Systematic Evaluation of Rule-Based Analytics for LLM-Driven Graph Data Modelling
Fabio Antonio Yanez, Andrés Montoyo, Armando Suárez, Alejandro Piad-Morffis, Yudivián Almeida Cruz
Abstract
This paper presents a novel multi-agent system for automatically generating graph database schemas from tabular data, strategically integrating rule-based analytics with large language models (LLMs). The framework leverages a lightweight rule system to select the most suitable analytic methods based on column data types, providing targeted insights that guide schema generation.- Anthology ID:
- 2025.r2lm-1.16
- Volume:
- Proceedings of the First Workshop on Comparative Performance Evaluation: From Rules to Language Models
- Month:
- September
- Year:
- 2025
- Address:
- Varna, Bulgaria
- Editors:
- Alicia Picazo-Izquierdo, Ernesto Luis Estevanell-Valladares, Ruslan Mitkov, Rafael Muñoz Guillena, Raúl García Cerdá
- Venues:
- R2LM | WS
- SIG:
- Publisher:
- INCOMA Ltd., Shoumen, Bulgaria
- Note:
- Pages:
- 154–164
- Language:
- URL:
- https://preview.aclanthology.org/corrections-2026-01/2025.r2lm-1.16/
- DOI:
- Cite (ACL):
- Fabio Antonio Yanez, Andrés Montoyo, Armando Suárez, Alejandro Piad-Morffis, and Yudivián Almeida Cruz. 2025. Systematic Evaluation of Rule-Based Analytics for LLM-Driven Graph Data Modelling. In Proceedings of the First Workshop on Comparative Performance Evaluation: From Rules to Language Models, pages 154–164, Varna, Bulgaria. INCOMA Ltd., Shoumen, Bulgaria.
- Cite (Informal):
- Systematic Evaluation of Rule-Based Analytics for LLM-Driven Graph Data Modelling (Yanez et al., R2LM 2025)
- PDF:
- https://preview.aclanthology.org/corrections-2026-01/2025.r2lm-1.16.pdf