BioNLP 2017

SIGBioMed Workshop on Biomedical Natural Language
Processing

Proceedings of the 16th BioNLP Workshop

August 4, 2017
Vancouver, Canada



(©2017 The Association for Computational Linguistics

ISBN 978-1-945626-59-3

il



Biomedical natural language processing in 2017:
The view from computational linguistics

Kevin Bretonnel Cohen, Dina Demner-Fushman,
Sophia Ananiadou, and Jun-ichi Tsujii

According to the Association for Computational Linguistics guidelines on special interest groups (SIGs),
The function of a SIG is to encourage interest and activity in specific areas within the ACL’s field[1]. Is
the SIGBioMed special interest group “within the ACL’s field”? The titles of this year’s papers suggest
that it is, in that the current interest in deep learning in its many and varied manifestations is mirrored in
those titles. Do those papers cover a specific area? They do, and in doing so, they demonstrate one of
the great satisfactions of working in biomedical natural language processing.

One of the joys of involvement in the biomedical natural language processing community is seeing
the development of research with clinical applications. As examples of such work being presented at
BioNLP 2017, we would like to point out the two papers that discuss the application of natural language
processing to the diagnosis of neurological disorders. Bhatia et al.[2] describe an approach to using
speech processing in the assessment of patients with amyotrophic lateral sclerosis (also known as Lou
Gehrig’s disease), one of the more horrific motor neuron diseases. Good assessment of amyotrophic
lateral sclerosis patients is important for a number of reasons, including the fact that accurate tracking
of the inevitable deterioration that is a hallmark of this disease gives patients and their families the
possibility of purposeful planning for the attendant disability and death. However, current methodologies
for evaluating the status of amyotrophic lateral sclerosis patients necessarily involve expensive equipment
and highly trained personnel; when further developed, this methodology could make such evaluation
much more, and more frequently, available to ALS patients. The fact that the work reported here involves
a speech modality is especially exciting, as speech-related indicators of future ALS can be present long
before diagnosis. The paper uses measurements of phonological features of speech and their divergence
from a baseline, and demonstrates correlation with physiological measures.

Adams et al.[3] describe work on detecting and categorizing word production errors associated with
anomia, a particular kind of inability to find words. Screening for anomia is important because anomia
is a symptom of stroke, but it is difficult and time-consuming to do, and therefore is not done as often
as it should be. Automatic detection of anomia could be a nice enabler of improved care for stroke
victims, but it is made difficult due to the subtlety of the phonological and semantic judgments that have
to be made when assessing the phenomenon. The paper uses a combination of language modeling and
phonologically-based edit distance calculation to approach the task, applying these techniques to data
from the AphasiaBank collection of transcribed aphasic and healthy speech.

Although we have summarized only these two examples that address neurological disorders, there are
several other papers on the use of natural language processing in clinical applications: patient-produced
content in dementia [4], and health records ([5] on sepsis, [6] on e-cig use, [7] on pain and confusion);
in the aggregate, these papers illustrate very nicely the potential for natural language processing to
contribute to human well-being. Additionally, the current interest in the potential of natural language
processing for social media is reflected in papers on studying medication intake via Twitter [8] and on
monitoring dementia via blog posts [9]. Linguistics and language resources are represented in this year’s
papers, as well, including work on comparative structures [10] and a corpus construction effort [11].

The work in biomedical NLP was dominated by applications of deep learning to: punctuation restoration
[12], text classification [13], relation extraction [14], [15], [16], information retrieval [17], and similarity
judgments [18], among other exciting progress in biomedical language processing.

These are just a few examples of the high-quality research presented in BioNLP 2017.
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In addition to the excellent submissions to the BioNLP workshop, this year features equally strong
submissions to BioASQ challenge on large-scale biomedical semantic indexing and question answering,
a shared task affiliated with BioNLP 2017. This year, the BioASQ challenge, which started in 2013, had
three tasks:

e Large-Scale Online Biomedical Semantic Indexing
e Biomedical Semantic Question Answering
e Funding Information Extraction From Biomedical Literature

An overview of the tasks and the results of the challenge [19] are presented in an invited talk. The
invited speaker, George Paliouras, is a senior researcher and head of the Intelligent Information Systems
division of the Institute of Informatics and Telecommunications at NCSR “Demokritos”, Greece. He
holds a PhD in Machine Learning and has performed basic and applied research in Artificial Intelligence
for the last 20 years. He is interested in the development of novel methods for addressing challenging
big and small data analysis problems, such as learning complex models from structured relational data,
learning from noisy and sparse data, learning from multiple heterogeneous data streams, and discovering
patterns in hypergraphs. His research is motivated by the real-world problems. George has contributed to
solving a variety of such problems, ranging from spam filtering and Web personalization to biomedical
information retrieval. He has co-founded the spin-off company em i-sieve Technologies, which provides
online reputation monitoring services.

Among various contributions to the research community, George Paliouras has served as board member
in national and international scientific societies; he is serving on the editorial boards of international
journals, and has chaired international conferences. He is involved in several research projects, in the
role of scientific coordinator/principal investigator in some of them. In particular, he has coordinated and
provided the infrastructure for the BioASQ project that was funded by the European Commission. He is
currently coordinating iASiS, another project funded by the European Commission to develop big data
integration and analysis methods that will provide insight to public health policy-making for personalized
medicine.
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Abstract

We present a system for automatically
detecting and classifying phonologically
anomalous productions in the speech of
individuals with aphasia. Working from
transcribed discourse samples, our system
identifies neologisms, and uses a combina-
tion of string alignment and language mod-
els to produce a lattice of plausible words
that the speaker may have intended to pro-
duce. We then score this lattice accord-
ing to various features, and attempt to de-
termine whether the anomalous production
represented a phonemic error or a genuine
neologism. This approach has the potential
to be expanded to consider other types of
paraphasic errors, and could be applied to
awide variety of screening and therapeutic
applications.

1 Introduction

Aphasia is an acquired neurogenic language dis-
order in which an individual’s ability to produce
or comprehend language is compromised. It can
be caused by a number of different underlying
pathologies, but can generally be traced back to
physical damage to the individual’s brain: tissue
damage following ischemic or hemorrhagic stroke,
lesions caused by a traumatic brain injury or infec-
tion, etc. It can also be associated with various neu-
rodegenerative diseases, as in the case of Primary
Progressive Aphasia. According to the National
Institute of Neurological Disorders and Stroke, ap-
proximately 1,000,000 people in the United States
suffer from aphasia, and aphasia is a common con-
sequence of strokes (prevalence estimates for apha-
sia among stroke patients vary, but are typically in
the neighborhood of 30% (Engelter et al., 2006)).

