a predi-
cate’s subject and tense, the syntactic structure of
its clausal complement also appears to matter: (4a)
and (5a) can both trigger neg-raising interpreta-
tions, while (4b) and (5b) cannot.

(4) a. Jo wasn’t thought to be very intelligent.
b. Jo didn’t think to get groceries.

(5) a. Jo wasn’t known to be very intelligent.
b. Jo didn’t know to get groceries.

Should these facts be chalked up to properties
of the predicates in question? Or are they gen-
eral to how these predicates compose with their
complements? These questions are currently dif-
ficult to answer for two reasons: (i) there are no
existing, lexicon-scale datasets that measure neg-
raising across a variety of contexts—e.g. manipu-
lating subject, tense and complement type; and (ii)
even if there were, no models currently exist for
answering these questions given such a dataset.

We fill this lacuna by (i) collecting a large-scale
dataset of neg-raising judgments for effectively all
English clause-embedding verbs with a variety of
both finite and non-finite complement types; and
(ii) extending White and Rawlins’ (2016) model of
s(emantic)-selection, which induces semantic type
signatures from syntactic distribution, with a mod-
ule that associates semantic types with the infer-
ences they trigger. We use this model to jointly



induce semantic types and their relationship to
neg-raising inferences, showing that the best fit-
ting model attributes some neg-raising inferences
to properties of particular predicates and others to
general properties of syntactic structures.1

We begin with background on theoretical ap-
proaches to neg-raising, contrasting the two main
types of accounts: syntactic and pragmatic (§2).
We then present our methodology for measuring
neg-raising across a variety of predicates and syn-
tactic contexts (§3) as well as our extension of
White and Rawlins’ s-selection model (§4). Fi-
nally, we discuss the results of fitting (§5) our
model to our neg-raising dataset (§6).

2 Background

Two main types of approaches have been proposed
to account for neg-raising interpretations: syn-
tactic and pragmatic (see Zeijlstra 2018; Crowley
2019 for reviews). We do not attempt to adjudicate
between the two here—rather aiming to establish
the explanatory devices available to each for later
interpretation relative to our modeling results.

Syntactic Approach In syntactic approaches,
neg-raising interpretations arise from some syn-
tactic relation between a matrix negation and an
unpronounced embedded negation that is licensed
by the neg-raising predicate. This is classically
explained via a syntactic rule that “raises” the
negation from the subordinate clause to the main
clause, as in (6), though accounts using alternative
syntactic relations exist (Fillmore 1963; Kiparsky
1970; Jackendoff 1971; Pollack 1976; Collins and
Postal 2014, 2017, 2018; cf. Klima, 1964; Zeijl-
stra, 2018; see also Lasnik, 1972).

(6) Jo does not believe Bo did leave.
neg-raising

Evidence for syntactic accounts comes from the
distribution of negative polarity items, Horn-
clauses, and island phenomena (Horn, 1971;
Collins and Postal, 2014, 2017, 2018; cf. Zwarts,
1998; Gajewski, 2011; Chierchia, 2013; Horn,
2014; Romoli and Mandelkern, 2019).

Purely syntactic approaches to neg-raising have
effectively one method for explaining variability
in neg-raising inferences relative to subject, tense,
and subordinate clause structure (as discussed
in §1): if a certain lexical item—e.g. know—
occurs in some sentence that licenses a neg-raising

1Data are available at megaattitude.io.

inference—e.g. (5a)—and another that doesn’t—
e.g. (5b)—one must say that the structure in the
first differs from the second in such a way that the
first allows the relevant syntactic relation while the
second does not. This implies that, even in cases
like (3a) v. (3b), where there is no apparent struc-
tural difference (beyond the subject), the struc-
tures differ on some neg-raising-relevant property.
This can be implemented by saying that, e.g. the
same verb can select for two different structural
properties—one that licenses neg-raising and one
that does not—or that the verb is somehow am-
biguous and its variants differ with respect to some
neg-raising-relevant, syntactic property.

Semantic/Pragmatic Approach In seman-
tic/pragmatic approaches, neg-raising interpreta-
tions are derived from an excluded middle (EM
or opinionatedness) inference (Bartsch, 1973;
Horn, 1978; Horn and Bayer, 1984; Tovena, 2001;
Gajewski, 2007; Romoli, 2013; Xiang, 2013;
Homer, 2015). This approach posits that, anytime
a neg-raising predicate v is used to relate entity
x with proposition p, the hearer assumes that
either x v p or x v ¬p. For example, in the case of
believe, as in (7), the hearer would assume that Jo
either believes that Bo left or that Bo didn’t leave.

(7) Jo believes that Bo left.
a. truth conditions: x BELIEVE p
b. inference: x BELIEVE p _ x BELIEVE ¬p

The EM inference is impotent in the positive cases
but drives further inferences in the negative, where
the first EM disjunct is cancelled by the truth con-
ditions: if Jo doesn’t believe that Bo left and Jo
believes that Bo left or that Bo didn’t leave, then
Jo must believe that Bo didn’t leave.

(8) Jo doesn’t believe that Bo left.
a. truth conditions: x ¬ BELIEVE p
b. inference: x BELIEVE p _ x BELIEVE ¬p

To capture non-neg-raising predicates, one must
then say that some predicates trigger the EM infer-
ence, while others don’t (Horn, 1989). However,
such lexical restrictions alone cannot exhaustively
explain the variability in whether verbs trigger pre-
suppositions with certain subjects, as noted for (2)
and (3a). To explain this, Gajewski (2007) posits
that neg-raising predicates are soft presupposition
triggers. Effectively, the EM inferences are defea-
sible, and when they are cancelled, the neg-raising
inference does not go through (Abusch, 2002).
This is supported by cases of explicit cancella-

http://megaattitude.io


tion of the EM inference—e.g. the neg-raising in-
ference (9c) that would otherwise be triggered by
(9b) does not go through in the context of (9a).

(9) a. Bill doesn’t know who killed Caesar. He
isn’t even sure whether or not Brutus and
Caesar lived at the same time. So...

b. Bill doesn’t believe Brutus killed Caesar.

c. 6 Bill believes Brutus didn’t kill Caesar.

This sort of explanation relies heavily on semantic
properties of particular verbs and naturally covers
variability that correlates with subject and tense
differences—e.g. (3a) v. (3b)—since facts about
how one discusses their own belief or desire states,
in contrast to others belief states, at different times
plausibly matter to whether a hearer would make
the EM inference. The explanation for variation
relative to subordinate clause structure is less clear
but roughly two routes are possible: (i) some prop-
erty of the subordinate clause licenses (or blocks)
EM inferences; and/or (ii) predicate ambiguity
correlates with which subordinate clause structure
(or property thereof) a predicate selects.

Abstracting the Approaches Across both ap-
proaches, there are roughly three kinds of explana-
tions for neg-raising inferences that can be mixed-
and-matched: (i) lexical properties might directly
or indirectly (e.g. via an EM inference) license a
neg-raising inference; (ii) properties of a subordi-
nate clause structure might directly or indirectly
license a neg-raising inference; and/or (iii) lexi-
cal and structural properties might interact—e.g.
via selection—to directly or indirectly license a
neg-raising inference. We incorporate these three
kinds of explanation into our models (§4), which
we fit to the data described in the next section.

3 Data

We develop a method for measuring neg-raising
analogous to White and Rawlins-White et al.’s
(2018) method for measuring veridicality infer-
ences. With the aim of capturing the range of
variability in neg-raising inferences across the lex-
icon, we deploy this method to test effectively all
English clause-embedding verbs in a variety of
subordinate clause types—finite and nonfinite—as
well as matrix tenses—past and present—and ma-
trix subjects—first and third person.

Method Participants are asked to answer ques-
tions like (10) using a 0-1 slider, wherein the

first italicized sentence has negation in the matrix
clause and the second italicized sentence has nega-
tion in the subordinate.2

(10) If I were to say I don’t think that a particular
thing happened, how likely is it that I mean I
think that that thing didn’t happen?

Because some sentences, such the italicized in
(11), sound odd with negation in the matrix clause,
participants are asked to answer how easy it is to
imagine someone actually saying the sentence—
again, on a 0-1 slider. The idea here is that the
harder it is for participants to imagine hearing a
sentence, the less certain they probably are about
the judgment to questions like (10).

(11) How easy is it for you to imagine someone
saying I don’t announce that a particular
thing happened?

Acknowledging the abuse of terminology, we refer
to responses to (11) as acceptability responses. We
incorporate these responses into our model (§4) as
weights determining how much to pay attention to
the corresponding neg-raising response.

Materials We use the MegaAcceptability
dataset of White and Rawlins (2016) as a basis
on which to construct acceptable items for our
experiment. MegaAcceptability contains ordinal
acceptability judgments for 50,000 sentences, in-
cluding 1,000 clause-embedding English verbs in
50 different syntactic frames. To avoid typicality
effects, these frames are constructed to contain
as little lexical content as possible besides the
verb at hand—a method we follow here. This
is done by ensuring that all NP arguments are
indefinite pronouns someone or something and all
verbs besides the one being tested are do, have or
happen. We focus on the six frames in (12)–(17).

(12) [NP that S]
Someone knew that something happened.

(13) [NP to VP[+EV]]
Someone liked to do something.

(14) [NP to VP[-EV]]
Someone wanted to have something.

(15) [NP be that S]
Someone was told that something happened.

(16) [NP be to VP[+EV]]
Someone was ordered to do something.

(17) [NP be to VP[-EV]]
Someone was believed to have something.

2The full task instructions are given in Appendix A.



These frames were chosen so as to manipulate (i)
the presence and absence of tense in the subordi-
nate clause; (ii) the presence or absence of a direct
object; and (iii) the lexical aspect of the comple-
ment. The frames with direct objects were pre-
sented in passivized form so that they were ac-
ceptable with both communicative predicates—
e.g. tell—and emotive predicates—e.g. sadden—
the latter of which tend to occur with expletive
subjects. Lexical aspect was manipulated because
some verbs—e.g. believe—are more acceptable
with nonfinite subordinate clauses headed by a
stative than ones headed by an eventive, while
others—e.g. order—show the opposite pattern.

In light of the variability in neg-raising infer-
ences across the same verb in different tenses—
compare again (3a) and (3b)—we aim to manipu-
late the matrix tense of each clause-taking verb in
our experiment. This is problematic, because the
MegaAcceptability dataset only contains items in
the past tense. We could simply manipulate the
tense for any acceptable sentences based on such
past tense items, but some verbs do not sound nat-
ural in the present tense with some subordinate
clauses—compare the sentences in (18).

(18) a. Jo wasn’t told that Mary left.
b. Jo isn’t told that Mary left.

To remedy this, we extend MegaAcceptability
with tense/aspect information by collecting ac-
ceptability judgments for modified versions of
each sentence in MegaAcceptability, where the
target verb is placed in either present or past pro-
gressive.3 Combined with MegaAcceptability, our
extended dataset results in a total of 75,000 verb-
tense-frame pairs: 50,000 from the MegaAccept-
ability dataset and 25,000 from our dataset. From
this combined dataset, we take past and present
tense items rated on average 4 out of 7 or better
(after rating normalization), for our experiment.
This yields 3,968 verb-tense-frame pairs and 925
unique verbs. With our subject manipulation (first
v. third person), the number of items doubles, pro-
ducing 7,936 items. Table 1 summarizes the dis-
tribution of verbs in each frame and tense.

To construct items, we follow the method of
White et al. (2018) of “bleaching” all lexical cat-
egory words in our sentences (besides the subor-
dinate clause-taking verb) by realizing NPs as a
particular person or a particular thing. Verbs are

3See Appendix B for details.

Matrix tense Frame # verbs

NP that S 556
NP to VP[+EV] 400

past NP to VP[-EV] 359
NP be that S 255
NP be to VP[+EV] 461
NP be to VP[-EV] 460
NP that S 413
NP to VP[+EV] 219

present NP to VP[-EV] 155
NP be that S 176
NP be to VP[+EV] 268
NP be to VP[-EV] 246

Table 1: # of verbs acceptable in each tense-frame pair
based on our extension of MegaAcceptability.

replaced with do, have, or happen. This method
aims to avoid unwanted typicality effects that
might be introduced by interactions between our
predicates of interest and more contentful items
elsewhere in the sentence.4

We partition items into 248 lists of 32 items.
Each list is constrained such that (i) 16 items had
a first person subject, and 16 items had a third per-
son subject; (ii) 16 items contain a low frequency
verb and 16 items contain a high frequency verb,
based on a median split of the frequencies in the
SUBTLEX US word frequency database (Brysbaert
and New, 2009); (iii) 16 items are low accept-
ability and 16 items are high acceptability, based
on a median split of the normalized acceptabili-
ties for items selected from our extension of the
MegaAcceptability dataset; (iv) no verb occurred
more than once in the same list; (v) items con-
taining a particular combination of matrix tense
and syntactic frame occur in rough proportion to
the number of verbs that are acceptable with that
tense-frame combination based on our extension
of the MegaAcceptability dataset (Table 1).

Participants 1,108 participants were recruited
through Amazon Mechanical Turk to give 10 rat-
ings per sentence in the 248 lists of 32—i.e. the
end result contains 79,360 ratings for each of neg-
raising and acceptability judgments. Participants
were not allowed to respond to the same list more
than once, though they were allowed to respond to
as many lists as they liked. Each participants re-

4Because this method has not been previously validated
for measuring neg-raising, we report two validation experi-
ments in Appendix C, which demonstrate that the measure
accords with judgments from prior work.
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Figure 1: Normalized neg-raising scores for different subject, tense, and frame pairs.

sponded to 2.3 lists on average (min: 1, max: 16,
median: 1). Of the 1,108 participants, 10 reported
not speaking American English as their native lan-
guage. Responses from these participants were fil-
tered from the dataset prior to analysis. From this,
responses for 27 lists were lost (⇠1% of the re-
sponses). This filtering removed at most two judg-
ments for any particular item.

Results Figure 1 plots the normalized neg-
raising scores for verbs in different subject (axes)-
tense (color)-frame (block) contexts.5 A verb
(in some tense) being toward the top-right corner
means that it shows strong neg-raising inferences
with both first person and third person subjects,
while a verb being towards the bottom-right cor-
ner means that it shows neg-raising behavior with
first person subjects but not with third person sub-
jects. The converse holds for the top-left corner:
neg-raising behavior is seen with third person sub-
jects but not first. We see that our method cor-
rectly captures canonical neg-raising predicates—
e.g. think and believe with finite complements and
want and expect with infinitival complements—as
well as canonical non-neg-raising predicates—e.g.
know and say with finite complements and try and
manage with infinitivals.

4 Model

We aim to use our neg-raising dataset to assess
which aspects of neg-raising inferences are due to
properties of lexical items and which aspects are

5See Appendix D for details on normalization.

due to properties of the structures they compose
with. To do this, we extend White and Rawlins’
(2016) model of s(emantic)-selection, which in-
duces semantic type signatures from syntactic dis-
tribution, with a module that associates semantic
types with the inference patterns they trigger.

Our model has two hyperparameters that corre-
spond to the theoretical constructs of interest: (i)
the number of lexical properties relevant to neg-
raising; and (ii) the number of structural proper-
ties relevant to neg-raising. In §5, we report on
experiments aimed at finding the optimal setting
of these two hyperparameters, and we analyze the
parameters of the model fit corresponding to these
hyperparameters in §6.

S-selection Model White and Rawlins’ (2016)
model of s-selection aims to induce verbs’ seman-
tic type signatures—e.g. that love can denote a
relation between two entities and think can denote
a relation between an entity and a proposition—
from their syntactic distribution—e.g. that love
is acceptable in NP NP frames and that think
is acceptable in NP S frames. They formalize
this task as a boolean matrix factorization (BMF)
problem: given a boolean matrix D 2 B|V|⇥|F| =
{0, 1}|V|⇥|F|, wherein dvf = 1 iff verb v 2 V is
acceptable in syntactic frame f 2 F , one must
induce boolean matrices ⇤ 2 B|V|⇥|T | and ⇧ 2
B|T |⇥|F|, wherein �vt = 1 iff verb v can have se-
mantic type signature t 2 T and ⇡tf = 1 iff t can
be mapped onto syntactic frame f , such that (19):
verb v is acceptable in frame f iff v has some type
t that can be mapped (or projected) onto f .



(19) dvf ⇡
W

t �vt ^ ⇡tf
As is standard in matrix factorization, the equiva-
lence is approximate and is only guaranteed when
there are as many semantic type signatures T as
there are frames F , in which case, the best solu-
tion is the one with ⇤ = D and ⇧ as the identity
matrix of dimension |T | = |F|. Because this so-
lution is trivial, |T | is generally much smaller than
|F| and determined by fit to the data—in BMF, the
count of how often dvf 6=

W
t �vt ^ ⇡tf .

As an estimate of D, White and Rawlins use
the MegaAcceptability dataset, which we use in
constructing our neg-raising dataset (§3). Instead
of directly estimating the boolean matrices ⇤ and
⇧, they estimate a probability distribution over
the two under the strong independence assumption
that all values �vt and ⇡tf are pairwise indepen-
dent of all other values. This implies (20).6

(20) P(dvf ) = 1�
Q

t 1� P(�vt)P(⇡tf )
White and Rawlins treat P(dvf ) as a fixed effect
in an ordinal mixed effects model, which provides
the loss function against which P(�vt) and P(⇡tf )
are optimized. They select the number of semantic
type signatures to analyze by setting |T | such that
an information criterion is optimized.

Neg-Raising Model We retain the main com-
ponents of White and Rawlins’ model but add a
notion of inference patterns associated both with
properties of verbs, on the one hand, and with se-
mantic type signatures, on the other. In effect, this
addition models inferences, such as neg-raising,
as arising via a confluence of three factors: (i)
properties of the relation a lexical item denotes—
e.g. in a semantic/pragmatic approach, whatever
property of a predicate triggers EM inferences; (ii)
properties of the kinds of things that a predicate
(or its denotation) relates—e.g. in a syntactic ap-
proach, whatever licenses “raising” of the nega-
tion; and (iii) whether a particular verb has a par-
ticular type signature. With respect to (ii) and (iii),
it is important to note at the outset that, because
we do not attempt to model acceptability, semantic
type signatures play a somewhat different role in
our model than in White and Rawlins’: instead of
determining which structures a verb is compatible
with—i.e. (non)finite subordinate clauses, pres-
ence of a direct object, etc.—our model’s type sig-
natures control the inferences a particular verb can
trigger when taking a particular structure. As such,

6See Appendix E for the derivation of (20).

our model’s semantic type signatures might be
more easily construed as properties of a structure
that may or may not license neg-raising.7 We thus
refer to them as structural properties—in contrast
to predicates’ lexical properties.

Our extension requires the addition of three for-
mal components to White and Rawlins’ model: (i)
a boolean matrix  2 B|V|⇥|I|, wherein  vi = 1
iff verb v 2 V has property i 2 I; (ii) a boolean
tensor � 2 B|I|⇥|J |⇥|K|, wherein �ijk = 1 iff
property i licenses a neg-raising inference with
subject j 2 J and tense k 2 K; and (iii) a boolean
tensor ⌦ 2 B|T |⇥|J |⇥|K|, wherein !tjk = 1 iff se-
mantic type signature t 2 T licenses a neg-raising
inference with subject j and tense k.

As it stands, this formulation presupposes that
there are both lexical and structural properties rel-
evant to neg-raising. To capture the possibility that
there may be only one or the other relevant to neg-
raising, we additionally consider two families of
boundary models. In the boundary models that
posit no lexical properties—which (abusing nota-
tion) we refer to as |I| = 0—we fix = 1|V| and
� = 1|I| ⌦ 1|J | ⌦ 1|K|. In the boundary models
that posit no structural properties (|T | = 0) we fix
⇧ = 1|F|,⇤ = 1|V|, and⌦ = 1|T | ⌦ 1|J | ⌦ 1|K|.

Analogous to White and Rawlins, we treat our
task as a problem of finding ⇤,⇧, ,�,⌦ that
best approximate the tensor N, wherein nvfjk = 1
iff verb v licenses neg-raising inferences in frame
f with subject j and tense k. This is formalized
in (21), which implies that nvfjk = 1 iff there is
some pairing of semantic type signature t and in-
ference pattern i such that (i) verb v has semantic
type signature t; (ii) verb v licenses inference pat-
tern i; (iii) semantic type signature t can map onto
frame f ; and (iv) both t and i license a neg-raising
inference with subject j and tense k.

(21) nvfjk ⇡
W

t,i �vt ^  vi ^ �ijk ^ ⇡tf ^ !tjk

Also analogous to White and Rawlins, we aim
to estimate P(nvfjk) (rather than nvfjk directly)
under similarly strong independence assump-
tions: P(�vt, vi,�ijk,⇡tf ,!tjk) = P(�vt)P( vi)
P(�ijk)P(⇡tf )P(!tjk) = ⇣vtifjk, implying (22).

(22) P(nvfjk) = 1�
Q

t,i 1� ⇣vtifjk

We design the loss function against which P(�vt),
7Alternatively, they might be construed as (potentially

cross-cutting) classes of syntactic structures and/or semantic
type signatures that could be further refined by jointly mod-
eling acceptability (e.g. as measured by MegaAcceptability)
alongside our measure of neg-raising inferences.



P( vi), P(�ijk), P(⇡tf ), and P(!tjk) are opti-
mized such that (i) P(nvfjk) is monotonically re-
lated to the neg-raising response rvfjkl given by
participant l for an item containing verb v in frame
f with subject j and tense k (if one exists); but
(ii) participants may have different ways of using
the response scale. For example, some participants
may prefer to use only values close to 0 or 1, while
others may prefer values near 0.5; or some partici-
pants may be prefer lower likelihood values while
others may prefer higher values. To implement
this, we incorporate (i) a fixed scaling term �0; (ii)
a fixed shifting term �0; (iii) a random scaling term
�l for each participant l; and (iv) a random shift-
ing term �l for each participant l. We define the
expectation for a response rvfjkl as in (23).

(23) r̂vfjkl = logit�1 (ma⌫vfjk + �0 + �l)
where ⌫vfjk = logit (P(nvfjk))

ml = exp (�0 + �l)

We optimize P(�vt), P( vi), P(�ijk), P(⇡tf ), and
P(!tjk) against a KL divergence loss, wherein
rvfjkl is taken to parameterize the true distribution
and r̂vfjkl the approximating distribution.

(24) D(r k r̂) = �
h
r log r̂

r + (1� r) log 1�r̂
1�r

i

To take into account that it is harder to judge the
neg-raising inferences for items that one cannot
imagine hearing used, we additionally weight the
above-mentioned KL loss by a normalization of
the acceptability responses for an item containing
verb v in frame f with subject j and tense k. We
infer this value from the acceptability responses
for an item containing verb v in frame f with sub-
ject j and tense k given by participant l, assuming
a form for the expected value of avfjkl as in (25)—
analogous to (23). (Unlike ⌫vfjk in (23), ↵vfjk in
(25) is directly optimized.)

(25) âvfjkl = logit�1 (m0
l↵vfjk + �00 + �0l)

where m0
l = exp (�00 + �0l)

The final loss against which P(�vt), P( vi),
P(�ijk), P(⇡tf ), P(!tjk) are optimized is (26).8

(26) L =
P
↵0
vfjkD(rvfjkl k r̂vfjkl)

where ↵0
vfjk = logit�1(↵vfjk).

5 Experiment

We aim to find the optimal settings, relative to our
neg-raising data, for (i) the number |I| of lexical

8An additional term (not shown) is added to encode the
standard assumption that the random effects terms are nor-
mally distributed with mean 0 and unknown variance.
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Figure 2: Sum of the weighted KL divergence loss
across all five folds of the cross-validation for each set-
ting of |I| (# of lexical properties) and |T | (# of struc-
tural properties). |I| = |T | = 0 was not run.

properties relevant to neg-raising that it assumes;
and (ii) the number |T | of structural properties rel-
evant to neg-raising that it assumes. As with other
models based on matrix factorization, higher val-
ues for |I| (with a fixed |T |) or |T | (with a fixed
|I|) will necessarily fit the data as well or better
than lower values, since a model with larger |I|
or |T | can embed the model with a smaller value.
However, this better fit comes at the cost of in-
creased risk of overfitting due to the inclusion of
superfluous dimensions. To mitigate the effects of
overfitting, we conduct a five-fold cross-validation
and select the model(s) with the best performance
(in terms of our weighted loss) on held-out data.

Method In this cross-validation, we pseudoran-
domly partition sentences from the neg-raising
experiments into five sets (folds), fit the model
with some setting of |I|, |T | to the neg-raising re-
sponses for sentences in four of these sets (80%
of the data), then compute the loss on the held-
out set—repeating with each partition acting as
the held-out set once. The assignment of items
to folds is pseudorandom in that each fold is con-
strained to contain at least one instance of a par-
ticular verb with a particular complement type in
some tense with some subject. If such a constraint
were not enforced, on some folds, the model
would have no data upon which to predict that
verb with that complement. We consider each pos-
sible pairing of |I|, |T | 2 {0, 1, 2, 3, 4}, except
|I| = |T | = 0. The same partitioning is used for



every setting of |I| and |T |, enabling paired com-
parison by sentence.

Implementation We implement our model in
tensorflow 1.14.0 (Abadi et al., 2016). We
use the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 0.01 and default hyperpa-
rameters otherwise.

Results Figure 2 plots the sum of the weighted
KL divergence loss across all five folds of the
cross-validation for each setting of |I| (number of
lexical properties) and |T | (number of structural
properties). The best-performing models in terms
of held-out loss (starred in Figure 2) are (in or-
der): (i) one that posits one lexical property and
no structural properties; (ii) one that posits no lex-
ical properties and one structural property; and
(iii) one that posits one lexical property and one
structural property. None of these models’ per-
formance is reliably different from the others—as
determined by a nonparametric bootstrap comput-
ing the 95% confidence interval for the pairwise
difference in held-out loss between each pairing
among the three—but all three perform reliably
better than all other models tested.

Among these three, the model with the best fit
to the dataset has |I| = 1 and |T | = 1. This result
suggests that neg-raising is not purely a product of
lexical knowledge: properties of the subordinate
clause that a predicate combines with also influ-
ence whether neg-raising inferences are triggered.
This is a surprising finding from the perspective of
prior work, since (to our knowledge) no existing
proposals posit that syntactic properties like the
ones we manipulated to build our dataset—i.e. the
presence or absence of tense, the presence or ab-
sence of an overt subject of the subordinate clause,
and eventivity/stativity of a predicate in the subor-
dinate clause—can influence whether neg-raising
inferences are triggered. We next turn to analy-
sis of this model fit to understand how our model
captures patterns in the data.

6 Analysis

Table 2 gives the |I| = |T | = 1 model’s esti-
mate of the relationship between neg-raising in-
ferences and lexical P(�ijk) (top) and structural
properties P(!tjk) (bottom) with different subjects
and tenses. The fact that all of the values in Table
2 are near 1 suggests that predicates having the
lexical property or structures having the structural

Tense

Property Person past present

lexical first 0.93 0.98
third 0.95 0.98

structural first 0.93 0.98
third 0.95 0.98

Table 2: Relationship between neg-raising inferences
and lexical property P(�ijk) (top) and structural prop-
erty P(!tjk) (bottom) with different subjects and tenses
in |I| = |T | = 1 model.

property will give rise to neg-raising inferences re-
gardless of the subject and tense.9

This pattern is interesting because it suggests
that the model does not capture the variability
across different subjects and tenses observed in
Figure 1 as a matter of either lexical or structural
properties. That is, the model treats any variabil-
ity in neg-raising inferences across different sub-
jects and/or tenses as an idiosyncratic fact about
the lexical item and the structure it occurs with—
i.e. noise. This result makes intuitive sense insofar
as such variability arises due to pragmatic reason-
ing that is specific to particular predicates, as op-
posed to some general semantic property.

But while the model does not distinguish among
neg-raising inference with various subject and
tense combinations, it does capture the coarser
neg-raising v. non-neg-raising distinction among
predicates—namely, by varying the probability
that different lexical items have the lexical prop-
erty P( vi) and the probability that they select
the structural property P(�vt). Figure 3 plots
the distribution of P( vi) ⇥ P(�vt) across pred-
icates.10 We see that predicates standardly de-
scribed as neg-raising (think, believe, want, seem,
feel, etc.) fall to the right, while those standardly

9These tables appear to be copies of each other, but they
are not. What is happening here is that the model is learning
to associate P(�ijk) and P(!tjk) with (roughly) the square
root of the largest expected value across all predicates for the
neg-raising response to sentences with subject j and tense k.
(It sets these values to the square root of the largest expected
value because they will be multiplied together.) This strategy
allows the model to simply vary P(�vt), P( vi), and P(⇡tf )
to capture the likelihood a particular predicate or structure
gives rise to neg-raising inferences, as described below.

10We plot the distribution of P( vi) ⇥ P(�vt), instead
of showing a scatter plot, because these probabilities show
extremely high positive rank correlation—approximately 1.
This happens because, when there is only one lexical property
and one structural property, the lexical property and selection
probabilities are effectively a single parameter p, with P( vi)
and P(�vt) themselves being set to p

p (see also Footnote 9).
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Figure 3: Distribution of P( vi) ⇥ P(�vt) across predicates, along with selected neg-raising (toward right) and
non-neg-raising (toward left) predicates in |I| = |T | = 1 model. (Label height is jittered to avoid overplotting.)

described as non-neg-raising (know, notice, real-
ize, love, etc.) fall to left. Thus, in some sense, a
predicate’s probability of having the model’s sin-
gle lexical property (plus its probability of select-
ing the single structural property) appears to cap-
ture something like the probability of neg-raising.

Structure Probability

NP that S 0.91
NP be ed that S 0.84
NP to VP[+ev] 0.98
NP be ed to VP[+ev] 0.93
NP to VP[-ev] 0.94
NP be ed to VP[-ev] 0.98

Table 3: Relationship between structural property and
structures P(⇡tf ) in |I| = |T | = 1 model.

The model captures variability with respect to dif-
ferent syntactic structures by modulating P(⇡tf ),
shown in Table 3. Looking back to Figure 1,
these values roughly correlate with the largest neg-
raising response (across subjects and tenses) seen
in that frame, with NP be ed that S showing the
lowest such value. The value of P(⇡tf ) is not the
same as the largest neg-raising value in Figure 1,
likely due to the fact that many of the predicates
that occur in that frame also have small values for
P( vi) ⇥ P(�vt), and thus, when P(⇡tf ) is multi-
plied by that values, it is small.

7 Conclusion

We presented a probabilistic model to induce the
mappings from lexical sources and their gram-

matical sources to neg-raising inferences. We
trained this model on a large-scale dataset of neg-
raising judgments that we collected for 925 En-
glish clause-embedding verbs in six distinct syn-
tactic frames as well as various matrix tenses and
subjects. Our model fit the best when positing one
lexical property and one structural property. This
is a surprising finding from the perspective of prior
work, since (to our knowledge) no existing pro-
posals posit that syntactic properties like the ones
we manipulated to build our dataset—i.e. the pres-
ence or absence of tense, the presence or absence
of an overt subject of the subordinate clause, and
eventivity/stativity of a predicate in the subordi-
nate clause—can influence whether neg-raising in-
ferences are triggered. Our findings suggest new
directions for theoretical research attempting to
explain the interaction between lexical and struc-
tural factors in neg-raising. Future work in this
vein might extend the model proposed here to in-
vestigate the relationship between neg-raising and
acceptability as well as other related phenomena
with associated large-scale datasets, such as lexi-
cally triggered veridicality inferences (White and
Rawlins, 2018; White et al., 2018; White, 2019).

Acknowledgments

We would like to thank the FACTS.lab at UR as
well as three anonymous reviewers for useful com-
ments. This work was supported by an NSF grant
(BCS-1748969/BCS-1749025) The MegaAttitude
Project: Investigating selection and polysemy at
the scale of the lexicon.



References

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. Ten-
sorflow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 265–
283.

Dorit Abusch. 2002. Lexical alternatives as a source of
pragmatic presuppositions. Semantics and Linguis-
tic Theory, 12:1–19.

Renate Bartsch. 1973. “Negative transportation” gibt
es nicht. Linguistische Berichte, 27(7).

Marc Brysbaert and Boris New. 2009. Moving beyond
kucera and francis: A critical evaluation of current
word frequency norms and the introduction of a new
and improved word frequency measure for american
english. Behavior Research Methods, 41:977–990.

Gennaro Chierchia. 2013. Logic in grammar: polarity,
free choice, and intervention, first edition. Oxford
University Press, Oxford.

Chris Collins and Paul Martin Postal. 2014. Classical
NEG Raising: An Essay on the Syntax of Negation.
MIT Press.

Chris Collins and Paul Martin Postal. 2017. In-
terclausal neg raising and the scope of negation.
Glossa: A Journal of General Linguistics, 2:1–29.

Chris Collins and Paul Martin Postal. 2018. Disentan-
gling two distinct notions of neg raising. Semantics
and Pragmatics, 11(5).

Paul Crowley. 2019. Neg-raising and neg movement.
Natural Language Semantics, 27(1):1–17.

Mark Davies. 2017. Corpus of Contemporary Ameri-
can English (COCA).

Charles J. Fillmore. 1963. The position of embedding
transformations in a grammar. WORD, 19(2):208–
231.

Jon R. Gajewski. 2007. Neg-raising and polarity. Lin-
guistics and Philosophy, 30(3):289–328.

Jon R. Gajewski. 2011. Licensing strong npis. Natural
Language Semantics, 19(2):109–148.

Vincent Homer. 2015. Neg-raising and positive polar-
ity: The view from modals. Semantics and Prag-
matics, 8(4):1–88.

Laurence Robert Horn. 1971. Negative transportation:
unsafe at any speed? Papers from the seventh re-
gional meeting, Chicago Linguistic Society, pages
120–133.

Laurence Robert Horn. 1978. Remarks on neg-raising.
Syntax and Semantics, 9:129–220.

Laurence Robert Horn. 1989. A Natural History of
Negation. University of Chicago Press.

Laurence Robert Horn. 2014. The cloud of unknow-
ing. In Jack Hoeksema and Dicky Gilbers, editors,
Black Book: A Festschrift for Frans Zwarts, pages
178–196. University of Groningen, Groningen, the
Netherlands.

Laurence Robert Horn and Samuel Bayer. 1984. Short-
circuited implicature: A negative contribution. Lin-
guistics and Philosophy, 7(4):397–414.

Ray S. Jackendoff. 1971. On some questionable ar-
guments about quantifiers and negation. Language,
47(2):282–297.

Adam Kilgarriff, Vı́t Baisa, Jan Bušta, Miloš
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A Instructions

In this experiment, you will be asked to answer
questions about what a person is likely to mean if
they say a particular sentence.

Your task will be to respond about the likeli-
hood on the slider that will appear under each
question, where the left side corresponds to ex-
tremely unlikely and the right side corresponds to
extremely likely.

For instance, you might get the question If I
were to say John has three kids, how likely is it
that I mean John has exactly three kids? with a
slider. In this case you would move the slider han-
dle fairly far to the right (toward extremely likely),
since if someone says ”John has three kids”, it’s
pretty likely that they mean that John has exactly
three children.

If the question were If I were to say some of the
boys left, how likely is it that I mean all of the boys

left?, then you might move the slider pretty far to
the left (toward extremely unlikely), since it would
be odd if someone says ”Some of the boys left –
and by that, I mean all of the boys left”.

And if the question were If I were to say Ann
didn’t greet everyone politely, how likely is it that
I mean Ann was unwelcoming to every single per-
son?, you might leave the slider in the middle
(which corresponds to maybe or maybe not), since
quite often such sentence can be used to mean
Ann greeted some people politely but not all, or to
mean Ann was not polite to every single person.

Try to answer the questions as quickly and accu-
rately as possible. Many of the sentences may not
be sentences that you can imagine someone ever
saying. Try your best to interpret what a speaker
would mean in using them. After each question,
you will be given a chance to tell us whether the
sentence you just responded to isn’t something
you can imagine a native English speaker ever say-
ing.

Not all questions have correct answers, but a
subset in each HIT do. Prior to approval, we check
the answers given for this subset. We will reject
work containing a substantial number of answers
that do not agree with the correct answer.

When the experiment is over, a screen will ap-
pear telling you that you are done, and a submis-
sion button will be revealed.

B Data

We extend White and Rawlins’ (2016) MegaAc-
ceptability v1.0 dataset by collecting acceptabil-
ity judgments for sentences in present and past
progressive tenses—resulting in MegAcceptabil-
ity v2.0, which subsumes MegaAcceptability v1.0.
To enable comparison of the judgments given in
MegaAcceptability v1.0 and those we collect, we
run an additional linking experiment with half
items from MegaAcceptability v1.0 and our exten-
sion. We then normalize all three datasets sepa-
rately using the procedure described in White and
Rawlins 2019 and then combine them by using the
linking experiment data to train a model to map
them into a comparable normalized rating space.
Both the extended MegaAcceptability and linking
datasets are available at megaattitude.io.

Extended MegaAcceptability Our test items
are selected and modified from the top 25% most
acceptable verb-frame pairs from the MegaAc-
ceptability dataset of White and Rawlins (2016),

http://megaattitude.io


determined by a modified version of the nor-
malization procedure used in White and Rawlins
2019. This item set thus contains 12,500 verb-
frame pairs, with 1000 unique verbs and the same
50 subcategorization frames (35 in active voice
and 15 in passive voice) that are used in MegaAc-
ceptability.

Given the 12,500 verb-frame pairs, we construct
new sentences in both present and past progressive
tense/aspect, resulting in a total of 25,000 items.
Examples of two sentences from MegaAcceptabil-
ity v1.0 are given in (27) and the corresponding
present and past progressive versions are given in
(28) and (29), respectively.

(27) a. Someone knew which thing to do.
b. Someone talked about something.

(28) a. Someone knows which thing to do.
b. Someone talks about something.

(29) a. Someone is knowing which thing to do.
b. Someone was talking about something.

All methods follow White and Rawlins 2016. Sen-
tences are partitioned into 500 lists of 50, with
each list constructed such that (i) each frame
shows up once in a list, making each list contain
50 unique frames, if possible; (ii) otherwise, the
distribution of frames are kept as similar as pos-
sible across lists; and (iii) no verbs appear more
than once in a list. We gather 5 acceptability judg-
ments per sentence, yielding a total of 125,000
judgments for 25,000 items.

Judgments for each sentence in a list are col-
lected on a 1-to-7 scale. To avoid typicality ef-
fects, we construct the frames to contain as lit-
tle lexical content as possible besides the verb at
hand. For this, we instantiate all NP arguments as
indefinite pronouns someone or something and all
verbs besides the one being tested as do or happen.
565 participants were recruited from Amazon Me-
chanical Turk, where 562 speak American English
as their native language.

Linking experiment Because our extension of
MegaAcceptability was built in such a way that
it likely contains higher acceptability items, the
ratings in MegaAcceptability v1.0 and the ratings
in our extension are likely not comparable—i.e.
a rating in MegaAcceptability v1.0 is, in some
sense, a worse rating than in our extension, since
our sentences are, by construction, better over-
all. To put the existing MegaAcceptability dataset
and our extended dataset on a comparable scale,

we run another experiment to assist in mapping
the two datasets to such a comparable scale. We
choose 50 items, each with a unique verb, by se-
lecting 26 items from our dataset (14 in present
tense and 12 in past progressive tense) and 24
items from MegaAcceptability (all past tense).

This item selection was constrained such that
half of the items chosen were below the median
acceptability score and half were above, evenly
split across items from our experiment and items
from MegaAcceptability v1.0. The items with
the lowest acceptability scores consist of 8 in the
present, 6 in the past progressive, and 12 in the
past tense and so do the items with the highest ac-
ceptability scores. Example items with the low ac-
ceptability scores (under this criterion) are shown
in (30), and example items with high acceptability
scores are shown in (31).

(30) a. Someone demands about whether some-
thing happened.

b. Someone was judging to someone that
something happened.

c. Someone invited which thing to do.

(31) a. Someone is distracted.
b. Someone was teaching.
c. Someone dared to do something.

The linking experiment is built in a very simi-
lar manner to our extension of MegaAcceptability,
described above. Ordinal acceptability judgments
are collected on a 1-to-7 scale. 50 participants
were recruited to rate all 50 items in the experi-
ment. All of the 50 participants report speaking
American English as their native language.

After running the linking experiment, we nor-
malize the ratings in all three datasets separately
using a modified version of the procedure de-
scribed in White and Rawlins 2019. Then, we
construct one mapping from the normalized rat-
ings in our extension of MegaAcceptability to
the normalized ratings for the linking dataset
and another mapping from the normalized rat-
ings in the linking dataset to the normalized rat-
ings in MegaAcceptability v1.0 with two linear
regressions—implemented in scikit-learn
(Pedregosa et al., 2011). We then compose these
two regressions to map the normalized ratings in
our extended MegaAcceptability dataset to those
in MegaAcceptability v1.0. This gives us a com-
bined dataset of acceptability judgments for sen-
tences in three different tense/aspect combinations



Subordinate

clause

Neg-raising Non-neg-raising

Finite think, believe,
feel, reckon,
figure, guess,
suppose, imagine

announce, claim,
assert, report,
know, realize,
notice, find out

Infinitival want, wish,
happen, seem,
plan, intend,
mean, turn out

love, hate,
need, continue,
try, like,
desire, decide

Table 4: Verbs used in validation experiments

(past, present, and past progressive) and 50 differ-
ent syntactic frames, which we use to construct our
neg-raising experiment.

C Validation Experiments

We conduct experiments aimed at validating our
method for measuring neg-raising. In both ex-
periments, we test the same set of 32 clause-
embedding verbs, half of which we expect to show
neg-raising behavior and the other half we do not
(based on the literature discussed in §2). For neg-
raising verbs, we refer to the neg-raising pred-
icates listed in Gajewski 2007 and Collins and
Postal 2018; and for non-neg-raising verbs, we
choose factive verbs and those that Theiler et al.
(2017) claim are not neg-raising. The experi-
ments differ with respect to whether we employ
“bleached” items (as in the data collection de-
scribed in the main body of the paper) or “content-
ful” items, which are constructed based on sen-
tences drawn from English corpora.

Materials We select neg-raising and non-neg-
raising verbs such that half of each type takes in-
finitival subordinate clauses and half takes finite
subordinate clauses. Table 4 shows the 32 verbs
we choose for the pilot. Some verbs listed as tak-
ing one kind of subordinate clause can also take
the other. In these cases, we only test that verb in
the subordinate clause listed in Table 4.

The matrix subject (first v. third person) and
matrix tense (present v. past) are manipulated
for each predicate: (32) schematizes four items
from our bleached experiment and (33) schema-
tizes four items from our contentful experiment.

(32) {I, A particular person} {don’t/doesn’t,
didn’t} want to do a particular thing.

(33) {I, Stephen} {don’t/doesn’t, didn’t} want to
introduce new rules.

Items for the bleached experiment are constructed

automatically using the templates, which select
to have a particular thing for turn out and seem
as their subordinate clause, to do a particular
thing for other verbs taking infinitival subordi-
nate clauses, and that something happened for the
verbs taking finite subordiante clauses. Items for
the contentful experiment are constructed by re-
placing all bleached words (a particular person, a
particular thing, do, have, and happen) from the
bleached experiment items by contentful lexical
words.

The high content sentences are constructed
based on sentences sampled from the Corpus of
Contemporary American English (Davies, 2017)
and the Oxford English Corpus (Kilgarriff et al.,
2014). The contentful items are modified so that
third person subject is a proper name and sen-
tences do not include any pauses or conjunctions.
To allow possible item variability, we create five
contentful items per each bleached item.

For the bleached experiment, four lists of 32
items each are constructed by partitioning the re-
sulting 128 items under the constraints that (i) ev-
ery list contains every verb with exactly one sub-
ject (first, third) and tense (past, present) and (ii)
every subject-tense pair is seen an equal number
of times across verbs. We ensure that the same
level of a particular factor is never assigned to the
same verb more than once in any list and that the
items in a list are randomly shuffled. To construct
items, we manipulate neg-raising, embedded com-
plement, matrix subject, matrix tense. Neg-raising
and embedded complements are pre-determined
for each verb, while matrix subject and matrix
tense are randomly selected for a verb in each
task. The same constraints apply for the content-
ful experiment except that the test items were par-
titioned into 20 lists of 32 instead of four lists be-
cause the total number of sentences for the con-
tentful experiment is five times bigger than the
bleached experiment.

Participants For the bleached experiment, 100
participants were recruited such that each of the
four lists was rated by 25 unique participants. For
the contentful experiment, 100 participants were
recruited as well, to have each of the 20 lists of 32
rated by five unique participants. No participant
was allowed to rate more than one list. In each ex-
periment, one participant out of 100 reported not
speaking American English natively and this par-
ticipant’s responses were filtered prior to analysis.



Analysis We test whether our task correctly cap-
tures canonical (non-)neg-raising verbs using lin-
ear mixed effects models. For both validation ex-
periments, we start with a model containing fixed
effects for NEGRAISING (true, false; as in Table 4),
random intercepts for PARTICIPANT, VERB, and
(in the contentful validation) ITEM. Nested under
both verb and participant, we also included ran-
dom intercepts for MATRIX SUBJECT (1st, 3rd)
and MATRIX TENSE (past, present) and their in-
teraction. We compare this against a model with
the same random effects structure but no effect
of NEGRAISING. We find a reliably positive ef-
fect of NEGRAISING for both the bleached exper-
iment (�2(1) = 34.5, p < 10�3) and the content-
ful experiment (�2(1) = 19.8, p < 10�3). This
suggests that participants’ responses are consistent
with neg-raising inferences being more likely with
verbs that have previously been claimed to give
rise to such inferences.

D Normalization

For the purposes of visualization in §3, we present
normalized neg-raising scores. These scores are
derived using a mixed effects robust regression
with loss the same loss (26) as for the model de-
scribed in Section 4, except that, unlike for the
model, where ⌫vfjk is defined in terms of the
model, for the purposes of normalization, both
⌫vfjk in (23) and ↵vfjk in (25) are directly opti-
mized. Figure 1 plots logit�1(exp(�0)⌫vfjk)+�0.

E Model Derivation
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Abstract

Natural language generation (NLG) systems
are commonly evaluated using n-gram over-
lap measures (e.g. BLEU, ROUGE). These
measures do not directly capture semantics
or speaker intentions, and so they often turn
out to be misaligned with our true goals for
NLG. In this work, we argue instead for
communication-based evaluations: assuming
the purpose of an NLG system is to convey in-
formation to a reader/listener, we can directly
evaluate its effectiveness at this task using the
Rational Speech Acts model of pragmatic lan-
guage use. We illustrate with a color refer-
ence dataset that contains descriptions in pre-
defined quality categories, showing that our
method better aligns with these quality cate-
gories than do any of the prominent n-gram
overlap methods.

1 Introduction

Natural language generation (NLG) models are in-
creasingly prominent as core components in di-
alogue agents, story generators, summarization
tools, image captioning systems, and others. NLG
models are generally evaluated according to met-
rics that are defined in terms of the n-gram over-
lap between the model-generated candidate and
human-generated reference texts. However, these
metrics suffer from a well-known limitation: they
assume that quality candidates will always share
many exact token matches with ones generated by
humans. This assumption is false for many com-
mon linguistic phenomena. For example, synony-
mous expressions receive low scores with most
of these metrics even though humans find them
equally good, and negated candidates receive high
scores even where the negation leads to dramatic
deviation from the reference texts. Such met-
rics are particularly ineffective in scenarios where
there are many potentially appropriate utterances
(Liu et al., 2016; Novikova et al., 2017).

To avoid this problem, one might turn to hu-
man judgments to assess the quality of model-
generated language. In this setting, humans rate
language according to grammaticality, typicality,
informativeness, interestingness, and other qual-
itative dimensions (Lowe et al., 2017; Hashimoto
et al., 2019; Chaganty et al., 2018). This addresses
the problems with n-gram overlap methods, but it
is expensive, and the human task does not reflect
natural language use, which can lead to unreliable
data.

One shortcoming of these methods is that they
fail to take into account the communicative func-
tion of language; a speaker’s goal is not only to
produce well-formed expressions, but also to con-
vey relevant information to a listener. Likewise,
a listener is not only an assessor of quality, but
also an agent that forms beliefs based on speak-
ers’ utterances. Thus, our NLG systems should
be expected to use language to communicate as
well, and we should evaluate these systems, not
based on surface-level features of their utterances,
but rather on the information they convey.

In this work, we argue for such communication-
based evaluations. In language use, the speaker
intends to communicate information to the listener
using an utterance, and the listener infers some
information from that utterance. This provides
the basis for evaluation: if the listener’s inference
aligns with the speaker’s intentions, the utterance
was successful. If these intentions are not aligned,
the utterance was less successful.

We formalize communication-based NLG eval-
uations using the Rational Speech Acts model
of pragmatic language use (Frank and Goodman,
2012). To motivate this approach, we rely on a
color reference game (Monroe et al., 2017, 2018).
In this game, a speaker and a listener see a set
of three colors. The speaker is told one color is
the target and tries to communicate the target to



the listener using a natural language utterance. A
good utterance is more likely to lead the listener to
select the target, while a bad utterance is less likely
to do so. In turn, effective metrics should assign
high scores to good utterances and low scores to
bad ones.

To test our evaluation proposal, we asked
crowdworkers to write color descriptions falling
into three separate quality categories: those that
describe only the target color (descriptive candi-
dates); those that describe the target color and
at least one other color in the context (ambigu-
ous candidates); and those that describe only one
non-target color in the context (misleading can-
didates). We then assess the extent to which
our method’s scores align with these categories.
For comparison, we also investigate the extent to
which n-gram overlap metrics correlate with ut-
terance quality, focusing specifically on BLEU,
METEOR, ROUGE, and CIDEr. We find that
our communication-based metrics correlate more
strongly than n-gram overlap metrics do. Our find-
ings suggest that, when evaluating NLG models
grounded in a task, it is more effective to use task
performance than n-gram overlap metrics.

2 Related Work

2.1 NLG Evaluation

Existing NLG evaluation methods make use of
n-gram overlap scores, human evaluations, and
model-based evaluations. Our own method blends
human evaluation and model-based evaluation, as
we advocate using humans or building models to
act on generated language

Other model-based evaluations take a variety
of forms. Some involve training models to esti-
mate human judgments of utterance quality (Lowe
et al., 2017; Dušek et al., 2017; Kann et al.,
2018). Others require training models to dis-
tinguish between language generated by humans
and models—an adversarial evaluation (Bowman
et al., 2016; Liu et al., 2016; Kannan and Vinyals,
2016; Bruni and Fernández, 2017). These meth-
ods focus on the utterance in a vacuum and tend to
not to consider how language will actually interact
with other conversational participants. They treat
humans as assessors of quality or adversarial lis-
teners, whereas our proposal takes the perspective
that listeners are cooperative interlocutors who use
the language they hear to inform their beliefs about
the world.

Our approach can also be seen as part of a larger
effort to incorporate context into NLG evaluation.
Prior work in this area includes the image caption-
ing metric SPICE, which uses scene graphs to as-
sess candidate captions (Anderson et al., 2016).
Similarly, Lowe et al. (2017) use conversational
context to predict how human annotators would
score dialogue agents, and the importance of con-
text in assessment of this domain is noted by Liu
et al. (2016). Our work incorporates contextual
information by modeling the task a hypothetical
listener will perform with the language produced.

2.2 Task-based Language Evaluation

Our work is particularly relevant for evaluation of
utterances in task-specific scenarios. Overwhelm-
ingly, work in this area uses humans perform-
ing some task with model-generated utterances
to evaluate these utterances (Andreas and Klein,
2016; Andreas et al., 2017; Golland et al., 2010;
Mao et al., 2016; Vedantam et al., 2017). Addi-
tionally, automatic evaluation metrics have been
proposed. Monroe et al. (2017) and Cohn-Gordon
et al. (2018) use a combination of language models
conditioned on the context and Bayes’ rule, while
Mao et al. (2016) use their joint image and text
classifier to evaluate potential object descriptions.
We compare these two approaches as well. Addi-
tionally, referring expressions tend not to be evalu-
ated using n-gram overlap metrics; Vedantam et al.
(2017)’s use of CIDEr is an exception. As far as
we know, these communication-based and n-gram
overlap evaluation approaches have not previously
been compared.

2.3 Communicative Informativity

Our communication-based evaluation method is
closely related to the Rational Speech Acts (RSA)
framework of pragmatic language use. This
framework describes communication between two
agents as a rational act where one agent, the
speaker, chooses to communicate some informa-
tion to another agent, the listener. The speaker
chooses their utterance to maximize their utility,
which in the framework involves choosing the ut-
terance most helpful to the listener (Goodman and
Frank, 2016). This idea has been used to model a
wide range of linguistic phenomena.

This utility function is very similar to our pro-
posed method’s scoring function—differing only
in a cost term. To our knowledge, this is the first
case where this rational speaker utility function is



used to evaluate language rather than model hu-
man utterance selection.

3 N-gram Overlap Evaluation Metrics

We now introduce the n-gram overlap metrics we
adopt as baselines for our evaluations. These met-
rics evaluate candidate utterances by identifying
the n-grams shared between the candidate utter-
ances and human-generated reference utterances.
They are commonly used for evaluation in a va-
riety of domains and are consistently compared
when evaluating the effectiveness of different met-
rics for various tasks (summarization, image cap-
tioning, dialogue; Novikova et al. 2017; Kilickaya
et al. 2017; Sharma et al. 2017).

BLEU BLEU (BiLingual Evaluation Under-
study) was conceived as a method for automat-
ically evaluating machine translation systems by
comparing the tokens in the system outputs to ref-
erence sentences constructed by expert translators
(Papineni et al., 2002). BLEU consists of two
components—a modified n-gram precision and a
brevity penalty. The modified n-gram precision re-
wards candidate translations that contain the same
n-grams as the references. Calculated precisions
for n-grams of different sizes are then geometri-
cally averaged together. Conventionally, n-gram
overlaps for n = 1, 2, 3, and 4 are calculated. The
second component of the BLEU score, the brevity
penalty, acts as a recall constraint. Long candi-
date utterances could achieve a high modified n-
gram precision by containing many n-grams, but
the brevity penalty negatively impacts the score of
candidates longer than the reference.

METEOR METEOR (Metric for Evaluation
of Translation with Explicit ORdering), like
BLEU, is designed for assessing utterances gener-
ated by machine translation systems (Banerjee and
Lavie, 2005). METEOR searches for an align-
ment between the candidate and reference sen-
tence using a form of beam search. Stemmed
words, synonyms, and even paraphrases are con-
sidered in seeking the optimal alignment. This
alignment is used to a calculate an F-score, usu-
ally favoring recall over precision. METEOR also
has a “fragmentation score” that penalizes non-
contiguous alignments and addresses issues re-
lated to word order. High METEOR scores mean
large overlap between the tokens in the reference
and candidate (including synonymy) as well as the

correct word order.

ROUGE ROUGE (Recall Oriented Under-
study of Gisting Evaluation) is a class of n-gram
overlap metrics for assessing summaries (Lin,
2004). Like BLEU, many ROUGE metrics op-
erate on the n-gram level, but unlike BLEU, their
main component is an n-gram recall score that
gives the proportion of n-grams in a reference
that are in the candidate rather than a precision
score that gives the proportion of n-grams in the
candidate that are in the reference. The version
of ROUGE we use here is called ROUGE-L. It
uses the longest common subsequence between
the candidate summary and reference summary to
calculate an F-score heavily favoring recall. As
such, a high ROUGE-L score indicates that a
large proportion of tokens from the reference oc-
cur in the candidate, so longer candidates are re-
warded (Vedantam et al., 2015).

CIDEr CIDEr (Consensus-based Image De-
scription Evaluation) is an n-gram overlap met-
ric that assesses image captions (Vedantam et al.,
2015). It attempts to capture how well a candi-
date agrees with the “consensus” of a large group
of references. It does this by creating TF-IDF vec-
tors for different n-grams sizes from the reference
and candidate captions and calculating a weighted
average of the cosine similarities between vectors
for different n-gram sizes. Inverse document fre-
quency is calculated over all of the reference sen-
tences in the dataset. High CIDEr scores indicate
that a candidate caption uses the same infrequent,
and likely informative, n-grams as a number of the
references.

While the metrics described above (other than
CIDEr) are defined for a single candidate and a
single reference, the intention is that they be used
with multiple reference texts per candidate, and
Finch et al. (2004) found that using more reference
sentences increases the reliability of these metrics.
Gains start at 4 and continue up until 50 reference
sentences in some cases (Vedantam et al., 2015).
This is because a greater number of references
provides more opportunities for the candidate to
get a higher score. Because of this, when com-
paring these metrics to our communication-based
evaluation we use multiple references.



4 Communication-based Evaluation

We now define our communication-based evalua-
tion method in general terms, leaving its specific
application to the color reference game to Sec-
tion 5.

For our evaluation, we treat an NLG system as a
speaker attempting to communicate about a topic
t. We denote the set of all world states relevant to t
as Wt, with a random world state drawn from this
set represented as wt 2 Wt. These world states
reflect any aspect of the world a speaker might
want to communicate. While this set is poten-
tially infinite, the topic t limits the set to just con-
tain alternatives relevant to what commands the
speaker’s attention. The speaker’s knowledge of
the state of the world relevant to their communica-
tive topic can then be represented as a distribution
over world states, S(wt), as they may have differ-
ent confidence levels about different alternatives.
The speaker’s goal is to communicate their distri-
bution to the listener with an utterance u. After
hearing u, the listener has some beliefs about the
same topic-relevant states, which we can represent
with the conditional distribution L(wt | u). This
distribution signifies the listener’s representation
of the world related to t, so, if the speaker is suc-
cessful, L(wt | u) should be close to S(wt). As
such, we can define our method M to measure the
similarity between these two distributions with the
KL-divergence:

M(u | S,L) = DKL(S(wt) k L(wt | u)) (1)

If the speaker has a specific target state wtarget in
mind, then all of the speaker’s probability mass
is on wtarget. In that situation, the KL-Divergence
is equivalent to the negative log-likelihood of the
listener’s probability of the true target color being
the target:

M(u | L, S) = � logL(wtarget | u) (2)

This value directly quantifies the listener’s ac-
curacy in guessing the speaker’s target state.

This metric can also be seen as measuring the
communicative informativeness of u in the sense
of RSA. As described previously, in this frame-
work, a speaker chooses an utterance to maxi-
mize their utility. Conventionally, this utility is
the quantity represented by our metric—the KL-
divergence between the speaker’s observed distri-
bution of the world and what they expect their lis-
tener’s distribution to be after hearing the potential

utterance. In this way, our approach can be seen as
defining NLG quality in terms of pragmatic lan-
guage use.

As is evident from this description, our method
requires NLG systems to be construed as produc-
ing utterances that would help a listener distin-
guish among relevant alternative states. For ex-
ample, an image captioning system has to be de-
signed, not just to create true captions for its in-
put images, but also to create captions that would
help a listener choose that input from among a set
of distractor images (Vedantam et al., 2017; Mao
et al., 2016; Cohn-Gordon et al., 2018). Similarly,
a summarization tool should produce summaries
that capture exactly the information that makes the
source text stand out with respect to related in-
puts (Zhang et al., 2018), and a pure text genera-
tion tool (a language model) might be refashioned
to produce texts conditional on specific pieces of
metadata (e.g. genre, author) so that we can as-
sess it based on a listener’s ability to recover that
metadata from distractors (Shen et al., 2019). In
general, we feel that these are healthy impositions
on these tasks, as they encourage the systems to be
grounded in specific contexts and to produce utter-
ances that are not just true but also informative.

5 Evaluating the Evaluation Approaches

We assess the effectiveness of our evaluation
method using the color reference game described
by Monroe et al. (2017), in which a speaker and
a listener each see the same set of three color
swatches (though perhaps in different orders) and
the speaker’s task is to convey the identity of their
(hidden) target color to the listener. This scenario
is ideal for our evaluation because the communica-
tive goal is clear, and we can easily adjust this goal
in ways that affect utterance quality.

5.1 Data

Our assessment hinges on the ability of a metric
to distinguish good candidate utterances from bad
ones. As such, we need utterances that are clear
and consistent in their quality. To ensure consis-
tent quality, we rely on humans to generate our
candidate utterances. The utterances we solicited
each fall into one of three categories: descriptive,
ambiguous, or misleading:

1. Descriptive Candidates: These consist of in-
formative descriptions that are intended to



Figure 1: A hypothetical context with captions of dif-
ferent qualities. The red arrow points to the target color.
The descriptive caption picks out the target, the am-
biguous one selects two colors, and the misleading cap-
tion picks out a distractor color.

distinguish between the target and the distrac-
tors (i.e. non-target) colors. These should re-
ceive the highest scores.

2. Ambiguous Candidates: These consist of
uninformative descriptions that are intended
to correctly describe the target and at least
one of the distractors. These should receive
scores in the middle of the scale.

3. Misleading Candidates: These consist of de-
scriptions that are intended to describe one
of the distractors and not the target. These
should receive the lowest scores.

We obtained our descriptive candidates by aug-
menting the dataset of Monroe et al. (2017). We
selected 360 distinct color context–utterance pairs
from the development set in which listeners were
able to correctly identify the target. Because these
metrics perform better with more references, we
collected 5 reference descriptions for each of the
360 contexts from Mechanical Turk workers. In-
stead of having workers play the reference game
in pairs, we described the game and asked that
they play the speaker role. Separately, we then had
three crowdworkers perform the listener role with
each utterance. We kept only the utterances where
at least two of the listeners identified the target cor-
rectly. We ended up with a total of 1,912 descrip-
tive candidates with on average 5.2 references per
context.

The Monroe et al. (2017) dataset does not con-
tain labeled ambiguous descriptions, so we ob-
tained our ambiguous candidates by having Me-
chanical Turk workers play the color reference

game in the 360 color contexts as “ambiguous”
speakers. The ambiguous speakers were asked
to provide a description that applied to the target
color while making it difficult for the listener to
select the target. Any ambiguous descriptions that
matched descriptive candidates for their context
exactly were discarded. Some examples include
“Blue” when the context contains a dark blue tar-
get and a light blue distractor, or “Color of the
rainbow”. Whether these captions are ambigu-
ous in the sense that they communicate no rele-
vant information or merely underspecified in the
sense that that they do not provide enough infor-
mation, these captions are of lower quality than
the descriptive ones. There are 1,343 ambiguous
candidates.

Finally, the Monroe et al. (2017) corpus does
not explicitly contain misleading descriptions, but
we did obtain a portion of our misleading candi-
dates from their dataset. To do so, we made sure
to select our 360 contexts as 180 context pairs.
Each pair contains the same colors, but with a dif-
ferent target color. Therefore, a descriptive can-
didate for one context in the pair is a misleading
caption for the other—the description directs the
listener to the wrong color. Descriptive candidates
from contexts with the same colors but different
targets are our misleading candidates. We expect
that these misleading candidates should be differ-
ent from the descriptive ones, but they may be the
same if all the colors are similar. To ensure that the
descriptive and misleading candidates were dis-
tinct in the cases where the colors were different,
we removed misleading candidates found in their
context’s reference sets if the distance between
colors had a distance of at least 20 according to the
CIEDE2000 standard (Sharma et al., 2005). There
are 1,909 misleading candidates in all.

Because descriptive candidates pick out the tar-
get color, they are better than ambiguous candi-
dates, and because ambiguous candidates apply to
the target color, they are better than misleading
candidates. An effective evaluation metric should
then assign the highest scores to descriptive can-
didates, middle-of-the-range scores to ambiguous
candidates, and the lowest scores to misleading
candidates. An example of what these captions
might look like can be found in Figure 1.

Our dataset and code can be found at https:
//github.com/bnewm0609/comm-eval.

https://github.com/bnewm0609/comm-eval
https://github.com/bnewm0609/comm-eval


5.2 Models for Communication-based

Evaluation

To use our communication-based evaluation
method in the color reference game scenario, we
need to define our world states, speaker distribu-
tions, and listener distributions. The set of world
states Wt includes one state in which each color
in the context is the target, and the speaker’s ob-
served distribution S(wt) puts all its probability
mass on the true target color. The listener’s dis-
tribution L(wt | u) requires further consideration.
This distribution can be modeled as any distribu-
tion over the world states conditioned on an utter-
ance. We introduce three ways to generate such
a distribution: human listeners, a Literal Listener
model, and a Pragmatic Listener model.

To obtain a human listener in the sense of our
evaluation, we had Mechanical Turk workers play
the role of listeners in the reference game: they
were given color contexts and candidate descrip-
tions from each of the quality categories and were
asked to select the color that the candidate best de-
scribes. The distribution they represent, L(wt |
u), has all of its probability mass on the color they
select. We had three workers play the reference
game with each candidate utterance we collect.

If human data is unavailable, the distribution
L(wt | u) can be modeled computationally. We
consider two such models.

The first model is a “Literal Listener”. The
model takes an utterance as input and uses it to
directly compute a distribution over world states.
Following Monroe et al. (2017), we parameterize
this Literal Listener with an LSTM that produces a
mean color vector µ and covariance matrix ⌃ from
an utterance, and these are used to score each con-
text color f :

score(f) = �(f � µ)⌃(f � µ) (3)

The scores are then normalized using a softmax
function to obtain the required distribution over
colors representing L(wt | u). We trained our
model on the ⇡15,000 utterances in the training
set specified by Monroe et al. (2017), and eval-
uated on the test set of approximately the same
size. We found that the target is assigned the high-
est score 76.53% of the time, much higher than
chance performance of 33%.

In contrast to our Literal Listener model, our
“Pragmatic Listener” model finds the probability
of the candidate utterance given that each color

in the context is the target, P (u | wt). These
probabilities are used to derive L(wt | u) using
Bayes’ rule. To find the probability of the utter-
ance, we use an LSTM as a conditional language
model. The model is trained and structured fol-
lowing Monroe et al. (2017), and initialized with
pretrained GloVe embeddings (Pennington et al.,
2014). Inverting with Bayes’ rule involves spec-
ifying a prior over utterances, and we treat this
prior as uniform for simplicity. This model is
pragmatic in the sense that it explicitly takes into
account the view of a hypothetical speaker. This
is the path taken in the automatic metrics used
by Monroe et al. (2018) and Cohn-Gordon et al.
(2018). This listener assigns the highest score to
the target color in 75.02% of test-set contexts, also
much better than chance.

Finally, we use our listener and speaker distri-
butions to assign a score to the utterance follow-
ing (1). Because the speaker’s distribution has all
probability on one world state, the score M(u |
L, S) reduces to the negative log likelihood of the
target world state wtarget given the utterance, as in
(2) above. To put this score into a space similar to
the F-measure spaces of the n-gram overlap met-
rics, we report e�M(u|L,S), or equivalently, the lis-
tener’s probability for the target color.

It is important to note that because the states
are defined only in terms of the target color, the
only aspect that matters to an utterance’s quality
is whether it leads a listener to select the target.
We do not explicitly evaluate stylistic aspects such
as grammaticality or politeness, though the world
states and distributions could be augmented to in-
clude these as in Kao et al. 2014. By defining our
task in this manner, we are assuming that stylistic
elements do not contribute to communicative suc-
cess. While this is certainly not true in many situ-
ations, we believe is appropriate for this particular
context.

5.3 Comparisons

To evaluate the effectiveness of our metrics at
detecting how well utterances communicate a
speaker’s beliefs, we investigate the extent to
which good utterances receive high scores and bad
utterances receive low scores. We evaluate all of
the utterances in each of the three quality cate-
gories: descriptive, ambiguous, and misleading.

First, for our baseline experiments, we run the
n-gram overlap metrics to compare each of the de-



Figure 2: Violin plots showing the distribution of scores assigned by each metric across the three caption qualities.
In the first two columns, we have the four n-gram overlap baselines. In the third column, we have the listener model
metrics. On the right, we have the gold-standard human listener results. Violin plots are created with Gaussian
kernel density estimate with bandwidth 0.2. Horizontal bars show ranges and means.

Metric ⇢ r ⌧

Human 0.701 0.701 0.661

Literal Listener 0.581 0.613 0.486
Pragmatic Listener 0.554 0.556 0.444

BLEU-1 0.363 0.350 0.290
ROUGE-L 0.441 0.439 0.378
METEOR 0.482 0.479 0.404
CIDEr 0.401 0.417 0.340

Table 1: Pearson’s ⇢, Spearman’s r, and Kendall’s ⌧
correlation values between assigned scores and quality
categories. BLEU-1 is reported because it is the best
of the BLEU scores. All correlations are significant at
p < 0.05 and all Pearson’s correlations are different at
p < 0.05 according to a Williams’ test.

scriptive, ambiguous, and misleading candidates
to references from their contexts. We run these
assessments with the nlgeval package (Sharma
et al., 2017). We report the smoothed distributions
of n-gram overlap scores for each category sepa-
rately in the left two columns of Figure 2.

Next, we run our two communication-based
evaluation models on each of these candidates.
The score reported for an utterance is the probabil-
ity the model assigns to the true target color being
the target after processing the utterance. Again,

we report the distribution of scores separated by
category in the third column of Figure 2.

Finally, we plot our ground-truth human-
listener scores. If the human listener correctly
identified the target, the caption they saw received
a score of 1; if they did not, the caption received
a score of 0. Because we asked three crowdwork-
ers to play the role of the listener for the captions
we collected, we have 4,353 scores for descriptive
captions, 4,029 for ambiguous captions, and 4,353
for misleading captions. The smoothed distribu-
tion of scores is on the far right in Figure 2.

We want to see the extent to which these scores
correlate with the quality categories of the given
utterances. Following the logic of Section 5.1,
we assign descriptive candidates a score of 1, am-
biguous candidates a score of 2, and misleading
candidates a score of 3, and we report correla-
tions calculated by Pearson’s ⇢, Spearman’s r, and
Kendall’s ⌧ . In this situation, we have large num-
bers of points around certain scores (e.g. 1 for the
Literal Listener), and these scores have meaning
themselves, so we report Pearson’s ⇢. We are also
interested in the overall monotonicity of the metric
scores across categories—we want to avoid good
candidates receiving bad scores and vice versa. As
such, we report the Spearman’s r and Kendall’s ⌧
as well. The magnitudes of these coefficients are
in Table 1.



We are also interested in the extent to which our
method’s correlations differ from the n-gram over-
lap ones, so we run a Williams’ test for dependent
Pearson’s correlations. We find all Pearson’s cor-
relations are significantly different at p < 0.05.

6 Discussion

6.1 Qualitative Analysis

The results we observe are in accordance with the
widely attested observation that n-gram overlap
metrics do not capture human judgments particu-
larly well (Novikova et al., 2017; Kilickaya et al.,
2017). While all of the correlations are relatively
weak, METEOR is the strongest n-gram overlap
metric—its use of synonyms may very well aid it
in this color-reference scenario. The success of it
and ROUGE-L compared to other metrics points
to recall being an important component of infor-
mativity in this task. This makes sense: if a can-
didate utterance does not contain enough of the n-
grams found in a reference, it will likely be more
difficult for a listener to select the target. On the
other end, BLEU has the worst correlation. Ad-
ditionally, metrics like ROUGE-L, BLEU, and
CIDEr have been shown to correlate with human
judgments on a system rather than individual sen-
tence level (Novikova et al., 2017). Our results
corroborate this poor sentence-level performance.

Previous work has found that n-gram overlap
metrics are able to assign low scores to poorly
judged utterances but fail to assign high scores
to positively judged ones (Chaganty et al., 2018;
Novikova et al., 2017). Our results provide some
support for this claim, especially for METEOR
and CIDEr. BLEU and ROUGE-L, however,
give mid-to-high scores to a large number of ut-
terances regardless of their quality.

Finally, it is clear that human listeners are per-
forming a reasonable evaluation, tightly aligned
with the quality categories. We also observe that
the human listener score distribution is closely
mirrored by the Literal Listeners’ scores. How-
ever, the bimodal nature of the scores given to am-
biguous sentences is not ideal. We seek a met-
ric that assigns ambiguous utterances mid-range
scores to reflect that they convey some informa-
tion, but these are rare in the human responses and
model predictions. Despite this, the superiority of
the listener methods over the n-gram methods is
evident both in the shapes of the distributions and
their correlations.

6.2 Literal vs. Pragmatic Listener

Even though the Literal and Pragmatic Listener
models are more effective than n-gram overlap
metrics, they do evaluate the descriptive and am-
biguous candidates differently. As noted above,
the Literal Listener seems to work in a very po-
larized manner: captions are either good, earning
a high score, or bad, earning a low score, with-
out much in between. This is likely a result of
training the Literal Listener model with a cross-
entropy loss objective. This training scheme does
not reward high-entropy distributions over outputs
and pushes the model to always output a confident
score (closer to one). This problem is not quite as
apparent with the Pragmatic Listener, but many of
the descriptive and ambiguous candidates appear
to be assigned a range of higher scores. Interest-
ingly, the Pragmatic Listener’s distributions have
higher entropy than the Literal Listener’s. This
might be because the Pragmatic Listener is based
on a language model, so the probabilities it as-
signs reflect the probabilities of potentially mul-
tiple tokens. Some might be less informative than
others, which would smooth out the distribution
over colors. All told, the Literal Listener corre-
lates slightly better with the quality categories than
the Pragmatic Listener does.

6.3 Quality of the Listener Model

If our communication-based method is to be ef-
fective, the listener model used must be accu-
rate. This is because our evaluation method as-
sumes that communicative errors are the fault of
the speaker and not the listener. Realistically,
this is not the case—no listener, human or model,
is perfect. Although our listener models are not
100% accurate, they are still able to distinguish
between candidates of different qualities. In other
words, despite their imperfections, these models
are still reliable evaluators.

6.4 Shortcomings of Communication-based

Evaluation

Hashimoto et al. (2019) claim that a sufficient
evaluation method will incorporate the “quality”
of a model’s utterances as well as its “diversity”.
Quality is tied to precision—a good model’s utter-
ances are effective. Diversity is tied to recall—a
good model will be able to produce any utterance
a human might. Our method focuses solely on
the quality aspect of this picture. To see why this



may be problematic, note that a system that simply
looked up descriptions in our data given contexts
would appear perfect despite not meeting any di-
versity goals. This means that, if we want to mea-
sure diversity, we have to resort to a second met-
ric (e.g. perplexity or HUSE-D; Hashimoto et al.
2019). That said, current automatic measures of
quality, like n-gram overlap metrics, are not effec-
tive, and our proposed method addresses this.

Another caution is that our method depends
only on the communicative goal of the speaker,
which reduces the importance of other aspects of
utterance quality. For example, in our color refer-
ence game scenario, grammaticality of utterances
is only evaluated to the extent that grammatical
descriptions aid a listener in selecting the correct
color. If “blue dark on click the” and “click on
the dark blue” both lead to the listener selecting
the dark blue color, they will both be regarded
as equally good, even though only the second is
well-formed. Evaluating other aspects of qual-
ity, such as politeness, style, or tone, similarly re-
quires careful consideration. Each of these can be
thought of as achieving some communicative goal,
but this goal along with the listener models and
world states must be specified carefully to ensure
that such properties are taken into account.

7 Conclusion

We developed an NLG evaluation method that is
motivated by the idea that an utterance’s quality is
determined by how well it leads a listener to ac-
curately recover the speaker’s communicative in-
tentions. We evaluated the effectiveness of this
evaluation method using a simple color reference
game in which we could systematically vary ut-
terance quality and then assess how well different
methods correlate with quality in this sense. In this
setting, our communication-based method dramat-
ically out-performed standard n-gram-based meth-
ods. What’s more, our method can be used in
any setting in which there is a well-defined action
for a listener to perform in response to an utter-
ance. One could, for example, apply this evalua-
tion method to summarization, image captioning,
translation, and even pure text generation, with
tasks such as recovering the input from distrac-
tors, identifying salient points or features, or cap-
turing shades of meaning. Although our method
arguably does not capture every sense of quality
that we might have for NLG, it does key directly

into a fundamental goal we have for these systems,
which is that they communicate effectively with
humans using natural language.
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Abstract

This paper presents an automata-theoretic
characterization of the typology of attested
tonal patterns using enriched data structures.
We generalize the Input Strictly Local class of
functions to consider multiple inputs of tonal
and segmental strings, and find that the associ-
ated strictly local multi-tape transducers suc-
cessfully capture tonal typology. Links be-
tween automata-theoretic and logical charac-
terizations of phonological expressivity show-
case tradeoffs in data structure and locality in
the expressivity of phonological computation.

1 Introduction

Recent work in mathematical phonology connects
phonological mappings to subclasses of the reg-
ular functions (McNaughton and Papert, 1971;
Rogers and Pullum, 2011; Rogers et al., 2013;
Heinz and Lai, 2013; Chandlee, 2014). One of the
simplest subclasses is the class of Input Strictly
Local (ISL) functions which take as input a single
string and generate an output based on local in-
formation. Despite their reduced expressivity, ISL
functions capture a majority of phonological and
morphological maps (Chandlee, 2017; Chandlee
and Heinz, 2018). In addition, ISL functions are
provably easier and faster to learn than full regular
functions (Chandlee et al., 2015a).

In this paper, we generalize this notion of lo-
cality from the above single-input functions to
functions which take multiple strings as input in
§2. Such functions are Multi-Input Strictly Local

(MISL). MISL functions are effectively computed
by a class of deterministic asynchronous Multi-
tape Finite State Transducers (MT-FSTs). Natu-
ral language has processes which are understood
in terms of enriched multi-string input structures,
i.e. autosegmental structure. We focus on tone as-
sociation §3.

The bulk of computational results on tonal pat-
terns are defined over graphical structures and
are local over autosegmental graphs (Jardine,
2016a,b, 2017a, 2019; Chandlee and Jardine,
2019a). In §4, we show that the bulk of tonal
processes are MISL: they are local when com-
puted as a multi-input function over strings. This
provides a solution to a dichotomy in formal lan-
guage results between the complexity of segmen-
tal vs tonal phonology (Jardine, 2016a) via enrich-
ing the data structure in a linguistically natural
way. This also connects logically defined func-
tions to automata-theoretic characterizations over
enriched data structures.

Tonal processes is sufficiently computable us-
ing types of MT-FSTs, but we show that the full
power is not necessary. Showing that the bulk of
tonal phonology can be computed with only MISL
MT-FSTs, acts as a stepping stone to determin-
ing the learnability of tone. It likewise acts as
a benchmark to examine the typology of attested
and unattested tonal processes. Furthermore, by
using multi-input functions with MT-FSTs instead
single-input functions with FSTs, we can more
iconically compute the fact that 1) the tone tier is
separate from the vowel tier, and that 2) this sepa-
ration makes certain tonal processes be local.

We emphasize that our result is NOT an argu-
ment against the use of graphs in tone. The use of
graphs iconically captures tonal processes. Any
linear encoding of autosegmental structure, in-
cluding ours, requires the use of special symbols
for preassociation (Kornai, 1995; Wiebe, 1992;
Yli-Jyrä, 2013, 2015).

Single-input functions are a special case of
multi-input functions. With finite-state calculus,
single-input functions correspond to rational func-
tions when modeled by 1-way single-tape FSTs,
and to regular functions when modeled by 2-



way single-tape FSTs (Filiot and Reynier, 2016).1

Multi-input functions are modeled by 1-way or
2-way MT-FSTs. Although there is work on the
expressivity of multi-tape automata (Furia, 2012),
little is known on multi-input functions and their
algebra or expressivity (Frougny and Sakarovitch,
1993). We show that the MISL class characterizes
a substantial chunk of tonal phonology.

2 Preliminaries

2.1 Preliminaries for single-input functions
Let o,nbe the start and end boundaries respec-
tively. Let ⌃ be a finite alphabet of symbols (ex-
cluding o,n). Let ⌃o = ⌃ [ {o,n}. Let ⌃⇤ the
set of all strings over ⌃. Let |w| indicate the length
of w 2 ⌃⇤. For two strings w and v let wv be their
concatenation, and for a set L ⇢ ⌃⇤ of strings and
a string w, by wL we denote {wv|v 2 L}. Let �
denote the empty string.

Given some string u and a natural number
k, the k-suffix of u is the last k symbols of u:
suff(u, k) = v s.t. |v| = k and xv = u for some
x 2 ⌃⇤. For an alphabet ⌃, the k-factors of ⌃ are
the set of strings w 2 ⌃⇤ such that |w|  k.

Informally, a single-input function f is k-ISL
if for all u1, u2 2 ⌃⇤, if suff(u1, k � 1) =
suff(u2, k� 1) then the two strings have the out-
put extensions w.r.t f (Chandlee, 2014; Chandlee
et al., 2015b). For any k-ISL function f over
domain ⌃⇤, there exists a canonical determinis-
tic single-tape finite-state transducer (1T-FST) M
such that |M | = f (meaning M computes f ), and
every state q 2 Q in M is labelled with one of the
k � 1 suffixes of ⌃⇤. Transitions are function tu-
ples � : Q⇥ ⌃ ! Q⇥ �⇤. For a state q 2 Q and
input symbol a 2 ⌃, �(q, a) = (p,B) such that
B 2 �⇤ and p = suff(qa, ).

2.2 Preliminaries for multi-input functions
We introduce notation for functions which take
multiple strings as input. To do so, we use tu-
ples demarcated by brackets. In the formalization
here, we only consider functions which produce
one output string, not a tuple of output strings. But
extending the formalization is trivial; such a func-
tion is illustrated in §4.3.1.

1By single-tape FST, we mean a two-tape MTFST with
one input tape and one output tape. Note that the functions
computed by 1-way FSTs are called ‘regular functions’ in
American computer science. In this paper, we follow French
conventions which call this class the ‘rational functions’ (Fil-
iot and Reynier, 2016).

A function f is an n-input function if it takes
as input a tuple of n strings: [w1, . . . , wn], which
we represent as ~w, where each word wi is made
up of symbols from some alphabet ⌃i such that
wi 2 ⌃⇤

i . Each alphabet ⌃i may be disjoint or
intersecting, so two input strings wi, wj may be
part of the same language ⌃⇤

i . These n alphabets
form a tuple ~⌃. Tuples can be concatenated: if
~w = [ab, c], ~x = [d, ef ], then ~w~x = [abd, cef ].

To generalize the notion of suffixes into multi-
ple strings, we define a tuple of n natural num-
bers as ~k = [k1, . . . , kn]. Given some tuple of
n strings ~w and tuple of n numbers ~k, ~k-suffix

of ~w is a tuple ~v of n strings vi, made up of the
last ki symbols on wi: suff(~w,~k) = V s.t. ~v =
[v1, . . . , vn] and |vi| = ki and xivi = wi for xi 2
⌃⇤
i . E.g. for ~w=[abc,def] and ~k = [2, 1],

suff(~w,~k) = [bc, f ]. Given a tuple ~k, the op-
eration ~k�x subtracts x from each of ki. E.g., for
~k = [2, 3, 6], ~k � 1 = [1, 2, 5]. For a tuple of al-
phabets ~⌃, the ~k�factors of ~⌃ is the set of tuples
~w 2 ~⌃ such that |wi|  ki.

Let f be an n-input function defined over an
n�tuple ~w of input strings ~w = [w1, . . . , wn]
taken from the tuple of n alphabets ~⌃. As an
informal and intuitive abstraction from ISL func-
tions, f is Multi-Input Strictly Local (MISL) for
k = [k1, . . . , kn] if the function operates over a
bounded window of size ki for wi. Formally,

Definition 1: A function f is ~k-MISL iff
there exists a deterministic asynchronous Multi-
tape FST such that i) |M | = f , and ii) the MT-FST
is canonically ~k-MISL

We explain ~k-MISL Multi-tape FSTs in the next
section.

Note that Definition 1 is an automata-theoretic
definition, meaning the expressivity is necessarily
dependent on the machine. A language-theoretic
definition of MISL functions, and connections to
this class of multi-tape transducers, is in progress.
While ISL FSTs and MISL MT-FSTs similarly
encode the k-suffix information and the notion
of common output in the state of the transducer,
the use of common output extensions used in the
ISL functions is not easily extendable to multi-
input functions. In particular, there are non-
subsequential n-input functions which are com-
putable with MISL MT-FSTs.

For an ISL function, it does not matter if the in-
put string is read left-to-right or right-to-left. But
for an MISL function, it does. A function may be



left-to-right MISL but not right-to-left MISL. We
leave out a proof but an illustration is given in §4.1.

2.3 Multi-tape finite-state transducers
Multi-input functions can be modeled by multi-
tape FSTs (MT-FST). An MT-FST is conceptu-
ally the same as single-tape FSTs, but over multi-

ple input tapes (Rabin and Scott, 1959; Elgot and
Mezei, 1965; Fischer, 1965; Fischer and Rosen-
berg, 1968; Furia, 2012). MT-FSAs and MT-FSTs
are equivalent, and single-tape FSTs correspond to
an MT-FSA with two tapes.

Informally, a MT-FST reads n multiple input
strings as n input tapes, and it writes on a sin-
gle output tape. Each of the n input strings is
drawn from its own alphabet ⌃i. The output
string is taken from the output alphabet �. For
an input tuple of n strings ~w = [w1, . . . , wn] =
[�1,1 . . .�1,|w1|, . . . ,�n,1 . . .�n,|wn|], the initial
configuration is that the MT-FST is in the initial
state q0, the read head. The FST begins at the first
position of each of the n input tapes �i,1, and the
writing head of the FST is positioned at the begin-
ning of an empty output tape. After the FST reads
the symbol under the read head, three things oc-
cur: 1) the state changes; 2) the FST writes some
string; 3) the read head may advance to the right
(+1) or stay put (0) on different tapes: either move
on all tapes, no tapes, or some subset of the tapes.

This process repeats until the read head “falls
off” the end of each input tape. If for some input
~w, the MT-FST falls off the right edge of the n

input tapes when the FST is in an accepting state
after writing u on the output tape, we say the MT-
FST transduces, transforms, or maps, ~w to u or
fT ~w = u.2 Otherwise, the MT-FST is undefined
at ~w. We illustrate MT-FSTs in §4.

A n�MT-FST is a 6-tuple (Q, ~⌃o,�, q0, F,�)
where:

• n 2 N is the number of input tapes
• Q is the set of states
• ~⌃o = [⌃1o, . . . ,⌃no] is a tuple of n input al-

phabets ⌃i which include the end boundaries
⌃io

• � is the output alphabet
• q0 2 Q is the initial state
• F ⇢ Q is the set of final states
• � : Q ⇥ ~⌃o ! Q ⇥ ~D ⇥ �⇤ is the transition

function where
2If the MT-FST generates tuples instead of single strings,

then the MT-ST maps ~w to ~u.

– D = {0,+1} is the set of possible di-
rections,3

– ~D = [Dn] is an n-tuple of possible di-
rections to take on each tape

The above definition can be generalized for
MT-FSTs which use multiple output tapes. As
parameters, an MT-FST can be deterministic or
non-deterministic, synchronous or asynchronous.
We only use deterministic MT-FSTs which are
weaker than non-deterministic MT-FSTs. An MT-
FST is synchronous if all the input tapes are ad-
vanced at the same time, otherwise it is asyn-
chronous. We use asynchronous MT-FSTs which
are more powerful than synchronous MT-FSTs.
Synchronous MT-FSTs are equivalent to multi-
track FSAs which are equivalent to single-tape
FSAs, making them no more expressive than reg-
ular languages. For a survey of the properties of
MT-FSAs and MT-FSTs, see Furia (2012).

A configuration c of a n�MT-FST M is
an element of ( ~⌃o

⇤
Q ~⌃o

⇤ ⇥ �⇤), short for
([⌃⇤

1oq⌃
⇤
1o, . . . ,⌃

⇤
noq⌃

⇤
no] ⇥ �⇤). The meaning

of the configuration c = ([w1qx1, . . . , wnqxn], u)
is the following. The input to M is the tuple
~w~x = [w1x1, . . . , wnxn]. The machine is cur-
rently in state q. The read head is on each of the n-
input tapes on the first symbol of xi (or has fallen
off the right edge of the input tape if xi = �). u is
currently written on the output tape.

Let the current configuration be
([w1qa1x1, . . . , wnqanxn], u) and let the current
transition arc be �(q, [a1, . . . , an]) = (r, ~D, v).
If ~D = [0n], then the next configuration is
([w1ra1x1, . . . , wnranxn], uv) in which case
we write ([w1qa1x1, . . . , wnqanxn], u) !
([w1ra1x1, . . . , wnranxn], uv) (= none
of the tapes are advanced) . If ~D =
[+1n], then the next configuration is
([w1a1rx1, . . . , wnanrxn], uv) in which case
we write ([w1qa1x1, . . . , wnqanxn], u) !
([w1a1rx1, . . . , wnanrxn], uv) (= all the tapes
are advanced). Otherwise, the next configuration
is ([wiC1x1 . . . , wnCnxn, . . .], uv) where Ci =
rai if Di = 0 and Ci = air if Di = +1 in which
case we write ([w1qa1x1, . . . , wnqanxn], u) !
([wiC1x1 . . . , wnCxn, . . .], uv) (= a subset of the
tapes are advanced).4

3If the MT-FST reads from right to left, then it uses the -1
direction parameter

4Note that the interpretation of the third type of configu-
ration subsumes the first two. We explicitly show the first two



The transitive closure of ! is denoted with !+.
Thus, if c !+

c
0 then there exists a finite sequence

of configurations c1, c2 . . . , cn with n > 1 such
that c = c1 ! c2 ! . . . ! cn = c

0.
As for the function that a MT-FST M com-

putes, for each n�tuple ~w 2 ~⌃⇤ where ~w =
[w1, . . . , wn], fM (~w) = u 2 �⇤ (where fM =
|M |) provided there exists qf 2 F such that
([q0 o w1n, . . . , q0 o wnn],�) !+ ([ow1 n
qf , . . . ,own n qf ], u). Otherwise, if the config-
uration is ([ow1n q, . . . ,ownn q], u) and q 62 F

then the transducer crashes and the transduction
fT is undefined on input ~w. Note that if a MT-FST
is deterministic, it follows that if fT (~w) is defined
then u is unique.

As explained in §2.2, we define a function as
~k-MISL iff there exists a corresponding determin-
istic asynchronous ~k-MISL Multi-tape FST.

Definition 2: A deterministic asynchronous
MT-FST M with alphabet ~⌃ is a canonical MT-
FST for an ~k-MISL function f if the states of M
are labelled with the ~k � 1 suffixes of ~⌃.

In Definition 2, the restriction on state labels
does not apply to the unique initial state and
unique final state. In other words, except for the
initial and final states q0 and qf , every state corre-
sponds to a possible ~k � 1 factor of f

.

3 Computational phonology of tone

Segmental phonological processes are generally
computed as single-input functions and they are
ISL (Chandlee, 2014; Chandlee and Heinz, 2018).
But when treated as a single-input function, tonal
processes are significantly more complex than ISL
(Jardine, 2016a). Single strings also fail to capture
the suprasegmental nature of tone. Instead, tonal
processes are generally modeled with autoseg-

mental representations (ASR). As graphs, ASRs
are a richer data structure that showcase the non-
linear nature of tone by breaking up a linear string
into parallel strings or tiers (tone and vowel/mora).

As a review, consider the nonce words in Ta-
ble 1. On the surface, the vowels each surface
with some tone feature: high V́ vs. low V̀. A com-
mon analysis is that underlyingly the tones are on
a separate tier from the vowels. A mapping func-
tion creates association arcs between the tones and
vowels. In the input in Table 1a, then the tones and
vowels are not underlying preassociated. Some

for illustrative reasons.

tonal processes are analyzed with underlying pre-
associated tones (Table 1b). That is, the input con-
tains an association arc between the some of the
tones and some of the vowels.

Most mathematical results on tonal phonology
are also defined over graphs or graph-like struc-
tures (Bird and Klein, 1990; Bird, 1995; Cole-
man and Local, 1991; Coleman, 1998). Jardine
(2016a,b, 2017a) showed that computing well-
formedness for tonal structures is Strictly Local
over ASRs. For transformations, Chandlee and
Jardine (2019a) define a class of logical functions
over ASRs called Autosegmental Input-Strictly
Local functions (A-ISL), which can model many
but not all tonal mappings that have preassocia-
tion. Informally, a function is A-ISL if it con-
sists of two ISL functions operating over two
tiers or two separate strings.5 Koser et al. (2019)
showed that mapping ASRs without preassocia-
tion to ASRs with associations is likewise a local
process, specifically with Quantifier-Free Least
Fixed Point logic (QFLFP) (Chandlee and Jardine,
2019b). However, most of these results are de-
fined logically (Jardine, 2017b, 2019), and do not
clearly correspond to other algebraic or automata-
theoretic notions.

Computationally, tonal processes have been
modeled with single-tape FSTs (Bird and Elli-
son, 1994; Kornai, 1995; Yli-Jyrä, 2013, 2015),
synchronous MT-FSTs (Kiraz, 2001), and non-
deterministic asynchronous MT-FSTs (Kay, 1987;
Wiebe, 1992). To our knowledge, the above math-
ematical properties of tone as a graph have not
been linked with finite-state calculus. As a link,
we treat tonal processes as a multi-input function
that takes as input a tuple of two strings. With this
definition, the bulk of tonal processes are MISL.

4 Multi-Input Locality in Tone

Table 2 illustrates all the tonal functions which we
formalize. Items a-e are taken from Koser et al.
(2019), and items f-l from Chandlee and Jardine
(2019a). Throughout this section, we reference
only this table; see the original references for more
language information.

Items a-e are not ISL but are A-ISL.6 In §4.1,
we show they are also MISL. Items f-l have preas-
sociated tone-vowel pairs in the input. In §4.2, we

5There are much more nuances to the definition of A-ISL;
readers are referred to Chandlee and Jardine (2019a).

6Koser et al. (2019) formalize tonal functions without pre-
assocation with Quantifier-Free Least Fixed Point logic.



a. Without underlying preassociation b. With underlying preassocation
Input as string LH + patuki patúki

Input as graph
L H

V V V

L H

V V V

Output as string pàtúkı́ pàtúkı́

Output as graph
L H

V V V

L H

V V V

Table 1: Review of tonal phonology.

show that with a specific linear encoding for pre-
association, all the relatively simple ISL or A-ISL
patterns are also MISL. More complex cases are
handled in §4.3.

4.1 Tone without preassocation
4.1.1 General illustration: Mende spreading
We first illustrate with Mende (2a) which has a
process of left-to-right tonal spread. Tones and
vowels match 1-1 up until the last tone: nı̀kı́lı̀

‘groundnut’. If there are more vowels than tones,
then the final tone spreads: félàmà ‘junction’.

As a function f , Mende left-to-right spreading
is a 2-input function that takes as input a tuple of
two strings: ~w = [w1, w2]. The input string w1 is
a string of tones T taken from the input alphabet
⌃1 = ⌃T = {H,L}. The input string w2 is a
string of vowels V taken from the input alphabet
⌃2 = ⌃V = {V }. The input language is thus
a tuple of two regular languages [⌃⇤

T ,⌃
⇤
V ]. Each

alphabet can include the start and end boundaries
o,n: ⌃io = ⌃i[{o,n}. The function generates
a single output string of tonal vowels: � ={V́,V̀}.

This 2-input function is MISL for ~k = [2, 1]. It
needs a locality window of size 2 on the T-string
in order to know if some tone is final or not (i.e., if
we see Hn or Ln), and a locality window of size
1 on the V-string because the function only needs
to know the current vowel.

This function is computed by the deterministic
asynchronous MT-FST in Figure (1). It uses two
input tapes: a tone tape T and a vowel tape V. The
MT-FST has a dedicated initial and final state q0

and qf . All other states are labelled with the ~k�1-
factors separated by commas. Transitions have the
template [⌃1,⌃2, . . . ,⌃n]: [Dn] : �⇤ where ⌃i

q0start

q1(o,�) q2 (H,�)

q3 (L,�) qf

[o,o]:

[+1,+1]:�
[H,V]:

[+1,+1]:V́

[H,V]: [n,V]:

[+1,+1]:V́ [0,+1]:V́

[H,V]:

[+1,+1]:V́[L,V]:

[+1,+1]:V̀ [L,V]:

[+1,+1]:V̀

[L,V]: [n,V]:

[+1,+1]:V̀ [0,+1]:V̀

[n,n]:

[+1,+1]:�

[n,n]:

[+1,+1]:�

Figure 1: MT-FST for Mende

marks the read input symbols on the input string
wi, and where D is a possible direction parame-
ter from {0,+1}. Given a parameter Di, the transi-
tion arc dictates whether the MT-FST will advance
(+1) or stay put (0) on the input tape wi.

A sample derivation for /HL + felama/ is in Ta-
ble 3. Each row keeps track of the: i) current state,
ii) location of the read head on the input tapes,
iii) transition arc used on each input tape, iv) out-
putted symbol, v) current output string. At step 5,
upon reading non the T-tape, asynchrony allows
the read-head to advance on the V-tape but not on
the V-tape, capturing the spreading effect.

4.1.2 Other processes without preassociation
Data in this section is illustrated in Table 2b-e and
collected from Koser et al. (2019) who showed
that they are are local in that they are QFLFP. We



Table 2: Sample of tonal processes, example input-output structures, and computational complexity.
Legend: * Function was proved to be QFLFP by Koser et al. (2019), ** Function is MISL if the output is 2-tuple

Language Process Pre-ass? ISL A-ISL MISL ~k-value
a Mende Iterative left-right spread 7 3* 3 [2,1]

/LH + VVV/ ! [V̀V́V́]
L H

V V V

L H

V V V

b Kikuyu Initial spread to two + final spread 7 3* 3 [2,3]
/LHLH + VVVVVVV/ ! [V̀V̀V́V̀V́V́V́]

L H L H

V V V V V V V

L H L H

V V V V V V V

c Hausa Iterative right-left spread 7 3* 3 [2,1]
/LH + VVV/ ! [V̀V̀V́]

L H

V V V

L H

V V V

d Northern Shona Edge-in + initial spread + medial spread 7 3* 3 [4,6]
/HLH + VVVVVV/ ! [V́V́V́V̀V̀V́]

H L H

V V V V V V

H L H

V V V V V V

e Kukuya Quantity sensitive spreading 7 3* 3 [4,2]
/H + VVVV/ ! [V́V́V́V́]

H

V V V V

H

V V V V

f Rimi Bounded tone shift 3 3 3 3 [1,2]
/VV́VV/ ! [VVV́V]
/hHi + VhViVV/

H

V V V V

H

V V V V

g Zigula Unbounded tone shift 3 7 3 3 [1,3]
/VVV́VVV/ ! [VVVVV́V]
/hHi + VhViVV/

H

V V V V V V

H

V V V V V V

h Bemba Bounded tone spread 3 3 3 3 [1,2]
/VV́VV/ ! [VV́V́V]
/hHi + VhViVV/

H

V V V V

H

V V V V

i Arusa Unbounded deletion 3 7 3 3 [3,1]
/V́ VV́V́V/ ! [V́VVVV]
/hHi hHi + hVi V(VV)V/

H H

V V V V V

H H

V V V V V

j Luganda Bounded Meussen’s rule 3 3 7 3 [2,2]**
/V́V́V́V/ ! [V́V̀V̀V]
/hHi hHi + hVi(VV)V/

H H

V V V V

H L

V V V V

k Shona Alternating Meussen’s rule 3 7 7 7
/V́-V́-V́/ ! [V́-V̀-V́]
/hHi-hHi-hHi + hVi-hVi-hVi/

H H H H

V V V V V

H L H L

V V V V V

l Ndebele Unbounded spreading to ante-penultimate 3 7 7 3 [1,3]
/V́VVVV/ ! [V́V́V́VV]
/hHi + hViVVVV/

H

V V V V V

H

V V V V V



Current state Tone tape Vowel tape Output symbol Output string
1. q0 oHLn oeaan
2. q1 oHLn o:+1 oeaan o:+1 �

3. q2 oHLn H:+1 oeaan e:+1 é é

4. q3 oHLn L:+1 oeaan a:+1 à éà

5. q3 oHLn n:0 oeaan a:+1 à éàà

6. qf oHLn n:+1 oeaan n:+1 � éàà

Table 3: Derivation of HL + felama over its tone-vowel tiers HL + eaa with the MT-FST in Figure 1

show that they are all MISL. Example MT-FSTs
and derivations for cases b,c are in the appendix.

Kikuyu has a process of spreading an initial
tone up to first two vowels (2b). The remaining
tones and vowels are associated 1-to-1. If there are
more vowels than tones, the final tone is spread:
/LHLH + VVVVVVV/ ! [V̀V̀ V́ V̀ V́V́V́]. Ini-
tial spreading up to two vowels is [2,3]-MISL be-
cause the function requires the context [oL,oVV]
in order to spread L to the first two vowels. Final
spread is [2,1]-MISL as in Mende (§4.1.1). To-
gether, Kikuya is [2,3]-MISL.

Hausa (2c) behaves analogously to Mende
but tones are associated right-to-left with initial-
spreading: /LH + VVV/ ! [V̀V̀ V́]. This is [2,1]-
MISL when the input string is read right-to-left.

North Karanga Shona is more complex (2d).
The initial and final tones are associated to the
first and last vowels respectively. The first tone
can spread up until the first 3 vowels but not to the
penultimate vowel. The medial tone can spread up
until the penultimate vowel: /HLH + VVVVVV/
! [V́V́V́ V̀V̀ V́]. The process is MISL but for
a very large locality window of [4,6]. The win-
dow may be larger or smaller depending on vari-
ous complications discussed in Koser et al. (2019).

Lastly, Kukuya (Table 2e) allows a H tone to
spread if it is the only tone: /H + VVV/ ! [V́V́V́].
Otherwise, if the input is HL, the L tone spreads:
/HL + VVV/ ! [V́ V̀V̀]. If LH, the L spreads up
until the penultimate vowel: /LH + VVV/ ! [V̀V̀
V́]. This is at most [4,2]-MISL: 4 over the T-tape
in order to check if it’s H, HL, or LH; 2 over the
V-tape to prevent an L from spreading to the final
vowel if the input tone is LH.7

7If the input tone is LHL, (Koser et al., 2019) do not state
if either L can ever show spreading in words of four or more
vowels. If they can, this is also MISL.

4.1.3 Contour tones
In §4.1, we assumed that the input had at least as
many vowels as tones. If the input has more tones
than vowels, final contour tones can be made: /HL
+ V/ ! [V̂]. Assume that the number of possible
contour tones is finite and modeled with a finite
number of characters: rising V̌, falling V̂. To gen-
erate contour tones, one compositional approach
is to first generate 1-to-1 or 1-to-many tone-vowel
associations without any contour symbols; if there
are more tones than vowels, then the unassigned
tones are outputted at the end of the output string:
/HL + V/ ! //V́ L//. The string is then fed to an
ISL function which changes strings of tonal vow-
els and tones into contour tones: //V́ L// ! [V̂].
A non-compositional approach is mapping unas-
sociated tones-and-vowels to the output through
a single function. We conjecture that this func-
tion would be MISL as long as there are no long-
distance dependencies involved in creating a con-
tour tone. For easier illustration, we assume a
compositional approach.

4.2 Tone with preassociation
4.2.1 Encoding preassociation
Tonal processes may include inputs where a tone
is preassociated to one or more vowels. This de-
pendency between the two strings is a reason why
graphical structures are useful representations for
tone, but it is a reason why many linear encod-
ings require some special markup system (Kornai,
1995). For our purposes, we use the following en-
coding in Figure 2, inspired from an encoding sys-
tem used by Yli-Jyrä (2013, 2015). We do not use
other proposed encoding systems (Wiebe, 1992;
Kornai, 1995; Yli-Jyrä, 2013, 2015) because they
are either designed for single-tape FSTs or do not
maintain strict locality.

If a tone T or single vowel V is preassociated,
it is underlined and demarcated with angle brack-
ets: hTi, hVi. If a span of multiple vowels are



Graph

L H L

V V V V V

Encoding hLiHhLi + hViV(VVV)

Figure 2: Encoding preassociation

associated to the same tone, they are marked with
parentheses instead of angle brackets: (V V . . .

