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Preface

LowResNLP is a workshop dedicated to advancing NLP research for low-resource languages,
fostering methods, resources, and evaluation practices that address the unique challenges faced by
underrepresented languages.

This year we received 24 submissions, of which 18 were accepted: 9 papers for oral + poster
presentation and 9 for poster-only presentation. We are excited by the variety and quality of
contributions, which highlight new directions in cross-lingual transfer, data augmentation, model
efficiency, and evaluation for low-resource settings.

We thank all authors for submitting, and we congratulate the accepted teams. We also express our
gratitude to the program committee and our supporters for their valuable efforts and support.

The LowResNLP 2025 Organizers
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Bridging the Gap: Leveraging Cherokee to Improve Language
Identification for Endangered Iroquoian Languages

Liam Eggleston, Michael Cacioli, Jatin Sarabu, Kevin Zhu
Algoverse AI Research
kevin@algoverse.us

Abstract

Language identification is a foundational task
in natural language processing (NLP), yet many
Indigenous languages remain entirely unsup-
ported by commercial language identification
systems. In this study, we assess the perfor-
mance of Google LangID on a 5k Cherokee
dataset and find that every sentence is classi-
fied as "undetermined", indicating a complete
failure to even misidentify Cherokee as another
language. To further explore this issue, we
manually constructed the first digitalized North-
ern Iroquoian dataset, consisting of 120 sen-
tences across five related languages: Onondaga,
Cayuga, Mohawk, Seneca, and Oneida. Run-
ning these sentences through Google LangID,
we examine patterns in its incorrect predictions.
To address these limitations, we train a ran-
dom forest classifier to successfully distinguish
between these languages, demonstrating its ef-
fectiveness in language identification. Our find-
ings underscore the inadequacies of existing
commercial language identification models for
Indigenous languages and highlight concrete
steps toward improving automated recognition
of low-resource languages.

1 Introduction

Language identification is fundamental to natural
language processing (Kargaran et al., 2023), en-
abling applications like machine translation, speech
recognition, and text classification (Qi et al., 2019).
While commercial language technologies such as
Google’s LangID perform well for high-resource
languages, they provide no support for Native
American languages (Caswell et al., 2020; Yang
et al., 2025b,e). This lack of recognition con-
tributes to digital marginalization and excludes
speakers from technological advancements (Bali
et al., 2019; Kukulska-Hulme et al., 2023). Chero-
kee, a Southern Iroquoian language, exemplifies
this gap, as it remains computationally under-
represented despite active revitalization efforts

Figure 1: A stylized rendition of our language identifi-
cation system for endangered Iroquoian languages.

(White, 1962; Peter and Hirata-Edds, 2006; Cush-
man, 2019).

To investigate this issue, we examined Google
LangID’s handling of Cherokee and five North-
ern Iroquoian languages, Onondaga, Cayuga, Mo-
hawk, Seneca, and Oneida, using a manually cu-
rated dataset of 120 sentences evenly distributed
across languages classes. While Cherokee was con-
sistently misclassified as "undetermined", the other
Northern Iroquoian languages were assigned unre-
lated languages. As shown in Figure 1, we then
trained a random forest classifier on Cherokee and
these misidentified languages, demonstrating that
even with limited data, high classification accu-
racy is achievable. Our contributions include (1) a
novel dataset, (2) an empirical evaluation of Google
LangID’s misclassification tendencies, and (3) an
efficient classification model that outperforms ex-
isting approaches.

2 Related Work

Recent NLP research on Indigenous languages has
increasingly focused on language identification,
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cross-lingual generalization, and synthetic data gen-
eration to mitigate data scarcity. While modern
LangID models support hundreds of languages
(Kargaran et al., 2023; Milind Agarwal, 2023),
they frequently overlook or fail for Indigenous lan-
guages due to insufficient training data (Cavalin
et al., 2023). One promising approach is family-
aware classification, where related languages are
incorporated into training. Cavalin et al. (2023)
demonstrated this by improving LangID perfor-
mance for Brazilian Indigenous languages through
linguistic family modeling. Similarly, leveraging
phonological, morphological, and script-based cues
has been proposed as a strategy for improving clas-
sification of Cherokee and Northern Iroquoian lan-
guages (Kargaran et al., 2023). However, Chero-
kee’s unique syllabary introduces additional chal-
lenges compared to the Latin-based scripts used by
its linguistic relatives.