1

Anomia is a the inability to access and re-
trieve words during language production, and is a
common manifestation of aphasia (Goodglass and
Wingfield, 1997). An anomic individual will ex-
perience difficulty producing words and naming
items, which can cause substantial difficulties in
day-to-day communication.

The process of screening for, diagnosing, and
assessing anomia is typically manual in nature,
and requires substantial time, labor, and exper-
tise. Compared to other neuropsychological as-
sessment instruments, aphasia-related assessments
are particularly difficult to computerize, as they
typically depend on subtle and complex linguis-
tic judgments about the phonological and semantic
similarity of words, and also require the examiner
to interpret phonologically disordered speech. Fur-
thermore, the most commonly used assessments fo-
cus for practical reasons on relatively constrained
tasks such as picture naming, which may lack eco-
logical validity (Mayer and Murray, 2003).

In this work, we describe an approach to au-
tomatically detecting and analyzing certain cate-
gories of word production errors characteristic of
anomia in connected speech. Our approach is a
first step towards an automated anomia assessment
tool that could be used cost effectively in both
clinical and research settings,! and could also be
applied to other disorders of speech production.
The method we propose uses statistical language
models to identify possible errors, and employs a
phonologically-informed edit distance model to de-
termine phonological similarity between the sub-
ject’s utterance and a set of plausible “intended
words.” We then apply machine learning tech-
niques to determine which of several categories
a given erroneous production may fall into. We

'As in the computer-administered (but manually-scored)
assessments developed by Fergadiotis and colleagues (Ferga-
diotis et al., 2015; Hula et al., 2015).
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show results on intrinsic evaluations comparable
to state-of-the-art sentence completion, as well as
an extrinsic measure of classification well above a
“most-frequent” baseline strategy.

1.1 Anomia and Paraphasias

Anomia can take several different forms, but in this
work we are concerned with paraphasias, which
are unintended errors in word production.’

There are several categories of paraphasic error.
Semantic errors arise when an individual uninten-
tionally produces a semantically-related word to
their original, intended word (their “target word”).
A classic semantic error would be saying “cat”
when one intended to say “dog.”

Phonemic (sometimes called “formal”) errors
occur when the speaker produces an unrelated
word that is phonemically related to their target:
“mat” for “cat”, for example. It is also possible for
an erroneous production to be mixed, that is both
semantically and phonemically related to the tar-
get word: “rat” for “cat.” Individuals with anomia
also produce unrelated errors, which are words
that are neither semantically or phonemically re-
lated to their intended target word: for example,
producing “skis” instead of “zipper.”

Each of these categories shares the commonal-
ity that the word produced by the individual is a
“real” word. There is another family of anomic er-
rors, neologisms, in which the individual produces
non-word productions. A neologistic production
may be phonemically related to the target, but con-
taining phonological errors: “[damowso1]” for “di-
nosaur.” These are often referred to as phonologi-
cal paraphasias. Alternatively, the individual may
produce abstruse neologisms, in which the pro-
duced phonemes bear no discernable similarity to
any “real” lexical item (“[apmoal]” for “comb’?).

The present work focuses exclusively on neol-
ogisms, both of the phonological variety as well
as the abstruse variety. However, our fundamental
approach can be extended to include other forms,

*Note that individuals without any sort of language dis-
order do occasionally produce errors in their speech; this
fact has led to a truly shocking amount of study by linguists.
Frisch & Wright (2002) provide a reasonable overview of the
background and phonology of the phenomenon.

3This example was taken from a corpus of responses to a
confrontation naming test (Mirman et al., 2010), in which the
subject is shown a picture and required to name its contents.
As such, in the case of this specific error, we have a priori
knowledge of what the target word “should” have been. Ob-
viously, in a more naturalistic task or setting, we would not
have this advantage.

as described in section 6.

Typical methods of diagnosing, staging, and oth-
erwise characterizing anomia involve determining
the number and kinds of paraphasias produced by
an individual while undergoing some structured
language elicitation process, for example a con-
frontation naming test (see (Kendall et al., 2013)
and (Brookshire et al., 2014) for examples of such
astudy). As alluded to previously, producing these
counts and classifications is a complex and labori-
ous process. Furthermore, it is also often an in-
herently subjective process: are “carrot” and “ba-
nana” semantically related? What about “hose”
and “rope”?

Reliability estimates of expert human perfor-
mance at paraphasia classification in confronta-
tion naming scenarios reflect the difficulty in this
task. One recent study reported a kappa-equivalent
score of 0.76 — a score that that is certainly ac-
ceptable, but that leaves much room for disagree-
ment on the status of specific erroneous produc-
tions (Minkina et al., 2015). Other reported scores
fall in a similar range (Kristensson et al., 2015), in-
cluding when the productions are from neurotyp-
ical individuals (Nicholas et al., 1989). Automat-
ing this aspect of the task would not only improve
efficiency, but would also decrease scoring vari-
ability. Having a reliable, automated method to
analyze paraphasic errors would also expand the
scope of what is currently possible in terms of as-
sessment methodologies.

Notably, the approach we outline in this paper is
explicitly designed to work on samples of natural,
connected speech. It builds upon previous work by
Fergadiotis et al. (2016) on automated analysis of
errors produced in confrontation naming tests, and
extends it into the realm of naturalistic discourse.
It is our hope that, by enabling automated calcu-
lation of error frequencies and types on narrative
speech, we might make using such material far eas-
ier in practice than it is today.

2 Data

For this work, we use the data set provided by the
AphasiaBank project (MacWhinney et al., 2011),
which has assembled a large database of tran-
scribed interactions between examiners and people
with aphasia, nearly all of whom have suffered a
stroke. Notably, AphasiaBank also includes tran-
scribed sessions with neurotypical controls. Each
interaction follows a common protocol and script,



and is transcribed in great detail using a standard-
ized set of annotation guidelines. The transcripts
include word-level error codes, according to a de-
tailed taxonomy of errors and associated annota-
tions. In the case of semantic, formal, and phone-
mic errors, the word-level annotations include a
“best guess” on the part of the transcriber as to what
the speaker’s intended production may have been.

Each transcribed session consists of a prescribed
sequence of language elicitation activities, includ-
ing a set of personal narratives (e.g.,“Do you re-
member when you had your stroke? Please tell me
about it.”), standardized picture description tasks,
a story retelling task (involving the story of Cin-
derella), and a procedural discourse task.