V). This encoding creates the following enriched
input alphabets of multi-character units:

• ⌃T ={ H, L, hHi, hLi}

• ⌃V ={ V, hVi, (V, V, V) }8

Other possible configurations, such as word-
medial contour tones require a more elaborate en-
coding which we do not discuss. We set these
aside because the preassociation data in Chandlee
and Jardine (2019a) did not have such case stud-
ies.9 We set aside the evaluation of our encoding
mechanism based on Kornai (1995)’s desirada.

4.2.2 Locality of preassociated tones
With the above encoding, the tone functions in Ta-
ble 2f-i with preassociation are MISL. Example
MT-FSTs and derivations are in the appendix.

In Rimi (2f), a process of bounded tone shift
will cause a preassociated tone to delink from its
vowel and associate with the subsequent vowel:
/VV́VV/! [VVV́V]. In our encoding, the input is
/hHi + VhViVV/. This function is ISL, MISL, and

[1,2]-MISL. We need a locality window of size 1
over the T-string because we care if the current
tone symbol is a preassociated hHi. If yes, then we
need a locality window of size 2 over the V-string
in order to delink the current preassociated vowel
hVi and associate the tone with the next vowel.

Unlike Rimi, Zigula displayed unbounded tone
shift (2g) whereby a preassociated H is delinked
from its preassociated vowel and associated with
the penultimate vowel which can be at any dis-
tance away from the underlyingly preassociated
vowel: / VVV́VVV/ or /hHi + VVhViVVV/ !

8Note that (V, V, and V) are three separate input alphabet
symbols.

9One possible system, inspired from Yli-Jyrä (2015), is
to use the symbols / and \on the vowel-string. Given a tu-
ple of [hHihLi, (V/ V)] where space marks the separation of
multicharacter symbols, the slash / means that the first tone is
associated to the first vowel while the second tone to the two
vowels. Similarly for [hHihLi, (V \V)], the first tone is as-
sociated with the two vowels while the second tone with the
second vowel.

[VVVVV́V]. This function isn’t ISL but it is A-
ISL and [1,3]-MISL. Given a preassociated hHi as
a current input tone symbol, an underlying preas-
sociated vowel hVi is delinked regardless of con-
text, while current tone symbol hHi is associated
with the penultimate vowel. This requires a win-
dow of size 3 on the vowel string to check if the
current vowel is the penultimate vowel.

Similar to Rimi, Bemba (2h) shows bounded
tone spread whereby a preassociated tone-vowel
pair is not delinked but the next vowel also be-
comes associated to the tone: / VV́VV/ or /hHi
+ VhViVV/ ! [VV́V́V]. This is ISL, A-ISL, and
[1,2]-MISL. The only difference from Rimi is that
an input preassociated vowel hVi is not delinked,
i.e. it keeps its tone in the output.

In Arusa (2i), a process of unbounded deletion
deletes a phrase-final H tone if it is follows another
H tone. By deleting the H tone, any preassociated
vowels become delinked and toneless: /V́ VV́V́V/
or /hHi hHi + hVi V(VV)V/ ! [V́ VVVV]. This
process is not ISL because of the unbounded dis-
tance between the two spans of high vowels, but it
is A-ISL and [3,1]-MISL.10 A locality window of
size 3 is needed on the T-string in order to check if
the current input tone symbol is a phrase-final hHi
and succeeds another high tone. If yes, then any
currently read input vowels are delinked.

4.3 Distinct functions across locality classes
The distinctions between ISL, A-ISL, and MISL
are visible in more complex patterns in Table 2j-
l. So far, all the A-ISL and ISL functions we de-
scribed were also MISL. But some ISL yet non-
A-ISL functions are variably MISL depending on
how the function is defined. They are MISL only if
the function generates as output two output strings
of associated tones vs. associated vowels instead
of only one output string (§4.3.1). Furthermore,
some patterns are neither ISL, A-ISL, or MISL
(§4.3.2). And finally, some patterns are MISL but
neither ISL nor A-ISL (§4.3.3).

4.3.1 ISL but not A-ISL; variably MISL
Luganda (2j) has a process of bounded Meussen’s
rule which is ISL but not A-ISL. Here, if a preas-

10The FST in the appendix is [3,1]-MISL but it cannot
ensure that the number of preassociated tones in the input
match the number of spans of preassociated vowels. Doing
so requires that we either increase the locality window on the
vowel tape to 2, or we output a string tuple such that the func-
tion changes the substring hHihHinto hHihLin, similarly to
the Luganda case in §4.3.1.



sociated H tone precedes another preassociated H
tone and the two tones are associated to a contigu-
ous sequence of vowels, then the second H tone
becomes low: /V́V́V́V/ or /hHihHi + hVi(VV)V/
! [V́V̀V̀V]. The function is not A-ISL because it
needs to reference contiguity on both the tone and
vowel strings, see Chandlee and Jardine (2019a)
on why this matters.

Similarly, if the function is defined as a multi-
input function which generates only one output
string, then the function is not MISL. Assume
the T-string is hHihHi, and the V-string con-
tains two vowels preassociated to the two different
tones which we represent with butting brackets:
/hHihHi + hVi(VV. . .V)/. The second vowel (V
will map to a surface low toned vowel V̀ because
the two tones are contiguous. The second vowel
(V starts a span of preassociated vowels. But for
the other vowels like the final V), an MISL func-
tion cannot keep track if this vowel was part of
a preassociated vowel span which succeeded an-
other span, i.e. it can’t know if V) is preceded by
the substring hVi (V or not.

But if the function generates as output two out-
put strings as an output tuple of tones and vow-
els, then the function is [2,2]-MISL. The input
/hHihHi + hVi(V V V)/ is mapped to [hHihLi +
hVi(V V V)] with the only change being on the
T-string. The function is [2,2]-MISL because it
checks if i) the current tone symbol is a preasso-
ciated hHi and immediately succeeds another tone
symbol hHi and if ii) the current vowel symbol
is preassociated hVi or starts a span of preasso-
ciated vowels (V, and follows a span of preasso-
ciated vowels hVi or V). All this information is
local with a window of 2 on the two strings.

4.3.2 Neither ISL, A-ISL, nor MISL
Shona (2k) has a process of Alternating Meussen’s
rule where hetero-morphemic and contiguous
spans of preassociated high-toned vowels alternate
to form high and low sequences: /V́-V́-V́/ ! [V́-
V̀-V́]. This is not ISL, A-ISL, or MISL because it-
erative alternation is local over output information,
not input information. This is explained further in
Chandlee and Jardine (2019a).

4.3.3 MISL but neither ISL nor A-ISL
Finally, Ndebele (2l) has unbounded spread-
ing of a preassociated H tone up until the
ante-penultimate vowel: /V́VVVV/ or /hHi +
hViVVVV/ ! [V́V́V́VV]. This process is neither

ISL nor A-ISL but it is [1,3]-MISL. Reading from
right-to-left, the last two vowels surface as tone-
less. But if the current tone symbol is a preassoci-
ated hHi, then any vowel which is not the penulti-
mate or ultimate surfaces as high V́. This requires
a window of size 3 on the V-tape, but only 1 on
the tone tape.

5 Conclusion

This paper examined the computational expressiv-
ity of autosegmental phonology, in particular tonal
processes. Generalizing Input Strictly Local (ISL)
functions to handle multiple inputs, we showed
that the class of Multi-Input Strictly Local (MISL)
functions can compute almost all attested tonal
processes. These MISL functions are computed by
restricted deterministic asynchronous multi-tape
finite-state transducers. Using a careful linear en-
coding mechanism, this computational result ap-
plies equally well to tonal processes with or with-
out preassociation. The result also narrows the gap
in mathematical results between segmental and
autosegmental phonology.

References
Steven Bird. 1995. Computational phonology: a

constraint-based approach. Studies in Natural
Language Processing. Cambridge University Press,
Cambridge.

Steven Bird and T Mark Ellison. 1994. One-level
phonology: Autosegmental representations and
rules as finite automata. Computational Linguistics,
20(1):55–90.

Steven Bird and Ewan Klein. 1990. Phonological
events. Journal of linguistics, 26(1):33–56.

Jane Chandlee. 2014. Strictly Local Phonological
Processes. Ph.D. thesis, University of Delaware,
Newark, DE.

Jane Chandlee. 2017. Computational locality in mor-
phological maps. Morphology, pages 1–43.
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Anssi Yli-Jyrä. 2015. Three equivalent codes for
autosegmental representations. In Proceedings of
the 12th International Conference on Finite-State
Methods and Natural Language Processing 2015
(FSMNLP 2015 Düsseldorf).

A Appendix

A sample MT-FST and derivation are given for
some of the tone processes.

A.1 Tonal processes without preassociation
These patterns take as input a pair of strings with-
out preassociation.

https://doi.org/10.1147/rd.91.0047
https://doi.org/10.1147/rd.91.0047
https://doi.org/10.1145/2984450.2984453
https://doi.org/10.1145/2984450.2984453
http://arxiv.org/abs/1205.0178
http://www.aclweb.org/anthology/W13-3006
http://www.aclweb.org/anthology/W13-3006


A.1.1 Kikuyu spreading
In Kikuyu (Table 2b), the first tone associates
with the first two vowels. 1-to-1 association fol-
lows. A final tone may undergo final spread-
ing, e.g. f ([LHLH, VVVVVVV])=V̀V̀V́V̀V́V́V́. A
[2,3]-MISL MT-FST is provided in Figure 3, with
a sample derivation in Table 4.

A.1.2 Hausa right-to-left spreading
In Hausa (Table 2b), tones are associated right-to-
left with initial spread, e.g. f ([LH, VVV])=V̀V̀V́.
This function is modeled by the [2,1]-MISL MT-
FST in Figure 4, with a sample derivation in Table
4. The FST processes the input string-tuple from
right to left using the -1 direction parameter.

A.2 Tonal processes with preassociation
These functions take as input a preassociated pair
of tones and vowels.

A.2.1 Rimi bounded tone shift
In Rimi (Table 2f), a preassociated tone will
shift one vowel to the right, e.g. f ([hHi,
VhViVV]=VVV́V. This function is modeled by the
[1,2]-MISL MT-FST in Figure 5, with a sample
derivation in Table 6. We assume that the only
possible underlying tone string is a preassociated
H.

Final preassociated vowels do not undergo tone
shift: f ([hHi, VVVhVi]=VVVV́. We factor this out
for illustrative reasons. Otherwise, the function is
[2,2]-MISL and needs a MT-FST with more states.

A.2.2 Zigulu unbounded tone shift
In Zigulu (Table 2g), unbounded tone shift causes
a preassociated H tone to shift to the penultimate
vowel, e.g. f ([hHi, VVhViVVV])=VVVVV́V.
This function is modeled by the [1,3]-MISL MT-
FST in Figure 6, with a sample derivation in 7.
For easier illustration, the MT-FST processes the
input right-to-left using the -1 direction parame-
ter. We assume that the tone string can either be
an empty string o�n or a single preassociated H
tone ohHin.

A.2.3 Bemba unbounded tone spread
In Bemba (Table 2h), bounded tone spread causes
a preassociated H tone to surface on its preasso-
ciated vowel and on the subsequent vowel, e.g.
f ([hHi,VhViVV])=VV́V́V. This function is mod-
eled by the [1,2]-MISL MT-FST in Figure 7, with
a sample derivation in Table 8. We assume that the

input tone string contains either an empty string
o�n or a single preassociated H tone ohHin.

A.2.4 Arusa unbounded deletion
In Aursa (Table 2i), unbounded deletion causes a
phrase-final preassociated H to delete if it follows
another H tone, e.g. f ([hHihHi,hV V(VVV]=V́

VVVV. This function is computed by the [3,1]-
MISL MT-FST in Figure 8, with a sample deriva-
tion in 9. The FST reads the input from right-to-
left using the -1 direction parameter. We assume
the input tone string contains zero or more preas-
sociated H tones: T=ohHi⇤n.

As a caveat, the function in Figure () can-
not ensure that the number of preassociated tones
matches the number of spans of preassociated
vowels. That more faithful function is [3,2]-MISL.
We do not draw it here because of size.

For clarity, in Table 9, preassociated vowels are
given a subscript 1 instead of underlining.



q0start q1 (o,o) q2 (o,oV) q3 (H,VV)

q4 (L,VV)

qf

[o,o]:

[+1,+1]:�

[H,V]:

[0,+1]:V́

[L,V]:

[0,+1]:V̀

[H,V]:

[+1,+1]:V́

[L,V]:

[+1,+1]:V̀

[H,V]: [n,V]:

[+1,+1]:V́ [0,+1]:V́

[H,V]:

[+1,+1]:V́

[L,V]:

[+1,+1]:V̀

[L,V]: [n,V]:

[+1,+1]:V̀ [0,+1]:V̀

n:+1

n:+1:�

n:+1

n:+1:�

Figure 3: MT-FST for Kikuyu initial spread

Current state Tone tape Vowel tape Output symbol Output string
1. q0 oLHLHn oVVVVVVVn
2. q1 oLHLHn o:+1 oVVVVVVVn o:+1 �

3. q2 oLHLHn L:0 oVVVVVVVn V:+1 V̀ V̀
4. q4 oLHLHn L:+1 oVVVVVVVn V:+1 V̀ V̀V̀
5. q3 oLHLHn H:+1 oVVVVVVVn V:+1 V́ V̀V̀V́
6. q4 oLHLHn L:+1 oVVVVVVVn V:+1 V̀ V̀V̀V́V̀
7. q3 oLHLHn H:+1 oVVVVVVVn V:+1 V́ V̀V̀V́V̀V́
8. q3 oLHLHn n:0 oVVVVVVVn V:+1 V́ V̀V̀V́V̀V́V́
9. q3 oLHLHn n:0 oVVVVVVVn V:+1 V́ V̀V̀V́V̀V́V́V́
10. qf oLHLHn n:+1 oVVVVVVVn n:+1 � V̀V̀V́V̀V́V́V́

Table 4: Derivation of f ([LHLH, VVVVVVV])=V̀V̀V́V̀V́V́V́ in Kikuyu with the MT-FST in Figure 3

Current state Tone tape Vowel tape Output symbol Output string
1. q0 oLHn oVVVn
2. q1 oLHn n:-1 oVVVn n:-1 �

3. q2 oLHn H:-1 oVVVn V:-1 V́ V́
4. q3 oLHn L:-1 oVVVn V:-1 V̀ V̀V́
5. q3 oLHn o:0 oVVVn V:-1 V̀ V̀V̀V́
6. qf oLHn o:-1 oVVVn o:-1 � V̀V̀V́

Table 5: Derivation of f ([LH, VVV])=V̀V̀V́ in Hausa with the MT-FST in Figure 4



q0start q1(n,�)

q2 (H,�)

q3 (L,�)

qf

[n,n]:

[-1,-1]:�

[H,V]:

[-1,-1]:V́

[H,V]: [o,V]:

[-1,-1]:V́ [0,-1]:V́

[L,V]:

[-1,-1]:V̀

[L,V]:

[-1,-1]:V̀

[L,V]:

[-1,-1]:V̀

[L,V]: [o,V]:

[-1,-1]:V̀ [0,-1]:V̀

[o,o]:

[-1,-1]:�

[o,o]:

[-1,-1]:�

Figure 4: MT-FST for Hausa

q0start q1 (�,o)

q2 (�,V)

q3 (�,hVi)

qf

[o,o]:

[+1,+1]:�

[hHi,V]:

[0,+1]:V

[hHi,V]:

[0,+1]:V

[hHi,hVi]:

[0,+1]:V

[hHi,hVi]:

[0,+1]:V

[hHi,V]:

[+1,+1]:V́

[n,n]:

[+1,+1]:0

Figure 5: MT-FST for Rimi



Current state Tone tape Vowel tape Output symbol Output string
1. q0 ohHin oVhViVVn
2. q1 ohHin o:+1 oVhViVVn o:+1 �

3. q2 ohHin hHi:0 oVhViVVn V:+1 V V
4. q3 ohHin hHi:0 oVhViVVn hVi:+1 V VV
5. q2 ohHin hHi:+1 oVhViVVn V:+1 V́ VVV́
6. q2 ohHin n:0 oVhViVVn V:+1 V VVV́V
7. qf ohHin n:+1 oVhViVVn n:+1 � VVV́V

Table 6: Derivation of f ([hHi, VhViVV]=VVV́V in Rimi with the MT-FST in Figure 5

q0start q1 (�,n) q2 (�,Vn) q3 (�,VV) qf

[n,n]:

[-1,-1]:�

[hHi,V]:

[0,-1]:V

[o,V]:

[0,-1]:V

[hHi,V]:

[-1,-1]:V́

[o,V]:

[0,-1]:V

[o,V]:

[0,-1]:V

[o,o]:

[-1,-1]:�

Figure 6: MT-FST for Zigulu

Current state Tone tape Vowel tape Output symbol Output string
1. q0 ohHin oVVVVVVn
2. q1 ohHin n:-1 oVVVVVVn n:-1 �

3. q2 ohHin hHi:0 oVVVVVVn V:-1 V V
4. q3 ohHin hHi:-1 oVVVVVVn V:-1 V́ V́V
5. q3 ohHin o:0 oVVVVVVn V:-1 V VV́V
6. q3 ohHin o:0 oVVVVVVn V:-1 V VVV́V
7. q3 ohHin o:0 oVVVVVVn V:-1 V VVVV́V
8. q3 ohHin o:0 oVVVVVVn V:-1 V VVVVV́V
9. qf ohHin o:-1 oVVVVVVn o:-1 � VVVVV́V

Table 7: Derivation of f ([hHi, VVhViVVV])=VVVVV́V in Zigulu with the MT-FST in Figure 6

Current state Tone tape Vowel tape Output symbol Output string
1. q0 ohHin oVhViVVn
2. q1 ohHin o:+1 oVhViVVn o:+1 �

3. q2 ohHin hHi:0 oVhViVVn V:+1 V V
4. q3 ohHin hHi:0 oVhViVVn hVi:+1 V VV́
5. q2 ohHin hHi:+1 oVhViVVn V:+1 V́ VV́V́
6. q2 ohHin n:0 oVhViVVn V:+1 V VV́V́V
7. qf ohHin n:+1 oVhViVVn n:+1 � VV́V́V

Table 8: Derivation of f ([hHi, VhViVV]=VV́V́V in Bemba with the MT-FST in Figure 7



q0start q1 (�,o)

q2 (�,V)

q3 (�,hVi)

qf

[o,o]:

[+1,+1]:�

[hHi,V]:

[0,+1]:V

[hHi,V]:

[0,+1]:V

[hHi,hVi]:

[0,+1]:V́

[hHi,hVi]:

[0,+1]:V́

[hHi,V]:

[+1,+1]:V́

[n,n]:

[+1,+1]:0

Figure 7: MT-FST for Bemba

q0start

q1(n,�) q2 (hHin,�) q3 (hHihHi,�) qf

[n,n]:[-1,-1]:�

[hHi,V]:[0,-1]:V

[o,V]:[0,-1]:V

[o,o]:[-1,-1]:�

[hHi,hVi]:[-1,0]:�

[hHi,V)]:[-1,0]:�

[hHi,V)]:[0,-1]:V

[hHi,V]:[0,-1]:V

[o,hVi]:[0,-1]:V́

[o,V)]:[0,-1]:V́

[o,V]:[0,-1]:V́

[o,(V]:[0,-1]:V́

[o,V]:[0,-1]:V

[hHi,hVi]:[-1,-1]:V

[hHi,(V]:[-1,-1]:V

[o,o]:[-1,-1]:�

[hHi,V]:[0,-1]:V

[hHi,hVi]:[-1,-1]:V́

[hHi,V)]:[0,-1]:V́

[hHi,V]:[0,-1]:V́

[hHi,(V]:[-1,-1]:V́

[o,hVi]:[0,-1]:V́

[o,V)]:[0,-1]:V́

[o,V]:[0,-1]:V́

[o,(V]:[0,-1]:V́

[o,V]:[0,-1]:V

[o,o]:[-1,-1]:�

Figure 8: MT-FST for Arusa



Current state Tone tape Vowel tape Output symbol Output string
1. q0 ohHihHin ohV1iV(V1V1)Vn
2. q1 ohHihHin n:-1 ohV1iV(V1V1)Vn n:-1 �

3. q1 ohHihHin hHi:0 ohV1iV(V1V1)Vn V:-1 V V
4. q2 ohHihHin hHi:-1 ohV1iV(V1V1)Vn V1):-1 � V
5. q2 ohHihHin hHi:0 ohV1iV(V1V1)Vn V1):-1 V VV
6. q3 ohHihHin hHi:-1 ohV1iV(V1V1)Vn (V1:-1 V VVV
7. q3 ohHihHin o:0 ohV1iV(V1V1)Vn (V:-1 V VVVV
8. q3 ohHihHin o:0 ohV1iV(V1V1)Vn hV1i:-1 V́ V́VVVV
9. qf ohHihHin o:-1 ohV1iV(V1V1)Vn o:-1 � V́VVVV

Table 9: Derivation of f ([hHihHi,hV V(VVV]=V́ VVVV in Arusa with the MT-FST in Figure 8
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Abstract
This paper formalizes metrical grid theory
(MGT, Prince, 1983; Hayes, 1995) and studies
its expressive power. I show thatMGT analyses
of a certain form can describe stress systems
beyond the input tier-based input strictly local
functions proposed by Hao and Andersson
(2019), but conjecture that such analyses do not
describe systems beyond the input tier-based
strictly local languages of Baek (2018). These
results reveal fundamental differences between
the three formalisms.

1 Introduction

The problem of unbounded stress has proven
challenging for subregular phonology. Baek
(2018) has recently shown that unbounded stress
provides a counterexample to the weak subregular
hypothesis (Heinz, 2018), which claims that
phonological phenomena can be represented by
tier-based strictly local languages (TSL, Heinz
et al., 2011) when viewed as decision problems
that accept grammatical utterances. To remedy
this, Baek proposes that the decision to project a
symbol to the tier may be conditioned by local
contextual information such as the presence of
word boundaries. This proposal has been extended
to a generalized tier projection system in which
tier projection is implemented by arbitrary deleting
functions (Mayer and Major, 2018; Graf and
Mayer, 2018).
Viewing unbounded stress as a transduction

problem that maps underlying forms without
prosodic representation to surface forms marked
for primary stress, Hao and Andersson (2019)
show that unbounded stress systems are similarly
handeled by generalized tier projection, but that
they fall outside the class of tier-based input strictly
local functions (TISL, Chandlee, 2014). Hao and
Andersson demonstrate that default-to-opposite-
side (DO) systems can be captured by adapting

generalized tier projection to subregular functions.
However, it turns out that the “bidirectional” nature
of default-to-same-side (DS) systems cannot be
implemented by subsequential functions, which
allow only a single unidirectional pass over the
input. They instead propose that DS systems
should be understood as interaction-free weakly
deterministic functions in the sense of McCollum
et al. (2018).
These results raise conceptual questions

regarding the treatment of stress in subregular
phonology. In particular, the mechanism of
generalized tier projection intuitively seems
powerful and ad-hoc. The basic elements of
subregular phonology, namely strict locality and
the traditional tier projection system of Heinz
et al. (2011), can be viewed as formalizations of
rule and tier systems that are well-established in
phonological theory (Chandlee, 2014; Chomsky
and Halle, 1968; Goldsmith, 1976). While
generalized tier projection enables Baek (2018)
and Hao and Andersson (2019) to define classes
of finite-state machines that capture unbounded
stress, it is unclear whether generalized tier
projection is similarly grounded in existing
phonological constructs. Reflecting on this issue,
Hao and Andersson observe that the generalized
tier-projection mechanism they use to produce
Dybo’s Rule (Dybo, 1977), a model of the stress
system in Abkhaz, bears a striking resemblance
to the syllable tier used in a standard analysis
of that system within metrical grid theory
(MGT, Prince, 1983; Hayes, 1995). From that
observation we might hypothesize that stress
systems computed using generalized tier projection
naturally correspond to those described by MGT.
In this paper, I will argue that this intuition does

not hold for the transduction problem, though it
may hold for the decision problem. To that end,
I define a formal model of MGT in Section 4,



and show in Section 5 that the stress systems
described by MGT do not correspond to those
represented by functions defined using generalized
tier projection. I also give evidence to suggest
that decision problems described by MGT can be
represented using generalized tier projection even
when their corresponding transduction problems
cannot. These results imply not only that functions
based on generalized tier projection are not
grounded in MGT, but also that the typological
predictions they make about the range of possible
stress systems differ from those made by MGT and
by decision problems.
Technical definitions used in this paper are

given in Section 2, and Section 3 reviews the
existing results on unbounded stress in subregular
phonology. Section 6 concludes.

2 Preliminaries

In this paper, uppercase Greek letters denote finite
alphabets not including the boundary symbols o
and n. The length of a string x is denoted by
|x|, and � denotes the empty string. Alphabet
symbols are identified with strings of length 1, and
individual strings are identified with singleton sets
of strings. For k � 0, ↵k denotes ↵ concatenated
with itself k-many times,↵<k denotes

Sk�1
i=0 ↵

i,↵⇤
denotes

S1
i=0 ↵

i, and↵+ denotes↵↵⇤. The longest
common prefix of a set of strings A is the longest
string lcp(A) such that every string in A begins
with lcp(A).
For setsA andB, the notation f : A ! Bmeans

that f is a function with domain A and codomain
B. The range of f is the set {y|9x.f(x) = y} ✓ B.
A function f : A ! B is injective if for every
x, y 2 A, f(x) = f(y) if and only if x = y. A
function f : ⌃⇤ ! �⇤ is same-length if and only
if for all x 2 ⌃⇤, |f(x)| = |x|.
A subsequential finite-state transducer (SFST)

is a 6-tuple T = hQ,⌃,�, q0,!,!i, where

• Q is the set of states, with q0 2 Q being the
start state;

• ⌃ and � are the input and output alphabets,
respectively;

• ! : Q ⇥ ⌃ ! Q ⇥ �⇤ is the transition
function; and

• ! : Q ! �⇤ is the final output function.

For x 2 ⌃⇤; y 2 �⇤; and q, r 2 Q, the notation
q

x:y��! r means that T emits y to the output stream

and transitions to state r if it reads x in the input
stream while it is in state q. Letting f : ⌃⇤ ! �⇤,
we say that T computes f if for every x 2 ⌃⇤,
f(x) = y!(q), where q0

x:y��! q. A function is
subsequential if it is computed by an SFST.
For a string x 6= �, I use the following indexing

notation.

• For 1  i  j  |x|, x[i : j] is the substring
of x such that x = wx[i : j]y, where |w| =
i� 1 and |y| = |x|� j.

• For �|x|  u, v  |x| and 1  i  j  |x|,
x[u : v] = x[i : j] if u ⌘ i mod (|x| + 1)
and v ⌘ j mod (|x|+ 1).

• For each i, x[i] := x[i : i]; x[i :] := x[i : |x|];
and x[: i] := x[1 : i].

The remainder of this section reviews
the algebraic characterization of subsequential
functions as well as tier projection and strict
locality.

2.1 Subsequential Functions
Independently of SFSTs, the subsequential
functions can be characterized using two
operations on string functions.
Definition 1. Let f : ⌃⇤ ! �⇤. We define the
function f : ⌃⇤ ! �⇤ by

f (x) := lcp ({f(xy)|y 2 ⌃⇤}) .

For any x, y 2 ⌃⇤, f!x (y) denotes the string such
that f(xy) = f (x)f!x (y). We refer to f!x as the
translation of f by x and to f as f top.
The translations of a subsequential function

may be used to construct the minimal SFST for
that function, analogously to the Nerode–Myhill
construction for the minimal finite-state automaton
of a regular language.
Theorem 2 (Raney, 1958). A function f :
⌃⇤ ! �⇤ is subsequential if and only if the set
{f!x |x 2 ⌃⇤} is finite.
For a subsequential function f with minimal

SFST T , the translations of f are in bijection with
the states of T . After reading input x, T outputs
f (x) and enters the state corresponding to f!x .

2.2 Homomorphisms
This paper will frequently make use of a class of
functions known as homomorphisms.



Definition 3. A function h : ⌃⇤ ! �⇤ is a
homomorphism if for every x, y 2 ⌃⇤, h(xy) =
h(x)h(y).

Intuitively, homomorphisms are functions that
replace each symbol of ⌃ with a string in �⇤. As
such, homomorphisms are completely determined
by their values on the input alphabet.

Proposition 4. Let h, g : ⌃⇤ ! �⇤ be
homomorphisms. If h(x) = g(x) for each x 2 ⌃,
then h = g.

2.3 Locality and Tier Projection

Tier projections are functions that delete certain
symbols in an input string x. A tier ⌧ can be
used to enhance notions of locality defined by
grammars, automata, and transducers by having
local dependencies be enforced between adjacent
symbols in ⌧(x) instead of x, effectively ignoring
symbols deleted by ⌧ .

Definition 5. A tier projection is a function ⌧ :
⌃⇤ ! ⌃⇤ such that ⌧(�) = � and for all x 2 ⌃+,
⌧(x) = y1y2 . . . y|x|, where for each i, yi is either
x[i] or �. If ⌧ is a homomorphism, then we identify
⌧ with the subset � ✓ ⌃ such that for all � 2 �,
⌧(�) = �.

Symbols not deleted by a tier projection are said
to be projected to the tier. Tier-based strictly local
functions are defined to be functions computed by
minimal SFSTswhose states record themost recent
k � 1 symbols projected to some tier, for some
k > 0. In this paper, we assume that the states only
record symbols from the SFST input projected to
the tier; variants of the definitions below where the
tier projects symbols of the output have also been
defined (Chandlee, 2014; Chandlee et al., 2015;
Burness and McMullin, 2019).

Definition 6. Let k > 0, and let ⌧ : ⌃⇤ ! ⌃⇤

be a tier projection. A function f : ⌃⇤ ! �⇤

is generalized input strictly k-local on tier ⌧ (k-
GTISL on tier ⌧ ) if for all x, y 2 ⌃⇤,

⌧ (x)[: 1� k] = ⌧ (y)[: 1� k]

implies f!x = f!y . We say that f is

• input strictly k-local (k-ISL) if ⌧ is the
identity function;1

1In the automata theory literature, k-ISL functions are
known as k-local functions (Vaysse, 1986). See Sakarovitch
(2009, pp. 661–664) for an overview.

• input strictly k-local on tier ⌧ (k-TISL on tier
⌧ ) if ⌧ is a homomorphism; and

• j-input strictly k-local on tier ⌧ (j-I-k-TISL
on tier ⌧ ) if ⌧ is j-TISL.

Remark 7. Homomorphisms are 1-ISL functions.
Tier-based strictly local languages are defined

to be sets of strings whose images under some
tier projection only contain substrings deemed
permissible.
Definition 8. Let k > 0, and let ⌧ : ⌃⇤ ! ⌃⇤ be a
tier projection. A language L ✓ ⌃⇤ is generalized
strictly k-local on tier ⌧ (k-GTSL on tier ⌧ ) if there
exists S ✓ (⌃[{o,n})k such that for all x 2 ⌃⇤,
x 2 L if and only if every length-k substring of
ok�1⌧(x)nk�1 is in S. We say that L is

• strictly k-local (k-SL) if ⌧ is the identity
function;

• strictly k-local on tier ⌧ (k-TSL on tier ⌧ ) if
⌧ is a homomorphism; and

• j-input strictly k-local on tier ⌧ (j-I-k-TSL
on tier ⌧ ) if ⌧ is j-ISL.

3 Stress in Subregular Phonology

Stress is a phonological process in which syllables
are assigned varying levels of prominence (i.e.,
primary stress, secondary stress, or no stress)
with respect to one another. Stress is culminative,
meaning that each word contains exactly one
maximally-prominent syllable. Stress is usually
represented by marking syllables with their
prominence levels, leaving all other information
about those syllables intact. This section introduces
the formalism I use to represent stress and
reviews the current results on stress in subregular
phonology.
Throughout this paper, I treat syllables as atomic

units, and I represent them using symbols drawn
from an alphabet ⌃. Words, being strings of
syllables, are elements of ⌃⇤. When a syllable
� 2 ⌃ is assigned primary stress, I mark
this syllable with a diacritic �́. I do not mark
syllables for secondary stress. Thus, the set ⌃́ :=
(⌃ [ {�́|� 2 ⌃})⇤ is the complete alphabet of
symbols used to discuss stress.
Using this representation, stress in a particular

language can be construed in two ways. Firstly, we
may think of a stress system as a function mapping
words without stress marking to words with stress



marking. This formalizes the transduction problem
for stress.
Definition 9. A stress system is a same-length
function s : ⌃⇤ ! ⌃́⇤ such that for every x 2 ⌃+,
there exists i > 0 and � 2 ⌃ such that

• x[i] = � and s(x)[i] = �́; and

• for all j > 0, if j 6= i, then s(x)[j] = x[j].

Remark 10. All stress systems are injective.
Secondly, we can think of a stress system as the

set of all words in which stress has been assigned
correctly. This formalizes the decision problem for
stress.
Definition 11. A stress constraint is any subset
C ✓ ⌃́ such that C is the range of some stress
system s : ⌃⇤ ! ⌃́⇤.
These formalizations are “equivalent” in the

sense that we can easily convert between them.
Definition 12. Let s : ⌃⇤ ! ⌃́⇤ be a stress system.
The stress constraint given by s is the range of s.
Definition 13. Let C ✓ ⌃́⇤ be a stress constraint.
The stress system given by C is the stress system
sC : ⌃⇤ ! ⌃́⇤ whose range is C.
A well-known example of a stress system is

the leftmost heavy otherwise rightmost (LHOR)
system (Hayes, 1995). In this system, syllables are
either light or heavy. The leftmost heavy syllable
in a word receives primary stress. If there are no
heavy syllables in aword, then the rightmost (light)
syllable receives primary stress. In Kwak’wala, for
example, heavy syllables are those that contain a
long vowel or a vowelwith a coda consisting of [m],
[n], or [l] (Bach, 1975). Some illustrative examples
are given below.

(14) LHOR stress in Kwak’wala (Boas et al.,
1947; Bach, 1975)
a. [tsº@ma"a:tud] ‘to melt away

something in the ear’
b. ["ba:bagw@m] ‘boys’
c. [g@g@"n@m] ‘wives’

LHOR stress can be formalized using the
following stress system. Heavy syllables are
represented by the symbol H, while light syllables
are represented by the symbol L.
Definition 15. Let ⌃ := {H,L}. The LHOR
system is defined as follows. For u 2 L⇤, v 2 ⌃,

and w 2 ⌃⇤,

LHOR(uvw) =

(
uv́w, v = H
uwv́, uvw 2 L+.

It is easy to see that the transduction problem
for LHOR is I-TISL but not TISL.
Proposition 16. LHOR is not TISL.

Proof. Fixing k > 0 and homomorphic tier ⌧ , let
us show that LHOR is not k-TISL on ⌧ . Suppose
L /2 ⌧ . Then, observe that su↵k�1(⌧ (�)) =
su↵k�1(⌧ (L)) = o, but LHOR!� (�) = �,
while LHOR!L (�) = Ĺ. Thus, LHOR is not k-
TISL on ⌧ if L /2 ⌧ . But if L 2 ⌧ , then we have
LHOR!HLk(H) = H and LHOR!Lk(H) = LH́ even
though su↵k�1(HLk) = su↵k�1(Lk) = Lk�1.
Therefore, LHOR is also not k-TISL on ⌧ if L 2 ⌧ ,
so we conclude that it is not TISL.

Proposition 17. LHOR is 2-I-2-TISL.

Proof. Consult Figure 1.

Similarly, as Baek (2018) shows, the decision
problem for LHOR is I-TSL but not TSL.
Proposition 18. CLHOR is not TSL.

Proof. Fix k > 0, and suppose CLHOR is k-TSL
on homomorphic tier ⌧ . It is clear that H́, Ĺ 2
⌧ ; otherwise, we would have H́H́, ĹĹ 2 CLHOR.
Furthermore, we must have H 2 � and L 2 �,
since otherwise we would have HH́ 2 CLHOR and
ĹL 2 CLHOR, respectively. Thus, every symbol of
⌃́ is projected to tier ⌧ , so CLHOR is k-SL.
Now, let S ✓ (⌃́,o,n)k be the set of substrings

that are permitted to appear in strings of CLHOR,
and let x := LkH́Lk. Since x 2 CLHOR,
every length-k substring of ok�1xnk�1 is in S.
However, observe that every length-k substring of
ok�1xxnk�1 = ok�1LkH́L2kH́Lknk�1 is also
a substring of ok�1xnk�1, and is therefore also
in S. Thus, we have deduced that xx 2 CLHOR,
contradicting the definition of CLHOR.

Proposition 19. CLHOR is 2-I-2-TSL.

Proof. Let  be the homomorphic tier projection
given by {H, H́, Ĺ}, and let ⌧ be defined by

⌧(x) :=

(
 (x)L, x 2 ⌃⇤L
 (x), otherwise.

In other words, ⌧ is the same as  , except the last
symbol of the input is always projected. It is easy
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L: Ĺ

L : �
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H : LH́

L : L,H : H

H : H́
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H
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L : �

H : HH : H
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L : �

Figure 1: A 2-I-2-TISL SFST for LHOR (top) and a
2-ISL SFST for its tier projection (bottom).

to see that ⌧ is 2-ISL. Now, observe that CLHOR

is 2-I-2-TSL on tier ⌧ with permissible substrings
oH́,oĹ, HH, HL, Hn, H́H, H́L, H́n, Ĺn, Ln, and
on.

As these examples illustrate, the I-TISL
functions and I-TSL languages form the current
subregular complexity bounds for attested
subsequential stress systems and their associated
stress constraints (Baek, 2018;Hao andAndersson,
2019).2 These results extend those of Heinz
(2009), Rogers et al. (2013), and Heinz (2014),
who observed that stress constraints belong to
restrictive subclasses of the regular languages.
Other ways of refining the subregular hierarchy for
stress have been proposed; Rogers and Lambert
(2019), for example, define the strictly piecewise
local and the piecewise locally testable language
classes. The remainder of this paper will seek
to compare metrical grid theory against the
benchmarks I-TISL and I-TSL benchmarks.

4 Metrical Grid Theory

Treatments of stress in phonological theory are
typically based on the intuition that phonemes
are organized into hierarchical structures, each

2Hao and Andersson (2019) and Koser and Jardine (To
appear) show that some stress systems are not subsequential;
I do not consider such systems in this paper.

⇤ Word
⇤ ⇤ ⇤ ⇤ Foot

⇤ ⇤ ⇤⇤ ⇤⇤ ⇤ ⇤⇤ ⇤ ⇤ Syllable
L L H́ H L H L L

⇤ Word
⇤ Foot

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ Syllable
L L L L L L L Ĺ

Figure 2: Sample metrical grids for the LHOR system.

level of which imposes prominence relations on its
elements. While current approaches in Optimality
Theory (OT) use constraints on the shapes of
prosodic units and the prominence relations they
impose (Prince and Smolensky, 1993, 2004;
McCarthy and Prince, 1986, 1996, 1993),metrical
theory has provided several frameworks for
understanding stress outside of OT.3 This section
reviews and formalizesmetrical grid theory (MGT,
Prince, 1983; Halle and Vergnaud, 1987; Idsardi,
1992; Halle and Idsardi, 1995; Hayes, 1995), a
classic example of such a framework.
According to MGT, prosodic relations are

represented using diagrams like the ones that
appear in Figure 2. Each syllable is associated
with a continuous stack of asterisks. The height
of each stack represents the prosodic prominence
of its associated syllable, with the tallest stack
marking primary stress and the second-tallest
stack(s) marking secondary stress. Each layer
of asterisks represents a level of the prosodic
hierarchy: the bottom asterisks, the syllable layer,
mark the location of each syllable; the middle
asterisks, the foot layer, mark syllables that are
prominent within their respective feet; and the top
asterisk, the word layer, marks the syllable with
the greatest prominence in the word.
The placement of asterisks within the diagram

is determined as follows. In the syllable layer,
all light syllables receive an asterisk, while all
heavy syllables receive two asterisks (⇤⇤). Thus,
the syllable layer serves to record which syllables
are heavy and which are light. In the foot layer,
asterisks are placed by applying one or more of the
following rules.

• Quantity Sensitivity (QS): Place an asterisk
directly above each ⇤⇤ in the syllable layer.

3See Kager (1995) for a survey overview of various
approaches in metrical theory.



• Perfect Grid: Place an asterisk in every
second position, starting from the first
(PG(odd)) or the second (PG(even)) position.

• End Rule: Place an asterisk in the first
(ER(foot,�)) or last (ER(foot,⇤)) position.

In Figure 2, for example, foot-level asterisks
are assigned according to QS and ER(foot,⇤).
Applying both rulesmeans that an asterisk is added
to a position if and only if eitherQS or ER(foot,⇤)
adds an asterisk to that position. Finally, the single
word-layer asterisk is assigned according to the
following End Rule.

• EndRule: Place an asterisk directly above the
first (ER(word,�)) or the last (ER(word,⇤))
asterisk in the foot layer.

Using these rules, LHOR is implemented in MGT
as follows: the foot-level asterisks are assigned
using QS and ER(foot,⇤), and the word-level
asterisk is assigned using ER(word,�). In words
containing a heavy syllable, such as L2H́HLHL2,
the leftmost asterisk on the foot level occurs
directly above the leftmost H in the word. Thus,
ER(word,�) assigns primary stress to the leftmost
H. In words without a heavy syllable, such as
L8, QS does not place any asterisks on the foot
layer, so the leftmost asterisk of the foot layer
is the single asterisk placed by ER(foot,⇤). This
occurs at the right word boundary, so ER(word,⇤)
assigns primary stress to the rightmost syllable.

4.1 Formalizing MGT
Let us now give a precise definition of the system
we have informally described. To represent stacks
of asterisks, I annotate alphabet symbols with a
subscript indicating the number of asterisks above
that symbol. Since ⇤⇤ only occurs in the syllable
layer directly above an H, I do not distinguish
between a single position in the grid that contains
⇤⇤ and a single position that contains only one
asterisk. For example, the upper grid in Figure 2 is
represented by the string L2

1H3H2L1H2L1L2.
Definition 20. Let⌃ be any alphabet, and for every
� 2 ⌃, let �1,�2, . . . be symbols not in ⌃́. Let
⌃0 := ⌃, and for i � 0, define the alphabet ⌃i :=
{�i|� 2 ⌃}, with �0 = � for each � 2 ⌃. Let
⌃j :=

Sj
i=0⌃i and ⌃⇤ :=

S1
i=0⌃i.

In this formalization, each rule must be
associated with a particular level in the prosodic
hierarchy. A rule associated with level i, where

�start L1 : L1,H1 : H2

Figure 3: A homomorphic SFST implementing QS.

the syllable layer is level 1, takes as input a grid
whose tallest stack of asterisks is at most i levels
tall, and increments the height of stacks ending at
the previous level by one.
Definition 21. For i > 0, a level-i rule is a same-
length subsequential function ⇢ : ⌃⇤i ! ⌃⇤i such
that for each x 2 ⌃⇤i and for each position j,

• if x[j] = �i�1 for some � 2 ⌃, then either
⇢(x)[j] = �i�1 or ⇢(x)[j] = �i;

• otherwise, ⇢(x)[j] = x[j].

Example 22. Figure 3 shows an SFST
implementing QS as a level-2 rule. Since L1

represents a column with a single asterisk and H1

represents a column with ⇤⇤, this SFST simply
changes all H1s to H2. ER(i,�) is represented by
the following level-i rule:

ER�
i (x) =

(
y�iz, x = y�i�1z and y 2 ⌃⇤i�2
x, otherwise.

ER(i,�) places an asterisk above the leftmost
asterisk on level i � 1. Symbols in ⌃i [ ⌃i�1
represent syllables with an asterisk on level i� 1;
symbols in ⌃i represent syllables with an asterisk
on both level i � 1 and level i. If the first symbol
of x in ⌃i [ ⌃i�1 is of the form �i�1 2 ⌃i�1,
then this symbol is incremented to �i. If the first
symbol of x in ⌃i [ ⌃i�1 is of the form �i 2 ⌃i,
then this symbol is left unchanged: ER(i,�) is
still understood to add an asterisk on the ith level,
but an asterisk has already been added there by
another rule. If x does not contain any symbols
of ⌃i [ ⌃i�1, then ER(i,�) does not add any
asterisks. Observe that ER�

i is 2-TISL on tier
⌃i [ ⌃i�1.
The mapping of input words to their metrical-

grid representations is simply the composition
of a sequence of rules. Since rules can only
place asterisks on top of existing asterisks from
the previous layer, the rules in the sequence are
required to be monotonically increasing in their
associated level of the hierarchy.4

4This requirement is known in the phonological literature
as the continuous column constraint (Hayes, 1995).



Definition 23. For i > 0, an i-level metrical grid
is a function ⇢ : ⌃⇤ ! ⌃⇤i such that

⇢ = ⇢n � ⇢n�1 � · · · � ⇢0

for some n > 0, where

• ⇢0 : ⌃⇤ ! ⌃⇤1 is the homomorphism given
by ⇢(�) = �1 for all � 2 ⌃;

• ⇢n is a level-i rule; and

• for all j, if ⇢j is a level-k rule, then ⇢j+1 is
either a level-k rule or a level-(k + 1) rule.

From an i-level metrical grid, we recover the
stress system described by the grid by assuming
that asterisks on level i represent primary stress.

Definition 24. Let ⇢ be an i-level metrical grid.
The stress system induced by ⇢ is the stress system
s⇢ := si � ⇢, where si : ⌃⇤i ! ⌃́⇤ is the
homomorphism given by

si(�j) :=

(
�́, j = i

�, j < i.

5 Expressive Power of MGT

Trivially, the version of MGT formalized in
Subsection 4.1 can express any subsequential stress
system s: since level-i rules are allowed to be
arbitrary subsequential functions, it suffices to
construct a grid consisting of a level-2 rule that
places an asterisk above the syllable assigned
primary stress by s. In this section, I show
that MGT is strictly more expressive than the I-
TISL functions. The example that separates MGT
from the I-TISL functions is motivated by Hao
and Andersson’s (2019) formalization of Dybo’s
Rule (Dybo, 1977), a description of unbounded
stress in Abkhaz. I review Hao and Andersson’s
implementation of Dybo’s Rule both as a stress
system and as a 3-level grid in Subsection 5.1. In
Subsection 5.2, I show that a slight modification
of Hao and Andersson’s stress system is in fact not
I-TISL, even though the ability of MGT and I-TSL
languages to describe the system is not affected by
the change in representation, as will be shown in
Subsection 5.3.

5.1 Dybo’s Rule
In Abkhaz, syllables are lexically marked as
being dominant or recessive. Dybo’s Rule is an
LHOR stress system in which dominant syllables
not followed by other dominant syllables are
considered to be heavy, and all other syllables are
considered to be light. This is illustrated by the
following examples, where dominant syllables are
underlined.

(25) Dybo’s Rule in Abkhaz (Spruit, 1986)
a. [d@

>
tShala"wama] ‘Does (s)he usually

go?’
b. [a"Kwak’jam@sa] ‘(the) poniard’
c. [apha"ra] ‘to pleat’
d. [maa"k’@] ‘one handle’

The dominant syllables [wa] in (25a), [Kwa] and
[ma] in (25b), and [ra] in (25c) are heavy,
since they are not followed by another dominant
syllable. In (25a) and (25c), the sole heavy syllable
receives primary stress. In (25b), the first of the
two heavy syllables receives primary stress. (25d)
does not have any heavy syllables, so the last
syllable receives primary stress by default. Hao and
Andersson (2019) represent Dybo’s Rule using the
following stress system.
Definition 26. Let ⌃ := {D,R}. The two-letter
Dybo’s Rule is the stress system ↵ : ⌃⇤ ! ⌃́⇤

defined as follows. For u 2 R⇤D⇤, v 2 ⌃, and
w 2 ⌃⇤,

↵(uvw) :=

(
uv́w, v = D and w /2 D⌃⇤

uwv́, uvw 2 R⇤.

In the two-letter Dybo’s Rule, dominant
syllables are represented by D and recessive
syllables are represented by R. The first D not
followed by an R receives primary stress. This
stress system turns out to be an I-TISL function.
Proposition 27 (Hao and Andersson, 2019). The
two-letter Dybo’s Rule is 2-I-3-TISL.
Hao and Andersson implement this system in

MGTusing a 3-level grid of the formER�
3 �⇢1�⇢0,

where ⇢0 is as defined in Definition 23 and ⇢1 is
given by the 2-ISL SFST shown in the right panel
of Figure 4. Following the MGT analysis of LHOR
stress, ⇢1 serves to mark all heavy syllables, as
well as the last syllable, with an asterisk on level 2.
Thus, ⇢1 places an asterisk above all Ds followed
by an R, along with the last syllable.
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Figure 4: Left: Sample metrical grids for the two-letter Dybo’s Rule. Right: 2-ISL SFST implementing the level-2
rule for the two-letter Dybo’s Rule.

5.2 MGT vs. I-TISL Functions
Let us now introduce the following variant of the
two-letter Dybo’s Rule.
Definition 28. Let ⌃ := {D,E,R}. The three-
letter Dybo’s Rule is the stress system � : ⌃⇤ ! ⌃́⇤

defined as follows. For u 2 R⇤{D,E}⇤, v 2 ⌃, and
w 2 ⌃⇤,

�(uvw) :=

(
uv́w, v 6= R and w /2 {D,E}⌃⇤

uwv́, uvw 2 R+.

The three-letter Dybo’s Rule is exactly like the
two-letter Dybo’s Rule, except that there are two
alphabet symbols representing dominant syllables:
D and E. The MGT analysis of the two-letter
Dybo’s Rule can be easily adapted to the three-
letter Dybo’s Rule just by identifying EwithD. The
I-TISL implementation of the two-letter Dybo’s
Rule, however, cannot be applied to the three-letter
Dybo’s Rule.
Theorem 29. The three-letter Dybo’s Rule is not
i-I-j-TISL on tier ⌧ for any i, j, or ⌧ .

Proof. Suppose � is i-I-j-TISL on tier ⌧ . Observe
that

�!EiD(R) = D́R �!EiE(R) = ÉR
�!EiR(R) = R �!Ei (R) = ÉR,

thus ⌧ (EiD), ⌧ (EiR), and ⌧ (Ei) must all be
distinct. Let t := ⌧ (Ei), and for � 2 ⌃, let t�
be such that ⌧ (Ei�) = tt�. Clearly, t� 6= � for
every �.
Let q0 be the start state of the minimal SFST T

for ⌧ , let q be the state of T corresponding to ⌧!Ei ,
let ! be the transition function of T , and let r, y,
and z be such that

q0
Ei:y��! q

DEi:z���! r.

Since ⌧ is i-ISL and

Ei[: 1� i] = EiDEi[: 1� i] = Ei�1,

we must have ⌧!EiDEi = ⌧!Ei , thus r = q. It follows
that for every k � 0, ⌧ (Ei(DEi)k) = yzk. Since
tE � z, it must be the case that |yzk| � k.
Now, observe that

⌧ (DREi(DEi)j)[: 1� j]

= ⌧ (DREi)zj [: 1� j]

= yzj [: 1� j]

= ⌧ (Ei(DEi)j)[: 1� j].

Therefore, ⌧!DREi(DEi)j
= ⌧!Ei(DEi)j

. However, this
contradicts the fact that

⌧!DREi(DEi)j (R) = R 6= ÉR = ⌧!Ei(DEi)j (R),

so we conclude that � is not i-I-j-TISL on tier ⌧
for any i, j, or ⌧ .

The 2-I-3-TISL SFST given by Hao and
Andersson (2019) for the two-letter Dybo’s Rule
projects DR sequences to the tier. When the SFST
encounters a contiguous block of Ds, it must delay
its output by one time step, as shown below,
because it is unknown whether or not the current
D should be assigned stress. Stress is not assigned
until the SFST encounters an R or the end of the
input string has been reached.

oo D:���! oD D:D��! . . .
D:D��! oD R:D́R���! DR

Once the tier contains a fullDR sequence, the SFST
knows that stress has already been assigned, and
therefore does not assign stress for the remainder
of its computation.
With the three-letterDybo’sRule, the state needs

to record the identity of the most recent input



symbol in order to delay the output by one time
step. The only way to do this with an I-TISL SFST
is to project the most recent input symbol to the
tier.

oo D:���! oD E:D��! DE D:E��! ED ! . . .

Since an ISL tier projection cannot distinguish
between the first block of dominant syllables in its
input and subsequent blocks of dominant syllables,
the schema shown above requires every block of
dominant syllables to be projected to the tier. These
syllable blocks overflow the memory provided by
the tier, thus preventing it from recording whether
or not stress has already been assigned.

5.3 MGT vs. I-TSL Languages
Despite the fact that the three-letter Dybo’s Rule is
not I-TISL, the stress constraint it induces is I-TSL.
Proposition 30. C� is 2-I-3-TSL.

Proof. Let ⌧ be the 2-ISL tier projection that
projects

• all instances of D́, É, and Ŕ;

• all instances of DR, DŔ, ER, EŔ, D́R, D́Ŕ,
ÉR, and ÉŔ; and

• the last symbol of the input.

Now, observe that C� is 2-I-3-TSL on tier ⌧ , with
the following permissible substrings:oo�́,ooŔ,
oon,o�́R,o�́n,oŔn,onn,�R�,�Rn, R�R,
Rnn, �́R�, �́Rn, �́nn, and Ŕnn, where �, � 2
{D,E}.

The tier projection described here is similar to
the tier projection used for Hao and Andersson’s
(2019) 2-I-3-TISL implementation of ↵. Like the
2-I-2-TSL grammar for CLHOR, the 2-I-3-TSL
grammar for C� projects all heavy syllables and
stressed syllables to the tier, along with the last
syllable of the input. Unlike the grammar for
CLHOR, the grammar forC� also projects recessive
syllables following dominant syllables. This allows
the grammar to ensure that all stressed dominant
syllables are dominant: they must be immediately
followewd by either R or n.
Because neither an ITSL grammar nor ametrical

grid needs to produce the surface form as output,
the problem of using the tier to delay computation
does not arise for the ITSL implementation of C�

or for the MGT analysis of �. While there is still a

discrepancy between layer 2 of the MGT analysis
and the tier projection used for C�, I conjecture
based on this observation that MGT describes
ITSL decision problems.
Conjecture 31. Let ⇢ = ER�

3 � ⇢1 � ⇢0 be a 3-
level metrical grid. If ⇢1 is ISL, then Cs⇢ is I-TSL.

6 Conclusion

In comparing the I-TISL implementation of ↵
with the MGT analysis, Hao and Andersson
(2019) express the intuition that generalized
tier projections and MGT are similar in that
both systems use intermediate representations
in order to compute stress. The analysis of
Section 5 has revealed that this similarity is
superficial because the computations carried
out by I-TISL functions, I-TSL languages, and
metrical grids are fundamentally different from
one another. The most prominent of the differences
discussed here is that systems implementing
the transduction problem need to transfer a
substantial amount of information about the
underlying form to the surface form, while
systems implementing the decision problem only
need to retain enough information to distinguish
a grammatical string from an ungrammatical
one. Thus, the transduction problem may be
viewed as conceptually more difficult than the
decision problem.5 While metrical grids compute
transductions, their memory capabilities are
enhanced by the fact that rule composition allows
state information to be encoded in intermediate
layers. Conjecture 31 suggests that this enhanced
memory may be sufficient for MGT to bridge the
gap between the transduction problem and the
decision problem.
In conclusion, the comparison of generalized

tier projection with metrical grids provides
an instructive example of an analytical tool—
intermediate representations of prominence
relations—that behaves differently depending on
the formalism in which it is instantiated. This
approach could potentially offer a way to compare
different theoretical frameworks in terms of how
they accommodate superfically similar proposals.
I leave the exploration of such ideas to future work.

5This asymmetry mirrors the relationship between search
problems and decision problems in computational complexity
theory (see Arora and Barak, 2009, pp. 54–55 for an
overview). The conjecture that NP ) P captures the intuition
that the search problem is the more difficult one.
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Abstract

We provide a formal framework for analyz-
ing syntactic island effects from a subregu-
lar perspective. Key aspects of the syntac-
tic representation are encoded as strings where
precedence represents containment. Island ef-
fects then are expressed as constraints on the
shape of these strings. The constraints fit in
the class IBSP (Interval-Based Strictly Piece-
wise), which has been previously explored in
subregular phonology. Consequently, the char-
acterization of islands in terms of IBSP string
constraints not only provides a computational
upper bound on the inventory of feasible island
effects, but also establishes a surprising link
between syntax on the one hand and phonol-
ogy on the other.

1 Introduction

The subregular program is concerned with analyz-
ing the complexity of linguistic dependencies that
are at most regular. The program has found great
success in computational phonology (see Heinz
2018 and references therein), where it has resulted
in a computational typology of phonological pat-
terns and corresponding learning algorithms. Syn-
tax, by virtue of being mildly context-sensitive,
may seem far beyond the purview of the sub-
regular program. But syntax is also subregular
once one considers more suitable representations.
Two routes have been explored: lifting subreg-
ular classes from strings to trees (Graf, 2018b;
Vu et al., 2019), and putting string constraints on
particular path languages of syntactic trees (Graf
and Shafiei, 2019). Whereas the former has been
mostly used in the analysis of structure building
operations, the latter has been applied to syntactic
constraints such as NPI-licensing.

This paper focuses on an area where these two
aspects of syntax meet: island constraints. Is-
land constraints impose additional restrictions on

displacement, which in the tradition of Transfor-
mational grammar is equated with the operation
Move. The shape of islands is narrowly circum-
scribed, indicating that they are very limited from
a computational perspective. In this paper, we
confirm this intuition. Island constraints are ex-
pressed as constraints over a path language where
linear precedence in the string encodes (a specific
notion of) containment. Given such a string repre-
sentation, island constraints fall into the subregu-
lar class Interval-Based Strictly Piecewise (IBSP),
which has been argued to play a central role in
phonology (Graf, 2017, 2018a). At the same time,
IBSP is sufficiently weak to rule out many unat-
tested island constraints. Our paper thus makes
several contributions: it deepens our understand-
ing of subregular syntax, establishes parallels to
phonology, and provides linguists with a compu-
tational theory of islands.

Due to space constraints, we focus largely on
strong islands, and only on the canonical cases for
most of them. We also investigate the that-trace
constraint and the coordinate structure constraint,
and we show that they cannot be handled in the
system proposed here. This paper thus marks but
the first step towards a fully articulated, empiri-
cally grounded theory of islands.

The discussion proceeds as follows: the pre-
liminaries section (§2) discusses Minimalist gram-
mars (§2.1), our string representation format
(§2.2), and the subregular class IBSP (§2.3). Sec-
tion 3 presents the central result that a number of
(strong) island constraints follow a uniform IBSP
pattern of very low complexity. We start with the
adjunct island constraint (§3.1) and then general-
ize the analysis to wh-islands, the complex np con-
straints, the subject condition, and freezing effects
(§3.2). Section 4 then explores the limits of IBSP
over a-strings. On the one hand this allows us
to correctly rule out many unattested island con-



straints, but it also means that the approach cannot
handle all aspects of the that-trace constraint and
the coordinate structure constraint. In addition,
our approach currently lacks any notion of linguis-
tic naturalness, which allows for some very odd
(albeit computationally simple) island constraints
(§5).

2 Preliminaries

The paper rests on several research traditions,
which are briefly sketched in this section: Min-
imalist grammars as a formal model of syntax
(§2.1), string representations for syntax (§2.2),
and the subregular class of IBSP string languages
(§2.3).

2.1 Minimalist Grammars

Since island constraints have mostly been studied
in the generative tradition, we adopt Minimalist
grammars (MGs; Stabler, 1997) as a formal model
of syntax. MGs are a derivational grammar for-
malism for building tree structures by combining
feature-annotated lexical items via the operations
Merge and Move. Figure 1 gives a concrete exam-
ple of this process. Only a few key aspects of MGs
matter for this paper, in particular their feature sys-
tem (see Stabler 2011 for a full discussion).

Each lexical item consists of a phonetic expo-
nent and a string of features. There are four dis-
tinct types of features. Category features (X�)
and selector features (X+) establish head argu-
ment relations via Merge. The other two feature
types drive the operation Move. A licensee feature
f� indicate that the phrase headed by the lexical
item undergoes f-movement, and the matching li-
censor feature f+ indicates the landing site of f-
movement. As in Minimalist syntax, movement is
a mechanism for displacing subtrees of an already
assembled tree, and movement always targets the
closest available landing site (encoded in MGs via
licensor features).

Given the special role of adjuncts in island con-
straints, we also adopt the adjunction mechanism
of (Frey and Gärtner, 2002). Instead of a category
feature, a lexical item l may carry an adjunction
feature X⇠ which allows it to adjoin to an XP.

An MG’s structure building process is usually
represented as a derivation tree like the one in
Fig. 1. But we will frequently represent deriva-
tion trees with the more compact format of depen-
dency trees. The rightmost tree in Fig. 1 presents

a concrete example.

2.2 String Representations for Syntax

Our investigation of island constraints will not op-
erate directly over trees, but rather over strings
that represent specific aspects of the tree struc-
ture. This follows recent work by Graf and Shafiei
(2019), who analyze syntactic constraints such as
NPI-licensing and Principle A as operating over
strings that encode asymmetric c-command rela-
tions. A tree is well-formed iff it holds for every
node n in the tree that the relevant string repre-
sentation for n is well-formed with respect to the
syntactic string constraints.

Graf and Shafiei (2019) choose a string rep-
resentation that encodes both containment and a
limited form of c-command (cf. Frank and Vijay-
Shanker, 2001). These augmented command
strings (or simply c-strings) can be defined in var-
ious ways, but the easiest option uses MG depen-
dency trees. We adopt this definition but simplify
it so that the resulting string representation only
keeps track of containment. For this reason, we
call these strings ancestor strings (or simple a-
strings).

Definition 1 (A-strings). Let t be an MG depen-
dency tree. If n is the root of t, then as(n) := n.
If n has mother m, then as(n) := n as(m). y
Example. In Fig. 1, as(Mary :: D�nom�) =
Mary :: D�nom� buy :: D+D+V� " " ::
V+nom+T� " did :: T+wh+C�. For increased
readability, we may omit features and replace
empty heads by their category. Then as(Mary) =
Mary buy T did. y

The use of strings is a matter of mathematical
convenience. The results obtained this way can be
backported to subregular machinery that operates
directly on dependency trees or derivation trees
(Graf and De Santo, 2019). This will be discussed
further in §5.

2.3 Subregular Complexity

Formal language theory has a rich tradition of
studying proper subclasses of the regular string
languages (McNaughton and Papert, 1971; Pin,
1997; Yli-Jyrä, 2005, a.o.). More recently, this
line of work has been picked up and extended
by computational phonologists (see Heinz 2018
and references therein). The class Interval-Based
Strictly Piecewise (IBSP) was proposed as a lin-
guistically natural unification of previously pro-
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Figure 1: X0-tree, MG derivation tree, and equivalent dependency tree for Which car did Mary buy yesterday

posed classes for subregular phonology (Graf,
2017, 2018a). IBSP constitutes an approximate
upper bound on string dependencies in phonology.
Definition 2 (k-val). A segmented k-interval
(k � 0) over alphabet ⌃, or simply segmented
k-val, is a tuple hL,R, Fii0ik such that

• L,R ✓ ⌃[{"} specify the left edge and right
edge, respectively, and

• Fi ✓ ⌃ specifies the i-th filler slot. y

Definition 3 (IBSP-k). Let ⌃ be some fixed al-
phabet and o,n /2 ⌃ two distinguished symbols.
An IBSP-k grammar over ⌃ (k � 0) is a pair
G := hi, Si, where i is a segmented k-val over
⌃ [ {o,n} and S ✓ (⌃ [ {o,n})k is a set of
forbidden k-grams. A string s 2 ⌃⇤ is generated
by G iff there is no k-gram u1 · · ·uk 2 S such that
ok

snk is a member of the language

(⌃ [ {o,n})⇤ · L · F ⇤
0 · {u1} · F ⇤

1 · {u2} · . . . ·
F

⇤
k�1 · {uk} · F ⇤

k ·R · (⌃ [ {o,n})⇤

The language L(G) is the set of all s 2 ⌃⇤ that
are generated by G. A stringset L is IBSP-k iff
L = L(G) for some IBSP-k grammar G. y
In the definition above, ⇤ represents the usual
Kleene closure. The symbol · denotes string
concatenation, lifted to sets: A · B :=
{ab | a 2 A, b 2 B}.

Following Graf and Shafiei (2019), we can use
IBSP grammars over strings to regulate the shape
of trees.
Definition 4 (IBSP over trees). Let G be an
IBSP grammar, t an MG dependency tree, and ft

a total function from nodes of t to strings. Then t

is well-formed with respect to G iff it holds for all
lexical items l in t that ft(l) is generated by G. y

Example. Suppose that nom-movement is forbid-
den out of VPs. Over a-strings, this corresponds
to the requirement that no V-head may occur be-
tween a node with nom� and the closest node with
nom+ (because movement in MGs always targets
the closest head with a matching feature). This can
be expressed as the following IBSP-1 grammar:

L :=
�
l | l carries nom� 

F0 :=
�
l | l does not carry nom+

 

F1 :=
�
l | l does not carry nom+

 

R :=
�
l | l carries nom+

 

S :=
�
l | l carries V� 

Then as(Mary) = Mary buy T did will be deemed
illicit because it matches a forbidden pattern with
L := Mary, F ⇤

0 := ", F ⇤
1 := ", R := T, and

buy 2 S. Consequently, the dependency tree is
not well-formed, either. y

It is often convenient to represent IBSP gram-
mars in a more visual format. The example gram-
mar above corresponds to the diagram below.

(1) Graphical representation of an IBSP
grammar

nom�
V� nom+

¬nom+ ¬nom+

The outermost vertical boxes represent the left and
right edge, respectively. The square in the mid-
dle represents a position of the forbidden k-grams



— since the example grammar uses forbidden un-
igrams, there is only one such square. The verti-
cally offset boxes represent the fillers, in this case
F0 and F1. We use features to as a shorthand for
the set of lexical items that carry this feature. For
instance, nom� denotes the set of all lexical items
carrying nom�. The expression ¬nom+ denotes
the of all lexical items that do not carry the rele-
vant feature, in this case nom+. This visual format
can also be used to show that a string is ill-formed.
Example. Recall that as(Mary) = Mary buy T did
is illicit. We can show this by giving a specific
instantiation of the interval and the k-gram in the
string.

Mary buy T did

" "

This disagram conveys the same information as
the formal description in the previous example. y

In the next section, we use this machinery to
analyze syntactic island effects from a subregular
perspective. We show that strong islands follow
a fixed IBSP pattern over a-strings that is exceed-
ingly simple.

3 Strong Islands over A-Strings

The notion of syntactic islands originates from
Transformational Grammar (Ross, 1967). From
the perspective of MGs, a constituent C is an is-
land iff no phrase contained by C may have a li-
censee feature checked by a matching licensor fea-
ture outside C. A distinction is commonly made
between strong islands and weak islands. Strong
islands limit movement irrespective of whether the
mover is an argument or an adjunct. Weak islands,
on the other hand, limit adjunct movement but not
argument movement. We will focus mostly on
strong islands in this paper. We first analyze the
adjunct island constraint (§3.1) as an IBSP per-
spective over a-strings, and then show how the
same template can be used for several other strong
island effects (§3.2).

3.1 Adjunct Island Constraint

The adjunct island constraint is arguably the most
robust case of a strong island. It is illustrated by
the contrast in (2).

(2) Adjunct island constraint
a. Which car did John complain

[CP that he can’t fix ]?

b. * Which car did John complain
[CP because he can’t fix ]?

In both (2a) and (2b) the wh-phrase which car
moves out of an embedded clause. But in (2a) the
embedded clause is an argument of the verb com-
plain, whereas it is an adjunct in (2b). That move-
ment is allowed out of the argument clause but not
the adjunct clause is referred to as the adjunct is-
land constraint.

The adjunct island constraint can be easily ex-
pressed as an IBSP constraint on a-strings. In
fact, it uses the template we already encountered
in §2.3, except that the set of forbidden unigrams
consists of all adjuncts rather than all verbs. As
explained in §2.1, we adopt the proposal of Frey
and Gärtner (2002) that every adjunct carries an
adjunct feature X⇠ that allows it to adjoin to XPs.
The IBSP grammar for the adjunct island con-
straint thus corresponds to the following template.

(3) IBSP-1 grammar for adjunct islands

f� X⇠ f+

¬f+ ¬f+

Note that this template actually represents multi-
ple IBSP grammars as f must be correctly instan-
tiated for each movement feature: nom for subject
movement, wh for wh-movement, top for topical-
ization, and so on. If all of those were put inside
a single IBSP grammar, then one lose the fact that
the left edge and the right edge must be opposite
polarities of the same feature — a nom� for the
left edge could be paired up with an wh+ as the
right edge. Since IBSP lacks a direct means of co-
ordinating left and right edges like this, we instead
have to posit a separate grammar for each move-
ment feature in order to correctly enforce the ad-
junct island constraint for that specific movement
type.

Example. Figure 2 shows the MG dependency
tree for which topic did you leave because Mary
talked about . This sentence contains illicit
wh-movement out of an adjunct. Now consider
the a-string for which, with the relevant fea-
tures indicated in square brackets: as(which) =
which[wh�] talked about T because[V⇠] leave T
did[wh+]. As shown by the diagram below, this a-
string is ill-formed with respect to the IBSP gram-
mar in (3) (assuming f := wh).



did :: C+wh+C�

" :: V+nom+T�

leave :: D+V�

because :: T+V⇠

" :: V+nom+T�

talked about :: D+D+V�

Mary :: D�nom� which :: N+D�wh�

topic :: N�

you :: D�nom�

Figure 2: Adjunct island violation

which because did

talked about T leave T

As the a-string is illicit, the whole sentence is ill-
formed. y

The reader may wonder why the template ex-
plicitly forbids f+ as fillers. This ensures that the
right edge is always the closest f+, which is the
one targeted for movement by the lexical item with
f� in the left edge. Without this restriction, the
IBSP grammar would incorrectly rule out well-
formed movement patterns.
Example. Consider once more the example sen-
tence which topic did you leave because Mary
talked about as depicted in Fig. 2. This sentence
contains two instances of nom-movement, both
of which are well-formed. But now consider the
IBSP grammar regulating nom-movement. Sup-
pose that this grammar allows for lexical items
with nom+ to appear in the filler slots. Then this
grammar would incorrectly rule out as(Mary) =
Mary[nom�] talked about T[nom+] because[V⇠]
leave T[nom+] did.

Mary because T did

talked about T leave

y
The reader should also keep in mind that the use

of X⇠ is just a notational shorthand for specify-
ing a list of lexical items. One can remove some
items from this set to allow for exceptions to the
adjunct island constraint, such as the ones noted
by Truswell (2007).

(4) a. * Which car did John drive Mary
crazy [while he tried to fix ]?

b. Which car did John drive Mary
crazy [while trying to fix ]?

Assuming a distinction between finite T-heads
(T�) and other T-heads (T�

inf ), we can account for
this by excluding while :: T+

infV
⇠ from the list of

forbidden lexical items.
In sum, the adjunct island constraint can be han-

dled by a very simple and intuitive IBSP grammar
(or rather, a collection of such grammars, one for
each movement type). From a formal perspective,
this IBSP grammar looks very similar to the IBSP
treatment of blocking effects in phonology. In
phonology, an intervening consonant cluster may
block long-distance harmony. In syntax, an inter-
vening head with an adjunction feature interrupts
the dependency between an f� and an f+. The
existence of the adjunct island constraint thus be-
comes a bit less mysterious: it is very simple from
a computational perspective, and it employs a gen-
eral blocking mechanism that also seems to be ac-
tive in other parts of language.

3.2 Other Strong Islands

Besides the adjunct island constraint, the class of
strong islands also includes wh-islands, complex
NPs, and subjects. The corresponding constraints
are illustrated below.

(5) Wh-island constraint
a. Which movie did John say that

Mary liked ?
b. * Which movie did John wonder

whether Mary liked ?

(6) Complex NP constraint
a. What did you say [that John

bought ]?
b. * What did you hear rumors [that

John bought ]?

(7) Subject condition
a. Who did John write [a story

about ]?
b. * Who was [a story about ] written

by John?

These all use minor variations of the template for
the adjunct island constraint.

Let us start with the wh-island constraint. Here
it suffices to make two changes. Since most types
of movements, e.g. topicalization, are not affected



by this constraint, we limit the possible instantia-
tions for f� and f+ to just wh� and wh+, respec-
tively. Then the list of blockers is changed from
adjuncts to all elements that induce wh-islands.
These are commonly taken to be all C-heads that
have some kind of question semantics, including
whether, how, and if. We denote this set C�[Q].

(8) IBSP-1 grammar for wh-islands

wh� C�[Q] wh+

¬wh+ ¬wh+

Next we turn to the complex NP constraint. This
one, too, uses the basic template of the adjunct is-
land constraint, but we once again have to change
the list of blockers. In the complex NP constraint,
the blocking is not done by an adjunct, but by a
more complex structural configuration: movement
out of a CP is illicit if the CP is the argument of a
noun. Thanks to the MG feature calculus, we can
rephrase this as a ban against moving out of an
NP that selects a CP,1 which means that the set of
blockers contains all lexical items, and only those,
that contain a selector feature C+ and a category
feature N�. We denote this set of lexical items by
C+ · · ·N�.

(9) IBSP-1 grammar for complex NP con-
straint

f� C+ · · ·N� f+

¬f+ ¬f+

The reader is invited to verify that this grammar
correctly rules out the sentence what did you hear
rumors that John bought, which is depicted in
Fig. 3.

This leaves us with the subject condition, which
can actually be regarded as an instance of what
is known as freezing effects. This describes the
phenomenon that once a phase XP has undergone
movement, it becomes opaque to extraction. Any
mover inside XP has to move out of the phrase
before it starts moving. From the perspective of
MGs, this can be rephrased as a constraint on the
distribution of movement features. Let f�1 and g�1

1Our feature-based interpretation of the complex NP con-
straint is actually stronger than the original version. Suppose
that the NP selects a CP as its complement and some XP as
its specifier. The complex NP constraint as originally stated
would allow the XP to be extracted, whereas our version does
not. As far as we have been able to determine, there are no
nouns that take two arguments in this configuration, let alone
one where the XP then is allowed to undergo movement.

did :: T+wh+C�

" :: V+nom+T�

hear :: D+D+V�

you :: D�nom�
" :: N+D�

rumors :: C+N�

that :: T+C�

" :: V+nom+T�

bought :: D+D+V�

John :: D�nom� what :: D�wh�

Figure 3: Violation of the complex NP constraint

denote lexical items whose first movement feature
is f� and g�, respectively. If the phrase headed
by g�1 contains f�1 , then the target of f�1 must be
contained by the target of g�1 . We can capture this
generalization by moving from an IBSP-1 gram-
mar to an IBSP-2 grammar (or rather, a collection
of such grammar for every possible choice of f�

and g�).

(10) IBSP-2 grammar for freezing effects

f�1 g�1 g+ f+

¬f+ ¬f+,¬g+ ¬f+

The step up from IBSP-1 to IBSP-2 makes
freezing effects appear more complex. But it is
actually possible to get the same effect just with
an IBSP-1 grammar. The trick is to make g+ the
right edge of the k-val rather than f+.

(11) IBSP-1 grammar for freezing effects

f�1 g�1 g+

¬f+ ¬f+,¬g+

Example. Consider the abstract a-string
f�1 a b g�1 m n g+x y f+ z. Both grammars
correctly rule it out as illicit.

f�1 g�1 g+ f+ z

a b m n x y

f�1 g�1 g+ x y f+ z

a b m n

Similarly, both grammars agree that the minimally
different f�1 a b g�1 m n f+x y g+ z is well-
formed. y



did :: T+wh+C�

" :: V+nom+T�

bother :: D+C+V�

that :: T+nom�C�

" :: V+nom+T�

kissed :: D+D+V�

Mary :: D�nom� who :: D�wh�

you :: D�

Figure 4: Violation of the subject condition

Both grammars also agree that the tree in Fig. 4 is
illicit because of the ill-formed a-string of who.

Note that we can apply the same kind of trun-
cation strategy to the IBSP grammars for the other
island constraints. This effectively reduces their
complexity of IBSP-1 to IBSP-0. As laid out in
Def. 3, an IBSP-0 grammar consists only of the
left edge L, the right edge R, and a single filler F0

inbetween. The set of forbidden k-grams is im-
material as every string is ruled out that matches
(⌃ [ {o,n})⇤ · L · F ⇤ ·R · (⌃ [ {o,n})⇤.

(12) IBSP-0 grammar for adjunct islands

f� X⇠

¬f+

(13) IBSP-0 grammar for wh-islands

wh� C�[Q]

¬wh+

(14) IBSP-0 grammar for complex NP con-
straint

f� X⇠

¬f+

In sum, all four island constraints can be cap-
tured with very simple IBSP-1 grammars (or even
IBSP-0 grammars) over a-strings. Adjunct is-
lands, wh-islands, and the complex NP constraint
all follow the very same pattern. Subject islands,
as a specific subcase of freezing effects, have a
slightly higher complexity in that they are either
IBSP-2 or IBSP-1. This depends on whether one
requires the left and right edge of the k-val to be
tied to the same feature f . Since freezing effects
are widely considered to be more complex than

standard island constraints and depend on the in-
teraction of multiple movements, it is unsurpris-
ing that their IBSP complexity should be slightly
higher. Nonetheless the IBSP approach with a-
string provides a unified perspective of several
movement restrictions that highlights their compu-
tational simplicity and treats them as a natural syn-
tactic counterpart of blocking effects in phonol-
ogy.

4 The Limits of A-Strings

The previous section has argued that IBSP gram-
mars over a-strings provide an insightful perspec-
tive on movement constraints that highlights their
simplicity and their formal parallels to blocking
effects in phonology.

It is also noteworthy just how limited the ma-
chinery is. For instance, it is now unsurprising that
no language has island constraints such as “you
may move out of as many adjuncts as you have
movement features”. This simply cannot be ex-
pressed with IBSP-1 or IBSP-0. Similarly, we cor-
rectly predict that no language has complex struc-
tural conditions like “an adjunct is an island iff it
is c-commanded by another adjunct”. Not only
would this require a larger k-val than IBSP-1 and
IBSP-0 provide, the use of a-strings makes it com-
pletely impossible to refer to c-commanders. By
adopting a string representation that only keeps
track of containment, c-command conditions be-
come inexpressible. While every Y in as(X) c-
commands X , not every c-commander of X ap-
pears in as(X) — only those that are heads of
phrases containing X do so. The absence of some
c-commanders in a-strings thus makes them un-
suitable to express c-command conditions.

The limits of a-strings with respect to c-
command is both a curse and a blessing. As just
discussed, it has the advantage of greatly limiting
the predicted typology of island constraints. At the
same time, it also means that the current approach
is entirely incapable of handling some well-known
restrictions on movement: the that-trace effect,
and the coordinate structure constraint.

Let us first consider the that-trace effect, the
core cases of which are illustrated below:

(15) a. Who do you think [Mary will
leave ]?

b. Who do you think [ will leave
Mary]?



c. Who do you think [that Mary will
leave ]?

d. * Who do you think [that will leave
Mary]?

The that-trace filter forbids a subject to move
across the head of the smallest containing senten-
tial CP if that head is empty. This adds several
new complications, but these can all be handled
with IBSP.

The restriction to subjects amounts to the re-
quirement that the left edge of the k-val must be
a mover whose first movement feature is nom�,
followed by some f�. Similarly, the limitation to
sentential CPs can be expressed in terms of the
MG feature calculus. The complementizer in the
examples above has the feature make-up T+C�,
whereas the complementizer of a relative clause,
for instance, would have T+N⇠ (under an analy-
sis of relative clauses as NP-adjuncts; other anal-
yses require different features, but it will never be
T+C�). So this aspect of the that-trace effect does
not challenge the IBSP perspective either. Finally,
the requirement that the constraint only applies to
the closest such complementizer can be captured
by restricting the appropriate filler. Overall, the
typical instances of the that-trace constraint can
be handled by an IBSP-1 grammar that uses the
same truncation trick as our IBSP-1 treatment of
freezing effects in (11).

(16) IBSP-1 grammar for the that-trace effect

nom� f� nom+ that

¬nom+ ¬f+, ¬C�

For the core cases, then, the that-trace effect ex-
ceeds the strong island constraints in complexity,
but is comparable to freezing effects.

However, there are cases where that-trace vio-
lations are repaired, and these cannot be handled
in our approach. For instance, the that-trace effect
does not apply when the gap is c-commanded by
additional material.

(17) Who do you think [that [under no circum-
stances] will leave Mary]?

Here under no circumstances is an adjunct that
attaches to TP or some other position below
the complementizer and above the subject gap.
This adjunct does not contain the gap, it only c-
commands it. As a result, it is not present in
the relevant a-strings, which makes it impossible

for us to suspend the that-trace constraint. In or-
der to handle this case, one needs a representation
that encodes both c-command and containment,
e.g. the c-strings of Graf and Shafiei (2019).

But the addition of c-command actually under-
mines the whole approach because it becomes im-
possible to determine a mover’s landing site. Re-
call that our grammars block f+ from occurring
in the fillers so that we can correctly pick out the
landing site for f-movement, i.e. the closest con-
taining head with f+. Crucially, heads that c-
command the mover but do not contain it are not
viable landing sites. For instance, if we are look-
ing at the c-string of some f-mover that is the com-
plement of some head H , the specifier of H may
be some lexical item carrying f+. This specifier
should be allowed to go into a filler slot. At the
same time, a c-commander that both carries f+

and contains the f-mover should not be allowed
to go into a filler slot. Since fillers are specified
as lists of lexical items, there is no way to dis-
tinguish in their specification between containing
c-commanders and all other c-commanders. Ei-
ther we allow both in the filler or neither, and in
each case we end up with an unsuitable grammar.
IBSP is too weak to make the relevant distinctions
with a representation format that encodes both c-
command and containment.

While that-trace repair points out a limitation
of IBSP, the coordinate structure constraint chal-
lenges the very notion of string-based representa-
tions for movement. This constraint forbids ex-
traction from a conjunct, except if movement takes
place across-the-board from all conjuncts.

(18) a. * Which wine did [Ed brew beer and
Greg drink ]?

b. Which wine did [Ed brew and
Greg drink ]?

Since there is no c-command or containment rela-
tion between the gaps in (18b), neither one appears
in the other’s c-string or a-string. Consequently,
the c-strings for the object of drink do not differ
at all between the two sentences, which makes it
impossible to give a c-string account of this island
constraint irrespective of how powerful one’s com-
putational apparatus is.

These two constraints show that IBSP over a-
strings does not provide a fully exhaustive theory
of islands or movement constraints. But the IBSP
approach does highlight the structural uniformity
of many islands, their computational simplicity,



and their parallels to blocking effects in phonol-
ogy. While our findings are still preliminary and
need to be vetted by detailed analysis of a much
wider range of constraints across many languages,
it is encouraging that they closely mirror previous
findings in phonology and yield rigorous claims
about the possible shapes of islands.

5 Linguistic Naturalness

The previous section focused on some shortcom-
ings of our approach with respect to expressiv-
ity, but there is also the issue of linguistic natu-
ralness. First, the choice of string representations
is unusual. Second, the reliance on lists of lexical
items for specifying the components of an IBSP
grammar means that there is no notion of natural-
ness. We acknowledge both issues, but we think
that they can be insightfully addressed in future
work.

As was briefly mentioned in §2.2, a-strings are
just a convenient abstraction and the findings of
this paper can be restated in terms of formal ma-
chinery that operates over trees instead of strings.
This includes the tree tiers of Graf (2018b) and
the sensing tree automata of Graf and De Santo
(2019). But in both cases the necessary math is
more likely to obfuscate the simplicity of the un-
derlying principles, and the use of tree structures
hides that the simple notion of containment is al-
ready enough to state many conditions on move-
ment. We thus maintain that a-strings are method-
ologically useful even if they may not be cogni-
tively real.

This leaves the lack of natural classes. It is
true that our current approach is still too lenient
a characterization of the class of possible island
constraints. For instance, one can easily write an
IBSP grammar over a-strings that does not allow
topicalization across a ditransitive verb. Similarly,
the ability to account for some exceptions such as
(4) also allows us to specify ludicrous exceptions,
for instance that the head of an adjunct induces an
island unless it is a palindrome. These are clearly
undesirable options, but they are typical of com-
putational work. Our primary goal was to analyze
island constraints from a subregular perspective to
more accurately pinpoint their overall complexity.
This allows us to put an upper bound on what is-
land constraint may look like, but this is still a very
generous bound. The formal restrictions must be
paired with a theory of linguistic substance to ac-

curately circumscribe the class of possible island
constraints (see e.g. Graf 2013 for one such ac-
count for the adjunct island constraint).

6 Conclusion

We have argued that the most common cases of
strong islands can be expressed as IBSP-1 (or
IBSP-0) constraints on string representations that
encode only containment. This formal characteri-
zation establishes new parallels to phonology and
tightens the linguistic typology by excluding logi-
cally conceivable yet unattested island constraints.
While a lot of empirical modeling work remains to
be done, we are confident that this novel perspec-
tive on islands will prove very fertile.
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Abstract

This paper presents an automata-theoretic
characterization of templatic morphology. We
generalize the Input Strictly Local class of
functions, which characterize a majority of
concatenative morphology, to consider multi-
ple lexical inputs. We show that strictly local
asynchronous multi-tape transducers success-
fully capture this typology of nonconcatena-
tive template filling. This characterization and
restriction uniquely opens up representational
issues in morphological computation.

1 Introduction

Recent work in mathematical phonology connects
phonological mappings to subclasses of the reg-
ular functions (McNaughton and Papert, 1971;
Rogers and Pullum, 2011; Rogers et al., 2013;
Heinz and Lai, 2013; Chandlee, 2014). One of
the simplest subclasses is the Input Strictly Local
(ISL) functions, which take as input a single string
and generate an output based on local informa-
tion. Despite their reduced expressivity, ISL func-
tions capture an overwhelming majority of phono-
logical and morphological maps (Chandlee, 2017;
Chandlee and Heinz, 2018). In addition, ISL func-
tions are provably easier and faster to learn than
full regular functions (Chandlee et al., 2015a).

In this paper, we generalize this notion of lo-
cality from the above single-input functions to
functions which take multiple strings as input.
Such functions are called Multi-Input Strictly Lo-
cal (MISL). MISL functions are computed by de-
terministic asynchronous Multi-tape Finite State
Transducers (MT-FSTs). Natural language has
processes which are understood in terms of en-
riched multi-string input structures, i.e. autoseg-
mental structure. We focus on root-and-pattern
(RPM) morphology or template-filling in Semitic.
This paper shows that when formalized as a multi-
input function, most RPM patterns are MISL.

Semitic RPM has has often been computed us-
ing different types of of MT-FSTs. By showing
that that the bulk of Semitic RPM can be com-
puted with only MISL MT-FSTs, this can act as
a stepping stone to determining the learnability of
RPM. It likewise acts as a benchmark to examine
the typology of attested and unattested RPM pro-
cesses. Furthermore, by using multi-input func-
tions with MT-FSTs instead single-input functions
with FSTs, we can more iconically compute the
fact that 1) RPM consists of separate tiers for
roots, inflection, and templates, and that 2) this
separation makes certain RPM processes be local.

Single-input functions are a special case of
multi-input functions. With finite-state calculus,
single-input functions correspond to rational func-
tions when they are modeled with 1-way single-
tape FSTs, and to regular functions when modeled
by 2-way single-tape FSTs (Filiot and Reynier,
2016).1 Multi-input functions correspond to the
class of functions modeled by 1-way or 2-way
MT-FSTs. Although there is work on the expres-
sivity of MT-FSTs (Furia, 2012), little is known
on multi-input functions and their algebra, expres-
sivity, and hierarchy (Frougny and Sakarovitch,
1993). We show that a locally defined subclass,
MISL, carves a substantial chunk of Semitic RPM.

2 Preliminaries

2.1 Preliminaries for single-input functions

Let o,nbe the start and end boundaries respec-
tively. Let ⌃ be a finite alphabet of symbols (ex-
cluding o,n). Let ⌃o = ⌃ [ {o,n}. Let ⌃⇤ the
set of all strings over ⌃. Let |w| indicate the length
of w 2 ⌃⇤. For two strings w and v let wv be their

1By single-tape FST, we mean a two-tape FST with one
input tape and one output tape. Note that the functions com-
puted by 1-way FSTs are called ‘regular functions’ in Amer-
ican computer science. In this paper, we follow French con-
ventions which call this class the ‘rational functions’ (Filiot
and Reynier, 2016).



concatenation, and for a set L ⇢ ⌃⇤ of strings and
a string w, by wL we denote {wv|v 2 L}. Let �
denote the empty string.

Given some string u and a natural number
k, the k-suffix of u is the last k symbols of u:
suff(u, k) = v s.t. |v| = k and xv = u for some
x 2 ⌃⇤. For an alphabet ⌃, the k-factors of ⌃ are
the set of strings w 2 ⌃⇤ such that |w|  k.

Informally, a single-input function f is k-ISL
if for all u1, u2 2 ⌃⇤, if suff(u1, k � 1) =
suff(u2, k� 1) then the two strings have the out-
put extensions w.r.t f (Chandlee, 2014; Chandlee
et al., 2015b). For any k-ISL function f over
domain ⌃⇤, there exists a canonical determinis-
tic single-tape finite-state transducer (1T-FST) M
such that |M | = f (meaning M computes f ), and
every state q 2 Q in M is labelled with one of the
k � 1 suffixes of ⌃⇤. Transitions are function tu-
ples � : Q⇥ ⌃ ! Q⇥ �⇤. For a state q 2 Q and
input symbol a 2 ⌃, �(q, a) = (p,B) such that
B 2 �⇤ and p = suff(qa, k � 1).

2.2 Preliminaries for multi-input functions

We introduce notation for functions which take
multiple strings as input. To do so, we use tu-
ples demarcated by brackets. In the formalization
here, we only consider functions which produce
one output string, not a tuple of output strings. But
extending the formalization is trivial; such a func-
tion is illustrated in another paper of ours in the
same volume.

A function f is an n-input function if it takes
as input a tuple of n strings: [w1, . . . , wn], which
we represent as ~w, where each word wi is made
up of symbols from some alphabet ⌃i such that
wi 2 ⌃⇤

i . Each alphabet ⌃i may be disjoint or
intersecting, so two input strings wi, wj may be
part of the same language ⌃⇤

i . These n alphabets
form a tuple ~⌃. Tuples can be concatenated: if
~w = [ab, c], ~x = [d, ef ], then ~w~x = [abd, cef ].

To generalize the notion of suffixes into multi-
ple strings, we define a tuple of n natural num-
bers as ~k = [k1, . . . , kn]. Given some tuple of
n strings ~w and tuple of n numbers ~k, ~k-suffix
of ~w is a tuple ~v of n strings vi, made up of the
last ki symbols on wi: suff(~w,~k) = V s.t. ~v =
[v1, . . . , vn] and |vi| = ki and xivi = wi for xi 2
⌃⇤
i . E.g. for ~w=[abc,def] and ~k = [2, 1],

suff(~w,~k) = [bc, f ]. Given a tuple ~k, the op-
eration ~k�x subtracts x from each of ki. E.g., for
~k = [2, 3, 6], ~k � 1 = [1, 2, 5]. For a tuple of al-

phabets ~⌃, the ~k�factors of ~⌃ is the set of tuples
~w 2 ~⌃ such that |wi|  ki. For example with

Let f be an n-input function defined over an
n�tuple ~w of input strings ~w = [w1, . . . , wn]
taken from the tuple of n alphabets ~⌃. As an
informal and intuitive abstraction from ISL func-
tions, f is Multi-Input Strictly Local (MISL) for
k = [k1, . . . , kn] if the function operates over a
bounded window of size ki for wi. Formally,

Definition 1: A function f is ~k-MISL iff
there exists a deterministic asynchronous Multi-
tape FST such that i) |M | = f , and ii) the MT-FST
is canonically ~k-MISL

We explain ~k-MISL Multi-tape FSTs in the next
section.

Definition 1 is a automata-based definition of
an MT-FST. We are currently working on finding
a language-theoretic-based definition of an MISL
function. Possible definitions for ISL functions,
such as the use of tails or output extensions, can-
not be easily extended to MISL functions. This is
because are functions which have an MISL MT-
FST, but the function has an infinite set of tails.
We are currently investigating whether a monoidal
definition of MISL functions is useful.

For an ISL function, it does not matter if the in-
put string is read left-to-right or right-to-left. But
for an MISL function, it does. A function may be
left-to-right MISL but not right-to-left MISL. We
leave out a proof but an illustration is given in an-
other paper of ours in the same volume.

2.3 Multi-tape finite-state transducers

Multi-input functions can be modeled by multi-
tape FSTs (MT-FST). An MT-FST is conceptu-
ally the same as single-tape FSTs, but over multi-
ple input tapes (Rabin and Scott, 1959; Elgot and
Mezei, 1965; Fischer, 1965; Fischer and Rosen-
berg, 1968; Furia, 2012). MT-FSAs and MT-FSTs
are equivalent, and single-tape FSTs correspond to
an MT-FSA with two tapes.

Informally, a MT-FST reads n multiple input
strings as n input tapes, and it writes on a sin-
gle output tape. Each of the n input strings is
drawn from its own alphabet ⌃i. The output
string is taken from the output alphabet �. For
an input tuple of n strings ~w = [w1, . . . , wn] =
[�1,1 . . .�1,|w1|, . . . ,�n,1 . . .�n,|wn|], the initial
configuration is that the MT-FST is in the initial
state q0, the read head. The FST begins at the first
position of each of the n input tapes �i,1, and the



writing head of the FST is positioned at the begin-
ning of an empty output tape. After the FST reads
the symbol under the read head, three things oc-
cur: 1) the state changes; 2) the FST writes some
string; 3) the read head may advance to the right
(+1) or stay put (0) on different tapes: either move
on all tapes, no tapes, or some subset of the tapes.

This process repeats until the read head “falls
off” the end of each input tape. If for some input
~w, the MT-FST falls off the right edge of the n
input tapes when the FST is in an accepting state
after writing u on the output tape, we say the MT-
FST transduces, transforms, or maps, ~w to u or
fT ~w = u.2 Otherwise, the MT-FST is undefined
at ~w. We illustrate MT-FSTs in §4.

Formally, a n�MT-FST for some natural num-
ber n is a 6-tuple (Q, ~⌃o,�, q0, F,�) where:

• n is the number of input tapes
• Q is the set of states
• ~⌃o = [⌃1o, . . . ,⌃no] is a tuple of n input al-

phabets ⌃i which include the end boundaries
⌃io

• � is the output alphabet
• q0 2 Q is the initial state
• F ⇢ Q is the set of final states
• � : Q ⇥ ~⌃o ! Q ⇥ ~D ⇥ �⇤ is the transition

function where
– D = {0,+1} is the set of possible di-

rections,3

– ~D = [Dn] is an n-tuple of possible di-
rections to take on each tape

The above definition can be generalized for
MT-FSTs which use multiple output tapes. As
parameters, an MT-FST can be deterministic or
non-deterministic, synchronous or asynchronous.
We only use deterministic MT-FSTs which are
weaker than non-deterministic MT-FSTs. An MT-
FST is synchronous if all the input tapes are ad-
vanced at the same time, otherwise it is asyn-
chronous. We use asynchronous MT-FSTs which
are more powerful than synchronous MT-FSTs.
Synchronous MT-FSTs are equivalent to multi-
track FSAs which are equivalent to single-tape
FSAs, making them no more expressive than reg-
ular languages. For a survey of the properties of
MT-FSAs and MT-FSTs, see Furia (2012).

2If the MT-FST generates tuples instead of single strings,
then the MT-ST maps ~w to ~u.

3If the MT-FST reads from right to left, then it uses the -1
direction parameter

A configuration c of a n�MT-FST M is
an element of ( ~⌃o

⇤
Q ~⌃o

⇤ ⇥ �⇤), short for
([⌃⇤

1oq⌃
⇤
1o, . . . ,⌃

⇤
noq⌃

⇤
no] ⇥ �⇤). The meaning

of the configuration c = ([w1qx1, . . . , wnqxn], u)
is the following. The input to M is the tuple
~w~x = [w1x1, . . . , wnxn]. The machine is cur-
rently in state q. The read head is on each of the n-
input tapes on the first symbol of xi (or has fallen
off the right edge of the input tape if xi = �). u is
currently written on the output tape.

Let the current configuration be
([w1qa1x1, . . . , wnqanxn], u) and let the current
transition arc be �(q, [a1, . . . , an]) = (r, ~D, v).
If ~D = [0n], then the next configuration is
([w1ra1x1, . . . , wnranxn], uv) in which case
we write ([w1qa1x1, . . . , wnqanxn], u) !
([w1ra1x1, . . . , wnranxn], uv) (= none
of the tapes are advanced) . If ~D =
[+1n], then the next configuration is
([w1a1rx1, . . . , wnanrxn], uv) in which case
we write ([w1qa1x1, . . . , wnqanxn], u) !
([w1a1rx1, . . . , wnanrxn], uv) (= all the tapes
are advanced). Otherwise, the next configuration
is ([wiC1x1 . . . , wnCnxn, . . .], uv) where Ci =
rai if Di = 0 and Ci = air if Di = +1 in which
case we write ([w1qa1x1, . . . , wnqanxn], u) !
([wiC1x1 . . . , wnCxn, . . .], uv) (= a subset of the
tapes are advanced).4

The transitive closure of ! is denoted with !+.
Thus, if c !+ c0 then there exists a finite sequence
of configurations c1, c2 . . . , cn with n > 1 such
that c = c1 ! c2 ! . . . ! cn = c0.

As for the function that a MT-FST M com-
putes, for each n�tuple ~w 2 ~⌃⇤ where ~w =
[w1, . . . , wn], fM (~w) = u 2 �⇤ (where fM =
|M |) provided there exists qf 2 F such that
([q0 o w1n, . . . , q0 o wnn],�) !+ ([ow1 n
qf , . . . ,own n qf ], u). Otherwise, if the config-
uration is ([ow1n q, . . . ,ownn q], u) and q 62 F
then the transducer crashes and the transduction
fT is undefined on input ~w. Note that if a MT-FST
is deterministic, it follows that if fT (~w) is defined
then u is unique.

As explained in §2.2, we define a function as
~k-MISL iff there exists a corresponding determin-
istic asynchronous ~k-MISL Multi-tape FST.

Definition 2: A deterministic asynchronous
MT-FST M with alphabet ~⌃ is a canonical MT-

4Note that the interpretation of the third type of configu-
ration subsumes the first two. We explicitly show the first two
for illustrative reasons.



FST for an ~k-MISL function f if the states of M
are labelled with the ~k � 1 suffixes of ~⌃.

In Definition 2, the restriction on state labels
does not apply to the unique initial state and
unique final state. In other words, except for the
initial and final states q0 and qf , every state corre-
sponds to a possible ~k � 1 factor of f

.

3 Root-and-pattern morphology in

template filling

Semitic root-and-pattern morphology (RPM) in-
volves segmenting a word into multiple discontin-
uous morphemes or morphs: a consonantal root C,
inflectional vocalism V, and prosodic template T.5

A partial paradigm of Standard Arabic verbs is in
Table 1, amassed from McCarthy (1981). To illus-
trate, the verb kutib (Table 1a) is morphologically
composed of a root C=ktb, vocalism V=ui, and
template T=CVCVC which marks locations for
consonants and vowels. Its autosegmental struc-
ture is provided in Table 1a.6

The bulk of theoretical and psycholinguistic
results show that Semitic RPM does involve
template-filling (Prunet, 2006; Aronoff, 2013;
Kastner, 2016), but the formulation of templates
is controversial (Ussishkin, 2011; Bat-El, 2011).
One hypothesis is that the template is composed
of CV slots (McCarthy, 1981). Alternatives are
that the template is made of prosodic units like
moras, syllables, and feet (McCarthy and Prince,
1990a,b), is derived from other templates via af-
fixation (McCarthy, 1993), or is a set of optimized
prosodic constraints (Tucker, 2010; Kastner, 2016;
Zukoff, 2017). Alternatively, the job of the tem-
plate is done by deriving words from other words
via overwriting or changing the vowels and conso-
nants (Ussishkin, 2005), e.g. katab+ui!kutib.

We take a theory-neutral position and focus on
the mathematical function behind RPM. Mathe-
matically, RPM is a 3-input function that takes as
input a 3-tuple ~w = [w1, w2, w3] where w1 is the

5In Hebrew, some roots consists of consonants and vow-
els (Kastner, 2016). This difference is computationally trivial
as long the template still treats Cs and Vs differently.

6We do not formalize RPM functions in broken plurals
(Hammond, 1988; McCarthy and Prince, 1990b). Kiraz
(2001, 106) formalizes it as a MT-FSA which use two in-
puts tapes: the singular and the vocalism. The singular tape
can be annotated with prosodic information. We conjecture
that broken plural formation is also MISL because there are
no long-distance dependencies. We leave out a full formal-
ization for space.

root C, w2 is the vocalism V, w3 is the template T.
The input alphabets are ⌃1 = ⌃C of consonants,
⌃2 = ⌃V of vowels, and ⌃3 = ⌃T of prosodic
slots {C,V} and other elements (moras, affixes).
Each alphabet includes the start and end bound-
aries o,n: ⌃io = ⌃i [ {o,n}. The output al-
phabet is the output segments.

Thus mathematically, many of the formal-
izaitons of templates are equivalent. Whether
the template or T-string is made from CV units
or moras is a notational difference (Kiraz, 2001)
and does not affect locality. The use of deriva-
tional affixation is analogous to function composi-
tion; it does not affect locality and is discussed in
§4.1.3,§4.2. For prosodic optimization, the func-
tion still needs to be well-defined over multiple
inputs and this makes a template be implicitly
present in the function. This is discussed in (Dola-
tian and Rawski, 2019). As for an overwriting
approach, it still requires a mechanism for plac-
ing the new segments that references discontinu-
ity. That is, the function katab+ui!kutib im-
plicitly assumes that the vowels can be separated:
kVtVb+ui!kutib. The fact that one of the inputs
is a template with filled consonants kVtVb can be
equally well broken down to a root and template
ktb+CVCVC.

Computationally, different models have been
used to compute the above mathematical func-
tion behind Semitic RPM: single-tape FSTs
(Bird and Ellison, 1994; Beesley and Karttunen,
2000, 2003; Cohen-Sygal and Wintner, 2006;
Roark and Sproat, 2007), synchronous MT-FSAs
(Kiraz, 2000, 2001; Hulden, 2009), and non-
deterministic asynchronous MT-FSTs (Kay, 1987;
Wiebe, 1992). For a review, see Kiraz (2000, 92),
Kiraz (2001, Ch4),and Wintner (2014, 47). We
model RPM with asynchronous deterministic MT-
FSTs in order to capture its locality properties,
which we explain next.

4 Multi-Input Locality in Semitic

Mathematically, there is little discussion on the lo-
cality or non-locality of RPM. Chandlee (2017)
shows that template-filling cannot be easily mod-
eled with single-tape FSTs without sacrificing lo-
cality. Although not ISL, we show that the major-
ity of RPM processes in Table 1 are MISL.

Arabic roots are generally at most 5 segments,
vocalisms at most 2 segments, and the template
is at most 12 slots (McCarthy, 1981). With this



Table 1: Partial paradigm of Arabic root-and-pattern morphology with stable ~k-values.