Cross-lingual generalization offers a promising
approach to improving LangID in low-resource set-
tings. Multilingual models like mBERT can trans-
fer knowledge across related languages (Pires et al.,
2019), with pretraining on linguistically similar
languages boosting classification accuracy (Bafna
et al., 2023). While Cherokee belongs to the South-
ern Iroquoian branch (Zhang, 2022), it shares struc-
tural features with Northern Iroquoian languages,
suggesting potential for generalization. However,
differences in writing systems may hinder direct
transfer, requiring transliteration or character-level
modeling (Zhang et al., 2020). Given the scarcity of
annotated data, synthetic techniques such as back-
translation and morphological augmentation have
been explored to enhance NLP models for endan-
gered languages (Feldman and Coto-Solano, 2020;
Zhang et al., 2020; Yang et al., 2025c,a). While
synthetic data can improve classifier robustness,
community validation remains crucial to mitigat-
ing risks associated with artificial augmentation
(Zhang et al., 2022). Applied thoughtfully, these
methods could strengthen language identification
for Cherokee and Northern Iroquoian languages.

3 NatAm Language Landscape

The Cherokee language, known as Tsalagi Gawoni-
hisdi (King, 1975), belongs to the Iroquoian lan-
guage family and is classified under the Southern
Iroquoian branch. As shown in Figure 2, it is the
only surviving language of this branch (Rountree,
1987), with its closest linguistic relatives found in

Figure 2: Language family tree for Proto-Iroquoian
languages, with Cherokee, Seneca, Cayuga, Onondaga,
Oneida and Mohawk highlighted through color.

the Northern Iroquoian group, including Mohawk,
Seneca, Oneida, Onondaga, and Cayuga. Lin-
guistic evidence suggests that Cherokee diverged
from Northern Iroquoian languages approximately
3,500 to 3,800 years ago (Barrie and Uchihara,
2019), leading to substantial differences in phonol-
ogy, morphology, and writing systems. Unlike the
Northern Iroquoian languages, which primarily rely
on oral traditions and Latin-based orthographies
(Birch, 2015), Cherokee developed a unique syl-
labary in the early 19th century (Cushman, 2012),
further distinguishing it from its linguistic relatives.

Mohawk, Seneca, Oneida, Onondaga, and
Cayuga, spoken in the northeastern United States
and Canada, are members of the Northern Iro-
quoian branch and share many grammatical and
phonological features. Mohawk, one of the
most widely spoken Northern Iroquoian languages
(Hoover, 1992), has benefited from revitaliza-
tion programs and digital resources. Seneca and
Cayuga, though critically endangered, continue to
be taught in community-based initiatives (Chafe,
2015; Dyck and Kumar, 2012). Oneida and
Onondaga, while also endangered, have seen grow-
ing interest in language preservation efforts through
educational programs (Lu et al., 2024; Michelson,
2021). Despite their historical and linguistic con-
nections, these languages exhibit distinct phonetic
and syntactic structures (Kilarski, 2021), which
may contribute to challenges in language classifi-
cation. Furthermore, all Iroquoian languages have
faced severe endangerment due to colonization and
language suppression policies (Richter, 2011), ne-
cessitating ongoing revitalization efforts.
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4 Data

To assess Google LangID’s performance on Chero-
kee and other Northern Iroquoian languages, we
manually collected text samples from publicly
available sources1. For Cherokee, we were able to
refer to an existing 5k dataset (Zhang et al., 2020).
Given the scarcity of textual data for the other
Northern Iroquoian languages, we manually cu-
rated our own digitalized dataset with community-
driven language archives, linguistic documentation
projects, and publicly available transcripts of In-
digenous language programs. Each language was
represented by about 20 sentences carefully se-
lected to reflect a range of grammatical structures
and vocabulary diversity.

Our decision to rely on manually curated data
was driven by the lack of large-scale, digitized cor-
pora for these languages. Automatic web scraping
approaches proved ineffective due to the limited
online presence of Indigenous languages and diffi-
culty in accurately identifying them, necessitating
a more targeted approach to ensure linguistic ac-
curacy and representativeness. Additionally, we
prioritized sources produced or validated by na-
tive speakers to maintain authenticity and avoid
potential biases introduced by machine-generated
translations. This novel dataset serves as a founda-
tional resource for evaluating LangID models on
Iroquoian languages and underscores the broader
challenges of building NLP tools for endangered
languages.