We noted that the distribution of errors within
sentences seems to obey the power law , with the
majority of error-containing sentences containg-
ing a single error, followed somewhat distantly by
sentences containing two errors, with a relatively
steep dropoff thereafter. For the present study, we
restricted our analysis to sentences that contained
a single error. Our reasoning for this restriction
was that we do not presently have a theoretically-
informed model of what, if any, relationship there
may be between multiple errors within a sentence.
However, it seems quite likely that the errors oc-
curring in a sentence containing (for instance) five
paraphasic errors might be somehow related to one
another. We anticipate exploring this phenomenon
in the future (see section 6).

We chose to restrict our data to the story retelling
task due to the constrained and focused vocabulary
of the Cinderella story. This resulted in ~ 1000
sentences from 385 individuals. We then identi-
fied sentences containing instances of our errors of
interest: phonological paraphasia (AphasiaBank

codes “p:n”, “p:m”) or abstruse neologism (“n:uk”
and “n:k”).
3 Methods

We first tokenized the AphasiaBank data using a
modified version of the Penn Treebank tokenizer
which left contractions as a single word and simply
removed the connecting apostrophe, as these occa-
sionally appear as target words and thus we needed
to treat them as a single token. We left stopwords
intact, and case-folded all sentences to upper-case.
Cardinal numbers were collapsed into a category
token, as were ordinal numbers and dates (each
category was given its own token). The Aphasia-

Bank transcripts include detailed [PA-encoded rep-
resentations of neologistic productions, but any
“real-world” usage scenario for our algorithm is
unlikely to benefit from such high-quality tran-
scription. We therefore translated the non-lexical
productions into a simulated “best-guess” ortho-
graphic representation of the subject’s non-lexical
productions.

We next turned to the question of identifying ne-
ologisms in our sentences. Simply using a stan-
dard dictionary to determine lexicality could re-
sult in numerous “false positives,” driven largely
by proper names of people, brands, etc. To
avoid this, we used the SUBTLEX-US corpus
(Brysbaert and New, 2009) to identify neologisms.
SUBTLEX-US was build using subtitles from
English-language television shows and movies,
and Brysbaert and New have demonstrated that it
correlates with a number of psycholinguistic be-
havior measures (most notably, naming latencies)
better than better-known frequency norms such as
those derived from the Brown corpus or CELEX-
2.

Upon identifying a possible non-word produc-
tion, recall that our next goal is to determine
whether it represents a phonemic error (substi-
tuting “[damowsoir]” for “dinosaur”) or an ab-
struse neologism (a completely novel sequence of
phonemes that does not correspond to an actual
word). To help accomplish this, we train a lan-
guage model to identify plausible words that could
fit in the slot occupied by the erroneous produc-
tion, and produce a lattice of these candidate target
words (i.e., words that the subject may have been
intending to produce, given what we know about
the context in which they were speaking).

Our language models for this study were built us-
ing the New York Times section of the Gigaword
newswire corpus (Parker et al., 2011). After suc-
cess in preliminary experiments, we filtered this
corpus by first training a Latent Dirichlet Alloca-
tion (LDA) topic model on the corpus using Gen-
sim (Rehtifek and Sojka, 2010) over 20 topics. We
then projected the text of each of the Cinderella nar-
rative samples into the resulting topic space, and
calculated the centroids for the narrative task. This
yielded a subset of the larger corpus of New York
Times articles that was “most similar” to the Cin-
derella retellings, and we used these to build our
language models.

We investigated two different language model-



ing approaches: a traditional FST-encoded ngram
language model, and a neural-net based log-
bilinear (LBL) language model. For the FST rep-
resentation, we used the the OpenGrm-NGram
language modeling toolkit (Roark et al., 2012)
and used an n-gram order of 4, with Kneser-Ney
smoothing (Kneser and Ney, 1995). For the LBL
approach, we used a Python implementation* of
the language model described by Mnih and Teh
(Mnih and Teh, 2012). We used word embeddings
of dimension 100, and a 5-gram context window.
In both cases we trained two language models: one
trained on the “task-specific” subset of Gigaword,
and another trained on the AphasiaBank control
data. We combined these with a simple mixing co-
efficient, 1 as shown in Equation 1 where Pgp(w)
is the language model probability of word w com-
puted against the Gigaword corpus and the P45 (w)
is the language model probability trained on the
AphasiaBank controls.

P(W) :ﬂ‘PAB(W)-F(l —i) -Pgw(w) (1)

We evaluate non-lexical productions as fol-
lows. First, we use the Phonetisaurus grapheme-
to-phoneme toolkit (Novak et al., 2012) to trans-
late our orthographic representation into an esti-
mated phoneme sequence. We then calculate a
phonologically-aware edit distance between each
non-word production and every word in our lexi-
con up to some maximum edit distance (in our case
4.0). Phonemes from a related class (e.g. vowels)
are considered lower cost replacements than those
from another class (e.g. unvoiced fricatives). This
gives us a set of candidates which are phonologi-
cally similar to the production.

We next used our language models to produce
lattices representing a set of possible sentences that
the subject could plausibly have been intending to
produce. At the point in the produced sentence
where our error detection system indicated that a
non-word production occurred, we represent the
anomaly by the union of all possible words in our
edit-distance constrained lexicon (see figure 3 for
an example sentence lattice). Finally, we use the
language models to score the resulting sentence lat-
tice so as to be able to rank the candidate words,
and use the estimated sentence-level probability
for each candidate word (i.e., the hypothesized in-
tended utterance featuring that word). Put simply,

*https://github.com/ddahlmeier/neural_lm

Figure 1: An example candidate word lattice for
the production “I can’t move my [vai] hand.”

for each candidate intended word, we produce a
version of the subject’s utterance with that hypoth-
esized word in place of the anomalous utterance,
and score this hypothesized utterance with the lan-
guage model.

At this point in the process, we have the follow-
ing information about each erroneous production:
a best-guess orthographic transcription of what the
individual actually produced, and a ranked list of
plausible words that they could potentially have
been attempting to produce, together with proba-
bility estimates for each hypothesized production.

To determine the category of our error
productions— again, between productions repre-
senting phonological errors such as “[damowso1]”
for “dinosaur”, and productions representing ab-
struse neologisms— we trained a binary classifier
using features representing the characteristics
of the candidate word space surrounding the
erroneous production. Our intuition is that phone-
mic errors were much more likely than abstruse
neologisms to have highly-ranked candidate target
words that were also phonologically similar to the
subject’s actual production.