Slot-filling pattern Binyan Gloss Output Root Vowels Template k-value
a 1-to-1 Measure I kutib ‘was written’ ktb ui CVCVC [1,1,1]

Passive

C V C V C

k t b

u i

b ... four consonants Measure QI turZim ‘was translated’ trZm ui CVCCVC [1,1,1]
Passive

C V C C V C

t r Z m

u i

c ... with final deletion Borrowed verb maGnat. ‘be magnetized’ mGnt.s ui CVCCVC [1,1,1]

C V C C V C

m G n t. s

u i

d ... with pre-association Measure VIII k<t>usib ‘was gained’ ksb ui CtVCVC [1,1,1]
Passive

C t V C V C

k s b

u i

1-to-many...
... final spread of...

e ... vowels Measure I katab ‘it wrote’ ktb a CVCVC [1,2,1]
Active

C V C V C

k t b

a

f ... consonants Measure I samam ‘he poisoned’ sm a CVCVC [2,1,1]
Active

C V C V C

s m

a

... medial spread of...
g ... (long) vowels Measure III kuutib ‘be corresponded’ ktb ui CVµV CVC [1,2,1]

Passive

C V µV C V C

k t b

u i

h ... (geminate) consonants Measure II kuttib ‘be caused to write’ ktb ui CVCµCVC [2,1,1]
Passive

C V C µC V C

k t b

u i



bound, RPM is reducible to modeling a function
over a finite domain and range, i.e., a finite list of
input-output pairs. Throughout this section, we
abstract away from this. Our functions assume
that there is no bound on the size of the root C,
vocalism V, or template T. This allows us to treat
RPM as a function over an infinitely sized domain.
Doing so allows us to better capture the underly-
ing function’s generative capacity (Savitch, 1993).
See (Dolatian and Rawski, 2019) for details on the
role of infinity in computing Semitic RPM.

4.1 1-to-1 slot-filling

4.1.1 Simple 1-to-1 slot-filling

For kutib (Table 1a), RPM shows 1-to-1 slot-
filling, meaning the e association of segments on
any two strings is 1-to-1. The number of vowels
in the vocalism V match the number of V slots in
the template T. The same applies for the number
of consonants in the root C and the C slots in T.

1-to-1 slot-filling is [1,1,1]-MISL or MISL for
~k = [1, 1, 1]. The function is modeled by the de-
terministic asynchronous MT-FST in Figure 1 us-
ing three input tapes: C-tape, V-tape, and T-tape.
The transition arcs in the MT-FST in Figure are
in shorthand. In a transition arc like [c,⌃o, C] :
[+1, 0,+1] : c, lower case letters are interpreted
as variables. A derivation is provided in Table 2.
Each row keeps track of the:

1. current state
2. location of the read heads on the 3 input tapes
3. transition arc used on each 3 input tapes
4. outputted symbol
5. current output string

We use a deterministic asynchronous MT-FST
because it can iconically model MISL functions,
while a synchronous MT-FST cannot without sac-
rificing locality. The reason is because syn-
chronous MT-FSTs are equivalent to single-tape
FSAs, thus making RPM computed non-locally.
To illustrate, Figure 2 is the derivation for kutib us-
ing a synchronous 4-tape MT-FSA. To avoid asyn-
chrony, the 3 ‘input’ tapes are aligned with the cor-
responding symbols on the ‘output’ tape by using
the special symbol ⇤ as a padding symbol.

To understand why the function is [1,1,1]-
MISL, consider its MT-FST in Figure 1. Besides
the initial and final state, there is only one state q1.
q1 keeps track of the last ~k�1 suffix on each of the
three input-strings. Because ~k�1 = [1, 1, 1]�1 =

q0start q1 (�,�,�) qf
[o,o,o]:

[+1,+1,+1]:�

[c,⌃o ,C]:

[+1,0,+1]:c

[⌃o ,v,V]:

[0,+1,+1]:v

[n,n,n]:

[+1,+1,+1]:�

Figure 1: MT-FST for 1-to-1 slot-filling.

Input Tapes C: k ⇤ t ⇤ b
V: ⇤ u ⇤ i ⇤
T: C V C V C

Output Tape: k u t i b

Figure 2: Alignment of kutib with a synchronous MT-
FSA (cf. Kiraz, 2001; Hulden, 2009).

[0, 0, 0], the state q1 does not keep track of any pre-
vious input-symbol seen. When deciding on what
to output and which state to go to, only the current
input symbols on the 3 tapes were needed.

4.1.2 1-to-1 slot-filling with four or more

consonants

Extensions of 1-to-1 slot-filling are also [1,1,1]-
MISL. If the root contains four consonants
C=trZm and the template has four consonant slots
T=CVCCVC (Table 1b), then the output turZim
is generated with the same [1,1,1]-MISL function
that’s modeled by the MT-FST in Figure 1. A sam-
ple derivation is provided in the appendix.

If the root contains more consonants C=mGnt
˙
s

than the template has consonant slots T=CVCCVC
(Table 1c), the output shows deletion of the ad-
ditional consonant: muGnit

˙
not *muGnit

˙
s. This

is [1,1,1]-MISL. It is modeled by the same MT-
FST in Figure 1 but with the additional transition
arc: [c,⌃o,n] : [+1, 0, 0] : � between q1, q1. A
sample FST and derivation are provided in the ap-
pendix.

4.1.3 1-to-1 slot-filling and pre-associated

affixes

Given a root C=ksb, some outputs show an addi-
tional affix, e.g. the infix <t> in k<t>usib. The
affix <t> is pre-associated to a slot after the first
consonant. Pre-associated templates can be com-
puted either representationally or derivationally.
Both are local.7

7A third alternative is to treat the infix <t> as part of a
separate input-string or input-tape. The template is CCVCVC
where C is pre-associated to <t>. This is analogous to giv-
ing each morpheme its own autosegmental tier (McCarthy,



Current C-tape V-tape T-tape Output Output
State Symbol String

1. q0 oktbn ouin oCVCVCn
2. q1 oktbn C:o:+1 ouin V:o:+1 oCVCVCn T:o:+1 �
3. q1 oktbn C:k:+1 ouin V:u:0 oCVCVCn T:c:+1 k k
4. q1 oktbn C:t:0 ouin V:u:+1 oCVCVCn T:v:+1 u ku
5. q1 oktbn C:t:+1 ouin V:i:0 oCVCVCn T:c:+1 t kut
6. q1 oktbn C:b:0 ouin, V:i:+1 oCVCVCn T:v:+1 i kuti
7. q1 oktbn C:b:+1 ouin V:n:0 oCVCVCn T:c:+1 b kutib
8. qf oktbn C:n:+1 ouin C:n:+1 oCVCVCn T:n:+1 � kutib

Table 2: Derivation of kutib using the MT-FST in Figure 1.

The representational route is to enrich the tem-
plate with the affix itself: T=CtVCVC (Hudson,
1986). The root and template are then combined
to generate k<t>usib. This function is [1,1,1]-
MISL. It is computed by the same MT-FST in
Figure 1 but with the additional transition arc:
[⌃o,⌃o, t] : [0, 0, t] : � between q1, q1. A sample
FST and derivation are provided in the appendix.

A derivational alternative is to derive k<t>usib
from an un-affixed base kusib by infixing <t>
(McCarthy, 1993). Generating kusib from [ksb,
ui, CVCVC] is [1,1,1]-MISL. Infixing <t> onto
kusib is 2-ISL. The representational route can be
interpreted as the composition of the derivational
approach.

4.2 1-to-many slot filling

4.2.1 Final spread

Final spread in katab has 1-to-many slot-filling
(Table 1e). The word consists of the following in-
put strings: C=ktb, V=a, T=CVCVC. The vocal-
ism V consists of only one vowel a because of the
Obligatory Contour Principle (McCarthy, 1981).
The vowel a undergoes final spread by being asso-
ciated with multiple V slots in the T-string.

Computing final vowel spread is [1,2,1]-MISL
with k2 = 2 on the V-string, not k2 = 1. Knowing
to spread the final vowel requires a window of size
2 on the V-string. The locality window stays at
1 for the C,T-strings because they do not play a
role. For illustration, we provide an MT-FST for
final vowel spread in the appendix. The states keep
track of the last 1-suffix on the V-tape and last 0-
suffix on C,T-tapes. A sample FST and derivation
are provided in the appendix.

1981). But computing this type of input-structure cannot be
modeled in an MT-FST because MT-FSTs work over multiple
linear strings, not over graphs.

Consonants can also undergo final spread:
f ([sm, a, CVCVC] = samam (Table 1f).8 This is
[2,1,1]-MISL, analogous to final spread of vowels
except that the locality window is now larger over
the C-string instead of the V-string.

4.2.2 Medial spread

In contrast to final spread, medial spread involves
associating a string-medial vowel or consonant to
multiple slots on the T-string: kuutib with a long-
vowel u (Table 1g) or kuttib with a geminate t (Ta-
ble 1h). Like pre-associated affixes (§4.1.3), me-
dial spread can be analyzed either representation-
ally or derivationally. An alternative edge-in anal-
ysis is discussed in §5.2.

For gemination, the representational route in-
volves enriching the template with a special sym-
bol, i.e., a consonant mora µC in T=CVCµV VC
(Kay, 1987; McCarthy, 1993; Beesley, 1998).
With this template, generating kuttib is [2,1,1]-
MISL with k1=2 over the C-string. A correspond-
ing MT-FST and derivation is in the appendix us-
ing ⌃T = {C, V, µC}, and ⌃C = {k, t} for illus-
tration. Long vowels have the same computational
treatment but with µV as a special symbol.

A derivational alternative is to derive kuttib
from kutib by infixing a consonant mora µC fol-
lowed by consonant spreading. Generating the
base kutib is [1,1,1]-MISL. Infixing the mora
kutµC ib is 4-ISL and spreading the consonant kut-
tib is 2-ISL. As with preassociation (§4.1.3), the

8Since McCarthy (1981), the analysis of final conso-
nant spread has been controversial (Hudson, 1986; Hober-
man, 1988; Yip, 1988; McCarthy, 1993; Gafos, 1998; Bat-El,
2006). Alternative analyses involving reduplication, prefer-
ence for local spreading, or right-to-left association can be
potentially non-local and are discussed in §5. Computation-
ally, Beesley (1998) formalizes consonant spread with a spe-
cial symbol X as an equivalent treatment for medial spread.
This formalization is [2,1,1]-MISL, just like (§4.2.2.



representational solution is a composition of the
derivational solution; both are local functions.

5 Possible non-locality in Semitic

Certain templatic processes in Semitic are not lo-
cal: reduplication and loanword adaptation in Ta-
ble 3, amassed from many sources (McCarthy,
1981; Broselow and McCarthy, 1983; Bat-El,
2011).

5.1 Reduplication

Semitic RPM shows intensive reduplication which
varies on root size (Broselow and McCarthy,
1983): root doubling in for biconsonantal roots in
laflaf (Table 3i) and first-C copying for triconso-
nantal roots in barbad (Table 3j). Root-doubling is
analogous to total reduplication. Initial-C copying
involves copying the first consonant of the root and
placing it in a prespecified spot on the template.9

Reduplication is computationally challenging.
Cross-linguistically, partial reduplication patterns
can range from being ISL to subsequential (Chan-
dlee and Heinz, 2012). Total reduplication is
above the subsequential threshold and cannot be
modeled by 1-way FSTs but requires determinis-
tic 2-way FSTs (Dolatian and Heinz, 2018). If we
assume that there’s no bound on the size of the
root, then root-doubling cannot be computed by
a MISL function for any ~k. The function would
need a 2-way MT-FST which could go back and
forth on the C-tape. Similarly, if we assume that
there’s no bound on the number n of consonants
between the two copies of the root-initial con-
sonant, then the function is not MISL for any
~k. Analogously to subsequential functions over
single-input FSTs, root-initial copying would be
Multi-Subsequential. However, the assumption on
root size is not correct. All roots which undergo
the above reduplication processes have a bounded
size (2 or 3). If we discard this assumption, then
both reduplicative processes are MISL for a large
value of ~k.10

5.2 Local spreading in loanword adaptation

In loanword adaptation of verbs in Arabic, the
most productive template is CVCCVC with the vo-

9Technically, the relevant inputs need to be annotated to
trigger reduplication, e.g. initial-C copying with T=CVCFVC
and root doubling with C=zl-RED. We abstract away from
this for clarity.

10The value of the k is [3,1,1] for initial-C copying, but
[3,1,3] for root-doubling because the function keeps track of
the root size and the current C-slot.

calism a: CaCCaC (Bat-El, 2011). When a bor-
rowed consonantal root has four consonants, the
template is filled with 1-to-1 slot filling of conso-
nants: telephone [telefon] and talfan (Table 3k).
But when a borrowed root has three consonants,
then the input undergoes medial gemination: SMS
and sammas, not final spread *samsas (Table 3l).

There are many ways to analyze this difference
between three vs. four-consonant roots. One is
suppletive allomorphy: four-consonant roots use
the template CVCCVC, three-consonant roots use
the template CVCµCVC. Choosing the template is
ISL-4. Once chosen, the root, vocalism, and tem-
plate can then be submitted to an MISL function.
This analysis is plausible because, outside of loan-
word adaptation, Semitic templates do have sup-
pletion conditioned by root-size: the comparative
in Egyptian Arabic is VCCVC for triconsonantal
roots: kbr ! akbar, but VCVCC for biconsonantal
roots: Sd ! aSadd (Davis and Tsujimura, 2018).

An alternative is to use a template CVC-
CVC without any representational markup for
gemination. The correct outputs are generated
based on avoiding non-local spreading. For a
three-consonant root, medial gemination is gen-
erated because the grammar (in OT-parlance)
prefers outputs with local spreading of consonants
sammas instead of outputs with non-local spread-
ing samsas. An analogous anti-long-distance
spreading mechanism has been proposed for me-
dial gemination (§4.2.2) and for the fact that i
cannot spread (§4.2.1) (Hudson, 1986; Hoberman,
1988; Yip, 1988).11 Computationally, the choice
of local spreading depends on the following infor-
mation:

1. Having the context CCV on the template:
k = 3 on T-string

2. Being the final consonant in the root or not:
k = 2 on C-string

3. The existence of an additional C slot on the
template: XCCVyCn vs. XCCVyn: k =
|V x|+ 1 on T-string

The last condition is important. Consider the
contrast in kuttib and kutba ‘writers’ derived from
the templates C1VxC2C3VyC4 andC1VxC2C3Vy.

11These have also been analyzed with edge-in association.
Instead of association operating from left-to-right, Yip (1988)
argues that these templates are simultaneously or consecu-
tively right-to-left and left-to-right. Such an analysis though
has unclear computational expressivity; we conjecture that
it may be analogous to Weak Determinism (Heinz and Lai,
2013) over multiple inputs.



Table 3: Partial paradigm of Arabic root-and-pattern morphology with variable MISL ~k-values.

Slot-filling pattern Binyan Gloss Output Root Vowels Template k-value
Reduplication of

i ... root laflaf ‘wrapped intensely’ lf a CVCCVC varies

C V C C V C

l f l f

l f

a

j ... first C barbad ‘shaved unevenly’ brd a CVCFVC varies

C V C C V C

b r d

a

Loanword adaptation of... Source noun Adapted Verb
k ... four-consonant root telephone talfan ‘he phoned’ tlfn a CVCCVC varies

C V C C V C

t l f n

a

l ... three-consonant root SMS sammas ‘he SMS-ed’ sms a CVCCVC varies

C V C C V C

s m s

a

The C2C3 substring in C1VxC2C3VyC4 maps to
gemination: kuttib, while the CC substring in
CVCCV maps to 1-to-1 spreading: kutba. The
choice depends on if the C1C2 substrings precedes
an extra consonant slot C4 on the template or not.
If there is no bound on the number of intervening
vowels Vx, then the function is not MISL for any~k.
If there is a bound, then it is MISL for a k which is
sufficiently large enough to encode these contexts.
In Arabic, Vy can be at most two vowels slots in or-
der to encode long vowels: kuttaab ‘writers’. This
makes the function MISL with k = 5 on the T-
string, k = 3 on the C-string.

6 Conclusion

This paper examined the computational expressiv-
ity of non-concatenative morphology, in particu-
lar, Semitic root-and-pattern morphology (RPM).
Generalizing Input Strictly Local (ISL) functions
to handle multiple inputs, we showed that the
class of Multiple-Input Strictly Local (MISL)
functions can compute almost all Semitic RPM.
These MISL functions are computed by determin-
istic asynchronous multi-tape finite-state trans-

ducers. This computational result looks be-
yond various points of theoretical contention in
Semitic. The result also narrows the gap in math-
ematical results between concatenative and non-
concatenative morphology.
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A Appendix

Below are MT-FSTs and derivation tables for
some of the described Semitic processes.

A.1 1-to-1 slot-filling with four consonants

In Table 1b, the input root C has 4 consonants trZm
and the template T has enough consonantal slots
CVCCVC. The vocalism V is ui. The output is
turZim. A derivation table is provided in Table 4
using the [1,1,1]-MISL MT-FST from Figure 1.

A.2 1-to-1 slot-filling with larger roots

In Table 1c, the root C==mGnts contains more
consonants than the template T=CVCCVC. With
a vocalism V=ui, the output is muGnit with final
consonant deletion. This function is modeled by
the [1,1,1]-MISL MT-FST in Figure 3, illustrated
with the derivation in Table 5.

q0start

q1 (�,�,�)

qf

[o,o,o]:

[+1,+1,+1]:�

[c,⌃o ,n]: [c,⌃o ,C]:

[+1,0,0]:� [+1,0,+1]:c

[⌃o ,v,V]:

[0,+1,+1]:v

[n,n,n]:

[+1,+1,+1]:�

Figure 3: MT-FST for 1-to-1 slot-filling with final con-
sonant deletion

A.3 1-to-1 slot-filling and pre-associated

affixes

The template T=CtVCVC has a preassociated af-
fix hti. With a root C=ksb and vocalism V=ui, the
output is ktusib. A [1,1,1]-MISL MT-FST is pro-
vided in Figure 4 along with a sample derivation in
Table 6. The symbol A represents any input sym-
bol from the input alphabet of segments {t,n,m}
which are possible segmental affixes in McCarthy
(1981).

q0start

q1 (�,�,�)

qf

[o,o,o]:

[+1,+1,+1]:�

[⌃o ,⌃o ,A]: [c,⌃o ,C]:

[0,0,+1]:A [+1,0,+1]:c

[⌃o ,v,V]:

[0,+1,+1]:v

[n,n,n]:

[+1,+1,+1]:�

Figure 4: MT-FST for 1-to-1 slot-filling with pre-
associated affixes

A.4 1-to-many slot-filling with final spread of

vowels

In Table 1e, the vocalism V=a has fewer vowels
than the template T=CVCVC. This triggers final
spread of vowels. With a root C=ktb, the output is
katab. This function is modeled with the [1,2,1]-
MISL MT-FST in Figure 5, illustrated with a sam-
ple derivation in Table 7. The vowel alphabet is
only {a,u}. In Standard Arabic, only the vowels
a,u spread; the vowel i does not. This is discussed
in §5.2. The FST does not visually represent the
dedicated final state qf . Instead, all non-initial
states are marked as accepting states. A state is
accepting if upon reading [n,n,n], it advances
[+1,+1,+1] to state qf .

A.5 1-to-many slot filling with medial spread

of consonants

In Table 1g, the template T=CVCµCVC contains
a marker for gemination. With root C=ktb and vo-
calism V=ui, the output is kuttib. This is modeled
by the [2,1,1]-MISL MT-FST in Figure 6. with a
sample derivation in Table 8 for a nonce word kut-
tik with root C=ktk. For illustrative reasons, the
consonant alphabet is only {k,t}. The final state
qf is not visualized for space reasons.



Current C-tape V-tape T-tape Output Output
State Symbol String

1. q0 otrZmn ouin oCVCCVCn
2. q1 otrZMn C:o:+1 ouin V:o:+1 oCVCCVCn T:o:+1 �
3. q1 otrZMn C:t:+1 ouin V:u:0 oCVCCVCn T:C:+1 t t
4. q1 otrZMn C:r:0 ouin V:u:+1 oCVCCVCn T:V:+1 u tu
5. q1 otrZMn C:r:+1 ouin V:i:0 oCVCCVCn T:C:+1 r tur
6. q1 otrZmn C:Z:+1 ouin V:i:0 oCVCCVCn T:C:+1 Z turZ
7. q1 otrZmn C:m:0 ouin V:i:+1 oCVCCVCn T:V:+1 i turZi
8. q1 otrZmn C:m:+1 ouin V:n:0 oCVCCVCn T:C:+1 m turZim
9. q1 otrZmn C:n:+1 ouin V:n:+1 oCVCCVCn T:n:+1 � turZim

Table 4: Derivation of turZim using the MT-FST in Figure 1.

Current C-tape V-tape T-tape Output Output
State Symbol String

1. q0 omGntsn ouin oCVCCVCn
2. q1 omGntsn C:o:+1 ouin V:o:+1 oCVCCVCn T:o:+1 �
3. q1 omGntsn C:m:+1 ouin V:u:0 oCVCCVCn T:C:+1 m m
4. q1 omGntsn C:G :0 ouin V:u:+1 oCVCCVCn T:V:+1 u mu
5. q1 omGntsn C:G :+1 ouin V:i:0 oCVCCVCn T:C:+1 G muG
6. q1 omGntsn C:n:+1 ouin V:i:0 oCVCCVCn T:C:+1 n muGn
7. q1 omGntsn C:t:0 ouin V:i:+1 oCVCCVCn T:V:+1 i muGni
8. q1 omGntsn C:t:+1 ouin V:n:0 oCVCCVCn T:C:+1 t muGnit
9. q1 omGntsn C:s:+1 ouin V:n:0 oCVCCVCn T:n:0 � muGnit
10. q1 omGntsn C:n:+1 ouin V:n:+1 oCVCCVCn T:n:+1 � muGnit

Table 5: Derivation of muGnit using the MT-FST in Figure 3

Current C-tape V-tape T-tape Output Output
State Symbol String

1. q0 oksbn ouin oCtVCVCn
2. q1 oksbn C:o:+1 ouin V:o:+1 oCtVCVCn T:o:+1 �
3. q1 oksbn C:k:+1 ouin V:u:0 oCtVCVCn T:C:+1 k k
4. q1 oksbn C:s:0 ouin V:u:0 oCtVCVCn T:t:+1 t kt
5. q1 oksbn C:s:0 ouin V:u:+1 oCtVCVCn T:V:+1 u ktu
6. q1 oksbn C:s:+1 ouin V:i:0 oCtVCVCn T:C:+1 s ktus
7. q1 oksbn C:b:0 ouin V:i:+1 oCtVCVCn T:V:+1 i ktusi
8. q1 oksbn C:b:+1 ouin V:n:0 oCtVCVCn T:C:+1 b ktusib
9. q1 oksbn C:n:+1 ouin V:n:+1 oCtVCVCn T:n:+1 � ktusib

Table 6: Derivation of khtiusib using the MT-FST in Figure 4



q0start q1 (�,o,�)

q2 (�, a,�)

q3 (�, u,�)

[o,o,o]:

[+1,+1,+1]:�

[c,⌃o ,C]:

[+1,0,+1]:c

[⌃o ,a,V]:

[0,+1,+1]:a

[⌃o ,u,V]:

[0,+1,+1]:u

[⌃o ,a,V]:

[0,+1,+1]:a

[⌃o ,u,V]:

[0,+1,+1]:u

[⌃o ,n,C]: [⌃o ,a,V]:

[0,0,+1]:a [0,+1,+1]:a
[c,⌃o ,C]:

[+1,0,+1]:c

[c,⌃o ,C]:

[+1,0,+1]:c

[⌃o,n,V]: [⌃o ,u,V]:

[0,0,+1]:u [0,+1,+1]:u

Figure 5: MT-FST for 1-to-many slot-filling with final spread of vowels

Current C-tape V-tape T-tape Output Output
State Symbol String

1. q0 oktbn oan oCVCVCn
2. q1 oktbn C:o:+1 oan V:o:+1 oCVCVCn T:o:+1 �
3. q1 oktbn C:k:+1 oan V:a:0 oCVCVCn T:C:+1 k k
4. q2 oktbn C:t:0 oan V:a:+1 oCVCVCn T:V:+1 a ka
5. q2 oktbn C:t:+1 oan V:n:0 oCVCVCn T:t:+1 t kat
6. q2 oktbn C:b:0 oan, V:n:0 oCVCVCn T:V:+1 a kata
7. q2 oktbn C:b:+1 oan V:n:0 oCVCVCn T:C:+1 b katab
8. qf oktbn C:n:+1 oan C:n:+1 oCVCVCn T:n:+1 � katab

Table 7: Derivation of katab using the MT-FST in Figure 5

Current C-tape V-tape T-tape Output Output
State Symbol String

1. q0 oktkn ouin oCVCµCVCn
2. q1 oktkn C:o:+1 ouin V:o:+1 oCVCµCVCn T:o:+1 �
3. q2 oktkn C:k:+1 ouin V:u:0 oCVCµCVCn T:C:+1 k k
4. q2 oktkn C:k:0 ouin V:u:+1 oCVCµCVCn T:V:+1 u ku
5. q3 oktkn C:t:+1 ouin V:i:0 oCVCµCVCn T:C:+1 t kut
6. q3 oktkn C:k:0 ouin V:i:0 oCVCµCVCn T:µC :+1 t kutt
7. q3 oktkn C:k:0 ouin V:i:+1 oCVCµCVCn T:V:+1 i kutti
8. q3 oktkn C:k:+1 ouin V:n:0 oCVCµCVCn T:C:+1 k kuttik
9. qf oktkn C:n:+1 ouin V:n:+1 oCVCµCVCn T:n:+1 � kuttik

Table 8: Derivation of kuttik using the MT-FST in Figure 6



q0start q1(o,�,�)

q2 (k,�,�)

q3(t,�,�)

[o,o,o]:

[+1,+1,+1]:�

[k,⌃o ,C]:

[+1,0,+1]:k

[t,⌃o ,C]:

[+1,0,+1]:t

[⌃o ,v,V]

[0,+1,+1]:v

[⌃o ,v,V] [k,⌃o ,C]

[0,+1,+1]:v [+1,0,+1]:k

[⌃o,⌃o ,µC ]:

[0,0,+1]:k

[⌃o ,v,V] [t,⌃o ,C]

[0,+1,+1]:v [+1,0,+1]:t

[⌃o,⌃o ,µC ]:

[0,0,+1]:t

[k,⌃o ,C]:

[+1,0,+1]:k

[t,⌃o ,C]:

[+1,0,+1]:t

Figure 6: MT-FST for 1-to-many slot-filling with medial spread of consonants
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Abstract

Large typological databases have permitted
new ways of studying cross-linguistic mor-
phological variation. Recently, computational
modelers with typological interests have begun
to turn to broad multilingual text databases. In
this paper, we will focus particularly on the
UniMorph database, a collection of morpho-
logical paradigms, mostly gathered automati-
cally from the crowd-sourcedmulti-lingual dic-
tionary Wiktionary. It was designed to make
the large quantity of data contained in Wik-
tionary available for NLP researchers by stan-
dardizing the data and putting it into a form
that is easy to access. For typological stud-
ies, however, the requirements for a linguis-
tically informed view of morphological varia-
tion are quite different. They involve using a
morphological database as a scientific instru-
ment to both formulate and test hypotheses
about the nature and organization of language
systems. The requirements are, accordingly,
much higher. In this paper, we survey some
of the methodological challenges and pitfalls
involved in using corpora for typological re-
search, and we end with a proposal for best
practices and directions for further research.

1 Introduction

The availability of large typological databases
(e.g., Dryer and Haspelmath 2013; Bickel and
Nichols 2002) has made it possible to both
model and hypothesize about the nature of cross-
linguistic morphological variation. Recently, com-
putationalmodelers with typological interests have
begun to turn to broad multilingual text databases
(e.g., Key and Comrie 2015; Dellert and Jäger
2017; McCarthy et al. 2018). While working from
raw linguistic data opens up the possibility for new
kinds of discoveries, it also poses significant chal-
lenges for the analyst, both with respect to the
appropriateness of the selected data for explicitly

specified goals and for identifying how these goals
relate to alternatives that appeal to similar sorts of
data.
Since Greenberg’s (1963) pioneering work, we

can roughly divide research in morphological ty-
pology into three strands. The first, and (arguably)
most productive so far, has involved the careful
construction of language samples designed by the
author(s) of the study for answering specific ques-
tions. For example, Baerman et al. (2002, 2005)
provide a cross-linguistic study of patterns of syn-
cretism based on a database of all syncretic forms
found in 30 genetically diverse languages and a
larger database of person syncretisms in 111 lan-
guages, and Cysouw (2003) used a database of 102
types of person-marking system found in 309 lan-
guages.
This methodology has the advantage that both

sample selection and coding is controlled by the
researcher and can be designed specifically for the
task at hand. However, while a few of the database
entries may be based on the typologists’ personal
linguistic knowledge, for the most part informa-
tion in the database is derived from dictionaries
and grammatical descriptions, which necessarily
reflect the analytic choices made by other linguists.
The second strand of typological research lever-

ages the effort put into creating more general-
purpose typological databases crafted to address
multiple questions, but adaptable to address unan-
ticipated and novel issues. For example, Bentz and
Winter (2013) use the information about the case
inventories of 261 languages in Iggesen (2013),
which in turn is derived from Iggesen’s (2005) de-
tailed cross-linguistic study of case marking. Us-
ing existing resources in this way allows hypothe-
ses about correlations among typolgical variables
to be tested relatively easily, without months or
years of work collecting language data. However,
it is necessarily limited in the kinds of phenomena



that can be examined, and is self-evidently depen-
dent on the analytic choices made by the typologist
who assembled the database and the linguists who
wrote the grammars that the entries are based on.

Finally, a recent and very promising direction
for morphological typology is the direct use of lex-
icons and corpora to extract cross-linguistics pat-
terns (e.g., Wälchli and Cysouw 2012; Levshina
2016). This ‘primary-data typology’ has been
made possible by the availability of large quanti-
ties of text in a diverse range of languages cou-
pled with powerful statistical and computational
methods. These methods allow us to investigate
typological questions that cannot be addressed via
grammatical descriptions. And, while all linguis-
tic data is dependent (explicitly or implicitly) on
an underlying analysis, working directly with texts
makes us less dependent on the analytic choices
made by other linguists. However, just as the other
methodologies discussed above, this strand of ty-
pological research poses some significant chal-
lenges that researchers need to recognize and de-
velop strategies to address.

In this paper, we will focus particularly on the
UniMorph database (Kirov et al., 2016, 2018) and
use it as a case study to highlight what types of
obstacles ‘primary-data typology’ needs to take
into account. UniMorph is a collection of morpho-
logical paradigms, mostly collected automatically
from the crowd-sourced multi-lingual dictionary
Wiktionary (rBFiBQM�`vXQ`;). It was designed
tomake the large quantity of data contained inWik-
tionary available for NLP researchers by standard-
izing the data and encoding it in a form that is easy
to access.
UniMorph has been broadly adapted as a test-

bed for evaluating morphological processors (e.g.,
Aharoni and Goldberg 2017; Shearing et al. 2018).
Its main advantage is that it is larger and simpler to
use than any existing competitors. While it is plau-
sibly preferable to use broader typological samples
as a measure of progress, one can make the argu-
ment that, all databases are flawed in some way,
and evaluating systems on a variety of languages,
however restricted, is certainly preferable to test-
ing on only English data. There is a danger of
‘overfitting’ to standard datasets as a research com-
munity, but this can be minimized by continuing to
expand and improve available test sets (Kyle Gor-
man and Markowska, 2019).
Another promising use for resources like Uni-

Morph is for evaluating claims about morphologi-
cal systems in general separate from the tools we
use to process them. For example, a number of
recent papers (e.g., Cotterell et al. 2019; Pimentel
et al. 2019; Wu et al. 2019) have used UniMorph
to offer answers to some basic questions about the
structure of morphological systems. But, in con-
trast to the the engineering applications of Uni-
Morph, the requirements for engaging in such a lin-
guistically informed view of morphological varia-
tion are quite different. They involve using a mor-
phological database as a scientific instrument to
both formulate and test hypotheses about the na-
ture and organization of language systems. The re-
quirements (and the stakes) are, accordingly, much
higher. In linguistics, as in any other field, analy-
sis of an inappropriate data sample can lead to mis-
placed confidence in unsupported conclusions and
unlicensed general inferences about e.g., morpho-
logical organization.
It seems likely that the UniMorph project can

form the basis of a database suitable for use in ty-
pological research, if suitably modified. Forms in
the UniMorph database are annotated with features
from the UniMorph Schema (Sylak-Glassman,
2016), and considerable effort was put into design-
ing these feature representations to allow cross-
linguistic comparison of categories. But, in con-
trast to this care, the selection of languages in the
sample was made opportunistically determined by
what was available in Wiktionary, rather than be-
ing selected to explore different strategies of mor-
phological organization and related questions con-
cerning the learnability of attested systems. These
are core linguistic concerns in relation to the typo-
logical sampling of empirical phenomena.
In the following sections, we will survey some

of the methodological challenges and pitfalls in-
volved in using corpora for typological generaliz-
ing, and we will end with a proposal for best prac-
tices and directions for further research.

2 Representativeness

Any database that purports to develop generaliza-
tions about language in general has to be represen-
tative of the range of possible human languages.
UniMorph1 includes data from 106 languages, in-
cluding noun paradigms for 74 and verb paradigms

1The version of UniMorph we use for this paper consists
of all repos with three letter names containing a datafile with
a three letter name in the ?iiTb,ff;Bi?m#X+QKfmMBKQ`T?
organization, downloaded on 27 July 2019.

wiktionary.org
https://github.com/unimorph


for 87. These languages represent 16 families (e.g.,
Indo-European, Uralic) and 30 genera (e.g., Celtic,
Finnic). This is a very small fraction of the world’s
languages. By comparison, theWorld Atlas of Lin-
guistic Structures (Dryer and Haspelmath, 2013)
includes data for 2,679 languages representing 256
families and 544 genera in total. Or, since WALS
does not include values for every feature for every
language, the median feature inWALS is specified
for 257 languages in 96 families and 177.5 genera.
A small sample, correctly constructed, can sup-

port cross-linquistic inferences. However, the lan-
guages in UniMorph are not representative of the
diversity of human language. Almost half (47 out
of 106) of the languages in UniMorph are from just
three genera (Romance, Germanic, and Slavic).
While the problem of individuating and enumerat-
ing languages is a difficult one with no clear solu-
tion, some of the ‘languages’ in UniMorph are ar-
guably not different languages andwould normally
be considered dialects of a common language (e.g.,
German, Low German, Middle High German, and
Middle Low German). Sometimes the same lan-
guage is given different names and treated as if it
were multiple languages for political or historical
reasons.
In addition, 98 of the languages in UniMorph

are spoken in Eurasia (i.e., the landmass compris-
ing Europe and Asia) with only three languages in
North America, two languages in each of South
America and Africa, and only one language in Aus-
tralia (see Figure 1). As Dryer (1989) demon-
strated, Eurasian languages are not generally repre-
sentative of languages throughout the world. This
reinforces the observation that any representative
sample needs to include languages with wide geo-
graphic and phylogenetic dispersion.
In addition to genetic and geographic homogene-

ity the data lack varietal representativeness with
respect to word structure. The languages in the
sample are overwhelmingly of a familiar morpho-
logical type, organized around stems and affixes.
The African languages in the sample are both
Bantu languages (Swahili and Zulu), which are
broadly similar to Eurasian languages with respect
to displaying a concatenatively affixal strategy
for morphotactic organization. The four Semitic
languages in the sample show one kind of tem-
platic morphology, but no languages in the sample
use tones, reduplication, vowel length patterns, or
many other types of morphological expression.

By its nature, Wiktionary only includes lan-
guages with a written form and those mostly
using their practical orthography, in contrast to
phonologized lexicons such as Flexique (Bonami
et al., 2013). This raises several potential prob-
lems. Of particular note, orthographic systems
vary widely in phonological transparency, and
many orthographies neglect important distinguish-
ing morphophonological details such as tone, seg-
ment length, and stress placement (e.g., see Parker
and Sims in press): this creates problems with re-
spect to identifying the correct inventory of forms
that need to be compared. For example, the Es-
tonian orthography underrepresents “gradation” in
all but the stop consonants and, thereby, misrep-
resents the actual variety of contrasting forms in
Estonian paradigms. Roughly speaking, Estonian
consonants and vowels display a three-way con-
trast (short, long, and overlong) which is not repre-
sented in the orthography. This leads to the follow-
ing differences in the orthographic representations
versus the phonological reality for the noun keel
‘language’ (Mürk, 1997, 107):

Orth. Phon.
Nඈආ ඌ඀ keel keːːl
Gൾඇ ඌ඀ keele keːle
Pൺඋඍ ඌ඀ keelt keːltːː
Iඅඅ ඌඁඈඋඍ ඌ඀ keelde keːːle ҩ keːːlde
Gൾඇ ඉඅ keelte keːlte

Finally, different scripts may pose different model-
ing challenges, making it difficult to directly com-
pare a model-based metric across languages writ-
ten using various alphabets, abjads, syllabaries,
etc.
A sample of 106 closely related or overlapping

written languages provides a lot less information
about the space of possible languages than a sam-
ple of 106 unrelated languages would. This is
not a flaw in UniMorph per se and it does not re-
duce its value as a test-bed for developing morpho-
logical processors, particularly for the constrained
class of variation it models. Given the limited
range of morphological variation represented in
UniMorph, any results concerning morphological
organization beyond that sample can only support
modest claims to greater generality, which them-
selves need to articulated into testable hypotheses.
This is, of course, the same standard appropriately
posed for linguistic theories that seek to motivate
wide ranges of morphological organization exhibit-
ing extraordinarily divergent strategies of surface



Figure 1: Geographic distribution of languages in UniMorph (languages locations from (Dryer and Haspelmath,
2013))

encoding: their credibility too is dependent on the
empirical scope and reliability of the data they an-
alyze.

3 A case study

As a concrete example, we will consider the re-
lationship between paradigm size and predictabil-
ity in morphological paradigms. Ackerman and
Malouf (2013) distinguish two dimensions of mor-
phological complexity: E-complexity (the num-
ber of affixes, allomorphs, inflection classes, etc.)
and I-complexity (the interpredictability of forms
in a paradigm). Ackerman and Malouf (2013)
conjecture that I-complexity is what is relevant
for language learnability, and that across lan-
guages E-complexity can vary widely so long as
I-complexity is low enough. More recent work
(Cotterell et al., 2019; Semenuks, 2019) suggests
that E-complexity and I-complexity may be inter-
related, and that the threshold for ‘low enough’
I-complexity may decrease as E-complexity in-
creases. In what follows, we will consider some of
the methodological choices that need to be made
in order to properly test this claim.
For the sake of discussion, we will measure E-

complexity as paradigm size, or the number of dis-
tinct feature values encoded in the database. For
example, if a nominal paradigm encodes 7 cases
and 2 numbers, the size of the paradigm is 14. If
the paradigm size varies between lexemes, we use
the most common value (i.e., the mode). To es-

timate I-complexity or predictability, we train a
model to map a citation form and feature set to a
surface form (SIGMORPHON 2016 task 1; Cot-
terell et al. 2016). Specifically, we use a neural
encoder-decoder architecture (Kann and Schütze,
2016; Silfverberg and Hulden, 2018) implemented
using OpenNMT-tf (Klein et al., 2017). Using the
model, we then calculate the average per-form neg-
ative log likelihood (ѿ঳) of held out data.2 The
closer this value is to zero, the better the model
is able to predict the correct forms. Note that we
are not claiming that this is the correct way to es-
timate either E- or I-complexity: we have chosen
it mostly because it is easy to calculate in a repro-
ducible way. Our goal is to focus on methodologi-
cal issues, not the viability of any specific linguis-
tic analysis.

3.1 Lexicon size

One issue that immediately arises is that the perfor-
mance of neural models can be highly dependent
on the quantity of training data. Since there are
large differences in lexicon sizes across languages
in UniMorph, difference in model prediction (re-
flected inѿ঳) may be due to training issues and not
to structural differences between languages. This,
of course, is important to know, since otherwise
our results might be comparing incomparable phe-
nomena.

2See ?iiTb,ff;Bi?m#X+QKf`K�HQm7fa*BGkyky for
implementation details.

https://github.com/rmalouf/SCiL2020


Figure 2: Negative log likelihood (ѿ঳) vs. lexicon size

Figure 3: Negative log likelihood (ѿ঳) vs. paradigm
size, for paradigms with ?100 lexemes

To test this, we performed five-fold cross-
validation to estimate ѿ঳ and its standard error
(the standard deviation divided by ҇6). The
results for the 87 verb paradigms and 73 noun
paradigms (we exclude Tajik nouns, which list
only one inflected form per lexeme) are given in
Figure 2. For languages with small lexicons (ӑ100
lexemes), we see both poor model performance
(i.e., high ѿ঳) and high variability across train/test
splits. For languages with more than 100 lexemes,
however, performance looks much more consis-
tent.
If we exclude paradigms with fewer than 100

lexemes, we are left with 55 noun paradigms and
61 verb paradigms over a total of 77 languages.
The results are shown in Figure 3. At first glance,
this appears to support the claim that languages
can have higher I-complexity if they have low E-
complexity. But, this is only true if high ѿ঳ is
due to structural properties of the language being
tested. In the following sections, we will look at a
number of factors that can increase ѿ঳ for particu-
lar languages without any increase in I-complexity.

3.2 Overabundance

One issue that arises in examining the UniMorph
data is that many (sub)paradigms permit more than
a single form in a cell for a given lexeme: par-
ticular combinations of feature values can be re-
alized by more than one exponent. For example,
the past tense of English dive can be either dived
or dove. There are several causes for this. Some
examples are simply data processing errors: two
distinct forms have been erroneously assigned the
same feature values in extracting the data from
Wiktionary. In other cases, the forms do share the
same features but are not interchangeable for other
reasons.
For example, the Spanish lexicon lists both sen-

tir and sentirse as infinitive forms of the verb sentir
‘to feel’, even though the second of the two forms is
(arguably) the infinitive of a different lexeme. Sim-
ilarly, the Zulu verb lexicon lists both ngiyadla and
ngidla as the 1st person singular present tense pos-
itive absolute form of the verb ukudla ‘to eat’. But,
these forms are not completely synonymous. The
exact nature of the difference between these forms
is unclear (see, e.g., Buell 2006), but they should
be distinguished somehow.
The majority of cases, however, are due to gen-

uine overabundance: multiple forms are listed be-
cause multiple forms are possible (Thornton, 2011,
2019). Wiktionary lists troféen or trofeen or troféet
or trofeet as alternate definite singular forms of
trofé ‘trophy’ in Norwegian Nynorsk, with no dif-
ference in meaning. This creates a problem for any
metric which assumes that every paradigm cell has
exactly one realization. This includes models eval-
uated using accuracy or, in our case, negative log
likelihood. Using our metric, paradigms exhibit-
ing overabundance will show higher negative log
likelihood than ones that do not, for reasons that
have no connection to how predictable or system-
atic the morphological system is.
Overall, although many languages left in the

sample don’t have any lexemes with multiple
forms filling in a paradigm cell, it is also not rare:
18 out of 55 languageswith noun paradigms and 19
out of 61 languages with verb paradigms exhibit
this pattern, out of which 16 (for nouns) and 14
(for verbs) have more than multiple forms in cell
for more than 10% of the lexemes. Regardless of
whether the reason for this pattern is genuine over-
abundance or data processing errors, it neverthe-
less introduces difficulties into further analyses.



Figure 4: Negative log likelihood vs. paradigm size, for
reduced sample

3.3 Defectiveness

Paradigms in theUniMorph database displaymany
missing forms. In many cases this is due simply to
incompleteness: the forms exist, but for whatever
reason are not included in Wiktionary or were not
extracted. However, missing forms can also be due
to paradigm defectiveness. This is the converse of
overabundance: these are paradigm cells for which
there is no valid realization.
Like overabundance, missing data raises prob-

lems for any metric which assumes that every
paradigm cell has exactly one realization. Forms
which are missing due to incompleteness may
have the effect of hurting model performance (and
raising ѿ঳) without an underlying difference in
predictability. If forms are missing due to true
paradigm defectiveness, then the fact that the form
is missing is something that the model needs to
learn. As argued by Sims (2015), the absence of
a form is as much a part of the morphological sys-
tem as its presence.

3.4 Complications

To avoid modeling problems raised by overabun-
dance and defectiveness, we can remove from
the sample any paradigms with any overabundant
forms andmore than ten defective paradigms. This
leaves 17 verb paradigms and 12 noun paradigms
from 28 languages. The results for this reduced
sample are shown in Figure 4 and Table 1.
The outlier in the upper left (nav.N) is Navajo

nouns. The high ѿ঳ value for Navajo nouns is
surprising, as Navajo nominal morphology is fairly
straightforward. Examination of the data shows a
number of inaccuracies or infelicities in the data
that lead to poor model performance.

Some of the errors were introduced in the pro-
cess of extracting forms from Wiktionary. The
paradigm for ééʼ ‘clothes’ is shifted up one row:
the 1p singular possessed form is listed as singular
rather the correct sheʼééʼ, the 2p singular is listed
as sheʼééʼ rather than neʼééʼ, and so on.
Most of the problems with the Navajo nominal

data, however, are consequences of the decisions
made by the designers of the Navajo wiktionary.
First, a brief summary of Navajo nominal morphol-
ogy: nouns in Navajo form a fairly small, closed
class. Inalienably possessed nouns (mostly kin re-
lations and body parts) appear in an indefinitely
possessed form (átááʼ ‘someone’s forehead’) or
with a possessive prefix (shítááʼ ‘my forehead’).
Alienably possessed nouns may appear as a bare
stem (sǫʼ ‘star’), as possessed form (azǫʼ ‘some-
one’s star’), or as a possessed form with a posses-
sive prefix (shizǫʼ ‘my star’). The possessive pre-
fixes show relatively little allomorphy, but the pos-
sessed form and the bare stem sometimes differ in
arbitrary ways. Most Navajo nouns are unmarked
for number, but a few personal nouns take a plural
suffix -ké or -yóó.
The Navajo noun paradigms in Wiktionary list

only the possessed forms. For alienably-possessed
nouns, the bare stem (e.g., sǫʼ) is the citation
form for the lexeme but is not included in the
paradigm. For inalienably-possessed nouns, the in-
definite possessed form is the citation form. This
inconsistency makes the two noun classes look
more different than they actually are. More prob-
lematic is the fact many nouns have separate dic-
tionary entries for possessed forms: ké ‘foot’ is
also listed under bikee’, hakee’, and akee’, the
3rd person, 4th person, and indefinite possessed
forms. From the model’s perspective, this looks
like four separate lexemes (with four different cita-
tion forms) that happen to share the same inflected
forms.
Three other high ѿ঳ paradigms in Table 1 are

Pashto nouns, Urdu nouns, and Yiddish verbs.
Like all the language samples, these paradigms are
written using the practical orthography of the lan-
guage. In the case of Urdu and Pashto, the writ-
ing system (based on Arabic by way of Persian)
is an abjad: consonants are included, but many
vowels are left unspecified when they should be
clear to the reader from context. The Yiddish al-
phabet is adapted from Hebrew and is a full alpha-
bet, but the mapping between Yiddish letters and



Language pos features ѿ঳ s.e. macroarea family genus

Albanian V 120 0.094 0.002 Eurasia Indo-European Albanian
Ancient Greek N 15 0.475 0.018 Eurasia Indo-European Greek
Bulgarian V 20 0.060 0.012 Eurasia Indo-European Slavic
Catalan V 48 0.073 0.002 Eurasia Indo-European Romance
Classical Syriac N 13 0.164 0.112 Eurasia Afro-Asiatic Semitic
Crimean Tatar N 6 0.155 0.021 Eurasia Altaic Turkic
Danish V 6 0.021 0.018 Eurasia Indo-European Germanic
Dutch V 15 0.060 0.006 Eurasia Indo-European Germanic
Estonian N 30 0.154 0.014 Eurasia Uralic Finnic
Friulian V 46 0.147 0.023 Eurasia Indo-European Romance
Georgian N 19 0.052 0.006 Eurasia Kartvelian Kartvelian
Hebrew N 26 0.118 0.027 Eurasia Afro-Asiatic Semitic
Hindi V 211 0.210 0.116 Eurasia Indo-European Indic
Irish V 63 0.111 0.010 Eurasia Indo-European Celtic
Lithuanian V 49 0.084 0.010 Eurasia Indo-European Baltic
Lower Sorbian V 21 0.143 0.058 Eurasia Indo-European Slavic
Navajo N 8 0.925 0.317 North America Na-Dene Athapaskan
Occitan V 46 0.134 0.013 Eurasia Indo-European Romance
Pashto N 6 0.477 0.125 Eurasia Indo-European Iranian
Persian V 136 0.025 0.006 Eurasia Indo-European Iranian
Quechua N 256 0.039 0.023 South America Quechua Quechua
Quechua V 38 0.028 0.016 South America Quechua Quechua
Romanian V 35 0.162 0.026 Eurasia Indo-European Romance
Slovenian V 20 0.301 0.042 Eurasia Indo-European Slavic
Tatar N 6 0.252 0.024 Eurasia Altaic Turkic
Turkish V 120 0.036 0.006 Eurasia Altaic Turkic
Urdu N 6 0.514 0.107 Eurasia Indo-European Indic
Yiddish V 7 0.410 0.177 Eurasia Indo-European Germanic

Table 1: Results for reduced sample



Unicode characters is not one-to-one. It is possi-
ble that these orthographic differences might make
estimates of ѿ঳ difficult to compare across lan-
guages with different writing systems.
Ancient Greek nouns also have a high ѿ঳, but

likely not for orthographic reasons. Rather, these
paradigms encode overabundance using punctua-
tion rather than multiply filled paradigm cells. For
example, the genitive singular of κοῦρος ‘youth’
is given as “κούρου / κουροῖο / κούροιο / κουρόο /
κούροο”. This is presumably meant to reflect five
variant forms, but the model would count that as
one long (and hard to guess) form.
Another outlier, this time in the number of fea-

tures, is Albanian verbs (sqi.V). According to Uni-
Morph (and Wiktionary), each Albanian verb has
120 distinct forms. However, this number includes
periphrastic tenses formed by combining an in-
flected verbwith a particle and/or an auxiliary verb.
This is a bit like countingwill have been being seen
as a distinct form of the verb ‘see’ in English.
The design choices embodied in Wiktionary are

not necessarily incorrect. It is helpful for Navajo
learners to have separate dictionary entries for pre-
fixed forms. And, a strong argument can be made
that periphrastic forms should be included as part
of the paradigm in both Albanian and in English
(e.g., Ackerman and Webelhuth 1998; Ackerman
and Stump 2004; Bonami 2015). But, if one’s goal
is to use UniMorph data for cross-linguistic com-
parison, then these kinds of choices need to be
made in a standardized way and clearly articulated.
The issue is not whether data choices are right or
wrong, but whether those choices are transparent
and appropriate for a particular use.

3.5 Galton’s problem
Even excluding Navajo nouns and the other out-
liers, the pattern of languages shown in Fig-
ure 4 suggests that languages in the sample with
large paradigms show low ѿ঳. Without Navajo
nouns, there are 17 verb paradigms and 11 noun
paradigms from 27 languages in the sample. Is this
enough to draw any conclusions about language in
general?
So far, in our discussion we have used quanti-

tative but not statistical methods. The difficulty
with applying standard hypothesis testing methods
to the problem is that languages that are genetically
and/or areally related cannot be treated as indepen-
dent observations. Of the 23 languages in the re-
maining sample, 16 are Indo-European and 21 are

Eurasian. If the data is not analyzed using methods
taking these phylogenetic and geographic proximi-
ties between the data points into account, the anal-
yses could produce spurious correlations (Roberts
and Winters, 2013). This is what Naroll (1965)
calls Galton’s Problem: the problem of making
inferences based on auto-correlated observations.
Early work in quantitative typology addressed

this problem through careful sample construction
(Bybee, 1985; Dryer, 1988; Perkins, 1989). More
recent efforts have applied hierarchical modeling
techniques to control for genetic and areal affects.
A survey of these techniques is beyond the scope
of this paper, but see Bakker (2011) and (Bickel,
2015) for some proposals.

3.6 Construct validity

Based on the results so far, there is suggestive ev-
idence for a relationship between the number of
cells in a paradigm and ѿ঳ as predicted by an
encoder-decoder model. The final step in any ty-
pological study has to be to show that these met-
rics applied in this way to this dataset connect to
a relevant linguistic notion. In this case, a crucial
question is whether ѿ঳, a measure of how well a
model predicts forms, is a reasonable measure of
the I-complexity of a paradigm, or how predictable
forms are. This is the question of construct valid-
ity: does the test measure what it claims to mea-
sure?
As we said above, our goal in this paper is to

highlight some of the methodological issues that
come in using text databases (such as UniMorph)
for typology. Our use of ѿ঳ is only for the sake of
demonstration and we make no particular claims
about its linguistic relevance. But, if this were a
paper making a typological claim, then it would
be essential to justify our confidence in the partic-
ular metric being used. Readers need to keep this
requirement in mind when assessing and interpret-
ing the linguistic value of results based on compu-
tational analyses of natural language data.

4 Conclusions

Large text databases open up exciting prospects for
typological research, but they also create new chal-
lenges for cross-disciplinary collaboration: lin-
guistic morphologists and typologists are prac-
ticed curators of the types of data that are most
profitably investigated by new computational tech-
niques. The previous section presented a hypothet-



ical typological investigation using UniMorph in
order to highlight some of the difficulties in car-
rying out such an investigation. Any work ap-
plying computational models to primary linguistic
data (e.g., information-theoretic investigations of
UniMorph along the lines of Cotterell et al. 2019;
Pimentel et al. 2019; Wu et al. 2019) need to be
carried out and evaluated with these challenges in
mind. As an emergent interdisciplinary commu-
nity, we should develop a set of best practices for
using the resources we have and in developing a
collaboratively determined direction for improv-
ing those resources.
As a start, we propose some basic requirements:

• Use UniMorph (Kirov et al., 2016, 2018) as
a resource for building databases, not as a
database itself: text databases should be seen
as a guide for formulating directions of in-
quiry and identifying the types and nature of
data required for systematic inquiry. The data
established for this purpose must be reliable
and representative for the task at hand.

• Document all choices: In order to achieve
maximum transparency and replicability,
all choices concerning data selection, pre-
processing, representation, parsing, and
modeling should be clearly specified, along
with their rationales.

• Intended claims and hypotheses associated
with analysis and results should be clearly ar-
ticulated in order to identify their importance
in the context of similar research within rel-
evant linguistic approaches to morphological
analysis. This is crucial in order to evaluate
the research results from both a linguistic and
computational perspective: if such results are
novel, in what ways do they contribute to our
understanding of natural language morphol-
ogy and to the computational analysis of mor-
phological phenomena.

• Given the cross-disciplinary nature of the rel-
evant contributions, the vetting process for
the evaluation of submissions should be dis-
tributed among linguists and computational
modelers, in order to ensure research that re-
flects the most accurate and critical assess-
ments from contributing fields.
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Abstract

Since most people in the world today are
multilingual (Grosjean and Li, 2013), code-
switching is ubiquitous in spoken and writ-
ten interactions. Paving the way for future
adaptive, multilingual conversational agents,
we incorporate linguistically-motivated strate-
gies of code-switching into a rule-based goal-
oriented dialogue system. We collect and
release COMMONAMIGOS, a corpus of 587
human–computer text conversations between
our dialogue system and human users in mixed
Spanish and English. From this new cor-
pus, we analyze the amount of elicited code-
switching, preferred patterns of user code-
switching, and the impact of user demograph-
ics on code-switching. Based on these ex-
ploratory findings, we give recommendations
for future effective code-switching dialogue
systems, highlighting user’s language profi-
ciency and gender as critical considerations.1

1 Introduction

Humans seamlessly adjust their communication to
their interlocutors (Gallois and Giles, 2015; Bell,
1984). We adapt our language, communication
style, tone and gestures; when we share more
than one language with our interlocutor, we in-
evitably resort to multilingual production or code-

switching—shifting from one language to another
within an utterance (Sankoff and Poplack, 1981).

We envision naturalistic conversational agents
that communicate fluently and multilingually as
humans do. However, existing dialogue systems
are agnostic to the user, generating monolingual
sentences which overfit to the language, domain,

⇤This work was done while the first author was a student
at Carnegie Mellon University.

1This study was approved by the IRB. All code and
collected data are available at https://github.com/
emilyahn/commonamigos.

Figure 1: We build a bilingual goal-oriented agent that
can converse in Spanish–English code-switching with
human users. In controlled settings, we collect human–
computer conversations that enable us to develop effec-
tive CS strategies for future dialogue systems.

and style of their training data. To enable user-
centric multilingual conversational agents, dia-
logue systems need to be extended to accommo-
date and converse with bilinguals, potentially us-
ing multiple languages in an utterance, as shown
in Figure 1.

Before the rise of social media, code-switching
(henceforth, CS) was primarily a spoken phe-
nomenon, and it has been studied in spoken con-
versations (Lyu et al., 2010; Li and Fung, 2014;
Deuchar et al., 2014). However, the spoken lan-
guage domain is not directly comparable to the
written one, and its spontaneous settings make
it difficult to conduct controlled experiments to
study accommodation in CS of one speaker to
another. In controlled settings, CS has been ex-
tensively studied in psycholinguistics (Kootstra,
2012), but these are typically carefully designed
experiments with few participants, which are hard
to apply in large-scale data-driven scenarios like
ours. In the written domain, which is the focus

https://github.com/emilyahn/commonamigos
https://github.com/emilyahn/commonamigos


of our work, CS has been studied in broadcast
texts such as social media (e.g. Reddit and Twit-
ter) posts (Rabinovich et al., 2019; Aguilar et al.,
2018) at the level of a single sentence and not con-
textualized in a dialogue.

Strikingly, little is known about human choices
in written code-switching in conversations beyond
the context of an individual utterance. In this pa-
per, we introduce a novel framework which will
allow us to fill this gap and study CS patterns con-
textualized in written conversations. Our focus
languages are Spanish and English; these are of-
ten code-switched by people in Hispanic commu-
nities, who make up roughly 18% of the total US
population (US Census Bureau, 2017).

We first introduce our bilingual goal-oriented
dialogue system—an extension of a monolingual
approach of He et al. (2017)—which controllably
incorporates CS (§2). Then, we define our focus
CS strategies, grounded theoretically and empir-
ically (§3). In §4, we describe the experimental
methodology and deployment of the dialogue sys-
tem on crowdsourcing platforms. After collect-
ing multilingual dialogues, we analyze patterns
of CS along several axes such as the amount of
CS, user accommodation (or entrainment) to di-
alogue systems that use different patterns of CS,
and preferred CS patterns across user demograph-
ics (§5). Following the analysis, we provide ad-
ditional background (§6) before concluding with
areas for future work (§7).

Our three main contributions are (1) formu-
lating a new task and framework of incorporat-
ing code-switching into a bilingual collaborative
dialogue system. This framework has enabled
us to apply and validate prior linguistic theories
about CS. We show that it is useful to analyze
CS along different strategies, as was suggested by
Bullock et al. (2018), and we implement novel
metrics to compute and generate these strategies.
Our next contribution (2) is a publicly available
corpus, COMMONAMIGOS, of 587 code-switched
Spanish–English human–computer text dialogues
and surveys, useful for further development of
multilingual dialogue systems and for explorations
of sociolinguistic factors of accommodation in
CS (cf. Danescu-Niculescu-Mizil et al., 2011). Fi-
nally, (3) our exploratory analyses of CS patterns
in this corpus serve as a crucial first step to en-
able naturalistic bilingual dialogue systems in the
future.

2 Bilingual Collaborative
Human–Computer Dialogue System

Our ultimate goal is to study human preferences
in written code-switching, and to integrate this
knowledge into bilingual, adaptive dialogue sys-
tems. To gain insights into human CS patterns and
to enable such systems, however, we first need to
collect examples of multilingual human–computer
dialogues, a resource that does not yet exist.

To collect human–computer dialogues in a con-
trolled manner, we (1) modify an existing goal-
oriented dialogue framework to code-switch; (2)
create multiple instances of code-switching dia-
logue systems, where each instance follows one
pre-defined strategy of CS as described in §3;
and (3) analyze collected dialogues and study
how people communicate differently with dia-
logue agents following a particular strategy.

We begin by modifying an existing goal-
oriented collaborative dialogue framework (He
et al., 2017). The framework implements a sce-
nario of discussing mutual friends given a knowl-
edge base, private to each interlocutor. Each of the
interlocutors has a list of friends with attributes
such as hobby and major. Only one friend is the
same across both lists, and the goal is to find that
mutual friend via collaborative discussion over
text chat.

We extend this framework to a bilingual
Spanish–English goal-oriented collaborative dia-
logue. In our bilingual interface, users see the pri-
vate table of friends and attributes in both Spanish
and English.

To code-switch in language generation, we add
modifications (visualized in green in Figure 2)
to the original monolingual generation (in blue).
The rule-based agent generates English strings,
which are passed to an Automatic Machine Trans-
lation (MT) system2 in order to receive the Span-
ish translations. With parallel English and Spanish
utterances, we define rules and templates to out-
put a bilingual utterance following one of the CS
strategies described in §3 for the full duration of
the chat (see examples in Table 1).

To process text from the users, utterances are
first passed to the MT whose target language is En-
glish. The monolingual dialogue system receives
English strings and parses utterances into basic en-
tities, and this informs the next turn from the dia-

2We use Google Translate API, a state-of-the-art MT that
produced reliable translations.



Strategy Example Sentence Miami Twitter

Monolingual EN Do you have any friend who studies linguistics? – –
SP ¿Tienes algún amigo que estudie lingüística? – –

Insertional SP
ins��!EN Do you have any amigo who studies lingüística? 9.0% 5.5%

EN
ins��!SP ¿Tienes algún friend que estudie linguistics? 25.7% 30.1%

Alternational EN
alt�!SP Do you have any friend que estudie lingüística? 12.2% 12.0%

SP
alt�!EN Tienes algún amigo that studies linguistics? 15.7% 10.5%

Informal + EN
ins��!SP hey tienes algún friend que estudie linguistics? – –

+ SP
alt�!EN pues tienes algún amigo that studies linguistics? – –

Neither – pero she is the case manager for those patients 37.5% 41.9%

Table 1: We show transformations of the same example sentence (references first given monolingually) in each
CS strategy, as would be generated by our dialogue system. The example for Neither is from the Miami corpus and
is not an utterance we generate. Note that the Informal setting can be added to either Insertional or Alternational
strategies, so 2 of the possible 4 informal settings are given in this set. We also verify that our two main strategies
have a presence in existing corpora (Miami and Twitter).

Figure 2: We add bilingual adaptations (in green) to the
existing monolingual rule-based generation (in blue).
The main dialogue system generates code-switched
text via MT and a set of linguistically-informed code-
switching rules. It receives the user’s (code-switched)
text after it was translated into English.

logue agent.

3 Code-Switching Strategies

We explore a variety of code-switching strategies
and integrate these in our bilingual dialogue sys-
tems; each system follows one pre-defined strat-
egy throughout the whole conversation. In this
section, we describe the strategies we use, and
how we operationalize them to detect and gen-
erate varied CS utterances in our dialogue sys-
tem. We also verify the prevalence of these strate-
gies in Spanish–English corpora in related do-
mains: the Miami corpus of transcribed sponta-

neous speech (Deuchar et al., 2014), and a Twitter
corpus (Molina et al., 2016). Examples of an utter-
ance in each strategy along with the distribution of
these strategies in both Twitter and Miami corpora
are given in Table 1.

We follow Muysken’s (2000) approach. The
first strategy from Muysken (2000) is Insertional
code-switching, which follows the Myers-Scotton
framework of a Matrix Language (MatL) and an
Embedded Language (EmbL). The structure and
grammar of the MatL is maintained while insert-
ing the EmbL (often single words or phrases) in
certain spots (Myers-Scotton, 1993). According to
Joshi (1982), closed class items such as determin-
ers, quantifiers, etc., would remain in the MatL.
This has also been shown to be more commonly
used when the speakers are not equally proficient
in both languages (Deuchar et al., 2007).

We experiment with two conditions: (1) re-
taining the grammar of English while insert-
ing Spanish nouns (SP

ins��!EN), and (2) using
Spanish grammar while inserting English nouns
(EN

ins��!SP).
Next, we experiment with Alternational code-

switching, when the two languages remain more
separate and alternate after clauses. Switch-points
adhere to constituent boundaries (Sankoff and
Poplack, 1981) and can separate topics or sen-
tences (Ardila, 2005). This has been shown to be
more prevalent among fluent or highly proficient
bilinguals as a form of more stable bilingualism
(Deuchar et al., 2007).

We again experiment with two conditions,



either beginning in English for a phrase and
then switching to Spanish (EN

alt�!SP), or begin-
ning in Spanish and then switching to English
(SP

alt�!EN).
Since people may code-switch more often in in-

formal, casual settings or when there is higher rap-
port, we experiment with the above four CS strate-
gies with our agent speaking either informally or
formally. We modulate formality by adding dis-
course markers. Discourse markers are known
to be actively used by speakers in improving the
flow of dialogue, and they remain relatively inde-
pendent of syntax or semantics (Schiffrin, 1988).
Within CS speech, these markers can be adopted
as an easy form of lexical borrowing by bilin-
guals of varying proficiency. In particular, Spanish
markers within English speech can be used to sig-
nify a less formal tone or to reveal Latino social
identity (Torres, 2011). Therefore we define our
agent’s informal setting (+Informal) to have dis-
course markers added to either Insertional CS or
Alternational CS utterances.

3.1 Detecting Insertional and Alternational
Code-Switching

The two strategies can be manually detected by
linguists, but there has not been a direct attempt
to automatically label CS utterances as Insertional
or Alternational.3 We therefore introduce a novel
method to computationally classify CS utterances
into EN

alt�!SP, SP
alt�!EN, SP

ins��!EN, EN
ins��!SP,

or Neither.4

An utterance is Alternational when it switches
from LangA to LangB under 2 conditions: (1) there
is a contiguous span of 2+ words in LangA fol-
lowed by a contiguous span of 2+ words in LangB,
and (2) there is at least 1 finite (i.e. conjugated)
verb form or auxiliary word in each language.5

If the utterance is not first classified as Alterna-
tional, it is next tested for Insertional. We define
Insertional CS to occur under 3 conditions: (1) the
MatL has at least 1 function word or finite verb,
(2) the EmbL has at least one content word (either
a noun or an adjective), and (3) the MatL has more

3Bullock et al. (2018) gathered metrics to identify those
two strategies across an entire corpus but not across a single
utterance.

4This method has been refined after several iterations of
discussions with linguists and examining the implementa-
tion’s coverage over annotations.

5Detecting verbs and auxiliaries was made possible by
generating English and Spanish POS tags from Spacy, avail-
able at https://spacy.io/.

tokens than the EmbL. This metric ensures main-
taining the grammar of the MatL with insertions
of the EmbL.

We test our implementation of this metric on a
gold set of 150 CS utterances (50 each from Mi-
ami, Twitter, and COMMONAMIGOS datasets) an-
notated for strategy jointly by two linguists profi-
cient in both Spanish and English. A third linguist
achieves a Cohen’s  of 0.75 (substantial agree-
ment) or an F1 of 0.8 against the adjudicated gold
set. Our implementation receives an F1 of 0.76 on
the same gold set.

To verify the coverage of these types of CS, we
analyze their prevalence in the Miami and Twitter
corpora, with distributions given in Table 1. We
observe that the most commonly used strategy is
Insertional CS, specifically EN

ins��!SP, which mir-
rors findings from a Spanish–English corpus of
blogs from Montes-Alcalá (2007).

4 Data Collection

In order to examine effects of different CS strate-
gies with human bilingual speakers, we modify an
existing dialogue system (§2) and deploy it to chat
with online crowdworkers.

4.1 Crowdsourcing

We release this task on two crowdsourcing plat-
forms: Amazon Mechanical Turk and Figure
Eight.6 In order to target Spanish–English bilin-
guals, we limit workers to be in the US,7 and then
include several ungraded Spanish proficiency test
questions.8

Additionally, the introduction and instructions
to the task are purely written in Spanish to prime
the user in both languages, given that English is
usually the default language for tasks released in
the US. For each chat, there are always 10 friends
with 3 attributes each (randomly selected with
varying complexity). Users have up to 8 minutes
to complete the task. Besides the 8 CS conditions,
we have 2 more monolingual conditions (Spanish
and English), as well as a Random CS condition
where a switch point could occur with 50% chance
at every smallest word unit.

6https://www.mturk.com; https://www.figure-eight.com.
7Other countries were not included in order to limit the

variance of cultural factors for Spanish–English CS.
892% of all users scored 67%+ accuracy on 3 questions.



# Dialogues 587
% Extrinsic task success 64%
Avg # user utterances 7.9
Avg # tokens / utterance 6.2
EN vocab size 571
SP vocab size 846
% EN utterances 16%
% SP utterances 44%
% CS utterances 39%
% dialogues w/ CS 70%

Table 2: COMMONAMIGOS, our bilingual corpus of
crowdsourced chats, has a strong presence of CS.

4.2 Collected Dialogues
We report general statistics of our collected dia-
logues in Table 2.

A total of 737 dialogues are collected, but 587
remain for analysis after removing chats with
missing text or surveys from users. From the pool
of 587 valid chats, there are 296 unique workers
because some did more than one task. The self-
reported survey reveals that the mean age of the
workers is 31, 60% of them are male, and the most
frequently reported countries of origin are USA,
Venezuela, and Mexico.

Examples of conversations gathered with
crowdsourced bilinguals are given in Table 3. An
interesting observation is that the user chooses to
emulate the strategy instead of echoing that lexi-
cal item in the SP

alt�!EN Alternational condition.
Even when the agent uses the Spanish word con-

tabilidad, the user says the equivalent meaning in
English, which is accounting. Similarly, when
the SP

alt�!EN agent discusses dancing, the user
replies with the Spanish equivalent, bailar, thus
prioritizing strategy over lexicon.

5 Analysis

We examine the subtleties of how users code-
switched under different conditions, and share our
main findings below. The questions we now ex-
plore are how much do the users code-switch, how
do they do it, and how do agent strategies factor
into response style?

5.1 Our bilingual dialogue system elicits
code-switching

Our first encouraging finding is that a high major-
ity of dialogues contain CS from the user (Table
2), although the users were not explicitly required

to code-switch. This implies that CS is a preva-
lent communication style and that conversational
agents could benefit from supporting multilingual-
ity.

We first analyze the amount or presence of CS
from the users. Guzmán et al. (2017) defined sev-
eral metrics based on quantifying token counts and
span lengths of continuous monolingual tokens.
The Multilingual-index (M-idx) reflects how bal-
anced the tokens are in each language, where 0 is
fully monolingual and 1 is an equal number of to-
kens per language. The Integration-index (I-idx)
is the probability of switching languages between
any two tokens, where 0 is fully monolingual and
1 is a perfectly interleaved corpus, with a switch at
every word.9 Higher values of both indices imply
a higher quantity of CS.

Table 4 shows that SP
ins��!EN +Informal and

Alternational conditions result in higher M-indices
than average. Most notably, the EN

ins��!SP con-
dition results in the lowest M-idx and I-idx from
users. We reason that this is due to receiving
more monolingual Spanish text from users than in
any other condition, a potential result of having
the crowdworkers primed to be in Spanish mode.
Conversely, the SP

ins��!EN conditions maintain
markedly high CS indices from users. SP

ins��!EN,
the agent with the highest number of English to-
kens, could have encouraged users to balance their
Spanish tokens with more English. We advise fu-
ture CS systems to be aware of their target au-
dience’s assumptions of the agent’s default lan-
guage.

The added formality setting has a number of ef-
fects on the two main strategies. Across all 4 In-
sertional and Alternational conditions, +Informal

reduces the average number of tokens in a user’s
reply (seen in Table 4), which could be a result
of users being more casual with the dialogue sys-
tem. M-idx increases for both Insertional strate-
gies while sharply decreasing for both Alterna-
tional strategies. I-idx slightly increases for all
strategies except SP

ins��!EN. We can recommend
that if the goal of a future CS dialogue system is
to be efficient in number of turns, the SP

ins��!EN

strategy is useful, but if the goal is to keep the user
engaged and chat for longer, SP

ins��!EN +Informal

9To calculate I-idx in a given dialogue, all utterances by
one party are concatenated in order, so switch-points can oc-
cur across utterance boundaries.



EN alt�!SP EN ins��!SP
A: I have 2 friends que estudiaron la contabilidad

[that studied accounting]
A: ¿Tiene [Do you have] friends que trabajen en

el [who work at the] theater o un [or a] friend
H: yo tambien [me too]. one that studies account-

ing trabaja en el concesionario de coches y el

que trabaje en la [that works at the] jewelry
store ?

otro en la oficina [works at the car dealership
and the other in the office]

H: si. la del [yes. the one from] jewelry store le

gusta dormir [likes to sleep]
A: Do you have any friend who likes dancing o

amigos a los que les guste hornear [or friends
who like to bake]?

A: tengo [I have] 1 friend que le gusta [who likes]
acting, 1 friend que trabaja en el [who works
at the] zoo

H: nadie le gusta bailar [no one likes to dance].
one likes baking–el/ella estudia fisica [he/she
studies physics]

H: la del teatro le gusta [the one from the theater
likes] photography

SP alt�!EN +Informal SP ins��!EN +Informal
A: tengo un amigo [I have a friend] who studied

english.. y tú [and you]?
A: do you have any amigos [friends] who studied

derecho [law] ?
H: no tengo... solo tengo un amigo que estudio [I H: no i don’t

don’t have... I only have a friend that studied]
linguistics

H: tienes un amigo a quien le gusta cocinar [do
you have a friend who likes to cook]?

A: hey tengo dos amigos [I have two friends] who
like sewing

A: nah i have no amigo [friend] who likes cocinar

[to cook]..
H: yo tengo un amigo que le gusta [I have a friend

that likes] sewing!

Table 3: These examples from our corpus of human (H) interactions with rule-based CS agents (A) show a
diversity of CS strategies, given the static agent strategy in bold.

or SP
alt�!EN +Informal could yield more turns.

We encourage CS dialogue systems to consider
implementing casual styles of speech in CS, as our
simple additions of discourse markers produced
patterned changes in token length and amount of
CS.

5.2 Agent strategy can affect user strategy
We see the presence of entrainment between agent
strategy (condition) and user strategy. In the ma-
trix in Figure 3, perfect entrainment (where all the
users’ CS utterances use the same fixed agent strat-
egy) would be shown with a normalized value of
1.0 along the diagonal. We compare values across
CS conditions (without examining +Informal for
now) to the random baseline, which ideally re-
veals the natural unconditioned distribution of user
strategy.10 Because the values on the diagonal are
significantly greater than in the random condition
(p < .05), we conclude that the agent’s strategy
had influence on the user’s code-switching.

10Reassuringly, the percentages in this random condition
are similar to the distribution of the Miami and Twitter cor-
pora from Table 1.

Figure 3: We find entrainment in our data. Given
each agent strategy condition (per row), we display the
normalized distribution of which strategies the users
used (only accounting for utterances that are code-
switched). Darker colors along the major diagonal indi-
cate complete entrainment, and the random agent strat-
egy at the bottom is shown for comparison.

For conditions where English is the main (or



Agent # Dial % Success Avg Utts Avg Tok % CS Dial % CS Utts M-idx I-idx
Average 53.4 64 7.9 6.2 70 39 0.74 0.23
Std Dev (7.8) (11) (0.9) (0.4) (8) (8) (0.20) (0.04)

EN
ins��!SP 70 47 8.4 6.3 74 42 0.51 0.23

+Informal 44 77 7.4 5.7 80 44 0.57 0.26
SP

ins��!EN 58 62 7.2 6.9 74 52 0.93 0.26
+ Informal 44 64 8.6 6.0 75 37 0.99 0.26
SP

alt�!EN 54 74 7.5 6.4 76 39 0.88 0.24
+Informal 56 45 9.7 6.1 75 40 0.71 0.26
EN

alt�!SP 55 76 7.9 6.3 71 40 0.91 0.23
+Informal 47 64 7.7 6.1 72 37 0.70 0.23
Mono SP 46 72 7.2 6.1 57 26 0.37 0.16
Mono EN 54 69 6.4 6.5 54 25 0.74 0.16
Random 59 64 8.2 5.3 66 39 0.86 0.22

Table 4: These general statistics show dialogue quantity, length, and extrinsic success of users, as well as user
quantity of CS under different agent strategies. Values further than 1 standard deviation away from the mean are
in bold.

starting) MatL, EN
ins��!SP occurs less often, while

other English-based CS strategies are used more
often. There is also more sensitivity to the spe-
cific English strategy because more utterances are
classified as SP

ins��!EN in SP
ins��!EN conditions

and EN
alt�!SP in EN

alt�!SP conditions. Overall,
EN

ins��!SP is the most popular strategy used—it is
most common in the EN

ins��!SP condition, but it
still keeps a strong presence in other conditions.
We recommend EN

ins��!SP to be a good default
strategy in future CS agents, as that also follows
the prevalent styles in the Miami and Twitter cor-
pora (§3.1).

5.3 Users succeed in their dialogues
We define two types of success in the dialogues:
(1) Extrinsic success (the binary task of finding
the mutual friend in 8 minutes), and (2) User ex-
perience (self-reported measures on an agreement
scale of 1-5, e.g. “I understood the task perfectly”,
or “My task partner texts like someone I know”).

From Table 4, all Alternational and monolin-
gual conditions achieve consistently high rates
of extrinsic task success. This could reveal that
longer spans of monolingual tokens aid in users
comprehending the task, so we recommend CS
systems to adhere to Alternational strategies if
they desire specific goals to be achieved. As for
user experience, Figure 4 displays users gener-
ally agreeing with statements such as “I’d chat

like this with my bilingual friends”. Full explo-

Figure 4: As an aggregate, users have generally posi-
tive experiences with our CS agent. They would rate
their agreement with statements given in the legend,
where 1 = Strongly Disagree, and 5 = Strongly Agree.

ration of variables affecting these ratings can be
done with our COMMONAMIGOS corpus. Regard-
ing entrainment, we do not find significant corre-
lations with any type of success metric.

5.4 User demographics affect CS
Beyond analysis of the aggregate data, we find
strong effects of the following user attributes.

Language Proficiency Our findings support the
hypothesis from Deuchar et al. (2007) in that more
proficient bilinguals (balanced in both languages)
use Alternational strategies more often than asym-



metrical bilinguals. We examine this by binning
the groups into three categories from the self-
reported language ability metric: highly proficient
in both English and Spanish, dominant English
only, and dominant Spanish only.11 Compared
to the aggregate report of user CS, dominant En-
glish speakers use SP

ins��!EN more heavily, while
dominant Spanish speakers use EN

ins��!SP more
heavily. Alternational CS occurs in those two
groups but is more present in the balanced bilin-
gual group.

For the dominant English speakers, a higher
M-idx correlates with better agreement on state-
ments such as “My task partner was very co-

operative”. When these users entrain more to
the agent’s CS strategy, the number of turns in
the dialogue also increases. Also, even though
their extrinsic task success is low in the mono-
lingual Spanish condition, almost all CS condi-
tions boosted task success. Together, these find-
ings show that the dialogue experience overall im-
proves for less-balanced bilinguals when the agent
uses CS instead of their weaker monolingual lan-
guage. This supports a line of pedagogy that advo-
cates incorporation of CS in second language in-
struction (cf. Moore, 2002).

Gender Reported gender12 yields strong corre-
lations in user CS strategy. When females chat
with higher M-idx and I-idx values, they agree
more with the statement “I am very likely to

chat like I did in this task when messaging with

my bilingual friends”. Under informal condi-
tions, females also have longer dialogues, a higher
percentage of CS utterances, and a higher per-
centage of dialogues containing any CS—all of
which prove to be an opposite effect for males.
These findings reflect that females may code-
switch more naturally and will respond better to
more informal CS dialogue systems.

6 Related Work

We provide a brief overview of previous works in
the domains of CS and dialogue.

Most closely related to ours is the work of Ra-
manarayanan and Suendermann-Oeft (2017) who

11This is the strongest among various weak signals indi-
cating language proficiency, namely the Spanish proficiency
quiz, reported age of acquisition for each language, country
of origin, and frequency of language use.

12“Other” gender constitutes 1% of users and is set aside
for this analysis.

introduced a chatbot that spoke from a fixed set
of Spanish–English and Hindi–English machine
prompts to encourage human bilinguals to code-
switch back to the agent. Our work takes this in-
teraction further and does not assume a restricted
set of sentences. Rather, we control one side of the
spontaneous dialogue based on different CS strate-
gies in order to learn human preferences when
code-switching.

Sitaram et al. (2019) have surveyed attempts to
integrate CS into NLP and Speech processing do-
mains. These domains include Part-of-Speech tag-
ging (Solorio and Liu, 2008; Soto and Hirschberg,
2018), Language Identification (Ramanarayanan
and Pugh, 2018; Rijhwani et al., 2017), Named
Entity Recognition (Aguilar et al., 2018), Lan-
guage Modeling (Chandu et al., 2018b), Auto-
matic Speech Recognition (ASR) (Yilmaz et al.,
2018), and Speech Synthesis (Rallabandi and
Black, 2017). There also has been a push to gen-
erate CS datasets synthetically to improve CS lan-
guage modeling (Pratapa et al., 2018), or manually
crowdsource CS utterances towards CS Question–
Answering and dialogue systems (Chandu et al.,
2018a; Banerjee et al., 2018).

Various other research has centered around un-
derstanding when and why people code-switch.
Linguistically-driven methods have found that
cognates and acoustic cues allow for more fluid
switching between the languages (Kootstra et al.,
2012; Fricke et al., 2016).

When pertaining to a dialogue setting, CS has
been found to fulfill different goals of speakers
(Begum et al., 2016). Solorio and Liu (2008) dis-
cussed how sociopragmatic factors, such as the
topic being discussed and the rapport between the
speakers, could influence the style of CS. Addi-
tionally, choosing to use one language over an-
other can be a pragmatic way to mark sentiment,
as Rudra et al. (2016) found in Hindi–English
Twitter data. These findings support our aim of
understanding CS in nuanced contexts of dialogue.

In dialogue generally, entrainment between
conversational partners has been shown to im-
prove task success and perceived naturalness (Re-
itter and Moore, 2014; Nenkova et al., 2008).
In bilingual settings, accommodation has been
recorded since Giles et al. (1973), where French–
English speakers would choose their language ac-
cording to their audience. More recently in en-
trainment of CS, Soto et al. (2018) showed a con-



vergence in the quantity of CS between speakers
over the course of long conversations in the Miami
data. Fricke and Kootstra (2016) also found that
the presence of CS can affect the utterance follow-
ing it. Our work is the first to identify entrainment
of diverse CS strategies beyond language choice
in Bawa et al. (2018).

7 Conclusion

Through our novel Spanish–English dialogue
framework, we generate code-switching utter-
ances to which bilingual users also respond in var-
ious forms of code-switching. We find that users
sometimes adapt to the agent’s code-switching,
but their choice of CS strategy primarily depends
on their bilingual language proficiency. Adding
discourse markers to make the agent less formal
also affects patterns of user CS among female par-
ticipants. Finally, extrinsic task success is not sig-
nificantly affected by CS strategy, though users in-
dicated positive dialogue experiences.

There are numerous follow-up directions that
can be taken with our framework and with the
novel COMMONAMIGOS corpus. For example,
analyses can be done on the types of switch points,
investigating attributes such as simplicity or fre-
quency of the word that is switched, the nature of
it being a cognate (Soto et al., 2018), or even the
cognitive accessibility of switch words from users’
mental lexicons.

We acknowledge that COMMONAMIGOS re-
flects a specific population of users that would not
represent all Spanish–English speakers across the
world, and the crowdworker population may also
be skewed in ways we cannot identify. Future
work should consider other groups of Spanish–
English speakers, as well as other language pairs
such as Hindi–English or Tagalog–English, in or-
der to learn how these varieties may be linguisti-
cally or functionally comparative to our findings.

The implications of our current work, which re-
veal which CS strategies are more entrainable than
others, could help CS agents adapt to users and
to better parse and predict user utterances with
a more informed CS language model.13 Future
agents should incorporate different CS strategies
dynamically within a single conversation that en-
train to the user. In order to move beyond a rule-

13This approach is similar to a method where ASR systems
that lexically entrain users can lower ASR error rates (Levi-
tan, 2013).

based agent, in future work we can leverage neu-
ral language generation systems (e.g., Park and
Tsvetkov, 2019) trained on CS data. From here,
we can usher in an era of bilingual dialogue sys-
tems that brings human–computer interactions to
a more personalized space.
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Abstract

We present a new logic-based inference engine
for natural language inference (NLI) called
MonaLog, which is based on natural logic and
the monotonicity calculus. In contrast to ex-
isting logic-based approaches, our system is
intentionally designed to be as lightweight as
possible, and operates using a small set of
well-known (surface-level) monotonicity facts
about quantifiers, lexical items and token-
level polarity information. Despite its sim-
plicity, we find our approach to be competi-
tive with other logic-based NLI models on the
SICK benchmark. We also use MonaLog in
combination with the current state-of-the-art
model BERT in a variety of settings, includ-
ing for compositional data augmentation. We
show that MonaLog is capable of generating
large amounts of high-quality training data for
BERT, improving its accuracy on SICK.

1 Introduction

There has been rapid progress on natural language
inference (NLI) in the last several years, due in
large part to recent advances in neural modeling
(Conneau et al., 2017) and the introduction of sev-
eral new large-scale inference datasets (Marelli
et al., 2014; Bowman et al., 2015; Williams et al.,
2018; Khot et al., 2018). Given the high per-
formance of current state-of-the-art models, there
has also been interest in understanding the limita-
tions of these models (given their uninterpretabil-
ity) (Naik et al., 2018; McCoy et al., 2019), as well
as finding systematic biases in benchmark datasets
(Gururangan et al., 2018; Poliak et al., 2018).

In parallel to these efforts, there have also
been recent logic-based approaches to NLI (Mi-
neshima et al., 2015; Martı́nez-Gómez et al., 2016;
Martı́nez-Gómez et al., 2017; Abzianidze, 2017;
Yanaka et al., 2018), which take inspiration from
linguistics. In contrast to early attempts at using

logic (Bos and Markert, 2005), these approaches
have proven to be more robust. However they tend
to use many rules and their output can be hard
to interpret. It is sometimes unclear whether the
attendant complexity is justified, especially given
that such models are currently far outpaced by
data-driven models and are generally hard to hy-
bridize with data-driven techniques.

In this work, we introduce a new logical in-
ference engine called MonaLog, which is based
on natural logic and work on monotonicity stem-
ming from van Benthem (1986). In contrast to
the logical approaches cited above, our starting
point is different in that we begin with the follow-
ing two questions: 1) what is the simplest logical
system that one can come up with to solve em-
pirical NLI problems (i.e., the system with mini-
mal amounts of primitives and background knowl-
edge)?; and 2) what is the lower-bound perfor-
mance of such a model? Like other approaches
to natural logic (MacCartney and Manning, 2008;
Angeli and Manning, 2014), our model works by
reasoning over surface forms (as opposed to trans-
lating to symbolic representations) using a small
inventory of monotonicity facts about quantifiers,
lexical items and token-level polarity (Hu and
Moss, 2018); proofs in the calculus are hence fully
interpretable and expressible in ordinary language.
Unlike existing work on natural logic, however,
our model avoids the need for having expensive
alignment and search sub-procedures (MacCart-
ney et al., 2008; Stern and Dagan, 2011), and re-
lies on a much smaller set of background knowl-
edge and primitive relations than MacCartney and
Manning (2009).

To show the effectiveness of our approach, we
show results on the SICK dataset (Marelli et al.,
2014), a common benchmark for logic-based
NLI, and find MonaLog to be competitive with
more complicated logic-based approaches (many



Premise: Text CCG polarity projection

Generation and
Search Replacement KB K

All schoolgirls are on the train Hypothesis?
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natural logic
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AllÒ schoolgirlsÓ areÒ onÒ theÒ train“

Figure 1: An illustration of our general monotonicity reasoning pipeline using an example premise and hypothesis
pair: All schoolgirls are on the train and All happy schoolgirls are on the train.

of which require full semantic parsing and more
complex logical machinery). We also introduce
a supplementary version of SICK that corrects
several common annotation mistakes (e.g., asym-
metrical inference annotations) based on previous
work by Kalouli et al. (2017, 2018)1. Positive
results on both these datasets show the ability of
lightweight monotonicity models to handle many
of the inferences found in current NLI datasets,
hence putting a more reliable lower-bound on what
results the simplest logical approach is capable of
achieving on this benchmark.

Since our logic operates over surface forms, it
is straightforward to hybridize our models. We in-
vestigate using MonaLog in combination with the
language model BERT (Devlin et al., 2019), in-
cluding for compositional data augmentation, i.e,
re-generating entailed versions of examples in our
training sets. To our knowledge, our approach is
the first attempt to use monotonicity for data aug-
mentation, and we show that such augmentation
can generate high-quality training data with which
models like BERT can improve performance.

2 Our System: MonaLog

The goal of NLI is to determine, given a premise
set P and a hypothesis sentence H , whether H fol-
lows from the meaning of P (Dagan et al., 2005).
In this paper, we look at single-premise problems
that involve making a standard 3-way classifica-
tion decision (i.e., Entailment (H), Contradict (C)
and Neutral (N)). Our general monotonicity rea-
soning system works according to the pipeline in
Figure 1. Given a premise text, we first do Arrow
Tagging by assigning polarity annotations (i.e.,
the arrows Ò, Ó, which are the basic primitives
of our logic) to tokens in text. These surface-

1Our correction can be found at: https://github.com/
huhailinguist/SICK correction

level annotations, in turn, are associated with a set
of natural logic inference rules that provide
instructions for how to generate entailments and
contradictions by span replacements over these ar-
rows (which relies on a library of span replace-
ment rules). For example, in the sentence All
schoolgirls are on the train, the token schoolgirls
is associated with a polarity annotation Ó, which
indicates that in this sentential context, the span
schoolgirls can be replaced with a semantically
more specific concept (e.g., happy schoolgirls) in
order to generate an entailment. A generation
and search procedure is then applied to see
if the hypothesis text can be generated from the
premise using these inference rules. A proof in
this model is finally a particular sequence of edits
(e.g., see Figure 2) that derive the hypothesis text
from the premise text rules and yield an entailment
or contradiction.

In the following sections, we provide the details
of our particular implementation of these different
components in MonaLog.

2.1 Polarization (Arrow Tagging)
Given an input premise P , MonaLog first polar-
izes each of its tokens and constituents, calling the
system described by Hu and Moss (2018)2, which
performs polarization on a CCG parse tree. For
example, a polarized P could be everyÒ linguistÓ

swimÒ. Note that since we ignore morphology in
the system, tokens are represented by lemmas.

2.2 Knowledge Base K and Sentence Base S

MonaLog utilizes two auxiliary sets. First, a
knowledge base K that stores the world knowl-
edge needed for inference, e.g., semanticist § lin-
guist and swim § move, which captures the facts
that rrsemanticistss denotes a subset of rrlinguistss,

2https://github.com/huhailinguist/ccg2mono
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https://github.com/huhailinguist/ccg2mono


and that rrswimss denotes a subset of rrmovess, re-
spectively. Such world knowledge can be cre-
ated manually for the problem at hand, or derived
easily from existing resources such as WordNet
(Miller, 1995). Note that we do not blindly add
all relations from WordNet to our knowledge base,
since this would hinge heavily on word sense dis-
ambiguation (we need to know whether the “bank”
is a financial institution or a river bank to extract
its relations correctly). In the current implemen-
tation, we avoid this by adding x § y or x K3

y relations only if both x and y are words in the
premise-hypothesis pair.4 Additionally, some rela-
tions that involve quantifiers and prepositions need
to be hard-coded, since WordNet does not include
them: every “ all “ each § most § many § a few
“ several § some “ a; the § some “ a; on K off ;
up K down; etc.

We also need to keep track of relations that can
potentially be derived from the P -H sentence pair.
For instance, for all adjectives and nouns that ap-
pear in the sentence pair, it is easy to obtain: adj
+ n § n (black cat § cat). Similarly, we have n
+ PP/relative clause § n (friend in need § friend,
dog that bites § dog), VP + advP/PP § VP (dance
happily/in the morning § dance), and so on. We
also have rules that extract pieces of knowledge
from P directly, e.g.: n1 § n2 from sentences of
the pattern every n1 is a n2. One can also connect
MonaLog to bigger knowledge graphs or ontolo-
gies such as DBpedia.

A sentence base S, on the other hand, stores the
generated entailments and contradictions.

2.3 Generation
Once we have a polarized CCG tree, and some §
relations in K, generating entailments and contra-
dictions is fairly straightforward. A concrete ex-
ample is given in Figure 2. Note that the gener-
ated § instances are capable of producing mostly
monotonicity inferences, but MonaLog can be ex-
tended to include other more complex inferences
in natural logic, hence the name MonaLog. This
extension is addressed in more detail in Hu et al.
(2019).

Entailments/inferences The key operation for
generating entailments is replacement, or sub-
stitution. It can be summarized as follows: 1)

3K means “is contradictory to”.
4There may be better and robust ways of incorporating

WordNet relations to K; we leave this for future work.

For upward-entailing (UE) words/constituents, re-
place them with words/constituents that denote
bigger sets. 2) For downward-entailing (DE)
words/constituents, either replace them with those
denoting smaller sets, or add modifiers (adjectives,
adverbs and/or relative clauses) to create a smaller
set. Thus for everyÒ linguistÓ swimÒ, MonaLog
can produce the following three entailments by re-
placing each word with the appropriate word from
K: mostÒ linguistÓ swimÒ, everyÒ semanticistÓ

swimÒ and everyÒ linguistÓ moveÒ. These are
results of one replacement. Performing
replacement for multiple rounds/depths can
easily produce many more entailments.

Contradictory sentences To generate sentences
contradictory to the input sentence, we do the fol-
lowing: 1) if the sentence starts with “no (some)”,
replace the first word with “some (no)”. 2) If the
object is quantified by “a/some/the/every”, change
the quantifier to “no”, and vice versa. 3) Negate
the main verb or remove the negation. See exam-
ples in Figure 2.

Neutral sentences MonaLog returns Neutral if
it cannot find the hypothesis H in S.entailments

or S.contradictions. Thus, there is no need to
generate neutral sentences.

2.4 Search

Now that we have a set of inferences and contra-
dictions stored in S, we can simply see if the hy-
pothesis is in either one of the sets by comparing
the strings. If yes, then return Entailment or Con-
tradiction; if not, return Neutral, as schematically
shown in Figure 2. However, the exact-string-
match method is too brittle. Therefore, we apply a
heuristic. If the only difference between sentences
S1 and S2 is in the set {“a”, “be”, “ing”}, then S1

and S2 are considered semantically equivalent.
The search is implemented using depth first

search, with a default depth of 2, i.e. at most 2 re-
placements for each input sentence. At each node,
MonaLog “expands” the sentence (i.e., an entail-
ment of its parent) by obtaining its entailments and
contradictions, and checks whether H is in either
set. If so, the search is terminated; otherwise the
systems keeps searching until all the possible en-
tailments and contradictions up to depth 2 have
been visited.
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Figure 2: Example search tree for SICK 340, where P is A schoolgirl with a black bag is on a crowded train,
with the H: A girl with a black bag is on a crowded train. Only one replacement is allowed at each step.
Sentences at the nodes are generated entailments. Sentences in rectangles are the generated contradictions. In
this case our system will return entail. The search will terminate after reaching the H in this case, but for
illustrative purposes, we show entailments of depth up to 3. To exclude the influence of morphology, all sentences
are represented at the lemma level in MonaLog, which is not shown here.

3 MonaLog and SICK

We perform two experiments to test MonaLog. We
first use MonaLog to solve the problems in a com-
monly used natural language inference dataset,
SICK (Marelli et al., 2014), comparing our results
with previous systems. Second, we test the quality
of the data generated by MonaLog. To do this, we
generate more training data (sentence pairs) from
the SICK training data using our system, and per-
forme fine-tuning on BERT (Devlin et al., 2019),
a language model based on the transformer archi-
tecture (Vaswani et al., 2017), with the expanded
dataset. In all experiments, we use the Base, Un-
cased model of BERT5.

3.1 The SICK Dataset

The SICK (Marelli et al., 2014) dataset includes
around 10,000 English sentence pairs that are an-
notated to have either “Entailment”, “Neutral” or
“Contradictory” relations. We choose SICK as
our testing ground for several reasons. First, we
want to test on a large-scale dataset, since we
have shown that a similar model (Hu et al., 2019)
reaches good results on parts of the smaller Fra-
CaS dataset (Cooper et al., 1996). Second, we
want to make our results comparable to those of
previous logic-based models such as the ones de-
scribed in (Bjerva et al., 2014; Abzianidze, 2015;
Martı́nez-Gómez et al., 2017; Yanaka et al., 2018),
which were also tested on SICK. We use the data
split provided in the dataset: 4,439 training prob-
lems, 4,906 test problems and 495 trial problems,

5https://github.com/google-research/bert

see Table 1 for examples.

3.2 Hand-corrected SICK
There are numerous issues with the original SICK
dataset, as illustrated by Kalouli et al. (2017,
2018).

They first manually checked 1,513 pairs tagged
as “A entails B but B is neutral to A” (AeBBnA)
in the original SICK, correcting 178 pairs that
they considered to be wrong (Kalouli et al., 2017).
Later, Kalouli et al. (2018) extracted pairs from
SICK whose premise and hypothesis differ in only
one word, and created a simple rule-based sys-
tem that used WordNet information to solve the
problem. Their WordNet-based method was able
to solve 1,651 problems, whose original labels in
SICK were then manually checked and corrected
against their system’s output. They concluded that
336 problems are wrongly labeled in the original
SICK. Combining the above two corrected sub-
sets of SICK, minus the overlap, results in their
corrected SICK dataset6, which has 3,016 prob-
lems (3/10 of the full SICK), with 409 labels dif-
ferent from the original SICK (see breakdown in
Table 2). 16 of the corrections are in the trial
set, 197 of them in the training set and 196 in the
test set. This suggests that more than one out of
ten problems in SICK are potentially problematic.
For this reason, two authors of the current paper
checked the 409 changes. We found that only 246
problems are labeled the same by our team and by
Kalouli et al. (2018). For cases where there is dis-
agreement, we adjudicated the differences after a

6https://github.com/kkalouli/SICK-processing

https://github.com/google-research/bert
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orig. corr.
id premise hypothesis label label
219 There is no girl in white dancing A girl in white is dancing C C
294 Two girls are lying on the ground Two girls are sitting on the ground N C
743 A couple who have just got married

are walking down the isle
The bride and the groom are leaving
after the wedding

E N

1645 A girl is on a jumping car One girl is jumping on the car E N
1981 A truck is quickly going down a hill A truck is quickly going up a hill N C
8399 A man is playing guitar next to a

drummer
A guitar is being played by a man next
to a drummer

E n.a.

Table 1: Examples from SICK (Marelli et al., 2014) and corrected SICK (Kalouli et al., 2017, 2018) w/ syntactic
variations. n.a.:example not checked by Kalouli and her colleagues. C: contradiction; E: entailment; N: neutral.

total N Ñ E E Ñ C N Ñ C E Ñ N
409 14 7 190 198

Table 2: Changes from SICK to corrected SICK
(Kalouli et al., 2017, 2018).

discussion.
We are aware that the partially checked SICK

(by two teams) is far from ideal. We therefore
present results for two versions of SICK for exper-
iment 1 (section 4): the original SICK and the ver-
sion corrected by our team. For the data augmen-
tation experiment in section 5, we only performed
fine-tuning on the corrected SICK. As shown in
a recent SICK annotation experiment by Kalouli
et al. (2019), annotation is a complicated issue in-
fluenced by linguistic and non-linguistic factors.
We leave checking the full SICK dataset to future
work.

4 Experiment 1: Using MonaLog
Directly

4.1 Setup and Preprocessing
The goal of experiment 1 is to test how accurately
MonaLog solves problems in a large-scale dataset.
We first used the system to solve the 495 problems
in the trial set and then manually identified the
cases in which the system failed. Then we deter-
mined which syntactic transformations are needed
for MonaLog. After improving the results on the
trial data by introducing a preprocessing step to
handle limited syntactic variation (see below), we
applied MonaLog on the test set. This means that
the rule base of the system was optimized on the
trial data, and we can test its generalization capa-
bility on the test data.

The main obstacle for MonaLog is the syntactic

variations in the dataset, illustrated in some exam-
ples in Table 1. There exist multiple ways of deal-
ing with these variations: One approach is to ‘nor-
malize’ unknown syntactic structures to a known
structure. For example, we can transform passive
sentences into active ones and convert existential
sentences into the base form (see ex. 8399 and 219
in Table 1). Another approach is to use some more
abstract syntactic/semantic representation so that
the linear word order can largely be ignored, e.g.,
represent a sentence by its dependency parse, or
use Abstract Meaning Representation. Here, we
explore the first option and leave the second ap-
proach to future work. We believe that dealing
with a wide range of syntactic variations requires
tools designed specifically for that purpose. The
goal of MonaLog is to generate entailments and
contradictions based on a polarized sentence in-
stead.

Below, we list the most important syntactic
transformations we perform in preprocessing7.

1. Convert all passive sentences to active using
pass2act8. If the passive does not contain a
by phrase, we add by a person.

2. Convert existential clauses into their base
form (see ex. 219 in Table 1).

3. Other transformations: someone/anyone/no
one Ñ some/any/no person; there is no man
doing sth. Ñ no man is doing sth.; etc.

4.2 Results
The results of our system on uncorrected and cor-
rected SICK are presented in Table 3, along with
comparisons with other systems.

7For the complete list of transformations see: https://
github.com/huhailinguist/SICK correction

8https://github.com/DanManN/pass2act
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system P R acc.
On uncorrected SICK

majority baseline – – 56.36
hypothesis-only baseline – – 56.87(Poliak et al., 2018)

MonaLog (this work)
MonaLog + all transformations 83.75 70.66 77.19

Hybrid: MonaLog + BERT 83.09 85.46 85.38
ML/DL-based systems

BERT (base, uncased) 86.81 85.37 86.74
(Yin and Schütze, 2017) – – 87.1

(Beltagy et al., 2016) – – 85.1
Logic-based systems

(Bjerva et al., 2014) 93.6 60.6 81.6
(Abzianidze, 2015) 97.95 58.11 81.35

(Martı́nez-Gómez et al., 2017) 97.04 63.64 83.13
(Yanaka et al., 2018) 84.2 77.3 84.3

On corrected SICK
MonaLog + existential trans. 89.43 71.53 79.11

MonaLog + pass2act 89.42 72.18 80.25
MonaLog + all transformations 89.91 74.23 81.66

Hybrid: MonaLog + BERT 85.65 87.33 85.95
BERT (base, uncased) 84.62 84.27 85.00

Table 3: Performance on the SICK test set, original
SICK above and corrected SICK below. P / R for Mon-
aLog averaged across three labels. Results involving
BERT are averaged across six runs; same for later ex-
periments.

Our accuracy on the uncorrected SICK
(77.19%) is much higher than the majority base-
line (56.36%) or the hypothesis-only baseline
(56.87%) reported by Poliak et al. (2018), and
only several points lower than current logic-based
systems. Since our system is based on natural
logic, there is no need for translation into logical
forms, which makes the reasoning steps trans-
parent and much easier to interpret. I.e., with
entailments and contradictions, we can generate a
natural language trace of the system, see Fig. 2.

Our results on the corrected SICK are even
higher (see lower part of Table 3), demonstrating
the effect of data quality on the final results. Note
that with some simple syntactic transformations
we can gain 1-2 points in accuracy.