5 Language Identification

5.1 Google LangID

To evaluate Google LangID’s handling of Chero-
kee, we passed the 5k Cherokee dataset through
the Google Translate API. Surprisingly, every sen-
tence was classified as undetermined, meaning the
system did not even attempt to associate Cherokee
with any known language. While Google LangID
does not officially support Cherokee, it should at
least misidentify it rather than fail to classify it
altogether. Prior research on low-resource lan-
guage identification has shown that unsupported
languages are typically misclassified as typologi-
cally or phonetically similar ones. For instance, in
a recent study on Navajo (Yang et al., 2025d), a
10k dataset was run through Google LangID, and
while the results were incorrect, each sentence was

1Full citations are included in the GitHub.

Figure 3: Classification results for Cherokee and 10
other languages, presented as a confusion matrix.

still assigned to an existing language. The fact that
Cherokee received no such assignment suggests a
fundamental failure—not just in recognizing the
language, but in engaging with the data at all.

To further investigate, we ran our manually cu-
rated dataset of 120 Northern Iroquoian sentences
through Google LangID. Unlike Cherokee, these
sentences were assigned specific, though incorrect,
language labels, indicating that the system at least
attempted classification. This stark contrast in per-
formance underscores a deeper issue; while many
Indigenous languages are misidentified, Cherokee
is uniquely absent from the model’s processing
pipeline, raising concerns about how commercial
language technologies handle languages with dis-
tinct scripts, such as the Cherokee syllabary.

5.2 Classifier
To address the shortcomings of existing language
identification models for Indigenous languages, we
developed a custom classifier to distinguish Chero-
kee from other languages in our dataset. Given the
limited availability of labeled data, we selected a
Random Forest classifier (Hastie et al., 2009) for
its robustness, interpretability, and effectiveness
in handling small datasets with high-dimensional
features. We employed a TF-IDF vectorizer to
transform text into numerical representations, cap-
turing key lexical distinctions. Tokenization was
performed at the word level, and the feature space
was restricted to the 5,000 most frequent terms to
balance specificity and generalization.

The dataset included Cherokee alongside the ten
most commonly misidentified languages, such as
Albanian, Czech, Hausa, Hindi, Icelandic, Indone-
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Language Precision Recall F1-Score
Cherokee 0.82 1.00 0.90
Albanian 1.00 0.99 0.99
Czech 0.90 0.93 0.92
Hausa 1.00 0.99 0.99
Hindi 1.00 0.99 1.00
Icelandic 1.00 0.99 0.99
Indonesian 1.00 0.99 0.99
Irish 0.99 0.98 0.99
Slovak 0.94 0.90 0.92
Turkmen 0.99 0.95 0.97
Vietnamese 1.00 0.99 0.99
Accuracy 0.97
Macro Avg 0.97 0.97 0.97
Weighted Avg 0.97 0.97 0.97

Table 1: Multi-classifier Performance Metrics.

sian, Irish, Slovak, Turkmen, and Vietnamese. Text
samples were manually curated and preprocessed
to remove extraneous whitespace before vector-
ization. A stratified 80-20 train-test split ensured
balanced representation across all classes. Train-
ing was conducted with 100 decision trees, using a
fixed random state for reproducibility. Evaluation
metrics (precision, recall, and F1-score) demon-
strated strong differentiation between Cherokee
and the other languages, though minor misclassifi-
cations occurred, particularly among typologically
similar languages. The confusion matrix in Figure
3 highlights these cases, emphasizing the challenge
of distinguishing languages with overlapping lin-
guistic structures. The effectiveness of TF-IDF
features in capturing distinguishing characteristics
while filtering out noise from infrequent words is
further reflected in Table 1.

Further analysis of the model’s binary classi-
fication performance in Table 2 shows high ac-
curacy in distinguishing Cherokee from all other
languages. The precision and recall scores con-
firm the classifier’s reliability in identifying Chero-
kee while correctly classifying non-Cherokee lan-
guages. Our results demonstrate that even with
limited training data, a random forest classifier
can effectively differentiate Indigenous from non-
Indigenous languages, addressing gaps in commer-
cial language identification. Future work could
expand the dataset through community-driven con-
tributions, incorporate additional Indigenous lan-
guages, and refine feature selection to enhance clas-
sification. Exploring deep learning approaches may
further improve performance, fostering the develop-
ment of more inclusive NLP tools for endangered
languages.