To capture this, we performed the following pro-
cedure for each error-containing utterance. We
first divide our list of candidate intended words
into buckets by edit distance (0.5, 1.0, 1.5, etc.”).
Each bucket can now be thought of as a ranked
list of probabilities, each representing a possible
hypothesized intended utterance featuring a word
within that bucket’s edit distance of the actual
(anomalous) utterance.

We next represent each bucket with a feature
vector consisting of the count of words in that

SRecall that our phonological edit distance metric allows
for partial costs for related phonological substitutions.



bucket, as well as descriptive statistics regard-
ing the distribution of language model probabil-
ities in that bucket (min, max, etc.). We then
concatenate each bucket’s features together into a
master feature vector for the utterance. Our ex-
pectation is that these features will be relatively
evenly distributed across buckets in the case of ut-
terances containing abstruse neologisms, whereas
utterances featuring phonological paraphasias will
vary according to phonological edit distance.

Once we have computed feature vectors for each
utterance, we used the Scikit-learn Python ma-
chine learning library (Pedregosa et al., 2011) to
train a Support Vector Machine classifier to dis-
tinguish between utterances phonological and ab-
struse neologisms. We evaluate its performance
using leave-one-out cross-validation.

4 Results

We perform two evaluations of our model: an in-
trinsic evaluation of how often our system includes
the target word in the top-» ranked candidates, and
an extrinsic evaluation where we attempt to clas-
sify a paraphasia between phonological errors and
abstruse neologisms.

Our motivation for evaluating our system’s per-
formance on target word prediction is tied to our
classification assumptions. In an ideal case for
a phonological error, the target word should fall
within one of the buckets representing a low edit
distance. If our language model successfully rates
the target as likely, we would see an high maxi-
mum probability within that bucket, which is a fea-
ture in our classifier.

The performance of our language models on
the top-n ranked evaluation can be seen in Table
1. The log-bilinear model outperformed the FST
in all cases. This finding is similar to state of
the art results for automatic sentence completion
systems—particularly for phonemic errors—as we’ll
discuss in greater detail in Section 5. Both systems
did a better job of predicting the target word for
phonemic errors than they did for abstruse neolo-
gisms. It’s not immediately clear what the reason
for this is. However, anecdotally, sentences includ-
ing abstruse neologisms are also often agrammati-
cal.

For the evaluation of our classification, we cre-
ated a simple majority class baseline classifier that
always chooses the largest class of errors (phone-
mic errors in this case). This baseline classifier has

Error n | FST | LBL
Phonemic 1 43 52
Phonemic 51 .54 .66
Phonemic 10 | .59 .69
Phonemic 20 | .67 77
Phonemic 50 .72 .81

Abstruse Neo. 1 29 .35
Abstruse Neo. | 5| .41 49
Abstruse Neo. | 10 | .44 S1
Abstruse Neo. | 20 | .51 .59
Abstruse Neo. | 50 | .54 .60

Table 1: Accuracy of language model predicting
the correct target word within the first # results.

Features ‘ FST ‘ LBL
count, mean 612 | .661
count, mean, max .621 | .680
count, mean, max, min | .610 | .659
count, mean, max, dist. | .610 | .659

Table 2: Classification accuracy by model. Base-
line accuracy of choosing the most common error
type is .510.

a classification accuracy of .51. The results of clas-
sification can be seen in Table 2. Both of our sys-
tems handily outperformed baseline: the FST by
a relative 20% improvement, and the LBL nearly
33%. Aswe expected from the top-n results, classi-
fication based on the LBL outperformed that based
on the FST.

The “dist” feature listed in table 2 is the edit
distance of a given bucket normalized by the num-
ber of phonemes in the actual error production. It
was not found to be productive as a feature, nor
was the minimum language model probability of
words in a given bucket (“min” in the table). The
best results for both systems were a combination of
count of candidate terms per bucket (“count’) con-
catenated with the maximum and mean language
model probabilities within a bucket (“max” and
“min”, respectively).

We varied the mixing-coefficient (1) from Equa-
tion 1 in both the FST and LBL approaches. As
long as the resulting model includes a non-trivial
weighting of the Cinderella corpus (typically any-
thing better than 4 = 3), the actual value of the
mixing coefficient was irrelevant to either of our
evaluations. In this, it appears to work as designed,
with the Gigaword corpus providing background
probabilities, and the AphasiaBank Cinderella con-



trol retellings increasing the weight of topically im-
portant words that are otherwise rare (like “Cin-
derella” and “carriage”).

5 Related Work & Discussion

As far back as Shannon’s word-guessing game
(Shannon, 1951), researchers have sought to lever-
age the statistical regularities in natural language to
predict missing or subsequent words. In practice,
however, this proves to be a surprisingly challeng-
ing problem. Language occurs at levels beyond
simply choosing lexical items, and local statisti-
cal characteristics of language often fail to capture
syntactic and semantic patterns. Zweig & Burges
(2012) provide an enlightening discussion on the
limitations of relying on n-gram guessing for syn-
tactically complex tasks such as “identify the miss-
ing word in the sentence,” and also describe a very
challenging language model evaluation task built
around this problem. They tested a variety of lan-
guage modeling approaches using their task, and
report that well-trained generative n-gram models
achieve correct predictions ~ 30% of the time.
State-of-the-art performance on the their word pre-
diction task using recurrent neural network lan-
gage models,® report highest scores are in the mid-
50% range (Mirowski and Vlachos, 2015; Mnih
and Kavukcuoglu, 2013).

In our case, the nature of our data renders this
task even more challenging. Our sentences are of-
ten short and agrammatical (often missing or mis-
using determiners, for example), and are produced
by individuals with impaired language ability.

As such, our results are actually quite similar to
those reported in recent literature. Our average ac-
curacy of our FST n-gram (over both classes of
errors) selecting the appropriate word is ~ 35%
while our LBL model’s performance of ~ 43%
is comparable to the 5-gram LBL performance
of 49.3 reported by Mnih and Teh on the MSR
Sentence Completion Challenge dataset (Mnih and
Teh, 2012).

6 Conclusion & Future Work

While the system’s performance is quite good on
both intrinsic and extrinsic evaluation, there re-
mains much interesting work left to do on the prob-
lem.

See De Mulder et al. (2015) for a recent review on this
subject.