Table 4 shows MonaLog’s performance on the
individual relations. The system is clearly very
good at identifying entailments and contradic-
tions, as demonstrated by the high precision val-
ues, especially on the corrected SICK set (98.50
precision for E and 95.02 precision for C). The
lower recall values are due to MonaLog’s current
inability to handle syntactic variation.

Based on these results, we tested a hybrid model
of MonaLog and BERT (see Table 3) where we ex-
ploit MonaLog’s strength: Since MonaLog has a
very high precision on Entailment and Contradic-
tion, we can always trust MonaLog if it predicts
E or C; when it returns N, we then fall back to
BERT. This hybrid model improves the accuracy
of BERT by 1% absolute to 85.95% on the cor-
rected SICK. On the uncorrected SICK dataset, the
hybrid system performs worse than BERT. Since
MonaLog is optimized for the corrected SICK, it
may mislabel many E and C judgments in the un-
corrected dataset. The stand-alone BERT system
performs better on the uncorrected data (86.74%)
than the corrected set (85.00%). The corrected set
may be too inconsistent since only a part has been
checked.

Overall, these hybird results show that it is pos-
sible to combine our high-precision system with
deep learning architectures. However, more work
is necessary to optimize this combined system.

4.3 Error Analysis

Upon closer inspection, some of MonaLog’s er-
rors consist of difficult cases, as shown in Table 5.
For example, in ex. 359, if our knowledge base K

contains the background fact chasing § running,
then MonaLog’s judgment of C would be correct.
In ex. 1402, if crying means screaming, then the
label should be E; however, if crying here means
shedding tears, then the label should probably be
N. Here we also see potentially problematic labels
(ex. 1760, 3403) in the original SICK dataset.

Another point of interest is that 19 of Mona-
Log’s mistakes are related to the antonym pair man
vs. woman (e.g., ex. 5793 in Table 5). This points
to inconsistency of the SICK dataset: Whereas
there are at least 19 cases tagged as Neutral (e.g.,
ex. 5793), there are at least 17 such pairs that are
annotated as Contradictions in the test set (e.g.,
ex. 3521), P: A man is dancing, H: A woman is
dancing (ex. 9214), P: A shirtless man is jumping
over a log, H: A shirtless woman is jumping over
a log. If man and woman refer to the same entity,
then clearly that entity cannot be man and woman
at the same time, which makes the sentence pair a
contradiction. If, however, they do not refer to the
same entity, then they should be Neutral.



E C N
P R P R P R

uncorr. SICK 97.75 46.74 80.06 70.24 73.43 94.99
corr. SICK 98.50 50.46 95.02 73.60 76.22 98.63

Table 4: Results of MonaLog per relation. C: contradiction; E: entailment; N: neutral.

id premise hypothesis SICK corr. SICK Mona
359 There is no dog chasing an-

other or holding a stick in its
mouth

Two dogs are running and
carrying an object in their
mouths

N n.a. C

1402 A man is crying A man is screaming N n.a. E
1760 A flute is being played by a girl There is no woman playing a

flute
N n.a. C

2897 The man is lifting weights The man is lowering barbells N n.a. E
2922 A herd of caribous is not cross-

ing a road
A herd of deer is crossing a
street

N n.a. C

3403 A man is folding a tortilla A man is unfolding a tortilla N n.a. C
4333 A woman is picking a can A woman is taking a can E N E
5138 A man is doing a card trick A man is doing a magic trick N n.a. E
5793 A man is cutting a fish A woman is slicing a fish N n.a. C

Table 5: Examples of incorrect answers by MonaLog; n.a. = the problem has not been checked in corr. SICK.

5 Experiment 2: Data Generation Using
MonaLog

Our second experiment focuses on using Mona-
Log to generate additional training data for ma-
chine learning models such as BERT. To our
knowledge, this is the first time that a rule-based
NLI system has been successfully used to generate
training data for a deep learning application.

5.1 Setup

As described above, MonaLog generates entail-
ments and contradictions when solving problems.
These can be used as additional training data for
a machine learning model. I.e., we pair the newly
generated sentences with their input sentence, cre-
ating new pairs for training. For example, we take
all the sentences in the nodes in Figure 2 as infer-
ences and all the sentences in rectangles as con-
tradictions, and then form sentence pairs with the
input sentence. The additional data can be used
directly, almost without human intervention.

Thus for experiment 2, the goal is to examine
the quality of these generated sentence pairs. For
this, we re-train a BERT model on these pairs.
If BERT trained on the manually annotated SICK
training data is improved by adding data generated
by MonaLog, then we can conclude that the gen-

erated data is of high quality, even comparable to
human annotated data, which is what we found.

More specifically, we compare the performance
of BERT models trained on a) SICK training data
alone, and b) SICK training data plus the entail-
ing and contradictory pairs generated by Mona-
Log. All experiments are carried out using our
corrected version of the SICK data set.

However, note that MonaLog is designed to
only generate entailments and contradictions.
Thus, we only have access to newly generated ex-
amples for those two cases, we do not acquire any
additional neutral cases. Consequently, adding
these examples to the training data will introduce a
skewing that does not reflect the class distribution
in the test set. Since this will bias the machine
learner against neutral cases, we use the following
strategy to counteract that tendency: We relabel all
cases where BERT is not confident enough for ei-
ther E or C into N. We set this threshold to 0.95
but leave further optimization of the threshold to
future work.

5.2 Data Filtering and Quality Control
MonaLog is prone to over-generation. For exam-
ple, it may wrongly add the same adjective be-
fore a noun (phrase) twice to create a more spe-
cific noun, e.g., young young man § young man §



label premise hypothesis comm.
E A woman be not cooking something A person be not cooking something correct
E A man be talk to a woman who be seat

beside he and be drive a car
A man be talk correct

E A south African plane be not fly in a
blue sky

A south African plane be not fly in a
very blue sky in a blue sky

unnat.

C No panda be climb Some panda be climb correct
C A man on stage be sing into a micro-

phone
A man be not sing into a microphone correct

C No man rapidly be chop some mush-
room with a knife

Some man rapidly be chop some mush-
room with a knife with a knife

unnat.

E FewÒ peopleÓ beÓ eatÓ atÓ redÓ tableÓ

inÓ aÓ restaurantÓ withoutÓ lightÒ
FewÒ largeÓ peopleÓ beÓ eatÓ atÓ

redÓ tableÓ inÓ aÓ AsianÓ restaurantÓ

withoutÓ lightÒ

correct

Table 6: Sentence pairs generated by MonaLog, lemmatized.

label total correct wrong unnatural
E 56 49 0 7
C 44 41 0 3

Table 7: Quality of 100 manually inspected sentences.

man. Since it is possible that such examples influ-
ence the machine learning model negatively, we
look into filtering such examples to improve the
quality of the additional training data.

We manually inspected 100 sentence pairs gen-
erated by MonaLog to check the quality and natu-
ralness of the new sentences (see Table 6 for exam-
ples). All of the generated sentences are correct in
the sense that the relation between the premise and
the hypothesis is correctly labeled as entailment or
contradiction (see Table 7). While we did not find
any sentence pairs with wrong labels, some gener-
ated sentences are unnatural, as shown in Table 6.
Both unnatural examples contain two successive
copies of the same PP.

Note that our data generation hinges on correct
polarities on the words and constituents. For in-
stance, in the last example of Table 6, the polar-
ization system needs to know that few is down-
ward entailing on both of its arguments, and
without flips the arrow of its argument, in order
to produce the correct polarities, on which the
replacement of MonaLog depends.

In order to filter unnatural sentences, such as the
examples in Table 6, we use a rule-based filter and
remove sentences that contain bigrams of repeated
words9. We experiment with using one quarter or

9We also investigated using a bigram based language

one half randomly selected sentences in addition
to a setting where we use the complete set of gen-
erated sentences.

5.3 Results

Table 8 shows the amount of additional sentence
pairs per category along with the results of us-
ing the automatically generated sentences as ad-
ditional training data.

It is obvious that adding the additional train-
ing data results in gains in accuracy even though
the training data becomes increasingly skewed to-
wards E and C. When we add all additional sen-
tence pairs, accuracy increases by more than 1.5
percent points. This demonstrates both the robust-
ness of BERT in the current experiment and the
usefulness of the generated data. The more data
we add, the better the system performs.

We also see that raising the threshold to rela-
bel uncertain cases as neutral gives a small boost,
from 86.51% to 86.71%. This translates into 10
cases where the relabeling corrected the answer.

Finally, we also investigated whether the hy-
brid system, i.e., MonaLog followed by the re-
trained BERT, can also profit from the addi-
tional training data. Intuitively, we would expect
smaller gains since MonaLog already handles a
fair amount of the entailments and contradictions,
i.e., those cases where BERT profits from more
examples. However the experiments show that
the hybrid system reaches an even higher accuracy
of 87.16%, more than 2 percent points above the

model to filter out non-natural sentences. However, this af-
fected the results negatively.



training data # E # N # C acc.
SICK.train: baseline 1.2k 2.5k 0.7k 85.00
1/4 gen. + SICK.train 8k 2.5k 4k 85.30
1/2 gen. + SICK.train 15k 2.5k 7k 85.81
all gen. + SICK.train 30k 2.5k 14k 86.51
E, C prob. threshold = 0.95 30k 2.5k 14k 86.71
Hybrid baseline 1.2k 2.5k 0.7k 85.95
Hybrid + all gen. 30k 2.5k 14k 87.16
Hybrid + all gen. + threshold 30k 2.5k 14k 87.49

Table 8: Results of BERT trained on MonaLog-generated entailments and contradictions plus SICK.train (using
the corrected SICK set).

baseline, equivalent to roughly 100 more problems
correctly solved. Setting the high threshold for
BERT to return E or C further improves accuracy
to 87.49%. This brings us into the range of the
state-of-the-art results, even though a direct com-
parison is not possible because of the differences
between the corrected and uncorrected dataset.

6 Conclusions and Future Work

We have presented a working natural-logic-based
system, MonaLog, which attains high accuracy on
the SICK dataset and can be used to generated nat-
ural logic proofs. Considering how simple and
straightforward our method is, we believe it can
serve as a strong baseline or basis for other (much)
more complicated systems, either logic-based or
ML/DL-based. In addiction, we have shown that
MonaLog can generate high-quality training data,
which improves the accuracy of a deep learning
model when trained on the expanded dataset. As
a minor point, we manually checked the corrected
SICK dataset by Kalouli et al. (2017, 2018).

There are several directions for future work.
The first direction concerns the question how to
handle syntactic variation from natural language
input. That is, the computational process(es) for
inference will usually be specified in terms of
strict syntactic conditions, and naturally occurring
sentences will typically not conform to those con-
ditions. Among the strategies which allow their
systems to better cope with premises and hypothe-
ses with various syntactic structures are sophisti-
cated versions of alignment used by e.g. MacCart-
ney (2009); Yanaka et al. (2018). We will need to
extend MonaLog to be able to handle such vari-
ation. In the future, we plan to use dependency
relations as representations of natural language in-
put and train a classifier that can determine which

relations are crucial for inference.
Second, as mentioned earlier, we are in need

of a fully (rather than partially) checked SICK
dataset to examine the impact of data quality on
the results since the partially checked dataset may
be inherently inconsistent between the checked
and non-checked parts.

Finally, with regard to the machine learning ex-
periments, we plan to investigate other methods of
addressing the imbalance in the training set cre-
ated by additional entailments and contradictions.
We will look into options for artificially creating
neutral examples, e.g. by finding reverse entail-
ments10, as illustrated by Richardson et al. (2019).
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Pascual Martı́nez-Gómez, Koji Mineshima, Yusuke
Miyao, and Daisuke Bekki. 2016. ccg2lambda: A
compositional semantics system. In Proceedings
of ACL 2016 System Demonstrations, pages 85–
90, Berlin, Germany. Association for Computational
Linguistics.
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Abstract

Defined by Heinz et al. (2011) the Tier-Based
Strictly Local (TSL) class of stringsets has
not previously been characterized by an ab-
stract property that allows one to prove a
stringset’s membership or lack thereof. We
provide here two such characterizations: a gen-
eralization of suffix substitution closure and an
algorithm based on deterministic finite-state
automata (DFAs). We use the former to prove
closure properties of the class. Additionally,
we extend the approximation and constraint-
extraction algorithms of Rogers and Lambert
(2019a) to account for TSL constraints, allow-
ing for free conversion between TSL logical
formulae and DFAs.

1 Tier-Based Strict Locality

The class of Strictly k-Local stringsets (SLk), first
described by McNaughton and Papert (1971), is
well known, with learning algorithms from Garcia
et al. (1990) and a decision algorithm stemming
from Caron (1998) that led to constraint-extraction
algorithms from Rogers and Lambert (2019a). A
superclass of this, defined by the application of
a Strictly k-Local grammar to the output of an
erasing homomorphism (which may be the identity
map) was introduced by Heinz et al. (2011) as the
Tier-Based Strictly k-Local sets of strings.

In this paper, we introduce a purely relational
view of TSL. From this, we derive a generalization
of the abstract characterization of the Strictly k-
Local stringsets for their tier-based cousins, extend
the known approximation and constraint-extraction
algorithms to this class, and introduce a type of
alphabet-agnostic finite-state automaton, and oper-
ations thereon, useful in building representations
of stringsets from logical formulae.

In demonstration of the abstract characterization
of the class, we prove that TSL is not, in general,
closed under any of the Boolean operations. We

demonstrate in contrast that intersection closure
does hold when the tier alphabets are the same.
We then investigate and classify some specific lin-
guistic examples, namely the one-stress constraint,
the liquid dissimilation of Latin, and the backness
harmony of Uyghur.

2 Relational Word Models

We begin by defining a relational word model in
the same way as Rogers and Lambert (2019b). A
relational structure in general is a set of domain
elements, D, augmented with a set of relations of
arbitrary arity, Ri ✓ Dni . Let w be a string over
some alphabet ⌃. Then a word model for w is a
structure:

MRi
⌃ (w) , hDw,�w,ow,nw, Rii�2⌃.

where Dw is isomorphic to an initial segment
h0, 1, . . . , |w| + 1i of the natural numbers and rep-
resents the positions in own, each �w (in addition
to ow and nw) is a unary relation that holds for
all and only those positions at which � (or o or
n, respectively) occurs, and the remaining Ri are
the other salient relations, such as the standard
successor or precedence relations (denoted in this
paper by C and <, respectively). Note that the
set {�w,ow,nw}�2⌃ is a partition of Dw. As a
minor abuse of notation, we allow symbols to refer
to their associated relations, and we allow sets of
relations of the same arity to be read as the disjunc-
tion of their pointwise application. Figure 1 shows
three different word models for the string “abab”,
where each cell represents a domain element, each
cell’s label is the alphabetic unary relation that ele-
ment satisfies, and the edges represent the indicated
relation. The tier-successor relation, C⌧ , will be
defined shortly hereafter.

The class of Strictly k-Local stringsets over a
tier ⌧ ✓ ⌃, TSL⌧

k, was originally described as



o a b a b n
C

o a b a b n
C{a}

o a b a b n
<

Figure 1: Three word models for the string “abab”, the
first variant under the standard successor relation, the
second under the tier-successor relation on the alphabet
{a}, and the last under the precedence relation.

those characterized by a set of Strictly k-Local con-
straints on the output of an erasing homomorphism
(Heinz et al., 2011). Note that it can be assumed
that the tier alphabet always contains o and n.
Here we suggest an alternative perspective based
on relational word models and define a relation
appropriate for describing this class.

The standard successor relation is the transitive
reduction of the precedence relation and is first-
order definable from the latter as follows:

x C y , (x < y) ^
�
8z
�⇥
¬(x  z  y)

⇤
.

With minor modification, we can instead use the re-
striction of the precedence relation to the intended
tier-alphabet and derive a similar relation:

x C⌧ y , T (x) ^ T (y) ^ (x < y)

^
�
8z
�⇥
¬
�
T (z) ^ (x  z  y)

�⇤
.

This definition is equivalent to the standard suc-
cessor relation after erasing symbols not in the in-
tended tier alphabet, and through this equivalence
we use this tier-successor relation as our basis for
describing TSL stringsets and constraints. By ex-
tension, this relation should be useful in describing
the yet unexplored Boolean closure of TSL⌧ formu-
lae, which we call Tier-Based k-Locally Testable
analogously to the Locally Testable and Piecewise
Testable classes characterized by McNaughton and
Papert (1971) and Simon (1975), respectively. We
will revisit this in section 8.

In order to avoid doubling sub- and superscripts,
the tier-successor relation over tier ⌧ is written
C[⌧ ] when it appears in such a position.

3 Windows and Factors

Given a homogeneous relation R of arity a, the set

WR
a (x1) ,

�
x1 . . . xa : hx1, . . . , xai 2 R

 

is the set of windows of length a (a-windows) that
begin with x1. The set of windows of length n > a

is defined inductively:

WR
i+1(x1) ,

�
x1 . . . xi+1 :

x1 . . . xi 2 WR
i (x1) and

hxi�a+2, . . . , xi+1i 2 R
 

.

Informally, each n-window is a sequence of po-
sitions that can be formed from a sequence of
overlapping a-windows, the latter being sequences
formed directly from the tuples in R. In order
to discuss windows shorter than the arity of their
defining relation, we say that any of the affixes of
an n-window of length m < n is an m-window
from an appropriate starting point. Let the first po-
sition of a string x be denoted by p0 and the final
one by pf , then define the length of x under the
relation R as the size of the largest window that
can be formed in x:

|x|R , max
n
n :

�
9v
�⇥
vpf 2 WR

n (p0)
⇤o

.

If R is a binary relation for which the transitive
closure is asymmetric, such as the < relation or its
reductions used in this paper, |x|R is finite when-
ever x is itself finite.

Let ⌃̂ = ⌃ [ {o,n}. A string s = �̂1�̂2 . . . �̂k
for �̂i 2 ⌃̂ is a k-factor of a string t under the rela-
tion R, s vR t, iff for some position p 2 Dt there
is some k-window w1w2 . . . wk 2 WR

k (p) such
that each �̂i holds for the corresponding wi. For ex-
ample, one can use Figure 1 to see that for both the
C{a} and < relations, it holds that aa v oababn,
but not for C. Additionally, abb v oababn for <
but neither for C nor for C{a}.

Define the set of all k-factors of w as follows:

FR
k (w) ,

�
s : |s| = k and s vR w

 
.

Additionally, define the set of factors of width at
most k as one would expect:

FR
k (w) ,

[

1ik

�
FR
i (w)

�
.

Note that a window is distinct from a factor in that
the former is a sequence of positions while the
latter describes a string of symbols that occupies
such a sequence of positions.

Following Rogers and Lambert (2019b), we say
a function f : Xn ! X is conservative iff f pre-
serves well-formedness of its inputs and it holds
that for all possible inputs:

FR
k

�
f(x1, . . . , xn)

�
✓
[

1in

�
FR
k (xi)

�
.



For strings inserting and deleting symbols other
than end-markers preserves well-formedness. Note
that conservativity of an operation depends on R,
k, and the domain; for example, while inserting
or deleting symbols not in ⌧ is conservative under
C⌧ (since C⌧ ignores them), the insertion is not
conservative under <.

A factor f may be taken as a logical proposition
that f occurs. A word model M(w) satisfies such
a proposition, M(w) |= f , iff f v w. Satisfaction
of a set of factors is considered disjunctively, and
the Boolean connectives hold their usual meaning.

If ' is an arbitrary logical sentence using these
constructions, the models of ' are the structures:

Mod(') ,
�
M : M |= '

 
,

and one can say that ' represents the stringset:

L(') ,
�
w : M(w) 2 Mod(')

 
.

Any stringset definable in this way is said to be
locally definable under the relations in question,
as an extension of the notion of locality used by
McNaughton and Papert (1971). A logic further
restricted to ' of the form:

' =
^�

¬fi
�

where each fi is a factor (a conjunction of nega-
tive literals) characterizes those stringsets that are
locally definable in the strict sense.

The Strictly k-Local stringsets and their tier-
based cousins are definable by a set of permitted
k-factors over the appropriate relation G ✓ ⌃̂k.
We call such G a grammar. Since for a finite alpha-
bet there are only finitely many k-factors, we could
equivalently use the complement of G, denoted G.
Then the stringset is locally definable in the strict
sense by taking ' =

V
(¬f 2 G).

Any stringset locally definable in the strict sense
is closed under any operation conservative under
the appropriate relations and factor width, because
if no factor of any input is forbidden and the op-
eration does not introduce new factors, the output
cannot contain a forbidden factor.

4 Substitution of (Preprojective) Suffixes

A property is said to characterize a class iff all
members of the class have the property and all
objects that have the property are members of the
class. For example, the Strictly k-Local stringsets
are characterized by closure under substitution of

suffixes (Rogers and Pullum, 2011). When two
strings in an SLk set share a factor of width k � 1,
the portions following this shared factor in each
may be swapped to obtain new strings in the set. In
order to describe an analogous property for TSL,
first define the projection of w onto ⌧ as follows:

⇡⌧ (w) , FC[⌧ ]
|w|C[⌧ ](w).

In other words, ⇡⌧ (w) is the set of C⌧ factors in
w the same length as the longest such factor. It
can be shown that this is singleton and equivalent
to the standard projection operation. We omit tier
specifications when they are clear from context.
Following mathematical tradition, we abuse nota-
tion and use ⇡⌧ (w) to refer to its single element.

To move freely between strings and projections,
we note the following:
Lemma 1. If a stringset L over some alphabet ⌃
is closed under insertion and deletion of symbols
outside of some ⌧ ✓ ⌃, then w 2 L iff ⇡⌧ (w) 2 L.

Proof. Let L be so closed. If w in L, then by clo-
sure under deletion, ⇡⌧ (w) 2 L. If ⇡⌧ (w) 2 L,
then by closure under insertion, w 2 L.

Definition 1 (Preprojective Suffix Substitution).
Let ⌃ be an alphabet and ⌧ ✓ ⌃ a tier-alphabet.
Let w1 = u1x1v1 and w2 = u2x2v2 be strings over
⌃⇤ such that ⇡⌧ (x1) = ⇡⌧ (x2). We then say the
substrings x1 and x2 are projectively shared factors
of size k = |x1|C[⌧ ] and the string w3 = u1x1v2 is
formed by ⌧ -preprojective suffix substitution.

For strings on ⌧⇤, preprojective suffix substitu-
tion is identical to the standard suffix substitution
under which SL stringsets are closed. Further, re-
call that insertion and deletion of symbols outside
of ⌧ is conservative, and so TSL stringsets are
closed under these operations. Preprojective suffix
substitution is equivalent to projecting onto ⌧ , per-
forming suffix substitution on the restricted domain,
then doing an inverse projection by reinserting the
symbols that were removed earlier. Since each step
is conservative, preprojective suffix substitution is
as well, so TSL stringsets are closed thereunder.
More interesting is the following:
Theorem 1. All stringsets closed both under in-
sertion and deletion of symbols outside of some
tier alphabet ⌧ and under ⌧ -preprojective suffix
substitution for some factor size k are TSL⌧ .

Proof. Let L be a stringset so closed. Since L is
closed under ⌧ -preprojective suffix substitution, its



projection to ⌧ (⇡⌧ (L)) is closed under suffix sub-
stitution and is thus SLk. Further, for any w 2 ⌃⇤

such that ⇡⌧ (w) is in ⇡⌧ (L), Lemma 1 guarantees
that w is itself in L (and vice versa). Thus by defi-
nition, L is TSL⌧

k.

Since all TSL stringsets are closed under these
operations and all stringsets so closed are TSL, this
combination of closures characterizes TSL.

5 Closure Properties

One constraint that is nearly universal in phonotac-
tics is that one and only one syllable with primary
stress (�́) occurs in a given word (Hyman, 2009).
Despite the fact that this constraint as a whole is
neither Strictly Local nor Strictly Piecewise, it is
TSL{�́}

2 , as witnessed by the following formula:

¬on ^ ¬�́�́.

While similar formulae show that TSL⌧
n+1 can

require that n instances of arbitrary elements from
⌧ occur, we can prove, for example, that no TSL
stringset can recognize exactly the set of strings
containing both ‘a’ and ‘b’. Since TSL is closed
under deletion of non-tier symbols and “ab” is in L
but neither “a” nor “b” is itself in L, it is necessarily
the case that both symbols would have to be on the
tier alphabet for any TSL grammar that recognizes
L. Using strings formed from these symbols alone,
we can demonstrate failure of preprojective suffix
substitution closure for TSL3:

w1 = o aa bn 2 oLn
w2 = ob aa n 2 oLn
w3 = o aa n 62 oLn.

In fact, by making the shared ‘a’ factor be of width
k � 1 rather than 2, it can be shown that no TSLk
grammar can describe exactly the set of strings
containing both ‘a’ and ‘b’. This is despite the
fact that each can be required individually by a
TSL2 grammar over an appropriate tier. In other
words, TSL is not closed under intersection when
the tier alphabets may differ. Interestingly, the set
of strings containing exactly one instance of both
‘a’ and ‘b’ is recognized by a TSL3 grammar since
its projection to the {a, b} tier is finite and thus SL:
^

{¬on,¬oan,¬obn,¬aa,¬bb,¬aba,¬bab}.

Although TSL is not in general closed under
intersection, the following holds:

Theorem 2. If L1 2 TSL⌧
k1 and L2 2 TSL⌧

k2 ,
then the intersection L1 \ L2 2 TSL⌧

max (k1,k2)
.

Proof. Let L1 and L2 be as stated, and further let
L = L1 \ L2 and k = max (k1, k2). Then L is
closed under insertion and deletion of symbols out-
side of ⌧ because for any w 2 L, by definition
w 2 L1 and w 2 L2, and both of these sets are so
closed. L is closed under substitution of prepro-
jective suffixes by the same reasoning. Then by
Theorem 1, L is TSL⌧

k.

This theorem fails to hold for intersections of
TSL stringsets over different tiers because the clo-
sure properties do not hold on both operands.

We can also show that TSL is not closed under
union by demonstrating that the set of strings where
all instances of ‘a’ precede all those of ‘b’ is TSL
(¬ba), and that where all instances of ‘b’ precede
all those of ‘a’ is TSL (¬ab), but their union is not:

ob ak�1 n

o ak�1 bn

ob ak�1 bn.

In general, to prove that a stringset is TSL one
needs only provide the grammar. To show that a
stringset cannot be TSL, one can use insertion or
deletion closure to determine some symbols that
must be on the tier alphabet and then use strings
formed from only those symbols to demonstrate a
failure of closure under substitution of preprojec-
tive suffixes. We leave as an exercise for the reader
to show that TSL is not closed under complement,
nor (since ⌃⇤ is TSL) under relative complement.

6 Linguistic Examples

There are several TSL linguistic phenomena. Any
Strictly k-Local pattern over an alphabet ⌃ can
be described by a TSL⌃

k grammar as well. Of
course, this is uninteresting as we generally want
to describe these phenomena with a lowest measure
of complexity. The TSL class is motivated by the
set of patterns that it can capture that SL does not.

One such pattern is the one-stress constraint de-
scribed at the beginning of the previous section.
The two sub-constraints that comprise it, namely
that some syllable with primary stress occurs and
that no more than one such syllable occurs, are
coSL1 (coSP1) and LTT1,2 (SP2), respectively,
under standard adjacency and precedence accounts.



Though this constraint is neither purely SP nor
purely SL, it can be described using TSL alone.

This particular kind of TSL constraint demon-
strates applicability when long-distance dependen-
cies are in effect. As another example, let us con-
sider the simple SL2 constraint that is alternation:

^
{¬ll,¬rr}.

If this constraint is applied on the tier of liquids
(here only “l” and “r”), then the result is a dissimi-
lation constraint like that of Latin as described by
Cser (2010). The pattern described by Cser is a bit
more involved, though: the dissimilation is blocked
by non-coronal consonants. A TSL description ac-
counts for these blockers: in addition to the liquids,
the non-coronal consonants are on the tier as well.

Let us look now at an attested non-TSL pattern.
In the previous section we described a method to
prove that a given stringset is not TSL, and we will
apply that here to the backness harmony in Uyghur
as described by Mayer and Major (2018). The
cited paper contains a full description of the pat-
tern, but a simplification is as follows. Vowels and
consonants both have harmonizing and transparent
instances. Here we consider only the front/back
vowel pair “y” and “u” and the back consonant “q”.
A suffix harmonizes to the rightmost harmonizing
vowel if there is one, else with the rightmost har-
monizing consonant if there is one, else the result
is unspecified. We will ignore the final clause here.

We can prove that each of “y”, “u”, and “q” must
be on the tier by constructing a stem of transparent
segments and an affix that contains a harmonizing
vowel. Inserting a harmonizing segment of mis-
matched backness into the stem causes an other-
wise acceptable word to be rejected, and thus each
of these three segment types must be on the tier.
The following demonstrates a failure of closure
under substitution of preprojective suffixes:

oy qk yn

ou qk un

oy qk un

It then follows that this pattern is not TSL for any
choice of parameters.

In this section, we have again shown that the one-
stress constraint and Latin liquid dissimilation are
TSL by providing grammars with appropriate pa-
rameters, and we have used the methodology of the

previous section to prove that backness harmony in
Uyghur is not TSL for any parameters.

7 Multiple Relations, Additional Tiers

We proved earlier that TSL⌧ is closed under inter-
section, but TSL in general is not. In this section,
we discuss the intersection of TSL stringsets of
incompatible relations (i.e. unequal tier alphabets).
This is the complexity class inhabited by those
stringsets that can be described by a coöccurrence
of several TSL constraints operating over tier al-
phabets that are not necessarily equal.

The intersection of TSL⌧i stringsets (1  i  n)
is locally definable in the strict sense when each
forbidden factor is considered with respect to its
own relation. Operationally this would be equiva-
lent to using n distinct projective tiers, a concept
explored by De Santo and Graf (2019) and referred
to as MTSL. For T =

S
1in(⌧i), it is clear

that insertion and deletion of symbols outside of
T remains conservative. Yet T -preprojective suffix
substitution no longer is; a slight modification is
required in order to obtain this property:

Definition 2 (Generalized Preprojective Suffix Sub-
stitution). For two strings w1 = u1x1v1 and
w2 = u2x2v2 where:

�
8i
�⇥

(|x1|C[⌧i] � k � 1

_ ⇡⌧i(x1) = ⇡⌧i(w1))

^ (|x2|C[⌧i] � k � 1

_ ⇡⌧i(x2) = ⇡⌧i(w2))

^ ⇡⌧i(x1) = ⇡⌧i(x2)
⇤
,

the string w3 = u1x1v2 is formed by the more
general {⌧i}-preprojective suffix substitution.

In words, on each tier, x1 and x2 have equal pro-
jections, which are either of length at least k � 1
or equal to the projection of each word. This gen-
eralized operation is conservative, as the shared
x substrings are guaranteed to have sufficiently
many tier-symbols to allow for suffix-substitution
on each projected tier. Therefore closure under
this operation, and under insertion and deletion of
symbols outside of the union of the tier alphabets,
is necessary for a stringset to be in MTSL. Like
the pumping lemma for Regular stringsets, lack of
these closures can then be used to disprove class
membership. It is provably not a characterization,
which, like the Myhill-Nerode theorem, would al-
low the closures to constitute proof of membership.
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x y
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Figure 2: The factor oxyn under multiple relations.

8 Logical Formulae and Automata

In this section, we briefly discuss the construc-
tion of finite-state automata for locally definable
stringsets under each of the C, <, and C⌧ rela-
tions (defining Local, Piecewise, and Tier-Local
classes, respectively). In building automata that
represent arbitrary logical formulae, one could ei-
ther determine an appropriate alphabet beforehand
or construct automata in such a way that only nec-
essary symbols are considered. Here we use the
latter approach, introducing a placeholder ? for
potential other symbols. We define a DFA by a five-
tuple A = h⌃, Q, �, qo, F i where ⌃ is an alphabet,
Q a set of states, � a (partial) transition function,
qo an initial state, and F a set of final states.

The simplest case is the Piecewise formulae, as
anchors do not affect <. For a string �1 . . .�n re-
lated by <, define ⌃ = {�1, . . . ,�n, ? } and con-
struct a set of states {q1, . . . , qn+1} and a transition
function of the form:

�(qi,�) =

(
qi+1 if � = �i

qi otherwise.

For qo = q1 and F = {qn+1}, this reflects our
intention, that the factor �1 . . .�n under < occurs.
Figure 2 shows the automaton constructed for the
factor oxyn.

For factors defined using adjacency instead of
precedence, we begin with fully anchored factors
of the form o�1 . . .�nn. The construction is the
same as for Piecewise factors, except that the tran-
sition function is only defined for (qi,�i). For
factors that are not fully anchored, concatenate ⌃⇤

to the side(s) missing an anchor (and determinize
and minimize as appropriate). Figure 3 shows the
less-anchored versions of oxyn.

In order to transform an adjacency factor into a
tier-adjacency factor, note that the former is sim-
ply the projective image of the latter. Since the
C⌧ relation does not attend to non-tier symbols,
insertion of such a symbol at a given state must
lead to a Nerode-equivalent state. Since the DFAs
we are using here are minimal, it follows that each

1 2 3
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?

y

y, ? x x, y, ?

xy

1 2 3
x y

x, y, ?

oxy

1

2

3

x

?

y

x

y, ?

y, ?

x

xyn

Figure 3: The factors xy, oxy, and xyn under C.

1 2 3
x y

? ? x, y, ⌧ \ {x, y}, ?

Figure 4: The factor oxy under C⌧ .

state should have a self-loop on all non-tier sym-
bols. Thus we can first replace all instances of ?

by parallel edges on each symbol in ⌧ \ {x, y}, and
then add a self loop on ? to each state to account
for symbols not on the tier. Figure 4 shows this
transformation applied to the factor oxy.

Given these constructions for individual fac-
tors, unary operations such as the complement
or iteration-closure are the standard automata-
theoretic operations. For binary operations, given
automata A1 and A2 whose alphabets are ⌃1 and
⌃2, add transitions on ⌃2 \ ⌃1 to A1 in parallel
to all existing transitions on ? and similarly on
⌃1 \ ⌃2 to A2, then apply the standard automata-
theoretic operation as usual. This use of a distinct
placeholder symbol allows constraints to be defined
by automata of minimal alphabet that expand in a
way that preserves their semantics.

With these constructions, we can create DFAs for
any stringsets definable by Boolean combinations
of SL, SP, and TSL formulae, including among
other things MTSL. Concatenation of automata for
sequences of (Tier-)Local factors yields Piecewise-
(Tier-)Local ones (Rogers and Lambert, 2019b).
Boolean operations on these would yield Multi-
Tier-Based Piecewise-Locally Testable stringsets:
Boolean combinations of factors defined by oc-
currence, in order if not adjacently, of blocks of
symbols on any of a number of projective tiers.



9 Deconstructing Automata

Since TSL⌧ stringsets are closed under insertion of
symbols not in ⌧ , any transition on such a symbol
from a given state must lead to a Nerode-equivalent
state. Thus in a minimal DFA, such transitions are
necessarily self-loops. Let A = h⌃, Q, �, qo, F i
be a minimal DFA and define:

⌧ =
n
� :

�
8q
�⇥
�(q,�) = q

⇤o
.

The projection of A to ⌧ (⇡⌧ (A)) is the result
of replacing all transitions on symbols from ⌧ by
transitions on ", and since these transitions are all
self-loops, this is equivalent to simply removing
them. Then A represents a TSL⌧

k stringset iff this
projection represents an SLk one. The algorithms
of Rogers and Lambert (2019a) can then be used to
extract SL constraints from the projection, which
of course are the TSL⌧ constraints of A itself. Use
of these algorithms provides a simple way to test
whether an arbitrary Regular stringset is TSL⌧

k, and
if so, for which parameters k and ⌧ and even which
grammar.

On the other hand, if L(A) was not TSL, then
since the extracted SL constraints describe the
smallest SL superset of L

�
⇡⌧ (A)

�
, it follows that

they then also describe the smallest TSL⌧ superset
of L(A). That said, there may be smaller TSL
supersets over different tiers.

10 Conclusions

The Tier-Based Strictly k-Local (TSLk) class of
stringsets was introduced by Heinz et al. (2011) and
the question of what an abstract characterization
for the class might be has remained open until now.
We introduced here an abstract characterization,
which can be used to provably state whether or not
a given stringset is in the class. We then used this to
prove various closure properties of the class itself.
As TSL is not closed under intersection (but TSL⌧

for fixed ⌧ is), we discussed its intersection closure
(MTSL) and provided a property that is necessary
to be in MTSL. Failure to satisfy this property thus
proves that a stringset is not in this class.

Further, to better integrate the TSL class with
the other Piecewise-Local classes on the Subregular
hierarchy, we introduced a tier-successor relation
and associated logical formulae. We then described
a method to construct deterministic finite-state au-
tomata from such formulae in order to harness
the plentiful library of existing automata-theoretic

tools. Finally, we used our abstract characteriza-
tion to demonstrate a method of factoring a TSL
automaton into individual constraints and a method
of finding the constraints that produce the small-
est TSL superset of a given non-TSL automaton.
This provides a means to determine whether an
arbitrary regular stringset is TSL⌧

k, and if so, for
which parameters.

11 Future Work

We would like to explore linguistic applications of
the Tier-Based extensions to the other classes in the
piecewise-local subregular hierarchy, such as the
Tier-Based Locally Testable stringsets hinted at in
section 2 or the arbitrary formulae from section 8.
For example, it would appear that Uyghur backness
harmony might be MTLT, where the existence
of harmonizing vowels can turn off the constraint
referencing consonants.
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Abstract

Interlinear Glossed Text (IGT) is a rich data
type produced by linguists for the purposes
of presenting an analysis of a language’s se-
mantic and grammatical properties. I combine
linguistic knowledge and statistical machine
learning to develop a system for automatically
annotating low-resource language data. I train
a generative system for each language using on
the order of 1000 IGT. The input to the system
is the morphologically segmented source lan-
guage phrase and its English translation. The
system outputs the predicted linguistic annota-
tion for each morpheme of the source phrase.
The final system is tested on held-out IGT
sets for Abui [abz], Chintang [ctn], and Matsi-
genka [mcb] and achieves 71.7%, 80.3%, and
84.9% accuracy, respectively.

1 Introduction

While language documentation has a long history,
warnings from linguists such as Hale et al. (1992)
and Krauss (1992) concerning language extinction
have revitalized and expanded documentation ef-
forts by communities and linguists, though there
is still much work to be done (Seifart et al., 2018).
According to Seifart et al. (2018), it can take 40
and 100 hours to transcribe an hour of recorded
material, and even more time is required to ana-
lyze the language as a whole before annotating a
single segment of the data collected. Given the
decreasing language diversity in the world, there
is an identified and immediate need for automated
systems to assist in reducing the human hours
spent on the documentation process.

While costly to produce, the glosses in IGT al-
low linguistic generalizations that are implicitly
present in natural text to be explicitly available
for natural language processing. In addition to
supporting field linguists in collecting data, better
and more easily produced IGT would also bene-

fit end-stage projects such as machine translation
between low-resource languages by improving the
accuracy of the pre-processing modules (Xia and
Lewis, 2008). Georgi et al. (2012) used IGT
corpora to improve dependency parsing on low-
resource languages using bootstrapping methods,
while Bender et al. (2014) and Zamaraeva et al.
(2019) used IGT to build high-precision gram-
mars. Furthermore, language communities with
trained IGT generators would be able to produce
IGT for any new text found or created to aid with
either language learning, documentation, or future
translation efforts.

IGT consist of a source language phrase, a
translation of that phrase into the language of the
target audience, such as English, and glosses for
each source morpheme. The glosses highlight the
morphological and syntactic features of the source
language. Ex. 1 shows an IGT from the Kazakh
dataset in the Online Database of INterlinear text
(ODIN) (Lewis and Xia, 2010), modified from
Vinnitskaya et al. (2003).

(1) Kyz
girl.NOM

bolme-ge
room-DAT

kir-di
enter-PAST

(A/the) girl entered (a/the) room. [ISO 639-3: kaz]

In Ex. 1, the first line is the source line, the sec-
ond is the gloss line, and the third is the transla-
tion line. The strings girl, NOM, room, etc. are
all glosses, but glosses that refer to grammatical
information, such as NOM, will be referred to as
grams and the glosses that refer to semantically
contentful information, such as girl, will be re-
ferred to as stems.

In this paper I describe a system for produc-
ing the gloss line of IGT automatically. I re-
strict my system to producing just the gloss line,
given a morphologically segmented source line
and its translation line. Morphological segmenta-
tion packages such as Morfessor (Creutz and La-
gus, 2007) are widely available, and in the doc-



umentation setting translations may be provided
by a native speaker consultant. This system could
be used in combination with such resources. The
input to the system at test time includes the mor-
phemes in the segmented source line and the trans-
lation in the bottom line, and the target output is
the gloss line.

This system does not, however, produce new
analyses of the source language. Rather it is as-
sumed that the linguistic analyses at all levels and
the transliteration are already formalized by the
documentary team. The system is then learning
patterns from the analyses in the training data and
reproducing the patterns when given new data.
While the system can be trained on one set of anal-
yses and tested on another, the performance will
depend on the amount of variation between the
analyses. This is especially significant in the low-
resource setting, where each data instance con-
tributes a relatively large amount of information as
compared to each data instance in a high-resource
setting.

A survey of the literature on IGT curation, aug-
mentation and automation is provided in §2. In §3,
I present the data used for developing and testing
the system. §4 describes both the machine learn-
ing methods and the rule-based methods of this
particular system, where the rule-based methods
provide an implementation for handling out of vo-
cabulary, also referred to as OOV, tokens. This
section also includes an explanation of the evalua-
tion metrics. §5 presents the results on the devel-
opment and test languages, as well as a systematic
error analysis. Finally, §6 discusses the challenges
and limitations inherent in casting annotation as
a classification task while exploring possible im-
provements to the current method for predicting
OOV tokens.

2 Related Work

Approaches to IGT creation tools range in terms
of how much input is required from the human
annotator to yield the finished product. A widely
used tool for documentation is FieldWorks Lan-
guage Explorer (FLEx) (Baines, 2009). FLEx in-
cludes functionality for manually annotating inter-
linear text in addition to creating dictionaries and
other language resources. The annotation software
assists the user by retaining source-gloss pairs pre-
viously entered by the user and suggesting these
glosses when the source morpheme appears again.

The suggestions are not automatically constrained,
however, so FLEx will suggest all previously seen
glosses regardless of their likelihood given the lo-
cal context unless the user explicitly provides the
constraint information. By contrast the system
presented here calculates the likelihood of a source
morpheme being labeled with each possible gloss
given the current sequence of morphemes and se-
lects the most likely gloss automatically.

Palmer et al. (2009) (see also Baldridge and
Palmer 2009 and Palmer et al. 2010) approached
the task of IGT glossing within an active learning
framework. In an active learning framework, an-
notators label the first small batch of input data,
which is incorporated into the model in a new
training phase, and then the next batch of data
is labeled by the model and corrected by the an-
notators before being incorporated back into the
model. They trained a maximum entropy clas-
sifier to predict a gloss given a morpheme and a
context window of two morphemes before and af-
ter the morpheme in question. They had two an-
notators label IGT for Uspanteko [usp] (Mayan,
Guatemala), using data from the OKMA corpus
(Pixabaj et al., 2007). This corpus contains 32
glossed and 35 unglossed texts for a total of ap-
proximately 75,000 glossed tokens. They restrict
the number of labels in the annotation schema by
labeling stem morphemes with their part of speech
(POS) tags, as provided in the corpus. Palmer
et al. found that the expert annotator was more ef-
ficient and performed better when presented with
the model’s most uncertain predictions, but the
naive annotator annotated more accurately when
presented with random IGT rather than the most
uncertain. These results suggest that active learn-
ing strategies must take the annotator into account
in order to be optimally efficient, whereas au-
tomatic annotation does not have this constraint.
Fully automated classification approaches provide
an alternative method to IGT glossing when IGT
have already been completed.

Samardžić et al. (2015) took a classification ap-
proach to IGT generation for the Chintang [ctn]
(Kiranti, Nepal) Language Corpus dataset (Bickel
et al., 2009). This corpus is significantly larger
than the average documentation project with ap-
proximately 955,000 glossed tokens and a lexicon
with POS tags. Samardžić et al. used two clas-
sifiers to generate their labels. The first classi-
fier was based on Shen et al.’s (2007) version of



Collins and Roark’s (2004) Perceptron learning al-
gorithm and jointly learns the order in which to
tag the sequence and the predicted tags. It an-
notated grammatical morphemes with their appro-
priate label and contentful morphemes with their
POS tags, as in Palmer et al. (2009), to limit the
total number of labels. The final step replaces the
POS labels with an appropriate English lemma us-
ing the provided lexicon which maps English lem-
mas to Chintang morphemes. Samardžić et al.
trained a trigram language model on the lexicon
IDs to predict the most likely ID when multi-
ple lemmas are possible, and back-off methods
are used when labeling a previously unseen mor-
pheme.

This paper attempts to add to the body of re-
search on IGT generation by developing a machine
learning framework that can apply to languages
with fewer resources. Whereas these previous im-
plementations rely on linguists’ input or language
specific resources, such as source language POS
tags, to produce the final output, the system pre-
sented here runs using only what is given in the
IGT training data. The following experiments at-
tempt to answer the question of how much linguis-
tic information statistical machine learning tech-
niques are able to acquire from the linguistic pat-
terns that are made explicit in IGT without any ad-
ditional resources.

3 Data

The Online Database of INterlinear text (ODIN) is
a repository of IGT examples collected from PDFs
of linguistic publications (Lewis and Xia, 2010).
ODIN contains 158,007 IGT from across 1,496
languages and 2,027 documents. The ODIN IGT
datasets are stored in the XML-linearization of the
Xigt format (Goodman et al., 2015), which in-
cludes a Python API.1 A second version of ODIN2

has been released with POS tags, dependency
parses, and word alignments provided by the IN-
terlinear Text ENrichment Toolkit (INTENT) sys-
tem (Georgi, 2016).

I selected six languages from ODIN for de-
veloping the system based on set size: Turkish
[tur], Russian [rus], Korean [kor], Japanese [jpn],
Italian [ita], and Norwegian [nob]. I use a fur-
ther three languages from language documenta-

1
http://github.com/xigt/xigt

2Available at http://depts.washington.edu/

uwcl/odin/

tion projects as held-out test languages. Poor re-
sults on held-out languages compared to develop-
ment languages would suggest that the system is
inherently biased towards one language or one ty-
pological feature, such as word order; compara-
ble results between the held-out and development
languages provide evidence that the system per-
formance is not dependent on language-specific
features. The datasets for Chintang [ctn] (Kiranti,
Nepal; Bickel et al. 2009), Abui [abz] (Trans-New
Guinea, Indonesia; Kratochvı́l 2017), and Mat-
sigenka [mcb] (Maipurean, Peru; Michael et al.
2013) have been collected as part of language doc-
umentation projects and thus provide the oppor-
tunity to model system behavior in that setting.
This setting typically includes consistent glossing
schemes and native speaker consultants to provide
translation information. In order for the system
to produce models for these datasets in the same
way as the ODIN datasets, preprocessing included
converting the resources to the Xigt format and
then enriching the data using the INTENT system
(Georgi, 2016).

After filtering for IGT with identical source
lines and IGT that were not fully annotated by IN-
TENT, the Japanese and Korean sets have slightly
more than 2000 IGT each, the Russian has set
just under 1500 IGT, the Norwegian and Turkish
sets have around 1000 IGT each, and the Italian
set has around 800 IGT. Of the held-out datasets,
Matsigenka is the smallest, with just under 450
IGT due to a large portion of the corpus hav-
ing Spanish rather than English translations. The
Abui and Chintang sets are much larger with ap-
proximately 4700 IGT and 7000 IGT.3 For each
language the system is trained using 90% of the
given language’s IGT and tested on the remaining
10%. Table 1 shows the number of IGT in each
language’s train and test sets from ODIN, while
Table 2 shows the numbers for the held-out lan-
guages.

4 Methodology

I built one glossing system trained separately on
each language dataset. Upon loading each dataset,
the system removes IGT with source lines that
appear multiple times in the dataset and IGT
with missing or incomplete label references to the
glosses and source morphemes. The system then

3This is a subsample of the nearly 1 million word Chin-
tang dataset (see §2).

http://github.com/xigt/xigt
http://depts.washington.edu/uwcl/odin/
http://depts.washington.edu/uwcl/odin/


formats the information in the remaining IGT to
be fed into two Conditional Random Field (CRF)
models (Lafferty et al., 2001). One model predicts
the gloss line from the source line, hereafter re-
ferred to as the source model or SRC model, while
the second model predicts the gloss line from the
translation line, hereafter translation model or TRS
model. Finally, the system incorporates the predic-
tions of both models into the final output.

I use the Japanese example in (2), originally
from Harley (1995), as a running example to show
the steps in the system.

(2) yakko-ga
yakko-n

wakko-o
wakko-a

butai-ni
stage-on

agar-ase-ta
rise-cause-past

yakko made wakko rise onto the stage [jpn]

The source line, gold glosses, and the translation
line are as they appear in the corpus.

4.1 Modeling
Conditional Random Fields (CRF) are able to clas-
sify sequences of tokens with a large number of
possible labels while being sensitive to the con-
text in which the tokens appear (Lafferty et al.,
2001) and have been shown to be effective in
low-resource settings (Ruokolainen et al., 2013).
The CRF models were built using sklearn-crfsuite
v0.3.6.4 The training algorithm uses stochastic
gradient descent with L2 regularization and a max-
imum of 50 iterations.

The SRC model predicts a gloss for each mor-
pheme in the source line. When training, the sys-
tem takes in complete IGT and uses the glosses
provided as the gold training labels. The first
whitespace-separated token in the source line
is assumed to align with the first whitespace-
separated token in the gloss line, the second source
token with the second gloss, and so forth. While
the SRC model is able to take advantage of the
context provided by adjacent morphemes, it must
also be provided with explicit features for source
word boundaries. The features for each label in-
clude the source morpheme, the current source
word, the previous and following words, and
whether or not the previous and following mor-
phemes are included in the current word (see Ap-
pendix A for an example). No processing of the
source language, such as POS tags or dependency
labels, other than the morphological segmentation
has been assumed in this model, as many lan-

4
http://github.com/TeamHG-Memex/

sklearn-crfsuite

guages do not have access to NLP processing dur-
ing the documentation process. At test time the
SRC model would then output the following pre-
dicted sequence for the source line in Ex. 2:

(3) yakko-n pizza-acc taro-dat sit-cause-past

The second model, or TRS model, predicts
the gloss that is aligned with each word in the
translation line. The gold labels for the transla-
tion to gloss line predictions are provided by IN-
TENT, which has automatically labeled the bilin-
gual alignments between one gloss and one trans-
lation word. As a result, multi-word expressions
are not considered in the TRS model unless they
are explicit in the glosses. Many of the words in
the translation line are not aligned with a gloss,
so an additional null label is included. The fea-
tures for each label include the translation word,
its lemma as provided by the StanfordNLP API
(Manning et al., 2014), and the POS tag and de-
pendency structure for the translation word as pro-
vided by INTENT (again, see Appendix A for an
example). The TRS model then outputs the fol-
lowing predicted sequence for the translation line
in Ex. 2:

(4) yakko NA NA NA NA NA NA

NA stands for Not Aligned and is the most likely
tag for the model to output. The content words that
would be expected to be aligned in the translation
line, wakko, rise, and stage, are not aligned in this
case due to wakko and rise being OOV items, and
stage having only been seen once in the training
data. For further discussion of the TRS model’s
behavior, see §6. For both models, tokens that
contain only punctuation are labeled with the gloss
PUNC. Additionally, a dummy label is included in
case of reference errors while accessing the data
or when the features are not available. This may
be the case with punctuation or with non-English
words that the StanfordNLP lemmatizer is not able
to process.

4.2 Integrating Model Hypotheses
At test time the given source line and its transla-
tion line are processed by their respective mod-
els. The output of each model is then assessed by
the system. The system first checks whether the
source tokens and their predicted glosses have co-
occurred in the training data and whether the trans-
lation tokens and their predicted glosses have co-
occurred in the training data. If a gloss is predicted

http://github.com/TeamHG-Memex/sklearn-crfsuite
http://github.com/TeamHG-Memex/sklearn-crfsuite


Figure 1: Visualization of the system

by both models and is supported by the training
data, it’s saved as a final prediction. If the SRC and
TRS models disagree and the TRS model’s pre-
diction is supported by the training data, the TRS
model’s prediction is saved as the final prediction.
If the original source token has been seen in the
training data, but an exact match was not predicted
by the translation line, the SRC model’s predic-
tion takes precedence. This is motivated by the
fact that source tokens that are labeled with grams
may not be aligned with a token in the translation.

If the source morpheme has not previously been
seen, it is assumed to be a stem, and the lemma of
an aligned translation lemma is used as the gloss
(see § 6 for further discussion). If the source to-
ken is both unseen and unaligned, the system first
checks to seen if there is an exact match between
the morpheme and a translation word. Otherwise,
the system separates the predicted grams, as iden-
tified by the gram list, from the SRC model’s pre-
dicted gloss. Based on the grams, the system
attempts to match the morpheme with a transla-
tion lemma with the same POS tag or argument
role, using the grams to predict the morpheme’s
POS tag and the INTENT metadata to identify the
translation words’ POS tags or dependency struc-
ture. For example, if a case marker such as nomi-
native is predicted, the system will look for a noun
marked as the subject in the translation tokens.
This process is implemented for nouns and verbs
since OOV items are most likely to be in those cat-
egories. Finally, if the model is still unsure of the
final prediction, the system selects the lemma of
an unaligned translation word or the word itself if
it cannot be lemmatized.

Continuing with the example from the previous
section, the system now has the prediction infor-
mation from Ex. 3 and 4. The system confirms that
it has seen yakko, ga, o, ni, ase, and ta glossed as
yakko, n, acc, dat, cause, and past, respectively,
so it keeps those as final predictions. The system
has seen butai in the training data but not glossed

as taro, so it replaces the SRC model’s predic-
tion with the previously seen gloss, stage. The
token wakko is an OOV item, but an exact match
is found in the translation line, so the token itself
is used as the gloss, replacing pizza. The token
agar is also an OOV item, but because no grams
were predicted by the TRS model, the system does
not make any assumptions about the source POS
tag and defaults to the token predicted by the SRC
model. The resulting final prediction is:

(5) yakko-n wakko-acc stage-dat sit-cause-past

4.3 Evaluation

The system’s performance is evaluated by compar-
ing each gloss in each test IGT’s final output to
the gold standard glosses provided in the datasets.
The system produces a label for each morpheme,
so the recall provides no additional information.
Comparing the final output in Ex. 5 with the gold
gloss in Ex. 2, yakko, n, wakko, stage, cause, and
past are correct for a total of 6/9. The system pre-
cision is given in terms of the micro-average over
all tokens in all the IGT in each languages’ test
dataset.

I further analyze the system output by breaking
down the system performance in terms of stems
and grams. Labels are identified as grams or stems
during the scoring process using a list of grams
collected during the development of ODIN. The
ODIN gram list covers many frequently used cat-
egories such as person, gender and case and has
multiple realizations for each category’s values.

There may be morpheme labels that contain
multiple glosses, each separated by a period. In
these cases, the predicted label is evaluated as a
whole when scoring the system accuracy. When
determining the system performance over stems
and grams, however, the predicted label is split on
each period and each gloss is checked against the
ODIN gram list to determine if it is a gram or not.
The gold label is also split if it contains at least
one period. For each gloss in the gold label, if it
is seen in the predicted label, it is considered cor-
rect, regardless of the order. Because the system
may predict a label that has more or fewer glosses
than the gold label, both the precision and recall
are calculated. Each metric is presented in terms
of the micro-average over all the stem tokens and
the micro-average over all the gram tokens.

Ex. 2 does not contain any instances of a single
label containing multiple glosses, so the combined



Lang. [ISO 639-3] Train Test Acc
Japanese [jpn] 2062 229 77.8%
Korean [kor] 1956 217 75.6%
Norwegian [nob] 958 107 63.1%
Turkish [tur] 894 99 60.3%
Italian [ita] 732 81 59.9%
Russian [rus] 1322 147 53.2%

Table 1: Development languages, number of IGT train-
ing and test instances for each model, and test accuracy.

score for the stems and morphemes is not different
from the morpheme score. In a more complicated
example from the Japanese dataset originally from
Bobaljik (n.d.), there are two instances of multi-
gloss labels, last.night and by.dat.

(6) yuube
last.night

kuruma-ga
car-nom

doroboo-ni
robber-by.dat

nusum-are-ta
steal-pass-past

Last night, cars were stolen by a thief. [jpn]

The SRC model predicts the sequence japanese
car-nom thief-by steal-pass-past. The TRS model
predicts that last, night and thief are glosses. The
rest of the words are not predicted to be aligned,
and the final output is determined to be last car-
nom thief-by steal-pass-past. In this output, the
predicted label for yuube is missing a stem, night,
thief is predicted instead of robber, and the pre-
dicted label for ni is missing a gram, dat. The
morpheme score is 5/8, but the stem precision is
3/4, the gram precision is 4/4, the stem recall is
3/5, and the gram recall is 4/5.

5 Results

The results of all the development languages vary
greatly, ranging from 53.2% to 77.8% accuracy.5

There is a noticeable trend in which the relative
model accuracy is predictable from the number of
test IGT, with the exception of the Russian dataset.
Table 1 shows the number of test IGT, training
IGT, and system accuracy per development lan-
guage. Table 2 shows the same information for the
held-out languages, with an increasing number of
training IGT over the same test set for Abui and
Chintang. In addition to training on the full train-
ing sets, I also train the system on the initial 25%,
50%, and 75% of the training data for Abui and
Chintang to see the effect of training set size on
the system accuracy and train again on a random

5Code and instructions for reproducing these re-
sults are available at https://github.com/

mcmillanmajora/IGTautoglossing.

Lang. [ISO 639-3] Train Test Acc
Matsigenka [mcb] 388 43 84.9%
Chintang [ctn] 6589 677 80.3%

initial 75% 4941 677 74.6%
random 75% 4941 677 74.3%
initial 50% 3294 677 72.6%

random 50% 3294 677 72.5%
initial 25% 1646 677 68.7%

random 25% 1646 677 69.0%
Abui [abz] 4295 447 71.7%

initial 75% 3224 447 69.9%
random 75% 3224 447 70.4%

initial 50% 2149 447 68.7%
random 50% 2149 447 69.1%

initial 25% 1076 447 66.1%
random 25% 1076 447 64.9%

Table 2: Held-out languages, number of training and
test IGT, and test accuracy. Training instances were
selected randomly if random or from the beginning of
the dataset if initial. Test IGT were held constant.

25%, 50%, and 75% of the training data to see the
effect of vocabulary overlap. These datasets in-
clude IGT from different documentation sessions,
so the assumption is that consecutive IGT are more
likely to have been created at the same time and
therefore contain repeated words. These sets are
all tested using the same IGT in the test set for the
full training data experiment.

5.1 Development Languages
Among the development languages, the system
had the highest accuracies with the Korean and
Japanese datasets at 75.6% and 77.8%. The
Japanese training set had just over 2000 IGT and
the Korean training set had just under 2000 IGT.
Both sets had slightly more than 200 test IGT.
The system performed less well over the Italian,
Turkish and Norwegian datasets at 59.9%, 60.3%,
and 63.1%, respectively. These datasets had less
than half the data of the Japanese and Korean
datasets. The system performed worst over the
Russian dataset, at 53.2% accuracy on 1322 train-
ing instances, almost a third more than the Norwe-
gian dataset.

A clearer pattern in the system’s performance
over the development languages arises when the
labels are broken down into stems and grams, as
seen in Table 3. For stems, precision scores range
between 60.9% and 73.3% and recall scores range
between 59.9% and 71.6%, whereas the precision

https://github.com/mcmillanmajora/IGTautoglossing
https://github.com/mcmillanmajora/IGTautoglossing


Lang. Prec. Rec.
Stem Gram Stem Gram

jpn 73.3% 88.2% 71.6% 85.4%
kor 72.1% 83.0% 70.5% 80.5%
nob 63.8% 73.5% 62.7% 65.8%
tur 61.7% 63.8% 61.1% 56.1%
ita 63.6% 60.6% 62.6% 48.8%
rus 60.9% 67.4% 59.9% 49.2%

Table 3: Analysis of system performance on develop-
ment languages with precision and recall for stems and
grams.

scores for grams range between 60.6% and 88.2%
and the recall scores range between 48.8% and
85.4%. Japanese, Korean, and Norwegian all have
higher scores for grams than stems in both preci-
sion and recall. That trend reverses for Turkish,
Italian, and Russian, where the recall for grams
is lower than stems. Japanese, Korean, and Turk-
ish have much lower ratios of stems to grams,
each having about 3 stem morphemes for every
2 grams. Russian, Italian, and Norwegian have
about 5, 7, and 10 stems, respectively, for every 2
grams. Norwegian’s high ratio is likely due to the
syntactic similarity between it and English, which
makes glossing with inflected English words eas-
ier. Because grams are often not annotated as sep-
arate morphemes, poor recall on grams would con-
tribute to over lower scores on morpheme accu-
racy even if the stem is correctly predicted because
the evaluation considers the predicted label as a
whole. This is particularly true in the ODIN data,
which also suffers from errors introduced when
extracting IGT from linguistic papers and from
what Lewis and Xia (2008) call IGT bias. IGT
are most likely presented for a specific phenomena
that is unique within the language and is overly
represented in the paper compared to broader con-
texts. As a result, the set of IGT pulled from a sin-
gle paper are likely skewed and the glossing may
reflect the focus on a particular portion of the sen-
tence, if a full sentence is given.

5.2 Held-out Languages
The system achieved higher accuracies over the
Matsigenka and Chintang datasets than the de-
velopment sets and comparable accuracies for the
Abui dataset. The system achieved a higher ac-
curacy for Matsigenka, 84.9%, than it did for any
of the development datasets, which all had at least
twice as much training data. The system was also

Lang. Prec. Rec.
Stem Gram Stem Gram

mcb 73.5% 96.0% 70.3% 95.8%
ctn 71.2% 92.5% 69.9% 92.9%

init. 75% 60.7% 92.2% 60.4% 92.9%
rand. 75% 60.5% 92.0% 59.9% 92.7%
init. 50% 57.2% 91.1% 56.2% 92.2%

rand. 50% 57.3% 91.1% 56.2% 92.1%
init. 25% 51.0% 88.7% 51.0% 91.1%

rand. 25% 51.1% 89.0% 51.3% 91.3%
abz 70.3% 83.4% 72.5% 85.8%

init. 75% 68.4% 81.9% 70.6% 84.5%
rand. 75% 69.0% 82.7% 71.1% 85.1%

init. 50% 66.9% 81.4% 68.8% 83.4%
rand. 50% 67.8% 82.1% 69.5% 84.5%

init. 25% 63.4% 79.6% 65.6% 82.9%
rand. 25% 63.0% 79.9% 65.0% 81.4%

Table 4: Analysis of system performance on held-out
languages with precion and recall for stems and grams.

trained for randomized and initial subsets of the
training data for Abui and Chintang, resulting in
7 total experiments for each language. Table 2
shows the results on the various splits. The Abui
results range from 66.1% to 71.7% on 447 test
IGT, and the Chintang results range from 69% to
80.3% on 677 test IGT.

The held-out languages do pattern with the
well-performing development datasets in terms of
higher precision and recall for grams than stems.
Table 4 shows the gram precision ranging from
79.6% to 96.0% and the gram recall ranging from
81.4% to 95.8% over all of the datasets. The stem
scores have greater ranges, from 51% to 73.5%
for precision and 51% to 72.5% for recall. The
Chintang and Abui subsets do not differ more than
2% accuracy between the randomized and the non-
randomized training set pairs. The Chintang stem
precision and recall increase the most between the
75% and full sets, but the Abui stems see the
biggest increase between the 25% and 50% sub-
sets.

Samardžić et al. (2015) achieve 96% accu-
racy on 200,000 test word tokens in the Chin-
tang dataset using approximately 800,000 word to-
kens for training. My system is maximally tested
on 7250 Chintang morphemes using only 55,000
training morphemes and achieves 80.3% accuracy.
My system also does not assume any language-
specific metadata, while Samardžić et al. make



use of a Chintang lexicon containing high-quality
source POS tags. They also provide an analysis
of their system’s performance over lexical labels
(stems) and functional labels (grams). In general,
their model’s performance over grams increases
with the training set size, while the performance
over stems remains fairly constant. Samardžić
et al. attribute this pattern to the sequential inclu-
sion of IGT collected from source texts that differ
lexically or stylistically as well as differing anno-
tation schema over these sources.

6 Error Analysis

In investigating the predictions made by the mod-
els and the final output glosses, a number of in-
consistencies in the ODIN datasets became ap-
parent. Processing errors occur when there are
a mismatched number of source morphemes and
gloss labels, such as when a multi-word expres-
sion is used as a single gloss and contains whites-
pace or when a coindexation variable is included
in the source line as a separate token. Some in-
stances also include additional punctuation indi-
cating clausal boundaries. Authors of linguistic
papers use IGT to illustrate syntactic and semantic
properties of languages and these additional anno-
tations are often included to highlight the relevant
information for the audience.

Due to the wide range of authors from which
the ODIN IGT originate, many grams may refer to
the same grammatical concept, as shown in Ex. 2
and 6 from the Japanese dataset. The morpheme
ga indicates the nominative case, but is labeled as
n in Ex. 2 and nom in Ex. 6. The system treats
these labels as unique though they are intended to
be synonymous. In contrast to the unintended am-
biguity, Ex. 7 and Ex. 9 below both contain the
Chintang morpheme lo, but in Ex. 6 it is labeled
as okay and in Ex. 8 it is labeled surp as in the
morpheme indicates the speaker’s surprise.

(7) lo
okay

sat
seven

na
top

maha
not

na
top

okay, not seven [ctn] (Bickel et al., 2009)

Furthermore, lo can also appear as a nominative
suffix for the interrogative pronoun sa, meaning
who (Paudyal, 2015). While these functions are
difficult for the system to differentiate, it can learn
the contexts for each function given enough ex-
amples and consistent annotation. Multiple labels
for the same function, however, will cause the sys-
tem to try to discriminate between instances of the

same context, as in the case of the truly ambiguous
morphemes. Furthermore, the high accuracy over
the test languages suggests that the consistency of
the annotations has a stronger effect on the system
performance than dataset size.

The system also contributes a number of con-
sistent errors. For example, in this IGT from the
Korean dataset the system relies too heavily on the
source line, ignoring the correct TRS model pre-
dictions.

(8) emeni-ka
mother-nom

us-usi-ess-up-nita
smile-sh-pst-pol-dec

mother smiled [kor] (Yang, 1994)

The SRC model predicts the sequence mother-nom
miss-hon-pst-pol-dec and the TRS model predicts
that mother and smile are glosses, however the
system keeps the incorrect gloss miss from the
SRC model because us and miss co-occurred in
the training data. This suggests that overall system
performance might improve if the source predic-
tions were preferred for grams and the translation
predictions for stems.

However, across all of the languages, the TRS
model frequently predicts only the null label, as
seen in Ex. 4. The training data alignments some-
times do not include alignments between grams
and English function words, so a significant por-
tion of the information in the translation line is
not incorporated into the model. Including a pre-
processing step to supplement the INTENT align-
ments by aligning English function words with
likely glosses, such as was and past, may improve
the TRS model accuracy by decreasing the likeli-
hood of the null label.

Further improvements could also be made in the
selection and lemmatization of OOV replacements
from the translation. The system often fails to find
the correct stem, and even when it does find the
stem, it may not be a direct match with gold gloss.

(9) yo-ni
dem.across-dir

terso
straight

lo
surp

nang
but

there straightly [ctn] (Bickel et al., 2009)

In predicting the glosses for the source line in
Ex. 9, the SRC model outputs the sequence
dem.across-dir really surp but. The system identi-
fies terso and straightly as OOV items, but fails to
lemmatize straightly to straight.

This example also shows that the stem and gram
scores for the held-out languages are not entirely
accurate, as the non-ODIN annotations contain
grams like surp not covered by the ODIN gram



list. While this doesn’t affect the the overall mor-
pheme score, it may indicate that the patterns seen
in the held-out data stem and gram scores don’t re-
flect the system’s true performance as reliably as
the patterns over the development data. Allowing
for project-specific gram lists may improve and
provide more confidence in gram and stem scores.

The differing annotation schemata also make
it difficult to draw cross-linguistic conclusions as
each annotation schema is founded in a different
set of theoretical assumptions. These experiments,
however, do show some of the challenges that ma-
chine learning techniques have with language as a
data type as opposed to other sequential data. Be-
cause of the learning algorithm’s reliance on the
surrounding context of each label to make predic-
tions, the linguistic properties that introduce more
possible answers to a morpheme’s label due to am-
biguous contexts make the predictions more diffi-
cult. For example, non-concatenative morphology,
highly polysemous source morphemes, and irreg-
ularities in word order will all compound to make
the information that the algorithm is able to learn
from the training data more sparse. All languages
contain these complexities to some degree, but the
amount that is present in the training data will have
a large effect on the system performance.

7 Future Work

Over all the languages, the system performance
would improve by modifying how the system bal-
ances the information from the SRC and TRS
models. Providing confidence scores for each pre-
dicted gloss and reducing the influence of the SRC
model are immediate steps toward better accura-
cies. A pretrained TRS model over multiple lan-
guage datasets may also minimize the number of
OOV items in the model, thereby increasing the
confidence of non-null glosses. Georgi (2016) saw
a boost in the precision of alignments between the
gloss line and the translation line using this tech-
nique with a statistical aligner, though the heuris-
tic approach ultimately had a better F1 score due
to higher recall. Georgi proposed that this was due
to the variable word order of the gloss line when
combining data from across languages, which sug-
gests that the classification approach may be more
robust to this variation as the model is learning
the mapping from the translation word to the gloss
rather than the alignment itself.

While the current implementation focuses on

English translations, the submodules for POS tag-
ging and dependency parsing could be modified
to support documentation efforts using other high-
resource languages. Further modification of the
feature input system would allow users to make
use of any additional resources available to their
project. Confidence scores on all output labels
would also help the end user in quickly identify-
ing possible OOV or ambiguous tokens.6 Once
the model performance has been optimized over
the available datasets, the true test of the system
would be to monitor usability and its effect on the
number of human hours required in an ongoing
documentation project, as in Palmer et al. (2009).

8 Conclusion

This work outlines an initial supervised system for
automatically annotating IGT given a morpheme-
segmented source phrase and its translation. The
system uses CRFs to predict the glosses from the
source and translation lines individually and com-
bines the information in a heuristic fashion to form
a final prediction. The system was developed on
six languages from ODIN, and tested on held-out
languages. The held-out language datasets were
provided by linguists and native speaker collabo-
rators, modeling the intended use case of a docu-
mentation project. An intrinsic evaluation shows
that system performs better on the held-out lan-
guage datasets than the development data from
ODIN, but the error analysis suggests that this is
due to differences in annotation practices. Further
work is needed to improve the system’s final pre-
diction selection, particularly with regards to OOV
items.
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A Model Features

Using Ex. 2 as an illustration of the tagging pro-
cess at test time, the system takes the source line as
input then formats it to be fed into the SRC model.
The representations for the first three morphemes
can be seen in Table 5, where i is the current posi-
tion in the sequence, mi is the current morpheme,
wi is the current word, wi�1 is the previous word,
mi+1 in wi is the following morpheme if it oc-
curs within the same word as mi, and so on. The
value BOS refers to the beginning of the sentence,
and the value for the wi+1 feature for phrase-final
morphemes is EOS, which refers to the end of the
sentence.

feat. name i = m1 i = m2 i = m3...
mi yakko ga wakko
wi yakko-ga yakko-ga wakko-o

wi�1 BOS BOS yakko-ga
wi+1 wakko-o wakko-o butai-ni

mi�1 in wi NONE yakko NONE
mi+1 in wi ga NONE o

Table 5: Feature representation of the source line.

Again using Ex. 2, the TRS model would take
the translation line as input and format it to be fed
into the model. The representations for the first
three words can be seen in Table 6, where i is the
current position in the sequence, twi is the current
translation word, dsi is the dependency structure
tag of the current word as given by the INTENT
system, psi is the POS tag as given by INTENT,
and lemi is the lemma of the word as given by the
StanfordNLP lemmatizer.

feat. name i = tw1 i = tw2 i = tw3...
twi yakko made wakko
dsi nsubj root dobj
psi nnp vbd nnp

lemi yakko make wakko

Table 6: Feature representation of the translation line.
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Abstract

Contextualized word embeddings, i.e. vector
representations for words in context, are nat-
urally seen as an extension of previous non-
contextual distributional semantic models. In
this work, we focus on BERT, a deep neural
network that produces contextualized embed-
dings and has set the state-of-the-art in several
semantic tasks, and study the semantic coher-
ence of its embedding space. While showing
a tendency towards coherence, BERT does not
fully live up to the natural expectations for a
semantic vector space. In particular, we find
that the position of the sentence in which a
word occurs, while having no meaning corre-
lates, leaves a noticeable trace on the word em-
beddings and disturbs similarity relationships.

1 Introduction

A recent success story of NLP, BERT (Devlin et al.,
2018) stands at the crossroad of two key innova-
tions that have brought about significant improve-
ments over previous state-of-the-art results. On
the one hand, BERT models are an instance of con-
textual embeddings (McCann et al., 2017; Peters
et al., 2018), which have been shown to be subtle
and accurate representations of words within sen-
tences. On the other hand, BERT is a variant of the
Transformer architecture (Vaswani et al., 2017)
which has set a new state-of-the-art on a wide
variety of tasks ranging from machine translation
(Ott et al., 2018) to language modeling (Dai et al.,
2019). BERT-based models have significantly in-
creased state-of-the-art over the GLUE benchmark
for natural language understanding (Wang et al.,
2019b) and most of the best scoring models for
this benchmark include or elaborate on BERT. Us-
ing BERT representations has become in many
cases a new standard approach: for instance, all
submissions at the recent shared task on gendered
pronoun resolution (Webster et al., 2019) were

based on BERT. Furthermore, BERT serves both
as a strong baseline and as a basis for a fine-
tuned state-of-the-art word sense disambiguation
pipeline (Wang et al., 2019a).

Analyses aiming to understand the mechanical
behavior of Transformers in general, and BERT in
particular, have suggested that they compute word
representations through implicitly learned syntac-
tic operations (Raganato and Tiedemann, 2018;
Clark et al., 2019; Coenen et al., 2019; Jawa-
har et al., 2019, a.o.): representations computed
through the ‘attention’ mechanisms of Transform-
ers can arguably be seen as weighted sums of
intermediary representations from the previous
layer, with many attention heads assigning higher
weights to syntactically related tokens (however,
contrast with Brunner et al., 2019; Serrano and
Smith, 2019).

Complementing these previous studies, in this
paper we adopt a more theory-driven lexical se-
mantic perspective. While a clear parallel was es-
tablished between ‘traditional’ noncontextual em-
beddings and the theory of distributional seman-
tics (a.o. Lenci, 2018; Boleda, 2019), this link is
not automatically extended to contextual embed-
dings: some authors (Westera and Boleda, 2019)
even explicitly consider only “context-invariant”
representations as distributional semantics. Hence
we study to what extent BERT, as a contextual em-
bedding architecture, satisfies the properties ex-
pected from a natural contextualized extension of
distributional semantics models (DSMs).

DSMs assume that meaning is derived from use
in context. DSMs are nowadays systematically
represented using vector spaces (Lenci, 2018).
They generally map each word in the domain of
the model to a numeric vector on the basis of
distributional criteria; vector components are in-
ferred from text data. DSMs have also been com-
puted for linguistic items other than words, e.g.,



word senses—based both on meaning inventories
(Rothe and Schütze, 2015) and word sense induc-
tion techniques (Bartunov et al., 2015)—or mean-
ing exemplars (Reisinger and Mooney, 2010; Erk
and Padó, 2010; Reddy et al., 2011). The default
approach has however been to produce represen-
tations for word types. Word properties encoded
by DSMs vary from morphological information
(Marelli and Baroni, 2015; Bonami and Paperno,
2018) to geographic information (Louwerse and
Zwaan, 2009), to social stereotypes (Bolukbasi
et al., 2016) and to referential properties (Herbe-
lot and Vecchi, 2015).

A reason why contextualized embeddings have
not been equated to distributional semantics may
lie in that they are “functions of the entire input
sentence” (Peters et al., 2018). Whereas tradi-
tional DSMs match word types with numeric vec-
tors, contextualized embeddings produce distinct
vectors per token. Ideally, the contextualized na-
ture of these embeddings should reflect the seman-
tic nuances that context induces in the meaning of
a word—with varying degrees of subtlety, rang-
ing from broad word-sense disambiguation (e.g.
‘bank’ as a river embankment or as a financial
institution) to narrower subtypes of word usage
(‘bank’ as a corporation or as a physical building)
and to more context-specific nuances.

Regardless of how apt contextual embeddings
such as BERT are at capturing increasingly finer
semantic distinctions, we expect the contextual
variation to preserve the basic DSM properties.
Namely, we expect that the space structure en-
codes meaning similarity and that variation within
the embedding space is semantic in nature. Simi-
lar words should be represented with similar vec-
tors, and only semantically pertinent distinctions
should affect these representations. We connect
our study with previous work in section 2 be-
fore detailing the two approaches we followed.
First, we verify in section 3 that BERT embeddings
form natural clusters when grouped by word types,
which on any account should be groups of similar
words and thus be assigned similar vectors. Sec-
ond, we test in sections 4 and 5 that contextualized
word vectors do not encode semantically irrelevant
features: in particular, leveraging some knowledge
from the architectural design of BERT, we address
whether there is no systematic difference between
BERT representations in odd and even sentences
of running text—a property we refer to as cross-

sentence coherence. In section 4, we test whether
we can observe cross-sentence coherence for sin-
gle tokens, whereas in section 5 we study to what
extent incoherence of representations across sen-
tences affects the similarity structure of the seman-
tic space. We summarize our findings in section 6.

2 Theoretical background & connections

Word embeddings have been said to be ‘all-
purpose’ representations, capable of unifying the
otherwise heterogeneous domain that is NLP (Tur-
ney and Pantel, 2010). To some extent this claim
spearheaded the evolution of NLP: focus recently
shifted from task-specific architectures with lim-
ited applicability to universal architectures requir-
ing little to no adaptation (Radford, 2018; Devlin
et al., 2018; Radford et al., 2019; Yang et al., 2019;
Liu et al., 2019, a.o.).

Word embeddings are linked to the distribu-
tional hypothesis, according to which “you shall
know a word from the company it keeps” (Firth,
1957). Accordingly, the meaning of a word can be
inferred from the effects it has on its context (Har-
ris, 1954); as this framework equates the meaning
of a word to the set of its possible usage contexts,
it corresponds more to holistic theories of meaning
(Quine, 1960, a.o.) than to truth-value accounts
(Frege, 1892, a.o.). In early works on word em-
beddings (Bengio et al., 2003, e.g.), a straightfor-
ward parallel between word embeddings and dis-
tributional semantics could be made: the former
are distributed representations of word meaning,
the latter a theory stating that a word’s meaning is
drawn from its distribution. In short, word embed-
dings could be understood as a vector-based im-
plementation of the distributional hypothesis. This
parallel is much less obvious for contextual em-
beddings: are constantly changing representations
truly an apt description of the meaning of a word?

More precisely, the literature on distributional
semantics has put forth and discussed many math-
ematical properties of embeddings: embeddings
are equivalent to count-based matrices (Levy and
Goldberg, 2014b), expected to be linearly depen-
dant (Arora et al., 2016), expressible as a unitary
matrix (Smith et al., 2017) or as a perturbation
of an identity matrix (Yin and Shen, 2018). All
these properties have however been formalized for
non-contextual embeddings: they were formulated
using the tools of matrix algebra, under the as-
sumption that embedding matrix rows correspond



to word types. Hence they cannot be applied as
such to contextual embeddings. This disconnect
in the literature leaves unanswered the question of
what consequences there are to framing contextu-
alized embeddings as DSMs.

The analyses that contextual embeddings have
been subjected to differ from most analyses of dis-
tributional semantics models. Peters et al. (2018)
analyzed through an extensive ablation study of
ELMo what information is captured by each layer
of their architecture. Devlin et al. (2018) dis-
cussed what part of their architecture is criti-
cal to the performances of BERT, comparing pre-
training objectives, number of layers and train-
ing duration. Other works (Raganato and Tiede-
mann, 2018; Hewitt and Manning, 2019; Clark
et al., 2019; Voita et al., 2019; Michel et al., 2019)
have introduced specific procedures to understand
how attention-based architectures function on a
mechanical level. Recent research has however
questioned the pertinence of these attention-based
analyses (Serrano and Smith, 2019; Brunner et al.,
2019); moreover these works have focused more
on the inner workings of the networks than on their
adequacy with theories of meaning.

One trait of DSMs that is very often encoun-
tered, discussed and exploited in the literature is
the fact that the relative positions of embeddings
are not random. Early vector space models, by de-
sign, required that word with similar meanings lie
near one another (Salton et al., 1975); as a conse-
quence, regions of the vectors space describe co-
herent semantic fields.1 Despite the importance
of this characteristic, the question whether BERT
contextual embeddings depict a coherent semantic
space on their own has been left mostly untouched
by papers focusing on analyzing BERT or Trans-
formers (with some exceptions, e.g. Coenen et al.,
2019). Moreover, many analyses of how mean-
ing is represented in attention-based networks or
contextual embeddings include “probes” (learned
models such as classifiers) as part of their evalu-
ation setup to ‘extract’ information from the em-
beddings (Peters et al., 2018; Tang et al., 2018;
Coenen et al., 2019; Chang and Chen, 2019, e.g.).
Yet this methodology has been criticized as po-
tentially conflicting with the intended purpose of
studying the representations themselves (Wieting
and Kiela, 2019; Cover, 1965); cf. also Hewitt and

1Vectors encoding contrasts between words are also ex-
pected to be coherent (Mikolov et al., 2013b), although this
assumption has been subjected to criticism (Linzen, 2016).

Liang (2019) for a discussion. We refrain from
using learned probes in favor of a more direct as-
sessment of the coherence of the semantic space.

3 Experiment 1: Word Type Cohesion
The trait of distributional spaces that we focus
on in this study is that similar words should lie
in similar regions of the semantic space. This
should hold all the more so for identical words,
which ought to be be maximally similar. By de-
sign, contextualized embeddings like BERT exhibit
variation within vectors corresponding to identical
word types. Thus, if BERT is a DSM, we expect that
word types form natural, distinctive clusters in the
embedding space. Here, we assess the coherence
of word type clusters by means of their silhouette
scores (Rousseeuw, 1987).

3.1 Data & Experimental setup
Throughout our experiments, we used the Guten-
berg corpus as provided by the NLTK platform,
out of which we removed older texts (King John’s
Bible and Shakespeare). Sentences are enumer-
ated two by two; each pair of sentences is then
used as a distinct input source for BERT. As we
treat the BERT algorithm as a black box, we re-
trieve only the embeddings from the last layer,
discarding all intermediary representations and at-
tention weights. We used the bert-large-
uncased model in all experiments2; therefore
most of our experiments are done on word-pieces.

To study the basic coherence of BERT’s seman-
tic space, we can consider types as clusters of
tokens—i.e. specific instances of contextualized
embeddings—and thus leverage the tools of clus-
ter analysis. In particular, silhouette score is gen-
erally used to assess whether a specific observa-
tion ~v is well assigned to a given cluster Ci drawn
from a set of possible clusters C. The silhouette
score is defined in eq. 1:

sep(~v, Ci) =min{mean
~v02Cj

d(~v, ~v0)8 Cj 2 C � {Ci}}

coh(~v, Ci) = mean
~v02Ci�{~v}

d(~v, ~v0)

silh(~v, Ci) =
sep(~v, Ci)� coh(~v, Ci)

max{sep(~v, Ci), coh(~v, Ci)}
(1)

We used Euclidean distance for d. In our case,
observations ~v therefore correspond to tokens (that
is, word-piece tokens), and clusters Ci to types.

2Measurements were conducted before the release of the
bert-large-uncased-whole-words model.



Silhouette scores consist in computing for each
vector observation ~v a cohesion score (viz. the av-
erage distance to other observations in the cluster
Ci) and a separation score (viz. the minimal av-
erage distance to other observations, i.e. the min-
imal ‘cost’ of assigning ~v to any other cluster
than Ci). Optimally, cohesion is to be minimized
and separation is to be maximized, and this is re-
flected in the silhouette score itself: scores are de-
fined between -1 and 1; -1 denotes that the ob-
servation ~v should be assigned to another cluster
than Ci, whereas 1 denotes that the observation ~v
is entirely consistent with the cluster Ci. Keep-
ing track of silhouette scores for a large number
of vectors quickly becomes intractable, hence we
use a slightly modified version of the above def-
inition, and compute separation and cohesion us-
ing the distance to the average vector for a clus-
ter rather than the average distance to other vec-
tors in a cluster, as suggested by Vendramin et al.
(2013). Though results are not entirely equivalent
as they ignore the inner structure of clusters, they
still present a gross view of the consistency of the
vector space under study.

We do note two caveats with our proposed
methodology. Firstly, BERT uses subword repre-
sentations, and thus BERT tokens do not necessar-
ily correspond to words. However we may conjec-
ture that some subwords exhibit coherent mean-
ings, based on whether they tightly correspond
to morphemes—e.g. ‘##s’, ‘##ing’ or ‘##ness’.
Secondly, we group word types based on char-
acter strings; yet only monosemous words should
describe perfectly coherent clusters—whereas we
expect some degree of variation for polysemous
words and homonyms according to how widely
their meanings may vary.

3.2 Results & Discussion

We compared cohesion to separation scores using
a paired Student’s t-test, and found a significant
effect (p-value < 2 · 2�16). This highlights that
cohesion scores are lower than separation scores.
The effect size as measured by Cohen’s d (Cohen’s
d = �0.121) is however rather small, suggesting
that cohesion scores are only 12% lower than sep-
aration scores. More problematically, we can see
in figure 1 that 25.9% of the tokens have a nega-
tive silhouette score: one out of four tokens would
be better assigned to some other type than the one
they belong to. When aggregating scores by types,

Figure 1: Distribution of token silhouette scores

we found that 10% of types contained only tokens
with negative silhouette score.

The standards we expect of DSMs are not al-
ways upheld strictly; the median and mean score
are respectively at 0.08 and 0.06, indicating a gen-
eral trend of low scores, even when they are posi-
tive. We previously noted that both the use of sub-
word representations in BERT as well as polysemy
and homonymy might impact these results. The
amount of meaning variation induced by polysemy
and homonymy can be estimated by using a dictio-
nary as a sense inventory. The number of distinct
entries for a type serves as a proxy measure of how
much its meaning varies in use. We thus used a
linear model to predict silhouette scores with log-
scaled frequency and log-scaled definition counts,
as listed in the Wiktionary, as predictors. We se-
lected tokens for which we found at least one en-
try in the Wiktionary, out of which we then ran-
domly sampled 10000 observations. Both defini-
tion counts and frequency were found to be signif-
icant predictors, leading the silhouette score to de-
crease. This suggests that polysemy degrades the
cohesion score of the type cluster, which is com-
patible with what one would expect from a DSM.
We moreover observed that monosemous words
yielded higher silhouette scores than polysemous
words (p < 2 · 2�16, Cohen’s d = 0.236), though
they still include a substantial number of tokens
with negative silhouette scores.

Similarity also includes related words, and not
only tokens of the same type. Other studies (Vial
et al., 2019; Coenen et al., 2019, e.g.) already
stressed that BERT embeddings perform well on
word-level semantic tasks. To directly assess
whether BERT captures this broader notion of sim-
ilarity, we used the MEN word similarity dataset



(Bruni et al., 2014), which lists pairs of English
words with human annotated similarity ratings.
We removed pairs containing words for which we
had no representation, leaving us with 2290 pairs.
We then computed the Spearman correlation be-
tween similarity ratings and the cosine of the av-
erage BERT embeddings of the two paired word
types, and found a correlation of 0.705, showing
that cosine similarity of average BERT embeddings
encodes semantic similarity. For comparison, a
word2vec DSM (Mikolov et al., 2013a, henceforth
W2V) trained on BooksCorpus (Zhu et al., 2015)
using the same tokenization as BERT achieved a
correlation of 0.669.

4 Experiment 2: Cross-Sentence
Coherence

As observed in the previous section, overall the
word type coherence in BERT tends to match our
basic expectations. In this section, we do further
tests, leveraging our knowledge of the design of
BERT. We detail the effects of jointly using seg-
ment encodings to distinguish between paired in-
put sentences and residual connections.

4.1 Formal approach

We begin by examining the architectural design
of BERT. We give some elements relevant to
our study here and refer the reader to the orig-
inal papers by Vaswani et al. (2017) and Devlin
et al. (2018), introducing Transformers and BERT,
for a more complete description. On a formal
level, BERT is a deep neural network composed
of superposed layers of computations. Each layer
is composed of two “sub-layers”: the first per-
forming “multi-head attention”, the second be-
ing a simple feed-forward network. Throughout
all layers, after each sub-layer, residual connec-
tions and layer normalization are applied, thus the
intermediary output ~oL after sub-layer L can be
written as a function of the input ~xL, as ~oL =
LayerNorm(SubL( ~xL) + ~xL).

BERT is optimized on two training objectives.
The first, called masked language model, is a vari-
ation on the Cloze test for reading proficiency
(Taylor, 1953). The second, called next sen-
tence prediction (NSP), corresponds to predicting
whether two sentences are found one next to the
other in the original corpus or not. Each example
passed as input to BERT is comprised of two sen-
tences, either contiguous sentences from a docu-

ment, or randomly selected sentences. A special
token [SEP] is used to indicate sentence bound-
aries, and the full sentence is prepended with a
second special token [CLS] used to perform the
actual prediction for NSP. Each token is trans-
formed into an input vector using an input em-
bedding matrix. To distinguish between tokens
from the first and the second sentence, the model
adds a learned feature vector ~segA to all tokens
from first sentences, and a distinct learned feature
vector ~segB to all tokens from second sentences;
these feature vectors are called ‘segment encod-
ings’. Lastly, as Transformer models do not have
an implicit representation of word-order, informa-
tion regarding the index i of the token in the sen-
tence is added using a positional encoding p(i).
Therefore, if the initial training example was “My
dog barks. It is a pooch.”, the actual input would
correspond to the following sequence of vectors:

~[CLS]+ ~p(0) + ~segA, ~My + ~p(1) + ~segA,

~dog + ~p(2) + ~segA, ~barks+ ~p(3) + ~segA,

~.+ ~p(4) + ~segA, ~[SEP]+ ~p(5) + ~segA,

~It+ ~p(6) + ~segB, ~is+ ~p(7) + ~segB,

~a+ ~p(8) + ~segB, ~pooch+ ~p(9) + ~segB,

~.+ ~p(10) + ~segB, ~[SEP]+ ~p(11) + ~segB

Due to the general use of residual connections,
marking the sentences using the segment encod-
ings ~segA and ~segB can introduce a systematic
offset within sentences. Consider that the first
layer uses as input vectors corresponding to word,
position, and sentence information: ~wi + ~p(i) +

~segi; for simplicity, let ~ii = ~wi + ~p(i); we also
ignore the rest of the input as it does not impact
this reformulation. The output from the first sub-
layer ~o1i can be written:

~o1i = LayerNorm(Sub1(~ii + ~segi) + ~ii + ~segi)

= ~bl + ~g1 � 1

�1
i

Sub1(~ii + ~segi) + ~g1 � 1

�1
i

~ii

� ~g1 � 1

�1
i

µ(Sub1(~ii + ~segi) + ~ii + ~segi)

+ ~g1 � 1

�1
i

~segi

= ~̃o1i + ~g1 � 1

�1
i

~segi (2)

This equation is obtain by simply injecting the
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Figure 2: Segment encoding bias

definition for layer-normalization.3 Therefore, by
recurrence, the final output ~oLi for a given token
~wi + ~p(i) + ~segi can be written as:

~oLi = ~̃oLi +

 
LK

l=1

~gl
!

�
 

LY

l=1

1

�l
i

!
⇥ ~segi (3)

This rewriting trick shows that segment encod-
ings are partially preserved in the output. All em-
beddings within a sentence contain a shift in a
specific direction, determined only by the initial
segment encoding and the learned gain parameters
for layer normalization. In figure 2, we illustrate
what this systematic shift might entail. Prior to the
application of the segment encoding bias, the se-
mantic space is structured by similarity (‘pooch’ is
near ‘dog’); with the bias, we find a different set
of characteristics: in our toy example, tokens are
linearly separable by sentences.

3Layer normalization after sub-layer l is defined as:

LayerNorml(~x) = ~bl +
~gl � (~x� µ(~x))

�

= ~bl + ~gl �
1
�
~x� ~gl �

1
�
µ(~x)

where ~bl is a bias, � denotes element-wise multiplication, ~gl
is a “gain” parameter, � is the standard deviation of compo-
nents of ~x and µ(~x) = hx̄, . . . , x̄i is a vector with all compo-
nents defined as the mean of components of ~x.

4.2 Data & Experimental setup
If BERT properly describes a semantic vector
space, we should, on average, observe no signifi-
cant difference in token encoding imputable to the
segment the token belongs to. For a given word
type w, we may constitute two groups: wsegA , the
set of tokens for this type w belonging to first sen-
tences in the inputs, and wsegB , the set of tokens
of w belonging to second sentences. If BERT coun-
terbalances the segment encodings, random differ-
ences should cancel out, and therefore the mean of
all tokens wsegA should be equivalent to the mean
of all tokens wsegB .

We used the same dataset as in section 3. This
setting (where all paired input sentences are drawn
from running text) allows us to focus on the effects
of the segment encodings. We retrieved the output
embeddings of the last BERT layer and grouped
them per word type. To assess the consistency of
a group of embeddings with respect to a purported
reference, we used a mean of squared error (MSE):
given a group of embeddings E and a reference
vector ~r, we computed how much each vector in
E strayed from the reference ~r. It is formally de-
fined as:

MSE(E,~r) =
1

#E

X

~v2E

X

d

(~vd � ~rd)
2 (4)

This MSE can also be understood as the average
squared distance to the reference ~r. When ~r = E,
i.e. ~r is set to be the average vector in E, the
MSE measures variance of E via Euclidean dis-
tance. We then used the MSE function to construct
pairs of observations: for each word type w, and
for each segment encoding segi, we computed
two scores: MSE(wsegi , wsegi)—which gives us
an assessment of how coherent the set of embed-
dings wsegi is with respect to the mean vector
in that set—and MSE(wsegi , wsegj )—which as-
sesses how coherent the same group of embed-
dings is with respect to the mean vector for the
embeddings of the same type, but from the other
segment segj . If no significant contrast between
these two scores can be observed, then BERT coun-
terbalances the segment encodings and is coherent
across sentences.

4.3 Results & Discussion
We compared results using a paired Student’s t-
test, which highlighted a significant difference
based on which segment types belonged to (p-
value < 2 · 2�16); the effect size (Cohen’s d =



Figure 3: Log-scaled MSE per reference

�0.527) was found to be stronger than what we
computed when assessing whether tokens cluster
according to their types (cf. section 3). A vi-
sual representation of these results, log-scaled, is
shown in figure 3. For all sets wsegi , the average
embedding from the set itself was systematically
a better fit than the average embedding from the
paired set wsegj . We also noted that a small num-
ber of items yielded a disproportionate difference
in MSE scores and that frequent word types had
smaller differences in MSE scores: roughly speak-
ing, very frequent items—punctuation signs, stop-
words, frequent word suffixes—received embed-
dings that are almost coherent across sentences.

Although the observed positional effect of em-
beddings’ inconsistency might be entirely due to
segment encodings, additional factors might be
at play. In particular, BERT uses absolute posi-
tional encoding vectors to order words within a
sequence: the first word w1 is marked with the po-
sitional encoding p(1), the second word w2 with
p(1), and so on until the last word, wn, marked
with p(n). As these positional encodings are
added to the word embeddings, the same remark
made earlier on the impact of residual connections
may apply to these positional encodings as well.
Lastly, we also note that many downstream appli-
cations use a single segment encoding per input,
and thus sidestep the caveat stressed here.

5 Experiment 3: Sentence-level structure

We have seen that BERT embeddings do not fully
respect cross-sentence coherence; the same type
receives somewhat different representations for

occurrences in even and odd sentences. However,
comparing tokens of the same type in consecutive
sentences is not necessarily the main application
of BERT and related models. Does the segment-
based representational variance affect the structure
of the semantic space, instantiated in similarities
between tokens of different types? Here we inves-
tigate how segment encodings impact the relation
between any two tokens in a given sentence.

5.1 Data & Experimental setup
Consistent with previous experiments, we used
the same dataset (cf. section 3); in this experi-
ment also mitigating the impact of the NSP objec-
tive was crucial. Sentences were thus passed two
by two as input to the BERT model. As cosine
has been traditionally used to quantify semantic
similarity between words (Mikolov et al., 2013b;
Levy and Goldberg, 2014a, e.g.), we then com-
puted pairwise cosine of the tokens in each sen-
tence. This allows us to reframe our assessment of
whether lexical contrasts are coherent across sen-
tences as a comparison of semantic dissimilarity
across sentences. More formally, we compute the
following set of cosine scores CS for each sen-
tence S:

CS = {cos(~v, ~u) | ~v 6= ~u ^ ~v, ~u 2 ES} (5)

with ES the set of embeddings for the sentence S.
In this analysis, we compare the union of all sets of
cosine scores for first sentences against the union
of all sets of cosine scores for second sentences.
To avoid asymmetry, we remove the [CLS] token
(only present in first sentences), and as with pre-
vious experiments we neutralize the effects of the
NSP objective by using only consecutive sentences
as input.

5.2 Results & Discussion
We compared cosine scores for first and second
sentences using a Wilcoxon rank sum test. We
observed a significant effect, however small (Co-
hen’s d = 0.011). This may perhaps be due to data
idiosyncrasies, and indeed when comparing with a
W2V (Mikolov et al., 2013a) trained on BooksCor-
pus (Zhu et al., 2015) using the same tokeniza-
tion as BERT, we do observe a significant effect
(p < 0.05). However the effect size is six times
smaller (d = 0.002) than what we found for BERT
representations; moreover, when varying the sam-
ple size (cf. figure 4), p-values for BERT represen-
tations drop much faster to statistical significance.
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Figure 4: Wilcoxon tests, 1st vs. 2nd sentences

A possible reason for the larger discrepancy ob-
served in BERT representations might be that BERT
uses absolute positional encodings, i.e. the kth

word of the input is encoded with p(k). There-
fore, although all first sentences of a given length l
will be indexed with the same set of positional en-
codings {p(1), . . . , p(l)}, only second sentences
of a given length l preceded by first sentences of
a given length j share the exact same set of posi-
tional encodings {p(j + 1), . . . , p(j + l)}. As
highlighted previously, the residual connections
ensure that the segment encodings were partially
preserved in the output embedding: the same argu-
ment can be made for positional encodings. In any
event, the fact is that we do observe on BERT rep-
resentations an effect of segment on sentence-level
structure. This effect is greater than one can blame
on data idiosyncrasies, as verified by the compari-
son with a traditional DSM such as W2V. If we are
to consider BERT as a DSM, we must do so at the
cost of cross-sentence coherence.

The analysis above suggests that embeddings
for tokens drawn from first sentences live in a
different semantic space than tokens drawn from
second sentences, i.e. that BERT contains two
DSMs rather than one. If so, the comparison be-
tween two sentence-representations from a single
input would be meaningless, or at least less co-
herent than the comparison of two sentence rep-
resentations drawn from the same sentence posi-
tion. To test this conjecture, we use two compo-
sitional semantics benchmarks: STS (Cer et al.,
2017) and SICK-R (Marelli et al., 2014). These
datasets are structured as triplets, grouping a pair

Model STS cor. SICK-R cor.
Skip-Thought 0.255 60 0.487 62
USE 0.666 86 0.689 97
InferSent 0.676 46 0.709 03

BERT, 2 sent. ipt. 0.359 13 0.369 92
BERT, 1 sent. ipt. 0.482 41 0.586 95
W2V 0.370 17 0.533 56

Table 1: Correlation (Spearman ⇢) of cosine simi-
larity and relatedness ratings on the STS and SICK-
R benchmarks

of sentences with a human-annotated relatedness
score. The original presentation of BERT (Devlin
et al., 2018) did include a downstream application
to these datasets, but employed a learned classi-
fier, which obfuscates results (Wieting and Kiela,
2019; Cover, 1965; Hewitt and Liang, 2019).
Hence we simply reduce the sequence of tokens
within each sentence into a single vector by sum-
ming them, a simplistic yet robust semantic com-
position method. We then compute the Spearman
correlation between the cosines of the two sum
vectors and the sentence pair’s relatedness score.
We compare two setups: a “two sentences input”
scheme (or 2 sent. ipt. for short)—where we use
the sequences of vectors obtained by passing the
two sentences as a single input—and a “one sen-
tence input” scheme (1 sent. ipt.)—using two dis-
tinct inputs of a single sentence each.

Results are reported in table 1; we also pro-
vide comparisons with three different sentence en-
coders and the aforementioned W2V model. As
we had suspected, using sum vectors drawn from
a two sentence input scheme single degrades per-
formances below the W2V baseline. On the other
hand, a one sentence input scheme seems to pro-
duce coherent sentence representations: in that
scenario, BERT performs better than W2V and
the older sentence encoder Skip-Thought (Kiros
et al., 2015), but worse than the modern USE
(Cer et al., 2018) and Infersent (Conneau et al.,
2017). The comparison with W2V also shows
that BERT representations over a coherent input
are more likely to include some form of composi-
tional knowledge than traditional DSMs; however
it is difficult to decide whether some true form of
compositionality is achieved by BERT or whether
these performances are entirely a by-product of
the positional encodings. In favor of the former,
other research has suggested that Transformer-



based architectures perform syntactic operations
(Raganato and Tiedemann, 2018; Hewitt and Man-
ning, 2019; Clark et al., 2019; Jawahar et al., 2019;
Voita et al., 2019; Michel et al., 2019). In all, these
results suggest that the semantic space of token
representations from second sentences differ from
that of embeddings from first sentences.

6 Conclusions

Our experiments have focused on testing to what
extent similar words lie in similar regions of
BERT’s latent semantic space. Although we saw
that type-level semantics seem to match our gen-
eral expectations about DSMs, focusing on details
leaves us with a much foggier picture.

The main issue stems from BERT’s “next sen-
tence prediction objective”, which requires tokens
to be marked according to which sentence they be-
long. This introduces a distinction between first
and second sentence of the input that runs con-
trary to our expectations in terms of cross-sentence
coherence. The validity of such a distinction for
lexical semantics may be questioned, yet its ef-
fects can be measured. The primary assessment
conducted in section 3 shows that token repre-
sentations did tend to cluster naturally according
to their types, yet a finer study detailed in sec-
tion 4 highlights that tokens from distinct sen-
tence positions (even vs. odd) tend to have dif-
ferent representations. This can seen as a direct
consequence of BERT’s architecture: residual con-
nections, along with the use of specific vectors to
encode sentence position, entail that tokens for a
given sentence position are ‘shifted’ with respect
to tokens for the other position. Encodings have a
substantial effect on the structure of the semantic
subspaces of the two sentences in BERT input. Our
experiments demonstrate that assuming sameness
of the semantic space across the two input sen-
tences can lead to a significant performance drop
in semantic textual similarity.