Class Precision Recall F1-Score
Cherokee 1.00 0.82 0.90
Non-Cherokee 0.99 1.00 1.00
Accuracy 0.99
Macro Avg 1.00 0.91 0.95

Table 2: Binary Classification Performance Metrics.

6 Future Work

Future research will include interviews with In-
digenous community members to gain cultural in-
sights into language classification challenges. We
have already scheduled two interviews with an Om-
aha Tribe member and a member of the Okana-
gan/Wenatchi community, ensuring direct engage-
ment with native speakers. Expanding the dataset
to incorporate additional Indigenous languages and
exploring deep learning models will further im-
prove classification accuracy (Alvarez et al., 2025).
Additionally, integrating phonetic and morpholog-
ical features will enhance model interpretability,
while ethical considerations will guide meaningful
collaboration with Indigenous communities for val-
idation and tool development. These efforts aim
to create more inclusive and effective language
identification tools that actively support Indigenous
language preservation.

7 Conclusion

This study highlights the severe shortcomings
of commercial language identification systems
for Indigenous languages, exemplified by Google
LangID’s failure to classify Cherokee—even incor-
rectly. While other Northern Iroquoian languages
received misidentifications, Cherokee was uniquely
ignored, raising concerns about how commercial
models handle languages with distinct scripts. To
address this gap, we developed a random forest
classifier that effectively differentiates Cherokee,
demonstrating that even with limited data, accu-
rate classification is achievable. Our findings un-
derscore the need for more inclusive NLP tools
that support endangered languages. We call upon
the NLP community to move beyond discussion
and take concrete steps, whether by expanding
datasets or collaborating with Indigenous speak-
ers, to ensure that these languages are not just
studied, but actively supported.
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Limitations

While our study provides valuable insights into
the deficiencies of commercial LangID models for
Cherokee and Northern Iroquoian languages, it
is constrained by the small dataset size and the
absence of native speaker validation. Addition-
ally, our classifier’s effectiveness may not extend
to other underrepresented Indigenous languages
with different linguistic structures. Further re-
search should explore larger datasets, multimodal
approaches, and direct collaboration with Indige-
nous speakers to improve the accuracy and ethical
implementation of language identification systems.

Ethics Statement

Our study prioritizes ethical data collection and rep-
resentation of Indigenous languages. We sourced
data only from publicly available and community-
approved resources, ensuring that no proprietary
or culturally sensitive materials were used with-
out consent. Additionally, we acknowledge the
historical and ongoing marginalization of Indige-
nous languages in NLP and aim to contribute to
language preservation rather than commodifica-
tion. Future work should actively involve Indige-
nous communities in data collection and valida-
tion to ensure their agency in technological ad-
vancements. In the spirit of transparent and eth-
ical research, samples of our data and code has
been made available at (https://github.com/
Cherokee-Project/Classifier).
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Abstract

Dialectal variation among closely related lan-
guages poses a major challenge in low-resource
NLP, as their linguistic similarity increases con-
fusability for automatic systems. We intro-
duce the first supervised classifier to distin-
guish standard Catalan from its regional va-
riety Valencian. Our lightweight approach fine-
tunes a RoBERTa-base model on a manually
curated corpus of 20 000 sentences—without
any Valencian-specific tools—and achieves 98
% accuracy on unseen test data. In a human
evaluation of 90 mixed-variety items per re-
viewer, acceptance rates reached 96.7 % for
Valencian and 97.7 % for Catalan (97.2 %
overall). We discuss limitations with out-of-
distribution inputs and outline future work on
confidence calibration and dialect-aware tok-
enization. Our findings demonstrate that high-
impact dialect classification is feasible with
minimal resources.