We currently only evaluate sentences with a sin-
gle error, and more generally have not investigated
whether sentences with multiple errors are differ-
ent from mono-error sentences in terms of error
distribution or structure. However, our approach
should be able to generalize to sentences with ad-
ditional errors, and we will be investigating this in
future work.

Additionally, the AphasiaBank transcripts in-
clude phrasal dependency and part-of-speech tags
which we are currently not using. In future work
we will investigate including these as features in
language modelling, as there is some evidence that
this improves the conceptually related task of con-
textual spellcheck(Fossati and Di Eugenio, 2008).

There is quite a bit of work that can be done
on the language models as well. A more nuanced
approach to topic adaptation is worth investigat-
ing, and we plan to experiment with using non-
newswire corpora. Despite our attempts to focus
the corpus via LDA, there is a major difference be-
tween the written language of the New York Times,
and the spoken dialogue between the aphasic sub-
jects and their clinicians.

The most exciting area for further research is the
inclusion of semantic information in our classifica-
tion. While our topic-specific language model pro-
vides our model with some implicit semantic infor-
mation, a more principled approach to semantic rel-
evance could potentially improve the classification
of phonemic errors versus abstruse neologisms by
determining whether a given candidate word is se-
mantically relevant in context. More intriguingly,
it would give us a way to start investigating se-
mantic errors, and those errors that include “real”
words (for example, the previously discussed error
of replacing “dog” with “cat”).

One major limitation of our current system is
its reliance on human-produced transcriptions of
speech samples. In practice, transcription is rarely
feasible in clinical settings, and even in research
settings is often challenging, which may seem
to limit the applicability of our approach. No-
tably, however, our system does not require de-
tailed phonetic transcription, and merely requires
“best-guess” orthographic transcription of neolo-
gisms. As such, one could in principle use au-
tomatic speech recognition (ASR) to analyze a
recording of a patient or research subject, and pro-
duce a transcript on which our methods could be



run.” Fraser et al. (2015) have had some success
at applying ASR to samples of aphasic speech and
performing downstream analysis on the resulting
transcripts, and we anticipate experimenting with
similar techniques in the future.
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Abstract

We propose a novel attention mecha-
nism for a Convolutional Neural Net-
work (CNN)-based Drug-Drug Interaction
(DDI) extraction model. CNNs have been
shown to have a great potential on DDI ex-
traction tasks; however, attention mecha-
nisms, which emphasize important words
in the sentence of a target-entity pair, have
not been investigated with the CNNs de-
spite the fact that attention mechanisms
are shown to be effective for a general do-
main relation classification task. We eval-
uated our model on the Task 9.2 of the
DDIExtraction-2013 shared task. As a re-
sult, our attention mechanism improved
the performance of our base CNN-based
DDI model, and the model achieved an
F-score of 69.12%, which is competitive
with the state-of-the-art models.

1 Introduction

When drugs are concomitantly administered to
patients, the effects of the drugs may be en-
hanced or weakened, which may cause side ef-
fects. These kinds of interactions are called Drug-
Drug Interactions (DDIs). Several drug databases,
such as DrugBank (Law et al., 2014), Therapeu-
tic Target Database (Yang et al., 2016), and Phar-
mGKB (Thorn et al., 2013), have been provided
to summarize drug and DDI information for re-
searchers and professionals; however, many newly
discovered or rarely reported interactions are not
covered in the databases, and they are still buried
in biomedical texts. Therefore, studies on auto-
matic DDI extraction that extract DDIs from texts
are expected to support maintenance of databases
with high coverage and quick update to help med-
ical experts deepen their understanding of DDIs.
For the DDI extraction, deep neural network-
based methods have recently drawn a considerable
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attention (Liu et al., 2016; Zhao et al., 2016; Sahu
and Anand, 2017). Deep neural networks have
been widely used in the NLP field. They show
high performance on several NLP tasks without
requiring manual feature engineering. Convolu-
tional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) are often employed for
the network architectures. Among these, CNNs
have an advantage that they can be easily paral-
lelized and the calculation is thus fast with recent
Graphical Processing Units (GPUs).

Liu et al. (2016) showed that CNN-based model
can achieve a high accuracy on the task of DDI
extraction. Sahu and Anand (2017) proposed an
RNN-based model with attention mechanism to
tackle the DDI extraction task and show the state-
of-the-art performance. The integration of an at-
tention mechanism into a CNN-based relation ex-
traction is proposed by Wang et al. (2016). This
is applied to a general domain relation extrac-
tion task SemEval 2010 Task 8 (Hendrickx et al.,
2009). Their model showed the state-of-the-art
performance on the task. CNNs with attention
mechanisms, however, are not evaluated on the
task of DDI extraction.

In this study, we propose a novel attention
mechanism that is integrated into a CNN-based
DDI extraction model. The attention mecha-
nism extends attention mechanism by Wang et al.
(2016) in that it deals with anonymized entities
separately from other words and incorporates a
smoothing parameter. We implement a CNN-
based relation extraction model and integrate the
novel mechanism into the model. We evaluate our
model on the Task 9.2 of the DDIExtraction-2013
shared task (Segura Bedmar et al., 2013).

The contribution of this paper is as follows.
First, this paper proposes a novel attention mech-
anism that can boost the performance on CNN-
based DDI extraction. Second, the DDI extrac-
tion model with the attention mechanism achieves

Proceedings of the BioNLP 2017 workshop, pages 9—18,
Vancouver, Canada, August 4, 2017. (©2017 Association for Computational Linguistics
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Figure 1: Overview of our model

the performance with an F-score of 69.12% that is
competitive with other state-of-the-art DDI extrac-
tion models when we compare the performance
without negative instance filtering (Chowdhury
and Lavelli, 2013).

2 Methods

We propose a novel attention mechanism for a
CNN-based DDI extraction model. We illus-
trate the overview of the proposed DDI extraction
model in Figure 1. The model extracts interactions
from sentences with drugs are given. In this sec-
tion, we first present preprocessing of input sen-
tences. We then introduce the base CNN model
and explain the attention mechanism. Finally, we
explain the training method.

2.1 Preprocessing

Before processing a drug pair in a sentence, we re-
place the mentions of the target drugs in the pair
with “DRUGI” and “DRUG2” according to their
order of appearance. We also replace other men-
tions of drugs with “DRUGOTHER”.