One way to overcome this violation of cross-
sentence coherence would be to consider first and
second sentences representations as belonging to
distinct distributional semantic spaces. The fact
that first sentences were shown to have on aver-
age higher pairwise cosines than second sentences
can be partially explained by the use of absolute
positional encodings in BERT representations. Al-
though positional encodings are required so that
the model does not devolve into a bag-of-word

system, absolute encodings are not: other works
have proposed alternative relative position encod-
ings (Shaw et al., 2018; Dai et al., 2019, e.g.); re-
placing the former with the latter may alleviate the
gap in lexical contrasts. Other related questions
that we must leave to future works encompass
testing on other BERT models such as the whole-
words model, or that of Liu et al. (2019) which
differs only by its training objectives, as well as
other contextual embeddings architectures.

Our findings suggest that the formulation of the
NSP objective of BERT obfuscates its relation to
distributional semantics, by introducing a system-
atic distinction between first and second sentences
which impacts the output embeddings. Similarly,
other works (Lample and Conneau, 2019; Yang
et al., 2019; Joshi et al., 2019; Liu et al., 2019)
stress that the usefulness and pertinence of the NSP
task were not obvious. These studies favored an
empirical point of view; here, we have shown what
sorts of caveats came along with such artificial dis-
tinctions from the perspective of a theory of lexi-
cal semantics. We hope that future research will
extend and refine these findings, and further our
understanding of the peculiarities of neural archi-
tectures as models of linguistic structure.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res., 3:1137–1155.

http://arxiv.org/abs/1601.03764
http://arxiv.org/abs/1601.03764
http://arxiv.org/abs/1502.07257
http://arxiv.org/abs/1502.07257
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=944919.944966


Gemma Boleda. 2019. Distributional semantics and
linguistic theory. CoRR, abs/1905.01896.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou,
Venkatesh Saligrama, and Adam T Kalai. 2016.
Man is to computer programmer as woman is to
homemaker? debiasing word embeddings. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 4349–4357. Curran
Associates, Inc.

Olivier Bonami and Denis Paperno. 2018. A charac-
terisation of the inflection-derivation opposition in a
distributional vector space. Lingua e Langaggio.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Intell.
Res., 49:1–47.

Gino Brunner, Yang Liu, Damián Pascual, Oliver
Richter, and Roger Wattenhofer. 2019. On
the Validity of Self-Attention as Explanation
in Transformer Models. arXiv e-prints, page
arXiv:1908.04211.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil.
2018. Universal sentence encoder. CoRR,
abs/1803.11175.

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo
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Abstract

Graf (2017) warns that every syntactic formal-
ism faces a severe overgeneration problem be-
cause of the hidden power of subcategoriza-
tion. Any constraint definable in monadic
second-order logic can be compiled into the
category system so that it is indirectly enforced
as part of subcategorization. Not only does
this kind of feature coding deprive syntactic
proposals of their empirical bite, it also un-
dermines computational efforts to limit syn-
tactic formalisms via subregular complexity.
This paper presents a subregular solution to
feature coding. Instead of features being a
cheap resource that comes for free, features
must be assigned by a transduction. In par-
ticular, category features must be assigned by
an input strictly local (ISL) tree-to-tree trans-
duction, defined here for the first time. The
restriction to ISL transductions correctly rules
out various deviant category systems.

1 Introduction

Theoretical and computational linguists both
strive to identify limited models of language that
furnish sufficient power without allowing for ex-
cessive overgeneration. Recently, Graf (2017)
noted that the findings of Graf (2011) and Kobele
(2011) point towards a major loop hole in all cur-
rent theories of syntax. The category system can
be abused to encode additional information about
the syntactic tree, and the usual subcategorization
requirements can then be used to enforce a certain
kind of synchronization between parts of the tree.
For instance, the category DP may be split into
DP[+NPI] and DP[�NPI] depending on whether
the DP is an NPI, and the category X of each se-
lecting head becomes X[+NPI] if the argument it
selects contains an unlicensed NPI. This simple
strategy has been known for a long time but did
not raise serious concerns as it is widely accepted

that all grammar formalisms “leak” in the sense
that they also allow for some unnatural patterns.

But the extent of the problem for linguistic the-
ory has not been fully appreciated. Graf (2017)
shows how this strategy can be generalized to flout
all island constraints, enforce constraints that lack
any notion of locality, and even add highly unnat-
ural counting requirements to the grammar. Every
constraint that can be defined in monadic second-
order logic is expressible through category refine-
ment. This allows for very unnatural constraints,
e.g. enforcing verb-second word order iff the sen-
tence contains exactly three relative clauses or
both a Principle A violation and a word in which
unbounded tone plateauing is not obeyed. The
only way to preclude this is to restrict the shape
of category systems, but Graf (2017) argues that
the usual linguistic requirements on syntactic cat-
egories are insufficient. Hence every syntactic for-
malism lacks a key mechanism to distinguish natu-
ral patterns from unnatural ones, resulting in mas-
sive overgeneration.

This paper proposes a computational solution to
this problem, drawing from recent work on sub-
regular complexity. Features no longer come part
and parcel with lexical items, but must be assigned
to tree structures by a transduction. An unnatural
feature system that keeps track of, say, a counting
dependency, requires a very powerful transduc-
tion. The category systems of natural languages,
on the other hand, can be handled by much simpler
means. I argue that these category systems only
require inspection of a lexical item’s local con-
text. This intuition is formalized by generalizing
the input-strictly local (ISL) string-to-string map-
pings of Chandlee (2014) to ISL tree-to-tree trans-
ductions. To the best of my knowledge, this is the
first time a subregular tranduction class is defined
for trees, and I hope it will be a fertile vantage
point for mathematical and empirical work alike.



The paper deviates slightly from the usual struc-
ture. Since the problem is also of interest to theo-
retical linguists and the proposed solution is fairly
intuitive, the first half focuses on the big picture
and keeps formal concepts to a minimum (§2).
The mathematical aspects are then worked out in
§3, the most important of which is the formal def-
inition of ISL tree transductions (§3.2).

2 Problem and Solution: Informal

Sketch

The power of category systems and subcategoriza-
tion is best illustrated with an example (§2.1). This
makes it clear what unnatural category systems
may look like, and in what respects they clearly
differ from natural ones (§2.2). The problem of
category abuse in syntax is actually an instance of
the more general phenomenon of feature coding,
which also appears in the domain of subregular
complexity (§2.3). But subregular complexity also
provides a way of measuring the complexity of
feature systems via transductions. With strict lim-
its on the power of these transductions, many of
the unnatural category systems are correctly ruled
out (§2.4) while it becomes possible to formulate
new syntactic universals (§2.5).

2.1 A Grammar with Odd/Even Counting

Let us start with a toy example from Minimal-
ist grammars (MGs; Stabler, 1997, 2011) that il-
lustrates the power of syntactic categories. MGs
are closely modeled after Minimalist syntax, and
subcategorization is encoded via category and se-
lector features that drive the operation Merge. A
head with selector feature X+ can only be merged
with a phrase whose head has category feature
X

�. This matching of features is called feature
checking. The category feature of a lexical item l
can only be checked once all selector features of
l have been checked. While exceedingly simple,
this system is already too powerful as a model of
subcategorization in natural languages.

Consider the MG G where the only pronounced
lexical items are foo and bar, which may have the
category features E� or O�. By default, the cate-
gory feature is O�. But if the lexical item carries
a selector feature O

+ or E+, the category feature
must be the opposite of that selector feature (E�

or O�, respectively). Hence foo and bar may have
the feature strings O�, E+

O
�, or O+

E
�. Besides

foo and bar, the MG only has an unpronounced C-

Merge

" :: O+
C
� Merge

foo :: E
+
O

� Merge

bar :: O+
E
� Merge

bar :: E+
O

� Merge

foo :: O
+
E
� bar :: O�

Figure 1: Derivation tree for foo bar bar foo bar

head, which must always be the last lexical item to
be merged. The C-head carries the selector feature
O

+. Overall, G consists of the following lexical
items:

(1) MG G with even/odd alternation

" :: O+
C
� foo :: E

+
O

� foo :: O
�

foo :: O
+
E
�

bar :: E+
O

� bar :: O�

bar :: O+
E
�

The MG generates any string over foo and bar
whose length is odd. The reasoning for this is
as follows: the derivation must start with either
foo :: O

� or bar :: O
�. From this point on, se-

lecting heads alternate between E
� and O

�, but
only a head carrying O

� can be selected by the C-
head to end the derivation. The end result is that
the number of pronounced lexical items in the tree
must be odd, as is also illustrated in Fig. 1. The
MG above thus instantiates a simple case of mod-
ulo counting at the string level.

2.2 (Un)Naturalness of the Example MG

The example grammar G in (1) is highly unnatu-
ral in several respects. First of all, string length
does not seem to be a relevant criterion for natural
language syntax. This definitely holds for mod-
ulo counting, which is unheard of. But even ab-
solute size requirements are hard to come by un-
less one abandons the well-motivated competence-
performance distinctions. A potential counterex-
ample is Heavy NP-shift, which is sensitive to
a constituent’s size and thus, possibly, its string
length. But even here processing provides a more
plausible explanation (cf. Liu, 2018). Syntax itself
seems to be completely blind to size, be it string
length or the size of a tree.

Perhaps even more important is the fact that O�

and E
� do not convey intrinsic information of the



lexical item l that carries them. Instead, these cat-
egories represent properties of the whole subtree.
Hence the category is highly context-dependent. If
one wanted to insert another instance of foo or bar
in the subtree headed by l, one would also have to
change the category of l because of how O

� and
E
� have to alternate. The change of l’s category

then requires changing the category of l’s selector,
the selector of l’s selector, and so on. This directly
contradicts a basic principle of selection: a lexical
item selects for its argument, not the argument(s)
of its argument. A verb selecting a PP may restrict
the shape of the P-head, but not the DP inside the
PP. And no lexical item can freely select any head
of any category as long as the selected subtree sat-
isfies some other property. Subcategorization en-
forces head-head dependencies, not head-subtree
dependencies, and any category system that allows
the latter to be reduced to the former is missing a
key aspect of natural language.

2.3 The Full Extent of the Problem

As was already mentioned in the introduction, the
example above is but the tip of the iceberg. With-
out restrictions on the category system, any ar-
bitrary constraint can be enforced as long as it
is definable in monadic second-order logic. Graf
(2017, p. 22–24, p. 27f) gives several illustrative
examples of overgeneration and explains in de-
tail why the usual heuristics (e.g. syntactic dis-
tribution, morphological inflection) are not suf-
ficient to distinguish natural from unnatural cat-
egory systems. Beyond modulo counting, this
kind of feature coding also allows for, among
other things, strange constraint interactions (“Sat-
isfy either verb-second or Principle A, but not
both”), symmetric counterparts of existing con-
straints (Reverse Principle A: every reflexive must
c-command a suitable R-expression), and dis-
placement mechanisms that do not use movement
and hence bypass island constraints. All of this be-
comes possible because feature coding abuses cat-
egories as a local buffer for non-local information,
erasing all locality and complexity differences be-
tween constraints.

The potential abuse of syntactic categories is ac-
tually an instance of a more general problem that
has to be carefully avoided in subregular phonol-
ogy. Subregular phonology (see Heinz 2018 and
references therein) has identified very restricted
subclasses of the regular string languages that still

furnish enough power for phonology. Crucially,
though, these claims depend on the choice of fea-
tures because every regular pattern can be made
subregular by introducing additional features. In
formal terms: every recognizable set is a projec-
tion of a local set (cf. Rogers, 1997).

For instance, the regular string language of odd-
length strings over a can be pushed into the ex-
tremely weak subclass of strictly 2-local string
languages if one introduces a feature [±odd]. A
string like a a a a a would then be represented
as a[+odd] a[�odd] a[+odd] a[�odd] a[+odd].
The language with the diacritic [±odd] feature
is strictly 2-local because it can be expressed in
terms of constraints that involve at most two seg-
ments:

(2) Strictly 2-local constraints

a. Every string must start with a[+odd]
and end with a[+odd].

b. a[+odd] must not follow a[+odd].
c. a[�odd] must not follow a[�odd].

The example in §2.1 is a syntactic analog of this
trick, with O

� and E
� filling the roles of [±odd].

In all these cases, feature coding obfuscates sub-
regular complexity by precompiling complex de-
pendencies into an invisible alphabet of features
and diacritics.

The feature coding problem is less severe in
subregular phonology thanks to the restriction to
articulatory features, which can usually be re-
placed by the actual segments without changing
anything substantive about the analysis.1 In syn-
tax, features play a much more vital role as two
representations may look exactly the same except
for their feature make-up.

For instance, Fig. 2 gives an MG dependency
tree representation for the gardeners water their
flowers, while adding the movement features top�

to their and top
+ to water yields the MG depen-

dency tree representation of the very different top-
icalization sentence their flowers, the gardeners
water. The movement features are an essential
part of the representation. Similarly, category and
selector features can be crucial for head-argument
relations in MG derivation trees. In Fig. 1, switch-
ing the feature strings of the bottom-most foo and

1One notable exception is Baek (2018). She adds a limited
number of structural features to define a subregular class that
lies strictly between the classes TSL (Heinz et al., 2011) and
ITSL (De Santo and Graf, 2019).



bar would yield a new string foo bar bar bar
foo. This is because derivation trees encode head-
argument relations only via Merge features, not
via dominance or linear order. It is not surprising,
then, that all the recent work extending the subreg-
ular perspective from phonology to syntax relies
on feature in one way or another (Graf, 2018; Graf
and Shafiei, 2019; Graf and De Santo, 2019; Vu,
2018; Vu et al., 2019).

But even if features could be done away with,
that would be too extreme a step as they can still
be useful. Consider once more the case of topical-
ization movement. This involves three computa-
tional steps: I) identifying the mover and the target
site, II) determining whether topicalization move-
ment is licit, and III) displacing the topicalized
phrase. Without features, the first two steps would
have to be handled by the same computational de-
vice, which first makes a non-deterministic choice
as to what should move where, and then decides
whether this instance of movement obeys all rel-
evant constraints. By making features an integral
part of the representation, we factor out the first
step in order to isolate the complexity of the sec-
ond step. But without a restrictive theory of fea-
tures, there is the risk of factoring out more than
intended. This would lead to misleading claims
about subregular complexity that are merely ar-
tifacts of feature coding. Subregular syntax thus
finds itself in a precarious situation where the very
thing it depends on also threatens to undermine all
its findings.

The original problem of syntactic categories
thus is but a piece of the larger puzzle of how
to avoid feature coding. The brute force solution
of shunning features altogether is not workable
in syntax. Features distinguish otherwise identi-
cal representations; theoretical and computational
linguists alike are too accustomed to thinking in
terms of features; and features do allow for in-
sightful factorizations of complexity. The problem
is not features as such, it is the lack of a measur-
ing rod for how much complexity has been shifted
into the feature system.

2.4 Solution: Strictly Local Feature

Assignment

Features come for free under current models of
complexity because they are representational de-
vices. Subregular complexity takes the representa-
tions for granted and then investigates how hard a

water :: D+
D

+
V

�

the :: N
+
D

�

gardeners :: N�

their :: N+
D

�

flowers :: D�

water

the

gardeners

their

flowersremoval

ISL assignment

Figure 2: Feature assignment as a transduction problem
between a feature-annotated MG dependency tree (left)
and its feature-free counterpart (right)

given dependency would be to enforce over these
representations. In order to assess the complex-
ity of feature systems, we have to decouple them
from the representations. Intuitively speaking, we
want to measure the complexity of constructing a
feature-annotated representation from its feature-
free counterpart.

Formally, this takes the shape of a transduction
problem. For strings, transductions are a formal
counterpart of rewrite rules, and for trees they are
similar to syntactic transformations in the sense of
Chomsky (1965). Chandlee (2014) defines a par-
ticularly weak kind of string transductions known
as input strictly local (ISL). An ISL transduction
considers only the local context of a symbol when
deciding how it should be rewritten. Word-final
devoicing and intervocalic voicing are examples
of ISL transductions in phonology, whereas long-
distance sibilant harmony would not be ISL be-
cause the rewriting of a sibilant can depend on
other segments that are arbitrarily far away. ISL
can be lifted from strings to trees: a node in a tree
may be rewritten in various ways depending on its
local context in the tree. A transduction is ISL-k
iff all local contexts can be limited to at most k lev-
els (a mother-daughter configuration, for example,
involves two levels).

Figure 2 illustrates the approach with a feature-
annotated MG dependency tree for the garden-
ers water their flowers. The question at hand is
whether the familiar categories D, N, and V can
be assigned by an ISL transduction. We take a
feature-annotated representation like the one of
the left and remove all category and selector fea-
tures. Then we have to define an ISL transduction
that takes us back to the original representation. If
this can be done with any well-formed tree, then
the whole feature system is ISL recoverable.

For the specific tree in Fig. 2, we need an ISL-
2 transduction. The feature annotations for the,
their, and gardeners can be recovered without any
further context information just from the phonetic



exponents. That is the case because there simply
are no alternative feature annotations for these lex-
ical items in English. With water and flowers, on
the other hand, there is ambiguity as each one of
them could be either a noun or a verb. But in both
cases a minimum amount of context is sufficient
to disambiguate their categories. Since flowers is
selected by the, which can only be a determiner,
flowers must be a noun. Similarly, water must be
a verb because it selects the and their, neither one
of which could be an argument of the noun water.
Inspecting the daughters or the mother of a node
requires a context with two levels, so the transduc-
tion is ISL-2 for this specific example. The com-
plexity of the whole feature system corresponds to
the weakest transduction that works for all well-
formed trees (usually there will be infinitely many
of those; therefore, conclusive complexity results
require proofs rather than examples).

The feature system of the MG G in Sec. 2.1 is
not ISL recoverable. This follows from the fact
that it is not ISL-k recoverable for any k � 1. For
the sake of simplicity, we will once again use a
dependency tree format as in Fig. 2 instead of the
derivation tree format in Fig. 1. Now suppose that
the features for the left tree in Fig. 3 could be cor-
rectly assigned from the middle tree by an ISL-
k transduction. Since the transduction is ISL-k,
the features assigned to foo depend exclusively on
some context with at most k levels. Crucially, foo
will always receive the same features as long as
the context remains the same. But now compare
this to the tree on the right. Here foo has switched
positions with bar below it, inducing a change in
its feature make-up. Yet the locally bounded con-
text for foo has not changed at all — the middle
tree could also be a description for the right tree
depending on the values of m0 � k and n0 � k.
Hence the feature annotation for foo varies despite
identical contexts, which proves that the feature
system is not ISL recoverable. In fact, no ISL
transduction can handle any feature system that in-
volves modulo counting.

2.5 Some Linguistic Implications

ISL recoverability correctly rules out some of the
most egregious patterns and constraints. But we
can try to further limit feature systems based on
the size of contexts. Instead of ISL recoverabil-
ity, the relevant restriction would be ISL-k recov-
erability for some small k.

" :: O+
E
�

bar :: E+
O

�

bar :: O+
E
�

foo :: E
+
O

�

bar :: O+
E
�

bar :: E+
O

�

bar :: O+
E
�

bar :: O�

"

bar

bar

foo

bar

bar

bar

" :: O+
E
�

bar :: E+
O

�

bar :: O+
E
�

bar :: E+
O

�

foo :: O
+
E
�

bar :: E+
O

�

bar :: O+
E
�

bar :: O�

m � k

n � k

m � k
m0 � m

n � k
n0 � n

Figure 3: Modulo systems are not ISL-k recoverable

Note first that the value of k can vary depending
on other assumptions. MG derivation trees like the
one in Fig. 1 display a greater distance between
heads and arguments than MG dependency trees
like the one in Fig. 2, so the latter will minimize
the value for k. This does not mean that the latter
is linguistically preferable, but rather that k cannot
be fixed independently of the choice of representa-
tion. The value of k will also depend greatly on the
shape of the phonetic exponents. Fully inflected
forms can provide crucial clues about a lexical
item’s category that would be missing from the un-
inflected roots postulated in Distributed morphol-
ogy (Halle and Marantz, 1993). It remains to be
seen which set of assumptions and parameters will
prove most insightful.

At this point, though, I put forward a maximally
restrictive conjecture. Based on a preliminary sur-
vey of English data and the linguistic bon mot that
heads do not select for arguments of arguments, I
contend that the category systems of natural lan-
guages are maximally simple:

(3) Complexity of category systems

Given MG dependency trees with unin-
flected roots as exponents (e.g.

p
destroy,p

water), it holds for every natural lan-
guage that all its category and selector fea-
tures are ISL-2 recoverable.

The conjecture in (3) predicts that whenever a lex-
ical item is categorially ambiguous, its category
feature can be determined by inspecting the select-
ing head or the heads of the selected arguments.
Even if ISL-2 recoverability ultimately turns out
to be too strong an assumption, ISL-k recoverabil-
ity still rules out many undesirable feature systems



and reins in feature coding while allowing for lim-
ited categorial ambiguity.

ISL recoverability also has some more indirect
consequences. One prediction is that no natural
language can have an arbitrarily long sequence
x1, . . . , xn such that I) each xi is an empty head,
and II) xi selects xi+1 and nothing else (1  i <
n). This prediction follows from the fact that un-
pronounced lexical items provide no overt clues
about their category. If the local context does
not furnish any pronounced material, local cat-
egory inference hinges on structural differences.
Since the configuration above is structurally uni-
form, there is insufficient information to correctly
infer the categories of all empty heads. This case
is interesting because of the proliferation of empty
heads in Minimalist syntax. If there is any clear
counterexample to (3), it is likely to involve empty
heads.

It should also be noted that ISL recoverabil-
ity is only expected to hold for category and se-
lector features. Features that participate in long-
distance dependencies like movement cannot be
reliably assigned by an ISL transduction.2 Con-
sider once more our topicalization example from
before. Whether water should receive a top

+ fea-
ture to license topicalization depends on whether
there is some head with a matching top

� feature
to undergo topicalization. In the case at hand, this
can be made based on the local context alone. But
in general, a mover can be arbitrarily far away
from its target site, as in this author, John thinks
that Bill said that Mary really adores. Correct as-
signment of top

+ thus requires a context of un-
bounded size, which is impossible with ISL trans-
ductions.

Many empirical and theoretical issues remain to
be settled. The MG corpus of Torr (2017) may
provide valuable clues about the feasibility of con-
jecture (3), but it must be supplemented by a broad
range of typological data. On the formal side,
studying the recoverability of movement features
will require more powerful extensions of ISL tree
transductions. The next section fully formalizes
ISL transductions to provide a suitable vantage
point for this future work.

2In grammars with adjunction, subcategorization can also
become a long-distance dependency depending on one’s
choice of representation (Graf, 2018). A modified version
of (3) would predict that the uninflected root of each adjunct
still provides enough information to reliably infer category
and selector features. I am much more skeptical that this will
turn out to be true across all languages.

3 Formal Definitions

This section puts the informal discussion of the
preceding section on a formal footing by defining
ISL recoverability in terms of ISL tree relabelings.
But in order to simplify future work on feature re-
coverability, I define the more general class of ISL
tree transductions, which ISL tree relabelings are
a particular simple subtype of. The definition of
ISL tree transductions differs markedly from that
of other tree transductions. Building on Gorn do-
mains and tree contexts (§3.1), I define an ISL tree
transducer as a finite set of triples, each one of
which maps a node n to a tree context based on
the configuration n appears in. The ISL transduc-
tion then combines all these tree contexts to yield
the final output tree (§3.2). Given this formal ap-
paratus, feature recoverability is easy to state in
rigorous terms (§3.3).

3.1 Technical Preliminaries

We define trees as finite, labeled Gorn domains
(Gorn, 1967). First note, though, that we use N to
denote the set of all positive natural numbers, i.e.
{1, 2, 3, . . .} rather than {0, 1, 2, 3, . . .} — this is
non-standard, but will slightly simplify the usage
of indices in the definition of ISL-k transducers.

A Gorn domain D is a set of strings drawn from
N⇤, which are called (Gorn) addresses, or simply
nodes. Every Gorn domain must satisfy two clo-
sure properties: for all u 2 N⇤ and 1  i  j
it holds that uj 2 D implies both u 2 D and
ui 2 D. This entails the inclusion of the empty
string ", which denotes the root. Addresses are in-
terpreted such that u immediately dominates each
ui, and each ui is the immediate left sibling of
u(i+ 1).

A ⌃-tree is a pair t := hD, `iwhere D is a finite
Gorn domain and ` : D ! ⌃ is a total function
that maps each address to its label, i.e. a member
of the alphabet ⌃. The depth of t is equivalent to
the length of the longest Gorn address.

A (⌃, n)-context is a ⌃-tree whose leaf
nodes may also have labels drawn from the set
{⇤1, . . . ,⇤n} of ports, which must be disjoint
from ⌃. Suppose we are given a (⌃, n)-context
c := hDc, `ci with m  n ports labeled ⇤i at ad-
dresses a1, . . . , am, as well as a tree (or context)
s := hDs, `si. Then we use c[⇤i  s] to denote
the result of substituting s for each ⇤i in c. This is
a new tree t := hD, `i such that

• D := Dc [ {ajd | 1  j  m, d 2 Ds}, and



• for every b 2 D

`(b) :=

8
><

>:

`s(d) if b = ajd

(1  j  m, d 2 Ds)

`c(b) otherwise

The construction also generalizes to multiple si-
multaneous substitutions, as in c[⇤i  s,⇤j  
t]. If c contains no node labeled ⇤i, then c[⇤i  
s,⇤j  t] = c[⇤j  t] (and c[ ] = c).

If S is a set, then substitution can apply
in two ways. With synchronous substitution,
t[⇤i  S] := {t[⇤i  s] | s 2 S}. Asyn-
chronous substitution, denoted t[⇤i ( S], yields
{t[⇤i1  s1, . . . ,⇤in  sn] | s1, . . . , sn 2 S},
assuming that t contains exactly n occurrences
of ⇤i. Substitution with sets and multiple si-
multaneous substitutions will be crucial for ISL
transductions.

3.2 ISL Transductions

Chandlee (2014) defines ISL string-to-string map-
pings in terms of deterministic, finite-state string-
to-string transducers. Even though the definition
does not provide an explicit look-ahead compo-
nent, ISL mappings can emulate finitely bounded
look-ahead via a delayed-output strategy. Sup-
pose, for instance, that a is rewritten as b before
d, as c before e, and just as a before f . This is em-
ulated by deleting a and rewriting the next symbol
as either bd, ce, or af . Later works define ISL
functions in terms of local contexts (not to be con-
fused with (⌃, n)-contexts), and those definitions
make look-ahead a standard component to sim-
plify practical work (Chandlee and Heinz, 2018;
Graf and Mayer, 2018; De Santo and Graf, 2019).

With tree transducers, the emulation of finitely
bounded look-ahead is a much more complex af-
fair that depends on various parameters such as di-
rectionality (top-down or bottom-up), totality, and
determinism. For this reason, I explicitly add fi-
nite look-ahead in the subsequent definitions. I
will also allow for non-determinism as future work
may require transductions than can handle option-
ality (e.g. whether a node should receive a move-
ment feature to undergo topicalization).

For the sake of generality and as a starting point
for future work, I first define a version of ISL tree
transductions that allows for non-determinism,
deletion, and copying, and that can run in two dif-
ferent modes of operation (synchronous or asyn-

chronous). This is subsequently limited to the spe-
cial case of ISL relabelings, which are the formal
core of feature recoverability.

Definition 1 (ISL tree transducer). For any k �
1, an ISL-k tree transducer from ⌃-trees to ⌦-
trees is a finite set ⌧ of ISL-k rewrite rules hs, a, ti,
where

• s is a ⌃-tree of depth i < k,

• a is a node (i.e. a Gorn address) of s with
d � 0 daughters,

• and t is an (⌦, d)-context. y

Definition 2 (Synchronous ISL transduction).

The transduction realized by an ISL-k transducer
in synchronous mode is defined in a recursive
fashion. First, a node b in tree u can be targeted
by an ISL-k context hs, a, ti iff there is some
p 2 N⇤ such that

node match b = pa, and

label match for all nodes g of s, `s(g) = `u(pg),

full-width match for all nodes gi of s with g 2
N⇤ and i 2 N , if pgj is a node of u (j > i),
then gj is a node of s.

Now suppose furthermore that n in u has d � 0

daughters. Given an ISL-k tree transducer ⌧ , we
use  �⌧ (u, b) to denote the set of all trees t[⇤1   �⌧ (u, b1), . . . ,⇤d   �⌧ (u, bd)] such that there is
a rewrite rule hs, a, ti in ⌧ that targets node b in
u. If this set is empty,  �⌧ (u, b) is undefined. For
any ⌃-tree t, we may simply write  �⌧ (t) instead
of  �⌧ (t, "). For any tree language L, the trans-
duction computed by ⌧ in synchronous mode is
 �⌧ (L) := {hi, oi | i 2 L, o 2  �⌧ (i)}. A transduc-
tion is synchronous input strictly k-local (sISL-k)
iff it can be computed by some ISL-k transducer in
synchronous mode. It is synchronous input strictly
local (sISL) iff it is sISL-k for some k � 1. y

The definition of asynchronous input strictly k-
local (aISL-k) transductions is exactly the same,
except that  �⌧ is replaced by (

⌧ such that (
⌧ (u, b)

denotes the set t[⇤1 (
(
⌧ (u, b1), . . . ,⇤d (

(
⌧ (u, bd)]. ISL is used as a shorthand for sISL or
aISL, ignoring transduction mode.

The definition of ISL transductions differs from
that of other tree transductions in that the input
tree is not altered incrementally to yield the output



tree. Instead, each node in the input contributes
a context to the output, or rather, a range of pos-
sible contexts in the case of a non-deterministic
transduction. The transduction then stitches these
contexts together in order to arrive at a single
tree structure. This stitching is accomplished by
the recursive step of mapping ⌧(u, b) to t[⇤1  
⌧(u, b1), . . . ,⇤d  ⌧(u, bd)]. Each ⌧(u, bi) (1 
i  d) corresponds to a context produced from the
i-th daughter of the node b in u, and these con-
texts are inserted into the appropriate ports of the
context t produced from n. If n is a leaf node, its
output structure is a tree instead of a context. This
ensures that the recursion step terminates eventu-
ally.

Example. Figure 4 specifies a fragment of an ISL-
3 transducer for translating multiplication trees to
addition trees (assuming no numbers larger than
3). For simplicity, the ISL rewrite rules are writ-
ten in a context-free format with a box around
the node to be rewritten. An underscore is used
to match any arbitrary node label. On the right,
a particular input-output mapping is shown with
the transducer running in asynchronous mode. In
synchronous mode, all ⇤i in the output of rule G
would have to be replaced by the same tree. y

It is easy to see that every ISL-k string trans-
duction is an ISL-k tree transduction over unary
branching trees. This shows that ISL-k tree trans-
ducers are a natural generalization of ISL for
strings. However, the current definition goes far
beyond ISL string mappings in that it allows for
non-determinism and copying.

Definition 3 (Transducer subtypes). An ISL-k
tree transducer ⌧ is

deterministic iff it holds for every ⌃-tree u that
no node of u can be targeted by more than
one context of ⌧ ,

linear/non-deleting iff all contexts hs, a, ti of ⌧
are such that if the node at address a in s has
d � 1 daughters, then t contains every port
⇤i at most once/at least once (1  i  d),

structure preserving iff all rewrite rules hs, a, ti
of ⌧ are such that t is of the form
!(⇤1, . . . ,⇤d) (! 2 ⌦).

A deterministic, structure preserving ISL-k
transducer is called an ISL-k relabeling. y

A structure preserving ISL transducer never
changes the structure of the input tree. Structure
preservation thus entails linearity, which is why
the latter is not mentioned in the definition of rela-
belings. Linearity in turn removes the distinction
between synchronous and asynchronous mode as
no ⇤i ever has more than one occurrence. Only
this very limited type of ISL transducers is rele-
vant for feature recoverability.

3.3 ISL Feature Recoverability

We are finally in a position to define the notion of
ISL recoverability that was informally discussed
in §2.4. In order to clearly separate features from
other parts of the alphabet, we have to track them
in a separate component. MGs make this split
fully explicit, with a lexical item’s phonetic expo-
nent a member of ⌃ and their feature annotation
a string over an entirely separate set of features.
Other formalisms such as TAG or GPSG can also
be recast along these lines.
Definition 4. Let F be a set of features. An F -
annotated ⌃-tree is a tree whose labels are drawn
from ⌃⇥ F ⇤. y
Definition 5. Let F be a set of features and e a
function that maps each h�, fi 2 ⌃ ⇥ F ⇤ to �.
Then F is ISL-k recoverable with respect to lan-
guage L of F -annotated ⌃-trees iff there is an ISL-
k transducer ⌧ such that ⌧(e(t)) = t for all t 2 L.y

Note that feature recoverability can vary de-
pending on the particulars of the tree languages. A
feature that may not be recoverable with respect to
L may be recoverable with respect to L0. Consider
once more the grammar in §2.1. If foo always had
to carry O

�, and bar always had to carry E
�, then

those category features would be recoverable even
though they still encode an even/odd alternation.
In this hypothetical scenario, the alternation is tied
to overt exponents, reducing modulo counting to a
strictly 2-local alternation of lexical items. In the
other direction, even the simplest (non-trivial) cat-
egory system cannot be recovered from a language
where all lexical items are unpronounced. And as
a reviewer correctly points out, if one puts no re-
strictions on the use of empty heads, features can
be encoded in terms of specific structural config-
urations with empty heads. Feature recoverabil-
ity thus is a fluid notion that depends equally on
the nature of ⌃, the syntactic assumptions about
structure and phonetic exponents, and the overall
complexity of the tree language.
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Figure 4: A non-deterministic ISL-3 tree transducer (left) for converting a tree with addition and multiplication
to addition only (right). The workspace depicts I) how each node is rewritten as one or more contexts, and II) all
possible options for combining these contexts into a particular output tree via substitution steps that are based on
the structure of the input tree. Dashed arrows are annotated with the corresponding rewrite rules. The transducer
is assumed to operate in asynchronous mode. The output displays one out of 23 = 8 options that differ in when
and where rewrite rules C and F are used. In synchronous mode, there would be only two distinct outputs.

4 Conclusion

ISL tree transductions — or more precisely, ISL
tree relabelings — offer a reasonable approxima-
tion of the limits of category systems in natural
languages. I conjecture that all natural languages
are such that the category of a lexical item can be
inferred from its local context in a tree without any
feature annotations. In combination with standard
assumptions about linguistic structure, feature re-
coverability is a powerful restriction that elimi-
nates many of the undesirable cases of feature cod-
ing identified in Graf (2017). It also makes strong
empirical predictions that merit further investiga-
tion by linguists.

Many questions had to remain open. On
the formal side, this includes abstract character-
izations as well as core properties of ISL tree
transductions, e.g. (non-)closure under intersec-
tion, union, and composition. The relations to
other transduction classes are largely unknown.
I conjecture that (deterministic) synchronous/
asynchronous ISL transductions are subsumed by
(deterministic) bottom-up/top-down transductions
with finite look-ahead. Linear ISL transductions
should be subsumed by both. The movement fea-
tures of MGs will require a more powerful kind

of transduction, possibly based on the string class
TSL (Heinz et al., 2011). There also seems to
be a deep connection between feature recoverabil-
ity and the notion of inessential features (Kracht,
1997; Tiede, 2008).

From a linguistic perspective, one pressing
question is to what extent feature recoverability
depends on whether syntax uses fully inflected
lexical forms or underspecified roots. If fully in-
flected lexical items do not reduce the complex-
ity of the ISL transduction, or allows for unnat-
ural constraints that would not be possible other-
wise, that would be a powerful argument that syn-
tax indeed has no need for anything beyond simple
roots.
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Abstract

Many domains of linguistic research posit fea-
ture bundles as an explanation for various phe-
nomena. Such hypotheses are often evaluated
on their simplicity (or parsimony). We take
a complementary approach. Specifically, we
evaluate different hypotheses about the repre-
sentation of person features in syntax on the
basis of their implications for learning the Per-
son Case Constraint (PCC). The PCC refers
to a phenomenon where certain combinations
of clitics (pronominal bound morphemes) are
disallowed with ditransitive verbs. We com-
pare a simple theory of the PCC, where per-
son features are represented as atomic units,
to a feature-based theory of the PCC, where
person features are represented as feature bun-
dles. We use Bayesian modeling to compare
these theories, using data based on realistic
proportions of clitic combinations from child-
directed speech. We find that both theories can
learn the target grammar given enough data,
but that the feature-based theory requires sig-
nificantly less data, suggesting that develop-
mental trajectories could provide insight into
syntactic representations in this domain.

1 Introduction

Representing surface realizations as bundles of
features is ubiquitous in linguistics. For exam-
ple, in syntax, different forms that result from
subject-verb agreement are taken to be the result
of different feature bundles. Relevant features
for subject verb agreement in English include at
least the tense and the number of the subject. Al-
though there is little variation in the different sur-
face forms for English verbs, the verb walk does
differ when the subject is singular and the tense is
present (walks), compared to when the subject is
singular and the tense is past (walked).

Features are often taken to be either privative or
binary (though these are not the only possibilities).

For example, some might argue that the English
singular/plural distinction is based on a privative
feature: a noun phrase can either be specified as
plural or not specified for number (e.g., [plural]
and [ ]). In this case, when dog is marked with
“[plural]”, it is realized as dogs. Others might ar-
gue that the distinction is based on a binary fea-
ture: a noun phrase can be specified as “plus” or
“minus” (e.g., [+plural] and [�plural]). In this
case, when dog is marked with “[+plural]”, it is
realized as dogs.

Feature representations are typically evaluated
based on the extent to which they simplify linguis-
tic analyses, that is, on their ability to provide par-
simonious descriptions of cross-linguistic gram-
matical patterns. For a concrete example of this
type of argument, see Adger and Smith (2010),
who argue that both the intra-dialectal variation
in the inflection of the verb be in Buckie Scot-
tish English as well as the inter-dialectcal varia-
tion in the inflection of the verb be in English more
broadly is nicely explained by a feature system in-
volving binary-valued features of Singular, Partic-
ipant, and Author.

In this paper, we take a different approach
to evaluating feature representations, focusing on
their implications for learning (for similar ap-
proaches, see Pearl and Sprouse, 2013; Pearl et al.,
2017; Rasin and Katzir, 2017; Pearl and Sprouse,
2019). Specifically, we investigate how person
features might be represented in the syntactic com-
ponent of the grammar, using the domain of cli-
tics as a case study and the learnability of a phe-
nomenon involving clitics as a metric for plausi-
bility. We find that both of the representational
theories that we test can learn the target grammar
given enough data, but that they differ consider-
ably in the amount of data they require. This sug-
gests that children’s learning trajectory has the po-
tential to provide insight into syntactic representa-



tions in this domain.

2 The Person Case Constraint

Clitics are bound morphemes (i.e., morphemes
that cannot stand on their own). The clitics rele-
vant to the PCC are pronominal clitics, which en-
code first, second, and third person, and they must
occur immediately next to a free morpheme, usu-
ally a verb. For example, (1) shows a Spanish sen-
tence where the direct and indirect objects of a di-
transitive verb are both realized as clitics. The cl-
itics are immediately before the verb, and, in this
case, they encode first and third person, respec-
tively.

(1) Me
1.SG.DAT

lo
3.SG.ACC

cuentas
tell

‘(You) tell it to me’

Interestingly, when the direct and indirect objects
to a ditransitive verb are both realized as clitics,
not all combinations are possible. For example,
compare (1) to (2), where the first person clitic
serves as the direct object and the third person
clitic serves as the indirect object (i.e., the opposite
of (1)). The sentence in (2) is ungrammatical.1

(2) * Me
1.SG.ACC

le
3.SG.DAT

recommendó
recommend.PST

‘S/he recommended me to her/him’
1Note that even though the first person clitic occurs before

the third person clitic in both (1) and (2), the literature usually
talks about the ungrammaticality of (2) with the starred string
“*3 1”. This is meant to indicate the underlying argument
structure relations—namely, in the syntactic analysis of (2),
but not (1), the dative third person argument is structurally
higher than first person argument, as shown in (i). This is
generally written as “*3 1”, meant to reflect the fact that the
third person argument structurally precedes the first person
argument, even though the surface string order of the clitics
is the opposite.

(i) * ApplP

IO
3

Appl0

Appl VP

V
recommendó

DO
1

Nonetheless, as (1) shows, there are some instances where
the surface string order of the clitics does match the underly-
ing argument structure relations. This depends on a variety
of language specific factors, including at least the nature of
the particular verb and ordering effects between some of the
clitics in some languages.

The ungrammaticality of (2) is part of a broader
phenomenon called the Person Case Constraint
(PCC) (see, e.g., Bonet, 1991, 1994); the PCC will
be the central focus of our case study on the repre-
sentation of person features.

Ignoring the possible combinations of direct
and indirect objects with either both first person
or both second person arguments2 gives seven dif-
ferent possible direct and indirect object pairings:
1 2, 1 3, 2 1, 2 3, 3 1, 3 2, and 3 3. There are
four attested variants of the PCC, each of them
banning a different subset of these seven possi-
ble clitic combinations. The four variants of the
PCC (and their names) are given in Table 1, along
with languages/dialects that are known to instan-
tiate each of them (note that these tables include
3 3 and thus differ slightly from those reported in
Graf, 2012, p. 86).

Because there are different variants of the PCC
that occur cross-linguistically, a child will have to
learn which variant their language instantiates on
the basis of input.

3 Evaluating two theories of the PCC

We use a Bayesian learning model to evaluate
the plausibility of two theories of the representa-
tion of person features. The first theory is one in
which first, second, and third person have no fur-
ther structure; they are just represented as atomic
features in the grammar, like in (3). We refer to
this as the simple theory of the PCC because the
grammar is assumed to simply state, for each pos-
sible clitic combination, whether it is grammatical.

(3) a. 1 = 1
b. 2 = 2
c. 3 = 3

We compare this to another theory in which first,
second, and third person are represented as feature
bundles, consisting of two values, one for the bi-
nary feature Author and one for the binary feature
Participant, as in (4) (Nevins, 2007). We refer to
this as the feature-based theory of the PCC.

(4) a. 1 =


+Auth
+Part

�

b. 2 =


�Auth
+Part

�

2The combinations with both first or both second person
arguments are often ignored in this literature because of other
complicating factors. Specifically, these combinations are
also governed by another part of the grammar, Binding The-
ory (see, e.g., Chomsky, 1981).



IO#/DO! 1 2 3

1 NA * X
2 * NA X
3 * * X

(a) Strong PCC (Greek, Spanish, etc.)

IO#/DO! 1 2 3

1 NA X X
2 * NA X
3 * * X

(b) Ultrastrong PCC (Classical Arabic, Spanish, etc.)

IO#/DO! 1 2 3

1 NA X X
2 X NA X
3 * * X

(c) Weak PCC (French, Catalan, Spanish, etc.)

IO#/DO! 1 2 3

1 NA X X
2 * NA X
3 * X X

(d) Me-First PCC (Romanian, Spanish, etc.)

Table 1: PCC varieties (rows indicate the indirect ob-
ject, and columns indicate the direct object; ‘X’ in-
dicates grammatical, and ‘*’ indicates ungrammatical;
for example, *1 2 is ungrammatical in Strong PCC lan-
guages but grammatical in all other PCC varieties)

c. 3 =


�Auth
�Part

�

Based on corpus data from child-directed speech,
we model the learning of one PCC variant in or-
der to investigate the plausibility of these different
representations of person features. The remainder
of this section lays out these two representational
theories in more detail.

3.1 A simple theory of the PCC

The simple theory of the PCC states, for each clitic
combination, whether or not it is grammatical. For
this theory, person features are atomic (cf. (3)),
and the grammar simply states that some combi-
nations (e.g., *2 1) are banned. Given that there
are 7 clitic combinations, this leads to 27 = 128
possible grammars, some of which are shown in
Table 2.3

Grammar 1 2 1 3 2 1 2 3 3 1 3 2 3 3

SG1 X X X X X X X
SG2 X X X X X X *
SG3 X X X X X * X
SG4 X X X X X * *
SG5 X X X X * X X
SG6 X X X X * X *
SG7 X X X X * * X
SG8 X X X X * * *
. . . . . . . . . . . . . . . . . . . . . . . .

SG21 X X * X * X X
SG22 X X * X * X *
SG23 X X * X * * X
. . . . . . . . . . . . . . . . . . . . . . . .

SG55 * X * X * * X
. . . . . . . . . . . . . . . . . . . . . . . .

SG85 * X * X * X X
SG86 * X * X * X *
SG87 * X * X * * X
. . . . . . . . . . . . . . . . . . . . . . . .

SG128 * * * * * * *

Table 2: Some of the 128 possible simple grammars
(SG) for the PCC

3.2 A feature-based theory of the PCC

Nevins (2007) proposes a feature-based theory of
the four PCC varieties. This theory is much more

3The simple grammar for the Strong PCC would be SG55,
the simple grammar for the Ultrastrong PCC would be SG23,
the simple grammar for the Weak PCC would be SG7, and
the simple grammar for the Me-First PCC would be SG21.



restrictive in that it allows many fewer possible
types of grammars. For this theory, it is crucial
that first, second, and third person are represented
as feature bundles, consisting of two binary fea-
ture values, as shown above in (4).

The features Author and Participant are taken to
be primitive features in the theory of morphosyn-
tax, and each can be valued as either + or �.4

Broadly, this theory relies on how these features
bundles can (or cannot) co-occur with one another
in concert with a syntactic operation called Agree.

To spell out the details more carefully, clitics
are understood to be the morphophonological real-
ization of a syntactic operation called Agree (see,
e.g., Borer, 1984). The possible grammars in this
feature-based theory thus consist of different pos-
sible specifications for the feature(s) that trigger(s)
Agree. Specifically, there is a syntactic probe,
v, that, when introduced into the derivation, trig-
gers Agree. Nevins assumes that the probe can be
specified to search for either marked and/or con-
trastive Author and Participant features (cf. Cal-
abrese, 1995; Nevins, 2007, p. 285–290).

The marked version of each feature is its +
value. A contrastive instance of the Participant
feature is one that occurs in the presence of
�Auth; when Participant occurs with +Auth, it is
not contrastive because there is no possible fea-

ture bundle


+Auth
�Part

�
(cf. fn. 4). In other words,

if the feature bundle contains +Auth, it must nec-
essarily also contain +Part. A contrastive instance
of the Author feature is one that occurs in the pres-
ence of +Part; i.e., when you have a feature bundle
that contains �Part, then it must necessarily also
contain �Auth.

Given this theory of clitics and the PCC, there
are then nine possible feature-based grammars
(FG), which are all given the first column of Ta-
ble 3. In the grammar specifications in this table,
‘u’ indicates that the probe, v, is looking for a fea-
ture of the type that follows the ‘u’ to Agree with.5

Furthermore, we indicate, for example, contrastive
Author as ‘uAuth/[+Part]’, which can be read as

4The feature combination of


+Auth
�Part

�
is taken to be

impossible because of what the features mean—namely, it’s
not possible to be the author (i.e., speaker) in a conversation
but not a participant in that same conversation.

5This is generally understood to mean “uninterpretable”
in the syntactic literature; for an overview of feature theory
in Minimalist theories of syntax, see Pesetsky and Torrego
(2007).

“the probe is looking for an Author feature that
occurs in the context of +Part”.

Here, we walk through two example deriva-
tions. For further discussion and derivations, see
Nevins (2007, p. 290–301).

Let’s first consider the clitic order *1 2, which is
disallowed in Strong PCC languages. The feature
specification that is claimed to give rise to Strong
PCC languages is FG6.

Nevins argues that there are two conditions that
govern the application of Agree (2007, p. 295),
Contiguous Agree and Matched Values.

(5) Contiguous Agree: For a relativization R
of a feature F on a Probe P, and x 2
Domain(R(F)), ¬9y, such that y > x and
p > y and y 2 Domain(R(F))
“There can be no interveners between P
and x that are not in the domain of rela-
tivization that includes x”

(6) Matched Values: For a relativization R of
a feature F, 9↵, ↵ 2 {+,�}, 8x, x 2
Domain(R(F)), val(x,F)= ↵
“All elements within the domain of rela-
tivization must contain the same value”

In other words, Contiguous Agree requires that
any argument that occurs in between the probe and
the target of Agree must also itself be a target of
Agree, and Matched Values requires that all argu-
ments that are in the domain of the Agree oper-
ation must share the same value (e.g., both must
be +Auth; one cannot be �Auth and the other
+Auth).

Now, in the case of *1 2 when the grammar is
FG6 (i.e., the Strong PCC), where the probe, v,
seeks to Agree with arguments bearing contrastive
Author, a partial derivation will look like the one
in (7).

(7) * v0

v⇥
uAuth/[+Part]

⇤ ApplP

IO
1

+Auth
+Part

�
Appl0

Appl VP

V DO
2

�Auth
+Part

�

In this case, the condition Matched Values is vi-
olated. Both the first person indirect object and the
second person direct object are in the domain of



Probe Grammar 1 2 1 3 2 1 2 3 3 1 3 2 3 3

v
⇥ ⇤

FG1 X X X X X X X
v
⇥

u+Part
⇤

FG2 X X X X * * X
v
⇥

u+Auth
⇤

FG3 X X * X * X X
v


u+Part
u+Auth

�
FG4 X X * X * * X

v


uAuth/[+Part]
uPart/[�Auth]

�
FG5 * * * * * * X

v
⇥

uAuth/[+Part]
⇤

FG6 * X * X * * X
v


uAuth/[+Part]
u+Part

�
FG7 * X * X * * X

v
⇥

uPart/[�Auth]
⇤

FG8 * * X * X * X
v


uPart/[�Auth]
u+Auth

�
FG9 * * * * * * X

Table 3: The 9 possible feature-based (FG) grammars for the PCC, according to Nevins (2007)

Agree for the feature uAuth/[+Part] on the probe, v
(because they both have Author features that occur
in the context of +Part). However, they have dif-
fering values for Author, so Matched Values is vi-
olated, giving rise to the ungrammaticality of *1 2
when the grammar is FG6.

Next, let’s consider the case of *3 1, which is
disallowed in Weak PCC languages. The feature
specification that is claimed to give rise to Weak
PCC languages is FG2, where the probe, v, seeks
to Agree with arguments bearing a marked Partici-
pant feature. In the case of *3 1 when the grammar
is FG2, a partial derivation will look like the one
in (8).

(8) * v0

v⇥
u+Part

⇤ ApplP

IO
3

�Auth
�Part

�
Appl0

Appl VP

V DO
1

+Auth
+Part

�

Here, the probe is looking for a +Part fea-
ture; this means that it can agree with the di-
rect object; however, there is a structurally higher
element—namely, the third person indirect object,
�Auth
�Part

�
—that intervenes between the probe,

v, and the target of Agree but is not in the do-
main of the probe because it does not contain a
+Part feature. This violates the condition Con-

tiguous Agree, so the clitic order *3 1 is thereby
disallowed in FG2.

Walking through the derivations for all seven
possible clitic orders for all nine feature-based
grammars gives the results shown in Table 3.6

4 The learning model

We use Bayesian modeling to implement a
computational-level learning model that infers a
grammar, given a bunch of sentences with ditran-
sitive verbs and two clitics. In the case of the
feature-based theory of the PCC, there are 9 gram-
mars, and so the hypothesis space is much smaller.
In the case of the simple theory of the PCC, there
are 128 grammars, and so the hypothesis space is
much larger.

Using realistic proportions of the occurrences
of these types of constructions in child-directed
speech, we seek to establish how much data would
be needed to learn the correct grammar under each
of these theories.

6The feature-based grammar for the Strong PCC would
be FG6, as noted, or FG7 (these two feature-based grammars
are extensionally equivalent), the feature-based grammar for
the Ultrastrong PCC would be FG4, the feature-based gram-
mar for the Weak PCC would be FG2, and the feature-based
grammar for the Me-First PCC would be FG3. The remaining
grammars would then delimit the predicted typology of PCC
languages. FG1 would be a language without PCC effects
(and perhaps also without clitics), like English; there would
be two further predicted types of PCC languages, FG8, which
Nevins calls a “Me-Last” language, and FG5 and FG9, which
are extensionally equivalent in only allowing 3 3 (note that
Nevins (2007) does not consider 3 3 constructions).



4.1 The generative model

We assume the generative model depicted in Fig-
ure 1. A generative model encodes the assump-
tions a learner would have about how the data it
observes are generated.

~s

~✓

g

N

Figure 1: Generative model

Our generative model assumes that there is
a grammar, g, that determines how often cer-
tain clitic combinations will be used. In the
case of the simple theory of the PCC, g will be
one of SG1, . . . , SG128, and in the case of the
feature-based theory of the PCC, g will be one of
FG1, . . . , FG9.

This grammar g is assumed to generate a vector
of probabilities, ~✓, which governs the frequency of
use of each of the different clitic combinations in
the language. In other words, ~✓ determines how
often one would expect to see each clitic combi-
nation in a corpus containing N ditransitive sen-
tences that have cliticized both internal arguments.
In our model, we assume that the elements of ~✓
corresponding to any clitic orderings that are disal-
lowed under g are set to zero, and that the remain-
ing elements of ~✓ are generated from a Dirichlet
distribution with dimensionality equal to the num-
ber of permitted clitic orderings,

~✓ | g ⇠ Dir(h1, . . . , 1i) (1)

This Dirichlet distribution encodes a belief that
any value of ~✓ that is consistent with the grammar
is equally likely, a priori.

The instances of clitic combinations that a
learner observes, represented in our generative
model as ~s, are then assumed to be sampled from
~✓. For example, if, in the corpus, there were 3 in-
stances of the 1 3 clitic combination, 6 instances
of the 3 3 clitic combination, and no others, then ~s
would be h0, 3, 0, 0, 0, 0, 6i. The generative model

assumes that ~s are sampled from a multinomial
distribution with parameter ~✓,

~s | ~✓ ⇠ Multinom(N, ~✓) (2)

The learner observes the clitic combinations in
its corpus and infers which of the possible gram-
mars was most likely to have generated these data.

4.2 Inferring the grammar

Given a count of the occurrence of each of the
seven possible clitic orders, ~s, from a corpus of
sentences, the posterior probability of each possi-
ble grammar, p(g | ~s), can be computed. Using
Bayes’ rule, p(g | ~s) can be calculated as

p(g | ~s) = p(~s | g)p(g)P
g0 p(~s | g0)p(g0)

(3)

We assume a uniform prior probability distribu-
tion over grammars, p(g). The likelihood term,
p(~s | g), is calculated by integrating over all pos-
sible values of ~✓,

p(~s | g) =
Z

p(~s | ~✓)p(~✓ | g)d~✓ (4)

Note that the complexity of each hypothesized
grammar differs because in grammars that rule out
some clitic combinations, the corresponding val-
ues of ~✓ are set to zero, and the corresponding
likelihood terms have fewer values of ✓ to inte-
grate over. Because of this, a grammar that al-
lows fewer clitic combinations will have a higher
likelihood than a grammar that allows more clitic
combinations, when some counts in ~s are zero (cf.
Tenenbaum and Griffiths, 2001). This is so be-
cause a more complex grammar needs to integrate
over values of ~✓ that give probability to things that
do not occur in the learner’s input.

For example, in trying to determine how
likely it is that g is either SG1 or FG1, both
which allow all 7 possible clitic combinations,
p(~s | ~✓) is N !

n1!···n7!

Q7
i=1 ✓

ni
i , and p(~✓ | g)

is �(
P7

i=1 ↵i)Q7
i=1 �(↵i)

Q7
i=1 ✓

↵i�1
i . On the other hand,

if trying to determine how likely it is that g
is either FG3 or SG21, both which allow 5
of the 7 possible clitic combinations, p(~s | ~✓)
will be N !

n1!···n5!

Q5
i=1 ✓

ni
i , and p(~✓ | g) will be

�(
P5

i=1 ↵i)Q5
i=1 �(↵i)

Q5
i=1 ✓

↵i�1
i .

To calculate the likelihood that g is, for exam-
ple, FG1, we can substitute these terms into Eq. 4,



which yields Eq. 5 (cf. Gelman et al., 2014).

Q7
i=1 �(ni + ↵i)

�
⇣P7

i=1 ni + ↵i

⌘ N !

n1! · · ·n7!

�
⇣P7

i=1 ↵i

⌘

Q7
i=1 �(↵i)

(5)

On the other hand, if calculating the likelihood that
g is instead FG3, then all of the instances of ‘7’ in
Eq. 5 would be replaced with ‘5’.

Having defined the learning model, we can now
give it data to learn from, based on child-directed
speech, and see what difference the size of the hy-
pothesis space makes.

5 Simulations

We conducted several simulations based on real-
istic proportions of clitic combinations taken from
child-directed speech.

5.1 Data

We estimated the frequency of each clitic combi-
nation in child-directed speech based on their dis-
tribution in the Aguirre Corpus (Aguirre, 2003),
from CHILDES (MacWhinney, 2000). This cor-
pus contains 30 files for one Spanish-speaking
child between the ages of 1;7 and 2;10. We ex-
tracted the 13,411 child-directed utterances from
the files using the Python package PyLangAcq
(Lee et al., 2016). Then, we used the Python
package spaCy (Honnibal and Montani, 2017) to
parse these utterances. This allowed us to extract
utterances where two clitics preceded a verb; i.e.,
we extracted the sentences with clitic clusters that
are relevant for learning the PCC. We found 50 in-
stances of 1 3, 148 instances of 2 3, 4 instances of
3 2, and 68 instances of 3 3. This indicates that
the speakers in this corpus speak a Me-First PCC
language, since these constructions are only com-
patible with that kind of PCC language. We failed
to observe any instances of 1 2, even though this
construction is grammatical in Me-First PCC lan-
guages (cf. Table 1).

Training corpora for our models were created
based on the frequency distribution found in the
Aguirre Corpus. Because counts from this corpus
were used as the weights for the random sampling,
we applied smoothing so that the simulations had
some probability of including the 1 2 construc-
tion, which is grammatical in Me-First PCC lan-
guages (again, cf. Table 1) but had a zero count
in the Aguirre corpus. The smoothing consisted

of adding 0.1 to all of the counts for grammat-
ical constructions from the Aguirre corpus. For
each simulation, we randomly sampled n PCC
constructions with weights based on the smoothed
frequency profile found in the Aguirre corpus; we
did this for three values of n: 66, 666, and 6,666.
These values were chosen because Hart and Ris-
ley (1995) estimate that children hear 333,333 ut-
terances per year in their first three years of life.
Moreover, 2% of the utterances in the Aguirre
Corpus were relevant for learning the PCC, so 2%
of 333,333 is 6,666 (see subsection 5.3 for more
discussion).

5.2 Results

We trained Simple learning models and Feature-
based learning models. Each model used the data
that we generated on the basis of the Aguirre cor-
pus to compute a posterior distribution over all the
grammars in its hypothesis space. We ran 1,000
replications of each model at each corpus size, n,
and we averaged the results of these 1,000 replica-
tions. These mean posterior probabilities are plot-
ted in Figure 2 (to make the plots more readable,
only grammars with a posterior probability equal
to or greater than 0.1 are plotted).

As can be seen in Figure 2, the grammar
with the highest posterior probability is the cor-
rect grammar for all three corpus sizes under the
Feature-based learning model. That is to say, in
these cases, the model has converged on FG3,
which is the feature-based grammar for the Me-
First PCC (cf. fn. 6).

On the other hand, for the Simple learning
model, the simulations converge on SG85 when
the corpus size is 66 and 666, but the simple gram-
mar that instantiates the Me-First PCC variety is in
fact SG21; SG85 differs from SG21 in disallowing
1 2. (SG87 furthermore disallows 3 2, compared
to SG21; see Table 2.) Nonetheless, when the cor-
pus size is 6,666, the Simple learning model does
correctly converge on SG21.

5.3 Discussion

In our simulation results, we saw that the Feature-
based learning model is able to converge on the
correct grammar much quicker than the Simple
learning model. In fact, if data are sparse, the
Simple learning model converges on unattested
PCC varieties. The Simple learning model clearly
needs more data to learn the target grammar.
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(b) Simple learning model results

Figure 2: Mean posterior probabilities for learning simulations (FG3 is the target grammar for the feature-based
theory; SG21 is the target grammar for the simple theory)

As noted, we chose the corpus sizes that we
did because Hart and Risley (1995) estimate that
children hear 1 million utterances in their first 3
years, or 333,333 utterances per year.7 More-
over, the Aguirre corpus contained 13,411 child-
directed utterances, and we found 270 utterances
with clitic clusters, which is ⇡ 2%. Two percent
of 333,333 is 6,666. Thus, a young learner might
hear 6,666 clitic combinations in one of their early
years of life.

This suggests that the Simple learning model
may in fact have enough data that it needs in or-
der to converge on the correct target grammar, but
there are several things one would want to further
investigate. First, one would want to know when
a child has fully acquired the PCC restrictions of
their language. To the best of our knowledge,
there is very little research on this. Tsakali and
Wexler (2010) reported that Greek-acquiring chil-
dren seem to know the PCC restrictions of their
language by age 5, but they tested this by eliciting
acceptability judgments, which are often hard to
do with younger children. At best, this might be an
upper bound for when children know the PCC re-
strictions of their language. Indeed, Blasco (2000)
showed that Spanish-acquiring children were cor-
rectly producing both accusative and dative cli-
tics in Spanish by the age of 2;2, if not earlier.8

Whether this means that they know the PCC re-

7These estimates are for American children who are ac-
quiring English, but presumably the order of magnitude is
comparable for learners of other languages, such as Spanish.

8For further discussion on the acquisition of clitics more
generally, see Tsakali (2014).

strictions at such a young age is an open question.
Second, there is a difference between input and

intake (cf. Omaki and Lidz, 2015); that is to say,
just because a learner hears 6,666 clitic clusters,
does not mean that the learner uses those utter-
ances for learning. A learner might be inatten-
tive, a learner might fail to perceive a given ut-
terance, a learner might fail to parse a given ut-
terance, etc.. Especially at a very early age, when
the child hasn’t yet learned the syllable structure
of their language and how to identify morpheme
boundaries, it seems unlikely that the child would
learn anything about the PCC variant of their tar-
get language upon hearing a clitic cluster in their
input.

Moreover, as can be seen by examples (1) and
(2), the surface string order does not necessar-
ily reflect the underlying argument structure rela-
tions, which can interact with other language spe-
cific factors in a variety of ways. For example,
in many dialects of Spanish, the clitics must oc-
cur in a certain order, regardless of the underly-
ing argument structure relations (cf. fn. 1). Absent
definitive knowledge of both the argument struc-
ture of the verb and such language specific factors
as clitic ordering effects, it might be advantageous
for a learner to ignore some of its input (cf. Perkins
et al., 2017).

Thus, if a child really did know the PCC vari-
ant of their target language by age 2;2, our results
might argue against the Simple learning model, if
not all of the clitic clusters in the child’s input are
taken up and used for learning. Nevertheless, there
is much we don’t yet know about the acquisition of



the PCC.
Additionally, there is more that could be done

on the modeling side of things. For example, the
models we’ve presented abstract away from ad-
ditional complexities of the assumed grammars,
such as the necessity of the Agree operation for
Nevins’s (2007) theory of the PCC or the necessity
of the features Author and Participant. If such ad-
ditional complexities also need to be learned, (i.e.,
if they are not already known at the time when
PCC learning begins), one would want to create
learning models that include these complexities
and run further simulations.

Ultimately, this work is intended as a
computational-level analysis that begins to
help set an upper bound on how much data
children would need to use in order to learn the
PCC, given particular theoretical and representa-
tional assumptions. We’ve compared the feature
representations assumed by Nevins’s (2007)
feature-based theory to the feature representa-
tions assumed in a simple theory of the PCC.
In addition to Nevins’s (2007) theory, there are
other more restrictive theories of the PCC (e.g.,
Béjar and Rezac, 2003; Pancheva and Zubizarreta,
2018; Graf, 2019); so future modeling work
should also seek to establish upper bounds for the
theoretical and representational assumptions of
these analyses. Given that they’re more restrictive
theories, one might expect the results to be similar
to the results for the Feature-based learning
models reported here, but such modeling work
may nevertheless help distinguish between them,
when coupled with better information about the
acquisition of the PCC.

6 Conclusion

In this paper, we used a learning model to inves-
tigate how person features might be represented
in the syntactic component of the grammar. We
compared two possibilities: one where the person
features are represented as atomic units (cf. (3))
and one where the person features are represented
as feature bundles, consisting of values for the bi-
nary features Author and Participant (cf. (3)).

We simulated different-sized corpora based on
realistic distributions in the input to children and
evaluated these learning models against the simu-
lated data. We found that the Feature-based learn-
ing model is able to learn the target grammar much
quicker than the Simple learning model. Given

enough data, the Simple learning model will con-
verge on the correct grammar; however, if data
are sparse, the Simple learning model will con-
verge on unattested PCC variants, which might tell
against the simple theory of the PCC. That is, this
suggests that the larger hypothesis space, in addi-
tition to being possibly unparsimonious, may lead
learners astray, particularly if data are sparse.

One would particularly want to know how much
input the child actually gets, how much of that
the child uses, and when the child has fully ac-
quired the PCC restrictions. Such information,
coupled with our results, would inform whether
one of these ideas about the representation of per-
son features in the grammar is more plausible than
another.
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Abstract

An emerging line of work uses psycholinguis-
tic methods to evaluate the syntactic gener-
alizations acquired by neural language mod-
els (NLMs). While this approach has shown
NLMs to be capable of learning a wide range
of linguistic knowledge, confounds in the de-
sign of previous experiments may have ob-
scured the potential of NLMs to learn certain
grammatical phenomena. Here we re-evaluate
the performance of a range of NLMs on reflex-
ive anaphor licensing. Under our paradigm,
the models consistently show stronger evi-
dence of learning than reported in previous
work. Our approach demonstrates the value
of well-controlled psycholinguistic methods in
gaining a fine-grained understanding of NLM
learning potential.1

1 Introduction

To gain a deeper understanding of the grammat-
ical generalizations acquired by neural language
models (NLMs), an emerging line of work seeks
to evaluate NLMs as “psycholinguistic subjects”
– that is, assessing the extent to which their prob-
ability distributions conform to human judgments
on linguistic data. This psycholinguistic assess-
ment is typically done by evaluating the model on
minimal pairs of sentences, which differ only at a
target word or phrase that determines the accept-
ability of the sentence. If an NLM has learned
the linguistic phenomenon in question, then it

1Code and data are available at https://github.
com/jennhu/reflexive-anaphor-licensing.

should assign higher probability to sentences that
humans judge to be more acceptable. This ap-
proach has shown NLMs to be capable of learning
some grammatical phenomena (e.g. subject-verb
agreement and filler-gap dependencies) while fail-
ing on others (Linzen et al., 2016; Lau et al., 2017;
Futrell et al., 2018; Gulordava et al., 2018; Marvin
and Linzen, 2018; Tran et al., 2018; Wilcox et al.,
2018).

In evaluating these mixed learning outcomes,
we raise a broader question that remains largely
unaddressed in the field: What is the standard to

which we should be holding artificial language

models? An engineering goal within the machine
learning community is to build NLMs that ap-
proximate human behavior. In this case, an ideal
NLM should achieve high performance even on
low-frequency constructions, and the learning sig-
nal should be detectable even with coarse experi-
mental paradigms. However, if a scientific goal is
to highlight the grammatical phenomena that can
be learned from sequential data, then experiments
should be designed with the aim to give NLMs a
fair shot at displaying successful learning.

We demonstrate the value of robust psycholin-
guistic methods in serving the latter goal by re-
evaluating the performance of neural language
models on English reflexive anaphor licensing
(RAL). For example, in John disappointed him-

self, the reflexive himself can refer to John, but in
John knew that Paul disappointed himself, the re-
flexive can only refer to Paul but not John. A pri-
ori, we expect RAL to be difficult to learn for sev-

https://github.com/jennhu/reflexive-anaphor-licensing
https://github.com/jennhu/reflexive-anaphor-licensing


eral reasons. From a theoretical perspective, mul-
tiple syntactic constraints are simultaneously op-
erative in RAL, which may increase the complex-
ity of the representation that needs to be learned
(see Section 2.1). In addition, the appearance of
a reflexive is never obligatory based on the pre-
ceding context – that is, while a reflexive requires
an antecedent NP licensor, an antecedent NP never
requires a reflexive downstream (see Section 2.2).

Previous studies have shown NLMs to fail at
RAL in various syntactic configurations (Futrell
et al., 2018; Marvin and Linzen, 2018). We take
a closer look at these previously reported failures,
conducting new experiments that control for con-
founding variables and creating new materials that
are compatible with small-vocabulary NLMs. Our
experiments detect stronger evidence of learning
than reported in previous work, demonstrating the
value of robust psycholinguistic methods in study-
ing the potential of NLMs to learn complex syn-
tactic phenomena.

2 Background

2.1 Reflexive anaphor licensing (RAL)

English reflexive anaphors are licensed only when
two different structural constraints are both sat-
isfied, which we refer to as LOCALITY and C-
COMMAND. These two constraints are indepen-
dently motivated on theoretical grounds and un-
derlie many syntactic configurations (e.g. Rein-
hart, 1983; Rizzi, 2013).

LOCALITY stipulates that the matching an-
tecedent must be in the same clause as the re-
flexive. C-COMMAND requires the matching an-
tecedent to be in a c-commanding relation with
the reflexive (Reinhart, 1981; Chomsky, 1993).
For present purposes, it is sufficient to define c-
command as the following: if a node has any sib-
ling nodes in a syntax tree, then it c-commands
its siblings and all of their descendants; if a node
has no siblings, then it c-commands everything its
parent c-commands.

To illustrate these two constraints, Figure 1
shows the syntax tree for the sentence The fa-

thers said the women near the boys saw them-

selves. This sentence contains three noun phrases
(NPs) that could potentially act as an antecedent
for themselves, but only one of them satisfies both
structural requirements of RAL: (1) the higher
subject NP1 the fathers c-commands themselves

but is not within the local clause, violating LO-

S

NP1

The fathers

VP

V

said

S

NP2

Det

the

N’

N’

N

women

PP

P

near

NP3

the boys

VP

V

saw

NP

themselves

Figure 1: Syntax tree for example sentence. While each
NP agrees in number with the reflexive themselves,
only NP2 occurs in a position that can license it.

CALITY; (2) the lower subject NP2 the women c-
commands themselves locally, licensing the reflex-
ive; (3) the linearly closest NP3 the boys is within
the local clause, but violates C-COMMAND since it
is inside a prepositional phrase inside NP2. Thus,
NP2 the women is the only possible licensor for
the reflexive themselves.

We frame our experiments in terms of the two
syntactic constraints involved in RAL, i.e. LO-
CALITY and C-COMMAND. This is typically done
when testing the linguistic knowledge of humans,
in order to probe the nature of linguistic general-
izations that are being drawn across different types
of constructions. In following this convention, we
do not intend to claim the NLMs are learning these
abstract structural properties per se.

2.2 Distribution of reflexive anaphors

The presence of a reflexive anaphor is never oblig-
atory, in the sense that nothing in the preceding
context deterministically predicts an upcoming re-
flexive. This contrasts with other syntactic de-
pendencies, where the two elements of the de-
pendency mutually require each other. In subject-
verb agreement, for example, a subject NP sets the
expectation for a downstream verb that agrees in
number, and the verb requires a matching subject.
This is also the case for less frequent constructions
such as filler-gap dependencies, where the appear-
ance of a filler wh-word sets the expectation for a
gap, and the presence of a gap requires a preced-
ing filler. This property does not hold for reflex-
ive anaphors, as an NP never requires the appear-



ance of a reflexive downstream. Thus, given an
upstream reflexive licensor, there is high variance
in the downstream contexts.

Furthermore, although we are interested in re-
flexive anaphors that occur in an argument po-
sition, these pronouns can also occur as an in-
tensifier adjoining right next to an NP, as in The

president himself signed my book. Since the in-
tensifier usage does not obey the same structural
constraints, it has a different distribution from
the anaphor usage. Both of the factors discussed
above pose a challenge for NLMs to learn a robust
representation for RAL.

2.3 Paradigms in previous work

Previous work evaluating the ability of neural lan-
guage models to learn RAL primarily builds upon
the paradigms introduced in Marvin and Linzen
(2018) and Futrell et al. (2018). Both studies con-
clude that NLMs fail to learn the appropriate li-
censing conditions for reflexives.

In particular, Marvin and Linzen (2018) test
whether NLMs learn RAL in relative clauses and
sentential complements. Consider the following
sample items (1) and (2) from their study:

(1) The bankers who the pilot embarrassed
hurt *himself / themselves.

(2) The bankers thought the pilot embarrassed
himself / *themselves.

In (1), the reflexive himself cannot be licensed
by the pilot because the pilot is inside a rela-
tive clause, thus violating both LOCALITY and C-
COMMAND. In (2), the reflexive themselves is em-
bedded in a sentential complement, so the long-
distance subject the bankers cannot license the re-
flexive for violating LOCALITY.

As is typical in psycholinguistic evaluation of
NLMs, previous RAL studies calculate accuracy
as the proportion of trials where the model assigns
higher probability to the correct reflexive given the
prefix, compared to another reflexive that would
make the sentence ungrammatical. Since Marvin
and Linzen (2018) and Futrell et al. (2018) test
number and gender agreement, respectively, Mar-
vin and Linzen compare the probability of him-

self /herself vs. themselves, while Futrell et al.
compare the probability of himself vs. herself.

While the failures reported by these studies have
been taken as evidence of the limits of NLM learn-
ing, they might be attributed to confounding fac-

tors in the design of the experiments. As discussed
above, previous studies measure accuracy by com-
paring the probability assigned to different target
reflexives given the same context. However, in
many standard training corpora, the reflexive pro-
nouns themselves, himself, and herself differ dra-
matically in frequency, leading to an asymmetry
in unigram probabilities (Table 2). This presents
a confound, as all models are likely to implicitly
factor unigram probabilities when estimating con-
ditional probabilities in context.2 Thus, even if
a model has learned correct generalizations about
the relevant features of the context, these general-
izations could be obscured by large differences in
unigram frequency.

In addition, both Marvin and Linzen (2018) and
Futrell et al. (2018) use profession nouns that are
almost all stereotypically male (e.g. banker, sen-

ator). However, many of these nouns occur with
low frequency in standard training datasets, so ex-
isting materials cannot be used to test RAL learn-
ing in models with relatively small vocabularies.

To re-evaluate NLM learning potential of RAL,
we conduct new experiments that mitigate the is-
sues raised by unigram probability asymmetries
and stereotypically gendered nouns. We describe
our methods in Section 3.

3 Experimental design

Psycholinguistic evaluation of language models
typically measures accuracy as the proportion of
trials in which the model correctly assigns higher
probability to the grammatical sentence in a mini-
mal pair. This probability differential is affected
not only by the expectations set by the context,
but also by the unigram probabilities of the target
words (in the case of RAL, themselves, himself,
and herself ). To avoid this issue, we keep the tar-
get reflexive fixed and vary the preceding lexical
items in each condition.

3.1 Conditions

Each sentence in our test suites has two NPs, a
verb, and a target reflexive, as well as material that
modulates the syntactic state (e.g. the onset of a
relative clause). One NP is in a position that can
license a reflexive, and the other NP is not. Our
experiments have the following three conditions:

2A unigram frequency is one of the easiest things for a
neural model to learn, e.g. as the bias term in the output layer.



• Baseline: Both NPs match the number fea-
ture of the target reflexive. The sentence is
grammatical.

• Distractor: The NP in the licensing posi-
tion matches the number of the target, but the
other NP mismatches. The sentence is still
grammatical, but contains distracting mate-
rial.

• Ungrammatical: The NP in the licensing
position mismatches the number of the target.
The sentence is ungrammatical.

We choose to test number instead of gender fea-
ture agreement (cf. Futrell et al., 2018) because
we believe models are more likely to learn a rep-
resentation of number than gender, as number is
more frequently marked than gender in English.
There is also evidence of NLMs learning other
number-based dependencies such as subject-verb
agreement (Linzen et al., 2016).

3.2 Evaluation metric

Our accuracy calculation involves a three-way
comparison. For a given item, the model makes
a correct prediction if the probability of the target
reflexive in the Ungrammatical condition is lower
than the probability of the target in both the Dis-
tractor and Baseline conditions. Accuracy is the
proportion of items in the experiment for which
the model makes the correct prediction. If the
probability of the target is the same across con-
ditions, then the prediction is considered correct
with probability 1/3. Under this measure, chance
performance is 33.33%, in contrast to the 50%
from existing paradigms that compare grammati-
cal vs. ungrammatical constructions.

3.3 Lexical items

Nouns Previous studies on RAL use nouns de-
noting professions often associated with stereotyp-
ical gender, such as lumberjack and hairdresser

(Futrell et al., 2018; Marvin and Linzen, 2018).3

However, these nouns are not inherently gendered,
and manipulating the gender of the reflexive does
not change the grammaticality of the sentence. In-
stead, we use high-frequency nouns with lexical-
ized gender, such as man and woman. This al-
lows us to extend our paradigm to models with
smaller vocabularies (see Section 4), for which

3RNNs have been shown to learn NP stereotypical gender
(Rudinger et al., 2018).

many profession nouns are out-of-vocabulary (e.g.
hairdresser). This also ensures that our experi-
ments can be replicated with future corpora, as the
stereotypical gender of occupations represented in
word embeddings can vary across time and cul-
tures (Garg et al., 2018). We selected a total of 10
nouns (5 female and 5 male), with the female and
male nouns balanced for frequency of occurrence
in the Wikipedia corpus (see Table 2).

Verbs We first manually constructed a list of
commonly used reflexive verbs. Using this list,
we calculated the relative frequency of their oc-
currences within a reflexive construction in the
Wikipedia corpus, and selected the most frequent
ones. We also selected the most frequent verbs by
their raw counts in the corpus. A total of 15 verbs
were selected using this method.

Counterbalancing To ensure that vocabulary
differences in preceding context do not confound
the observed effects on the target reflexive, we
counterbalance the position of nouns such that
each noun occurs in a licensing and a non-
licensing position equally often. Consequently,
each stimulus item has several variants, where
the nouns are equally distributed across positions.
Each noun also appears with each of the verbs
equally often across items.

3.4 Logic of experiments

In Experiment 1, we first perform a loose repli-
cation of Marvin and Linzen (2018) by adapting
their materials into our experimental paradigm.
The experiment includes relative clause and sen-
tential complement constructions, which we test
in Experiments 1a and 1b, respectively. To con-
struct the materials, we crossed 10 nouns with 7
matrix verbs from the original Marvin and Linzen
study, resulting in a total of 70 items per pronoun.

As discussed in Section 2.3, one issue with pre-
vious studies is the choice to use lexical items with
stereotypical gender. In subsequent experiments,
we create new test suites with materials using lex-
icalized gender. In Experiments 2a and 2b, we use
our new materials to test relative clause and sen-
tential complement constructions, respectively, for
comparison with Experiments 1a and 1b.

Since the relative clause construction tests both
LOCALITY and C-COMMAND and the sentential
complement construction only tests LOCALITY,
we test prepositional phrases in Experiment 3 to
isolate the effect of C-COMMAND. We cross 4



Condition Example sentence

LOCALITY & C-COMMAND

Relative clause (M&L) Grammatical The bankers who the pilot embarrassed hurt themselves
Ungrammatical *The bankers who the pilot embarrassed hurt herself

Relative clause (Exp. 1a) Baseline The {banker, pilot} that the {pilot, banker} embarrassed hurt herself
Distractor The {banker, pilot} that the {pilots, bankers} embarrassed hurt herself
Ungrammatical *The {bankers, pilots} that the {pilot, banker} embarrassed hurt herself

Relative clause (Exp. 2a) Baseline The {mother, girl} that the {girl, mother} liked saw herself
Distractor The {mother, girl} that the {girls, mothers} liked saw herself
Ungrammatical *The {mothers, girls} that the {girl, mother} liked saw herself

LOCALITY ONLY

Sentential complement (M&L) Grammatical The bankers thought the pilot hurt herself
Ungrammatical *The bankers thought the pilot hurt themselves

Sentential complement (Exp. 1b) Baseline The {banker, pilot} said that the {pilot, banker} hurt herself
Distractor The {bankers, pilots} said that the {pilot, banker} hurt herself
Ungrammatical *The {banker, pilot} said that the {pilots, bankers} hurt herself

Sentential complement (Exp. 2b) Baseline The {mother, girl} said that the {girl, mother} saw herself
Distractor The {mothers, girls} said that the {girl, mother} saw herself
Ungrammatical *The {mother, girl} said that the {girls, mothers} saw herself

C-COMMAND ONLY

Prepositional phrase (Exp. 3) Baseline The {mother, girl} near the {girl, mother} saw herself
Distractor The {mother, girl} near the {girls, mothers} saw herself
Ungrammatical *The {mothers, girls} near the {girl, mother} saw herself

Table 1: Sample stimuli for herself in our experiments and the original Marvin and Linzen (“M&L”) study.

nouns with 15 verbs, resulting in 60 items for each
pronoun in each of Experiments 2 and 3.4 Table 1
shows sample items for Experiments 1-3 along
with corresponding items from the original Mar-
vin and Linzen (2018) study.

4 Language models

We evaluate RAL in six neural language models,
as well as a baseline n-gram model. Together,
the models cover a range of vocabulary sizes, ar-
chitectures, and inductive biases (Table 2). Our
goal here is not to draw general conclusions about
certain architectures or training regimes, but to
present results across a diverse set of models, in-
cluding those that were previously untestable due
to experimental design.

GRNN and JRNN Recurrent neural networks
(RNNs; Elman, 1990; Mikolov et al., 2010) per-
form well in language modeling, with long short-
term memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997; Sundermeyer et al., 2012) be-

4To counterbalance the position of the nouns, there are 6
variants of each item (2 per condition) for himself and herself,
and 12 variants of each item (4 per condition) for themselves.

ing the most popular variant. We test two LSTMs
that differ significantly in vocabulary size and have
been shown to learn syntactic dependencies to
varying degrees of success. The Gulordava et al.
(2018) LSTM (“GRNN”) was trained on a subset
of English Wikipedia with 90M training tokens.
The Jozefowicz et al. (2016) LSTM (“JRNN”)
was trained on the One Billion Word Benchmark
(Chelba et al., 2013). JRNN additionally has con-
volutional neural network character input embed-
dings.

Transformer-XL and BERT Next, we test
two models based on the Transformer architec-
ture (Vaswani et al., 2017). Transformer-XL
(“TransXL”; Dai et al., 2019) reuses the hidden
states obtained in previous segments, which facili-
tates modeling of long-term dependencies. BERT
(Devlin et al., 2018) is bi-directional, in that it is
trained to predict the identity of masked words
based on the preceding and following context.5

Both models were trained on document-level cor-
pora instead of shuffled sentences: WikiText-103

5We use the small, uncased version of BERT (BERTBASE)
with no fine-tuning after the initial pre-training tasks.



Model Architecture Training data Training tokens Vocab size themselves himself herself

BERT Transformer BooksCorpus, Wikipedia 3.3B 30K - - -
TransXL Transformer WikiText-103 103M 267K 9K 20K 5K
JRNN LSTM 1B Word Benchmark 1B 800K 103K 124K 34K
GRNN LSTM Wikipedia 90M 50K 10K 17K 4K
TinyLSTM LSTM PTB §2-21 (terminals) 950K 23K 114 95 12
RNNG RNNG PTB §2-21 (trees) 950K 23K 114 95 12
5-gram n-gram Wikipedia 90M 50K 10K 17K 4K

Table 2: Language models evaluated in our experiments, along with raw frequency counts of reflexives in the
training data. Pre-training data was not publicly released for BERT.

(Merity et al., 2017) for TransXL, and a com-
bination of BooksCorpus (Zhu et al., 2015) and
Wikipedia for BERT. Recent work has shown
BERT to perform well on reflexive constructions
(Goldberg, 2019).

RNNG and TinyLSTM The last two neural
models in our test suite have identical vocabular-
ies but differing inductive biases: a recurrent neu-
ral network grammar (“RNNG”; Dyer et al., 2016)
and a vanilla LSTM (“TinyLSTM”). Both mod-
els were trained on the 1-million-word English
Penn Treebank §2-21 (Marcus et al., 1993), but
TinyLSTM is only trained on the terminal word
sequences, while RNNG is trained on the full an-
notations, which contain complete constituency
parses. This minimal difference allows us to ob-
serve the effect of structural supervision, which
has been shown to be beneficial in acquiring cer-
tain grammatical dependencies (Kuncoro et al.,
2017; Wilcox et al., 2019). Crucially, the vocab-
ulary of these models is too small to acommodate
the lexical items used in previous RAL studies.

n-gram As a baseline, we test a 5-gram model
trained on the same Wikipedia data as GRNN. We
use Kneser-Ney smoothing to perform backoff.

4.1 Computing word probabilities

In practice, we calculate accuracy (see Sec-
tion 3.2) by comparing differentials in log prob-
ability space at the target pronoun. To obtain the
log probability of word wi assigned by the LSTMs
and Transformer models, we compute

log2 p(wi|hi�1), (1)

where hi�1 is the model’s hidden state before ob-
serving wi. This probability is calculated from the
model’s softmax activation.

To obtain the log probability of wi in the
RNNG, we follow the method used in Hale et al.
(2018). We use word-synchronous beam search
(Stern et al., 2017) to find the most likely in-
cremental parses, and sum their forward prob-
abilities to approximate P (w1, . . . , wi+1) and
P (w1, . . . , wi�1). We use 100 for the action beam
size and 10 for the word beam size.

In contrast to the other models in our test suite,
BERT is bi-directional. To obtain the log proba-
bility of wi, we first feed BERT a sentence with
wi masked out and obtain the word predictions for
the masked position. This gives us a probability
distribution over words. In practice, since the tar-
get reflexive in our items always occurs directly
before the final token ‘.’, we do not expect the
right context to modulate predictions about the tar-
get differently across conditions.

5 Results

5.1 Experiment 1: Marvin and Linzen (2018)

The original materials of Marvin and Linzen
(2018) use profession nouns that are stereotyp-
ically male. Since these nouns are out-of-
vocabulary for RNNG and TinyLSTM, we run this
experiment only on the large-vocabulary models
(BERT, TransXL, JRNN, GRNN, 5-gram).

Exp. 1a: M&L relative clause We first investi-
gate RAL learning in the relative clause construc-
tion (see Table 1). Here, the NP inside the rel-
ative clause cannot license the reflexive, as such
a relationship would violate both LOCALITY and
C-COMMAND. Our design differs from Marvin
and Linzen (2018) in that we hold the reflexive
anaphor constant while varying the context, with
the position of the nouns counterbalanced.

Accuracy scores from the original study and



BERT TransXL JRNN GRNN TinyLSTM RNNG 5-gram

LOCALITY & C-COMMAND

Relative clause (M&L) 0.80† – – 0.55* – – 0.50*

Relative clause (Exp. 1a) 0.76 0.74 0.41 0.70 – – 0.33
± 0.057 ± 0.059 ± 0.067 ± 0.062

Relative clause (Exp. 2a) 0.70 0.70 0.68 0.45 0.16 0.24 0.33
± 0.067 ± 0.067 ± 0.068 ± 0.073 ± 0.053 ± 0.062

LOCALITY ONLY

Sentential complement (M&L) 0.98† – – 0.86* – – 0.50*

Sentential complement (Exp. 1b) 0.95 0.91 0.96 1.00 – – 0.33
± 0.029 ± 0.038 ± 0.026 ± 0

Sentential complement (Exp. 2b) 0.98 0.92 0.97 0.99 0.82 0.88 0.33
± 0.022 ± 0.039 ± 0.026 ± 0.013 ± 0.057 ± 0.047

C-COMMAND ONLY

Prepositional phrase (Exp. 3) 0.99 0.71 0.69 0.75 0.43 0.62 0.33
± 0.008 ± 0.067 ± 0.063 ± 0.063 ± 0.072 ± 0.071

Table 3: Accuracy scores for each experiment, with 95% confidence intervals shown below where applicable.
Accuracy is computed at the item-level for each pronoun, then averaged across all pronouns. Chance accuracy
is 33.33%, except for entries marked with † or *, where chance is 50%. The BERT results marked with † come
from Goldberg (2019), while the GRNN and 5-gram results marked with * come directly from Marvin and Linzen
(2018). These results are also not directly comparable to each other due to the bi-directionality of BERT; see
Goldberg (2019) and Wolf (2019) for details.

our Experiment 1 are reported in Table 3 (top
two rows). Accuracy is computed at the item-
level for each pronoun, then averaged across all
pronouns. Under our evaluation method, GRNN
shows considerable improvement over what was
reported in Marvin and Linzen (2018), while the
5-gram model remains at chance. While our met-
rics are not strictly comparable, the original study
reports near-chance accuracy (55% ⇠ 50%), while
we report accuracy well above chance (70% �
33.33%). BERT achieves slightly lower accuracy
under our paradigm than was reported in Gold-
berg (2019) (76% vs. 80%); note, however, that
our chance baseline is lower.

Exp. 1b: M&L sentential complement Next,
we investigate RAL learning in the sentential com-
plement construction. Here, the long-distance sub-
ject cannot license the reflexive embedded in a
sentential complement, because such a relation-
ship would violate LOCALITY (while satisfying C-
COMMAND). As in Exp. 1a, our approach differs
from Marvin and Linzen (2018) in that we hold
the reflexive anaphor constant while varying the
context, with the position of the nouns counterbal-
anced.

All large-vocabulary neural models perform
near ceiling in our paradigm, despite our metric
having a lower baseline. GRNN achieves 100%

accuracy, showing a marked improvement over
previously reported results (Table 3). Overall, the
models exhibit the correct trend for the sentential
complement construction (Exp. 1b), but the pat-
tern is less clear for the relative clause construc-
tion (Exp. 1a). One possible explanation is that in
a relative clause, the licensing NP is linearly far-
ther away from the reflexive than the distracting
NP; a global preference for linear proximity may
have obscured learning of structural adjacency.

5.2 Experiment 2

The materials used in Marvin and Linzen (2018)
(and our Experiment 1) involve items with stereo-
typically gendered nouns. This raises two po-
tential issues: (1) gender biases may overshadow
number mismatch effects, and (2) the materials
can only be used to evaluate models with rea-
sonably large vocabularies. As in Experiment 1,
the design of Experiment 2 differs from Marvin
and Linzen (2018) in that we hold the reflexive
anaphor constant while varying the context. In ad-
dition, we create new materials using nouns with
lexicalized gender rather than stereotypical gen-
der. This allows us to evaluate all seven models
in our test suite.

Exp. 2a: Relative clause As in Exp. 1a, we first
test RAL learning in the relative clause construc-



Figure 2: Negative log probability differential at target reflexive in sentential complement construction. Error
bars are bootstrapped 95% confidence intervals. Blue bars: Distractor-Baseline differential at target reflexive.
Red bars: Ungrammatical-Baseline differential at target reflexive. If the models learn the correct generalization
for RAL, then the red bars should be both positive and higher than the blue bars. Top (Exp. 1b:) Distractor-
Baseline differential is significantly higher at herself than himself or themselves. The stimuli contain materials
that are out-of-vocabulary for TinyLSTM and RNNG. Bottom (Exp. 2b): For the large-vocabulary models, the
Distractor-Baseline differential is comparable across pronouns. For the small-vocabulary models, the differential
is significantly higher at herself.

tion using our new set of materials. Accuracy
scores are high for most of the large-vocabulary
neural models (BERT, TransXL, JRNN) and above
chance for GRNN, but at or below chance for the
other models (Table 3).

Exp. 2b: Sentential complement In Experi-
ment 3, we test the sentential complement con-
struction using our materials. As shown in Ta-
ble 1, we place the reflexive inside a complement
clause, such that either both c-commanding NPs
match the number feature of the reflexive (Base-
line), or there is one mismatching NP either in the
non-local subject position (Distractor) or the local
subject position (Ungrammatical).

All large-vocabulary neural models perform
near ceiling (Table 3). The small-vocabulary mod-
els RNNG and TinyLSTM achieve lower accu-
racy, but RNNG outperforms TinyLSTM.

5.3 Experiment 3

Since previous studies have focused on the rela-
tive clause and sentential complement construc-
tions, C-COMMAND has not been tested sepa-
rately from LOCALITY. In Experiment 3, we
hold LOCALITY constant while manipulating C-
COMMAND by placing a distractor NP inside a
non-c-commanding PP modifier in the local sub-

ject NP. No clausal boundary is introduced. As in
Experiment 2, our approach differs from Marvin
and Linzen (2018) in that we hold the reflexive
anaphor constant while varying the context, and
we use nouns with lexicalized gender.

Accuracy scores are reported in the bottom sec-
tion of Table 3. Performance is well above chance
for all neural models except TinyLSTM. RNNG
shows a clear advantage over TinyLSTM (62% vs.
43%).

5.4 Asymmetry between himself & herself

Thus far, we have reported accuracy scores aver-
aged across the three reflexive pronouns (Table 3).
The three pronouns are weighted equally in the re-
ported numbers, as accuracy is computed at the
level of each item.

Next, we investigate differences in performance
across reflexive anaphors. Figure 2 shows the re-
sults of this cross-pronoun comparison for Exper-
iments 1b and 2b, which both use the sentential
complement construction (LOCALITY only). Blue
bars show the Distractor-Baseline log probability
differential at the target reflexive. Red bars show
the Ungrammatical-Baseline log probability dif-
ferential at the target reflexive. If the models learn
the correct generalization for RAL, then the red



bars should be both positive (i.e. above baseline)
and higher than the blue bars.

In Experiment 1b, which uses profession nouns
that are primarily associated with men,6 the
Distractor-Baseline differential (blue bars) is sig-
nificantly higher at herself than at himself or
themselves. In contrast, in Experiment 2b, which
uses nouns with lexicalized gender, there is only
a significant difference between the Distractor-
Baseline differentials at himself and herself for
the small-vocabulary models TinyLSTM and
RNNG.

We hypothesize that this can be attributed to the
choice of vocabulary items. In the Distractor con-
dition of Experiment 1, the distracting noun is plu-
ral and has stereotypically male gender (e.g. sen-

ators). The features of this noun partially match
with himself (in stereotypical gender but not num-
ber), but match in neither feature with herself,
leading to a higher Distractor-Baseline differential
for herself. This is not an issue in Experiments
2 and 3, where all nouns match in gender feature
with the target reflexive across conditions. How-
ever, training data with a low number of occur-
rences of herself can still lead to a high Distractor-
Baseline differential, as is the case in Experiment
3 for TinyLSTM and RNNG.

This pattern may also result from a more gen-
eral asymmetry between gender stereotypes: en-
countering herself after a stereotypically male
noun is more surprising than encountering himself

after a stereotypically female noun. Interestingly,
asymmetry also manifests in human production
biases, where gendered pronoun production and
interpretation are not mutually calibrated (Boyce
et al., 2019).

6 Discussion

In this paper, we used new experiments to re-
evaluate the performance of neural language mod-
els on reflexive anaphor licensing. Our methods
address issues in previous studies, such as unigram
probability asymmetries between target pronouns
and the choice to use nouns with stereotypical gen-
der, which may have led to an underestimation of
learning signal. The results suggest that NLMs are
learning more about RAL than they have previ-
ously been given credit for, and demonstrates the

611 out of these 12 nouns are stereotypically male accord-
ing to United States Census data (Bureau of Labor Statistics,
2017).

value of robust psycholinguistic methods in high-
lighting the potential of NLMs to learn complex
syntactic phenomena.

The value of our approach extends beyond
RAL. If we seek to understand the linguistic gen-
eralizations that NLMs can potentially acquire,
then we must design our experiments to give
NLMs a fair shot at displaying successful learn-
ing, regardless of the phenomenon under study.

Of course, the generalizations acquired by
NLMs may not be well characterized in linguis-
tic terms such as LOCALITY and C-COMMAND,
but rather properties of the data that are irrelevant
to structural considerations. Further experiments
will be required to deepen our understanding of
the generalizations underlying the successes and
failures of these models on this and other evalu-
ation tasks. More generally, future work in this
domain should carefully address hypotheses about
language learning, keeping in mind complemen-
tary questions that arise from engineering and sci-
entific agendas.
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Abstract

This paper extends the empirical coverage of
the Autosegmental Input Strictly Local (A-
ISL) framework (Chandlee and Jardine, 2019)
by analyzing three tonal processes: floating
tone suffixation in Cantonese, metrical domi-
nance effect in Shanghai Chinese, and a com-
bination of floating tones and metrical domi-
nance in Suzhou Chinese. I show both the ad-
equacy and inadequacy of the current A-ISL
framework: it locally resolves some tonal pro-
cesses that are otherwise non-local (Shanghai),
but fails to account for other empirical data
due to a lack of tonal membership specifica-
tion (Suzhou). With the addition of a morpho-
logical affiliation tier, I propose an analysis for
the Suzhou data. The paper contributes to our
typological knowledge of computational local-
ity and autosegmental phonological represen-
tations.

1 Introduction

In this paper I aim to build on the autosegmental
input strictly local (A-ISL) functions introduced in
Chandlee and Jardine (2019), and examine some
tonal processes not discussed by the previous A-
ISL accounts, extending the empirical coverage of
A-ISL transductions. I will assess three phonolog-
ical processes involving tones: floating tone suffix-
ation in Cantonese (Chen, 2000; Yip, 2002), met-
rical dominance effect in Shanghai Chinese (Du-
anmu, 1999), and a combination of floating tones
and metrical dominance in Suzhou Chinese (Shi
and Jiang 2013, my fieldwork).

I show through the examination of these three
cases that the A-ISL model is well-equipped to
capture most patterns involving floating tones
(Cantonese) and metrical dominance (Shanghai).

∗ I would like to thank Jeffrey Heinz, Jonathan Rawski,
Jane Chandlee and the anonymous reviewers for their insight-
ful feedback. All errors are my own.

However, the combination of floating tone repre-
sentation and metrical dominance (Suzhou) can-
not be A-ISL: The Suzhou tone sandhi map is not
definable through quantifier-free (QF) first-order
(FO) logical transductions Chandlee and Lindell
in prep, even if we adopt autosegmental instead
of linear tonal representation. This particular in-
sight has been discussed in Chandlee and Jar-
dine (2019): although autosegmental phonology is
claimed to be a ‘solution’ to non-local phonolog-
ical processes as it makes tonal relationship local
(Odden, 1994), the locality of autosegmental rep-
resentations does not always hold when evaluated
mathematically. I also show that the Suzhou data
can be accurately accounted for with a minimal
addition of morphological affiliation relations (i.e.
association between tones and morphemes).

The paper is structured as follows. In §2 I lay-
out some background on both autosegmental rep-
resentations and A-ISL transductions. I introduce
the three tonal processes and the attempts to an-
alyze them using A-ISL transductions in §3. §4
summarizes the results and proposes an alternative
analysis of Suzhou. §5 concludes this paper.

2 Background

2.1 Autosegmental Phonology
Autosegmental Phonology (Goldsmith, 1976)
proposes separate autosegmental tiers and as-
sociation relations between tiers as part of
phonological representation to account for many
long-distance/non-local phonological processes.
A well-known segmental example is blocking and
transparency effects of nasal harmony. Examples
of two observed patterns of nasal harmony are
given below.

(1) Blocking effect in Johore Malay (Onn, 1980)
/p@Nawasan/ "→ [p@Nãw̃ãsan] (*[p@Nãw̃ãsãn])



(2) Transparency effect in Tuyuca (Barnes,
1996)
/mipi/ "→ [mĩpĩ] (*[mĩpi])

In (1) obstruents and liquids block rightward
nasalization, whereas in (2) obstruents are trans-
parent to the nasal harmony. The difference be-
tween these two patterns is often captured by a
(under)specified [Nasal] feature of the obstruents
on the autosegmental tier: an obstruent that blocks
nasalization is necessarily specified with [-Nasal],
while one that allows nasality to ‘pass through’
is underspecified on the Nasal autosegmental tier.
Autosegmental representations resolve the non-
local nature of such harmony patterns by propos-
ing that relevant features to harmony are still local
on their respective autosegmental tiers.

For similar reasons, autosegmental representa-
tions are useful tools when analyzing tonal pro-
cesses. Chandlee and Jardine (2019) have eval-
uated the computational properties of multiple
spreading and deletion processes of tones, assum-
ing autosegmental representations. In this paper,
I follow their methods and explore three slightly
more complex tonal processes than those ana-
lyzed in Chandlee and Jardine’s paper, drawing
data from Chinese languages: The first case (Can-
tonese) discusses floating tone affixes; the second
case (Shanghai) introduces a metrical dominance
effect to the A-ISL model; the third case (Suzhou)
combines both metrical dominance and floating
tone representations.

2.2 Computational preliminaries

All preliminaries come from definitions in Chan-
dlee and Jardine (2019) . For strings, I assume the
following in this paper:

(3) a. Σ: A finite alphabet of symbols.
b. Σ∗: Set of all strings over Σ.
c. Strings w, v and their concatenation wv;

set of strings L and concatenation between
strings and sets of strings wL.

For models, I assume:

(4) a. A model ⟨D|f1, ..., fn, R1, ..., Rm⟩ where
D is a finite domain of elements, f1, ..., fn
are a set of functions over the domain, and
R1, ..., Rm are a set of relations over the
domain.

b. For our purpose of examining strings,

I assume models of the signature
{p, s, Pσ∈Σ}.

c. p, s: predecessor and successor functions.
p(i) = i− 1, s(i) = i+1, with the excep-
tions that the first element is its own pre-
decessor (p(1) = 1) and the last element
is its own successor (s(n) = n for a string
of length n).

d. Pσ∈Σ: a unary relation for every σ ∈ Σ
that gives the label of each position of the
string.

e. A user-defined function first(x):
first(x) def

= p(x) = x.
f. A user-defined function second(x):
second(x) def

=(¬p(x) = x)∧ (p(p(x)) =
p(x).

g. A user-defined function last(x):
last(x) def

= s(x) = x.

I follow Chandlee and Jardine (2019) in using
QF (Quantifier-Free) logic: For all QF formu-
lae ψ(x1, ..., xn), the variables x1, ..., xn are un-
bounded by quantifiers. For logical transductions,
I assume:

(5) a. An input model signature I , an output
model signature O.

b. ψ(x): a unary predicate in the input I .
c. For each function f ∈ O,
f(x)

def
= ψf (x, y) for some ψf (x, y)

in I .
d. For each unary relation P ∈ O,
P

def
= ψP (x) for some ψP (x) in I .

e. For each binary relation R ∈ O,
R

def
= ψR(x, y) for some ψR(x, y) in I .

f. M |= ψ(x1, ..., xn): the model M satisfies
ψ(x1, ..., xn). For each set of x1, ..., xn in
M the formula ψ(x1, ..., xn) is evaluated
to be true. This defines n-ary mappings be-
tween input and output.

A logical transduction τ maps models of input
structure MI to those of output structure MO,
where:

(6) a. For each x ∈ D there is a copy x′ in the
output iff MI |= ψD(x).

b. For some pair x, y ∈ D and for each
function f(x′) ∈ O, there is a copy pair
x′, y′ in the output such that f(x′) = y′ iff
MI |= ψf (x, y).

c. For some x ∈ D and for each unary rela-



tion P ∈ O, there is a copy x′ ∈ P in the
output iff MI |= ψP (x)

d. For some pair x, y ∈ D and for each
binary relation R ∈ O, there is a copy
pair (x′, y′) ∈ R in the output iff MI |=
ψR(x, y)

2.3 Autosegmental models
Segmental information of strings is irrelevant for
the purpose of the current paper and thus will be
omitted. I will assume a Tone-Bearing-Unit (TBU)
tier and a Tonal tier (containing High, Mid and
Low tones) for the rest of this paper. The TBU tier
and the tonal tier are treated as separate strings,
connected by a binary association relation. A suffi-
cient model signature for autosegmental represen-
tations is presented in (7):

(7) ⟨D|p, s, A, PH , PM , PL, Pσ⟩

Where D is the domain, p, s are predecessor and
successor functions, A is a binary association re-
lation between tones and TBUs, PH , PM , PL are
unary relations for High, Mid and Low tones, and
Pσ is a unary relation for TBUs (syllables). With
respect to contour tones, I follow general autoseg-
mental representations (Yip 2002 for discussion)
and treat them as sequences of level tones (i.e.
a high falling tone is represented as a HL se-
quence; see §3.2). Moreover, concatenation of au-
tosegmental representations will simply be con-
catenations of strings on each autosegmental tier,
preserving all association relations in A.