Table 1 shows an example of preprocessing
when an input sentence Exposure to oral S-
ketamine is unaffected by itraconazole but greatly
increased by ticlopidine is given with a target en-
tity pair. By performing preprocessing, it is pos-
sible to prevent the DDI extraction model to be
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specialized for the surface forms of the drugs in
a training data set and to perform DDI extraction
using the information of the whole context.

2.2 Base CNN model

The base CNN model for extracting DDIs is one
by Zeng et al. (2014). In addition to their original
objective function, we employ an ranking-based
objective function by dos Santos et al. (2015). The
model consists of four layers: embedding, convo-
lution, pooling, and prediction layers. We show
the CNN model at the bottom half of Figure 1.

2.2.1 Embedding layer

In the embedding layer, each word in the input
sentence is mapped to a real-valued vector repre-
sentation using an embedding matrix that is ini-
tialized with pre-trained embeddings. Given an
input sentence S = (wy, - ,wy,) with drug en-
tities e; and ey, we first convert each word w; into
a real-valued vector w;’ by an embedding matrix
wemb ¢ Réwx IVl gg follows:
wy’ = Wy, (1)
where d,, is the number of dimensions of the word
embeddings, V is the vocabulary in the training
data set and the pre-trained word embeddings, and
v;” is a one hot vector that represents the index
of word embedding in W™, v¥ thus extracts
the corresponding word embedding from Wem?,



Entity1 Entity2 Preprocessed input sentence
S-ketamine  itraconazole Exposure to oral DRUGI is unaffected by DRUG2 but greatly
increased by DRUGOTHER.
S-ketamine ticlopidine  Exposure to oral DRUGI is unaffected by DRUGOTHER but
greatly increased by DRUG?2.
itraconazole  ticlopidine  Exposure to oral DRUGOTHER is unaffected by DRUGI but

greatly increased by DRUG2.

Table 1: An example of preprocessing on the sentence “Exposure to oral S-ketamine is unaffected by
itraconazole but greatly increased by ticlopidine” for each target pair.

The word embedding matrix W™ is fine-tuned
during training.

We also prepare d,,;,-dimensional word position
embeddings w?, and w?, that correspond to the
relative positioris from first and second target en-
tities, respectively. We concatenate the word em-
bedding w;" and these word position embeddings
wj | and wy, as in the following Equation (2), and
we use the resulting vector as the input to the sub-
sequent convolution layer:

w; = [w}’;wy ;wy,y).

(2)

2.2.2 Convolution layer

We define a weight tensor for convolution as
Wonv eRdex (dw+2duwp) ¥k and we represent the j-
th column of W™ as WISZ”UGR(deerwP)Xk.
Here, d. denotes the number of filters for each
window size, k is a window size, and K is a set
of the window sizes of the filters. We also intro-
duce z; ;. that is concatenated k£ word embeddings:

3)

Zik = ['w[l;—(k—l)/QJ; e ?wE—(k+1)/2J]T'

We apply the convolution to the embedding matrix
as follows:

mijk = f(WET" © zig +0), 4)

where © is an element-wise product, b is the bias
term, and f is the ReLU function defined as:

ifx >0

otherwise.

(&)

2.2.3 Pooling layer

We employ the max pooling (Boureau et al., 2010)
to convert the output of each filter in the convolu-
tion layer into a fixed-size vector as follows:

cr=[Clk, " Cdok], Cik = max My, j . (6)
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We then obtain the d,-dimensional output of this
pooling layer, where d, equals to d. x| K|, by con-
catenating the obtained outputs ¢, for all the win-
dow sizes k1, -+ , ki (€ K):

C=[Chy;. - Chii- -} Cly - @)

2.2.4 Prediction layer

We predict the relation types using the output of
the pooling layer. We first convert ¢ into scores
using a weight matrix WPred ¢ RO*dp;

s = Wrrede,

®)

where o is the total number of relationships to be
classified and s = [s1,- -, S,|. We then employ
the following two different objective functions for
prediction.

Softmax We convert s into the probability of
possible relations p by a softmax function:

__ exp(s))
2rexp (1)
The loss function Lggftmae i defined as in the
Equation (10) when the gold type distribution y
is given. y is a one-hot vector where the proba-
bility of the gold label is 1 and the others are 0.

p:[pb'":po]apj (9)

Lsoftmax = - Z ylogp (10)

Ranking We employ the ranking-based objec-
tive function following dos Santos et al. (2015).
Using the scores s in the Equation (8), the loss is
calculated as follows:

Lyanking = log(1 + exp(y(m™ — Sy))

+log(1 +exp(y(m™ +s.)), (1)

where m™ and m ™ are margins, 7 is a scaling fac-
tor, y is a gold label, and ¢ (# y) is a negative la-
bel with the highest score in 5. We set 7 to 2, m™
to 2.5 and m™ to 0.5 following dos Santos et al.
(2015).



Preprocessing

'_I:

Test data set H
J \\
\

Annotated test
data set

Raw DDI corpus II

MEDLINE/PubMed

Learning word
embeddings

Training model
Training data set |

L

H

Word embeddings

corpus
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2.3 Attention mechanism

Our attention mechanism is based on the input at-
tention by Wang et al. (2016)!. The proposed at-
tention mechanism is different from the base one
in that we prepare separate attentions for enti-
ties and we incorporate a bias term to adjust the
smoothness of attentions. We illustrate the atten-
tion mechanism at the upper half of Figure 1.

We define the word index of the first and second
target drug entities in the sentence as e; and eo,
respectively. We also denote by F = {e1,ex} the
set of indices and by j € {1,2} the index of the
entities. We calculate our attentions using these:

Bij = we; - w; (12)
exp (Bi,5) g
ajj = { 2asicnigs PG’ 1f2¢]?(13)
Adrugs otherwise
- wwa, (14)

Here, ag,y4 is an attention parameter for entities
and b, is the bias term. ag;.,4 and b, are tuned
during training. If we set E' to empty and b, to
zero, the attention will be the same as one by Wang
et al. (2016). We incorporate the attentions «; into
the CNN model by replacing the Equation (4) with
the following equation:

mi gk = f(Wi" © 2 ga; +b). (15)
2.4 Training method

We use L2 regularization to avoid over-fitting.
We use the following objective functions L/,
(Lsoftmaz OF Lyanking) bY incorporating the L2
regularization on weights to the Equation (10).

Ly = L + MW || + W™ |5 (16)
+H W)

'"We do not incorporate the attention-based pooling in
Wang et al. (2016). We leave this for future work.