I will include examples for each of the cases ex-
amined in the following section. For now, I will
demonstrate the tonal map process with an artifi-
cial bounded deletion example.

(8) Bounded tone deletion
/mòmó/ "→ [mò.mo]

The process in (8) can be captured by the A-ISL
model in Figure 1:

σ σ

L H

1 2

3 4 "→
σ σ

L H

1 2

3 4

Figure 1: An example of autosegmental tonal mapping

As shown, the process of final tone deletion can be
captured as the deletion of a tone-TBU association

relation: the association between H (position 4)
and the last syllable (position 2) — A(4,2) —
is deleted on the output1. This hypothetical tone
deletion process is definable through the following
QF logical formulae, and is this A-ISL:

(9) a. σ′(x) def= σ(x)

b. T ′(y)
def
= T (y)

c. A′(y, x)
def
= A(y, x) ∧ ¬last(y)

(9a) states that the unary relation σ′(x) is true if
σ(x) is true. This in turn maps all TBUs in the in-
put (1 and 2) faithfully to the output. (9b) similarly
maps all tones from the input to the output (I use
T here as a short hand for all H/M/L tones). (9c)
defines the crucial tonal process: the binary asso-
ciation A′(y, x) is true if both of the following are
true: (i). A(y, x) is true; (ii). last(y) is false. Put
plainly, input tonal association lines are preserved
in the output only if the tone is not the last element
on the Tonal tier (in this case, 4).

In the next section, I show that the current A-
ISL model (i) achieves the same empirical cov-
erage of the ISL model in representing floating
tone affixation; (ii) is able to resolve a crucial
case that is non-ISL if viewed linearly (Shanghai);
(iii) is unable to account for the combination case
(Suzhou) due to model-external reasons.

3 Floating tones and metrical dominance

3.1 Floating tone suffixation in Cantonese

Both Chen (2000) and Yip (2002) present a case
of the ‘familiar vocative’ affix in Cantonese as a
demonstration of floating tone suffixation. The rel-
evant data is presented in (10):

(10) a. [a](M) ‘Old’, a vocative prefix
b. [tsæng](HM) ‘Zhang’, a last name
c. [tshan] (ML) ‘Chen’, a last name
d. [a.tsæng] (M.HH) ‘Old Zhang’
e. [a.tshan] (M.MH) ‘Old Chen’

The process is rather straightforward: a floating
H morpheme is attached to the right edge of the
familiar vocative term, overwriting the rightmost
tone of the rightmost syllable (Chen, 2000; Yip,

1Tone deletion can also be captured by the deletion of
tonal elements themselves. For our current purposes, I will
assume that deletion of association lines achieves the same
effect, as unassociated tones are not pronounceable on the
surface (Yip, 2002).



2002). I will treat the process as final tone substi-
tution instead of concatenation then deletion2:

(11) Cantonese H tone suffixation

Interestingly, this process is both ISL and A-ISL.

(12) Cantonese floating H suffixation is ISL.
Assume a linear transformation T1...Tk "→
T1...Tk−1H for any k, two input strings
T1...Tk and T0T1...Tk have the same k-
suffix (T1...Tk). Moreover, an input ex-
tension Tk + 1...Tn to the two strings
will result in the same output contribution:
Tk...Tn−1H. The two strings have the same
tails (see the formal definition of tails in
Chandlee 2014).

This process is A-ISL as it is QF-definable by the
following transduction:

(13) a. σ′(x) def= σ(x)

b. H ′(y)
def
= H(y) ∨ last(y)

c. M ′(y)
def
= M(y) ∧ ¬last(y)

d. L′(y)
def
= L(y) ∧ ¬last(y)

e. A′(x, y)
def
= A(x, y)

In the above formulae, x represents TBU elements
and y tonal elements. Shown in (13), two input-
output mappings are identical copies: (13a) faith-
fully maps input TBUs to the output, where (13e)
preserves all association relations. The H tone sub-
stitution process is defined through the tonal map-
pings (13b)-(13d): a tone is a H tone in the output
if it is H in the input or it is the last tone; it is a
M/L in the output if it is M/L in the input and it is
not the last tone. An A-ISL model demonstration
of [a.tshan] (M.MH) ‘Old Chen’ is given below
(predecessor and successor relations are omitted
for readability).

Figure 2 illustrates the tonal mapping /M.ML/
"→ [M.MH]. The unary relations for TBUs and
the binary relations for tone-TBU associations are

2This process can be interpreted as tonal substitution pre-
cisely due to the fact that the floating H affix is without seg-
mental information. A process requiring tone-segment affili-
ations but not tone-TBU associations (i.e. floating tones with
segments) is challenging to the current A-ISL model. See the
case of Suzhou in 3.3.

Figure 2: Cantonese H tone suffixation: A-ISL map

kept constant from input to output. The two M
tones (in 3 and 4) are also mapped faithfully. Cru-
cially, the tonal element in position 5 satisfies
(13b) and does not satisfy (13d). As a result, a L
tone in the input is substituted with a H tone in the
output for 5.

One fact further complicates the Cantonese
data: if the rightmost syllable has a level tone,
the floating H affixation process will create a con-
tour tone instead of overwriting the rightmost H
level: /M.L/ "→ [M.LH]. It requires a bit more ef-
fort for the tonal map to differentiate level or con-
tour tones. However, changing the representation
of L level to LL3 correctly accounts for the trans-
formation without altering the transduction itself.

3.2 Left dominance in Shanghai tone sandhi

Shanghai is a variety of Northern Wu Chinese,
well known for its distinctive tone sandhi patterns.
The relevant tone sandhi data for our concern is
given below (data from Duanmu 1999; tones in
parentheses are surface tones):

(14) a. [N
"
] (LM) ‘fish’

b. [Cjo] (MH) ‘small’
c. [wã] (LM) ‘yellow’
d. [Ci] (HM) ‘fresh’
e. [Cjo.N

"
] (M.H) ‘small fish’

f. [wã.N
"
] (L.M) ‘yellow fish’

g. [Ci.N
"
] (H.M) ‘fresh fish’

h. [Cjo.wã.N
"
] (M.H.L) ‘small yellow fish’

i. [Ci.wã.N
"
] (H.M.L) ‘fresh yellow fish’

j. [Cjo.Ci.wã.N
"
] (M.H.L.L) ‘small fresh yel-

low fish’

A few generalizations can be made: first, only
monosyllabic words carry contour tones;4 second,
tonal material of the initial syllable seems to be re-

3This could be motivated by proposing that Cantonese is
a mora-TBU language, and unreduced syllables in Chinese
languages are usually bimoraic.

4Duanmu (1999) accounts for this by proposing that all
syllables in Shanghai are underlyingly monomoraic, and they
only get lengthened to be bimoraic when in isolation. Con-
sequently, only syllables with two moras can carry two level
tones, contributing to a contour.



tained (and ‘redistributed’) in polysyllabic words;
lastly, the third and fourth syllables surface as L.

Duanmu’s (1999) analysis of Shanghai tone
sandhi patterns proposes a metrical ‘left domi-
nance’ effect. Simply put, footing in Shanghai
is left-to-right, non-recursive and trochaic, giving
phonological prominence5 to only the initial syl-
lable in a prosodic word. According to Duanmu
(1999), the initial syllable is the foot head and al-
ways retains its tonal material in tone sandhi po-
sitions. The second syllable, being the foot depen-
dent, loses all of its tones. Additionally, tonal ma-
terial from the initial syllable is shared between
the first two (footed) syllables by tonal reasso-
ciations. Any unfooted syllables (third, fourth...)
loses all tones and surface as toneless L (I will
use italic L to represent any phonetic L tones
from phonologically toneless syllables). An au-
tosegmental demonstration of the process is given
in (15):

(15) An autosegmental derivation of [Cjo.wã.N
"
]

‘small yellow fish’. σ+ stands for a
footed head syllable and σ− a footed
dependent. The third syllable is phonolog-
ically toneless and surfaces as a phonetic L.

Abstracting away from the language data, the left
dominant tone sandhi process can be represented
as deletion and addition of association lines while
keeping all tones intact — I assume that tones
without association to TBUs (i.e. floating tones)
are not pronounced in the output6. Phonologically
toneless syllables in the output are then subject
to surface phonetic implementation (phonetic L in
Shanghai).

(16) Left dominance in Shanghai

5Being in the metrical head position does not necessar-
ily entail phonetic stress (increased intensity and duration,
higher pitch). The metrical prominence here could be purely
phonological in that it does not have any phonetic correlates.

6A transduction with vowel deletion and reassociation
would be indistinguishable from the current map in the out-
put.

In (16), A and B stand for underlying tones of
the first syllable, T stands for any tones (con-
tour or level). This tone sandhi process is not
ISL: A transformation assuming strings of tones
ABTn → AB∅n−1 does not reflect the fact that
tonal material of the initial syllable is redistributed
between the first two (footed) syllables. This is
directly caused by my representation of contour
tones as subsequent level tones associated to one
TBU — Contour tones can be ‘broken apart’ and
shared between two syllables in Shanghai. There-
fore, it is not possible to represent them as stan-
dalone units (e.g. R for Rise; see Chandlee (2018)
on tone sandhi in Tianjin). Consequently, it is
necessary to adopt autosegmental representations
since contour tones entail many-to-one tone map-
ping.7

One reviewer has suggested that including syl-
lable boundary symbols [.] in the alphabet could
potentially resolve the non-locality of the Shang-
hai map: /AB.CD.EF/ "→ [A.B.∅]. This is indeed
correct for the synchronic data of Shanghai: ev-
ery lexical tone in contemporary Shanghai is a
contour by historical coincidence. On the other
hand, several neighboring dialects of Shanghai
have complex contours (i.e. monosyllables with
three tones), and it is logically possible for a syl-
lable to have more than three tonal elements (al-
beit being typologically unattested). Since the ex-
istence of complex contours cannot be ruled out
for theory-internal reasons, an ISL map should
be able to handle tonal input of indefinitely many
tones within a syllable. This is shown in (17)

(17) Hypothetical left-dominant mapping with
complex contour input
/T1T2...Tn.Tn+1/ "→ [T1.T2]

This map is Non-ISL, because the transduction
needs to ‘remember’ the second tone /T2/ for an
indefinite length until it encounters the first sylla-
ble boundary. ‘Remembering’ in ISL is achieved
through a finite k-factor window (Chandlee, 2014).
The current map with an indefinite memory length
cannot be ISL.

However, the tone sandhi process in Shang-
hai is A-ISL since we can easily define it with

7Strictly speaking, Shanghai tone sandhi is non-ISL not
because of any property of ISL functions, but because of the
nature of linear phonological transformations: any current
phonological framework without an autosegmental represen-
tation of contour tones will have a hard time accounting for
these data.



a quantifier-free transduction using autosegmental
representations.

(18) a. σ′(x) def= σ(x)

b. H ′(y)
def
= H(y)

c. M ′(y)
def
= M(y)

d. L′(y)
def
= L(y)

e. A′(y, x)
def
=(A(y, x) ∧ first(x) ∧

first(y)) ∨ (A(y, p(x)) ∧
second(x) ∧ second(y))8

The formulae (18a)-(18d) preserve all input TBUs
and tones in the output. The formula in (18e) states
the association relations in the output structure: a
TBU is associated with a tone in the output if: (i).
there is an association between it and the first tone
in the input, and it is the first TBU; (ii). there is an
association between its predecessor TBU and the
second tone in the input, and it is the second TBU.
I demonstrate the A-ISL map using the example
[Ci.N

"
] (H.M) ‘fresh fish’.

Figure 3: Shanghai left-dominant sandhi: A-ISL map

In Figure 3, all TBUs and tones (1 through 6) are
preserved in the output. The autosegmental rela-
tion A(3, 1) satisfies the left disjunct of (18e) (first
tone to first TBU), and is mapped faithfully to the
output. The right disjunct of (18e) is satisfied when
x is 2 and y is 4 (predecessor TBU is associated
with the second tone), therefore a new autoseg-
mental association A′(4, 2) is established in the
output. As discussed above, left-over tones with-
out association lines (5 and 6) are not pronounced
in the output.

Interestingly, this transduction handles situa-
tions where the initial syllable only has one tone
correctly as well: /H/ + /ML/ "→ [H.L]. As there is

8One reviewer has expressed concerns with the user-
defined function second(x): why are there only first and
second, but not third and more? This echoes with the in-
sightful observation made by (Kenstowicz, 1994): ‘linguistic
rules do not count beyond two’. Here, the binary tone pattern
in Shanghai is accounted for using a non-iterative binary foot
(Duanmu, 1999). Including larger prosodic constituents (e.g.
feet, prosodic words) is perfectly in line with principles of
Autosegmental Phonology and the current A-ISL model. As
such, a metrical foot level is not yet incorporated purely due
to space constraints rather than model-internal limitations.

not a pair of value that satisfies the right disjunct
of (18e), the second syllable will not be associated
with any tones in the output and becomes tone-
less. The same is true with situations where the
initial syllable has indefinitely many tones: the sec-
ond tone will be displaced, whereas all left-over
tones remain floating.

A related observation is that tones in Shang-
hai show their ‘membership’ status through the
association relations: the first two tones ‘belong’
to the initial syllable, because they are associated
with the initial syllable. If morphemes in the lan-
guage contain floating tones, our current model is
not able to determine its affiliation status. This is
demonstrated in (19):

(19) An autosegmental representation with am-
biguous membership status

The current autosegmental model has no way of
expressing morphological affiliation of floating
tones: we know σ1 precedes σ2, and tone B is in
between tones A and C. However, there is no way
to determine if the floating tone B comes from σ1
or σ2 underlyingly. This poses a problem when we
encounter languages utilizing both metrical domi-
nance and floating tones (see §3.3).

3.3 Floating tones and left dominance in
Suzhou tone sandhi

The tone sandhi data of Suzhou Chinese comes
from (Shi and Jiang, 2013) and my fieldwork (Zhu,
in prep). Here, I present two pairs of alternation
that motivate both floating tone representation and
left dominance:

(20) a. [sjæ] (HL) ‘small’
b. [mã] (LH) ‘blind’
c. [nIn] (LH) ‘person’
d. [sjæ.nIn] (HL.L) ‘child’
e. [mã.nIn] (L.H) ‘blind person’

Left dominance is still present in Suzhou: tones
from initial syllables are always preserved in poly-
syllabic words, while tones from non-initial sylla-
bles are all deleted. Crucially, tonal redistribution
does not always take place in Suzhou: in (20d), an
underlying /HL/ falling tone stays in the initial syl-
lable, where as in (20e) the underlying /LH/ evenly



distributes itself over two syllables. Such pattern is
inherent to the two lexical tones and is systematic
across different morphemes.

To account for the different movability nature
of the two lexical tones, I propose a tonal repre-
sentation contrast between (20a) and (20b): Both
H and L are associated in (20a), while (20b) has
both tones floating underlyingly. The autosegmen-
tal representations are given in (21):

(21) a. ‘small’ b. ‘blind’

The tone sandhi process in Suzhou differs from
that of Shanghai in that associated tones cannot be
redistributed to other TBUs (due to a general re-
striction on deleting association lines). Only float-
ing tones from the initial syllable can be freely
associated to other footed syllables in sandhi po-
sition. This process is not ISL for the same rea-
son given in 3.2: one linear string of tones can-
not express many-to-one tonal association rela-
tions. Moreover, this process is also Non-A-ISL.
Since floating tones have no way to express their
morphological affiliation status under the current
autosegmental representations (recall (19)), the
model cannot determine if a floating tone belongs
to the initial syllable or not — left dominance can-
not function on floating tones under the current
framework. Consider a more concrete pair of ex-
amples in (22) and (23):

(22) A LH.L disyllabic sequence where the
floating H is from the initial syllable.

(23) A L.HL disyllabic sequence where the
floating H is from the second syllable.

In (22), the sequence contains an initial LH sylla-
ble with a floating H and a second L syllable. The
floating H tone is redistributed to the second syl-
lable in the output. In contrast, (23) contains an

initial L syllable and a second HL syllable with a
floating H. Both tones in the second syllable are
deleted in tone sandhi, and the surface form would
be [L.L] instead of [L.H]. Our current framework
cannot differentiate (22) and (23), since there is no
way to express membership of floating tones.

4 Discussion

4.1 Evaluation of analyses
In §3 I have illustrated three tonal processes in
Chinese and their ISL/A-ISL status. The result is
summarized in Table 1 below.

I have shown three out of four different logical
possibilities of ISL and A-ISL transductions: (i).
both ISL and A-ISL; (ii). not ISL but A-ISL; (iii).
neither ISL nor A-ISL.9 Considering the analyses
of Shanghai and Suzhou as a whole, the metrical
dominance effect is non-ISL mainly because of the
many-to-one tonal mapping. This is a roadblock to
traditional linear-based phonology and is the mo-
tivation for Autosegmental Phonology in the first
place.

On the other hand, having floating tones in
the representation does not necessarily make the
transformation Non-A-ISL. The Cantonese affix-
ation case is A-ISL (and also ISL) because float-
ing tones in said case are tones without segmen-
tal content. However, in Suzhou, floating tones are
elements associated with specific morphemes10

without the TBU-tone association relations. This
morpheme-tone association plays a crucial role in
the application of tone sandhi, but cannot be ex-
pressed under the current model.

4.2 A reanalysis of Suzhou
As I have shown in §3.3, the current A-ISL frame-
work cannot account for the combination effect of
left dominance and floating tone representations in
Suzhou. For the Suzhou tone sandhi data, the task
is to account for the different tonal redistribution
status for /HL/ (no redistribution) and /LH/ (even
redistribution across two syllables). My floating
tone analysis requires the model to recognize tone-
morpheme association relations (i.e. which sylla-
ble a specific floating tone belongs to underly-
ingly). One solution is to simply include the tone-

9(Chandlee and Jardine, 2019) claims that Bounded
Meussen’s Rule in Luganda corresponds to the forth possi-
bility — ISL but not A-ISL.

10A dominant majority of morphemes in Modern Chi-
nese are monosyllabic. Polysyllabic morphemes are mostly
transliterated loanwords. See Lin 2007.



Process ISL A-ISL
Cantonese floating H affixation Yes Yes

Shanghai left dominant tone sandhi No Yes
Suzhou left dominant tone sandhi with floating tones No No

Table 1: Summary of analyses

morpheme association information on a separate
tier (see a similar treatment with morphological in-
dexes in Trommer and Zimmermann 2014). A re-
fined representational model would look like (24):

(24) a. ‘small’ b. ‘blind’

Shown above are the representations of the two
lexical tones in (21). With an additional Mor
(morpheme) tier, the representation includes mor-
phological affiliation status of tones by the tone-
morpheme association. For instance, both tones in
(24b) are floating due to their non-association on
the tonal tier. However, the two floating tones are
inherent ‘members’ of the morpheme ‘blind’ due
to their association with Mor on the morpheme
tier.

With the added morphological information, the
transduction becomes very similar to that of
Shanghai. I give the revised model signature and
transduction in (25) and (26)

(25) ⟨D|p, s, A,RMor, PMor, PH , PM , PL, Pσ⟩

(26) a. σ′(x) def= σ(x)

b. H ′(y)
def
= H(y)

c. M ′(y)
def
= M(y)

d. L′(y)
def
= L(y)

e. Mor′(z)
def
= Mor(z)11

f. A′(x, y)
def
=(A(x, y) ∧ first(x)) ∨

(first(x) ∧ first(y)) ∨
(¬A(p(x), y) ∧RMor(y, z) ∧

11I remain agnostic regarding the status of morpheme-tone
associations (R′

Mor) in the output. It is possible that tone-
morpheme reassociations also take place through the tone
sandhi map. As far as I know, there is no additional post-
sandhi phonological process that requires information regard-
ing the morphological association of tones before sandhi.

first(z)∧second(x)∧second(y))

In (25), a unary relation PMor for morphemes and
a binary relation RMor for tone-morpheme asso-
ciations are added. In (26), x stands for TBU po-
sitions, y for tones and z for morphemes. (26a)-
(26e) map all TBUs, tones and morphemes faith-
fully to the output. (26f) is the revised transduc-
tion for the output tone-TBU association relations.
A TBU is associated with a tone on the surface in
the following three conditions: (i). If the TBU is
the first syllable and the tone is associated to itself
in the input; (ii). The first tone is by default asso-
ciated to the first syllable in the output, regardless
of its floating status; (iii). If the TBU is the second
syllable, and the second tone belonging to the first
morpheme (by RMor) is not associated to the first
syllable (by A). This transduction ensures that all
tonal associations to the first syllable are preserved
in the output ((20d), [HL.L]), while a second float-
ing tones of the first syllable can redistribute to the
second syllable ((20e), [L.H]). I demonstrate the
A-ISL maps for both cases below.

Figure 4: Suzhou A-ISL map — [HL.L]

Figure 5: Suzhou A-ISL map — [L.H]

In Figure 4, two tone-TBU association rela-
tions A(3, 1)A(4, 1) satisfy the first disjunct of
(26f): they are both tone-TBU associations with
the first syllable. Morphological information is ir-
relevant in this case. This gives us the correct out-



put [HL.L]. In Figure 5, however, the latter two
disjuncts of (26f) apply: Firstly, the first tone in
3 is associated with the first syllable in 1 in the
output; Secondly, the third disjunct of (26f) is sat-
isfied when x is 2, y is 4 and z is 7 — The second
tone (position 4) of the first morpheme (position
7) is not associated with the first syllable (position
p(2)).The output is [L.H], with both tones of the
initial morpheme evenly distributed.

5 Conclusion
In this paper, I have examined three distinct tonal
processes among Chinese languages assuming an
A-ISL framework. I have shown that floating tone
suffixation in Cantonese is both ISL and A-ISL,
and pure metrical dominance in Shanghai is A-ISL
but not ISL. A combination of floating tone repre-
sentations and metrical dominance in Suzhou tone
sandhi is neither ISL nor A-ISL. This is precisely
because ‘floating tone’ has different entailment in
the two cases: in Cantonese, a floating tone suf-
fix is simply a tonal element without segmental
information; in Suzhou, however, a floating tone
is not associated to the TBU underlyingly, but is
also part of the lexical representation of specific
morphemes. I propose a modified A-ISL model
with an additional morpheme tier, and provide a
reanalysis of Suzhou by allowing tone-morpheme
associations. Crucially, the Suzhou case is prob-
lematic for the current A-ISL model not due to
any model-internal reasons: regardless of the for-
malism, a working phonological analysis of such
pattern has to motivate morphological affiliation
independently (Zhu, in prep).

The analyses so far have informed the typol-
ogy of computational locality and possible Input
Strictly Local maps. The three cases I have pre-
sented are all definable through Quantifier-Free
transductions, and are thus A-ISL. In future work
I would like to focus on more cases of linearly
ISL but Non-A-ISL tonal maps (as discussed in
Chandlee and Jardine 2019), and to see if floating
tone representations indeed lead to problems un-
solvable under the A-ISL model.
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Abstract
Morphological inflection, as an engineering
task in NLP, has seen a rise in the use of neu-
ral sequence-to-sequence models (Kann and
Schütze, 2016; Cotterell et al., 2018; Aha-
roni and Goldberg, 2017). While these out-
perform traditional systems based on edit rule
induction, it is hard to interpret what they
are learning in linguistic terms. We propose
a new method of analyzing morphological
sequence-to-sequence models which groups
errors into linguistically meaningful classes,
making what the model learns more transpar-
ent. As a case study, we analyze a seq2seq
model on Russian, finding that semantic and
lexically conditioned allomorphy (e.g. inani-
mate nouns like ZAVOD ‘factory’ and animates
like OTEC ‘father’ have different, animacy-
conditioned accusative forms) are responsible
for its relatively low accuracy. Augmenting
the model with word embeddings as a proxy
for lexical semantics leads to significant im-
provements in predicted wordform accuracy.

1 Introduction

Neural sequence-to-sequence models excel at
learning inflectional paradigms from incomplete
input (Table 1 shows an example inflection prob-
lem.) These models, originally borrowed from
neural machine translation (Bahdanau et al.,
2014), read in a series of input tokens (e.g. char-
acters, words) and output, or translate, them as
another series. Although these models have be-
come adept at mapping input to output sequences,
like all neural models, they are relatively uninter-
pretable. We present a novel error analysis tech-
nique, based on previous systems for learning to
inflect which relied on edit rule induction (Durrett
and DeNero, 2013). By using this to interpret the
output of a neural model, we can group errors into
linguistically salient classes such as producing the
wrong case form or incorrect inflection class.

Our broader linguistic contribution is to recon-
nect the inflection task to the descriptive literature
on morphological systems. Neural models for in-
flection are now being applied as cognitive models
of human learning in a variety of settings (Mal-
ouf, 2017; Silfverberg and Hulden, 2018; Kirov
and Cotterell, 2018, and others). They are appeal-
ing cognitive models partly because of their high
performance on benchmark tasks (Cotterell et al.,
2016, and subsq.), and also because they make
few assumptions about the morphological system
they are trying to model, dispensing with overly
restrictive notions of segmentable morphemes and
discrete inflection classes. But while these con-
structs are theoretically troublesome, they are still
important for describing many commonly-studied
languages; without them, it is relatively difficult
to discover what a particular model has and has
not learned about a morphological system. This
is often the key question which prevents us from
using a general-purpose neural network system
as a cognitive model (Gulordava et al., 2018).
Our error analysis allows us to understand more
clearly how the sequence-to-sequence model di-
verges from human behavior, giving us new infor-
mation about its suitability as a cognitive model of
the language learner.

As a case study, we apply our error anal-
ysis technique to Russian, one of the lowest-
performing languages in SIGMORPHON 2016.
We find a large class of errors in which the
model incorrectly selects among lexically- or
semantically-conditioned allomorphs. Russian
has semantically-conditioned allomorphy in nouns
and adjectives, and lexically-conditioned allomor-
phy (inflection classes) in nouns and verbs (Tim-
berlake, 2004); Section 3 gives a brief introduction
to the relevant phenomena. While these facts are
commonly known to linguists, their importance
to modeling the inflection task has not previously



Source Features Target
ABAŠ pos=N,

case=NOM,
num=SG

ABAŠ

JATAGAN pos=N,
case=INS,
num=PL

JATAGANAMI

Table 1: An example inflection problem: the task is to
map the Source and Features to the correct, fully in-
flected Target.

been pointed out. Section 4 shows that these phe-
nomena account for most of Russian’s increased
difficulty relative to the other languages. In Sec-
tion 6, we provide lexical-semantic information to
the model, decreasing errors due to semantic con-
ditioning of nouns by 64% and of verbs by 88%.

2 Background

The inflection task described above is an instance
of the paradigm cell filling problem (Ackerman
et al., 2009), and models a situation which both
computational and human learners face. For hu-
mans, the PCFP is closely related to the “wug
test” (Berko, 1958): given some previously un-
seen word, how does a speaker produce a different
inflected form? As Lignos and Yang (2016) and
Blevins et al. (2017) point out, the same Zipfian
distribution that makes other NLP tasks (e.g. MT)
difficult is also at play in morphology, namely that
no corpus will ever exist that has every wordform
from every lexeme. For theoretical morphologists,
the difficulty of the PCFP on average is a mea-
sure of the learnability of a morphological system,
with implications for language typology (Acker-
man et al., 2009; Ackerman and Malouf, 2013; Al-
bright, 2002; Bonami and Beniamine, 2016; Sims
and Parker, 2016).

Ackerman et al.’s (2009) formulation of the
PCFP relies on a simple concatenative model in
which words are divided into stems and affixes,
and in which each affix is treated as a discrete
value. Cotterell et al. (2018) points out that this
model is ill-suited to dealing with phenomena
like phonological alterations or stem suppletion.
Newer models (Silfverberg and Hulden, 2018;
Malouf, 2017; Cotterell et al., 2018) use sequence-
to-sequence inflection models to avoid these short-
comings.

Faruqui et al. (2016) introduced the use
of attention-based neural sequence-to-sequence
learning for the inflection task, building on models
from machine translation (Bahdanau et al., 2014).
Their model treats input as a linear series where
grammatical features and characters are encoded
as one-hot embeddings and passed to a bidirec-
tional encoder LSTM; output for each paradigm
cell is produced by a separate decoder. Kann
and Schütze (2016) extended Faruqui et al.’s ar-
chitecture by using ensembling and by using a
single decoder, shared across all output paradigm
cells, to account for data sparsity. Later systems
(Aharoni and Goldberg, 2017; Kann and Schütze,
2017) have made changes to the input represen-
tation and the architecture, for instance incorpo-
rating variants of hard attention and autoencoding.
From a theoretical standpoint, all these models are
“a-morphous” (Anderson, 1992) or “inferential-
realizational” (Stump, 2001)— rather than assume
a concatenative process which stitches discrete
morphemes together into surface word forms, they
learn a flexible, generalizable transduction, ei-
ther between a stem and surface form (Anderson,
1992; Stump, 2001), or between pairs of surface
forms (Albright, 2002; Blevins, 2006).

Some older learning-based inflection systems,
such as Durrett and DeNero (2013), exploit se-
quence alignment across strings. Alignment-based
systems essentially treat morphology as concate-
nation. While they do not perform full-scale mor-
phological analysis (since they do not account for
phonological alternations), in languages which are
mostly concatenative, they do tend to isolate affix-
like units as sequences of adjacent insertions or
deletions. This property has been criticized in the
neural literature (Faruqui et al., 2016) since it rep-
resents processes like vowel harmony by enumer-
ating large sets of surface allomorphs, making the
learning problem harder. We agree with these crit-
icisms from the modeling standpoint, but we ex-
ploit the interpretability of the technique in our
analysis of model results.

Our study of Russian concludes that
semantically- and lexically-conditioned allo-
morphy constitutes a problem for current neural
reinflection models. This is because such models
are trained to map input to output character
sequences; they do not typically have access
to information about what the words they are
inflecting mean. We show that, by providing



word embeddings as meaning representations,
we can reduce this source of error and bring
Russian closer to the other languages studied in
SIGMORPHON 2016.

Recently the NLP community has also pushed
for greater transparency with neural models (xci,
2017; ana, 2019). Wilcox et al. (2018) showed
that RNNs learn hierarchical structure in sentences
like island constraints. Faruqui et al. demon-
strated that RNNs can automatically learn which
vowel pairs participate in vowel harmony alterna-
tion. Our error analysis allows us to interpret what
neural models are learning, reconnecting inflec-
tion tasks to linguistic intuitions by generalizing
over error classes.

3 Russian Inflectional Morphology

We select Russian as our language of analysis be-
cause it was among the three worst-performing
languages in the SIGMORPHON 2016 shared
task, falling 4+ percentage points behind the other
languages. Problems with the design of the Navajo
and Maltese datasets may have been the source
of the problems with those languages,1 but this
cannot explain the Russian results. The discrep-
ancy hints at some linguistic property which dis-
tinguishes Russian from the other languages. Be-
low, we give an overview of the Russian morpho-
logical system, concentrating on nouns, verbs, and
adjectives, the parts of speech targeted by the SIG-
MORPHON 2016 shared task.

Russian is an East Slavic language which, in
line with other Slavic languages, makes heavy use
of inflectional morphology. Russian nouns and
verbs belong to inflectional classes: groups of
words which share a common set of inflectional
affixes.

Russian nouns and adjectives have six primary
cases—nominative, accusative, genitive, dative,
locative, and instrumental—and two numbers, sin-
gular and plural. We follow the classification sys-
tem of Timberlake (2004), which groups nouns
into three primary inflection classes (I, II, and III)
with subclasses (IA, IB, IIIA, IIIB, and IIIC).

Within these classes, however, the formation of
the accusative is further subdivided based on se-
mantics. Specifically, in class IA accusative sin-

1 As announced by the SIGMORPHON shared task orga-
nizers.

2 Examples in this paper are presented in scientific
transliteration instead of Cyrillic for accessibility; our system
processes Cyrillic characters.

Case Singular Plural
Nominative ;, -’, -J, -IJ -”, -I, -II

Accusative N or G
Genitive -A, -JA, -IJA -OV, -EJ,

-EV, -IEV

Dative -U, -JU, -IJU -AM, -JAM,
-IJAM

Instrumental -OM, -EM,
-IEM

-AMI, -JAMI,
-IJAMI

Locative -E, -II -AX, -JAX,
-IJAX

Table 2: An example of class IA, showing the effect
of animacy in the orthography2across the singular and
plural accusative forms, where N or G indicate where
syncretism occurs in the accusative form based on ani-
macy.

gular and plural and in classes IB, II, and III ac-
cusative plurals, the accusative exhibits syncretism
with either the genitive (for animates) or the nom-
inative (for inanimates). In the case of the ani-
mate noun STUDENT (‘student’), for example, the
nominative singular form is student and the ac-
cusative singular and genitive singular forms are
both studenta. Conversely, for MESTO (‘place’),
the accusative singular and nominative singular
both have the form mesto, but the genitive singu-
lar is mesta. An example of how this phenomenon
looks at the paradigm level for class IA can be seen
in Figure 2.

Adjectives in Russian must agree with case,
gender, and number of the nouns they modify.
They also exhibit the same syncretism in the plu-
ral and masculine singular forms, based on the an-
imacy of the noun that the adjective modifies.3

Russian also has two verb classes based on
what Timberlake calls a verb’s thematic ligature
(i.e. a thematic vowel). A verb is either an i-
conjugation verb or an e-conjugation verb, de-
pending on the vowel used to create the present
tense stem. For example, MOLČAT’ (‘to be silent’)
forms the present tense stem with -i (namely
molč-i-), making its second person singular form
molčiš’. Likewise, for a verb like BROSAT’ (‘to
toss’), its present tense stem is brosae-, formed
with the theme vowel -e, making its second person
singular form brosaeš’. For verbs with monomor-

3 Predicative adjectives have an additional short form
which only agrees with gender and number since they only
use nominative suffixes. Active participles are inflected as
adjectives.



t ! č d ! ž s ! š st ! šč
k ! č z ! ž x ! š sk ! šč

g ! ž
p ! pl f ! fl m ! ml
b ! bl v ! vl

Table 3: Russian makes use of phonological alterna-
tion, which it encodes orthographically for some char-
acters.

phemic bases, the class to which the verb be-
longs (and thus what theme vowel it combines
with to form the present tense stem) is not nor-
mally thought to be predictable from its syntac-
tic frame or its semantics. It is an idiosyncratic
(i.e. lexically-conditioned) property which learn-
ers have to memorize for each verb they learn.
For verbs with derived bases the situation is more
complicated, since derivational suffixes systemat-
ically determine the inflection class of a verb. For
example, verbs formed with the highly productive
-ova suffix (beseda, ‘conversation’; besed-ova-t’,
‘converse’) always belong to the e-conjugation.
Transitivity and inflection class are also some-
times related in derived verbs, although not per-
fectly predictably so. For instance, derived verbs
formed with -i (e.g. čist-yj, ‘clean (adj)’; čist-i-
t’, ‘clean (verb)’) tend to be transitive (Townsend,
1975).

Verb stems can also undergo phonological al-
ternation, in which the final consonant of a stem
changes to another when being inflected for cer-
tain parts of the paradigm (e.g. EZDIT’ (‘to ride’)
becomes ezžu in the first person present singular
cell). Further common alternations can be seen in
Table 3.

Finally, both nouns and verbs sometimes
have morphological stress alternations within the
paradigm. These tend to affect high token fre-
quency lexemes, and are thus salient to speak-
ers and learners, but do not affect the majority
of words. Counted by type frequency, more than
97% of nouns have fixed stress throughout the
paradigm (Brown et al., 2007). Stress alternations
are not encoded orthographically.

4 Error Analysis

As mentioned in Section 2, some pre-neural sys-
tems for predicting a novel inflected wordform
from a source wordform focused on inducing edit
operations from one string to another using se-

BUMAŽKA ! BUMAŽEK (‘paper.DIM’)
NOM.SG ! GEN.PL
Gold:

b u m a ž k a
3 b u m a ž e k

+e -a

Predicted:
b u m a ž k a

7 b u m a ž o k
+o -a

Table 4: Sample induced edit rules can be used to com-
pare gold vs. predicted differences in the MED’s output
for error mining. These automatic annotations we sub-
sequently analyzed as missing insertions/deletion and
erroneous insertions/deletions.

quence alignment (Durrett and DeNero, 2013).
These approaches model the differences between
two strings as a series of insert and delete oper-
ations. While the alignment approach has been
superseded by neural models with better perfor-
mance, we re-apply it here in order to automati-
cally compare and group predicted edit operations
vs. gold edit operations. Rather than aligning
source to target forms, we align the gold target
form to the proposed target form from the system.
For example, if a model learning English plurals
incorrectly learned that the ending -en was produc-
tive, we would see a surplus of -s ! -en errors.

Errors viewed in this way often have natural
linguistic interpretations, especially when corre-
lated with the paradigm cells in which they oc-
cur. As seen in Table 4, the model correctly pre-
dicted the zero genitive plural ending for the noun
BUMAŽKA (‘paper.DIM’), but erroneously inserted
an o (bumažok) instead of an e (bumažek). This is
an example of stem alternation in nouns that oc-
curs when there is a zero ending (i.e. nomina-
tive singular or genitive plural, depending on the
class). The vowel inserted is always an e or an o,
but in this case the wrong vowel was selected.

We used the 2016 SIGMORPHON dataset. Al-
though ideally we would like to have had access to
a dataset which more accurately encoded Russian
phonology and stress, to our knowledge no such
corpus exists. Using the SIGMORPHON dataset,
we trained the original MED setup Kann and
Schütze made publicly available4 using the hyper-
parameters they specified. Other input forms, such

4 http://cistern.cis.lmu.de/med/

http://cistern.cis.lmu.de/med/


as thos used by Cotterell et al. (2018), are possi-
bly more realistic, but we wished to see why in a
controlled setting (i.e. using citation forms) Rus-
sian underperformed as compared to languages
like Spanish and German. We then extracted er-
rors from the MED system’s performance on the
validation set, which had 1,591 wordform predic-
tions in total. In using Durrett and DeNero’s se-
quence alignment approach to isolate the differ-
ences in edit operations, we were able to anno-
tate each error as a missing deletion (-d), an erro-
neous deletion (+d), a missing insertion (-i), or
an erroneous insertion (+i). From here we were
able to group erroneous outputs which contained
the same edit operations. An example of how we
compared and annotated each gold/prediction pair
can be seen in Table 5. We can compare these to
cases where the same edit operations occur in cor-
rect answers. This indicates whether an erroneous
edit is entirely unattested (i.e. noise), or whether it
represents a mis-application of a transform which
would have been legitimate for a different source
word or target paradigm cell.

We find that the system often produced nouns
with the wrong case suffix. In 14% of the to-
tal errors, accounting for 29% of all errors affect-
ing nouns, the MED system produced a form of
the noun that exists, but corresponds to a differ-
ent case than the target one. MED also produced
verbs with inflections corresponding to the wrong
inflection class. These cases account for 10% of
the overall errors and 23% of the verb-specific er-
rors. Other errors involved incorrect edits to the
stem (in all parts of speech). These accounted for
72% of the overall error rate. These cases were
often only a single edit away from the gold word-
form, but were more drastic in other cases. We
investigated how many of these edits represented
mis-applied rules which had been observed else-
where in training. Surprisingly, every erroneous
edit rule discovered in the system output had been
seen in the training data. We include examples of
these error types in Table 7 and summarize the er-
ror rates in Table 6.

Many of the noun case errors involve the
accusative case, and in particular, an incorrect
choice between semantically-conditioned alterna-
tives. As discussed in Section 3, the accusative is
syncretic with the genitive or the nominative, con-
ditioned on animacy. In these errors, the system
proposes an accusative which matches a correctly

inflected form of the word, but not the right one.
For instance, the first row of Table 7 shows the
proposed accusative of OZNOB ‘the chills, shak-
ing’. This matches the genitive form rather than
the nominative, which we can easily diagnose by
looking for cells in the gold paradigm where the
+A edit rule appears.

Verb errors tend to involve alternations charac-
teristic of confusion between i- and e-conjugation
verbs. Stem edits often introduce or delete sounds
which participate in phonologically motivated al-
ternations, but are not restricted to the contexts in
which those alternations legitimately appear.

Error
type

Form

Case 7 OZNOB-A
3 OZNOB-;
7 MEXANIZM-OV
3 MEXANIZM-Y

Verb 7 DOŽD-I-Š’SJA
class 3 DOŽD-E-Š’SJA

Stem 7 REZG-G-OVORČIVY
edits 3 RAZ-;-GOVORČIVY

7 ZA-P-O-ŠČ-ENNYJ
3 ZA-K-A-Č-ENNYJ
7 SANKTPETE-TE-R-B-BUR-

B-ŽCAM
3 SANKTPETE-;-R-;-BUR-;-

ŽCAM

Table 7: Examples of the three main error groups we
found produced by the MED system on the 2016 SIG-
MORPHON dataset. An 7 is an incorrect prediction
and the 3 below is the gold wordform. Empty set sym-
bols (;) indicate an erroneous insertion.

5 Model Improvements

In this section, we incorporate a proxy for lexi-
cal semantics into the model input representations,
leading to improved results. This is useful from
a practical standpoint, but also as a clear demon-
stration that semantic conditioning was responsi-
ble for many of the errors which we discussed in
the previous section.

As our source for semantic information, we use
word embeddings (Mikolov et al., 2013; Socher
et al., 2013; Xu et al., 2015). We concatenate the
output from the bidirectional encoder with the ci-
tation form’s embedding. Equipped with this in-
formation, the model should be able to learn phe-
nomena like the animacy-dependent syncretism



Gold Predicted Rule Annotation Category
ABSOLJUTISTA ABSOLJUŠČISTA -T+Š+Č +d+i+i phonological alternation
DERŽIŠ’SJA DERŽAEŠ’SJA -I+A+E +d+i+i verb class
ABDOMEN ABDOMENA +A +i animacy

Table 5: An example of the annotation we performed, where ‘-’ indicates ‘missing’ and ‘+’ indicates ‘erroneous’.
Additionally, ‘i’ indicates ‘insertion’ and ‘d’ deletion, so ‘-i’ and ‘+d’ is a missing insertion and erroneous deletion
respectively. Collating the grammatical information in the dataset with these annotation allowed us generalize over
the errors.

Error type Percentage Error Number
Noun class 14% 20
Verb class 10% 15
Stem edits 72% 128

Table 6: A summary of the results from our errors anal-
ysis. Results do not sum to 100% since these are only
the most frequent errors and can co-occur.

discussed above. We have no a priori reason to
expect the model to improve its performance on
verb class errors, since class membership is a lexi-
cal property of the verb stem and not semantically
conditioned. However, verbal derivational mor-
phology can affect a verb’s meaning and also de-
termines its inflection class, so an indirect effect of
semantics is possible. We show below that embed-
dings are also helpful for verbs, an issue we return
to in Section 7.

We modified the original MED code, built in
Blocks,5 so that the output from the encoder could
be concatenated with the 300-dimensional word
embedding from Kutuzov and Andreev (2015).
Since using these embeddings more than doubles
the parameter space of the MED system, the model
takes longer to converge. We therefore allowed
the system to train up to 50 epochs, instead of
the 20 Kann and Schütze needed for their models
to converge. Both the original MED system and
our modified version use early stopping. Once the
model has converged, we evaluate system perfor-
mance by measuring accuracy at the word level.

6 Results

The overall accuracy rates of a single trained MED
system and our system are shown in Table 8. Fol-
lowing Kann and Schütze (2016), we also train
and evaluate ensembles of five models (Table 9).
In each case, our model performs about one per-
centage point better (significant using McNemar’s

5 https://github.com/mila-udem/blocks

test). The jump in significance scores between the
validation and test is due to the relative sizes of
these datasets (1,591 and 22,334, respectively).

System Val Test
MED base system 90.03 88.88
MED + word embeddings 91.95⇤ 90.06⇤⇤⇤⇤

Table 8: Overall results on the validation and test set,
using only a single trained model (ensemble of 1). Sig-
nificance is reported using McNemar’s test where * in-
dicates p < 0.05, ** p < 0.01, *** p < 0.001, and
**** p < 0.0001.

System Val Test
MED base system 92.14 91.49
MED + word embeddings 93.33⇤ 92.38⇤⇤⇤⇤

Table 9: Overall results on the validation and test set,
using an ensemble of 5 trained models (ensemble of 5).
Significance is reported using McNemar’s test where *
indicates p < 0.05, ** p < 0.01, *** p < 0.001, and
**** p < 0.0001.

We reapply our error analysis to determine error
reduction rates by error category. Reductions were
largest in noun cases and verb class, with a reduc-
tion of more than 50% for both. As seen in Table
10, stem edit errors were least improved. For a
breakdown of errors by noun class, see Table 12.

We conduct two other experiments to rule out
alternate accounts of the performance increase.
First, our model with word embeddings has access
to higher-dimensional input for decoding (600 di-
mensions vs. 300), and therefore to more param-
eters. We ran a model with 600-dimensional em-
beddings but no word embeddings, in order to test
whether this could be responsible for the gain, but
found no significant differences from our baseline
system.

Second, we do not expect the word embedding
system to encode inflectional information directly
(since it operates at the word level with no access

https://github.com/mila-udem/blocks


Error type Decrease in
error rate

Current
error rate

Noun class 64.2% 5%
Verb class 88.1% 1%
Stem edits 44.1% 40%

Table 10: Overall error reduction rates in all three error
types we considered.

to character information). However, we make ab-
solutely sure that this is not the case by retraining
the word embeddings on a stemmed version of our
Russian corpus (processed with the NLTK stemmer
(Bird, 2006)). Performance using these word em-
beddings is not significantly different from our re-
sults using regular word embeddings.

The error reduction rates by category which we
report above are based on the relatively small SIG-
MORPHON 2016 validation set, and do not rep-
resent enough data to conduct statistical analyses
by category or paradigm cell. To further break
down the improvements quantitatively, we created
secondary evaluation sets containing more items.
For nouns, we created a secondary evaluation set
with the Universal Dependency RusSynTag cor-
pus6 since it annotates both animacy and gender.
We removed any nouns that did not have a 1-to-1
feature correspondence with the SIGMORPHON
dataset.7 This gave us a new evaluation set of
48,590 wordforms. Similarly, we also built a sec-
ond evaluation set of 25,000 verb forms from Uni-
morph (Kirov et al., 2016). Although verb con-
jugation class is not directly annotated, we ex-
tracted that information from the second person
singular present indicative form. In both cases, we
removed any word form that also occurred in the
training data.

As seen in Table 11, using word embeddings al-
most halved the error rate of e-conjugation verbs.
It is important to note that the citation form sup-
plied often requires less editing to make an i-
conjugation verb than an e-conjugation verb since
the citation form often has the -i theme vowel.
Since the model has a strong preference for repro-
ducing the input, our modification has minimal ef-
fect for i-conjugation verbs.

6 Freely available here: https://
github.com/UniversalDependencies/UD_
Russian-SynTagRus.git.

7 These were generally cases where features were missing
in the Universal Dependency corpus that were present in the
SIGMORPHON corpus.

Verbs Error
count

Total
words

Error
rate

i-conj 163 516 0.3159
e-conj 430 3191 0.1348

With embed-
dings
i-conj 161 0.3120
e-conj 273 0.0856

Table 11: Verb class-specific error reduction rates from
25,000 randomly sampled verb forms from the Uni-
morph Russian dataset.

Noun
class

SG/PL Error
rate

Error
rate+

Total
count

IA SG 0.2487 0.2132 2340
PL 0.4244 0.3839 1555

IB SG 0.0239 0.0427 1170
PL 0.1818 0.1439 396

II SG 0.0542 0.0274 1753
PL 0.1826 0.1366 805

IIIA SG 0.0736 0.0851 611
PL 0.3016 0.1905 126

Table 12: Noun class-specific error reduction rates in
the accusative case from 48,590 randomly sampled
noun forms from the Universal Dependency RusSyn-
Tag dataset. “Error rate+” indicates the error rate after
adding word embeddings to the MED system. IIIB and
IIIC are not included since there are few nouns and no
accusative errors were produced for them by the MED
system.

Table 12 shows the general reduction in errors
caused by adding word embeddings in various
classes of the accusative. We note that errors in ac-
cusative forms increase only in class/number com-
binations that do not exhibit animacy-conditioned
syncretism (i.e. singular of classes IB and IIIA).

7 Discussion

What inflectionally useful information is present
in the word embeddings? As previously stated,
we assume that word embeddings give good clues
for noun animacy, but verbs form is not directly
conditioned by semantic properties, so we have
no a priori reason to assume they will indicate
verb conjugation. To test whether these features
can be derived from the embeddings, we construct
maxent classifiers,8 with only word embeddings as

8We use Daumé III (2004)’s implementation avail-
able here: http://users.umiacs.umd.edu/˜hal/

https://github.com/UniversalDependencies/UD_Russian-SynTagRus.git
https://github.com/UniversalDependencies/UD_Russian-SynTagRus.git
https://github.com/UniversalDependencies/UD_Russian-SynTagRus.git
http://users.umiacs.umd.edu/~hal/megam/version0_3/


features, for two binary classification tasks: ani-
mate vs. inanimate for nouns and i-conjugation
vs. e-conjugation for verbs. Using the same two
datasets described in Section 6 for testing nouns
and verb class error reduction, we extracted the
verb class and animacy annotation along with the
citation form’s word embedding to create a classi-
fication task. With a baseline accuracy rate of 80%
for both tasks (i.e. selecting the majority class),
both classifiers were more than 98% correct.

We were unsurprised that animacy could be de-
tected in this way, since word embeddings are al-
ready used in high-performance models for this
kind of lexical feature (Moore et al., 2013; Ru-
binstein et al., 2015). The model’s success for
verbs is more surprising. One possible explana-
tion is that Russian verb classes are indirectly re-
lated to lexical semantics (Aktionsart). As noted
above, derivational suffixes determine the inflec-
tion class membership of verbs. Some derivational
affixes also create verbs with predictable lexical
aspectual properties (e.g. -nu creates semelfac-
tives) (Isačenko, 1960; Janda, 2007; Dickey and
Janda, 2009), and these semantic properties might
be detectable from word embeddings alone. 9 An-
other possibility is that the predictability of verb
class reflects the historical origins of some Rus-
sian verbs. Subclasses of verbs borrowed from
Church Slavonic tend to have predictable assign-
ments to classes, and also to be more bookish, ab-
stract or metaphorical than native Russian terms
(Townsend, 1975; Cubberley, 2002), which may
render them recognizable to a distributional sys-
tem. In any case, the classifier results validate our
explanation of why our model improves by show-
ing that the word embeddings do contain the infor-
mation which the model needs to accurately pre-
dict semantically-conditioned allomorphs.

At a higher level, this highlights the issue of
semantic conditioning as one which should be
taken seriously in models of inflection and the
PCFP. Current neural models, which take only
word forms but not meanings as input, are insen-

megam/version0_3/.
9Since the data are not tagged for derivational morphol-

ogy or lexical aspect, it is difficult to assess whether this is
a cause of the model’s improvement. Given that certain lexi-
cal aspects align more naturally with one grammatical aspec-
tual value (perfective or imperfective), we examined whether
there is a relationship between verb class and grammatical
aspect. We found no correlation in the training or validation
data, but this does not rule out the possibility of a lexical se-
mantic effect.

sitive to this kind of conditioning. They there-
fore yield overestimates of how difficult it is to ac-
quire and use some morphological systems, such
as Russian.

Although our error analysis methods and model
extension focused on LMU’s 2016 implementa-
tion of MED, more recent systems (Aharoni and
Goldberg, 2017; Kann and Schütze, 2017) are sub-
ject to the same criticisms, since they use the same
input representation. In this paper, we focus on
Russian, as a language with lower-than-average
performance in an inflection task and with a well-
described system of inflection classes and alterna-
tions. However, we believe it is worth looking
for similar effects in less well-studied languages
as well, particularly given the wide range of lan-
guages now represented in Unimorph (Kirov et al.,
2016).

8 Conclusion

Neural networks are a promising technology for
cognitive models of a variety of language process-
ing tasks. Their ability to learn flexible represen-
tations of complex, multidimensional data allows
them to cover a wide range of linguistic phenom-
ena which were difficult to model in more tra-
ditional frameworks. In morphology, this corre-
sponds to adopting an “a-morphous” framework
in which we do not need to commit to the exis-
tence of troublesome constructs like segmentable
morphemes. But the adoption of neural nets as
cognitive models has demanded a new focus on in-
terpretation. It has become increasingly clear that
networks are useful models only to the extent that
we can compare what they are learning to what
humans learn, and that this is a challenging area
of research in its own right.

This work presents a new way to evaluate mor-
phological inflection systems in a linguistically
sensitive manner by repurposing previous work
in edit rule induction to analyze and group error
types. This allows us to attribute errors in inflec-
tion generation to specific, interpretable phenom-
ena. We make our code and our expanded datasets
publicly available for future use.10

We use this new method to discover that
semantically- and lexically-conditioned allomor-
phy are responsible for a shortfall in inflection per-
formance (and thus an overestimate of PCFP com-
plexity) for Russian. Using word embeddings as

10https://github.com/DavidLKing/SCiL-20.
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a proxy for lexical semantics allows us to sup-
plement the model’s input and greatly reduce this
source of error. In the future, we will investigate
which other languages might show semantically-
conditioned allomorphy, potentially even discov-
ering semantic effects in languages where they
were not previously known to exist. We will also
apply our analysis technique to other models and
languages, helping to close the gap between neural
reinflection systems and full-scale cognitive mod-
els of the PCFP.
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Abstract

Historical linguists observe that many fusional
(unsegmentable) morphological structures de-
veloped from agglutinative (segmentable) pre-
decessors. Such changes may result when
learners fail to acquire a phonological alterna-
tion, and instead, “chunk” the altered versions
of morphemes and memorize them as under-
lying representations. We present a Bayesian
model of this process, which learns which
morphosyntactic properties are chunked to-
gether, what their underlying representations
are, and what phonological processes apply
to them. In simulations using artificial data,
we provide quantitative support to two claims
about agglutinative and fusional structures:
that variably-realized morphological markers
discourage fusion from developing, but that
stress-based vowel reduction encourages it.

1 Introduction

While modern typologists reject the wholesale cat-
egorization of languages as isolating, agglutina-
tive or fusional (Haspelmath, 2009), they still rec-
ognize a distinction between morphological struc-
tures which can be easily segmented and those
which cannot (Plank, 1999). In ones with mor-
phological fusion (or cumulation), multiple mor-
phosyntactic properties (MSPs)1 are realized by
a single morph with no immediately segmentable
pieces.2 For instance, Turkish tarla-lar-ı and
Old English feld-a both indicate ‘field-PL.ACC’
(Plank, 1999), but the Old English suffix cannot
be further analyzed whereas the Turkish word has
separate number and case morphemes.

1We use morphosyntactic category to refer to sets of prop-
erties; cross-linguistically common categories are TENSE,
PERSON, NUMBER, etc., and morphosyntactic properties are
PRESENT, PAST, etc.

2Following practice in morphology, we use the term
morph to refer to (only) the form part of a morpheme.

Along with this taxonomic distinction comes a
historical origin story, sometimes called the mor-
phological cycle (Hock and Joseph, 1996)[183].
Through processes of phonological reduction, in-
dependent function words become attached to
content words as agglutinative inflections. Fur-
ther phonological reduction or sound changes blur
the boundaries between morphemes, leading to
fusion. Finally, affixes may become so non-
transparent that their association with MSPs is lost
(demorphologization) at which point new function
words may be recruited to replace them, beginning
the cycle anew.

Morphological change is more various and
more complicated than this simple story suggests,
and this cycle isn’t the only way in which fusion
can arise (Grünthal, 2007; Igartua, 2015; Karim,
2019). However, it is one way that has been ob-
served. In this paper we focus on the role of
phonological processes in the transition between
agglutination and fusion. Morphological reanaly-
sis often results from an interaction between the
phonology of a language and the learning mecha-
nism. Specifically in this context, morphemes are
most likely to fuse if the environments in which
they occur, and the phonological processes trig-
gered by those environments, are vulnerable to re-
analysis, which is to say, to mis-learning. The
question becomes: which kinds of phonological
processes are likely to make morphological con-
structions vulnerable to reanalysis, and which are
not?

In order to test the role that phonological pro-
cesses play in making agglutinative structures vul-
nerable to reanalysis, we provide a formal learn-
ing model3 for morphological systems whose in-
ternal representations clearly distinguish between
agglutination and fusion. The model extends Cot-

3Code and data at github.com/melsner/
scil2019-fusion.



terell et al. (2015), learning a Bayesian model
which maps from sets of MSPs to surface forms in
three steps: selection of a morphological template,
concatenation of underlying forms, and phonol-
ogy. We validate the model by testing on a se-
ries of artificial languages. The model recovers
the expected analyses for prototypically aggluti-
native or fusional languages; for languages which
can be analyzed in either way, we demonstrate
in the first study that those with variably-realized
morphological markers (i.e. ones that are some-
times present, sometimes absent) are less likely
to be learned as fusional. In a second study, we
show that languages with stress-based vowel re-
duction are more likely to be learned as fusional.
Our model thus provides quantitative support for
previous observations that languages with large
proportions of agglutinative structures also fre-
quently have large numbers of variably-realized
morphs (Plank, 1999) and vowel harmony rather
than stress-based reduction (Zingler, 2018).

2 Related work

Indo-European Ancient Greek
PRS AOR PRS AOR

1SG *-m-i *-m dı́dō-mi édō-n
2SG *-s-i *-s dı́dō-s édō-s
3SG *-t-i *-t dı́dō-si édō

Table 1: Partial set of Indo-European and Ancient
Greek (‘give’) person-number forms in present indica-
tive and aorist

We begin with a concrete example of the kind
of morphological change we are describing. In
some Indo-European (IE) athematic verbs, per-
son and number were expressed cumulatively but
tense was realized via a separate morpheme: -i
for present active indicative and zero for aorist ac-
tive indicative (Table 1). (These endings are re-
constructed for IE but attested in Sanskrit.) How-
ever, sound changes between IE and Proto-Greek
obscured the unity of the person-number morphs
across present and aorist. For example, word-final
[m] turned into [n] as a result of sound change, re-
sulting in different 1SG forms in Ancient Greek.4

These changes led speakers to reanalyze the for-
merly separate morphemes as fused (Brian Joseph,
p.c.): 1SG.PRS -mi vs. 1SG.AOR -n. This reanal-

4Also, prior to Proto-Greek [t] deleted in some contexts,
affecting the 3SG.AOR, and between Proto-Greek and attested
Greek [t] → [s] (Brian Joseph, p.c.). Both were regular sound
changes but had consequences for morphology.

ysis is evidenced by the fact that in Aeolic di-
alects, speakers extended the athematic ending -
mi to verbs that did not historically have it, giving,
e.g., fı́li-mi ‘love-1SG.PRS’ where filõ is expected
etymologically. The fact that -mi was extended as
a single unit indicates that it had undergone fusion.

The reanalysis of the Greek suffixes was thus
driven by sound changes that introduced phono-
logical alternations, and in the process introduced
ambiguity regarding the morphological structure.
In the wake of these changes, speakers were faced
with an analytic choice, e.g.: is there one 1SG mor-
pheme -m plus a phonological rule, or different
1SG endings -mi and -n that also express tense?

The extent to which sound change leads agglu-
tinative structures to be reanalyzed as fusional has
recently been questioned (Haspelmath, 2018).5

Nonetheless, this kind of ambiguity between anal-
yses at different levels of representation is often
a driver of language change (Bybee, 1999) and
phonological reduction of agglutinative structures
is widely cited as a source of fusionality (By-
bee, 1997; Igartua, 2015, among others). Just as
phonological rules and categories can arise when
low-level phonetic processes like assimilation are
reanalyzed as phonological, so fusion can ap-
pear when the effects of phonological process are
“baked in” to the morphological representations.
Bybee (2002) summarizes the idea (with reference
mostly to syntax) with the catchphrase: “Items
that are used together fuse together.”

Both Heath (1998) and Zingler (2018) point
out the implication that agglutinative construc-
tions must have “barriers”— typological features
which prevent them from becoming fusional.6

Zingler makes a specific proposal, that fixed (lexi-
cal) stress systems tend to encourage fusion, while
vowel harmony discourages it. This builds on a
typological observation: the kinds of phonolog-
ical alternations that occur in agglutinative and
fusional systems tend to differ, “... with vowel
harmony tending to imply agglutination” (Plank,
1999)[310].7 Zingler argues that fixed stress leads

5In fact, Haspelmath states (pp107-8) that “...we do not
know how it is that robust inflectional patterns with cumula-
tive and suppletive affixes arise”. Our paper offers a partial
answer.

6The argument of Heath (1998) applies to the first
(isolating-agglutinative) step of the cycle, rather than the sec-
ond (agglutinative-fused) as discussed here: he suggests that
established agglutinative systems grammaticalize indepen-
dent function words into morphemes more quickly, due to
their analogical similarity to existing morphemes.

7An anonymous reviewer questioned the basis for this



to reduction in unstressed syllables, which over
time may lose their vowels, placing their conso-
nants in new environments with varied phonolog-
ical effects. Harmony, on the other hand, prevents
the loss of vowels, while at the same time indicat-
ing that bound elements are part of the phonolog-
ical word (since they undergo harmonic changes
based on the word stem).8

One question here has to do with the rela-
tionship between language-level and construction-
level properties. From Haspelmath’s perspec-
tive, individual constructions may be agglutina-
tive or fusional, but it is not clear that languages
as a whole fall into cleanly defined types. How-
ever, Zingler’s proposal is rooted in phonology-
morphology interactions. Phonological processes
generally operate across a range of construc-
tions in a language. Phonological properties are
language-level and thus might be expected to have
an across-the-board effect on morphological struc-
ture. Moreover, accumulation of effects on indi-
vidual constructions may result in a disproportion-
ate number of constructions of the same type (ag-
glutinate, fusional, etc.) in a given language. In
other words, there is no expectation that the ways
constructions develop historically will be fully in-
dependent of each other. To the extent that the
phonological context is the same for different mor-
phological constructions, we might expect simi-
lar pressures in and outcomes of language change.
While Zingler himself does not say so, his ideas
stand as an implicit challenge to Haspelmath’s
questioning of the validity of morphological types
at the language level.

We argue below that the presence of variably-
realized morphological marking is also a protec-
tive factor against fusion. Many agglutinative
languages have position classes that are some-
times filled by an overt morph, and sometimes
not; this is what we mean by ‘variably-realized’
morphological marking. Examples include mor-
phosemantic markers such as causatives, desider-

generalization, pointing out that both Algonquian and Nilotic
languages have vowel harmony, but the former would be clas-
sified as agglutinative and the latter as fusional. While we
agree with the reviewer that more typological investigation is
warranted, we follow Plank and others in the claim that there
is a typological correlation to be explained.

8Plank (1998)[201] points out that this idea of vowel har-
mony ‘cementing’ the internal cohesion of agglutinative word
structure goes back to Baudouin de Courtenay (1876), but is
not unproblematic in its reasoning. In our work, nothing de-
pends on vowel harmony creating greater word-internal co-
hesion.

1 Input MSPs M1=I, M3=I, STEM=1
Transducer 1: fusion

2 Abstract ms M1=I|M3=I, STEM=1
Transducer 2: lexicon

3 Underlying mwi-mela
Transducer 3: phonology

4 Surface form mwimela

Figure 1: Overall architecture of our model, consisting
of three finite-state transducers, producing two inter-
mediate layers of latent representation (in gray).

atives or negatives, whose position class slots are
filled only when that meaning occurs, and op-
tional agreement marking (Plank, 1999). Polysyn-
thetic languages, which are invariably mostly ag-
glutinative, contain even more variably-realized
elements, such as incorporated objects (Comrie,
1989). We suggest that, because variably-realized
elements break up sequences of morphemes that
would otherwise always appear next to one an-
other, they render fusional analyses less appealing
to the learner. Our argument not only explains the
previous observation that variably-realized mark-
ing and agglutination correlate, but might also
help to explain where and how fusionality devel-
ops.

Caballero and Kapatsinski (to appear) quantify
fusionality in the Uto-Aztecan polysynthetic lan-
guage Choguita Rarámuri. They show that mor-
phemes exhibit some fusion, especially close to
the stem. Their research focus is similar to ours in
examining how learners might infer morphologi-
cal boundaries. However, their approach differs
from our own in two ways. First, it provides a de-
scription of how much fusion is present based on
the Naive Discriminative Learner (Baayen et al.,
2011) and some variant models, but not a causal
model of how language properties encourage or
discourage fusion. Second, it lacks an explicit
model of phonological rules. Caballero and Ka-
patsinski point out that if learners can mentally
“undo” the effects of regular phonological rules,
the Naive Learner will overestimate the degree of
fusionality. The model we present below is de-
signed to test causal mechanisms underlying the
development of fusionality, and specifically the
role of phonological rules.
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Figure 2: Fragment of first transducer, from MSPs to
abstract morphemes. (For compactness, only one MSP
per morphosyntactic category is shown.)

3 Model

Our model is intended to capture the first stage
of the transition from agglutination to fusion, in
which the learner reanalyzes an ambiguous poly-
morphemic structure as monomorphemic. This re-
analysis is covert, affecting only the learner’s men-
tal representation; in order for the surface system
to become unambiguously fusional (i.e. for the
change to become actualized, in the terminology
of historical linguistics), the reanalyzed marker
must generalize to other words, as we saw above
for Greek, or undergo further diachronic changes.
We leave modeling such changes for future work.

The model (Figure 1) formalizes our intuitions
about agglutinative and fusional analyses of mor-
phological systems. In order to do so, it repre-
sents morphemes as invariant underlying repre-
sentations and applies phonological processes that
transform them into surface forms. Because the
popular sequence-to-sequence framework for in-
flection (Kann and Schütze, 2016) conflates these
processes within a single neural network, we
choose instead to extend an older model, Cotterell
et al. (2015), in which these components are sepa-
rate. While this model may be less capable overall,
it is more interpretable in terms of the theoretical
questions we are trying to answer.

Cotterell et al. model the correspondence be-
tween sequences of abstract morphemes and sur-
face strings. The term “abstract morpheme” refers
to a set of MSPs that already reflect the effects
of fusion— in the context of agglutination, each
abstract morpheme is a single MSP, whereas for
fusion, the abstract morphemes bundle together
many MSPs. The model maps abstract mor-
phemes to surface strings in the following steps:
first, each abstract morpheme is assigned an un-
derlying phonological form; next, these forms
are concatenated to yield an underlying inflected
form; finally, this form is passed through a finite-
state transducer which applies (stochastic) phono-
logical rules. (Lines 2-4 of Figure 1.)

Our model differs from theirs primarily in

adding a new initial step, which maps a se-
quence of atomic MSPs into a corresponding
sequence of abstract morphemes. This is the
step at which fusion occurs. For instance,
a sequence STEM=give,NUM=PL,TENSE=PRS
could be output as three separate symbols, or as
STEM=give, NUM=PL|TENSE=PRS, where we
use the | notation to indicate that two MSPs are
fused into a single abstract morpheme. The model
simplifies slightly by requiring uniformity at the
level of morphosyntactic categories; in our illus-
trating example, either all combinations of num-
ber and tense MSPs would be fused or none would
be.9

For simplicity, we also modify the model so
that it consists of a cascade of relatively small
finite-state transducers (FSTs) (Mohri et al., 2002)
which we can implement using the Carmel pack-
age (Graehl, 1997). This necessitates some
changes and simplifications to the model, but al-
lows us to use Carmel’s built-in Bayesian infer-
ence (Chiang et al., 2010) rather than belief prop-
agation as in Cotterell et al. (2015).

As stated, the first transducer in the cascade
maps a sequence of MSPs into a sequence of ab-
stract morphemes (without specifying any phono-
logical detail). For computational convenience,
we make two simplifying assumptions: The in-
put MSPs are provided in a fixed, templatic or-
der (Stump, 1997), in which only contiguous sub-
sequences can be fused. MSPs are not allowed
to fuse with the stem (that is, there is no MSP-
conditioned stem allomorphy), even though this
occurs in real languages. The transducer (Fig 2)
first chooses an allowable fusion template via ep-
silon transition and then deterministically trans-
forms the input sequence.

The second transducer is a lexicon (Figure 3)
which maps each abstract morpheme to a phono-
logical underlying form. Cotterell et al. imple-
ment this as a distribution of point masses on
strings, which is intractable and must be approxi-
mated.10 We use a simpler solution which is finite-

9In real languages, individual MSPs (or even individual
allomorphs of MSPs) can fuse, even when other MSPs be-
longing to the same categories do not. Stump (2001)[139–
144] gives examples under the heading of ‘portmanteau rule
blocks’. In Swahili verbs, subject agreement prefixes and the
negative prefix ha- normally have separate realizations and
occupy adjacent position classes. However, the combination
of 1SG.SBJ (normally ni-) and NEG is realized as a single,
fused prefix si-.

10It has the advantages that strings are not limited in length,
and that the morpheme may vary over two unrelated phono-
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Figure 3: Fragment of second transducer, from abstract
morphemes to characters. Only the lexical entry for
M1=1, only three steps in the linear chain, and only the
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Figure 4: Fragment of third transducer responsible for
altering i to y. X stands for any character, V for any
vowel and C for any consonant.

state and tractable. Each word in the lexicon has
an initial state with two outgoing epsilon transi-
tions; one leading back to the start state (thus pro-
ducing a null morpheme) and another leading to a
linear chain of 15 states. Each state in the chain
can produce any non-null character, or transition
back to the start. This transducer can produce any
string up to 15 characters long; the posterior tends
to concentrate around a single underlying form per
morpheme. We set the prior odds ratio for the two
initial transitions so that the null morpheme is 100
times more likely a priori than the linear chain.
This prior biases the model toward parsimonious
analyses with smaller morpheme inventories, pro-
vided they can satisfactorily account for the data.

The third transducer (Figure 4) implements
phonological rules. While Cotterell et al. sup-
ply a full finite-state phonology (Riggle, 2004;
Hayes and Wilson, 2008, and others), in our ex-
periments below, we use a custom machine im-
plementing only the specific rules which actually
exist in our artificial language. However, the ma-
chine executes the rules non-deterministically; the
system must learn the true probability with which
the rules occur. Again, we use prior parameters
to determine how much evidence is necessary to
convince the system that a phonological rule is jus-
tified. In our experiments below, we set the prior
odds ratio of the rule applying to 1:100. In simula-
tion C, we vary the strength of the prior (by multi-
plying the prior counts by a constant α) and report

logical forms without reserving mass for “hybrid” versions.

Underlying Surface Gloss
ndi-i-ko:mala ndi:ko:mala ‘I am sitting’
u-i-ko:mala wi:ko:mala ‘You.SG are sitting’
a-i-ko:mala i:ko:mala ‘S/he is sitting’
tu-i-ko:mala twi:ko:mala ‘We are sitting’
mu-i-ko:mala mwi:ko:mala ‘You.PL are sitting’
va-i-ko:mala vi:ko:mala ‘They are sitting’

Table 2: Conjugation of a Kihehe verb in the present
tense (Johnson, 2015).

results as a function of this parameter.
We perform posterior inference using blocked

Gibbs sampling (Chiang et al., 2010). For each
language, we run 20 Markov chains with random
starting points, annealing linearly from tempera-
ture 4 to 1 over 200 iterations. We average the final
counts from each chain to obtain the posterior.

4 Case study 1: Variably-realized
marking

In this section, we run a series of simulations on
artificial languages, intended to be reminiscent of
the Bantu language Kihehe, spoken in Tanzania
(Lewis, 2009). Simulations A − B show that the
model can learn both agglutinative and fusional
systems; C shows that the model’s preference for
fusionality is dependent on the phonological prior
weight α. D gives the main conclusion, that the
presence of a variably-realized marker between
two obligatory ones can block the emergence of
fusion.

We first give a brief overview of Kihehe it-
self. Kihehe verbs are marked for person-number
agreement with the subject; the form of the agree-
ment marker reflects the noun class of the sub-
ject. This marker is sometimes followed by a
tense marker. Although Kihehe has morphemes
which begin with vowels, its phonological rules
act to prevent onsetless syllables from surfacing,
by transforming the first vowel in a VV sequence
into a glide, or deleting one vowel, and in both
cases, lengthening the remaining vowel (Odden
and Odden, 1999).11 This creates a system in
which agreement and tense markers are arguably
fused on the surface (Table 2). In 3SG and 3PL,
where vowel deletion occurs, segmentation is im-
possible. In the other cells, segmentation of the
surface form is possible but gliding prevents pos-
tulation of a single, invariant form of each agree-

11We present these phonological processes here as SPE
rules, although of course other theoretical frameworks like
OT could derive the same results.



Name M1 M2 M3 Phonology Examples

A

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ta

ko

he

mu

gu

si

-

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i

a

de

no

koimela, muimela

B

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ya, se, dunu, lanu

ha, hi, si, yu

yi, wa, bise, logi

. . .

dunumela, yamela

C as A - as A

[
V

+high

]
→ glide / V

V → φ / V
mwimela (< mu-i-mela),
kamela (< ko-a-mela)

D as A
{
sa

ϵ
as A as C mwimela (< mu-i-mela),

musimela (< mu-sa-i-mela)

Table 3: Morphophonology of four simulated languages (case study 1).

Figure 5: Probability of fusion in A vs B.

ment marker. This parallels the conditions in pre-
Greek that led to reanalysis of separate person-
number and tense morphemes as fused (Table 1
above).

As in Kihehe, our artificial languages have
stems made up of CV syllables. We use an in-
ventory of 5 vowels and 15 consonants; for each
language, we generate 200 unique random stems,
with length min(5, Geom(.5)), which we use to
create a corpus of 1000 inflected forms. Each
language has two required morphosyntactic cate-
gories, M1 and M3 (e.g., person and tense), real-
ized as prefixes, with uniformly distributed values
(MSPs). In simulation D, we explore the impact
of a variably-realized category M2 which appears
between the two. Table 3 shows the realizations of
M1, M2 and M3 and the phonology in each simu-
lation.

Language A is prototypically agglutinative.
Each category:property (MSP) pair licenses a
unique, segmentable morph in the surface string.
(The morphs that realize M1 contain equal num-
bers of high and low vowels, and for M3 con-
tain equal numbers of vocalic and consonantal

onsets.) Language B is prototypically fusional.
While words inflect for the same categories as in
language A, each M1,M2 value pair licenses a
unique morph that realizes both categories (a sam-
pled string of one or two syllables). We expect
the model to analyze A as agglutinative, due to
the prior preference for a small morpheme inven-
tory (the agglutinative analysis has 6+4=10 mor-
phemes while the fusional analysis has 6*4=24),
and B as fusional; this is the actual result (Figure
5).

Language C has the same underlying proper-
ties as language A, but is subject to phonological
rules which result in non-isomorphic relationships
between form and meaning in the surface forms.
(The surface prefixes are thus segmentable, but
not into invariant forms; for example, ko- alter-
nates with k- and mu- with mw-, conditioned on
their phonological environment.) We use language
C to explore the effects of the prior parameter α,
which encodes our bias against using the phono-
logical rule; larger α means that more evidence is
required to justify the rule’s existence. Not sur-
prisingly, small α leads to agglutinative analyses,
while large α leads to fusion (Figure 6, top).

Finally, we investigate the effects of M2, a
variably-realized category between M1 and M3,
using language D. For this simulation, we set
α = 1000, a setting which we found in the previ-
ous experiment would result in a fusional analysis.
We do so because we are interested in whether M2

can prevent fusion from occurring; thus, it makes
sense to start from a setting in which fusion is ex-
pected. All versions of language D have the cat-
egory M2 between M1 and M3, but we vary the



Figure 6: Fusion in (top) C as a function of α, (bottom)
D as a function of the probability of non-zero M2.

probability with which it takes its non-zero value
(realized as sa-). We find (Figure 6, bottom) that
when sa- always or never occurs, the posterior
mode is a fully fused system, M1|M2|M3. But
when sa- is variably realized, full fusion essen-
tially never occurs. Instead, we find either agglu-
tination (M1-M2-M3, the plurality outcome when
p(sa) = .25) or partial fusion, in which M2 is re-
alized jointly with one of its neighbors.

Thus, the important result is that in the con-
text of phonological rules that create surface-
ambiguous word-forms, variably-realized mor-
phemes decrease the likelihood of agglutinative
morphemes being reanalyzed as fusional.

5 Case study 2: Stress-based vowel
reduction

Our next study addresses Zingler’s claims about
Turkish agglutination. Zingler argues (p422) that
languages have various mechanisms for articula-
tory reduction of vowels. One of these is vowel
harmony, which replaces some distinctive features
of a vowel with those of its neighbor, and another
is durational reduction, which reduces a vowel’s
absolute length, and tends to erode its features by
centralizing it. These mechanisms are comple-
mentary; harmony correlates with syllable-timed
languages and with systems that assign stress to a
fixed syllable relative to the word boundary. Du-
rational reduction correlates with stress-timed lan-
guages and with systems in which the stressed syl-
lable is lexically determined. Zingler’s hypothe-
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Figure 7: The transducer for vowel reduction (with fi-
nal stress).

sis is that durational reduction leads to fusion, and
that vowel harmony, as an alternative way to ease
articulation without durational reduction, is what
prevents Turkish from becoming fusional.12

In this section, we validate Zingler’s claim that
vowel reduction tends to encourage the develop-
ment of fusion, and add to his idea by showing that
this is especially so when the position of reduction
is predictable within particular morphemes. Sim-
ulation E investigates the case where stress is pre-
dictable within morphemes, and F the case where
it is not. As above, we use artificial languages in
which stems consist of CV syllables. Languages
in this section have two required categories, M1

and M2, realized as suffixes. Table 4 shows the
realizations of M1 and M2 and the phonology.

We next apply vowel reduction. In simulation
E we apply final stress and then alternate strong
and weak syllables moving left; the reduction rule
deletes each weak vowel with some probability.13

So, the word dite-ko-de in fully reduced form
would become dtekde. Simulation F is similar,
but with initial stress, so dite-ko-de would become
ditkod. Such stress rules follow from the core pre-
dictions of metrical stress theory (Hayes, 1995).14

Within each simulation, we compare languages
with varying rates of reduction, ranging from no
reduction to all unstressed vowels reduced.

Although neither E nor F has a true lexical
stress system, the varying stress rules have impli-
cations for the predictability of stress placement

12Zingler also argues that vowel harmony helps maintain
a morpheme minimality criterion. He does not consider
whether morpheme minimality plays a role in preventing fu-
sion, but we believe this could also be relevant and could be
simulated in our model, with suitable alterations to the lexi-
con. But we leave doing so for future work.

13This approximates the ‘fall of the jers’, a sound change
in the history of the Slavic languages (Kiparsky, 1979).

14Kager (1995) gives example languages which have the
stress systems described here. Weri parses feet from right-to-
left, with final stress; Hungarian parses from left to right with
initial stress.



Name M1 M2 Phonology Examples

E

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ta

ko

he

mu

gu

si

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pi

ka

de

no

Assign sS stress from right[
C voice-x

]
→

[
voice-y

]
/

[
C voice-y

] ddekte (< dite-ko-
de)

F As E As E Assign Ss stress from left[
C voice-x

]
→

[
voice-y

]
/

[
C voice-y

] ditkod (< dite-ko-
de)

Table 4: Morphophonology of two simulated languages (case study 2).

on morphemes. Because each word has two oblig-
atory suffixes, final stress (simulation E) means
that the second suffix, corresponding to M2, will
always be pronounced with a full vowel, while
the suffix for M1 will be probabilistically reduced.
The same condition would hold in a true lexical
stress language, although in such a language it
would also hold if the number of suffixes were
variable. In F , however, stress lands on the suffix
realizing M1 when the length of the stem is even,
on the suffix for M2 when it is odd. Thus, each
suffix appears in both strong and weak positions.

Vowel reduction disrupts the original CV struc-
ture of our languages, allowing consonant clusters
to appear on the surface. It is extremely common
for such clusters to simplify for articulatory rea-
sons (Brohan and Mielke, 2018)— we apply only
one simplification rule, progressive voicing assim-
ilation. Thus, dtekde would surface as ddekte. In
a real language, we might expect further simplifi-
cations to apply to prevent, for instance, geminate
dd at the beginning of a word; for our purposes,
however, a single assimilation rule is sufficient.

We apply the same learning procedure as in the
previous section. The feature and lexicon trans-
ducers are unchanged. The transducer for vowel
reduction is shown as Figure 7; the transducer for
assimilation resembles the one in Figure 4. We
use α = 1000 as a bias parameter to penalize
both phonological rules (vowel reduction and con-
sonant assimilation).

Figure 8 (top) shows the results for language E .
With reduction rate 0 (no reduction), the posterior
mode is an agglutinative system. Optional vowel
reduction (25-75%) produces mixed systems in
which both agglutination and fusion are recog-
nized as possible analyses, although the posterior
probability of fusional analyses climbs slightly as
reduction increases. With 100% reduction, the
posterior strongly prefers fusion.

The orange line shows the posterior probability

Figure 8: Probability of fusion and vowel reduction in
(top) E , (bottom) F as a function of the probability of
vowel reduction.

of vowel reduction. The system always underes-
timates the true probability of reduction— when
the true probability is 50%, for instance, the pos-
terior is only 20%— and counterintuitively, learns
that reduction is absent when its true probability
is 100%. This reflects the influence of the prior
bias against the reduction rule, but also the fact
that the system learns some cases of reduction as
variant lexical items. Table 5 shows one Markov
chain’s final learned representations for two val-
ues of M1 (-ta) and M2 (-de) as a function of re-
duction rate. With no reduction, the system learns
only agglutinative analyses; intermediate systems
learn underlying forms for both fused and unfused
morphemes, including multiple variant forms of
each one. The system with 100% reduction learns
only a fused morpheme, -tte, which incorporates
the result of both vowel reduction and assimila-
tion. With no evidence for an overt vowel between
the ts, the system has no reason to learn the rule.

Figure 8 (bottom) shows the results for lan-



Rate M1=I M2=III M1=I|M2=III
0 ta de -
25 ta (t, te) de (te) tade
50 ta (t) te (de) tade
75 ta (ti, t) te (de) tte
100 - - tte

Table 5: Underlying forms learned for two morphemes
in variants of language E . First entry is the posterior
mode, (parentheses) show alternatives with p > .01.

guage F . As predicted, the probability of fusion
increases again with the rate of reduction, but the
results are less extreme, since stress placement on
the suffixes varies depending on the stem. For this
language, agglutination is always the plurality out-
come, but intense reduction increases the probabil-
ity that some fusional analyses will be produced.

Returning to Zingler’s argument, Turkish is
similar to the case in which the probability of re-
duction is 0, a case which in our simulations is
indeed strongly agglutinative. Because Turkish is
syllable-timed and has vowel harmony, it is un-
likely to develop the alternate pattern of stress-
timing and durational reduction which Zingler ar-
gues could lead it to develop more fusion. We
have shown that stress-timing and durational re-
duction does favor fusional analyses. It is tempt-
ing to speculate that the same argument might help
to explain the differences between Finnish (vowel
harmony and agglutination) and Estonian (no har-
mony and limited fusion); Estonian historically
had a more agglutinative structure. In particular,
we note that Estonian has word-initial stress (Lip-
pus et al., 2014), which simulation F shows is pre-
dictive of a mixed rather than entirely fusional sys-
tem.

6 Conclusion

Our results show that, at least in principle, pre-
existing typological features can help to determine
whether an agglutinative construction evolves into
a fusional one, or remains stable. In particu-
lar, we present firm evidence that variably-realized
marking makes fusion less likely while durational
vowel reduction has the opposite effect. While
authors like Plank (1999) have listed many inde-
pendent features or elements which characterize
prototypically “fusional” morphology, these have
typically been discussed as typological clusters,
without necessarily providing a causal explana-
tion. Our modeling results give a mechanism in
which some of these features precede, and give

rise to, others.
A variety of researchers have noted (Greenberg,

1966) and attempted to discover (Murawaki, 2018;
Bjerva et al., 2019) correlations between typolog-
ical features. Harris (2008) suggests that in many
cases, such correlations reflect precisely this kind
of historical mechanism— the likelihood that a
language will develop in some typological direc-
tion is dependent on the features it already has,
some of which may encourage a particular change
while others tend to reinforce existing patterns.
While the simulations presented here use artificial
data, we hope to apply this model to real corpus
data from languages in which fusion might be de-
veloping, in order to isolate particular changes in
the phonology as the “triggers” of ongoing mor-
phological change, or explain distributionally why
one set of morphemes appears more fusional than
another. In doing so, we can discover how theo-
retical explanations of language change, such as
the morphological cycle, might be realized in the
minds of language users.
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jević, Peter Hendrix, and Marco Marelli. 2011. An
amorphous model for morphological processing in
visual comprehension based on naive discriminative
learning. Psychological review, 118(3):438–481.

Johannes Bjerva, Yova Kementchedjhieva, Ryan Cot-
terell, and Isabelle Augenstein. 2019. A probabilis-
tic generative model of linguistic typology. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 1529–1540.
Association for Computational Linguistics.

Anthony Brohan and Jeff Mielke. 2018. Frequent seg-
mental alternations in P-base 3. In Larry Hyman and
Frans Plank, editors, Phonological typology, pages
196–228. de Gruyter.

Joan Bybee. 1997. Semantic aspects of morpholog-
ical typology. In Joan Bybee, John Haiman, and
Sandra A. Thompson, editors, Essays on language

https://www.aclweb.org/anthology/N19-1156
https://www.aclweb.org/anthology/N19-1156


function and language type: Dedicated to T. Givón,
pages 25–37. John Benjamins.

Joan Bybee. 1999. Usage-based phonology. In
Michael Darnell, Edith A. Moravcsik, Michael Noo-
nan, Frederick J. Newmeyer, and Kathleen Wheat-
ley, editors, Functionalism and formalism in linguis-
tics, vol. 1: General papers, pages 211–242. John
Benjamins.

Joan Bybee. 2002. Frequency of use and the organiza-
tion of language. Oxford University Press.

Gabriela Caballero and Vsevolod Kapatsinski. to ap-
pear. How agglutinative? searching for cues to
meaning in Choguita Rarámuri (Tarahumara) using
discriminative learning. In Andrea D. Sims, Adam
Ussishkin, Jeff Parker, and Samantha Wray, edi-
tors, Morphological typology and linguistic cogni-
tion. Cambridge University Press.

David Chiang, Jonathan Graehl, Kevin Knight, Adam
Pauls, and Sujith Ravi. 2010. Bayesian inference for
finite-state transducers. In Human Language Tech-
nologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 447–455. Association for
Computational Linguistics.

Bernard Comrie. 1989. Language universals and lin-
guistic typology: Syntax and morphology. Univer-
sity of Chicago Press.

Ryan Cotterell, Nanyun Peng, and Jason Eisner.
2015. Modeling word forms using latent underlying
morphs and phonology. Transactions of the Associ-
ation for Computational Linguistics, 3:433–447.

Jan Baudouin de Courtenay. 1876. Rez’ja i rez’jane.
Slavjanskij sbornik, 3:223–371.

Jonathan Graehl. 1997. Carmel finite-state toolkit.
ISI/USC.

Joseph H. Greenberg. 1966. Language universals:
With special reference to feature hierarchies. Walter
de Gruyter.

Riho Grünthal. 2007. Morphological change and the
influence of language contacts in Estonian. In Hans
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Abstract

The analysis of sentences outside the domain
of the training data poses a challenge for
contemporary syntactic parsing. The Penn
Treebank corpus, commonly used for train-
ing constituency parsers, systematically under-
samples certain syntactic structures. We ex-
amine parsing performance in Tree Adjoining
Grammar (TAG) on one such structure: ques-
tions. To avoid hand-annotating a new train-
ing set including out-of-domain sentences, an
expensive process, an alternate method requir-
ing considerably less annotation effort is ex-
plored. Our method is based on three key
ideas: First, pursuing the intuition that “su-
pertagging is almost parsing” (Bangalore and
Joshi, 1999), the parsing process is decom-
posed into two distinct stages, supertagging
and stapling. Second, following Rimell and
Clark (2008), the supertagger is trained with
an extended dataset including questions, and
the resultant supertags are used with an un-
modified parser. Third, to maximize im-
provements gained from additional training of
the supertagger, the parser is provided with
linguistically-significant features that reflect
commonalities across supertags. This novel
combination of ideas leads to an improvement
in question parsing accuracy of 13% LAS.
This points to the conclusion that adaptation of
a parser to a new domain can be achieved with
limited data through the careful integration of
linguistic knowledge.

1 Introduction

The performance of contemporary syntactic
parsers for natural language depends crucially on
the availability of training data that matches the
sentences on which the parser will be tested. In
the realm of constituency parsing, by far the most
common corpus used for training is the Penn Tree-
bank (PTB) (Marcus et al., 1993), specifically the
subset drawn from the Wall Street Journal (WSJ).
It is a truism that the sentences in the WSJ are

not an accurate representation of the entirety of
English, and indeed the distribution of sentence
types in the WSJ differs dramatically from lan-
guage found in other domains. In particular, inter-
rogative sentences (questions) are quite rare in the
WSJ. It is unsurprising, then, that parsers trained
on the PTB WSJ corpus perform poorly on ques-
tions, sometimes suffering reductions in accuracy
of up to 20% (Petrov et al., 2010). However,
questions are common elsewhere and indeed are
a highly relevant sentence type for a range of NLP
applications, such as question answering.

One way to resolve this difficulty involves the
dedication of considerable resources to augment-
ing the training data set with additional hand-
annotated parses of the questions. The work re-
ported in this paper explores an alternative method
that requires less annotation effort and makes use
of three key ideas. First, we follow Bangalore and
Joshi (1999) in decomposing the parsing process
into two stages: supertagging, where lexically-
associated pieces of structure are assigned to each
word, and stapling, where these supertags are
composed to form a parse tree. Second, we build
on the work of Rimell and Clark (2008), where
improvements to a supertagger trained with an ex-
tended dataset that is less costly to produce lead
to improvements in parsing performance using an
unmodified parser. However, we find that the pars-
ing benefit that results from improved supertag-
ging can only be maximized when the parser is
structured so as to be sensitive to linguistically rel-
evant properties of the supertags. As a result, a
necessary third key idea is to use a parser whose
input is characterized in linguistic terms that cross-
cut the supertag set. This fosters the ability of the
parser to generalize across linguistically related,
but superficially distinct, sentence types. With
the goal of increasing efficiency, following these
ideas, a significant increase in parsing accuracy
can be seen with a relatively small set of questions



for training.
Because we are interested in extracting details

of the sentence’s interpretation, such as those
conveyed through long-distance dependencies, we
make use of the Tree Adjoining Grammar (TAG)
formalism. TAG is a mildly context-sensitive lex-
icalized grammar formalism, where the units as-
sociated with each word, called elementary trees,
are pieces of phrase structure that encode detailed
information about the word’s combinatory poten-
tial. Past work (Kasai et al., 2018) has shown
that the rich structural representations underly-
ing TAG parsing allow better recovery of long-
distance dependencies than is possible with other
approaches. Our domain adaptation depends on
the rich structure of TAG elementary trees, as we
use linguistically-defined features to encode com-
monalities across trees that the parser can exploit.1

TAG elementary trees are composed using two op-
erations, substitution and adjoining. The resulting
derivations have a structure similar to those famil-
iar from dependency parsing, and indeed compu-
tational methods from dependency parsing can be
used to accomplish broad coverage TAG parsing
(Kasai et al., 2017). As a result, the proposal made
in this paper should be more broadly applicable,
outside the problem of TAG parsing.

In the first portion of this paper, we introduce
the foundations of TAG and the shift-reduce TAG
parser employed (Kasai et al., 2017). We then
present our methodology of improving the process
of assigning elementary trees (supertags) to the
words in a sentence to be parsed, and show how
and under what conditions improved supertagging
can yield substantial benefits for parsing accuracy.

2 Tree Adjoining Grammar

Tree Adjoining Grammar (TAG) (Joshi et al.,
1975), is a lexicalized grammar formalism that
generates hierarchical structure through a system
of tree rewriting. In a TAG derivation, each word
in a sentence is associated with an elementary

tree, a piece of syntactic structure that encodes the
structural constraints that the word imposes on the
sentence in which it appears. A TAG elementary
tree thereby encodes information about the depen-
dencies headed by a word, as well as the structural
positions of the word’s dependents. For example,

1In this respect, TAG is similar to Combinatory Catego-
rial Grammar (CCG) (Steedman, 2000), though the lexical
units of CCG carry somewhat less information about struc-
tural context, as we will discuss below.
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NP0#
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Figure 1: Elementary trees for Alice read the book quickly.

a transitive verb like read might be associated with
the elementary tree t27 on the left of Figure 1,
while a name like Alice or a noun like book would
be associated with the elementary tree t3. In these
elementary trees, the nodes labeled with the dia-
mond indicate the structural position of the head
of the tree. For the verbally-headed tree, the NP
nodes that appear along the tree’s frontier are the
positions for the verb’s arguments, i.e., its syntac-
tic dependents. The subscripts on these arguments
encode their syntactic relations with the elemen-
tary tree’s head (0 is subject, 1 is direct object, 2 is
indirect object).2

Elementary trees are combined using one of two
derivational operations: substitution and adjoin-

ing. In substitution, an elementary tree rooted in
some category C is inserted into a frontier node in
another elementary tree that is also of category C
and notated with a down arrow. Thus, to combine
the subject NP with the verb in the sentence Al-

ice read a book, the NP-rooted elementary tree t3
from Figure 1, headed by Alice, is substituted into
the NP0 substitution node in the S-rooted tree t27,
headed by read.

The second operation, adjoining, introduces re-
cursive structure via a special kind of elementary
tree, called an auxiliary tree. Auxiliary trees have
a distinguished frontier node, the foot node, that is
of the same category as the root of the tree. The
third tree t1 in Figure 1 is an NP-recursive auxil-
iary tree that would be associated with the deter-
miner the. The asterisk on the NP frontier node
indicates that it is the tree’s foot node. Adjoining
works by targeting a node N of category C in some
elementary tree using a C-recursive auxiliary tree

2These numeric superscripts correspond to “deep" syntac-
tic relations: the subject of a passivized transitive verb will
be annotated 1, and operations like dative shift preserve syn-
tactic relations. Though this does not uniquely identify the-
matic roles of arguments (e.g., unaccusative and unergative
subjects are not distinguished), it does provide a richer en-
coding of predicate-argument dependencies than is provided
by usual surface-oriented parses. Recent work has shown that
the identity of supertags provides particularly useful informa-
tion for the task of semantic role labeling (Kasai et al., 2019).
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Figure 2: Derived and derivation trees for Alice read the

book quickly.

T. When adjoining applies, the node N is rewritten
as the tree T, and N’s children are attached (or low-
ered) as the children of the foot node of T. The de-
terminer tree on the right of Figure 1 can thus ad-
join to the NP root of the N-headed tree in the mid-
dle of the same figure. In this way, the grammar
can generate a structure corresponding to the NP
the book, which can then be substituted into the
NP object substitution node (NP1) in the transitive
verb-headed tree (t27) to derive the entire sentence
Alice read the book. Similarly, the rightmost ele-
mentary tree in the figure, t69, can be adjoined to
the VP node in t27 to yield a structure involving
adverbial modification. The resulting derived tree
structure is given on the left of Figure 2. This de-
rived tree does not, however, represent the deriva-
tional steps that were involved in the creation of
the structure, which are instead represented in a
derivation tree. The nodes of the derivation tree
correspond to elementary trees, and its edges (de-
pendencies) correspond to substitution and adjoin-
ing operations that have applied, i.e., a daughter
node is an elementary tree that has been substi-
tuted or adjoined into the parent node. Substitu-
tion is indicated by solid edges annotated with the
index of the substitution site, while adjoining is in-
dicated with dotted edges annotated with the locus
of adjoining. The derivation tree for the simple
sentence under consideration is given on the right
in Figure 2.

TAG shares with the Combinatory Categorial
Grammar (CCG) formalism the property of lexi-
calization: in both formalisms, words are associ-
ated with units of structure, elementary trees for
TAG and lexical categories for CCG. The pres-
ence of rich structure associated with the lexical
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Figure 3: Elementary trees for object questions and object
relative clauses.

items is a source of information relevant for a vari-
ety of NLP tasks, including semantic analysis and
translation, and the use of these formalisms have
contributed to performance benefits (Cowan et al.,
2006; Xu et al., 2017; Artzi et al., 2015; Nade-
jde et al., 2017). TAG and CCG differ, however,
in the kind of information that the lexical struc-
tures encode. In TAG, a verb’s elementary tree en-
codes not only its selected arguments, but also the
positions in which they are syntactically realized.
Sentences involving long-distance dependencies,
such as relative clauses or questions, will therefore
involve distinct verbally-headed elementary trees
from those used for simple declarative sentences,
in which the wh-movement dependency is realized
(Frank, 2004). For example, in the question What

did Alice read?, the displacement of the NP object
to the front of the question and its original posi-
tion filled with a trace node indicated by NONE,
as in the Penn Treebank, is represented in the ele-
mentary tree t214 on the left in Figure 3. Since the
auxiliary verb did must appear directly after the
fronted NP (NP1, or what, in this case), it adjoins
to the S child of NP1, as shown in Figure 2. In
contrast, the verb read in the relative clause of the
noun phrase the book that Alice read would head a
different, but related elementary tree, shown on the
right in Figure 3, which also includes the fronting
of the object, but is itself an auxiliary tree that can
adjoin to the NP it modifies.

In contrast, CCG lexical categories do not en-
code the different realizations of a verb’s argu-
ments found in declaratives, questions or relatives.
In all such cases, a transitive verb would be as-
signed the lexical category (s\np)/np. What dif-
fers are the categories assigned to the object (np in
simple sentences, s/(s/np) for the question word,



Figure 4: The TAG Parser pipeline.

and (np\np)/(s/np)) for the relative pronoun), as
well as the way in which these elements combine
with the verb.

3 Supertagging and Parsing

This study uses the TAG supertagger and parser
developed by Kasai et al. (2017). The supertagger-
parser pipeline is shown in Figure 4. Raw sen-
tences and part of speech tags are given as input
to the TAG supertagger, which outputs predicted
supertags (i.e., elementary trees) for each word.
These predicted elementary trees are given as in-
put to the (unlexicalized) TAG parser, which out-
puts predicted parses with labeled dependencies
among the elementary trees. We briefly review the
architecture developed by Kasai et al. (2017). For
more details, the reader should consult the original
paper.

3.1 Supertagger Architecture

As discussed above, a simple transitive verbal
predicate such as read might have a different el-
ementary tree depending on the context: t27 as
the main predicate of a declarative sentence, or
t214 in an interrogative sentence. The same word
might have other elementary trees in other con-
structions, such as subject and object relatives,
meaning that the determination of the correct tree
requires sensitivity to information that is not lo-
cal in the string (Kasai et al., 2017). To ad-
dress the need for long-distance dependency in-
formation, the supertagging model makes use of
Long Short-Term Memory (LSTM) units (Hochre-
iter and Schmidhuber, 1997), a recurrent network
architecture which is constructed to avoid the van-
ishing/exploding gradient problem. Specifically,
the supertagger developed by Kasai et al. (2017)
employs a one-layer bidirectional LSTM network.
This architecture processes the input sentence both
from beginning to end and from end to beginning.
The output of these LSTM units at each time step

are concatenated, fed into an affine transforma-
tion, and then fed into a softmax unit, yielding a
probability distribution over the 4,727 elementary
trees that exist in the TAG-parsed corpus we em-
ploy, which was extracted from the PTB corpus
(Chen et al., 2005). Each word is given to the net-
work as in Kasai et al. (2018): the concatenation
of a 100-dimensional GloVe embedding (Penning-
ton et al., 2014), a 5-dimensional embedding of a
predicted part of speech tag, and a 30-dimensional
character-level representation of the word. The
network is trained by optimizing the negative log-
likelihood of the observed sequences of supertags.

3.2 Shift-Reduce Parsing Algorithm

Parsing is done using the arc-eager system of shift
reduce parsing introduced in the MALT parser
(Nivre et al., 2006). This system maintains a stack,
buffer, and the set of dependency relations de-
rived so far as the current state. These dependency
relations consist of the substitutions and adjoin-
ings that have already occurred between elemen-
tary trees. Initially, the buffer holds the sequence
of tokens in the sentence, and the transitions ter-
minate when the buffer is empty. At each state,
the arc-eager system may choose one of four op-
erations: LEFT-ARC, RIGHT-ARC, SHIFT, and
REDUCE, defining ways in which the top ele-
ments of the stack and buffer may be manipu-
lated. The TAG parser further divides LEFT-ARC
and RIGHT-ARC into seven types according to the
derivational operation involved, whether substitu-
tion or adjoining, and the location at which the op-
eration takes place (Kasai et al., 2017).

The parser implemented by Kasai et al. (2017)
uses a two-level feed-forward network that is
trained to predict the operation that should be
taken, given the top five elements of the stack and
buffer. A noteworthy aspect of the parser is that
these data structures contain only supertag infor-
mation, not the identities of the words in the sen-
tence being parsed. Each supertag is given to the
network as a one-hot vector, which is then embed-
ded into a more compact representation, together
with vectors that indicate any substitution opera-
tions that have already been performed on the su-
pertag. These vector representations of the top ele-
ments of the stack and buffer are concatenated and
fed to the network, which yields a probability dis-
tribution over the possible transition actions. The
parser is decoded using a beam search.



3.3 Feature Embeddings

Friedman et al. (2017) explore the benefits of a dif-
ferent input representation for the same parser, in-
volving feature-based embeddings of the elemen-
tary trees. These feature-based embeddings are
vectors that encode linguistically-defined dimen-
sions of information about the elementary trees
specified by Chung et al. (2016). These dimen-
sions include structural properties of the elemen-
tary tree (category of the root and head and the
category and direction of substitution nodes), sub-
categorization frame, and grammatical properties
(passive, particle shift, wh-movement). The ra-
tionale for training a parser with feature embed-
dings is to allow the network to exploit relation-
ships between trees, and to be able to general-
ize parsing actions across related contexts. This
is particularly useful for cases like passivization
and wh-movement, in which the argument struc-
ture of the root remains the same, but there are
changes in syntax which are reflected in the el-
ementary trees. Friedman et al. (2017) compare
the parsing models using both one-hot and featural
representations of supertags with respect to pars-
ing performance on PTB sentences, but only saw
a “slight improvement” (approximately 0.2% im-
provement in LAS). However, in the case of adapt-
ing to new domains, learning this kind of linguis-
tic information may bridge the gap between the
original data domain and the new domain, as it
will allow sharing of information about parsing ac-
tions for related structures. We explore the impor-
tance of providing linguistically-rich feature em-
beddings to the parser to aid in improving parsing
accuracy in the new domain of interrogatives de-
spite never training the parser on sentences from
the new domain, especially when limited data is
used.

4 Methods

4.1 Background

The most direct approach to adapting a parser
for new domains would be to generate a new,
hand-annotated dataset that included instances of
the new sentence type, which could be used to
train a supertagger and parser. Such a process
would, however, involve a substantial annotation
effort for each new domain. We instead build
on the approach of domain adaptation taken by
Rimell and Clark (2008). The viability of Rimell
and Clark’s approach rests on the assumption that

“supertagging is almost parsing” (Bangalore and
Joshi, 1999). If a parser is provided with a correct
set of supertags, it should perform better even on
sentence types outside the domain on which it was
trained. We therefore focus on retraining the TAG
supertagger with a hand-annotated set of questions
to which TAG elementary trees have been assigned
to each word, but for which parses have not been
generated. This hand-annotation process is less
expensive than the creation of full parses. As we
shall see, this procedure results in improvements
in both supertagging and parsing accuracy without
ever training the parser on an augmented dataset of
questions.

4.2 Data

The question set used in this study contains 350
of the questions used by Rimell and Clark (2008).
Their dataset was drawn from the training data
provided for the TREC 9-12 Competitions.

4.3 Supertagger Training and Evaluation

To train the TAG BiLSTM supertagger, gold stan-
dard part of speech (POS) and supertag sequences
were first created for the 350 question set. POS
tags were assigned to the 350 questions using the
Stanford CoreNLP (Manning et al., 2014) web-
based POS tagging tool. These tags were then
checked and corrected by hand to create gold stan-
dard POS tags.

Next, elementary trees were assigned to the sen-
tences by hand. To make sure these hand annota-
tions were compatible with and followed the same
conventions as the method of supertag assignment
for the PTB data used to train the parser, the PTB
annotation guidelines (Bies et al., 1995) and the
gold standard supertag data (Chen et al., 2005)
were frequently reviewed. Stanford Tregex (Levy
and Andrew, 2006) was used to find relevant trees
(e.g., declarative forms of the questions, relative
clauses with a similar structure) in the WSJ cor-
pus. Through these methods, ambiguities regard-
ing assignment of elementary trees were resolved.
Hand annotation was primarily done by one au-
thor, and another author verified or corrected the
hand annotations.

In essence, the hand annotation process was
conducted as follows. Given the question "What
did Alexander Graham Bell (AGB) invent?" the
supertag sequence for the corresponding declara-
tive was first determined (Figure 5). From this, the
supertag sequence for the question would be cre-



ated. The biggest change is that the tree for the
predicate, invent, must reflect the wh-movement
(Figure 6).
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Figure 6: What did AGB invent?

As can be seen, the interrogative elementary tree
t214 can be derived from the declarative elemen-
tary tree t27. NP1 has been fronted, and the added
auxiliary did will adjoin directly after NP0 at the
second S node. Appendix A contains more infor-
mation about the conventions that were followed
in assigning supertags in several common types of
questions.

The BiLSTM supertagger was trained with two
regimens. In one, only the original PTB train-
ing set (WSJ sections 01-22) was provided. In
the other, the supertag sequences associated with
the hand-tagged questions were added to the PTB
data. Rimell and Clark (2008) added ten copies
of their 1,328 training questions, adding 13,280
questions to the 39,832 PTB training sentences.
Due to the smaller number of hand-tagged ques-
tions used for training in this study, 35 exact copies
of the training questions were added to the PTB
training sentences. This yielded a total of 49,632
sentences in the training set. Through a devel-
opmental stage of training and testing, it was de-
termined that 35 copies was optimal to have the
highest possible accuracy of supertagging ques-
tions without overfitting or reducing accuracy of
supertagging PTB sentences. Supertagger train-
ing and testing was done using five-fold cross-

validation. For each of the five folds, a unique sub-
set of 70 questions was saved for testing, and the
remaining 280 questions were used for training.
We report mean accuracy over these five folds.

4.4 Parsing Evaluation

In order to analyze parsing performance of ques-
tions, gold parses were created for a small test set
of 48 questions, each associated with a unique su-
pertag sequence. These questions were not among
those used for the training of the supertagger. As
before, the assignment of gold parses was done
through careful consultation of the PTB annota-
tion guidelines (Bies et al., 1995), as well as the
existing TAG-parsed version of the PTB.

For the TAG parser, creation of gold parses
requires not only the gold supertag sequences,
but also the dependency relations (for UAS and
LAS) and the arc labels (for LAS). Two additional
columns of information must be added when cre-
ating a gold parse as opposed to a gold supertag
sequence for a sentence, as shown below. As a re-
sult, creating gold supertag sequences is less time-
intensive than creating gold parses.

Word Supertag Rel Arc Label
1 What t612 2 adjoin
2 continent t3 5 1 (object)
3 is t259 5 adjoin
4 India t3 5 0 (subject)
5 on t2911 0 root

Two parsing models were explored, both trained
only on the PTB TAG parses: (1) the parser model
proposed by Kasai et al. (2017) that was trained
using one-hot vector embeddings of the elemen-
tary trees (henceforth -F), and (2) an identical
parser trained with Friedman et al.’s elementary
tree feature embeddings (henceforth +F). Decod-
ing for both parsers was done using beam search
with a beam size of 16. For each model, three dif-
ferent scenarios were tested, varying in the nature
of the supertag input received for the questions
to be parsed: (1) supertags given by the original
PTB-trained BiLSTM supertagger model (Kasai
et al., 2017) (henceforth PTB), (2) supertags given
by a supertagger model trained with an augmented
dataset of questions and PTB sentences (hence-
forth PTB+Q), and (3) hand-annotated gold su-
pertags (henceforth Gold). The accuracy of parses
in each of the six cases are reported in Section 5.2.



5 Results and Discussion

5.1 Supertagging Results

Supertagging results for the set of 350 questions
and the PTB test set are reported separately in
Table 1. The PTB-trained supertagger gave an
accuracy of 79.61% for the set of 350 questions
(an average over the five folds of cross-validation,
weighted by the number of words in each fold),
and 91.50% for the PTB test set. This PTB-trained
supertagger frequently made three types of errors
when assigning elementary trees to questions:

1. Incorrect wh-phrase construction: The cor-
rect elementary tree for the wh-determiner
(e.g., what in what book) should contain a
right NP* adjunction node to adjoin to the
NP book (as in t1 assigned to the in the book,
Figure 1). Instead, the elementary tree as-
signed to book by the PTB-trained supertag-
ger would incorrectly contain a left NP* ad-
junction node to facilitate adjunction to the
wh-phrase, or the verbal predicate’s elemen-
tary tree would have two NP substitution
nodes into which the wh-determiner and the
noun could be inserted separately.

2. Incorrect tree for auxiliary verb: Auxiliary
verbs (e.g., did) were treated as in a declar-
ative sentence, heading a VP-recursive aux-
iliary tree t23. Because the auxiliary should
appear immediately following the fronted NP
and before the subject, the adjunction of the
verb should instead take place at S (cf. tree
t214 in Figure 3), as in tree t259.

VP

VP*V}

t23

S

S*V}

t259

Figure 7: t23 (declarative) vs. t259 (interrogative)

3. Incorrect tree for verbal predicate: The
main predicate of the sentence was assigned
a declarative elementary tree rather than a

Questions PTB Test
PTB training 79.61 91.50
PTB+Q training 95.17 91.64

Table 1: Supertagging Accuracy. Rows indicate training set,
whether augmented or not.

PTB PTB+Q Gold

UAS -F 90.80 90.53 94.60
+F 91.14 90.51 96.00

LAS -F 89.63 89.39 94.07
+F 90.00 89.39 95.81

Table 2: PTB Test Parsing Accuracy. Columns indicate
training set for supertagger (or gold supertags) that provide
input to the parser. ±F indicates the presence or absence of
feature-based supertag embeddings in the input to the parser.

PTB PTB+Q Gold

UAS -F 81.84 86.70 91.04
+F 86.18 93.86 99.74

LAS -F 79.79 85.67 90.53
+F 83.88 93.09 99.74

Table 3: Question Parsing Accuracy. Columns indicate
training set for supertagger (or gold supertags) that provide
input to the parser. ±F indicates the presence or absence of
feature-based supertag embeddings in the input to the parser.

question version (i.e., neither fronting nor the
NP-NONE trace were expressed in the ele-
mentary tree). For a transitive sentence, this
means t27 (Figure 1) was assigned to the ver-
bal predicate rather than t214 (Figure 3).

For the PTB+Q trained supertagger, supertag-
ging accuracy improved, particularly in regards to
the three common errors outlined above. On aver-
age, supertagging accuracy increased substantially
for the question test sets. At the same time, su-
pertagging accuracy on the PTB test set was main-
tained, indicating that when augmentation is done
appropriately, additional training on types of con-
structions rare in a corpus does not adversely af-
fect supertagging performance on the original cor-
pus.

5.2 Parsing Results

Table 2 reports parsing accuracy on the PTB test
set for each of the six parser input conditions de-
scribed in Section 4 (varying by supertag input
and presence or absence of feature-embeddings).3

We see that the addition of the question data to
the supertag’s training data (PTB+Q) has a mini-
mal effect on parser performance on the PTB test
sentences. Similarly, as found by Friedman et al.
(2017), the addition of feature embeddings results
in a very small improvement in parsing accuracy,
if at all.

3Following the standard in the TAG parsing literature,
these values do not include accuracy for punctuation.



More relevant for the current topic of discussion
is the parsing performance of questions, which is
reported in Table 3 for each of the six parser in-
put conditions. We first note that while labeled
parsing accuracy (LAS) for the -F parser improved
from 79.79% to 85.67% when going from PTB
to PTB+Q supertagger training, we see an even
more dramatic increase when the feature-trained
(+F) parser is used: in this case, parsing accu-
racy increases to 93.09%. As discussed in Sec-
tion 3.3, the feature embeddings provide linguistic
information over which the parser can generalize
from one type of structure to another. Because
of the rarity of questions in the PTB, many of
the correct supertags used when hand-annotating
the question set are also rarely present in the
gold standard supertag data for the PTB WSJ cor-
pus (Chen et al., 2005). As a result, the TAG
parser (trained only on the PTB WSJ corpus) was
not equipped to properly handle these supertags.
Thus, while the parsing accuracy increased when
given PTB+Q-trained supertags, the improvement
is not as large as it might be due to the parser re-
peatedly encountering uncommon supertags that
it was unable to correctly staple together. When
the +F parser was used, the parser had learned
the knowledge required to better deal with these
less common supertags, and parsing accuracy im-
proved from 83.88% to 93.09%. It is notable
that this improvement is super-additive: the im-
provement on LAS (13.3%) is greater than the
sum of the individual improvements obtained by
using the improved supertagger (PTB+Q) alone
(5.88%) or using feature-embeddings (+F) in the
parser (4.09%). Thus, we find that with our ap-
proach to domain adaptation, when coupled with
representations that encode linguistic commonal-
ities across different types of structures, accuracy
can increase to a level comparable to the parsing
accuracy of the original domain. It is also no-
table that, when training the supertagger, so few
questions (350) are needed to see a significant in-
crease in both supertagging and parsing accuracy
(by 15% and 13%, respectively).

Table 4 breaks errors in parsing questions into
two categories. The error category of “incor-
rect wh-phrase” relates to parses of questions that
failed to adjoin a wh-determiner to its correspond-
ing noun phrase, or that incorrectly substituted a
wh-phrase as an argument of the corresponding
predicate. The “missing root” category relates to

PTB PTB+Q Gold
incorrect
wh-phrase

-F 19 9 7
+F 16 3 3

missing root -F 16 25 23
+F 1 0 0

Table 4: Summary of Parsing Evaluation for Questions. ±F
indicates the presence or absence of feature-based supertag
embeddings in the input to the parser.

parses that omit assigning any term in the sentence
as the root of the dependency parse, most likely
due to complexity or rareness of the correct root
word’s elementary tree. The number and types of
parsing errors deriving from the presence of un-
common supertags in questions (e.g., a parse miss-
ing a root) persist in the -F parser. In contrast,
these errors are minimal for the +F parser. Treat-
ment of the wh-phrase construction was a specific
focus of training the supertagger on questions, and
while errors in this category decreased (cf. Table
4) for both parsers once the improved supertags
were given, the feature-trained (+F) parser was
better able to handle these constructions, and er-
rors decreased much more.

It is important to note that, although the number
of sentences with a missing root increases from the
PTB to PTB+Q trained supertagger, the reason for
having a missing root changes. Given the correct
(often rarer) supertag for the root in the PTB+Q
case, the -F parser is now not equipped to properly
combine other trees with it, so the root is skipped.
This leads to higher numbers of missing root er-
rors for both PTB and PTB+Q. However, such er-
rors do not occur in the +F parser, as sensitivity to
features allows the parser to be better equipped to
compose even rare trees correctly. We find then
that the statement “supertagging is almost pars-
ing” (Bangalore and Joshi, 1999) is true only when
the linguistic content of supertags is known to the
parser. When the parser receives correct supertags
(gold) and is equipped to handle them properly
since it was trained with feature embeddings, it
yields near-perfect parses (99.74%).

6 Future Work

We anticipate that the approach of domain adap-
tation for supertagging and parsing explored here
can be applied to other domains. For example, im-
peratives are another sentence type nearly absent
from newspaper corpora, but which are nonethe-
less a crucial type of input to NLP systems such as
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virtual assistants. Another domain to which this
method might be applied involves biomedical and
clinical text (cf. Rimell and Clark 2009), which
pose a challenge for information retrieval systems
due to the domain-specific vocabulary abbrevia-
tions and distinctive syntactic structures, such as
null subjects, asyndetic coordination, and frag-
ments.

(a) abbreviations: 8 yo M no PMH presents with
n/v/F and fever x4 days

(b) null subjects: presents with shortness of
breath

(c) asyndetic coordination: VS notable for fever
to 103F, tachycardia, tachypnea

(d) fragments: non-toxic though appears ill

In addition, because questions are not well-
represented among the original PTB training cor-
pus for the parser, questions on which the parser
was tested sometimes involved novel supertags
that were absent from the grammar extracted from
the PTB. For example, copular sentences with NP
predicates (like Mardi Gras is a festival) can front
the predicate to form a question (as in What is

Mardi Gras?). The appropriate elementary tree
for such cases should be the one given in Fig-
ure 8, with the clausal predicate what appearing
in fronted position. However, no such elementary
tree exists among those that were extracted from
the PTB by Chen et al. (2005). Consequently, in
order to better parse all types of questions, and
more generally sentences from other domains, it
will be necessary to allow for the creation and fea-
ture decomposition of new elementary trees.

7 Conclusion

In this study, we explored an approach to domain
adaptation for TAG parsing in the context of ques-
tions. We extended Rimell and Clark’s approach

for improving parsing by improving supertagging.
We found first of all that improvements in TAG
supertagging, despite the larger number of su-
pertags involved as compared with CCG, are pos-
sible through a relatively limited hand-annotation
effort. Supertagging accuracy of questions in-
creased by 15%, without sacrificing supertagging
accuracy on the original corpus data. Furthermore,
while this approach is also successful in improv-
ing parsing performance, its effectiveness is maxi-
mized when the parser makes use of linguistically-
informed representations of supertags. Strikingly,
previous work (Friedman et al., 2017) found that
the introduction of hand-coded linguistic features
in the supertag representations given to the parser
does not yield significant benefits in parsing per-
formance. However, our current results suggest
that the addition of linguistic features can con-
stitute a crucial source of information when pro-
cessing structures that are underrepresented in the
training data. A parser trained with linguistically-
defined feature decompositions of the supertags
can better handle those supertags that are uncom-
mon in the data it was trained on. In such cases
(e.g., questions), the parser is able to exploit ab-
stract commonalities with related structures, such
as relative clauses, that do occur frequently in the
training data. Without such linguistically struc-
tured representations, considerably more effort
would need to be expended to annotate parses in
the new domain of questions. We see then that
neural methods are not immune to the need for the
careful incorporation of hand-coded linguistic fea-
tures, particularly in addressing problems of do-
main adaptation.
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A Appendix: Assigning TAG Supertags

to Questions

This appendix lays out the linguistic assumptions
and analytic decisions that were made for question
supertagging and parsing. Within the 350 ques-
tions, four basic question types, expressed in a
generalized form below, were most common.4

a. How many/much ... ?

b. What (NP) is NP ?

c. What (NP) VP ?

d. What (NP) is NP+IN ?

Below we briefly present our assumptions for each
type.

How many/much ... ?

An example of this type of question is:

(1) How many battles did she win?

It is first useful to examine the declarative version
closest to this sentence:

(2) She did win five battles.

The key difference between the interrogative
version (Sentence 1) and the declarative version
(Sentence 2) is the change in order, akin to that of
wh-movement. Thus, the elementary tree for the
verbal predicate win in this question must include
the noun phrase trace, as in t214:

S

VP

NP1#V

win

NP0#

t27 (declarative)

S

S

VP

NP

-NONE-

V

win

NP0#

NP1#

t214 (interrogative)

As can be seen, the interrogative elementary tree
t214 can be derived from the declarative elemen-
tary tree t27. NP1 corresponds to five battles. NP1

4Part of speech tags are taken from the PTB.

in t27 has been replaced by the NP-NONE trace
in t214, since it has moved to the beginning of the
sentence (fronting). To show this, an additional S
node has been added to the top of the tree. An-
other key difference adopted as a convention is the
treatment of did. In the declarative sentence, did is
assigned t23, a VP-recursive auxiliary tree. How-
ever, in the interrogative version, did is assigned
t259, an S-recursive auxiliary tree. The difference
is shown below:

VP

VP*V}

t23

S

S*V}

t259

This is because of the placement of the additional
S node in t214. The auxiliary verb did must come
between the object (NP1) and subject (NP0) of the
question, as shown in t214.

What (NP) is NP ?

An example of this type of question is:

(3) What is the capital of Kentucky?

with the corresponding declarative sentence:

(4) Frankfort is the capital of Kentucky.

The supertags assigned to Sentence 3 are shown
in Figure 9, and the supertag for the predicate is
t668 in Figure 10.

NP

WP

What
t98

S

S*V

is
t259

NP

NP*D

the
t1

NP

PP

NP1#IN

of

NP*

t4

NP

N

Kentucky

t3

Figure 9: Elementary trees for Sentence 3.

There are two key concepts behind this type of
question. First, as for the auxiliary verb did in the
earlier question type, t23 becomes t259 in the con-
text of questions due to the necessity of adjoining
to the S node in a position above the subject. Sec-
ond, we notice in a copular sentence there is no
verb to head the elementary tree, i.e., to project the
main S node that serves as the root of the deriva-
tion. Instead, the noun capital plays the role of
predicate of the sentence, and is assigned an S-
rooted elementary tree, t668. Figure 10 illustrates
the similarity of the two elementary trees assigned



to the predicate nominal capital in declarative and
interrogative forms, with the interrogative t668 en-
coding the NP-NONE trace.

S

VP

NP

N

capital

NP0#

t167 (declarative)

S

S

VP

NP

N

capital

NP

-NONE

NP0#

t668 (interrogative)

Figure 10: Elementary trees for “capital” in Sentences 4 and
3, respectively.

What (NP) VP ?

Sentence 5 gives an example of this type of ques-
tion.

(5) What car company invented the Edsel?

(6) Ford invented the Edsel.

The sequence of elementary trees assigned to this
sentence is shown in Figure 11. Although there is
no change in word order when converting from the
interrogative to the declarative version of this sen-
tence, the verbally-headed elementary tree follows
the practice of placing a trace in subject position
and displacing the subject to a higher position, as
done in the PTB.

Earlier, t214 was used for the question version
of the transitive verb win’s elementary tree. The

NP

NP*Comp

What

t612

NP

NP*N

car

t2

NP

N

company

t3

S

S

VP

NP1#

V

invented

NP

-NONE-

NP0#

t335
NP

NP*D

the

t1

NP

N

Edsel

t3

Figure 11: Elementary trees assigned to Sentence 5.

difference between t214 and t335 is whether it was
the object or subject that was fronted to form the
question. Distinct elementary trees are necessary
for each possible position of extraction for a given
pattern of transitivity.

What (NP) is NP+IN ?

The final question type we consider here is as fol-
lows:

(7) What city is Logan Airport in?

Unlike copular questions, in which a noun phrase
is the main predicate, in Sentence 7 the main pred-
icate is the preposition in. As a result, this prepo-
sition constitutes the head of the S-rooted elemen-
tary tree, as shown in Figure 12, where what city

substitutes into the NP1 node (object), and Logan

Airport substitutes into the NP0 node (subject).

S

S

VP

PP

-NONE-IN

in

NP0#

NP1#

t2911

Figure 12: Elementary tree used in Sentence 7.
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Introduction. Classical markedness and faith-
fulness constraints apply to individual candidates.
Yet, the literature has also advocated constraints
that instead apply to sets of candidates, such
as Distinctiveness constraints (DCs; Flemming
2008) and Optimal Paradigm faithfulness con-

straints (OPFCs; McCarthy 2005). These ap-
proaches thus need to “lift” the classical con-
straints to sets of candidates by summing them
across a set. Is this assumption of constraint sum-
mation typologically innocuous? We formalize
this question and establish a positive answer for
an additive model of constraint interaction.

Constraint summation. DCs embody a prefer-
ence for more distinct contrasts among SRs: they

(1)

/ata/, /ada/ M
in

D
is

t
Id

(v
ce

)
Id

(n
as

)

*n D
*D *V

TV

[ata], [ata] * * **
[ata], [ada] * * *

[ata], [anda] * * * *
[ada], [ata] * ** * *
[ada], [ada] * * **

[ada], [anda] * * * * **
[anda], [ata] ** * * * *
[anda], [ada] * * * * **

[anda], [anda] * * ** ** **

penalize pairs
of SRs whose
perceptual
distance is
below a given
threshold. For
instance, the
DC MinDist
in tableau (1)
penalizes the
pairs of SRs
([ata], [ada])

and ([ada], [anda]) but not the pair ([ata], [anda])
because segment pairs ([t], [d]) and ([d], nd]) are
less distinct perceptually than ([t], [nd]), where
prenasalization enhances the voicing contrast with
the voiceless stop (Flemming 2004).

OPFCs embody a preference for greater simi-

(2)

/faQa:l-a/, /faQa:l-tu/ *V
:C

C
V

Id
O

P(
le

ng
th

)
Id

IO
(l

en
gt

h)

(a) [faQa:l-a], [faQa:l-tu] *
(b) [faQa:l-a], [faQal-tu] * *
(c) [faQal-a], [faQa:l-tu] * * *
(d) [faQal-a], [faQal-tu] **

larity among SRs in
the same morpho-
logical paradigm:
they penalize pairs
of paradigm mem-
bers that differ
along some relevant
phonological di-

mension. For instance, the OPFC IdentOP(length)
in tableau (2) penalizes paradigms (b) and (c)
because the length of the stem-final vowel is not
identical in the two SRs. It does not penalize
paradigms (a) and (d), where all the vowels
standing in correspondence in the two SRs have
the same length (McCarthy 2005).

DCs and OPFCs are formally very different
from classical faithfulness and markedness con-
straints. In fact, classical constraints assign a
number of violations to each individual candidate
mapping consisting of a UR and a correspond-
ing SR. DCs and OPFCs instead compare the SRs
of multiple candidate mappings. This difference
has implications for the architecture of grammar.
A “classical” constraint-based grammar evaluates
the candidates of a single UR at a time. A gram-
mar with DCs or OPFCs instead must evaluate sets
of candidates corresponding to multiple URs, as il-
lustrated in tableau (1) for the two URs /ata/ and
/ada/ and in tableau (2) for the two URs /faQa:l-a/
and /faQa:l-tu/.

But what about the classical constraints that are
now mixed up with DCs and OPFCs? Flemming
and McCarthy make the natural suggestion that
classical faithfulness and markedness constraints
be “lifted” to sets of candidates by summing their
violations across all candidates in a set. For in-
stance, in (1), the candidate ([ata], [ata]) vio-
lates *VTV twice because the two SRs in this
pair each violate it once. In (2), the paradigm
([faQala], [faQaltu]) violates the input-output faith-
fulness constraint IdentIO(length) twice because
the two SRs in this pair each violate it once.

Typological innocuousness. Tableaux (1)/(2)
have two novelties: they contain non-classical
constraints such as DCs and OPFCs; and the clas-
sical constraints are summed over. Do both nov-
elties contribute to the typological predictions of
Flemming’s and McCarthy’s proposals? In other
words, if DCs and OPFCs are left at the bottom,



do the classical constraints yield the same win-
ners when they are summed over as when they are
used classically for a single UR at the time? Or do
the classical constraints make different typological
predictions when they are summed as in (1)/(2)?

To formalize this question, we consider two
URs (the extension to more than two URs is
straightforward). Let A and B be their individ-
ual candidate sets, namely the classical tableaux
where classical constraints work as usual. Let <
be an order over tuples of constraint violations
which extends the notion “smaller” from numbers
to tuples. We denote by opt<A and opt<B the sets
of winner candidates in tableaux A and B, namely
the sets of those candidates with the “smallest”
tuples of violations. We allow < to be a par-

tial order, (as needed for HG; see below) whereby
opt<A and opt<B can contain multiple winners.

Let A ⇥ B be the set of pairs (↵,�) of a can-
didate ↵ in A and a candidate � in B. By Flem-
ming’s and McCarthy’s constraint summation as-
sumption, a candidate pair (↵,�) is represented by
the sum a + b = (a1 + b1, . . . , an + bn) of the tu-
ples of constraint violations a = (a1, . . . , an) and
b = (b1, . . . , bn) of the two candidates ↵ and �.
Tableaux (1)/(2) (without MinDist and IdentOP)
illustrate A ⇥ B. We denote by opt<(A ⇥ B) the
set of winner pairs in A ⇥ B, namely pairs with
the smallest summed tuple of violations.

The typological innocuousness of constraint
summation relative to a mode of constraint inter-
action < can be formalized as the identity (3): the
two URs considered end up with the same win-
ner candidates if we optimize the product candi-
date set A⇥B relative to the summed constraints
(left hand side) or if we optimize the two candi-
date sets A and B separately (right hand side).

(3) opt< (A⇥B)| {z }
with constraint summation

= opt<A⇥ opt<B| {z }
classical approach
without summation

Typological innocuousness in OT. The sum
a+b carries less information than the two individ-
ual tuples of constraint violations a and b: the in-
dividual tuples cannot be reconstructed from their
sum. One might thus expect (3) to fail because
constraint summation wipes away crucial informa-
tion. This pessimism is dispelled by an indepen-
dent result due to Prince (2015): he effectively es-
tablishes (3) for the special case where < is OT’s
lexicographic order. Yet, Prince’s reasoning relies
on ERCs, a piece of notation tailored to OT. His

proof is thus involved because constraint summa-
tion does not admit a simple counterpart in ERCs.
We show that Prince’s result admits the following
elementary explanation without ERCs.

Suppose by contradiction that the candidate
pair (b↵, b�) is OT optimal in A ⇥ B but that, say,
the candidate b↵ is not OT optimal in A. Hence,
there exists another candidate ↵ in A that beats b↵:
the tuple a = (a1, . . . , an) of constraint violations
of ↵ is smaller than the tuple ba = (ba1, . . . ,ban) of
b↵, namely a < ba. Suppose (without loss of gener-
ality) that OT’s order < is relative to the ranking
C1 � C2 � . . . � Cn. Thus, a < ba means (4)
holds for some k: the k � 1 top constraints do not
distinguish between the two candidates while the
kth constraint decisively assigns less violations to
↵ than to b↵. By adding the corresponding compo-
nents bb1, . . . ,bbk�1,bbk of the tuple bb of constraint
violations of candidate b� to both sides of (4), we
obtain (5), which says that a + bb < ba + bb. The
candidate pair (↵, b�) thus beats the candidate
pair (b↵, b�), contradicting the assumption that the
candidate pair (b↵, b�) is OT optimal in A ⇥ B.
The proof of the reverse implication is analogous.

(4) a1 = ba1...
ak�1 = bak�1

ak < bak

(5) a1 +bb1 = ba1 +bb1...
ak�1 +bbk�1 = bak�1 +bbk�1

ak +bbk < bak +bbk
Typological innocuousness beyond OT. Does

the typological innocuousness of the constraint
summation assumption extend beyond OT? In
other words, besides OT’s lexicographic order,
which other ways < of ordering tuples of con-
straint violations satisfy the identity (3)? The cru-
cial property of OT’s lexicographic order used in
our analysis above is that (4) entails (5): if we add
the same quantity to both sides of the inequality,
the inequality is not affected. Thus, let us say that
an arbitrary order < over tuples of constraint vi-
olations is additive (Anderson & Feil 1988) pro-
vided, whenever a tuple a is <-smaller than a tuple
ba and the same tuple b is added to both, the sum
a + b is <-smaller than the sum ba + b. Hence,
(4)/(5) say that OT’s lexicographic order is addi-
tive. Our main contribution is that the identity

(3) holds if and only if < is an additive order.
In other words, additive orders provide necessary
and sufficient structure for the typological innocu-
ousness of the constraint summation assumption.
As a corollary, we can extend typological innocu-
ousness of constraint summation from OT to HG.
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Introduction & Prior Work We introduce
BLiMP (The Benchmark of Linguistic Minimal
Pairs, or ), a large new benchmark dataset
for the targeted evaluation of statistical language
models’ knowledge of linguistic phenomena. The
benchmark consists of 67 datasets, each contain-
ing 1000 minimal pairs isolating a specific gram-
matical contrast and collectively offering broad
coverage of major phenomena in English gram-
mar. Like the GLUE benchmark for reusable sen-
tence understanding models (Wang et al., 2018),

assigns a single numerical score to a lan-
guage model (LM) measuring its overall mastery
of grammar, enabling straightforward comparison
of LMs. The dataset is ideal for fine grained anal-
ysis of an LM’s knowledge of different grammat-
ical domains. For baselines, we evaluate four rep-
resentative LMs from NLP literature. We find that

is hard even for state-of-the-art models, though
Transformers perform better than LSTM and n-
gram LMs. Humans overwhelmingly agree with
the generated minimal pair contrasts in .

A growing body of work evaluates LSTM LMs’
knowledge of grammar by testing whether they
prefer acceptable sentences over minimally differ-
ent unacceptable ones (Linzen et al., 2016, a.o.).
So far, results have been mixed, motivating the
creation of this benchmark which scales up this
kind of investigation to isolate dozens of grammat-
ical contrasts within an otherwise-uniform con-
trolled artificial dataset. Our results show that
knowledge of grammar has increased as LM tech-
nology progressed from n-grams to LSTMs to
Transformers. LSTMs and Transformers alike
are very accurate in detecting morphological and
agreement violations, but state-of-the-art Trans-
former LMs have an especially large advantage
over LSTMs in contrasts where simple generaliza-
tions are difficult to find, such as NPI licensing and
island effects.

Data consists of 67 datasets of 1000 min-
imal pairs each, grouped into twelve broader cat-
egories (Table 1). A minimal pair consists of two
minimally different sentences where one is gram-
matically acceptable and the other is not. All mini-
mal pairs in contain the same number of tokens
and differ only in word order or the identity of one
lexical item, following Marvin and Linzen (2018).

We include minimal pairs illustrating linguis-
tic phenomena well known in morphology, syn-
tax, and semantics. While this set is not exhaus-
tive, it does cover a wide range of topics found in
formal implementations of English grammar (e.g.,
HPSG; generative linguistics textbooks). To fully
isolate the phenomena of interest, we use realistic
artificially-generated sentences, following Marvin
and Linzen, a.o. To generate text, we construct
a vocabulary of over 3300 lexical items labeled
with features reflecting morphology (e.g. singu-
lar/plural), syntax (e.g. transitive/intransitive), and
semantics (e.g. animate/inanimate), and build a
simple artificial grammar for each paradigm.

We validate the acceptability contrasts in the
generated pairs with Mechanical Turk annota-
tors, testing 5 randomly-selected pairs from each
paradigm using the same forced-choice task mod-
els are presented with. Majority vote of 20 annota-
tors agrees with on at least 4/5 examples from
each paradigm and on 96.4% of pairs overall.

Baselines We evaluate 4 baselines: (1) An n-
gram LM trained on the English Gigaword cor-
pus (Graff et al., 2003), based on a modified
Kneser Ney implementation by (Heafield, 2011),
which considers up to 5-grams, restricting the
model from learning dependencies spanning more
than 5 words. (2) An LSTM recurrent neural
network LM from Gulordava et al. (2018). (3)
Transformer-XL (Dai et al., 2019), a transformer
LM with additional features that enable it to model

mailto:warstadt@nyu.edu


Phenomenon N Acceptable Example Unacceptable Example

Anaphor agreement 2 The cats licked themselves. The cats licked itself.
Argument structure 9 The cat broke the lamp. The cat vanished the lamp.
Binding 7 Bob thinks Ann saw herself. Ann thinks Bob saw herself.
Control/Raising 5 The cat is likely to purr. The cat is tough to purr.
Determiner-Noun agr. 8 Meg pets those cats. Meg pets that cats.
Ellipsis 2 I have a black cat and you have two. I have a cat and you have two black.
Filler-Gap 7 The cat noticed the mouse that slept. The cat noticed what the mouse slept.
Irregular forms 2 The cat ate the mouse. The cat eaten the mouse.
Island effects 8 Whose cat are you petting? Whose are you petting cat?
NPI licensing 7 A man who can see Jan hasn’t ever left. A man who can’t see Jan has ever left.
Quantifiers 4 No cat ate more than three treats. No cat ate at least three treats.
Subject-Verb agr. 6 The cat that chased the mice sleeps. The cat that chased the mice sleep.

Table 1: Minimal pairs exemplifying each of the twelve linguistic phenomenon categories covered by
. N is the number of 1000-example minimal pair paradigms within each category.

model Overall
Ana. Agr

Arg. Str
Binding

Ctrl.
Rais.

D-N
Agr

Ellip
sis

Fille
r. Gap

Irre
gular

Isla
nd

NPI
Quantifiers

S-V
Agr

5-gram 60.5 47.9 71.9 64.4 68.5 70.0 36.9 58.1 79.5 53.7 45.5 53.5 60.3
LSTM 70.8 95.2 73.5 73.2 67.9 84.2 67.3 71.3 92.3 43.9 66.7 62.2 85.1
Transf.-XL 68.7 94.1 69.5 74.7 71.5 83.0 77.2 64.9 78.2 45.8 55.2 69.3 76.0
GPT-2 80.1 99.6 78.3 80.1 80.5 93.3 86.6 79.0 84.1 63.1 78.9 71.3 89.0
Human 88.6 97.5 90.0 87.3 83.9 92.2 85.0 86.9 97.0 84.9 88.1 86.6 90.9

Table 2: Percentage accuracy of four baseline models and raw human performance on using a forced-
choice task. A random guessing baseline would give expected accuracy of 50%.

long contiguous inputs of thousands of words dur-
ing training. (4) GPT-2 (Radford et al., 2019),
a larger neural network LM based on a standard
architecture, which is not recurrent and directly
models long-distance dependencies.

Our primary evaluation is a forced choice task,
in which we test whether a model assigns a higher
probability to the acceptable sentence than unac-
ceptable one in each pair. While probability may
not correspond to grammaticality when compar-
ing very different sentences, we expect this to be a
viable proxy when comparing minimally different
sentences as in our data. Additional metrics using
word-level probabilities to more narrowly isolate
model behavior yield broadly similar conclusions.

Results & Discussion We report model accu-
racy for the 12 broad categories (Table 2). Over-
all, the state-of-the-art GPT-2 achieves the high-
est score and the n-gram the lowest, though all
models perform significantly below humans. We
find that some phenomena are easier than others:
determiner-noun agreement is easy for all models,
while islands are quite difficult. We replicate Mar-
vin and Linzen’s finding that LSTMs succeed at
subject-verb agreement and to some extent bind-
ing/anaphora, but largely fail at NPI licensing.

The n-gram model’s poor overall performance
confirms is not solvable from co-occurrence

information alone. Rather, success at is driven
by the more abstract (and less interpretable) fea-
tures learned by neural networks. There are a few
exceptions to this pattern: n-grams are mostly suf-
ficient to capture irregular verb forms. Further-
more, SoTA models still show little improvement
over n-grams on some phenomena, such as quanti-
fier restrictions and, most strikingly, island effects.

Conclusion We have offered a human-
solvable challenge set that covers a broad
overview of major grammatical phenomena in
English. is hard even for SotA models, though
recent large-scale Transformers outperform
simple baselines.
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Recent literature (e.g., Smith and Pater 2017)
documents cases that admit a better fit in Maxi-
mum Entropy (ME; Goldwater and Johnson, 2003;
Hayes and Wilson, 2008) than in Stochastic (or
Noisy) HG (SHG; Boersma and Pater, 2016). ME
is thus richer than SHG. How much richer? This
paper addresses this question by comparing ME
and SHG in terms of their equiprobable mappings.

Equiprobability - A phonological process ap-
plies uniformly to all forms that belong to
a natural class because they share some rel-
evant properties while differing in irrelevant
ways. For instance, vowel harmony tar-
gets backness but ignores number of syllables.
The Finnish mappings (/maa-nä/, [maana]) and
(/rakastaja-nä/, [rakastajana]) differ in length, but
are equivalent for vowel harmony (back). These
equivalences are a key property of phonology.
How should they be extended to probabilistic
phonology? A probabilistic grammar assigns
to each UR a probability distribution P(SR | UR)
over the set of candidate SRs. Two mappings
(UR, SR) and (cUR,cSR) are equiprobable if every
grammar in the typology assigns them the same
probability: P(SR |UR) = P(cSR | cUR). We sub-
mit that equiprobability is the proper way of ex-
tending phonological equivalence from categor-
ical to probabilistic phonology. E.g., the fact
that words that only differ for length are equiva-
lent for harmony means they have the same prob-
ability of harmonizing: P([maana] | /maa-nä/) =
P([rakastajana] | /rakastaja-nä/).

ME - Given a winner and a loser mapping, their
difference vector consists of the constraint viola-
tions of the loser discounted by the violations of
the winner. Suppose the mapping (UR, SR) has 4
difference vectors c1, . . . , c4. The gray region in
fig. (a) is their convex hull. The lightgray region
consists of points larger than a point in this con-
vex hull. Two mappings (UR, SR) and (cUR,cSR)
are equiprobable in ME iff they define the same
lightgray region. The vectors c1 and c2 are extreme

points: they determine the shape of the lightgray
region and must therefore be shared by the two
mappings in order for them to share the lightgray
regions. The vectors c3 and c4 are instead interior
points: they do not contribute to the shape of the
region. Yet, since we have established that c1 and
c2 are shared, we can effectively “peel them off”
the two sides of the ME probability identity. In
other words, we can ignore c1 and c2 and only fo-
cus on c3 and c4. They are extreme points of the
new lightgray region in fig. (b) and must thus be
shared. And so on. In conclusion, the two map-
pings (UR, SR) and (cUR,cSR) are equiprobable in
ME iff they share exactly the same set of differ-
ence vectors. Realistically, this happens only if
(UR, SR) and (cUR,cSR) are the same mapping. ME
thus admits no equiprobable mappings.

SHG - The gray region in fig. (c) is the con-
vex cone of the difference vectors c1, . . . , c4. The
lightgray region consists of points larger than a
point in this cone. Indeed, the geometry of SHG
is analogous to that of ME, with cones in place
of convex hulls. Two mappings (UR, SR) and
(cUR,cSR) are SHG equiprobable iff they define the
same lightgray region. The difference vector c1

sits on the border but can be shifted (rescaled)
without affecting the lightgray region. The
equiprobable mapping (cUR,cSR) thus needs not
share this difference vector c1 but only a rescaling
thereof. Furthermore, nothing can be said in this
case about the interior vectors c2, . . . , c4. In con-
clusion, the two mappings (UR, SR) and (cUR,cSR)
are equiprobable in SHG iff each non-interior dif-
ference vector is a rescaling of a non-interior dif-
ference vector of the other mapping. This SHG
condition is weaker than than the ME condition
above. First, because ME requires identity of dif-
ference vectors while SHG only requires rescal-
ing. Second, because ME looks at all difference
vectors while SHG ignores interior ones. SHG
thus does admit equiprobable mappings.

Test case - We test ME’s and SHG’s predic-
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(kon.sul)(taa.ti.o)ja
(kom.mu)(ni.ke.o)ja

(o.pe)(raa.ti.o)ja
(al.le)(go.ri.o)ja


(sym.po)(si.u.me)ja
(po.ly)(a.mi.de)ja

(in.ku)(naa.be.le)ja
(lii.rum)(laa.ru.me)ja

 (pro.pa)(gan.dis.te)ja
(ak.va)(rel.lis.te)ja

(ter.mos)(taat.te)ja
(mar.ga)(rii.ne)ja
(af.fri)(kaat.to)ja

(pro.pa)(gan.dis)(tei.ta)
(ak.va)(rel.lis)(tei.ta) 

(po.ly)(a.mi)(dei.ta)
(lii.rum)(laa.ru)(mei.ta)
(sym.po)(si.u)(mei.ta)
(in.ku)(naa.be)(lei.ta)


(al.le)(go.ri)(oi.ta)

(kom.mu)(ni.ke)(oi.ta)
(kon.sul)(taa.ti)(oi.ta)
(o.pe)(raa.ti)(oi.ta)





(kon.sul)(taa.ti.o)ja 0.5%
(kom.mu)(ni.ke.o)ja 0.3%

(o.pe)(raa.ti.o)ja 0.0%
(al.le)(go.ri.o)ja 0.0%


(sym.po)(si.u.me)ja 98.6%
(po.ly)(a.mi.de)ja 95.7%
(in.ku)(naa.be.le)ja 9.5%

(lii.rum)(laa.ru.me)ja 18.6%
 (pro.pa)(gan.dis.te)ja 100%

(ak.va)(rel.lis.te)ja 100%
(ter.mos)(taat.te)ja 100%
(mar.ga)(rii.ne)ja 100%
(af.fri)(kaat.to)ja 99.7%

(pro.pa)(gan.dis)(tei.ta) 0.0%
(ak.va)(rel.lis)(tei.ta) 0.0% 

(po.ly)(a.mi)(dei.ta) 4.3%
(lii.rum)(laa.ru)(mei.ta) 81.4%
(sym.po)(si.u)(mei.ta) 1.4%
(in.ku)(naa.be)(lei.ta) 90.5%


(al.le)(go.ri)(oi.ta) 100%

(kom.mu)(ni.ke)(oi.ta) 99.7%
(kon.sul)(taa.ti)(oi.ta) 99.5%

(o.pe)(raa.ti)(oi.ta) 100%





(e)
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(kon.sul)(taa.ti.o)ja
(kom.mu)(ni.ke.o)ja

(o.pe)(raa.ti.o)ja
(al.le)(go.ri.o)ja


(sym.po)(si.u.me)ja
(po.ly)(a.mi.de)ja

(in.ku)(naa.be.le)ja
(lii.rum)(laa.ru.me)ja

 (pro.pa)(gan.dis.te)ja
(ak.va)(rel.lis.te)ja

(ter.mos)(taat.te)ja
(mar.ga)(rii.ne)ja
(af.fri)(kaat.to)ja

(pro.pa)(gan.dis)(tei.ta)
(ak.va)(rel.lis)(tei.ta) 

(po.ly)(a.mi)(dei.ta)
(lii.rum)(laa.ru)(mei.ta)
(sym.po)(si.u)(mei.ta)
(in.ku)(naa.be)(lei.ta)


(al.le)(go.ri)(oi.ta)

(kom.mu)(ni.ke)(oi.ta)
(kon.sul)(taa.ti)(oi.ta)
(o.pe)(raa.ti)(oi.ta)





(kon.sul)(taa.ti.o)ja 0.5%
(kom.mu)(ni.ke.o)ja 0.3%

(o.pe)(raa.ti.o)ja 0.0%
(al.le)(go.ri.o)ja 0.0%


(sym.po)(si.u.me)ja 98.6%
(po.ly)(a.mi.de)ja 95.7%
(in.ku)(naa.be.le)ja 9.5%

(lii.rum)(laa.ru.me)ja 18.6%
 (pro.pa)(gan.dis.te)ja 100%

(ak.va)(rel.lis.te)ja 100%
(ter.mos)(taat.te)ja 100%
(mar.ga)(rii.ne)ja 100%
(af.fri)(kaat.to)ja 99.7%

(pro.pa)(gan.dis)(tei.ta) 0.0%
(ak.va)(rel.lis)(tei.ta) 0.0% 

(po.ly)(a.mi)(dei.ta) 4.3%
(lii.rum)(laa.ru)(mei.ta) 81.4%
(sym.po)(si.u)(mei.ta) 1.4%
(in.ku)(naa.be)(lei.ta) 90.5%


(al.le)(go.ri)(oi.ta) 100%

(kom.mu)(ni.ke)(oi.ta) 99.7%
(kon.sul)(taa.ti)(oi.ta) 99.5%

(o.pe)(raa.ti)(oi.ta) 100%





(sym.po)(si.u)(mei.ta)  (po.ly)(a.mi)(dei.ta)  (lii.rum)(laa.ru)(mei.ta)  (in.ku)(naa.be)(lei.ta)

(sym.po)(si.u.me)ja  (po.ly)(a.mi.de)ja  (lii.rum)(laa.ru.me)ja  (in.ku)(naa.be.le)ja

(sym.po)(si.u)(mei.ta) 1.4%  (po.ly)(a.mi)(dei.ta) 4.3%  (lii.rum)(laa.ru)(mei.ta) 81.4%  (in.ku)(naa.be)(lei.ta) 90.5%

(sym.po)(si.u.me)ja 98.6%  (po.ly)(a.mi.de)ja 95.7%  (lii.rum)(laa.ru.me)ja 18.6%  (in.ku)(naa.be.le)ja 9.5%

tions on Finnish secondary stress. In Finnish, (i)
primary stress falls on the initial syllable; (ii) sec-
ondary stress falls on every other syllable after that
(iii) except that a light syllable is skipped if the
syllable after that is heavy; (iv) unless that heavy
syllable is final (Hanson and Kiparsky 1996).
The skipping clause (iii) exhibits probabilistic
variation in long words: both (pró.fes.so)(rı̀l.la)
(with skipping) and (pró.fes)(sò.ril)la (without skip-
ping) are attested. The rate of skipping depends
on vowel quality and preceding syllable weight
(Anttila 2012). Despite secondary stress being
hard to hear, Finnish has a segmental alterna-
tion that can be used as stress diagnostic: a
short underlying /t/ is deleted when extrametri-
cal. Thus, skipping correlates with t-retention, as
in (pr o.fes.so)(rèi.ta); no-skipping correlates with t-
deletion, as in (pró.fes)(sò.re)ja.

To model this distribution of Finnish sec-
ondary stress, we constructed an input space con-
sisting of 48 noun types systematically varying
stem length, syllable weight, and vowel qual-
ity. These phonological forms are evaluated by
eight constraints capturing the phonological fac-
tors mentioned above. We computed SHG/ME
uniform probability inequalities for this model us-
ing CoGeTo (available online at [omitted]), a
suite of Tools for studying SHG and ME based on
their rich underlying Convex Geometry, as illus-
trated by the results above. SGH predicts seven
blocks of equiprobable mappings ordered through
uniform probability inequalities (denoted ) as in
fig. (d). This confirms the formal result above that
SHG does allow for equiprobable mappings.

To evaluate these predicted equiproba-

ble blocks, we computed the observed t-
retention/deletion rates for each stem type in a
corpus of approximately 9 million nouns (tokens).
The five black SHG-equiprobable blocks are
consistent with the data (all stems are nearly cat-
egorical), but the two red blocks are problematic.
Yet, the difference between t-deletion/retention
rates for stems of the liirumlaarumi- and inkunaabeli-
type is not statistically significant (�2 = 2.9849,
df =1, p=0.08404). Furthermore, there are only
two stems in the symposiumi-type and both could
be re-analyzed as 4-syllable stems, consistently
with their high t-deletion rate (Anttila and Shapiro
2017). We have no explanation for the high
t-deletion rate for stems of the polyamidi-type
(N = 69). We conclude that the Finnish data are
generally consistent with SHG’s predictions.

Does ME offer a more principled treatment of
the two problematic red blocks? That is not the
case. In fact, as expected given the formal re-
sult above, ME breaks up these two red equiprob-
able blocks and orders their stem types through
uniform probability inequalities as in fig. (e). On
the retention side (top row), ME seems promising:
corpus frequencies mirror the predicted probabil-
ity inequalities. Yet, on the deletion side (bottom
row), ME fails to flip the inequalities, yielding the
opposite of what we observe. Such counterintu-
itive probability reversals seem to recur in ME.

Addendum - OT induces even more equiproba-
ble blocks than HG: it predicts “syllable counting”
by grouping together odd-parity stems of different
lengths, pointing at a linguistically interesting dif-
ference between ranked and weighted constraints.
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Abstract

We investigate the effect of script-based
(Schank and Abelson 1977) extralinguistic
context on the omission of words in fragments.
Our data elicited with a production task show
that predictable words are more often omit-
ted than unpredictable ones, as predicted by
the Uniform Information Density (UID) hy-
pothesis (Levy and Jaeger, 2007). We take
into account effects of linguistic and extralin-
guistic context on predictability and propose a
method for estimating the surprisal of words
in presence of ellipsis. Our study extends pre-
vious evidence for UID in two ways: First,
we show that not only local linguistic context,
but also extralinguistic context determines the
likelihood of omissions. Second, we find UID
effects on the omission of content words.

Background In order to communicate a mes-
sage, speakers can choose between a full sen-
tence (1a) and nonsentential utterances, or frag-
ments (Morgan, 1973) (1b). Fragments can con-
vey the same meaning as the corresponding sen-
tence, but lack words that are obligatory in the
sentence, like a finite verb. We investigate why
people omit particular words in fragments and hy-
pothesize that the choice between omitting and re-
alizing a word is driven by the Uniform Informa-
tion Density (UID) hypothesis (Levy and Jaeger,
2007), which has been applied to other omissions,
like that of relative pronouns (Levy and Jaeger,
2007) and complementizers (Jaeger, 2010).

(1) Ann and Bill are sharing a pizza. She asks:
a. Would you like another slice of pizza?
b. Another slice?

Uniform Information Density UID states that
information is best distributed uniformly across
the utterance. Following Shannon (1949), the in-
formation, or surprisal (Hale, 2001), of a word wi

is defined as the negative logarithm of its likeli-
hood to appear in context (2).

(2) S(wi) = − log2 p (wi | context)

Surprisal indexes processing effort (Hale, 2001;
Levy, 2008), and a uniform distribution makes the
most efficient use of the hearer’s limited cogni-
tive resources. Previous research has shown that
the optional omission of function words reflects
optimization with respect to UID (e.g. Levy and
Jaeger, 2007; Jaeger, 2010). Optimization con-
sists in two strategies that contribute to a uniform
distribution of information: First, omitting unin-
formative words avoids inefficient local surprisal
minima. Second, words that reduce the surprisal
of very informative, i.e. unpredictable, following
words are more likely to be inserted. If this rea-
soning also applies to content words like pizza in
(2), UID can explain why speakers sometimes use
a (specific) fragment rather than a sentence: The
fragment is preferred over the sentence if it results
from omitting predictable words that are obliga-
tory in the corresponding full sentence.
Materials and method Investigating whether
omissions are subject to UID requires (i) a set of
linguistic data containing the relevant omissions
and (ii) surprisal estimates for both the omitted
and realized words in this data set. Given these
surprisal estimates, logistic regressions can show
whether information-theoretic predictors like sur-
prisal affect the likelihood of a word’s omission.

Although the term context in (2) in princi-
ple comprises both linguistic and extralinguis-
tic context (Levy, 2008), most of the previous
information-theoretic studies on omissions (like
the ones cited above) estimated the surprisal of
words from corpora with n-gram language mod-
els. Such models take only (part of) the linguis-
tic context of the target word into account. How-



ever, fragments often occur discourse-initially, so
that predictability depends on extralinguistic con-
text that cannot be retrieved from text corpora.
Therefore we collected a data set of utterances
for tightly controlled script knowledge-based con-
texts (Schank and Abelson, 1977) with a produc-
tion task. This data set allows to quantify the effect
of both extralinguistic and linguistic context.

Subjects read a story like (3) (original materi-
als in German) and produced the utterance that
they considered most likely in that context. Since
scripts prime upcoming events (see e.g. Delogu
et al., 2018), they should raise expectations about
what will be said in a script-based situation. For
instance, in (3), a request to pour the pasta into the
pot or to give the speaker the pasta is probable.

(3) Annika and Jenny want to cook pasta. An-
nika has put a pot with water on the stove.
Then she has turned the stove on. After a
few minutes, the water has started to boil.
Now Annika says to Jenny:

In order to use empirically motivated script knowl-
edge representations as stimuli, we based our ma-
terials on event chains extracted from DeScript
(Wanzare et al., 2016), a crowd-sourced corpus of
script knowledge that contains about 100 descrip-
tions of the stereotypical time-course of everyday
activities, such as cooking pasta. Following Man-
shadi et al. (2008), we defined an event as the fi-
nite verb and its nominal complement, e.g. put
pot in (3). After dependency-parsing the cor-
pus (Stanford parser, Klein and Manning (2003))
we extracted these event representations from it.
We estimated the likelihood of an event given
the previous one with bigram language models
trained on the manually preprocessed data for each
script with the SRILM toolkit (Stolcke, 2002).
We then extracted sequences of three events that
were most likely to follow each other and used
these event chains to construct our materials. The
first sentence in each item introduces the script
(cooking pasta), and the next three ones elaborate
the event chain (put pot, turn on stove,
boil water). For each of 24 items, we col-
lected responses from 100 participants recruited
on the crowdsourcing platform Clickworker.
Production data preprocessing As there was
a high degree of variation both between scripts
and between subjects in the data collected with
the production task, we preprocessed the data by

manually resolving pronouns and ellipses, lem-
matizing the remaining words and finally pool-
ing synonyms to a single lemma. Because we
are interested in content words, we removed all
function words and adverbials. Removing func-
tion words is necessary because e.g. articles and
prepositions cannot be freely omitted in standard
German (Lemke, 2017; Reich, 2017) and adapta-
tion to UID occurs only “within the bounds de-
fined by grammar” (Jaeger, 2010, 25). Preposi-
tions and distinctive case morphology were anno-
tated on the noun (see (4) for an example), as these
features can be important cues towards the mean-
ing intended by the speaker. Adverbials were re-
moved because they can remain implicit in regu-
lar sentences and therefore are not involved in the
generation of fragments (even though it might be
interesting to investigate whether this is subject to
UID as well). For the utterance in (4a), prepro-
cessing yields the abstract representation in (4b).

(4) a. Schütte
pour

die
the

Nudeln
pasta

in
in

den
the.ACC

Topf!
pot

Pour the pasta into the pot!
b. pour pasta in.pot

Investigating the effect of surprisal on omission
requires surprisal estimates for both realized and
omitted words, therefore we reconstructed all el-
lipses in the original data. We added those ex-
pressions that are minimally required in a full sen-
tence, that is, missing verbs and/or their argu-
ments. This ensures that the outcome of the in-
dependent variable, surprisal, is not affected by
the dependent variable, omission. The data set for
analysis comprises a total of 2.409 sentences con-
sisting in 6.816 primitive expressions (“words” in
what follows), 1.052 (15.43%) of these words had
been omitted in the original data set.
Surprisal estimation We investigate poten-
tial effects of three measures of surprisal: (i) un-
igram surprisal, (ii) context-dependent surprisal
that takes into account preceding linguistic mate-
rial within the utterance and (iii) surprisal reduc-
tion, i.e. how much inserting a word before a tar-
get word reduces its surprisal.

We estimate the unigram surprisal of each word
in the preprocessed data with unigram language
models with Good-Turing discount on the pre-
processed data that we trained using the SRILM
toolkit (Stolcke, 2002). We trained an individual
language model on the data for each script sepa-



rately, because this allows to interpret surprisal as
conditioned on the script-based situation, i.e. on
the extralinguistic context (5):

(5) S(wi) = − log2 p(wi | contextextraling.).

We use a novel method based on Hale (2001) to
estimate context-dependent surprisal, that consid-
ers preceding words in addition to extralinguistic
context. The default method to quantify effects of
linguistic context on surprisal are bigram or higher
order n-gram models. However, training n-gram
models on elliptical data brings along a circularity
issue observed by Levy and Jaeger (2007, 852):
If predictable words are omitted more often than
unpredictable ones, their corpus frequency is not
proportional to their predictability. This problem
could be addressed by ellipsis resolution, but train-
ing n-gram models on the enriched data set is also
not realistic. A trigram model trained on the en-
riched data set estimates the surprisal of pot in
a fragment pour pot, where pasta has been
omitted from p(pot | pour pasta). Crucially, this
is psychologically implausible, because pasta is
not included in the actual linguistic context.

Therefore we estimate context-dependent sur-
prisal (and surprisal reduction, see below) with
a method based on the approach by Hale (2001).
Hale (2001) derives surprisal from the work done
by the human parser, that consists in rejecting all
parses that are compatible with the input before
but not after processing a word. The larger the to-
tal probability mass of the rejected parses is, the
more informative is a word. This approach requi-
res to know the likelihood of each parse, i.e. each
complete structure, which in our case is equivalent
to its relative frequency in the enriched data set.
Hale (2001) calculates the surprisal of a word wi
as the log ratio between the prefix probability α,
i.e. the total probability mass of the parses compa-
tible with an input, before and after processing wi:

(6) S(wi) = log
αi-1

αi

We modify Hale’s approach by allowing for arbi-
trarily many omissions before and after each word
in the input string in order to account for the possi-
bility of ellipses when calculating a word’s effect
on the set of maintained parses and consequently
on αi. For instance, processing pour in the frag-
ment pour pot rules out all parses that do not
contain pour. Processing pot now excludes all

Predictors r2 t-value p-value
Unigram, context .65 70.06 < .001
Unigram, reduction .48 37.99 < .001
Context, reduction .62 54.0 < .001

Table 1: Correlations between surprisal predictors.

parses that do not contain pot somewhere after
pour, independently of whether there is a word
like pasta between pour and pot. Surprisal is
calculated as (6) based on the prefix probabilities
before and after these processing steps. Our ap-
proach circumvents the circularity issue because
it relies on nonelliptical representations. It is also
psychologically realistic because it quantifies the
work done by the parser incrementally.

Finally, we calculate surprisal reduction, i.e.
how much inserting wi reduces the surprisal of
wi-1, for all non-final words. For this purpose, we
calculate the ratio between the prefix probability
at wi+1 if wi has been realized and the prefix prob-
ability at wi+1 if wi has been omitted. In case of
the example, how much the surprisal of pot is re-
duced by inserting pasta is calculated as (7).

(7) S reduction(pot,pasta) =
αput ... pot

αput ... pasta ... pot

Results We analyzed the data with mixed effects
logistic regressions (lme4, Bates et al. (2015))
that predict the omission of a word in the enriched
data set from the surprisal measures. We first con-
ducted separate analyses of unigram and context-
dependent surprisal on the complete data set and
then an analysis that considers both unigram sur-
prisal and surprisal reduction for non-final words.
In principle it would have been desirable to in-
clude all three surprisal measures as predictors in
a single regression analysis, but, as table 1 shows,
in particular context-dependent surprisal is highly
correlated with the other two measures.

The models in the analyses of unigram sur-
prisal1 and context-dependent surprisal2 contained
by-script random intercepts and slopes for sur-
prisal and by-subject random intercepts. In both
analyses there are significant main effects of the
respective predictor, that confirm our hypothe-
sis that predictable words are more likely to be
omitted. The effect for unigram surprisal (χ2 =
7.39, p < .01) is stronger than that of context-

1Ellipsis ∼ UnigramS + (1+UnigramS|Script) + (1|Subj)
2Ellipsis ∼ ContextS + (1+ContextS|Script) + (1|Subj)



dependent surprisal (χ2 = 4.86, p < .05).
The analysis that includes surprisal reduction and
unigram surprisal3 was conducted on a subset of
the data that contained those non-final words that
were not followed by an ellipsis (55.51% of the
total data). The final model has random intercepts
for subjects and scripts and contains significant
main effects of both predictors. The effect of un-
igram surprisal (χ2 = 10.39, p < .01) replicates
the analysis of the full data set, and the effect of
surprisal reduction (χ2 = 27.03, p < .001) shows
that words that reduce the surprisal of the follow-
ing word more strongly are more likely to be re-
alized. There is no significant interaction between
both predictors (χ2 = 0.01, p > .9).
Discussion Our study confirms the predictions
of UID on omissions in fragments: Predictable
words are more often omitted in fragments, and
words that reduce the surprisal of following ones
are more often realized. This extends previous ev-
idence for UID in two ways: First, we find UID
effects on the omission of content words. Second,
we show that not only local linguistic context, but
also extralinguistic context determines the likeli-
hood of omissions. UID however seems not to be
the only factor in determining whether fragments
are used, as the ratio of fragments varies even be-
tween scripts with a similar mean surprisal.

Our study also shows that event probabilities es-
timated from a corpus of script knowledge provide
a reasonable model of extralinguistic context, to
which subjects adapt their lingustic behavior. We
also propose a method for estimating by-word sur-
prisal in partially elliptical data in a psychologi-
cally realistic way. In our study this required a
data set that we collected specfically for this pur-
pose and a large amount of manual preprocessing.
Future work could show inhowfar our results can
be replicated on larger and less constrained data
sets when preprocessing steps like reference and
ellipsis resolution as well as the standardization of
the production data are automatized.
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Our goal is to link two different formal notions

of complexity: the complexity classes defined by

Formal Language Theory (FLT)—in particular,

the Sub-regular Hierarchy (Rogers et al., 2013;

Lai, 2015; Heinz, 2018)—and Statistical Com-

plexity Theory (Feldman and Crutchfield, 1998;

Crutchfield and Marzen, 2015). The motivation

for exploring this connection is that factors involv-

ing memory resources have been hypothesized to

explain why phonological processes seem to in-

habit the Sub-regular Hierarchy, and Statistical

Complexity Theory gives an information-theoretic

characterization of memory use. It is currently not

known whether statistical complexity and FLT de-

fine equivalent complexity classes, or whether sta-

tistical complexity cross-cuts the usual FLT hierar-

chies. Our work begins to bridge the gap between

FLT and Information Theory by presenting char-

acterizations of certain Sub-regular languages in

terms of statistical complexity.

Statistical complexity theory. Statistical com-

plexity theory deals with stochastic processes:

probabilistic models of infinitely-long sequences.

For a process X generating sequences of sym-

bols indexed as . . . Xt−2, Xt−1, Xt, Xt+1, . . . , we

define the notation
←−
X (“the past”) to mean

. . . Xt−2, Xt−1, and
−→
X (“the future”) to mean

Xt, Xt+1, . . . .

The statistical complexity of a stochastic pro-

cess is the minimal amount of information about

the past required to faithfully reproduce the fu-

ture. Suppose that we want to simulate a stochastic

process by generating each symbol based on some

memory representation M of the past, and that we

want to find a memory representation M that sim-

ulates the process as well as possible while hav-

ing minimal information content, measured in bits.

This quantity of minimal information is called sta-

tistical complexity. Formally, the statistical com-

plexity S of a process X is the minimum entropy

of a memory representation M that perfectly sim-

ulates the process:

S ≡ min
M :DKL[

−→
X |
←−
X ||
−→
X |M ]=0

H[M ], (1)

where H[M ] is the entropy of the random variable

M :

H[M ] ≡ −
∑

x

pM (x) log pM (x), (2)

and DKL[·||·] is conditional Kullback-Leibler di-

vergence (see Cover and Thomas, 2006), which is

zero for identical conditional distributions. There-

fore, Eq. 1 indicates the minimum entropy of any

memory representation M subject to the constraint

that M must allow us to generate a distribution

over future sequences
−→
X which is identical to the

distribution we would have generated given the

past
←−
X .

Further insight comes from considering the dif-

ferent factors that contribute to statistical com-

plexity. Using information-theoretic identities, we

break the statistical complexity into two terms:

S = H[M ] = I[M :
−→
X ] +H[M |

−→
X ]

= I[
←−
X :
−→
X ]

︸ ︷︷ ︸

E

+H[M |
−→
X ]

︸ ︷︷ ︸

C

,

where I[· : ·] is mutual information, the amount

of information in one random variable about an-

other. The term E is called excess entropy and

quantifies the amount of information in the past

which is useful for predicting the future. The term

C is called crypticity and quantifies the amount

of information stored in M which does not end up

being useful for predicting the future.

These quantities are easily understood in terms

of memory resources used for incremental lan-

guage production and comprehension. Statisti-

cal complexity measures memory load or storage



cost; it can be finite even for non-finite-state pro-

cesses, as long as the sum in Eq. 2 converges.

Excess entropy measures integration cost: it says

how many bits of information from the past are

used when processing the future. Crypticity is the

difference between statistical complexity and ex-

cess entropy, and measures the amount of informa-

tion stored in the minimal memory representation

M which does not ultimately end up being used to

predict the future.

In order to study memory efficiency, we use

these quantities to define an efficiency metric, the

E/S ratio, which is excess entropy divided by sta-

tistical complexity. The E/S ratio tells the propor-

tion of bits stored in memory which end up being

useful for predicting the future.

Preliminaries. We study Sub-regular languages

defined using Probabilistic Deterministic Finite-

state Automata (PDFAs). A PDFA is character-

ized by a set of internal states Q, an alphabet Σ,

an emission distribution O of symbols ∈ Σ con-

ditional on a state ∈ Q, a transition function

T : Q × Σ → Q defining which state the ma-

chine transitions into after emitting a symbol, and

distinguished initial and final states. In a PDFA,

the transition function T is deterministic; in a gen-

eral Probabilistic Finite-state Automaton (PFA), it

may be stochastic, in which case we have a transi-

tion distribution rather than a transition function.

Our indexing convention is: at time t, the PDFA

is in state qt; it generates symbol xt before transi-

tioning into the next state qt+1. The time indexing

convention is shown in Figure 1.

qt−2 qt−1 qt qt+1 qt+2

Xt−2 Xt−1 Xt Xt+1

−→
X , Future

←−
X , Past

Figure 1: Time-indexing conventions for a finite-state
machine.

q0 q1

b : 1/4
c : 1/4
# : 1/4 a : 1/3

a : 1/4

c : 1/3
# : 1/3

Figure 2: SL2 PDFA of ¬ab, Σ = {a, b, c}

We use the following construction to gener-

ate a stationary ergodic stochastic process from a

PDFA: whenever the PDFA emits an end-of-word

symbol #, it always transitions back into the ini-

tial state. The resulting infinite stream of sym-

bols is amenable to analysis using statistical com-

plexity theory. In the literature on statistical com-

plexity, a PDFA of this form is called a unifilar

Hidden Markov Model (Travers and Crutchfield,

2011, unifilar HMM).

Below, we describe how to calculate S,

E, and C from the minimal trimmed PDFA

(Heinz and Rogers, 2010) for Strictly k-Local

(SLk) languages.

Statistical complexity. For a unifilar HMM,

the statistical complexity reduces to the entropy

of the stationary distribution over internal states

(Travers and Crutchfield, 2011). To get the sta-

tionary distribution over internal states Q, we first

construct a state transition matrix: a stochastic

matrix whose entries represent the probability of

going into state qt+1 after being in state qt. For a

general PFA, the entries of this matrix are given by

marginalizing over the emission distribution O:

p(qt+1|qt) =
∑

xt∈Σ

pO(xt|qt)pT (qt+1|xt, qt),

where pT is the probability of transitioning into

state qt+1 after generating symbol xt from state

qt. In a PDFA, this probability is given by the de-

terministic transition function T , so the transition

probability pT reduces to a Kronecker delta func-

tion:

pT (qt+1|xt, qt) = δqt+1=T (xt,qt).

Finally, the stationary distribution over states Q is

given by the left eigenvector of the state transition

matrix associated with eigenvalue 1.

In general, the statistical complexity of a pro-

cess depends on the minimal number of states re-

quired to represent the process as a PDFA. For

an SLk language, statistical complexity is upper

bounded as S ≤ (k − 1) log |Σ|.

Excess entropy. For SLk languages,

E = I[Xt−k+1, . . . , Xt−1 : Xt, . . . , Xt+k−2].

In the case of SL2 languages, we compute

E by constructing a symbol transition ma-

trix, a stochastic matrix whose entries represent



p(xt+1|xt), marginalizing over qt and qt+1. We

also need the stationary distribution over symbols,

derived from the symbol transition matrix by the

same procedure as above.

Crypticity. Crypticity C = S − E. In gen-

eral, crypticity is bounded above by the uncer-

tainty about the emitting state given a symbol:

C ≤ H[Qt|Xt],

with equality iff X is an SL2 language.

Sub-regular Hierarchy. We consider two rela-

tional structures, namely the successor (+1) and

precedence (<) relations. Languages with suc-

cessor relation keep track of k-long sub-strings

of the input, such as {aa, ab, ac, ba, . . .} in an

SL2 language. On the other hand, languages

with precedence relation keep track of k-long sub-

sequences, such as {a . . . a, a . . . b, . . .} in an SP2

language. Different sub-regular languages corre-

spond to distinct PDFAs. For each relational struc-

ture, languages with the higher logical power are

considered to be more expressive. For example,

SL languages are a subset of locally testable (LT)

languages. The subset relations are indicated by

lines connecting higher and lower regions in Fig-

ure 3.

Relational

structures

Logical power

Conjunctions of

Negative Literals

Propositional

First Order

Monadic

Second Order

+1 <

SL (0.11) SP (0.18)

LT (0.40) PT (0.20)

LTT (0.43)

SF (?)

Regular

Figure 3: Sub-regular Hierarchy, with E/S ratios cal-
culated from the examples in the text.

Table 1 shows calculated statistical complex-

ity, excess entropy, and crypticity for the minimal

trimmed PDFAs of example languages in the Sub-

regular Hierarchy, including Strictly Local (SL),

Locally Testable (LT), Locally Threshold Testable

(LTT), Strictly Piecewise (SP), Piecewise Testable

(PT).

The information quantities align with the hy-

pothesis in FLT literature: the languages which

SL2 LT2 LTT2 SP2 PT2

Statistical complexity 0.97 1.53 1.94 0.99 1.53

Excess entropy 0.09 ≥0.61 ≥0.83 ≥0.18 ≥0.30

Crypticity 0.75 ≤0.91 ≤1.10 ≤0.80 ≤1.22

E/S ratio 0.11 ≥0.40 ≥0.43 ≥0.18 ≥0.20

Table 1: Information quantities for PDFAs shown in
figures. SL2 = Figure 2; LT2 = Figure 4; LTT2 = Fig-
ure 5, SP2 = Figure 6; PT2 = Figure 7. Quantities
marked with ≤ or ≥ are bounds based on Markov ap-
proximations.

are more expressive have higher memory storage

requirements. E/S ratios characterize the sub-

set relation in the Sub-regular Hierarchy, for both

successor and precedence relations: the higher re-

gions in the hierarchy have higher amount of E/S
ratio, as illustrated in Figure 3.

q0 q1 q2

b : 1/3
c : 1/3 a : 1/3

a : 1/4
b : 1/4
c : 1/4

a : 1/3

c : 1/3

b : 1/3

# : 1/4

Figure 4: LT2 PDFA of Some-ab, Σ = {a, b, c}

q0

q1 q2

q3

b : 1/3
c : 1/3

a : 1/3
c : 1/3

b : 1/4
c : 1/4

a : 1/3
c : 1/3

a : 1/3

b : 1/3

a : 1/4

# : 1/4

# : 1/3

Figure 5: LTT2 PDFA of One-ab, Σ = {a, b, c}

q0 q1

b : 1/4
c : 1/4
# : 1/4

a : 1/3
c : 1/3

a : 1/4

# : 1/3

Figure 6: SP2 PDFA of ¬a . . . b, Σ = {a, b, c}

The information-theoretic characterization illu-

minates the comparison across relational struc-

tures. For example, SL and SP languages cor-

respond to different types of phonotactics: SL



q0 q1 q2

b : 1/3
c : 1/3

a : 1/3
c : 1/3

a : 1/4
b : 1/4
c : 1/4

a: 1/3 b: 1/3

#: 1/4

Figure 7: PT2 PDFA of Some-a . . . b, Σ = {a, b, c}

only describes local phonotactics, while SP corre-

sponds to patterns of long-distance agreement. In

the examples we have examined, SL and SP have

similar information quantities when they share

the same k-factor. We conjecture that SLk and

SPk languages have similar memory efficiency be-

cause they are both described by Conjunction of

Negative Literals (McNaughton and Papert, 1971,

CNL; the combination of ¬ and ∧).

Conclusion. We have investigated whether there

is a coherent relationship between complexity

metrics calculated using Statistical Complexity

Theory on one hand, and the Sub-regular hierar-

chy of languages on the other hand. Our prelim-

inary results, based on example languages repre-

senting a number of Sub-regular classes, suggest

that increasing logical power corresponds to in-

creasing information-theoretic memory storage re-

quirements. Our current study is limited in that

we have only calculated complexity metrics for se-

lected examples of each language class. Future

work will work to establish general formal rela-

tionships between language classes and statistical

complexity.

Regardless of whether statistical complexity

turns out to map cleanly onto FLT hierarchies,

we believe it provides a promising framework

for characterizing bounds on complexity of hu-

man languages and phonotactics in particular. The

theory of statistical complexity provides a clear

way to quantify and reason about memory stor-

age cost and memory integration cost in a highly

general information-theoretic setting. Therefore

it is entirely reasonable to expect that there may

be bounds on the complexity of linguistic sub-

systems, defined using the language of statistical

complexity.

In this connection, we note that statistical com-

plexity depends on a number of factors that are

not usually relevant in FLT, such as the transi-

tion probabilities and number of states in a PDFA.

Although these factors are not relevant in FLT,

they may nonetheless be relevant for characteriz-

ing constraints on the phonology and phonotactics

of human languages. By characterizing complex-

ity using Statistical Complexity Theory, we can

take these factors into account in a principled way.
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1 Introduction

Filler-gap dependencies are computationally ex-
pensive, motivating formally richer operations
than constituency formation. Many studies in-
vestigate the nature of online sentence processing
when the filler is encountered before the gap. Here
the difficulty is where a gap should be posited.
Comparatively few studies investigate the reverse
situation, where the gap is encountered before the
filler. This is presumably due to the fact that this
is not a natural class of dependencies in English,
as it arises only in cases of remnant movement,
or rightward movement, the analysis of which is
shakier and more theory laden than the converse.
In languages with wh-in-situ constructions, like
Chinese, the gap-filler construction is systematic,
and natural. Sentences (1) and (2) are declar-
ative and matrix/embedded wh-questions respec-
tively in Mandarin Chinese.

(1) LiuBei zhidao CaoCao ai LuBu
LiuBei know CaoCao love LuBu

‘LiuBei knows that CaoCao loves LuBu.’

(2) LiuBei zhidao CaoCao ai shei
LiuBei know CaoCao love who

‘Who does LiuBei know that CaoCao love?’
Or: ‘LiuBei knows who CaoCao loves.’

Although sentences (1) and (2) have similar
word order on the surface, in (2) the in-situ wh-
phrase who takes scope either over the entire sen-
tence (i.e. the matrix question parse) or at the em-
bedded clause (i.e. the embedded question parse).
The scope positions precede the wh-phrase, giving
rise to the gap-filler dependencies. Gap-filler con-
structions raise different problems than do filler-
gap ones. In the latter, an item is encountered,

which needs to satisfy other (to-be-encountered)
dependencies to be licensed. There is no uncer-
tainty that a gap must be postulated, only where it
should be postulated. In gap-filler constructions,
a dependency is postulated before the item enter-
ing into it appears. In contrast to the filler-gap
dependency type, gap-filler dependencies do not
require more formal power from the syntax; they
can (given a finite upper bound on their number)
be analyzed with GPSG-style slash-feature perco-
lation and are thus context-free. In systems with
(covert) syntactic movement, the wh-mover is pre-
dictably silent, and could be optimized away (into
the context-free backbone of the derivation tree).
The motivation for the postulation of a syntactic
dependency is to streamline the account of sen-
tence processing; while a purely semantic scope
taking account could be implemented (e.g. using
continuations), the role and resolution of semantic
information during parsing is not as well under-
stood.

Our goal is to understand the role that informa-
tion theoretic complexity metrics [3] can play in
the analysis of Chinese-like wh-in-situ construc-
tions. In particular, whether humans’ use of prob-
abilistic cues about the presence of a gap can be
modeled using the metrics of surprisal and/or en-
tropy reduction. To this end, we identified a sen-
tence processing data set where such cues were
manipulated, wrote a Chinese grammar fragment
deriving the stimuli, estimated probabilities from
the Penn Chinese Treebank 9.0 [8] (using the
Stanford NLP Tregrex [4]), and calculated (us-
ing the Cornell Conditional Probability Calcula-
tor [1]) surprisal and entropy reduction values at
each word. Our results show that complexity met-
rics computed over abstract syntactic structures
are significant predictors of processing cost.

1



2 The data set

We used a data set from an existing eye-tracking
reading experiment (Experiment 1 in [7]). The
original experiment consisted of 8 different condi-
tions, which were largely designed to create differ-
ent scoping possibilities for the in-situ wh-word.
We implemented the structural properties of these
conditions into our grammatical analysis in sec-
tion 3, such that every condition could be derived
by our grammar. An example of half of the origi-
nal conditions is given in (3a – 3d).

(3a) Matrix Verb Non-predictive; Lower Verb +Q

jizhemen zhidao shizhang toulu-le
Reporter know mayor reveal-perf
shizhengfu yancheng-le naxie-guanyuan
city-council punish which-CL-official

“The reporters knew which officials the
mayor revealed that the city council pun-
ished.”
OR “The reporters knew the mayor revealed
which officials that the city council pun-
ished.”

(3b) Matrix Verb Non-predictive; Lower Verb �Q

jizhemen zhidao shizhang huangcheng
Reporter know mayor lie
shizhengfu yancheng-le naxie-guanyuan
city-council punish which-CL-official

“The reporters knew which officials the
mayor untruthfully claimed that the city
council punished.”

(3c) Matrix Verb Predictive; Lower Verb +Q

jizhemen xiang-zhidao shizhang toulu-le
Reporter wonder mayor reveal-perf
shizhengfu yancheng-le naxie-guanyuan
city-council punish which-CL-official

“The reporters wondered which officials the
mayor revealed that the city council pun-
ished.”

(3d) Matrix Verb Predictive; Lower Verb �Q

jizhemen xiang-zhidao shizhang huangcheng
Reporter wonder mayor lie
shizhengfu yancheng-le naxie-guanyuan
city-council punish which-CL-official

“The reporters wondered which officials the
mayor untruthfully claimed that the city
council punished.”

In the 4 conditions above, the wh-in-situ phrase
could either take scope at the highest embedded
clause or the lower clause. The matrix verb is
manipulated. In the Matrix Verb Predictive con-
ditions, the matrix verb wonder obligatorily take
an interrogative complement clause, and there-
fore in these conditions the wh-phrase is unam-
biguously high-scope. In the Matrix Verb non-
predictive conditions, the matrix verb know allows
an interrogative complement but does not mandate
it. The lower embedding verb is also manipulated.
The lower +Q verb, such as reveal, is in the same
class as know; but the lower -Q verb, such as lie,
blocks the lower scope for the wh-phrase since the
verb does not allow an interrogative complement
clause. The combination of different matrix and
embedding verbs yields the scope-ambiguous 3a ,
and three unambiguous conditions 3b – 3d.

The original experiment contained four ad-
ditional conditions, all of which were simpler
constructions that only contained one embedded
clause. The matrix verb was again either predic-
tive or non-predictive of an upcoming interroga-
tive clause. The embedded clause was either short
or long with a control verb predicate. An example
is given in (4a – 4d).

(4a/b) Matrix Verb Non-predictive or Predictive;
Short

jizhemen (xiang-)zhidao shizhang
Reporter know\wonder mayor
yancheng-le naxie-guanyuan
punish-perf which-CL-official

“The reporters knew\wondered which offi-
cials the mayor punished.”

(4c/d) Matrix Verb Non-predictive or Predictive;
Long

jizhemen (xiang-)zhidao shizhang bangzhu
Reporter know\wonder mayor help
shizhengfu yancheng-le naxie-guanyuan
city-council punish which-CL-official

“The reporters knew\wondered which offi-
cials the mayor helped the city council to
punish.”



In this experiment, participants read sentences
silently on a computer screen, and their eye-
movements were recorded. The data set consisted
of data from fifty native Mandarin speakers, each
read 48 critical trials based on the 8 experimental
conditions.

3 Grammatical analysis

We use the minimalist grammar (MG) formalism
[6] to frame our analysis. This formalism allows
for the straightforward and transparent encoding
of prominent linguistic ideas into a formal sys-
tem. The lack of support in the CCPC for covert
movement pushed us to adopt a feature movement
analysis [2] of the Chinese wh-in-situ construc-
tion, whereby it is not the wh-word itself which
moves, but rather just a single (wh) feature. This is
implemented by deriving a wh-word by combining
a ‘pre-wh-word’ with a silent (but otherwise overt)
wh-moving item. This analysis would allow us to
implement the observation that wh-words in Chi-
nese can be used as well as indefinites, by relating
(derivationally) the wh-word and the indefinite, al-
though this did not play a role in our analysis.

The analysis encompasses the four clausal com-
plement selecting verb types in the experimen-
tal conditions; control verbs (‘help’), declar-
ative complement selecting verbs (‘believe’ or
’lie’), interrogative complement selecting verbs
(‘wonder’), and verbs which optionally select
either declarative or interrogative complements
(‘know’). Control structures were analyzed in
terms of PRO and null case [5], due to CCPC’s
lack of support for other alternatives. Verbs se-
lecting interrogative complements selected senten-
tial complements, and then immediately checked
a wh feature. Verbs which select clausal comple-
ments irrespective of their force were given two
homophonous lexical entries.

The CCPC forces upon us the (computationally
motivated) assumption that only one wh feature
may be active (i.e. moving) at any given time.
Thus upon postulating a wh ‘gap’ (i.e. a covert
landing site for wh-movement), the parser will cat-
egorically rule out the (grammatical im-) possibil-
ity that a next word is an interrogative complement
selector.

4 Frequency Estimation

The CCPC works by translating MGs to equivalent
MCFGs, and then parsing using the MCFG. When

multiple rules expand the same non-terminal, we
need to assign a (non-unit) weight to these rules.
As there is currently no MG (or MCFG) TreeBank
for Chinese, we were forced to estimate weights
of rules by reasoning about the extant structures in
the treebank. Due to the small size of our lexicon,
there were only five (non-lexical) non-terminals
with multiple rules expanding them.

(5a) T[+WH]

(5b) VP (with and w/o wh)

(5c) AgrO (with and w/o wh)

The distinctions relevant to the probability distri-
bution over derivations are not always the ones of
obvious interest to linguists. For example, there
were two MCFG rules for constructing TPs with
wh-moving subexpressions. Both rules involve
checking the case of a subject DP, but differ as
to whether this subject DP is itself +WH or -WH

(in which case the TP necessarily contains another
wh-word). What we counted in the Treebank is the
relative frequency of TPs/Ss which contain active
wh-words1 where this wh-word is the matrix sub-
ject, vs a non-matrix subject. Similarly, a VP can
be constructed either by merging an object with a
lexical verb, or a derived structure (in this case,
necessarily a control verb plus infinitival comple-
ment clause). Finally, the category ‘AgrO’ is the
category with which the logical subject is merged
(sometimes called ‘little-v’ in the syntactic litera-
ture). The relevant distinctions here (for the non-
wh case) are whether the AgrO is created by a VP
checking the case of its object, or by an interrog-
ative sentential complement taking verb checking
the wh-feature of its complement, or by a declara-
tive sentential complement taking verb combining
with its declarative complement. We counted the
relative frequency of transitive verbs (including
control verbs) vs interrogative sentential comple-
ment taking verbs vs declarative sentential com-
plement taking verbs in the corpus. The relevant
distinctions in the case of a +WH AgrO are dif-
ferent. A +WH AgrO can be created by checking
the case of the object of a verb if either the object
itself, or some other expression in the VP, is itself
+WH. Alternatively, it can be created by a declar-
ative sentential complement taking verb merging
with its sentential complement which contains a
+WH expression.

1A TP contains an active wh-word just in case it contains
a wh-word which takes scope outside the TP.



The other point of grammatical non-
determinism involved the lexicon. Given
multiple lexical items with the same featural
makeup, we needed to assign weights to the
rules which realize a syntactic feature bundle as
a particular lexeme. As our lexemes represent
whole word classes (help stands for the class of
control verbs), the only real non-determinism here
was in the choice of sentential complement taking
verbs (both +WH and -WH). We counted (for
the -WH case) the relative frequency with which
declarative sentential complements are embedded
under reveal, believe, and know,2 and mutatis
mutandis for the +WH verbs, reveal, know and
wonder.

5 Results and discussion

We focused on 4 different eye-movement mea-
sures. First pass duration is the sum of all fixa-
tions in a region from the eyes first entering the
region until leaving it either to the left or to the
right. Go-past time is the sum of all fixations from
first entering a region until leaving the region to
the right, including fixations made during regres-
sion to earlier parts of the sentence. Second pass
duration is the sum of all fixations in a region fol-
lowing the initial first-pass fixations. Total time
is the overall reading time (all fixations) in a given
region. For each eye-movement measure, we com-
puted average reading time (RT), collapsing over
participants and trials, for each word region un-
der each condition. Next using the CCPC soft-
ware, the grammar analysis in section 3 and the
frequency estimation in section 4, we generated
the entropy reduction (ER) and surprisal predic-
tions for each word region under each condition.
We then performed four linear regressions, using
ER and surprisal as predictors and the four eye-
movement measures as dependent variables.

Neither ER or surprisal are significant predic-
tors for the first pass duration (ps>.5). For the go-
past time, surprisal is not significant (p>.2), but
ER is (p<.05). However, the model with ER as
a predictor accounted for very little of the over-
all variance in the data (adjusted R2=0.04). For
second-pass and total time RTs, both ER and sur-
prisal are significant (ps for ER <.01; ps for sur-
prisal <.001). When both predictors are consid-

2Not the ratio of declaratives vs interrogatives embedded,
but, given that a declarative is embedded, how frequently it is
embedded under one of these vs the others.

ered in the same model, R2=0.23 for the second
pass measure and R2=0.32 for the total time mea-
sure. When the two predictors are considered sep-
arately, surprisal accounted for more variance in
the data than ER (R2=0.17 surprisal vs. 0.05 ER
for the total time; 0.13 vs. 0.03 for the second pass
time).

If we consider the four eye-movement measures
first pass, go past, second pass and total time form
a scale to measure effects from the earlier stages
of processing to the later stages, we observe that
for the current data set information-theoretic com-
plexity metrics such as ER and surprisal seem to
mostly explain later measures but not the early
ones. With the second pass and total time mea-
sures, although ER and surprisal seem to have only
accounted for a relatively small amount of vari-
ance in the data (with surprisal having a better
performance than ER), the current results nonethe-
less demonstrate the independent effect of abstract
structure in parsing, decoupled from effects based
on lexical information.
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Questioning to Resolve Transduction Problems
Eric Meinhardt,† Anna Mai,† Eric Bakovi�,† Adam McCollum‡

†UC San Diego, ‡Rutgers University

Elgot & Mezei (1965) show that any non-deterministic regular function (NDRF) �:⌃< ô �< can
be decomposed into the composition ⇢ ˝ � of two subsequential functions (SSQs) that proceed in
opposite directions; crucially, the first function to apply �must behave as unbounded lookahead for the
second. We henceforth refer to such decompositions ⇢ ˝ � as ‘EM decompositions’. Recent work in
computational phonology has shown the utility of such decompositions for analyzing and comparing
the minimum expressivity required for iterative, bidirectional, (non-)myopic, and other long-distance
phonological processes that require greater expressivity than that supplied by SSQ functions. Existing
work has identified the (interaction-free) weakly deterministic functions (IF-WDRFs; McCollum et al.
2018, Hao & Andersson 2019) and the NDRFs as salient lower and upper bounds on the complexity
of such processes (Heinz & Lai 2013, Jardine 2016, McCollum et al.). Because unbounded lookahead
is a key feature of this region, we suggest that understanding it is crucial for picking out additional
phonologically interesting subclasses within this region. In this work, we identify several concepts
useful for describing lookahead in decomposed NDRFs and o�er a set of necessary and su�cient
properties for a composition ⇢ ˝ � to be an EM decomposition of a non-SSQ NDRF �. We then use
these ideas to outline a set of functions in between the IF-WDRFs and proper NDRFs, organized in
terms of a precise notion of the degree of lookahead that � can provide for ⇢.

For present purposes,1 a question may be identified with a partitionQ over a set of possible worlds
W (e.g. a formal language L) into equivalence classes (‘cells’), and a resolving answer or observation
is information that picks out (with respect to some background knowledge — e.g. prior knowledge ofL
and information gleaned from an observed prefix of a current input string) the cellqk of the partition that
the actual world (total string, unseen su�x, etc.) falls into. While two distinct answersai, aj may resolve
a question in the same way by picking out the same cell, entailment defines a (partial) ordering on the in-
formativeness of answers or observations: ifai andaj pick out the same cellqk, butai is strictly more spe-
cific thanaj , thenai Ù aj but both resolveQ in the same way. Similarly, refinement can be used to define
an analogous ordering on questions: if every cell ofQ0 is a subset of some cell ofQ1, then any resolving
answer to Q0 is also a resolving answer to Q1. An agent faced with choosing the next action sequence
(‘output string’) u À �< given its current knowledge about the state of the world is faced with a decision
problem that induces a partition on W : each cell is associated with the (‘optimal’) action sequence
that the agent should take at the current timestep if it thinks the actual world currently is in that cell.

A non-SSQ NDRF � at some point while reading the prefix x of a string xy faces a(t least one)
‘decision problem’:2 exactly what the incremental output of the prefix x should be depends on which
of at least two cells qk, ql some a priori unboundedly distant portion of the as-yet unseen su�x y falls
into. Consider the hypothetical ‘sour grapes’ pattern entertained by McCollum et al., based on Turkish
and dubbed ‘Zurkish’: [+round] spreads left to right from initial U , changing I to U , unless there
is a low vowel A anywhere in the word, in which case there is no spreading at all.3 Thus input strings
of the form UIn are mapped to UUn, but input strings of the form UI<A+X< (X = {I ,A}) remain
unchanged. Whether a given prefix x = UIn maps to UUn or to UIn depends on whether the su�x y
1These concepts are adapted from literature on the meaning of questions and the value of questions and
information (see e.g. van Rooy 2003), but no familiarity with such literature is necessary.

2We have not yet considered multiple decision problems per NDRF �, especially incomparable ones.
3In actual Turkish, [+round] spreading proceeds up to A, which blocks further spread.



contains an A. If ⇢ ˝ � is an EM decomposition of �, then it must be the case that � reads input strings
xy from the far end relative to ⇢,4 identifies which cell the su�x y belongs to, remembers this long
enough to recognize where within x it should transform the input string (be it via markup symbols,
length-increasing codes, or ‘phonotactic’ codes; McCollum et al., Smith & O’Hara 2019), and creates
an intermediate string �(xy) = x®y® such that reading the transformed prefix x® from the other end
is su�cient to resolve �’s decision problem — i.e. identify which cell the su�x of the original string
belongs to and therefore what output string should be emitted. Thus in hypothetical Zurkish, � reads
input strings from right to left and ⇢ reads the output of � from left to right. If the su�x y contains anA,
then � transforms the input string such that all instances of I betweenA and the beginning of the string
are marked to not be changed by ⇢; otherwise, all instances of I after initial U will in fact be changed
by ⇢. This thus resolves �’s decision problem for Zurkish. A further constraint on �’s rewriting is that
⇢ must be able to recognize this transformed prefix and thereby infer the associated cell at a particular
point in time, viz. by the time it reads the input symbol (or within an a priori bounded distance after)
associated with �’s decision problem. Finally, ⇢’s output for the symbol associated with the decision
problem must then depend on the information about y that � has injected into x®.

Our work synthesizes the results of Elgot & Mezei with those of McCollum et al. and Heinz & Lai.
First, we explicate the notions of ‘information smuggling’ and lookahead left informal in McCollum
et al.’s discussion of ‘interacting’ compositions; thus equipped, we can formally articulate for any non-
SSQ � À NDRF the properties that any potential EM decomposition ⇢ ˝ � must have in order for it to
su�ce as an EM decomposition of�. Second, it follows clearly and explicitly from our analysis of EM
decompositions that the IF-WDRFs ◊ NDRFs. Third, we conjecture that the framework we present
o�ers a useful way of defining and comparing functions with more expressivity than the interaction-free
WDRFs but less than the full set of NDRFs. We sketch our current model of such functions below.

In this hierarchy of ‘lookahead-constrained’ (‘LoCo’) weakly deterministic regular functions,5
interaction is possible, but the ‘questions’ the lookahead pass � in an EM decomposition can ‘answer’
for ⇢ are qualitatively constrained in some way — e.g. � might be OSL or I-TISL (Hao & Andersson).
For any two potential lookahead functions f , g, we can ask whether the question partition of one is
a refinement of the other. We conjecture that this can be extended to classes of functions to compare
how relatively fine or coarse the questions each can answer when employed as a lookahead function in
an EM decomposition. Finally, we can also use the analysis of EM decompositions described above
to identify substrings where ⇢ ˝ � interact, but where the change in behavior of ⇢ on a given substring
cannot be be associated with a strict increase in knowledge about the unseen su�x.
References. • Elgot, C. & J. Mezei. 1965. On relations defined by generalized finite automata. IBM
Journal of Research and Development 9(1). 47–68. • Hao, Y. & S. Andersson. 2019. Unbounded
Stress in Subregular Phonology. In SIGMORPHON 16, 135–143. ACL. • Heinz, J. & R. Lai. 2013.
Vowel harmony and subsequentiality. In MoL 13, 52–63. • Jardine, A. 2016. Computationally, tone is
di�erent. Phonology 33(2). 247–283. • McCollum, A. G., E. Bakovi�, A. Mai & E. Meinhardt. 2018.
The expressivity of segmental phonology and the definition of weak determinism. lingbuzz/004197
. • van Rooy, R. 2003. Questioning to resolve decision problems. Linguistics and Philosophy 26(6).
727–763. • Smith, C. & C. O’Hara. 2019. Formal characterizations of true and false sour grapes.
In Proceedings of SCiL 2019, vol. 2 1, 338–341.

4For clarity, we use ‘prefix’ here from the view of ⇢: i� w = xy and ⇢ sees x first, x is a prefix.
5To be precise: we can define a bounded lattice (organized by refinement of questions) of non-SSQ NDRFs,
with IF-WDRFs at the bottom, otherwise-unrestricted NDRFs at the top, and LoCo WDRFs in between.
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1 Introduction

In this work in progress we discuss issues in
extending quantifier-free (QF) logical transduc-
tions from strings to trees. Input-Strictly-Local
(ISL) functions, which form an effective class to
describe phonological transformations (Chandlee,
2014; Chandlee and Heinz, 2018) and for project-
ing tiers for long-distance well-formedness condi-
tions (De Santo and Graf, 2019) have been shown
to be characterizable with order-preserving QF
transductions (Chandlee and Jardine, 2019). We
explore how QF transductions can be extended to
trees for the purpose of capturing syntactic phe-
nomena. We show QF tree transductions are in-
comparable to existing tree transducer classes, but
do capture some empirically useful transductions.
Also, they may be extended with least-fixed point
logics to capture a wider range of phenomena, as
has been shown for QF logics in strings (Chandlee
and Jardine, 2019).

2 Formal definitions

2.1 Logical transductions

Following Courcelle (1994) and Engelfriet and
Hoogeboom (2001), we define transductions as
logical interpretations. A signature is some set of
named functions and relations, and a (finite) model
in that signature is an instantiation of those func-
tions and relations over some (finite) universe of
elements. A transduction from models in one sig-
nature to models in another can then be described
by defining the relations and functions in the out-
put signature using formulas in a logical language
of the input signature.

More specifically, for trees labeled with an input
alphabet ⌃, we define a function to trees over an
output alphabet � with a series of monadic predi-
cates 'c

�(x)—written in the first-order logic of the
input trees, without quantifiers—for each � 2 �

and c 2 C , where C is a copy set that allows us
to build card(C ) copies for each element in the
input tree. The semantics of a transduction is then
that an element t in the input tree has a correspond-
ing element labeled tc in the output tree if and only
if 'c

�(x) is true for t.

2.2 Quantifier-free transductions over trees

As a running example for QF tree transductions,
we will use the tier-construction function for case
assignments. Vu et al. (2019) analyze case assign-
ment as a local well-formedness condition over
a tree ‘tier’, which is itself a tree with irrelevant
information removed. The ungrammaticality of
the sentence “*He saw she”, is captured with a
tier constructed by removing all information ex-
cept D heads carrying NOM or ACC features, C
heads, and their immediate parent nodes, as shown
in Figure 1: This sentence is bad because the
resulting tier contains the local configuration [•
he [• she ] ], where no C head intervenes be-
tween the two NOM-featured D-heads as shown
in Figure 1.b. Such tier construction functions are
non-capturable with simple eraser function (Heinz
et al., 2011), as they refer to the input local con-
text in deciding whether to project a certain node.
TSL over this tier is more parallel to the Input-
local TSL (ITSL) defined over strings in De Santo
and Graf (2019), which utilizes the local informa-
tion in the construction of tiers by constructing
tiers with ISL functions, i.e. QF transductions.

There are several considerations required in ex-
tending QF logical transductions to trees. First, in
order to capture local information with monadic
predicates, QF string transductions were defined
in Chandlee and Lindell (forthcoming) and Chan-
dlee and Jardine (2019) using functional signa-
tures, where the element in a string are ordered
with predecessor and/or successor functions. For
our QF tree transductions we assume an input sig-
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Figure 1: Caption

nature with a parent function µ, where µ(x) = y
when y is the parent node of x, and the predecessor
function p, which defines the linear order between
sister nodes. Note that we do not use the child re-
lation (i.e. the inverse of µ function), as it is not a
function. This means that in (1) we cannot identify
the mother nodes of C and D nodes without exis-
tentially quantifying the child nodes, so we instead
build two copies of C and D nodes themselves.

Second, whereas C is taken from an initial seg-
ment of the natural numbers for string transduc-
tions, our copy set C forms a tree. Members of
C are marked with Gorn address, where the Gorn
address of the root will be r. Additionally, exactly
one c 2 C will be marked as a ‘bottom node’ with
an additional b label. Every copy tree has to in-
clude an r node and b node, as characterized by
the well-formedness conditions for a copy tree in
(1): When a node exists, the nodes above it in-
cluding the root node exist (1a) and when a root
exists, there is always a bottom node (1b). We will
assume that there is at most one root copy r and
one bottom copy b. Note that b is a copy to which
the lower part of the input tree attaches to, and it
does not mean b has to be the lowest node inside
C . An example for a copy tree is given in (2a).
The case-tier transductions can now be character-
ized as shown in (2b) and (2c), using the copy tree
of the form in (2a).

(1) copy well-formedness conditions
For nodes c’ and d’ s.t. d0 <µ c0,
a. 'c0

D(x) ! 'd0
D(x)

b. 'r
D(x) ! 'b

D(x)

(2) a. rb

0
b. C := {rb, 0}

'rb
• (x) := C(x) _ he(x) _ she(x)

'0
C(x) := C(x)

'0
he(x) := he(x)

'0
she(x) := she(x)

c. 1CP

3TP

5V P

7V 0

9she8saw

6he

4T

2C

7! 2•

6•

9•

9she

6he

2C

2.3 Asymmetric c-command preservation

In a parallel way to how order-preservation in
string QF transductions restricts them to regu-
lar functions (Filiot, 2015; Chandlee and Jardine,
2019), we will define the structural relationship
among the output copies in a way that preserves
the structural relation of the input tree: We de-
fine the output dominance relation based on the
asymmetric c-command in the input, as shown in
Table 1a (p. 4): As for the input node x, y s.t.
(i) y is dominated by x or (ii) y is asymmetrically
c-commanded by x (higher(x, y)) and x’s parent
node and sister node that dominates y, are deleted
(sa-del(x, y)), the nodes above bottom node of the
copy tree of x dominate all the nodes of the copy



tree of y. The latter case serves to keep the asym-
metric c-command relation between x and y when
the intermediate nodes are deleted. In the copy
of the same input node, the domination among
nodes is trivially defined. Table 1b shows that
the precedence relations in the input trees are pre-
served among the root nodes of the correspondent
copy trees in the output, and the precedence rela-
tion among the copies of the same input node is
defined trivially.

2.4 Comparison with other tree transducers

In general, QF tree transductions as defined here
are incomparable to deterministic bottom-up or
top-down tree transducers (Comon et al., 2008).
Briefly, this is because QF tree transductions get
a finite “lookahead” in either direction. However,
for this reason, QF tree transductions have some
similarities to sensing tree automata (Martens
et al., 2008; Graf and De Santo, 2019). Future
work will examine this relationship further.

3 Other Examples

3.1 Negative polarity tier construction

The definition of tree transductions discussed
above can accommodate the case of negative
polarity item (NPI) licensing in English. An
NPI such as anyone is licensed when it is c-
commanded by a downward entailing operator
such as negation, as the contrast between “John
doesn’t like anyone” and “*Anyone doesn’t like
John” shows. The grammaticality of the sentence
“John doesn’t like anyone” can be captured with
a tier of the form in (3). Crucially, just like
the case-tier transduction in (2c), the NPI-tier
transduction in (3) is QF-definable using the copy
tree in (2a), as shown in (4) (see also Graf and
Shafiei 2019).

(3) 1

3

5

7NPI6

4

2NEG

7! 2•

7•

7NPI

2NEG

(4) C := {rb, 0}
'rb
• (x) := NEG(x) _NPI(x)

'0
NEG(x) := NEG(x)

'0
NPI(x) := NPI(x)

3.2 Morphological conditioning of rendaku
Applicability of tree transductions extends to
phonological phenomena as well. Japanese has a
phonological operation called rendaku, where the
first consonant of the second element gets voiced
in compounding (e.g. ao ‘blue’+sora ‘sky’ ! ao-
zora ‘blue sky’). There is a structural constraint in
this operation in (5) (Otsu, 1980): sora does not
get voicing when it is in the compound [ao-[sora-
mame]] ‘blue broad-bean.’ Compounds of the
structure [[A B] C] allows their second element to
undergo rendaku (e.g. [[ao-zora]-yohoo]‘forecast
of blue sky’)

(5) Branching Constraint
Rendaku does not occur on B when the
compound has the structure [A [B C]].

The application of a [+voi] feature to a structure
can be represented as tree transductions in (6).
These transductions are QF-definable as shown in
(7): The lex-N node which is not first (i.e. the left-
most among its sisters) acquires [+voi] feature.

(6) a.
N

N

lex-Nlex-N

lex-N

7!
N

N

lex-N
+voi

lex-N

lex-N

b.
N

lex-NN

lex-Nlex-N

7!
N

lex-N
+voi

N

lex-N
+voi

lex-N

(7) a. 'rb
N (x) := 'N(x)

b. 'rb
lex-N(x) := 'lex-N(x) ^ first(x)

c. 'rb
lex-N(+voi)(x) :=

'lex-N(x) ^ ¬first(x)
where first(x) := p(x) ⇡ x

This pattern cannot be captured by (functional)
string transductions: Given a string of three lex-
N, we cannot decide between the mappings in (8a)
and (8b).

(8) lex-N lex-N lex-N
a. 7! lex-N lex-N(+voi) lex-N(+voi)
b. 7! lex-N lex-N lex-N(+voi)



For all c, d 2 TC and b and r of TC ,
a. x <0

µ⇤
c,dy := x <µ⇤ y _ (higher(x, y) ^ ¬'b

D(µ(x)) ^ sa-del(x, y) c µ⇤ b
x ⇡ y if c <µ⇤ d

where higher(x, y) := µ(x) <µ⇤ y ^ ¬µ(y) <µ⇤ x
sa-del(x, y) := ¬9z[sisters(x, z) ^ 'b

D(z) ^ z <µ⇤ y])
b. x <0

p⇤
c,dy := x <p y if c = d = r

x ⇡ y if c <⇤
p d

Table 1: Formulas for preserving asymmetric c-command

Note that it is not always the case that both of these
outputs are grammatical given an input string of
three nouns. The examples above illustrate: ao-
zora-yohoo ‘foreceast of blue sky’ but ao-sora-
mame ‘blue broad-bean’ (cf. *ao-zora-mame).