Here, )\ is a regularization parameter and || - ||
denotes the Frobenius norm. We update all the
parameters including the weights We™? W eonv,
and WPTe biases b and b, and the attention pa-
rameter agy,g to minimize L!,. We use the adap-
tive moment estimation (Adam) (Kingma and Ba,
2015) for the optimizer. We randomly shuffle
training data set and divide them into mini-batch
samples in each epoch.

3 Experimental settings

We illustrate the workflow of the DDI extraction
in Figure 2. As preprocessing, we performed word
segmentation of the input sentences using the GE-
NIA tagger (Tsuruoka et al., 2005). In this section,
we explain the settings for the data sets, tasks, ini-
tial embeddings, and hyper-parameter tuning.

3.1 Data set

We used the data set from the DDIExtraction-2013
shared task (SemEval-2013 Task 9) (Segura Bed-
mar et al., 2013; Herrero-Zazo et al., 2013) for the
evaluation. This data set is composed of docu-
ments annotated with drug mentions and their re-
lationships. The data set consists of two parts:
MEDLINE and DrugBank. MEDLINE consists of
abstracts in PubMed articles, and DrugBank con-
sists of the descriptions of drug interactions in the
DrugBank database. This data set annotates the
following four types of interactions.

e Mechanism: A sentence describes phar-
macokinetic mechanisms of a DDI, e.g.,
“Grepafloxacine may inhibit the metabolism
of theobromine.”

e Effect: A sentence represents the effect of a
DDI, e.g., “Methionine may protect against
the ototoxic effects of gentamicin.”



Train Test

DrugBank MEDLINE DrugBank MEDLINE
No. of documents 572 142 158 33
No. of sentences 5,675 1,301 973 326
No. of pairs 26,005 1,787 5,265 451
No. of positive DDIs 3,789 232 884 95
No. of negative DDIs 22,216 1,555 4,381 356
No. of Mechanism pairs 1,257 62 278 24
No. of Effect pairs 1,535 152 298 62
No. of Advice pairs 818 8 214 7
No. of Int pairs 179 10 94 2

Table 2: Statistics for the DDIExtraction-2013 shared task data set

Parameter Value
Word embedding size 200
Word position embeddings size 20
Convolutional window size [3, 4, 5]
Convolutional filter size 100
Initial learning rate 0.001
Mini-batch size 100
L2 regularization parameter 0.0001

Table 3: Hyperparamters

Counts
Sentences 1,404
Pairs 4,998
Mechanism pairs 232
Effect pairs 339
Advice pairs 132
Int pairs 48

Table 4: Statistics of the development data set

e Advice: A sentence represents a recommen-
dation or advice on the concomitant use of
two drugs, e.g., “Alpha-blockers should not
be combined with uroxatral.”

e [nt: A sentence simply represents the occur-
rence of a DDI without any information about
the DDI, e.g., “The interaction of omeprazole
and ketoconazole has established.”

The statistics of the data set is shown in Table 2.
As shown in this table, the number of pairs that
have no interaction (negative pairs) is larger than
that of pairs that have interactions (positive pairs).

3.2 Task settings

We followed the task setting of Task 9.2 in the
DDIExtraction-2013 shared task (SemEval task
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9). The task is to classify a given pair of drugs
into the four interaction types or no interaction.
We evaluated the performance with precision (P),
recall (R), and F-score (F) on each interaction type
as well as micro-averaged precision, recall, and F-
score on all the interaction types. We used the of-
ficial evaluation script provided by the task orga-
nizers and report the averages of 10 runs. Please
note that we took averages of precision, recall and
F-scores individually, so F-scores cannot be calcu-
lated from precision and recall.

3.3 Initializing embeddings

Skip-gram (Mikolov et al., 2013) was employed
for the pre-training of word embeddings. We used
2014 MEDLINE/PubMed baseline distribution,
and the size of vocabulary was 1,630,978. The em-
bedding of the drugs, i.e., “DRUGI”, “DRUG2”
and “DRUGOTHER” are initialized with the pre-
trained embedding of the word “drug”. The em-
beddings of training words that did not appear in
the pre-trained embeddings, as well as the word
position embeddings, are initialized with the ran-
dom values drawn from a uniform distribution and
normalized to unit vectors. Words whose frequen-
cies are one in the training data were replaced with
an “UNK” word during training, and the embed-
ding of words in the test data set that did not ap-
pear in both training and pre-trained embeddings
were set to the embedding of the “UNK” word.

3.4 Hyperparameter tuning

We split the official training data set into two parts:
training and development data sets. We tuned the
hyper-parameters on the development data set on
the softmax model without attentions. Table 3
shows the best hyperparameters on the softmax
model without attentions. We applied the same



Type P (%) R (%) F (%)
Softmax without attention
Mechanism  76.24 (+4.48) 57.58 (+4.41) 65.31 (£1.76)
Effect 67.84 (£3.56) 63.61 (£4.95) 65.39 (+1.38)
Advice 82.26 (£7.04) 66.65 (£9.07) 72.75 (£2.72)
Int 78.99 (£6.87) 33.55(£2.62) 47.05 (+1.71)
All (micro) 73.69 (£3.00) 59.92 (£3.73) 65.93 (£1.21)
Softmax with attention
Mechanism 76.34 (+4.20) 64.43 (£5.72) 67.86 (£4.10)
Effect 66.84 (£3.12) 65.98 (£2.63) 65.58 (+2.09)
Advice 80.98 (£6.14) 70.83 (£2.72) 76.28 (£1.40)
Int 73.21 (£6.30) 38.44 (£9.82) 46.11 (+3.96)

All (micro)

73.74 (£1.88)

63.05 (£1.39)

67.94 (£0.70)

Ranking without attention

Mechanism 78.41 (£3.99) 58.17 (£5.10) 66.51 (£2.61)
Effect 68.16 (£3.30) 65.75 (£3.22) 66.80 (£1.46)
Advice 84.49 (£3.55) 67.14 (£4.68) 74.61 (+1.82)
Int 73.95 (£7.09) 33.43(£1.18) 45.91 (£1.23)
All (micro) 74.79 (£2.41) 60.99 (£2.65) 67.10 (£1.09)
Ranking with attention
Mechanism  80.75 (£2.76) 61.09 (£3.03) 69.45 (£1.45)
Effect 69.73 (£2.64) 66.63 (:2.93) 68.05 (£1.29)
Advice 83.86 (£2.29) 71.81 (£2.61) 77.30 (£1.13)
Int 74.20 (£8.95) 33.02 (£1.40) 45.50 (£1.51)
All (micro) 76.30 (£2.18) 63.25 (+1.71) 69.12 (+£0.71)

Table 5: Performance of softmax/ranking CNN models with and without our attention mechanism. The

highest scores are shown in bold.

hyperparameters to the other models. The statis-
tics of our development data set is shown in Ta-
ble 4. We set the sizes of the convolution windows
to [3, 4, 5] that are the same as in Kim (2014). We
chose the word position embedding size from {10,
20, 30, 40, 50}, the convolutional filter size from
{10, 50, 100, 200}, the learning rate of Adam from
{0.01, 0.001, 0.0001}, the mini-batch size from
{10, 20, 50, 100, 200}, and the L2 regularization
parameter A from {0.01, 0.001, 0.0001, 0.00001}.

4 Results

In this section, we first summarize the perfor-
mance of the proposed models and compare the
performance with existing models. We then com-
pare attention mechanisms and finally illustrate
some results for the analysis of the attentions.

4.1 Performance analysis

The performance of the base CNN models with
two objective functions, as well as with or with-
out the proposed attention mechanism, is summa-
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rized in Table 5. The incorporation of the atten-
tion mechanism improved the F-scores by about
2 percent points (pp) on models with both ob-
jective functions. Both improvements were sta-
tistically significant (p < 0.01) with ¢-test. This
shows that the attention mechanism is effective
for both models. The improvement of F-scores
from the least performing model (softmax objec-
tive function without our attention mechanism)
to the best performing model (ranking objective
function with our attention mechanism) is 3.19 pp
(69.12% versus 65.93%), and this shows both ob-
jective function and attention mechanism are key
to improve the performance. When looking into
the individual types, ranking function with our at-
tention mechanism archived the best F-scores on
Mechanism, Effect, Advice, while the base CNN
model achieved the best F-score on Int.

4.2 Comparison with existing models

We show comparison with the existing state-of-
the-art models in Table 6. We mainly compare



Methods P (%) R(%) F (%)
No negative instance filtering

CNN (Liu et al., 2016) 7529 60.37 67.01

MCCNN (Quan et al., 2016) - - 67.80

SCNN (Zhao et al., 2016) 68.5 61.0 64.5

Joint AB-LSTM (Sahu and Anand, 2017) 71.82 66.90 69.27

Proposed model 7630 63.25 69.12

With negative instance filtering

FBK-irst (Chowdhury and Lavelli, 2013)  64.6 65.6 65.1

Kim et al. (2015) - - 67.0

CNN (Liu et al., 2016) 7572 64.66  69.75

MCCNN (Quan et al., 2016) 75.99 65.25 70.21

SCNN (Zhao et al., 2016) 72.5 65.1 68.6

Joint AB-LSTM (Sahu and Anand, 2017) 73.41 69.66 71.48

Table 6: Comparison with existing models
P (%) R (%) F (%)

No attention 74.79 (£2.41) 60.99 (£2.65) 67.10 (£1.09)
Input attention by Wang et al. (2016) 73.48 (£1.96) 59.58 (£1.51) 65.77 (£0.80)
Our attention 76.30 (£2.66) 63.25(£2.59) 69.12 (£0.71)

Our attention without separate attentions G,y
Our attention without the bias term b,,

74.03 (£2.11)
71.56 (£2.18)

63.30 (£2.41)
64.19 (£2.21)

68.17 (£0.71)
67.62 (£0.96)

Table 7: Comparison of attention mechanisms on CNN models with ranking objective function

the performance without negative instance filter-

tion mechanisms.

We also show the base CNN-

ing, which omits some apparent negative instance
pairs with rules (Chowdhury and Lavelli, 2013),
since we did not incorporate it. We also show the
performance of the existing models with negative
instance filtering for reference.

In the comparison without negative instance fil-
tering, our model outperformed the existing CNN
models (Liu et al., 2016; Quan et al., 2016; Zhao
et al.,, 2016). The model was competitive with
Joint AB-LSTM model (Sahu and Anand, 2017)
that was composed of multiple RNN models.

When considering negative instance filtering,
our model showed lower performance than the
state-of-the-art. However we believe we can get
similar performance with theirs if we incorporate
negative instance filtering. Still, the model outper-
formed several models such as Kim et al. (2015),
Chowdhury and Lavelli (2013) and SCNN model
even if we consider negative instance filtering.

4.3 Comparison of attention mechanisms

We compare the proposed attention mechanism
with the input attention of Wang et al. (2016) to
show the effectiveness of our attention mecha-
nism. Table 7 shows the comparison of the atten-

based model with ranking loss for reference, and
the results of ablation tests. As is shown in the ta-
ble, the attention mechanism by Wang et al. (2016)
did not work in DDI extraction. However, our
attention improved the performance. This result
shows that the proposed extensions are crucial for
modeling attentions in DDI extraction. The abla-
tion test results show that both extensions to our
attention mechanism, i.e., separate attentions for
entities and incorporation of the bias term, are ef-
fective for the task.

4.4 Visual analysis

Figure 3 shows visualization of attentions on
some sentences with DDI pairs using our atten-
tion mechanism. In the first sentence, “DRUGI”
and “DRUG?2” have a Mechanism interaction. The
attention mechanism successfully highlights the
keyword “concentration”. In the second sentence,
which have an Effect interaction, the attention
mechanism put high weights on “increase” and
“effects”. The word “necessary” has a high weight
on the third sentence with an Advice interaction.
For an Int interaction in the last sentence, the word
“interaction” is most highlighted.
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Figure 3: Visualization of attention

5 Related work

Various feature-based methods have been pro-
posed during and after the DDIExtraction-2013
shared task (Segura Bedmar et al., 2013). Bjorne
et al. (2013) tackled with DDI extraction using
Turku Event Extraction System (TEES), which is
an event extraction system based on the Support
Vector Machines (SVMs). Thomas et al. (2013)
and Chowdhury and Lavelli (2013) proposed two-
phase processing models that first detected DDIs
and then classified the extracted DDIs into one of
the four proposed types. Thomas et al. (2013) used
the ensembles of several kernel methods, while
Chowdhury and Lavelli (2013) proposed hybrid
kernel-based approach with negative instance fil-
tering. The negative instance filtering is employed
by all the subsequent models except for ours. Kim
et al. (2015) proposed a two-phase SVM-based
approach that employed a linear SVM with rich
features including word features, word pairs, de-
pendency relations, parse tree structures, and noun
phrase-based constraint features. Our mo