4 Future work

Chandlee and Jardine (2019) discuss extending
QF logic with least-fixed point operators to cap-
ture long-distance processes; a clear next step is
to extend this to QF tree transductions. Addition-
ally, for n-branching trees we can study their mod-
els with a set of n child functions, instead of the
mother function used here.

Finally, as already mentioned, the connection
between these logical characterizations and sens-
ing tree automata is a likely place to look for
direct connctions between logical and automata-
theoretic transductions.
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Introduction. This research forms part of a
larger project focused on natural language un-
derstanding (NLU) in the development of a two-
way human-robot dialogue system in the search
and navigation domain. We leverage Abstract
Meaning Representation (AMR) to capture and
structure the semantic content of natural language
instructions in a machine-readable, directed, a-
cyclic graph (Banarescu et al., 2013). Two key
challenges exist for NLU in this task: (i) how to
effectively map AMR to a constrained robot ac-
tion specification within a particular domain; and
(ii) how to preserve necessary elements for general
understanding of human language with the goal
that our robot may expand its capabilities beyond
a single domain. To address these challenges,
we establish a two-step NLU approach in which
automatically-obtained AMR graphs of the input
language are converted into in-domain meaning
representation graphs augmented with tense, as-
pect, and speech act information. Here, we detail
both rule-based and classifier-based methods to
transform AMR graphs into our in-domain graphs,
thereby bridging the gap from unconstrained nat-
ural language input to a fixed set of robot actions.

Background: Data & Annotations. To deter-
mine the type of language found in our task and
how it is represented in AMR, we used a corpus
of human-robot dialogue in which a person di-
rects a remotely located robot to complete search
and navigation tasks (Marge et al., 2016). We
then manually selected 504 utterances made up of
short, sequential excerpts of the corpus data that
are representative of the variety of common ex-
change types that we see. These sentences were
independently double-annotated (IAA 87.8% us-
ing the Smatch metric (Cai and Knight, 2013)) and
adjudicated following current AMR guidelines.1

Notably absent from current AMR representa-

1https://github.com/amrisi/
amr-guidelines/blob/master/amr.md

tion and essential to our task are two elements: (i)
tense and aspect information; and (ii) speech act
information regarding speaker intent. To address
(i), we adapted the annotation system of Donatelli
et al. 2018 for tense and aspect; see Bonial et al.
2019 for details. The absence of speech acts in
AMR was anticipated, as existing AMR corpora
are text-based.2 For our task, however, an off-the-
shelf taxonomy of speech acts was not ideal. The
language found in our domain generally adheres
to the division of information-transfer and action-
discussion found in other dialogue act classifica-
tion systems for conversational agents (e.g., Bunt
et al. 2012), yet it also tends to group into specific
categories related to our robot’s abilities and the
search-and-navigation task.

We therefore developed a set of 27 template-
like AMRs specific to the task of human-robot di-
alogue, inspired by classical work on speech acts
(Austin, 1975; Searle, 1969). These augmented
AMR templates are skeletal AMRs in which the
top, anchor node is a fixed relation correspond-
ing to a speech act type (e.g., assert-02 in the
AMR lexicon); one of its numbered arguments,
or ‘ARGs’, is a fixed relation corresponding to
an action (e.g., turn-01) or the content of the
speech act; and arguments of these relations are
filled out to detail both dialogue relationships (ut-
terance level) and action specifications (content
level) (Bonial et al., 2019). These 27 speech acts
are classified into 5 types, listed in Fig. 1 (number
of subtypes in parentheses), along with example
subtypes for the type command. Tense and as-
pect information are currently annotated only on
the content level.

As an example of how our augmented AMRs
work, a template for command:move is shown in
Fig. 2(b); in Fig. 2(c), this template is filled in with
the specifics of the utterance Move to the wall.
Fig. 2(a) shows the original AMR. Note, although

2https://amr.isi.edu/download.html

https://github.com/amrisi/amr-guidelines/blob/master/amr.md
https://github.com/amrisi/amr-guidelines/blob/master/amr.md
https://amr.isi.edu/download.html


SPEECH ACT TYPES
c / command (6) ! command:move
a / assert (9) command:turn
r / request (4) command:send-image
q / question (3) command:repeat
e / express (5) command:cancel

command:stop

Figure 1: Speech act types with example subtypes.

(a) (m / move-01 :mode imperative
:ARG0 (y / you)
:ARG1 y
:ARG2 (w / wall))

(b) (c / command-02
:ARG0-commander
:ARG1-impelled agent
:ARG2 (g / go-02 :completable +

:ARG0-goer
:ARG1-extent
:ARG3-start point
:ARG4-end point
:path
:direction
:time (a / after

:op1 (n / now))))
(c) (c / command-02

:ARG0 (c2 / commander)
:ARG1 (r / robot)
:ARG2 (g / go-02 :completable +

:ARG0 r
:ARG3 (h / here)
:ARG4 (w / wall)
:time (a2 / after

:op1 (n / now))))

Figure 2: The utterance Move to the wall represented in
(a) AMR form, (b) domain specific bare template form,
and (c) as a filled-in domain specific graph.

absent in the utterance itself, our template captures
key information such as start point and who is ad-
dressing whom. It also generalizes across utter-
ances related to movement: whether the instruc-
tion uses the word move, drive or proceed, the
in-domain representation is the same. The orig-
inal AMR captures any lexical differences. The
template-like structure further helps identify any
critical missing information that may prohibit the
robot from successfully completing a given ac-
tion with required roles and aspectual annotation
that specify the existence of an achievable goal
(:completable ±; see Bonial et al. 2019 for
discussion).

To establish a gold standard set of in-domain
graphs, two authors manually transformed and ad-
judicated a subset of 290 single-sentence utter-
ances from the larger human-robot dialogue cor-
pus of 504 AMRs described earlier.

Graph-to-Graph Transformations. We con-
vert AMRs, such as that seen in Fig. 2(a)3, into

3We plan to obtain AMRs using automatic parsers includ-
ing Lindemann et al. 2019.

our in-domain graphs (e.g., Fig. 2(c)) through a
mixed methods approach of both rule-based and
classifier-based systems, outlined in Figure 3.
Following this transformation pipeline, the system
requires both the original AMR and original nat-
ural language utterance as input. From the utter-
ance, classifiers first determine the speech act and
tense information. The classified speech act then
triggers one of the corresponding templates. The
speech act subtype is identified by matching the
root action predicate in the original AMR to any
predicates in a dictionary of keywords associated
with each subtype. Aspectual information is trig-
gered by specific patterns of speech act and tense
combinations. Next, regex searches the original
AMR to extract additional relevant arguments and
action predicates that correspond to slots in each
template, transforming them when necessary (e.g.,
you to robot). Details on each step follow.

While there exists a neural AMR graph con-
verter for a related task (Liu et al., 2015), neu-
ral systems require substantial training data in the
form of annotated input and output graphs. In con-
trast, our partially rule-based approach leverages
the highly structured AMR information and a rel-
atively small data set of natural language text with
speech act or tense labels to train the classifiers.
Additionally, our two-step approach, in which we
maintain both the original parsed AMR as well as
the augmented in-domain AMR, allows us to keep
track of both the sentence meaning determined by
the linguistic signal alone, and the speaker mean-
ing particular to our context (Bender et al., 2015).

Speech Acts. A speech act classifier predicts one
of the five speech act types from the original ut-
terance, triggering the appropriate in-domain tem-
plate for use. Since natural language is variable,
we implement a classifier that will be robust to any
language input, rather than rely on a rule-based ap-
proach in this step. We implement an off-the-shelf
Naive Bayes multinomial classifier for our base-
line from the scikit-learn library, using unigrams
as features (Pedregosa et al., 2011).4

In order to classify the speech act subtype
(e.g., command:move, command:turn), the
pipeline uses regex to find the root predicate

4Though we explored using unigrams, bigrams, and un-
igrams + bigrams, unigrams performed best as our domain
is fairly restricted and predictable from individual words.
Higher-order n-grams were not effective due to sparsity is-
sues from a small training set and introduced noise into our
system.



Figure 3: Mixed methods approach to graph transformation. Classifiers and rule-based systems collect and store
relevant slot information from the original AMR and original utterance to output an augmented AMR

in the original AMR. In our domain, only a
small group of predicates correspond to spe-
cific subtypes within each speech act category.
For instance, assuming an utterance is classi-
fied as a command, if go-02 or move-01
is found to be the root predicate of the origi-
nal AMR graph, then the subtype is determined
to be command:move. While move-01 is a
predicate shared among other subtypes, namely
assert:move and request:instruct, the
pipeline only searches for subtypes that belong to
the classified speech act category.

Tense Classifier. A tense classifier determines
if the original natural language utterance pertains
to a past, present, or a future action. While it
seems reasonable to use a pre-trained classifier
for this three-label classification task, we built our
own classifier to handle challenging cases found
in our particular domain. For instance, a common
shorthand command for taking a picture is “im-
age”. Our framework labels the send-image
action embedded in this command as future, but
this word is not inherently associated with the fu-
ture tense, nor is there any morphological informa-
tion that would signal this. We implemented the
same classifier from the scikit-learn library, using
unigrams as features (Pedregosa et al., 2011).5

Rule-Based Slot Filling. The rule-based portion
of this pipeline relies on regex to find and extract
portions of the original AMR to fill the appropri-
ate slots in the in-domain template. For example,
for the input utterance Move to the wall in Fig. 2,

5We explored both word and character n-grams; while
character n-grams can capture morphological information
that signals tense (e.g., -ed and -ing), data sparsity was an is-
sue. Unigrams, again, proved to be the most effective method.

the command:move template is triggered with
the relation command-02 anchoring the template
and the relation go-02 capturing the impelled
action, ARG2, of command-02 (Fig. 2(b)). In
our restricted domain, the ARG0 agent slot of
command-02 is fixed as the Commander, (the
human instructing the robot) and ARG1 entity-
commanded as the Robot (Fig. 2(c)). The ARG0
(mover) and ARG1 (moved) for move-01 in the
original graph (here, you) is converted into the
ARG0 self-directed mover of go-02, and this slot
is reassigned to Robot (Fig. 2(c)). The system
then looks for the required end point ARG4 slot in
the original AMR, door in this case. The precise
rules vary depending upon the template triggered,
as well as the original verbal predicate used.

Aspect. Finally, we used rule-based methods
for capturing aspectual information, as aspectual
annotations following Donatelli et al. 2018 re-
vealed consistent patterns associated with speech
acts and subtypes. Commands consistently con-
tain the :completable± annotation indicating
if the commanded action is goal-oriented, which
is required for execution in our problem domain
(a low-bandwidth environment in which lag time
in communications is expected, such that all com-
mands require a clear endpoint in advance of ex-
ecution). From this pattern, we created a rule
that if an argument conveying the end point was
present in the AMR, then the AMR was given
a :completable + annotation. For common
move and turn commands, the end point can be
realized as the :extent slot (e.g., move forward
five feet), or the :destination slot (e.g., move
to the wall). Other speech act types present more



nuanced patterns and require using speech act and
tense information together. For example, asser-
tions contain the :ongoing - :complete +
aspectual labels within past tense.

Results. We evaluated the overall graph-to-
graph transformation output against the 290 gold-
standard in-domain graphs including all speech
act categories, tense and aspect information. The
Smatch score for this task is F-score: .78.6 This
system performs especially well on the command,
assertion, and express categories, where
the language tends to be predictable within this do-
main. Sources of errors either stem from speech
act misclassification or from the rule-based meth-
ods failing to capture language variety. Misclassi-
fication of speech act and subtype can lead to more
downstream errors since these elements trigger the
template. Questions and requests, in particular,
prove to be challenging to classify as the language
of these categories are more varied. For example,
Can you describe it another way? could be seen as
a polite command, a request, or a question even to
human annotators; thus, we are also evaluating the
quality of the speech act distinctions. We present
the results of the classifier performance using 10-
fold cross-validation in Table 1.

Speech Act Precision Recall F-1

Assert .96 .96 .96
Command .98 .94 .96
Question .69 .81 .71
Request .70 .92 .76
Express .94 .83 .86

Accuracy: .94

Table 1: Speech act classifier performance

Other misclassification results from commands
that strayed from expected language. This mainly
includes statements of location (e.g., the cleaning
room), which function as implicit movement com-
mands in our domain. Finally, the system failed to
capture certain root action predicates in the orig-
inal AMRs as they were overlooked and not in-
cluded in our rule-based methods—a dictionary
that signals speech act subtypes.

Conclusions & Future Work. This paper in-
troduces a novel yet simple approach to AMR
graph-to-graph transformation, in which parser-
output AMRs are converted to augmented AMRs
specific to human-robot dialogue and search-and-
navigation tasks. Preliminary results are quite
promising, reflected by high F-1 and Smatch

6Our f-score is high when compared to another AMR
graph transformation task (Liu et al., 2015), but, to our
knowledge, there is no directly comparable task.

scores. However, we have yet to see this translate
into performance in the end-to-end system we are
working to implement. Future work will address
handling truly ambiguous speech acts that cannot
be determined from the language alone, which we
hope to resolve by leveraging dialogue context and
computer vision.
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Frequency Matching Behavior in On-line MaxEnt Learners - Charlie O’Hara, USC

Overview Studies have repeatedly shown that language users seem to apply processes to nonce forms at a similar rate as
what is observed in the lexicon as a whole (Zuraw, 2000; Ernestus & Baayen, 2003; Hayes et al. , 2009; Linzen et al. ,
2013; Moore-Cantwell, 2016; Zymet, 2018b; Hughto et al. , 2019) Capturing both the statistical generalizations across the
whole lexicon and for individual lexical items is a challenge for MaxEnt models of phonological learning, which should
be able to mimic the behavior of language users. The major challenge for learners is called THE GRAMMAR-LEXICON
BALANCING PROBLEM by Zymet (2018b,a)—if the lexical constraints are too active in the grammar compared to the more
general grammatical constraints, the statistical generalization across the lexicon is not captured. Most work attempting to
capture such biases use batch learning algorithms, directly minimizing an objective function that balances the likelihood of
capturing the training data, and a prior that limits the movement of each constraint. However, on-line error-driven learners
innately exhibit a bias towards limited movement of each constraint, without any explicit prior placed on the constraint
weights. I use an on-line learner to examine how the innate bias of online learners can affect the grammar-lexicon balancing
problem. I find that the larger the lexicon, the closer the learner matches nonce-word frequencies to the general lexical
patterns.
Background Frequency matching behaviors have been observed in experiments in a variety of languages and contexts:
ranging from Tagalog nasal substitution (Zuraw, 2000), voicing alternations in Dutch (Ernestus & Baayen, 2003), to Hun-
garian vowel harmony (Hayes et al. , 2009). Several proposals have attempted to model frequency matching behaviors with
MaxEnt models. Moore-Cantwell & Pater (2016) use an L2 prior on the constraint weights, and approach human behav-
ior. Zymet (2018b) and Hughto et al. (2019) show that the L2 prior can make the lexical constraints too active to capture
the nonce-word generalizations. Zymet (2018b) and Hughto et al. (2019) propose different mechanisms for solving the
grammar-lexicon balancing problem, but both involve an overt prior preventing the lexical constraints from receiving too
much weight. The majority of this work makes use of batch learners, however Smith & Moore-Cantwell (2017) show that
an on-line learner with induced (and decaying) UR constraints performs better than batch learners at capturing allomorphy
in English comparatives.
The Model The simulations here use a MaxEnt grammar with two general constraints, as well as indexed variants of both
general constraints for each lexical item. These lexically indexed constraints are equivalent to the lexical scales used by
Hughto et al. (2019), and a special case of additive scaled constraints generally (Hsu & Jesney, to appear). All constraints
are limited to non-negative weights.

(1)
VCi MAX NOCODA MAXi NOCODAi

a. VC -1 -1
b. V -1 -1

I use the Perceptron learning algorithm (Rosenblatt, 1958; Boersma & Pater, 2016). On each iteration of the learning
algorithm, a random lexical item is sampled from the lexicon. Output forms for that item is sampled from both the target
grammar, and the learner’s current grammar. These two forms are compared, if they differ, the constraints violated by the
learner’s incorrect output are decreased, and the constraints violated by the target grammar’s output are increased. In the
simulations every time a mismatch occurs between the learner and the target grammar, the two general constraints MAX and
NOCODA are updated (in opposite directions); but any lexically specific constraint, say MAXi would only be updated when
an error occurred on the relevant lexical item.
Simulations To evaluate whether the learner frequency matches, I compare the rate of deletion of nonce forms to the rate of
deletion averaged across all lexical forms after the learner has been exposed to a fixed amount of data.

Following Hughto et al. (2019), I tested several distinct types of target patterns. In all of the simulations in this paper,
learners were trained on data that had at most two classes of lexical items that had the same rate of variation, presented in the
table in (2). In these simulations, 60% of the items maintained their final consonants at the rates in the First Portion column,
and the remaining 40% maintained their final consonants at the rates in the Second Portion column.

(2)

Pattern First Portion Second Portion Target Nonce-Rate (50 items) Learner Average
a. Categorical 1.0 1.00 1.00 1.00
b. Variable 0.7 0.7 0.715 0.723
c. Propensity 0.7 0.3 0.54 0.509 0.559
d. Variable-Lexical 0.3 1.0 0.58 0.676 0.565
e. Lexical 1.0 0.0 0.60 0.651 0.600

1



I ran simulations for each condition twenty times, starting with general markedness constraints (NOCODA) weighted at 50,
and all other constraints weighted at zero, following (Tesar & Smolensky, 2000; Jesney & Tessier, 2011). Each simulation
here had 50 items in the lexicon, and ran for 50,000 iterations with a learning rate of 0.1. With 50 items in the lexicon, the
learner closely matches the average probability of coda consonant maintenance in the lexicon in the first three patterns, and
overshoots the lexical generalization in patterns d and e, as shown in (2).
Impact of Lexicon Size To see the influence of lexicon size on the grammar-lexicon balance problem, I reran these simu-
lations using a variety of different lexicon sizes, running each simulation for 1000 iterations per lexical item in the lexicon.
Figure 1 shows that for the first three patterns, the discrepancy between the nonce-form deletion rate (solid line) and average
deletion rate (dashed line) decreases monotonically as the number of lexical items increases. To see why this is, note that
frequency matching occurs when the contribution of the specific constraints is minimal compared to the general constraints.
The contribution of these specific constraints is dependent on how often the constraints update, and thus how often the learner
observes an error on a specific lexical item. The more often the learner deletes a coda on a specific lexical item when the
teacher produces it, the higher weighted MAXi will be. Because learners start with markedness constraints weighted high,
they will very often see deletion errors in early learning, as the general MAX constraint approaches NOCODA. If the lexicon
is small, the same lexical items will be chosen often and the specific constraints for those items will get too highly weighted;
but if the lexicon is large, any single lexical item is unlikely to be selected too often, so most of the general phonotactic
pattern is learned via updating the general constraints.
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Fig 1: Frequency Matching with Larger Lexicons
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Fig 2: Overshoot with Larger Lexicons
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Fig 2 shows that when trained on patterns d and e, the learner overshoots the target pattern. This result resembles a bias
observed by Hughto et al. (2019) §4.2. Further simulations showed that this overshoot is caused when one lexical class is
close to, or fully categorical. In these cases, the learner learns a nonce-rate of deletion that is slightly closer to the larger
categorical class’s frequency than the average as a whole.

This overshoot is caused by the fact that MaxEnt grammars can never return a completely categorical mapping. The gen-
eral constraints in these simulations are subject to a tug-of-war between the two lexical classes—once the general constraints
have gotten close to the average mapping, the lexical idiosyncrasies must be learned. Then, if a lexical item from the class
with a lower rate of deletion is sampled, MAX and the relevant specific MAXi are increased (and the NOCODA constraints
are decreased). Then, when a lexical item from the class with a greater rate of deletion is sampled, the general constraints
shift back, and the relevant specific NOCODAj is increased. If one class is smaller, it’s rate of deletion will be further from
the average, so each time one of its forms are sampled, it will be more likely to cause an error. Most updates on a specific
lexical item will be in one direction, but if that item is variable it is possible that the learner observes updates the opposite
direction, either by chance, or because the learner overshot the correct rate of deletion for that item. These updates in the
opposite direction help ensure that as more of the lexical forms are learned, the amount they pull on the general constraints
decreases. However, if one lexical class is categorical, the learner can never overshoot the target rate of deletion for that
class. There will always be a minute tug from every lexical item in the categorical class on the general constraints. With a
larger lexicon, these minute tugs compound, leading to the type of overshoot seen in Figure 2.

Without any overt priors to keep the lexical constraints from capturing much weight, on-line MaxEnt learners

exhibit frequency matching behavior in most conditions.
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Frequency-(in)dependent regularization in language production and cultural transmission 
Emily Morgan (UC Davis; eimorgan@ucdavis.edu) and Roger Levy (MIT; rplevy@mit.edu) 
 

In cases of variation in language, how do people learn and reproduce probabilistic 
distributions over linguistic forms? Given a certain amount of variation in their linguistic input, 
speakers could aim to reproduce the variation exactly (i.e. to probability match) or could instead 
aim to regularize—to make their productions more consistent by reproducing the most frequent 
variant even more frequently than it was heard in the input. While we know that people retain 
detailed statistics about their linguistic input (Levy, 2008; Arnon & Snider, 2010), there is also 
evidence for regularization in language learning (Hudson Kam & Newport, 2005; Reali & 
Griffiths, 2009), although the circumstances that lead to regularization versus probability 
matching are not yet well understood. Morgan and Levy (2015) found evidence in corpus data 
that binomial expressions of the form “X and Y” are more regularized the higher their 
frequency—i.e. their ordering preferences (e.g. “bread and butter” vs. “butter and bread”) are 
more extreme when the two words (“bread” and “butter”) co-occur in a binomial more 
frequently, regardless of order. This finding is puzzling because previous experimental research 
does not suggest that regularization should be frequency-dependent. However, when we find 
systematic patterns in corpus data, we would like to be able to attribute them to motivated 
preferences (based on language learning and/or production; Hawkins, 2004). Does this corpus 
data in fact provide evidence for regularization in online language processing, and if so, does 
speakers’ regularization behavior depend on an item’s frequency, contrary to previous claims? 

We demonstrate that frequency-dependent regularization can arise diachronically through 
a combination of a frequency-independent synchronic regularization bias and the bottleneck 
effect of cultural transmission. We simulate diachronic language change using an Iterated 
Learning Model (Smith, 2009) in which speakers in successive generations iteratively learn 
binomial expression preferences from the previous generations’ productions and then generate 
their own productions. We augment the standard model with a regularization bias that applies 
during production. Although the bias itself is frequency-independent, we demonstrate that 
frequency-dependent regularization emerges from the iterated learning process. For lower 
frequency items, a tighter bottleneck (fewer productions per generation) favors convergence to 
the prior. Because prior preferences depend only on the words in the binomial—not on its 
frequency—the bottleneck thus prevents the regularization bias from having a strong effect. With 
increasing frequency, a wider bottleneck (more productions per generation) increasingly 
transmits the effects of the regularization bias across generations. Our model thus correctly 
predicts the qualitative pattern of frequency-dependent regularization (Fig 1). 

Moreover, our model correctly predicts the observed language-wide distribution of 
ordering preferences in Morgan and Levy’s (2015) binomial corpus. For each binomial 
expression in the corpus, we predict its ordering preference based on its frequency of occurrence 
(as well as other word-level properties). Our model correctly predicts the multimodal distribution 
of ordering preferences found in the corpus (Fig 2). 

Fig 1. Model-predicted preferences for a 
hypothetical binomial, from 0 (always one order) to 
1 (always the other), are more extreme (closer to 0 
and/or 1) with increasing number of productions per 
generation N. 0.0 0.4 0.8

0
4

8
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D
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Our model thus confirms previous demonstrations of a regularization bias in language 
learning and/or production, but demonstrates that frequency-dependent regularization in a corpus 
distribution does not imply that frequency influences regularization at the level of individual 
speakers. Rather, the pattern of frequency-dependent regularization seen in corpus data can arise 
from the interaction of a frequency-independent bias in online language processing and the 
bottleneck effect of cultural transmission. 

We conclude by questioning why language learning and/or production might include a 
regularization bias. One hypothesis is that an online regularization bias promotes efficiency in 
language processing by reducing the choices that must be made, hence reducing the cost of 
online utterance planning. Another hypothesis relates to difficulty during early learning rather 
than during online production. Focusing on one variant during learning may reduce cognitive 
load, and therefore regularization may be both particularly prevalent and particularly beneficial 
during early language learning when cognitive resources are more limited than in adulthood.  

 
This work was previously published in: Morgan, E., & Levy, R. (2016). Frequency-Dependent 
Regularization in Iterated Learning. In S. G. Roberts, C. Cuskley, L. McCrohon, L. Barceló-
Coblijn, O. Fehér, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 11th 
International Conference (EVOLANG 11). http://evolang.org/neworleans/papers/193.html 
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Fig 2. Language-wide distribution of preferences in corpus 
data (left) and as predicted by a model with (center) and 
without (right) a regularization bias. 
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Crosslinguistic Word Orders Enable an Efficient Tradeoff of Memory and
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Memory limitations are well-established as a

factor in human online sentence processing (Gib-

son, 1998; Lewis and Vasishth, 2005), and have

been argued to account for crosslinguistic word

order regularities. For example, the Performance–

Grammar Correspondence Hypothesis of Hawkins

(1994) holds that forms which are easier to pro-

duce and comprehend end up becoming part of the

grammars of languages. We build on expectation-

based models of language processing (Levy, 2008)

and on the theory of lossy compression (Cover

and Thomas, 2006) to develop a highly general

information-theoretic notion of memory efficiency

in language processing, in terms of a trade-off of

surprisal and memory usage. We derive a method

for estimating a lower bound on the memory effi-

ciency of languages from corpora, and apply our

method to corpora from 54 languages to test the

idea that word order is structured to reduce pro-

cessing effort under memory limitations. We find

that word orders tend to support efficient tradeoffs

between memory and surprisal, suggesting that

word order rules are structured to enable efficient

online processing.

Background Surprisal theory (Levy, 2008)

posits that the processing effort on a word wt

in context w1 . . . wt�1 is proportional to the sur-
prisal of the word in context:

S = � log P(wt|w1 . . . wt�1). (1)

Experimental work has confirmed that surprisal is

a reliable and linear predictor of processing ef-

fort as reflected in reading times (Smith and Levy,

2013).

However, surprisal theory as presented above

cannot in principle account for effects of memory

limitations on online processing, because Equa-

tion 1 represents surprisal as experienced by an

idealized listener who accurately remembers the

entire history of previous words w1...t�1. More

Figure 1: Conceptual tradeoff between memory and

surprisal for two languages. In Language A (blue),

a listener storing 1 bit can achieve average surprisal

3.5, while the same level of surprisal requires 2 bits

of memory for a listener in Language B (red).

realistically, human listeners deploy memory re-

sources that maintain imperfect representations of

the preceding context (Lewis and Vasishth, 2005;

Futrell and Levy, 2017). If mt is a listener’s mem-

ory state after hearing w1 . . . wt�1, then the true

surprisal experienced by the listener will be:

SM := � log2 P(wt|mt), (2)

which must be larger than Eq. 1 on average (Cover

and Thomas, 2006).

Memory–surprisal tradeoff. These considera-

tions imply a tradeoff between memory and sur-
prisal: A listener maintaining higher-precision

memory representations mt will, on average, in-

cur lower surprisal, at the cost of higher memory

load. The idea of the memory-surprisal tradeoff

is visualized in Fig. 1: for each desired level of

average surprisal, there is a minimum number of

bits of information which must be stored about

context. The shape of the trade-off is determined

by the language, and in particular its word order:

some languages enable more efficient trade-offs

than others by forcing a listener to store more bits

in memory to achieve the same level of average
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Figure 2: Tradeoffs between memory (x axis) and surprisal (y axis) in 54 languages, for real orderings (blue) and

counterfactual baseline grammars (red). We provide 95% confidence bands for different model runs on the real

languages, and for the median across different baseline grammars.

surprisal.

Theoretical Results In Theorem 1 below, we

derive a bound on the memory-surprisal tradeoff

curve which can be easily estimated from corpora.

Let It be the conditional mutual information be-

tween words that are t steps apart, conditioned on

the intervening words:

It := I[wt, w0|w1...t�1].

This quantity measures how much predictive in-

formation the word t steps in the past contains

about the current word.

Theorem 1. Let T be a positive integer, and con-
sider a listener using at most

PT
t=1 t It bits of

memory on average. Then this listener will incur
average surprisal at least H[wt|w<t] +

P
t>T It.

The theorem allows us to estimate the extra sur-

prisal associated with each amount of memory ca-

pacity for a language. The quantities It can be esti-

mated as the difference between the cross-entropy

of language models that have access to the last t�1

or t words. Given such estimates of It, we esti-

mate tradeoff curves as in Figure 1 by tracing out

T = 1, 2, . . . .

Experimental Results We tested whether word

orders as found in natural language grammars

provide efficient memory-surprisal tradeoffs. To

this end, we compared corpora of real languages

against hypothetical reorderings of those lan-

guages under random baseline grammars. We

used treebanks of 54 languages from Universal

Dependencies 2.3 (Nivre et al., 2018).

For each language, we constructed counterfac-

tual word order rules by adapting the methodology

of Gildea and Temperley (2010) to Universal De-

pendencies: For each syntactic relation (subject,

object, ...) used in the treebank annotation, we ran-

domly sampled its position relative to the head and

other of siblings. For each language and each such

set of rules, we reordered the treebank according

to these counterfactual word order rules.

For each language and its counterfactually

ordered versions, we estimated the memory-

surprisal tradeoff (Theorem 1) using an LSTM

recurrent neural language model, considering all

integers T = 1, . . . , 20. Hyperparameters were

tuned, for each language, to minimize average

cross-entropy on counterfactual versions, intro-

ducing a conservative bias against our hypothesis.

Tradeoff curves are shown in Figure 2. In 50

out of 54 languages, the observed orderings led to

more favorable tradeoffs than 50% of the counter-

factual orderings (p < 0.0001; Exceptions: Lat-

vian, North Sami, Polish, and Slovak).

Taken together, our results suggest that, across

languages, word order in part reflects pressures to-

wards efficient online processing under memory

limitations.
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1 Overview

We live in a time of unprecedented access to lin-
guistic data, from audio recordings to corpora of
billions of words. Linguists have used these re-
sources to advance their research and understand-
ing of language. Historical linguistics, despite be-
ing the oldest linguistic subfield, has lagged be-
hind in this regard. However, this is due to several
unique challenges that face the subfield. Historical
data is plagued by two problems: a lack of over-
all data due to the ravages of time and a lack of
model-ready data that have gone through standard
NLP processing. Barring the discovery of more
texts, the former issue cannot be solved; the lat-
ter can, though it is time-consuming and resource-
intensive. These problems have only begun to be
addressed for well-documented language families
like Indo-European, but even within these progress
is slow.

There have been numerous advances in syn-
chronic models for basic NLP tasks like POS and
morphological tagging. However, modern mod-
els are not designed to work with historical data:
they depend on large volumes of data and pre-
tagged training sets that are not available for the
majority of historical languages. Some have found
success with methods that are designed to imitate
traditional historical approaches, e.g. (Bouchard-
Côté et al., 2013; McMahon and McMahon, 2003;
Nakleh et al., 2005), but, if we intend to use state-
of-the-art computational tools, they are essentially
incompatible. This is an important challenge that
computational historical linguists must address if
they are going to meet the standards set by both
modern corpora and historical analyses. This pa-
per approaches the issue by treating historical data
in the same way as a low-resource language (Fang
and Cohn, 2017; Buys and Botha, 2016; Mishra
et al., 2018) and integrating data from modern de-

scendant languages. Through these approaches,
we are able to tag a number of new texts in
Old Slavic languages for part-of-speech. Many
of these texts have never previously been tagged.
With these problems overcome, we can create new
corpora of historical language and thus dramat-
ically increase both the number and type of di-
achronic linguistic investigations.

2 Modern approaches to historical data

Historical Data as low-resource language. This
challenge is not unique to historical data. Thou-
sands of languages across the world also lack the
necessary resources for standard computational
analyses and models. These low-resource lan-
guages have not been sufficiently documented and
thus do not have adequate datasets for model-
training. Many different approaches have been
proposed on how to deal with this issue for
low-resource languages. For example, (Buys
and Botha, 2016) improve results through the
use of parallel forpora, which could be help-
ful for those languages that have modern high-
resource language translations. Others have pro-
posed feature projection (Mishra et al., 2018) for
morphologically-complex languages. In this pa-
per, we exploit the approach called Model Trans-
fer (Fang and Cohn, 2017). Here, a bilingual
dictionary, monolingual corpora in both the high-
and low-resource languages, and a small annotated
corpus for the low-resource language, are used
to train a model through joint training from both
sources. The bilingual dictionary and monolin-
gual corpora are used to train cross-lingual word
embeddings, while language-dependent informa-
tion can be learned from the small annotated cor-
pus. The lack of available dictionaries for some
languages is a pitfall for Model Transfer.

Extending modern language data. Historical



data does not exist within a vacuum. One avenue
that we could exploit is its relationship to descen-
dant and related languages, i.e. how Modern En-
glish is a descendant of Middle English. We might
leverage the large amount of pre-processed data
available for the modern languages to help cre-
ate the models for their older stages. We call this
Model Extension, where a model is created to tag
one language using training data from a related
language. In this paper, we train models on mod-
ern data and use them to tag the older texts. Thus
the model is extending to a new linguistic domain.
No matter the approach, manual annotation is an
option, and it goes a long way in helping to train
models on these limited data.

3 Data

For this paper, we experiment on Old Slavic lan-
guages, focusing on Old Church Slavonic (OCS;
46 texts: 10 tagged, 36 untagged), Old East Slavic
(OES; 35 texts: 32 tagged, 3 untagged), and
Old Polish (OP; 20 untagged texts). These are
good candidates because there are (1) resources
for some of the languages (OCS and OES) and (2)
well-documented modern descendant languages,
i.e. Bulgarian for OCS, Russian for OES, and Pol-
ish for OP. Some pre-tagged texts for OCS and
OES were taken from the TOROT treebank (Eck-
hoff and Berdiceviskis) to be used as training and
test data. Untagged texts in all three languages
were taken from sites like Thesaurus Indogerman-
ischer Text- und Sprachmaterialien. OCS was the
only language for which an extensive dictionary
could be found, thus it is the only language to use
Model Transfer. Word-embeddings were trained
for the languages using the gathered texts. Models
for the modern language were trained using data
taken from Universal Dependencies.

4 Models

In order to tag the corpus we used an exten-
sion of a sequence tagging network, based on
(Reimers and Gurevych, 2017) and (Arakelyan
et al., 2018). These are based on BiLSTM net-
works from (Huang et al., 2015). For the models,
we use a variety of both pre-trained embeddings
for modern languages and newly-trained embed-
dings for the old languages, using Word2Vec
(Mikolov et al., 2013). This set-up of the network
can be seen in Figure 1.

Based on this architecture, we trained three

Figure 1: Basic architecture, showing the layers of the
network used to create the models

Figure 2: OCS Model Transfer has only one differ-
ence: the use of cross-lingual word embeddings (Am-
mar et al., 2016)

types of models: (1) Normal Models using the pre-
tagged data for OCS and OES, (2) Model Transfer
for OCS using an OCS-English dictionary and the
British National Corpus, and (3) Modern Model
Extensions using Universal Dependency models
for Buglarian, Russian, and Polish. The OCS
Model Transfer model had an additional require-
ment: following (Fang and Cohn, 2017), after the
input of raw text, we use cross-lingual word em-
beddings (Ammar et al., 2016) instead of the usual

http://titus.uni-frankfurt.de/indexe.htm
http://titus.uni-frankfurt.de/indexe.htm
http://universaldependencies.org/


Language Normal Model Transfer Modern Extensions Universal Dependency
OCS 75.63 76.54 65.23 87.40
OES 69.60 N/A 70.95 83.91

Old Polish N/A N/A 69.82 84.64

Table 1: Accuracies for test set tagging in each language across different models

monolingual word embeddings. These combine
monolingual embeddings trained using word2vec
by projecting them onto a common space, which
is learned through the bilingual dictionary. This is
then used with the large tagged corpus of the high-
resource language in the training, to then be ap-
plied to the untagged historical data. The tagging
model itself uses the same BiLSTM architecture
described above. The Model Transfer workflow
can be seen in Figure 2. For comparison, Univer-
sal Dependency models were trained using the UD
data for the three modern related languages: Bul-
garian, Russian, and Polish.

5 Results
All models were subject to the same test set in
each of the languages. Because there was no pre-
viously tagged corpus, the test set for Old Polish
was hand-tagged for this project. This determined
their POS tagging accuracies, which are compiled
in Table 1.

None of the models achieved the same level of
accuracy seen by the modern Universal Depen-
dency models. The normally-trained models for
OCS and OES were close, as a result of their pre-
tagged data. In general, we can see that the use
of Model Transfer and Model Extension does not
negatively impact the POS tagging accuracy. The
Extension model for OCS is lower than for the
others, but this is likely due to dramatic morpho-
logical differences between OCS and its modern
relative Bulgarian. While the overall accuracies
are not as high as most modern language models,
they are not so low as to be discouraging. They
do show that, in the instance of a language like
Old Polish, Model Transfer and Extension are ser-
viceable methods for tagging new texts. Even at
a 70% POS-tagging accuracy, these methods pro-
vide a great first-pass run in the pipeline of corpus
creation for a language without resources. More-
over, this maintenance of a comparably high ac-
curacy shows that we can leverage different stages
of a language to fill in gaps in our models. This
is still likely dependent on other diachronic fac-

tors, e.g. we might expect a lower accuracy for an
older morphologically-complex language when its
descendant form is much more morphologically-
simple.

6 Conclusion

The results so far do not meet the standards set
by modern models, but they do still serve as a
good first-pass run that can be improved with man-
ual annotation and other tagging methods. This
will still save valuable time and increase the num-
ber and type of resources available to historical
linguistics. This in turn will further aid histor-
ical linguists in both their diachronic and syn-
chronic analyses for the languages and language
families included in the new corpora, e.g. (Rhyne,
Forthcoming). This can only improve with access
to more data. Nevertheless, it is still promising
that models can be extended relatively well from
modern languages to their ancestors. Moreover,
there are still multiple low-resource language ap-
proaches that can still be used, such as parallel
corpora (Buys and Botha, 2016). This would be
especially useful for languages that have extensive
English or other modern translations. We might
also try to use dictionaries of modern descendant
languages in our Model Transfer approach.

Thus, this paper attempts to fill in a gap that
continues to plague historical linguistics. The re-
sults are still lacking, but they show signs of im-
provement. With more time and resources, other
methods could be explored, particularly those that
depend on extensive pre-tagged data. Neverthe-
less, through efforts like these, we can improve
the quality of data within historical linguistics,
making it more approachable to all linguists and
matching the standards already established in the
rest of the field.
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Recurrent neural networks (RNNs; Elman,
1990) use continuous vector representations, yet
they perform remarkably well on tasks that depend
on compositional symbolic structure, such as ma-
chine translation. The inner workings of neural
networks are notoriously difficult to understand,
so it is far from clear how they manage to encode
such structure within their vector representations.

We hypothesize that they do this by learning to
compile symbolic structures into vectors using the
tensor product representation (TPR; Smolensky,
1990), a general schema for mapping symbolic
structures to numerical vector representations. To
test this hypothesis, we introduce Tensor Prod-
uct Decomposition Networks (TPDNs), which are
trained to use TPRs to approximate existing vec-
tor representations. If a TPDN is able to closely
approximate the representations generated by an
RNN, it would suggest that the RNN’s strategy for
encoding compositional structure is to implicitly
implement the type of TPR used by the TPDN.

Using this method, we show that networks
trained on artificial tasks using digit sequences
discover structured representations appropriate to
the task; e.g., a model trained to copy a se-
quence will encode left-to-right position (first, sec-
ond, third...), while a model trained to reverse
a sequence will use right-to-left position (last,
second-to-last, third-to-last...). Thus, our analy-
sis tool shows that RNNs are capable of discover-
ing structured, symbolic representations. Surpris-
ingly, however, we also show, in several real-world
networks trained on natural language processing
tasks (e.g., sentiment prediction), that the repre-
sentations used by the networks show few signs of
structure, being well approximated by an unstruc-
tured (bag-of-words) representation. This finding
suggests that popular training tasks for sentence
representation learning may not be sufficient for
inducing robust structural representations.

Tensor Product Decomposition Networks: To
represent a symbolic structure with a TPR, each
component of the structure (e.g., each element
in a sequence) is called a filler, and the fillers
are paired with roles that represent their positions
(Figure 2a). Each filler fi and — crucially — each
role ri has a vector embedding; these two vectors
are combined using their tensor product fi ⌦ ri,
and these tensor products are summed to produce
the representation of the sequence:

P
fi ⌦ ri.

To test whether a set of vector encodings can be
approximated with a TPR, we introduce the Tensor
Product Decomposition Network (TPDN; Figure
1c), a model that is trained to use TPRs to approxi-
mate a given set of vector representations that have
been generated by an RNN encoder. Approxima-
tion quality is evaluated by feeding the outputs of
the trained TPDN into the decoder from the orig-
inal RNN and measuring the accuracy of the re-
sulting hybrid architecture (Figure 1d). We refer
to this metric as substitution accuracy.

Approximating RNN representations: To es-
tablish the effectiveness of the TPDN at uncover-
ing the structural representations used by RNNs,
we first apply the TPDN to sequence-to-sequence
networks (Sutskever et al., 2014) trained on a
copying objective: they are expected to encode a
sequence of digits and then decode that encoding
to reproduce the same sequence (Figure 1a).

We ran this experiment with two types of
sequence-to-sequence RNNs: linear RNNs, which
process sequences in linear order, and tree RNNs,
which process sequences in accordance with a tree
structure. These experiments revealed that the en-
codings of the linear RNN could be approximated
very closely (with a substitution accuracy of over
0.99 averaged across five runs) with a TPR us-
ing the bidirectional role scheme, which encodes
the distance from the start of the sequence and
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Figure 1: (a) A sequence-to-sequence model performing copying. (b) The tensor product. (c) A TPDN trained to
approximate the encoding E from Figure 1a: (1) The fillers and roles are embedded. (2) The fillers and roles are
bound together using the tensor product. (3) The tensor products are summed. (4) The sum is flattened into a vector
by concatenating the rows. (5) A linear transformation is applied to get the final encoding. (d) The architecture for
evaluation: using the original sequence-to-sequence model’s decoder with the trained TPDN as the encoder.

the distance from the end of the sequence. By
contrast, the tree RNN was closely approximated
by a role scheme encoding tree position but not
by any of the role schemes encoding linear posi-
tion. These results show that RNNs are capable of
learning to generate compositional symbolic rep-
resentations and that the nature of these represen-
tations is closely related to the RNN’s structure.

Approximating sentence representations: We
now investigate whether the TPDN’s success with
digit sequences will extend to naturally occur-
ring linguistic data. We use sentence representa-
tions from four natural language processing mod-
els: two linear RNNs, InferSent and Skip-thought;
and two tree RNNs, the Stanford sentiment model
(SST) and SPINN. All four models are reasonably
well approximated with a bag of words, which
only encodes which words are in the sentence
and does not encode any sort of sentence struc-
ture; other role schemes which do encode structure
showed only modest improvements (Figure 3b).

Conclusion: With heavily structure-sensitive
tasks, sequence-to-sequence RNNs learned rep-
resentations that were extremely well approxi-
mated by tensor-product representations. By con-
trast, sentence encoders from the natural language
processing literature could be reasonably well-
approximated with an unstructured bag of words,
suggesting that the representations of these mod-
els were not very structure-sensitive. These results
suggest that, when RNNs learn to encode compo-
sitional structure, they do so by adopting a strategy
similar to TPRs, but that existing tasks for training
sentence encoders are not sufficiently structure-
sensitive to induce RNNs to encode such structure.
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Figure 2: (a) The filler-role bindings assigned by the
six role schemes to the sequence 5239. (b) The tree
used to assign tree roles to this sequence.

(a)

Chance 
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Figure 3: Results. (a) Substitution accuracies for lin-
ear and tree RNNs trained on copying. (b) The pro-
portion of test examples on which classifiers trained on
sentence encodings gave the same predictions for these
encodings and for their TPDN approximations, aver-
aged across four tasks. The dotted line indicates chance
performance.
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Overview. The Minimalist Grammar (MG) for-
malism (Stabler, 1996) is a well established for-
mal model of syntax inspired by the Minimalist
Program (Chomsky, 1995). We introduce (1) a
novel parser for MGs1, encoded as a system of
first-order logic formulae that may be evaluated
using a solver for Satisfiability Modulo Theories
(SMT) (De Moura and Bjørner, 2008; Barrett and
Tinelli, 2018), and (2) a novel procedure for in-
ferring MGs using this parser. The input to this
procedure is a sequence of sentences that have
been annotated with syntactic relations such as se-
mantic role labels (connecting arguments to pred-
icates) and subject-verb agreement. The output of
this procedure is a set of MGs, each of which is
able to parse the sentences in the input sequence
such that the parse for a sentence has the same
syntactic relations as those specified in the an-
notation for that sentence. We applied this pro-
cedure to a set of sentences annotated with syn-
tactic relations and evaluated the inferred gram-
mars using cost functions inspired by the Mini-
mum Description Length (MDL) principle (Bar-
ron et al., 1998; Grünwald, 2007) and the Sub-
set principle (Berwick, 1985; Wexler, 1993). In-
ferred grammars that were optimal with respect to
certain combinations of these cost functions were
found to align closely with contemporary theo-
ries of Minimalist syntax (Hornstein et al., 2005;
Adger, 2003; Radford, 1997), producing the pre-
scribed syntactic structures for a range of con-
structions that include ditransitive predicates, pas-
sivization and Wh-fronting for question formation.

Inference Procedure. Our inference procedure
takes the form of a computational model of
language acquisition (Chomsky, 1965; Berwick,

1We used the chain-based formulation of MGs presented
in (Stabler and Keenan, 2003).

1985) consisting of: (1) an initial state, S0, con-
sisting of a system of first-order logical formu-
lae that serve as axioms for deducing the class of
minimalist lexicons; (2) the input, consisting of a
sequence of n sentences, denoted I1, I2, . . . , In,
each of which is annotated with syntactic relations
between pairs of words in the sentence; (3) a func-
tion, Q, that takes as input a state, Si, and an anno-
tated sentence, Ii, and outputs the successor state,
Si+1; (4) a function, R, that maps a state Si to a
set of MG lexicons, Gi, with the property that for
each sentence Ij in the input sequence, each lexi-
con L 2 Gi can produce a parse pLj such that the
syntactic relations in pLj parse match those speci-
fied in the annotation of sj . In the case of the ini-
tial state, S0, since there are no constraints yet im-
posed by the input, R(S0) will map to the set of all
minimalist lexicons. The procedure consumes the
input sequence one annotated sentence at a time,
using Q to drive the initial state, S0, to the final
state, Sn; the function R is then applied to Sn to
produce a set of MG lexicons, Gn, that constitutes
the output of the inference procedure.

We implemented this inference procedure by
encoding an MG parser as a system of first-
order, quantifier-free logical formulas that could
be solved with the Z3 SMT-solver (De Moura and
Bjørner, 2011; Cadar and Sen, 2013).2 This sys-
tem of formulas is composed of formulas for MG
parse trees that are connected (by way of shared
symbols) to a formula for an MG lexicon (i.e.
S0); by imposing constraints on the formulas for
parse trees (via Q), the set of solutions to the lex-
icon formula is restricted (i.e. R is constrained).
When the inference procedure consumes an anno-
tated sentence from the input sequence, the func-
tion Q: (1) instantiates a formula for an MG parse;

2This approach is inspired by earlier work that modeled
grammar with logic (Pereira and Warren, 1983; Rayner et al.,
1988; Stabler, 1993; Rogers, 1998; Graf, 2013).



Ii Sentence Locality Constraints

I1 who has eaten/V icecream/N? ✓eaten[s : who, o : icecream], Agrhas[s : who]
I2 icecream/N was eaten/V. ✓eaten[o : icecream], Agrwas[s : icecream]
I3 who was eating/V icecream/N? ✓eating[s : who, o : icecream], Agrwas[s : who]
I4 was pizza/N eaten/V? ✓eaten[o : pizza], Agrwas[s : pizza]
I5 what has john/N eaten/V? ✓eaten[s : john, o : what], Agrhas[s : john]
I6 has mary/N eaten/V pizza/N? ✓eaten[s : mary, o : pizza], Agrhas[s : mary]
I7 was john/N eating/V pizza/N? ✓eating[s : john, o : pizza], Agrwas[s : john]
I8 what was mary/N eating/V? ✓eating[s : mary, o : what], Agrwas[s : mary]
I9 what was eaten/V? ✓eaten[o : what], Agrwas[s : what]
I10 was mary/N given/V pizza/N? ✓given[o : pizza, i : mary], Agrwas[s : mary]
I11 what has mary/N given/V john/N? ✓given[s : mary, o : what, i : john], Agrhas[s : mary]
I12 mary/N has given/V john/N money/N. ✓given[s : mary, o : money, i : john], Agrhas[s : mary]
I13 who was money/N given/V to/P? ✓given[o : money, i : to who], Agrwas[s : money]
I14 who has john/N given/V money/N to/P? ✓given[s : john, o : money, i : to who], Agrhas[s : john]

Table 1: Model Input — A sequence of sentences annotated with syntactic relations. Some phonetic forms have
their category pre-specified, indicated by a suffix of a slash followed by the category. Locality constraints include
agreement (Agr) and predicate-argument structure (i.e. a ✓ grid), with the predicate indicated in the suffix and the
subject, object and indirect object components marked by “s:”, “o:” and “i:” respectively. The type of the sentence,
declarative or interrogative, is indicated by the end-of-sentence punctuation.

Lexicon-A Lexicon-B

eaten/V :: = x4,⇠x4 eaten/V :: = x5,⇠x1

eating/V :: = x4,⇠x4 eating/V :: = x5,⇠x1

given/V :: = x4,= x4,⇠x4 given/V :: = x5,= x5,⇠x1

given/V :: = x2,= x4,⇠x4 has/T :: = x0,+l,⇠x2

has/T :: = x4,+l,⇠x0 icecream/N ::⇠x5

has/T :: = x4,+l,⇠x4 icecream/N ::⇠x5,�l
icecream/N ::⇠x4 john/N ::⇠x5

icecream/N ::⇠x4,�l,�r john/N ::⇠x5,�l
john/N ::⇠x4 mary/N ::⇠x5,�l
john/N ::⇠x4,�l money/N ::⇠x5

mary/N ::⇠x4,�l money/N ::⇠x5,�l
mary/N ::⇠x4,�l,�r pizza/N ::⇠x5

money/N ::⇠x4 pizza/N ::⇠x5,�l
money/N ::⇠x4,�l to/P :: = x4,⇠x5

pizza/N ::⇠x4 was/T :: = x0,+l,⇠x2

pizza/N ::⇠x4,�l what/N ::⇠x5,�r
to/P :: = x2,⇠x2 what/D ::⇠x5,�l,�r
was/T :: = x4,+l,⇠x4 who/D ::⇠x4,�r
was/T :: = x4,+l,⇠x0 who/N ::⇠x5,�l,�r
what/N ::⇠x4,�r ✏/v :: = x1,⇠x0

what/N ::⇠x4,�l,�r ✏/Cdeclarative :: = x2, C
who/D ::⇠x2,�r ✏/Cquestion :: <= x2, C
who/D ::⇠x4,�l,�r ✏/Cquestion :: <= x2,+r, C
✏/v :: = x4,⇠x4 ✏/v :: <= x1,= x5,⇠x0

✏/Cquestion :: <= x4, C
✏/v :: <= x4,= x4,⇠x4

✏/Cquestion :: <= x0,+r, C
✏/Cdeclarative :: = x4,+r, C

Table 2: Examples of inferred lexicons that satisfy the
conditions imposed by the input sequence in Table-1.
Each lexical item has the form, (PF/CAT ::SFS),
consisting of a phonetic form (PF), a category (CAT)
and a sequence of syntactic features (SFS). The pho-
netic forms ✏ is covert (unpronounced). The selectional
features are {x0, x1, ..., x5} and the licensing features
are {l, r}.

(2) translates the annotations for the sentence into
(logic) formulas that constrain the parse tree – e.g.
predicate-argument relations and morphological

agreement are translated into locality constraints3;
(3) adds these new formulas to the existing sys-
tem of formulas in Si to produce Si+1. In order to
compute the set of lexicons, Gi = R(Si), we used
the Z3 SMT-solver to solve for the set of lexicons
satisfying the formulae in Si.

Data. The input to the inference procedure is a
sequence of fourteen sentences, I1 � I14 in Table-
1, each annotated with predicate-argument rela-
tions as well as morphological agreement; the sen-
tences listed include passive constructions (I2, I4,
I10), ditransitive constructions (I11� I14), yes/no-
questions (I4, I6, I7, I10, ) and wh-questions (I1,
I3, I5, I8, I9, I11, I13, I14).

Analysis. We used our procedure to infer a set
of minimalist lexicons, denoted here as G⇤, from
the input sequence described in Table-1. Lexi-
cons sampled from G⇤ produced parses that do
not align with those prescribed by contemporary
theories of minimalist syntax. (See Lexicon-A in
Table-2 for an example of such a lexicon.)

We filtered out such lexicons by using Z3 to
identify lexicons in G⇤ that were optimal with re-
spect to three cost functions that (respectively): (i)
minimized the number of lexical entries in the lex-
icon; (ii) minimized the total number of selectional
and licensing features in the lexicon and the parses
(this rewards reduction in the total size of both
the lexicon and the parses); (iii) maximized the

3The principle of syntactic locality asserts that syntactic
relations are established locally by merge (Sportiche et al.,
2013).



Figure 1: An MG parse for the sentence “Who has John given money to?” (see I14 in Table-1 for annotations)
derived from Lexicon-B in Table-2. This parse accords with the parse prescribed by contemporary theories of
syntax. The feature sequences displayed in non-leaf nodes have a dot, · , separating features that have already
been consumed (on the left) from those that have not (on the right). The dashed arrows denote phrasal movement.
The dotted arrows denote head movement. Nodes with the same head have the color. The parse is assembled in
a bottom-up manner via merge: “eating” merges with “to who” (formed by first merging “to” and “who”) and
then with “money”, thus establishing (via locality) predicate-argument relations; the resulting structure merges
with an empty lexical node with category v, undergoing V -to-v head-movement before merging with the argument
“john” in accordance with the VP-Internal Subject Hypothesis (Hale and Keyser, 2002); the resulting structure then
merges with the auxiliary verb “has”, after which the argument “john” undergoes subject-raising from the VP-shell
by (internally) merging with “has”, thus establishing morphological agreement between “john” and “has”; next,
the head of “has” undergoes T -to-C head-movement to merge with the covert complementizer, ✏/Cquestion, which
indicates that the sentence is an interrogative; finally, “who” undergoes wh-fronting by (internally) merging with
✏/Cquestion. Wh-fronting (of “who”) and Subject-raising (of “john”), instances of A’-movement and A-movement
respectively, are triggered by different licensor features, the former by +r and the latter by +l.

number of distinct selectional features in the lexi-
con (this rewards lexicons that are more exclusive
in which structures they generate).4 We encoded
these cost function as first order logical formulae,
adding them to the SMT-solver after running the
inference procedure, and then re-solving; the re-
sulting set of (inferred) MGs are optimal with re-
spect to the specified cost functions.

4Cost functions (i) and (ii) are based on the MDL prin-
ciple (see also (Stabler, 1998)), whereas cost function (iii) is
based on the Subset principle.

This produced a subset of G⇤, denoted F ⇤, in
which each lexicon had exactly: 24 lexical items;
48 features in the lexicon (not including the spe-
cial feature C); 202 features in the parses; at least
five distinct selectional features. Lexicons sam-
pled from F ⇤ produced parses that respect the
syntactic relations prescribed in Table-1 and do
align with structures prescribed by contemporary
theories of minimalist syntax. See Lexicon-B in
Table-2 for a representative member of F ⇤ – the



syntactic phenomenon that Lexicon-B correctly
models includes: A’ movement (Wh-fronting for
question formation); a (double) VP shell structure
that employs V -to-v head-movement (as part of
the predicate-argument structure within the parse
tree; see (Hale and Keyser, 2002)); T -to-C head-
movement (i.e. subj-auxiliary verb inversion) and
A-movement (subject raising for morphological
agreement). See Figure-1 for a parse produced by
Lexicon-B that demonstrates these syntactic phe-
nomenon.

Conclusion. Our results demonstrate that our pro-
cedure for inferring MGs is able to acquire knowl-
edge of syntax from psychologically plausible in-
put and employ movement (i.e. displacement) to
establish multiple (crossing and nested) discontin-
uous relations within a syntactic structure. We
observe that by enabling and disabling axioms in
our model, it is possible to determine which ax-
ioms are redundant, and thereby gain insight into

whether the universal linguistic principles, from

which the axioms of the system are largely de-

rived, are justified or can be discarded, thus aiding
in the evaluation of the Strong Minimalist Thesis
(Chomsky, 2001, 2008). Going forward, we will
focus on examining the over-generations produced
by the MGs inferred by our procedure and under-
standing how these over-generations relate to the
cost functions used by our procedure for identify-
ing optimal grammars.
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1 Overview

Recent advances in unsupervised learning of lin-
guistic structure have demonstrated the feasibility
of inferring latent morphological parses from an
unannotated corpus given transparent underlying-
to-surface mappings (ex., Adaptor Grammars
(AGs); (Johnson et al., 2007; Johnson and Gold-
water, 2009), as well as in learning predictable
phonological transformations from prespecified
underlying morphemes to a range of surface al-
lomorphs via a stochastic edit distance algorithm
(Cotterell et al., 2015). In this paper we in-
troduce a nonparametric Bayesian model which
builds on the morpheme-segmentation success of
AGs, and incorporates the ability to learn pre-
dictable phonological transformations of underly-
ing forms to their surface allomorphs via the inter-
action of markedness and faithfulness principles,
inspired by generative phonology. The unsuper-
vised nature of this model (that is, no semantic
information about the words being segmented is
provided) is relevant not only computationally but
also psychologically, as it mirrors developmental
findings (Kim, 2015) that young infants segment
and cluster morphemes based solely on phonetic
and distributional similarity. The model also in-
corporates many of the other cognitive restrictions
infants during the initial period of morphophono-
logical learning in an effort to make the model
maximally realistic, and thus eventually useful in
making quantitative predictions about the early
stages of morphophonological acquisition that can
be experimentally investigated. We evaluate the
model on a novel dataset consisting of a complex
system of allomorphy in Acehnese, an understud-
ied Indonesian language.

2 Model design

The model takes the general structure of a (rel-
atively shallow) AG with rewrite rules Word !
Morph(s), Morph ! Phoneme(s). The model dif-
fers, however, in that it considers whether a possi-
ble novel morpheme could be derived from an ex-
isting item in the lexicon via a phonological trans-
formation (at a cost), as well as reused directly
(if it exactly matches a lexical item) or generated
anew. The parameterization of the penalty for non-
identity transformations is informed by research
demonstrating that infant and adult learners pre-
fer phonetically-minimal alternations (ex., White
(2013), cf. (Steriade, 2009) on the P-Map hypoth-
esis more broadly), and that speakers are sensitive
to the segment-to-segment transitional probabili-
ties (cf. Vitevitch and Luce (2004)) of their native
language(s). Thus, the probability of a novel mor-
pheme being a transformation of an existing one
is equal to the probability of the source morpheme
in question being reused (as in a standard AG)
multiplied by the penalty associated with a spe-
cific segment-to-segment mapping, operational-
ized as the number of phonological feature val-
ues by which the input and output segments differ
(“faithfulness” to the input). This quantity is then
multiplied by the probability of the surface string
created through the unfaithful mapping, as calcu-
lated from the surface-distribution of phonemes
in the unsegmented corpus (corresponding to a
penalty for the “markedness” of the surface form),
and the morpheme-length parameter �. The faith-
fulness penalties on segment-to-segment transfor-
mations was equal to twice the featural edit dis-
tance between the two segments, and penalties for
surface forms were calculated via segmental tri-
gram probabilities of the corpus.



2.1 Implementation

Unless otherwise noted below, the model was ini-
tialized with words parsed as monomorphemic
roots, following the phonological acquisition lit-
erature which shows infants store unanalyzed
chunks of their input during early learning (Ngon
et al., 2013). Inference for all parameters was
carried out via Gibbs sampling; the hyperparam-
eters ↵ and �, as well as the length penalty � on
morpheme lengths, were sampled using the slice-
sampling technique from Neal et al. (2003), as im-
plemented in Johnson and Goldwater (2009).

3 Data

We tested the model on a group of morphophono-
logical alternations observed affecting labial-
initial prefixes in Acehnese (Malayo-Polynesian,
3.5 million speakers, primarily in Indonesia). Two
Acehnese verbal prefixes peu- /pW-/ and meu-
/mW-/ exhibit allomorphy when prefixed to a base
which begins with a labial consonant ({/p, b, m,
w/}), surfacing as to [pu-] and [mu-] respectively
with the back high unrounded vowel having under-
gone the phonological process rounding. A second
process, spirantization, applies to the peu- prefix
when the base to which it is attached begins with a
labial consonant and is also polysyllabic, changing
the initial consonant of the prefix from /p/ to [s],
as in /pW-maNat/ ! [sWmaNat]. Further, spiranti-
zation bleeds rounding when the conditioning en-
vironments overlap, appearing to “apply” before-
hand and so removing the environment (the labial
onset of the prefix) which would have triggered
rounding: /pW-maNat/ ! [sWmaNat], *[sumaNat]
(Durie, 1985). Thus, summarizing the data pat-
tern, we find: /pW-/ ! {[pW-, pu-, sW-]}, /mW-/
! {[mW-, mu-]}.

The use of Acehnese in evaluating the model
is relevant for two reasons. First, there has been
no known computational work on the language,
nor even detailed quantitative study of the lan-
guages morphophonology. Therefore, the phe-
nomena explored here (idealized based on corpus
data gathered as part of Breiss, in prep.) pro-
vide a novel perspective on which to test tra-
ditionally English-centric tests of unsupervised
learning of linguistic structure. Secondly, the
specifics of the morphophonological alternations
in the Acehnese data are typologically unusual,
exhibiting processes which are both phonetically-
motivated (rounding in the context of two labial

Figure 1: Evaluation statistics; each cell displays Pre-
cision / Recall / F-score for that combination of model
settings and data.

segments) as well as phonetically arbitrary (spi-
rantization). Prior research has shown that speak-
ers may be biased towards learning and/or gener-
alizing phonetically-natural patterns or processes
more than phonetically-arbitrary ones; therefore,
the trade-off in productivity between lexical listing
and phonological derivation of allomorphs instan-
tiated in the model can be used to make testable,
quantitative predictions about human behavior.

4 Evaluation

F-score for identifying polymorphemic words,
morpheme boundary F-score, and the percentage
of surface allomorphs were derived from the cor-
rect underlying form (prefix and root) were calcu-
lated. We test each of the methods on a dataset
consisting solely of polymorphemic words, a
dataset with bare roots for 50% of the polymor-
phemic words, and a dataset with bare roots for all
of the polymorphemic words (referred to as Zero,
Half, and All respectively). Results are presented
in 1, where each cell lists Precision / Recall / F-
score.

4.1 Segmentation only

The first test is whether, under ideal conditions,
the model correctly parses the data into its surface
allomorphs. Disabling the option to consider non-
faithful lexical reuse, the model is able to perform
moderately well on segmenting the corpus. Since
the Zero setting did not discover any segmentation



with words initialized as unanalyzed roots, ran-
dom initialization was used for this condition only.

4.2 Allomorphy only

The phonological corollary to the morphological
segmentation question is whether, under ideal con-
ditions, the model can collapse the allomorphs of
each morpheme into a single underlying represen-
tation. For this test, we gave the morphemic parse
of each of the words in training, and then allowed
the model to be informed by the faithfulness penal-
ties as it discovered the most likely division be-
tween lexicalization and derivation for each of the
allomorphs.

4.3 Simultaneous morphological

segmentation and phonological

abstraction over allomorphs

We test the model in a more realistic situation by
asking it to discover the correct segmentation as
well as the correct phonological alternations, and
find that neither task is impaired when performed
jointly with the other (in fact, in certain cases the
performance is marginally improved; we take this
as a suggestion that further scaling up of the model
and dataset may give rise to more robust synergies;
cf. Johnson (2008)).

5 Future work

While the model as presented here represents a
significant step towards integrating insights from
the developmental literature with computational
methods of learning of linguistic structure from
unlabelled data, it is hardly an adequate or com-
plete model of early morphophonological acqui-
sition. We see three main fronts along which
the model can be improved: robustness to (more)
naturalistic data, greater flexibility in non-faithful
transformations to handle epenthesis and dele-
tion phenomena, and the more robust integration
of phonological principles to yield interpretable
constraint-based grammars as part of the model
yield.

In terms of data realism, the model can be im-
proved so as to handle noisier, larger datasets:
while the model does well given at least some

bound-free pairs as evidence, not all languages
allow roots to surface bare; thus improving the
willingness of the model to consider morphologi-
cal decomposition even in the absence of minimal
pairs of bound-affixed forms is essential.

The linguistic validity of the range of hypothe-
ses that the model considers can be enhanced by
allowing it to consider strings of varying lengths
as possible sources for non-faithful transforma-
tions. As implemented, the model only considers
non-identity lexical sources for novel morphemes
which are of the same length (in phonemes) as
the novel morpheme under consideration. How-
ever, natural languages frequently exhibit deletion
or epenthesis processes as part of morphophono-
logical alternations (ex., the allomorphy of the En-
glish plural; /-z/ ! {[-z, -s, -@z]}).

Two further improvements to the way that the
model handles markedness and faithfulness penal-
ties will allow the trained model to yield a gram-
mar of weighted constraints, in addition to a lexi-
con and morphological parse, which can be com-
pared to those which are the subject of analysis
in other areas of generative phonology. On the
faithfulness front, future experimental work can
ground the specific penalties associated with non-
identity transformations in data from confusabil-
ity matrices, as in White (2017). These findings
can be incorporated into the model by treating
the phonetic distance between non-faithful map-
pings of segments as the mean of a Gaussian prior
over possible penalties, rather than an absolute
penalty itself. This will allow the model to de-
viate from the phonetically-informed priors in the
face of compelling language-specific evidence for
phonetically-unnatural alternations, mirroring the
experimental findings of Wilson (2006).

The phonotactic markedness penalty given to
surface forms can be enhanced by incorporat-
ing the ability to learn language-specific, feature-
based phonotactic constraints from the already-
segmented lexicon. This is motivated by the work
ofHayes and Wilson (2008); Becker et al. (2011);
Kager and Pater (2012); Hayes and White (2013);
Rasin and Katzir (2016), among others, which
shows that adult speakers internalize only a sub-
set of available statistical generalizations latent in
the data, informed by the statistics of the lan-
guage and possibly prior grammatical knowledge.
This constraint-based markedness penalty would
replace the current phoneme trigram penalty over
surface forms.
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1 Introduction

Syntactic literature tends towards a big-picture
outlook, abstracting away from details such as full
specifications of lexical items or features involved
in derivations. However, a lower-level description
is required to identify differences between com-
peting analyses of the same phenomenon.

For a concrete example, consider the double ob-
ject construction (e.g. John gave Mary a book)
in English. One option is to combine the internal
arguments Mary and a book in a “small clause”
or PP-like structure and then merge the verb with
this constituent (e.g. Kayne 1984; Pesetsky 1996;
Harley and Jung 2015). The alternative is to have
the verb select the arguments one by one, giving
rise to VP-shells (Larson, 1988) and analyses in-
spired by them (Kawakami, 2018).

It is natural to ask whether it would be possible,
assuming a sufficiently rich formalism compatible
with the Minimalist framework, to choose the an-
swer to this and similar questions based on some
robust quantitative metric.

2 Minimalist grammars

Minimalist grammars (Stabler, 1997) are a natural
choice for this task. As a formalization of Chom-
sky’s (1995) Minimalist Program, they are well-
suited for implementing analyses of syntactic phe-
nomena, yet at the same time explicit regarding the
assumptions about syntactic units and operations.

Minimalist grammars define lexical items
(atomic expressions) as pairs consisting of a pho-
netic exponent and a sequence of syntactic fea-
tures (1). The first feature of each lexical item
is accessible to the operations, Merge and Move,
that target and delete matching features of oppos-
ing polarities. Merge combines two expressions
to build a new one, whereas Move is unary and
attracts a sub-expression into the specifier of the

main structure. Merge with head movement (HM)
concatenates pronounced features of the heads of
its arguments, providing a simple implementation
of concatenative morphology.

(1)

Positive polarity Negative polarity
Merge =x (right selector) x (category)

=>x (HM selector)
x= (left selector)

Move +x (licensor) -x (licensee)

Whichever expression contributed the positive fea-
ture becomes the head of the new expression. A
complete sentence is an expression with no fea-
tures left but the category t on its head. An exam-
ple lexicon is given in (2), along with the derived
tree of the sentence Mary laughs generated by it.

(2)

Mary :: d.-k
s :: =>v.+k.t

ed :: =>v.+k.t
laugh :: =d.v
jump :: =d.v

>

<

<

✏laugh
=d.v

s
=>v.+k.t

Mary
d.-k

3 Learning from dependencies

There is a substantial body of work dedicated to
learning grammars from unstructured strings; e.g.
an overview in (Clark, 2017). In particular, Yoshi-
naka (2011) presents an algorithm for learning
certain subclasses of multiple context-free gram-
mars. One can construct an equivalent Minimal-
ist grammar for any multiple context-free gram-
mar (Michaelis, 2001). However, such a grammar
would not make for a good starting point if our
goal is to compare and evaluate proposals of theo-
retical syntax, as modern syntactic theory heavily
relies on highly abstract concepts such as empty
categories, not directly visible in the raw data.

On the other hand, Siskind (1996) suggests that
rather than obtain syntactic structure from unstruc-
tured input, the learner can start the process of



grounding, or mapping linguistic units to atoms of
meaning, before learning syntax. Then it is plau-
sible that the learner can identify relations formed
by Merge and Move before knowing what lexi-
cal items or syntactic features are involved, which
gives rise to the approach to learning proposed
by Kobele et al. (2002). For each sentence the
learner is given ordered and directed dependencies
between morphemes, with suffixes marked as such
(3).

(3) Mary laugh -s
1

2 2

1

In this scenario, full lexical items (unique for each
sentence) can be recovered from the dependen-
cies. The learner’s task is to determine which fea-
ture distinctions should be kept and which need to
be collapsed, or unified. The pressure for unifi-
cation comes from a restriction on the number of
homophonous lexical items (Kanazawa, 1995).

As an illustration, consider the corpus of two
sentences, Mary laugh -s and Mary laugh -ed.
The learner assembles lexical items by assigning
a fresh feature to each dependency, assuming that
each data point is a complete sentence of cate-
gory t. The ordering of dependencies determines
whether each of them corresponds to Merge or
Move. The initial lexicon (4) contains two copies
each of Mary and laugh.

(4)
Mary :: f1.-f2
laugh :: =f1.f3

-s :: =>f3.+f2.t

Mary :: f4.-f5
laugh :: =f4.f6

-ed :: =>f6.+f5.t

The final step is to rename the corresponding fea-
tures throughout the lexicon in order to collapse
each pair of items into one. A familiar-looking
lexicon will arise if f1 and f4 are mapped to d,
f2 and f5 to k, and f3 and f6 to v. After fea-
ture unification, the grammar shrinks from six to
four lexical items, which can still derive the input
sentences.

4 Lexical item decomposition

This paper builds on (Kobele et al., 2002), aim-
ing to relax the segmentation requirement and let
the algorithm learn the structure within complex
words and any generalizations it would lead to.

Compare the lexicon in (2) with (5), which gen-
erates exactly the same set of sentences. Intu-
itively, (2) is better than (5), even though both have

the same number of lexical items. It captures the
similarities between different forms of the same
verb and recognizes the verbs’ internal structure:
two correct generalizations that (5) misses.

(5)

Mary :: d.-k
laughs :: =d.+k.t

laughed :: =d.+k.t
jumps :: =d.+k.t

jumped :: =d.+k.t

>

<

✏laughs
=d.+k.t

Mary
d.-k

This difference can be quantified in a number of
ways – naively as the number of phonetic and/or
syntactic units, length of encoding the grammar
or, taking into account the cost of encoding the
corpus, as minimum description length (Rissanen,
1978).

How to transition from a grammar over words
such as (5) to a grammar over morphemes (2)? In
linguistic terms, the latter reanalyzes the verb as
a complex head formed by head movement. This
can be generalized to a decomposition operation
(Kobele, 2018) that splits a lexical item’s syntactic
and phonetic features, producing a new item with
a fresh category (6). The morphological operation
generating w from the stem u and suffix v is de-
noted by �; in the simplest case it corresponds to
string concatenation.

(6)

w :: ↵�x�

>

<

↵w
↵�x�

�

#

u :: ↵y

v :: =>y�x�
w = u � v

>

<

<

↵u
↵y

v
=>y�x�

�

If syntactic decomposition is not accompanied by
splitting the phonological material, one of the new
lexical items will be an empty functional head.
Otherwise, the algorithm has to construct a mor-
phological rule by searching for phonological sim-
ilarities across the lexicon.

Concatenative morphology has been shown to
be successfully learnable in an unsupervised sce-
nario (Goldsmith, 2001), with a possibility of us-
ing the results to infer the syntactic category of
words (Hu et al., 2005); the problem of irregular
and non-concatenative patterns (such as sings vs.
sang) is also addressed in the literature (e.g. Lee



and Goldsmith 2014). Thus, in our case the learner
has access to two separate sources of information
– syntactic features and phonological patterns – to
base its decisions on.

Multiple lexical items sharing a sub-sequence
of syntactic features can be decomposed simul-
taneously, factoring out the shared features. The
pressure to do this comes from a reduced cost
in features; replacing repeating sequences is a
well-known compression technique (cf. Nevill-
Manning et al. 1994).

5 Towards a grammar over morphemes

The following example shows how a naive word-
based grammar can be transformed into a lin-
guistically motivated grammar over morphemes
via decomposition and feature unification. Let
the learner start with dependency structures (over
non-segmented words) for the following eight sen-
tences:

(7)

Mary laughs
Mary is laughing
Mary will laugh
Mary will be laughing

Mary jumps
Mary is jumping
Mary will jump
Mary will be jumping

From this data set, the algorithm discussed in sec-
tion 3 can extract the lexical items shown in (8) by
collapsing homophonous items.

(8)

Mary :: d.-k
is :: =g.+k.t

will :: =v.+k.t
be :: =g.v

laughs :: =d.+k.t
laughing :: =d.g

laugh :: =d.v
jumps :: =d.+k.t

jumping :: =d.g
jump :: =d.v

Merge dependencies in this lexicon can be conve-
niently visualized as a directed graph. In (9) ver-
tices are category features; each edge corresponds
to a lexical item and connects the category of its
complement (first phrase it selects) to that of its
own.

(9) t v g d

laughs|jumps

laugh|jump

laughing|jumping

is

will be

We begin by decomposing lexical verbs, produc-
ing the lexicon in (10). The three lexical items
laughs, laughing, and laugh are a valid target for

decomposition; and so are jumps, jumping, and
jump. Both transitions are motivated both phono-
logically (factoring out a common prefix) and syn-
tactically (splitting three feature bundles starting
with =d).

(10)

Mary :: d.-k
is :: =g.+k.t

will :: =v.+k.t
be :: =g.v

laugh :: =d.V1
jump :: =d.V2

s :: =>V1.+k.t
s :: =>V2.+k.t

ing :: =>V1.g
ing :: =>V2.g
✏ :: =>V1.v

✏ :: =>V2.v

t v g V1 d

V2

laugh

s

✏

ing

jump

s

✏

ing
is

will be

laughing = laugh � ing
jumping = jump � ing

laughs = laugh � s
jumps = jump � s

This move created two copies each of s, ing, and
✏. All of them can be conflated by unifying a sin-
gle pair of features, V1 and V2, producing a much
smaller grammar (11).

(11)

Mary :: d.-k
is :: =g.+k.t

will :: =v.+k.t
be :: =g.v

laugh :: =d.V
jump :: =d.V

s :: =V.+k.t
ing :: =V.g
✏ :: =V.v

t v g V dlaugh|jump

s

✏

ing

is

will be

laughing = laugh � ing
jumping = jump � ing

laughs = laugh � s
jumps = jump � s

The next step targets another repeated sequence of
syntactic features: +d.t. This essentially creates
a dedicated Tense projection, which hosts the sur-
face position of the subject (12). At this point,
concatenation is no longer sufficient for the mor-
phological rules, highlighting the need for a richer
theory of morphology.

(12)

Mary :: d.-k
s :: =x.+k.t

be :: =g.x
will :: =v.x

be :: =g.v

laugh :: =d.V
jump :: =d.V

✏ :: =V.x

ing :: =V.g
✏ :: =V.v



t x v g V dlaugh|jump

✏

✏

ing

be

s will be

laughing = laugh � ing
jumping = jump � ing

laughs = laugh � s
jumps = jump � s

is = be � s
will = will � s

This grammar still contains two copies of be.
While they could be collapsed by unifying v and
x, this move would cause the grammar to over-
generate, producing, for example, the set of un-
grammatical sentences Mary (will)+ be laughing.
However, adding an edge (empty head) from v to
x would make two of these items redundant with-
out generating any unwanted sentences (13). This
move can be thought of as decomposing be ::
=g.x into be :: =>g.z and ✏ :: =z.x, where z
is a fresh feature, and then unifying z with v. The
same is applicable to ✏ :: =V.x and ✏ :: =V.v.

(13)

Mary :: d.-k
s :: =x.+k.t
✏ :: =v.x

will :: =v.x
be :: =g.v

laugh :: =d.V
jump :: =d.V

ing :: =V.g
✏ :: =V.v

t x v g V dlaugh|jump

✏

✏

ings will be

laughing = laugh � ing
jumping = jump � ing

laughs = laugh � s
jumps = jump � s

is = be � s
will = will � s

We have shown how a Minimalist grammar can
be compressed in a way compatible with linguistic
theory through repeated application of lexical item
decomposition and feature unification. Together
they offer a principled way to identify repeating
patterns in the lexicon, instantiate them as new lex-
ical items, and collapse any emerging duplicates.
Our current work in progress involves building a
learning algorithm for syntax with these two op-
erations at its core. This approach would allow to
derive (potentially empty) functional heads, pro-
ducing linguistically motivated generalizations.
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Abstract
Children acquiring Spanish interpret subject
pronouns differently from adults, initially rely-
ing on pragmatic cues instead of morphosyn-
tactic cues that are more statistically reliable.
Following Gagliardi et al. (2017), we use
Bayesian cognitive modeling to explore the
sources of this non-adult-like behavior, inves-
tigating whether it is more likely due to (i)
noise in children’s representation of the proba-
bility that some cues favor certain antecedents,
or (ii) noise in children’s deployment of oth-
erwise adult-like probabilities. Results favor
noisy deployment as the source of children’s
non-adult-like pronoun resolution.

1 Intro

When children produce and interpret language dif-
ferently from adults, the underlying cause can be
unclear: do children have an immature represen-
tation of the target language, or do they simply
deploy that representation in an immature way?
One way to get at this question is to design behav-
ioral tasks that facilitate deployment (e.g., lower-
ing processing demands, improving task pragmat-
ics, using more sensitive behavioral measures),
with the idea that any non-adult-like behavior that
remains after deployment effects have been con-
trolled for is likely due to representational is-
sues. However, it can be difficult to know for sure
that deployment effects have been completely con-
trolled for in any given experiment.

Here, we show how cognitive modeling can be
used to more directly target representational ver-
sus deployment explanations of children’s non-
adult-like behavior. Following the approach of
Gagliardi et al. (2017), we use Bayesian mod-
els on a case study of Spanish-speaking children’s
pronoun resolution to explore whether their non-
adult-like use of pronominal cues is better mod-
eled as noise in (i) the representation of the infor-

mation these cues provide, or (ii) the deployment
of that information during interpretation. Results
suggest that noisy deployment is more likely to
underlie children’s non-adult-like behavior in this
case. We also discuss implications for both the de-
velopment of pronoun knowledge, and the investi-
gation of linguistic development more generally.

2 Non-adult-like pronoun resolution by
children acquiring Spanish

In Spanish, the interpretation of subject pronouns
in context depends on many constraints, but some
constraints are stronger than others. For in-
stance, subject pronouns can be probabilistically
biased by cues such as an accompanying discourse
CONNective or by the speaker’s choice of pronom-
inal FORM. In (1), temporal connective y de-
spués (‘and then’) favors the subject antecedent
(la maestra: ‘the teacher’) more strongly than
causal porque (‘because’), and use of the null
subject (pro) favors the subject antecedent more
strongly than the overt pronoun (ella). In contrast
to these probabilistic cues, subject pronouns can
be categorically disambiguated by the accompa-
nying verb’s agreement MORphology. In (2), -3S
indicates the singular subject while -3P indicates
the plural object.

(1) La
the

maestra
teacher

saluda
waves

a
at

la
the

niña,
girls,

(y
(and

después
then

/
/

porque)
because)

Ø /ella
pro/she

sale
leaves

‘The teacher waves at the girl, (and
then/because) PRONOUN leave(s).’

(2) La
the

maestrai
teacher

saluda
waves

a
at

las
the

niñask,
girls,

y
and

Ø
pro

salei
leave-3S

/
/

salenk
leave-3P

‘The teacher waves at the girls, and
PRONOUN leave(s).’



To determine how Spanish-speaking adults and
children use these three cues to interpret pronouns
in context, Forsythe (accepted) used a forced-
choice picture selection task with 47 adults, and
98 preschoolers. Participants listened to sentences
like (1) and (2) and indicated their interpretation
of the pronoun by choosing an illustration de-
picting either the subject interpretation (e.g., the
teacher waving) or the non-subject interpretation
(e.g., girls waving). Cues were fully crossed, sys-
tematically aligning and pitting each type against
the other two. Figure 1 shows how often partici-
pants chose the subject interpretation.

Figure 1: How often children ages 3-5 and adults favor
the subject interpretation of a pronoun in context, given
different cues: connectives (después, porque), pronoun
form (null, overt), and agreement morphology (agree-
ing with subject or object).

Adults favor the expected interpretation (sub-
ject vs. non-subject) on the basis of agreement
morphology, but interestingly, this preference is
not completely categorical: it is modulated by the
cues of connective and pronominal form, which
probabilistically bias the interpretation towards or
away from the subject antecedent. That is, adults
rely on all three cues when interpreting pronouns.
Children’s behavior shows qualitatively different
patterns, with three-year-olds relying only on con-
nectives, four-year-olds relying only on morphol-
ogy, and five-year-olds relying on both morphol-
ogy and connectives. Importantly, it is unclear
from these results whether children’s non-adult-
like pronoun interpretation behavior is due to an
immature representation of the information that
these cues carry (e.g., three-year-olds only have
an adult-like representation of connectives) or to
an immature ability to deploy the representations
they have (e.g., three-year-olds have an adult-like
representation of morphology, but fail to access it
correctly in the moment). This is where cognitive
modeling can help.

3 Modeling child pronoun resolution
behavior

This pronoun interpretation behavior serves as our
modeling target: a successful model will match
children’s behavioral patterns in each experimen-
tal condition as closely as possible. The model’s
input will be the same input that children acquir-
ing Spanish use when learning how each of these
cues predicts pronoun antecedents. Table 1 shows
the rate of reference to the preceding subject an-
tecedent and to singular antecedents, for different
cue types, based on samples drawn from a corpus
of 54,757 child-directed Spanish utterances.

Table 1: Rates of reference to different antecedent
types in the presence of different CONNectives, pro-
noun FORMs, and agreement MORphology in child-
directed Spanish.

cue value subject antecedent

CONN
después (29/54) 54%
porque (52/149) 35%

FORM
null (1,093/2,376) 46%
overt (64/291) 22%

singular antecedent

MOR
singular (5,655/5,662) 99.9%
plural (9/1,336) 0.7%

All the cues in these child-directed speech sam-
ples appear to follow the patterns we expect from
adult behavior: connectives and pronominal form
are more probabilistic cues, while agreement mor-
phology is fairly categorical. This input pattern
makes it surprising that younger children initially
don’t rely on agreement morphology.

To probe the underlying source of this imma-
ture behavior, we follow Gagliardi et al. (2017),
who model linguistic immaturity as noise–either
noise in the modeled child’s representation of the
information a given cue provides, or noise in the
ability to reliably use that information in novel sit-
uations, such as an experimental task. Here, we
ask whether children’s non-adult-like interpreta-
tion of Spanish pronouns is best captured as noise
in the representation of the information provided
by cues from connectives, pronominal form, and
agreement morphology, or as noise in how this in-
formation is accessed during the experiment.

3.1 Baseline model
We model children’s reasoning process, which
combines the information provided by cues in the
child’s input with the child’s prior about the pro-



noun’s most likely antecedent, using Bayesian in-
ference as in (1). Bayesian inference is often used
for cognitive development modeling, as it can cap-
ture human behavior very well (e.g., Perfors et al.
(2011) Pearl and Mis (2016)).

The modeled child calculates the probability of
a potential pronoun antecedent ↵ (e.g., the teacher)
given a particular combination of cues extracted
from the pronoun and its utterance (e.g., fMOR:sg,
fCONN: después, fFORM: null), which corresponds
to the posterior P (↵|fMOR, fCONN, fFORM). This
posterior is calculated by considering two proba-
bilities extracted from the input: (i) the likelihood
of each cue’s value, given that type of antecedent
(P (fCUE VAL|↵)) and (ii) the prior probability of re-
ferring to this type of antecedent (P (↵)).

P (↵|fMOR, fCONN, fFORM) /
P (fMOR|↵) · P (fCONN|↵) · P (fFORM|↵)

·P (↵)

(1)

This version of the modeled child makes opti-
mal use of the cues as they appear in the input and
will therefore rely most heavily on the most reli-
able cues, such as morphology–in clear contrast
to what we observe in children. To model a child
with either immature representations of cue infor-
mation or immature deployment of cue informa-
tion, we introduce noise into this optimal model.

3.2 A noisy representation model
The noisy representation model we implement en-
codes the idea that children behave differently
from adults because they have an immature repre-
sentation of one or more pronominal cues, which
is caused by noisily extracting cue information
from the input. For example, suppose the link be-
tween singular and plural surface agreement and
underlying number features is immature. This
would prevent the child from accurately tracking
how the number semantics of a pronoun’s accom-
panying agreement marker predicts the number se-
mantics of its antecedent (i.e., for the child, singu-
lar morphology might not categorically predict a
singular antecedent). This in turn could flatten the
dramatic difference between P (↵:sg|fMOR:sg) and
P (↵:sg|fMOR:pl) that is evident from the Spanish-
language input in Table 1. Whatever the cause,
noisy encoding of cue information from the input
will yield non-adult-like likelihood terms.

The noisy representation model in (2) flattens
the distributions for each likelihood term using
softmax (e�·P ), which is standardly used for this

purpose to model decision-making tasks, includ-
ing language tasks (e.g. Frank and Goodman
(2012); Goodman and Stuhlmüller (2013); Scon-
tras and Goodman (2017)). The level of noise as-
sociated with each cue type is controlled by the
parameters �MOR, �CONN, and �FORM, with smaller
values indicating a flatter distribution and greater
values indicating a sharpened distribution.

P (↵|fMOR, fCONN, fFORM) /

e�MORP (fMOR|↵) · e�CONNP (fCONN|↵) · e�FORMP (fFORM|↵)

·P (↵)

(2)

3.3 Two noisy deployment models
We also implement two noisy deployment models
encoding the idea that children behave differently
from adults because they immaturely access adult-
like cue representations during the experimental
task. Both models accurately encode the cue infor-
mation from children’s input but deploy this infor-
mation inaccurately, either (i) occasionally delet-
ing cue information (noisy deletion), or (ii) sub-
stituting accurate cue information with a default
value (noisy default). Such deletion or substitu-
tion of cue information from experimental items
could be caused by a variety of factors, includ-
ing limited working memory capacity, background
noise, inattention, and so on. Whatever the reason,
the result is that the child inaccurately deploys this
otherwise accurate cue information.

More specifically, both noisy deployment mod-
els rely on cue likelihoods (P (fCUE VAL|↵)) accu-
rately obtained from the input but access this in-
formation probabilistically via mixture modeling.
The noisy deletion model (3) mixes the optimal
model with models that delete one, two, or all
three cues. In other words, when this modeled
child is unable to deploy a given cue, she simply
drops that cue’s information.

P (↵|fMOR, fCONN, fFORM) /
[(�MOR)(�CONN)(�FORM) P (↵|fMOR, fCONN, fFORM) +

(1� �MOR)(�CONN)(�FOR) P (↵|fCONN, fFORM) +

... +

(1� �MOR)(1� �CONN)(1� �FORM)]⇥
P (↵)

(3)

The noisy default model (4) mixes the optimal
model with models that substitute the cue’s true
value ([acc]) with a default ([def ]), which we de-
termined by sampling from the distribution of cue
values in the child’s input. In other words, when
this modeled child is unable to deploy a given cue,
she inserts a default value.



P (↵|fMOR, fCONN, fFORM) /
[(�MOR)(�CONN)(�FORM)

P (↵|fMOR = [acc], fCONN = [acc], fFORM = [acc]) +

(1� �MOR)(�CONN)(�FORM)

P (↵|fMOR = [def ], fCONN = [acc], fFORM = [acc]) +

... +

(1� �MOR)(1� �CONN)(1� �FORM)

P (↵|fMOR = [def ], fCONN = [def ], fFORM = [def ])]⇥
P (↵)

(4)

In both mixture models, the level of noise asso-
ciated with each cue is determined by how much
each sub-model contributes to the mix. Specifi-
cally, in (3) �MOR, �CONN, and �FORM indicate the
rate at which morphological, connective, and form
cues are included, while in (4) they indicate the
rate at which the accurate cue value is retained.

3.4 Results and discussion
All three noisy models significantly outperform
the baseline optimal model in capturing child
behavior at age 3 (GLLR: all �2(3)>1641, all
p<0.001), 4 (all �2(3)>1451, all p<0.001), and
5 (all �2(3)>976, all p<0.001); notably, the same
is true for adult behavior (all �2(3)>509, all
p<0.001). Among the three noisy models, the
two noisy deployment models have lower overall
MSEs and higher log likelihoods. This suggests
that the noisy deployment models are consistently
better at capturing the pronoun resolution behavior
of the adults and children in this experiment and,
moreover, that the underlying source of children’s
non-optimal pronoun interpretations is more likely
to be an immature deployment of their otherwise
mature representations of cue information.

In terms of the amount of noise associated with
each cue, our models show similar developmental
patterns (see Figure 2). First, there’s a steady de-
crease in the noise associated with agreement mor-
phology as children get older (i.e., the red lines
show an increase in children’s reliance on this
cue). Second, the noise associated to connectives
(green lines) is almost adult-like from age four on,
while three-year-olds appear more sensitive than
adults. Third, none of the best-fitting models indi-
cate much use of pronominal form at all (i.e., blue
lines close to 0)–including the best-fitting mod-
els for adults. This suggests that mostly ignoring
pronominal form in this task is in fact adult-like.

4 Conclusion and future directions

Here we have shown how to use cognitive mod-
eling to implement two different types of devel-

Figure 2: Best-fitting noise parameters for each model
and age group. Larger values indicate less noise.

opmental theories about why children’s interpre-
tation of Spanish subject pronouns is non-adult-
like. Our results suggest that immature deploy-
ment, rather than immature representation of cue
information, is the more likely cause of children’s
behavior. In particular, younger children seem to
inconsistently access their representations of how
agreement morphology predicts the number of the
pronoun’s antecedent.

However, we do note that children show qualita-
tively different behavior in singular vs. plural con-
ditions and that the noisy representation model is
particularly bad at capturing this difference. This
suggests that future work may improve model fit
by using separate noise parameters for singular
and plural morphology, rather than a single noise
parameter for agreement morphology. This may
result in a better quantitative fit to child behavior,
especially for the noisy representation model.

More generally, our approach demonstrates how
computational modeling can complement behav-
ioral approaches to the investigation of language
development, affording a clearer picture of what it
is that changes as children grow into adults.
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A growing body of research aims to describe
phonological patterns with subregular classes of
formal languages or functions. Of particular note
in this subregular hierarchy are the Strictly Lo-
cal languages (SL; McNaughton and Papert, 1971;
Rogers and Pullum, 2011; Rogers et al., 2013),
and the Strictly Piecewise languages (SP; Heinz,
2010; Rogers et al., 2010, 2013), both of which
are described in more detail below. The SL lan-
guages were extended to functions by Chandlee
(2014) and Chandlee et al. (2014, 2015); the work
presented here investigates whether the SP lan-
guages can be extended to functions in a similar
way. While the SP functions may be able to cap-
ture non-local phonological processes that are not
SL, it is somewhat difficult to achieve a straight-
forward definition of an SP function. As part of
this work in progress, we first define a more pow-
erful type of function and investigate whether the
intended SP properties can be obtained by impos-
ing specific restrictions.

The SLk languages are those that ban certain
contiguous sequences of length k, and have been
put forth as a characterization of locally bounded
phonotactic restrictions. A key property of SLk

languages is what is known as Suffix Substitution
Closure (Rogers and Pullum, 2011; Rogers et al.,
2013): any two well-formed strings in an SLk lan-
guage that share a suffix of length k � 1 can both
be legally continued by the same set of strings.

Chandlee (2014) and Chandlee et al. (2014,
2015) expanded on this property to define the
Strictly Local functions, in which the the output
associated with an input segment is determined by
the immediately preceding k�1 elements on either
the input side (ISLk) or output side (OSLk). These
functions can model many local phonological pro-
cesses such as substitution, deletion, and epenthe-
sis. A major limitation of the SL languages and
functions, though, is that they cannot model long-

distance patterns such as sibilant harmony in Aari
(e.g., /Sed-er-s-it/ ! [SederSit], ‘I was seen’; Hay-
ward, 1990).

One proposed means of capturing long-distance
patterns is to eliminate the requirement of conti-
guity. The SPk languages operate in this man-
ner, banning certain sequences of length k whether
contiguous or not. For example, sibilant harmony
in Aari can be described as a ban on output strings
that contain the subsequence [S...s]. As many non-
local phonotactic dependencies can be character-
ized as SP languages (Heinz, 2010), this raises
the question of whether the language class can be
extended to functions as well. Preliminary work
suggests that it may be possible to do so, though
our line of inquiry faces an interesting challenge.
Namely, the SPk languages do not exhibit a prop-
erty directly analogous to Suffix Substitution Clo-
sure, which makes it difficult to extend them to
functions with the same approach that has been
used for the ISLk or OSLk functions.

Interestingly, the class of Piecewise Testable
languages (PT; Simon, 1975; Rogers et al., 2010,
2013), which are the boolean closure of the SP
languages, do have such a suffix-related closure
property. Rather than simply banning specific sub-
sequences, a PTk language is one that excludes
strings with an impermissible set of subsequences
of up to length k. Rogers et al.’s (2013) Theo-
rem 7 states that given a PTk language L and any
two strings with a matching set of subsequences
of up to length k, either both strings are in L or
neither string is in L. A corollary of this Theorem
is that any two well-formed strings in a PTk lan-
guage that have matching sets of subsequences of
up to length k can both be legally continued by the
same set of strings. The SPk languages are effec-
tively a restricted type of PTk language, and we
propose to define the SPk functions as PTk func-
tions that satisfy certain restrictions.



Intuitively, an Output Piecewise k-Testable
(OPTk) function would keep track of the subse-
quences of up to length k produced so far, which
would dictate the output for any subsequent input
segment. For example, consider Figure 1 which
shows how a hypothetical OPT1 function would
model the Aari sibilant harmony from above. Each
circle represents the strings of length 1 (i.e., the
individual segments) produced thus far, and an ar-
row labelled x : y acts as instruction to output y
and move to the indicated state upon reading x.

�

Ss

?

S, ?s, ?

?:?
S:Ss:s

?:? ?:?S:Ss:s

S:S

s:S

s:s

S:s

S:S

s:S

s:s

S:s

?:? ?:??:?

Figure 1: Aari sibilant harmony as an OPT1 function,
where ? denotes any non-sibilant

The key difference between an SPk and a PTk

language is that a given k-subsequence has a con-
sistent effect on well-formedness in an SPk lan-
guage; this is not necessarily true in a PTk lan-
guage. Since a PTk language is defined with
reference to sets of subsequences, it is possible
for a PTk language to exclude (i.e., treat as ill-
formed) all strings containing a given k-length
subsequence u, except those strings that also con-
tain a different k-length subsequence v. Such
conditional well-formedness of a k-length subse-
quence is impossible to describe using an SPk lan-
guage.

We therefore propose that the SPk functions
could be defined by restricting the PTk functions
such that the presence of a given subsequence has
a consistent effect on the output for some input
segment. A preliminary definition of the Output
Strictly k-Piecewise (OSPk) functions along these
lines is provided below. Subk�1(x) denotes the
set of subsequences of up to length k � 1 in a
string x, and cont(�, w) denotes the contribution

of � relative to w, or the output produced upon
reading � after having read w.

Definition 1. A function f : ⌃⇤ ! �⇤
is OSPk

iff:

1. If cont(�, w) is undefined, then

cont(�, w0) is undefined for all w0
such that

Subk�1(f(w0)) ◆ Subk�1(f(w))

2. If Subk�1(f(w1)) 6= Subk�1(f(w2))
and cont(�, w1) 6= cont(�, w2), then ei-

ther:

• cont(�, w3) = cont(�, w1) for all

w3 such that Subk�1(f(w3)) ◆
(Subk�1(f(w1)) [ Subk(f(w2)))

• cont(�, w3) = cont(�, w2) for all

w3 such that Subk�1(f(w3)) ◆
(Subk�1(f(w1)) [ Subk(f(w2)))

The first point ensures that if some instance of
an output subsequence causes the contribution of
a following input element to be undefined in one
case, then all instances of that output subsequence
will cause the contribution of that following input
element to be undefined. The second point ensures
that when two subsequences have a different de-

fined effect on the contribution of some input ele-
ment, one of these is dominant and will apply to all
mappings containing both subsequences. If this is
indeed an appropriate definition of the OSPk func-
tions, an automata-theoretic characterization as in
Figure 1 seems likely achievable.

Future work could then compare the OSP func-
tions and the Output Tier-based Strictly Local
functions (OTSL; Chandlee et al., 2017; Chan-
dlee and McMullin, 2018; Burness and McMullin,
2019), which have also been put forth as a means
of capturing non-local phonological maps. Like
their name suggests, these are functional exten-
sions of the Tier-based Strictly Local languages
(TSL; Heinz et al., 2011; McMullin and Hansson,
2016). Rather than eschewing contiguity, the TSL
languages and functions capture long-distance pat-
terns by augmenting the SL languages and func-
tions with a tier—a subset of the alphabet that al-
lows us to ignore irrelevant elements that stand be-
tween interacting elements.

A decisive outcome from this comparison
would have interesting consequences for phono-
logical theory. If the OSP functions offer a bet-
ter fit to the typology, it would suggest that local
and non-local phonological maps are fundamen-
tally different: the former operating according to
strict precedence and the latter operating accord-
ing to general precedence. If, on the other hand,



the OTSL functions offer a better fit to the typol-
ogy, it would suggest that all phonological maps
operate according to strict precedence, relative to
certain elements.
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Semantic categories of artifacts and animals reflect efficient coding
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It has been argued that cross-language variation
in semantic categories reflects pressure for effi-
cient communication (e.g. Kemp et al. 2018). On
this view, the lexicons of different languages rep-
resent a variety of means to the same functional
end: transmitting ideas accurately, with minimal
cognitive complexity. Recently, Zaslavsky et al.
(2018) cast this idea in terms of an indepen-
dent information-theoretic principle of efficiency,
the Information Bottleneck (IB) principle (Tishby
et al., 1999), which is closely related to Shannon’s
rate distortion theory. In this context, IB is given
an underlying cognitive representation of a seman-
tic domain, and a prior over objects in the do-
main, and it produces a set of optimal category
systems for that domain, for different trade-offs
between system complexity and accuracy. These
optimal systems define the theoretical limit of ef-
ficiency. Zaslavsky et al. (2018) showed that IB
explains much of the variation in color naming
across languages, and also accounts for the emer-
gence and evolution of named color categories,
including soft structure and patterns of inconsis-
tent naming. However, it has remained unclear to
what extent this account generalizes to semantic
domains other than color. Here we show that it
generalizes to two qualitatively different semantic
domains: names for containers, and for animals.

Containers. We considered container naming
and pile-sorting data collected by White et al.
(2017), relative to a stimulus set of 192 images
of household containers (see Figure 2A for ex-
amples), produced by Dutch and French mono-
lingual speakers, and by bilinguals in each of the
two languages, yielding four conditions: language
(Dutch, French) ⇥ linguistic status (monolingual,
bilingual). We took the sorting data to provide

⇤ Present address: Department of Brain and Cognitive Sci-
ences, MIT.
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Figure 1: The black curve is the IB theoretical limit of
efficiency for container naming, identifying the maxi-
mum achievable level of accuracy at each level of com-
plexity. Points above this curve are unachievable. The
four conditions considered exhibit near-optimal trade-
offs between accuracy and complexity in container
naming.

domain structure, against which we assessed the
efficiency of the naming data by applying the IB
method. The results are shown in Figure 1. It can
be seen that the efficiency of container naming in
Dutch and French lies near the theoretical limit,
for both monolinguals and bilinguals. These sys-
tems were also found to be more efficient than a
set of hypothetical variants of these systems.

For visualization purposes, we embedded the
192 containers in a 2-dimensional space by apply-
ing non-metric multidimensional scaling (nMDS)
with respect to the similarity data, similar
to Ameel et al. (2009). We assigned a unique
color to each container. The resulting 2D embed-
ding and color coding of the containers stimulus
set are shown in Figure 2A. The monolingual sys-
tems in Dutch and French are shown in Figure 2B,
together with the corresponding optimal systems
on the IB curve. It can be seen that the IB systems
capture qualitative aspects of the actual systems,
including soft categories and inconsistent naming
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bôıte
spray

Data

fles
pot
bus
doos
tube
brik
blik

IB

bouteille
pot
flacon
tube
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Figure 2: A. Two dimensional nMDS embedding and color coding of the containers stimulus set used by White
et al. (2017). Images show a few examples. B. Monolingual naming distributions for Dutch (upper left) and French
(lower left), together with their corresponding IB systems (right column), are visualized over the 2D embedding
shown in (A). Each color corresponds to the color centroid of a container category, based on the color map in (A).
Colors show category probabilities above 0.4, and color intensities reflect the values between 0.4 and 1. White
dots correspond to containers for which no category is used with probability above 0.4. Legend for each language
shows only major terms.

for some objects, showing that these phenomena
can be explained by a drive for efficiency.
Animals. Brown (1984) proposed an implica-
tional hierarchy of animal categories across lan-
guages, based on data from 144 languages. We
conducted an analysis of animal naming broadly
analogous to the container analysis described
above, based on human-generated features and fa-
miliarity ratings drawn from the Leuven Natural
Concept Database (De Deyne et al., 2008). That
analysis (not illustrated or elaborated here for rea-
sons of space) revealed that the IB theoretical limit
of efficiency in this domain correctly predicts sev-
eral aspects of Brown’s hierarchy.
Conclusion. These findings suggest that fun-
damental information-theoretic principles of effi-
cient coding may shape semantic categories across
languages and across domains.
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