1 Introduction

Linguistic Background. Valencian is the vari-
ety of Catalan spoken in the Valencian Community
and is officially recognized as one of its co–official
languages. Linguistically, the Acadèmia Valen-
ciana de la Llengua (AVL) “formally acknowl-
edges Valencian as one variant of the common
Catalan language” (European Language Equality
(ELE), 2022; Acadèmia Valenciana de la Llengua,
2022). However, due to historical and political fac-
tors—such as the repression of Catalan during the
Franco regime—Valencian has often occupied a
minoritized position, surviving mainly in informal
domains and facing strong pressure from Span-
ish (European Language Equality (ELE), 2022).
This sociopolitical context is reflected in technol-
ogy: Google Translate and most commercial voice
assistants do not distinguish Valencian (they of-
fer only “Catalan”) (European Language Equality
(ELE), 2022), and Microsoft Office requires a sep-
arate “Catalan (Valencian)” pack maintained by

Softcatalà (Softcatalà, 2018). The Valencian vari-
ety of Catalan is commonly perceived as a regional
dialect rather than a distinct linguistic entity, which
has led to its underrepresentation in natural lan-
guage processing (NLP) resources. Despite being
an official language in the Valencian Community,
Valencian lacks dedicated tools such as lemmatiz-
ers, spell checkers, or machine translation systems
that treat it independently from standard Catalan.
This scarcity of resources positions Valencian as
a low-resource language variant in practical com-
putational terms. Although Catalan has benefited
from recent advances in language modeling and the
availability of large-scale corpora, similar efforts
for Valencian are virtually nonexistent.

In this paper, our aim is to contribute to the devel-
opment of dialect-specific resources by presenting
a lightweight binary text classifier capable of distin-
guishing between standard Catalan and Valencian.
We train our model using manually curated data
from official public sources and demonstrate that
it is possible to obtain accurate and robust results
even with limited supervision and minimal prepro-
cessing tools. To the best of our knowledge, this
is the first work to formulate and evaluate the task
of discriminating between standard Catalan and
Valencian as a supervised classification problem.
Our work is framed within the broader context of
dialectal NLP and highlights both the technical
challenges and sociolinguistic implications of com-
putationally differentiating closely related language
varieties.

2 Related Work

Linguistic features. Catalan and Valencian are
Romance languages derived from Vulgar Latin
(Martines, 2024), sharing many features with Span-
ish and French but also showing systematic dif-
ferences. One example is the present subjunctive:
Catalan uses endings in -i (e.g., canti) (d’Estudis
Catalans, 2022), whereas Valencian prefers -e
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(e.g., cante) (Acadèmia Valenciana de la Llen-
gua, 2006). Another contrast is in feminine pos-
sessive pronouns: Catalan meva/teva/seva vs. Va-
lencian meua/teua/seua (Institut d’Estudis Cata-
lans, 2022; Real Acadèmia de Cultura Valenciana,
Secció de Llengua i Lliteratura Valencianes, 2025).
Beyond morphology, numerous studies have doc-
umented lexical divergences between the two va-
rieties (Wheeler, 2005; Marzà et al., 2006; Lledó,
2011), and ongoing online projects aim to com-
pile them systematically (Idioma Valenciano, 2025;
Acadèmia Valenciana de la Llengua, 2025).

Existing resources. Most NLP resources for
Catalan do not explicitly handle Valencian. Spell-
checkers such as Softcatalà provide a unified Cata-
lan dictionary with a “Valencià” variant (Softcatalà,
2018), and LanguageTool or the SALT platform
offer only basic configurations. Open-source MT
systems (Apertium, Politraductor) adapt Valencian
lexicon, while commercial engines (DeepL, Google
Translate) collapse Valencian into Catalan (Euro-
pean Language Equality (ELE), 2022). Morpholog-
ical analyzers like FreeLing or spaCy are trained for
Catalan and must be reused for Valencian, which
can miss regional features. State-of-the-art PLMs
such as CALBERT and RoBERTa (Projecte AINA)
are trained on broad Catalan data with no explicit
Valencian component (VIVES, 2025), and avail-
able Valencian corpora (DOGV, À Punt Mèdia)
remain relatively small for standalone training (Eu-
ropean Language Equality (ELE), 2022; VIVES,
2025).

Dialect identification and lightweight models.
Dialect identification has been studied exten-
sively in other language pairs but not for Cata-
lan/Valencian. The DSL shared tasks included
Czech vs. Slovak and Brazilian vs. European Por-
tuguese, achieving high accuracy on newswire
(Zampieri et al., 2014, 2015). More recently, (Preda
et al., 2024) revisited pt-BR vs. pt-PT with updated
methods, and (Zampieri et al., 2020) provide a sur-
vey of techniques and pitfalls in similar-language
discrimination. Lightweight fine-tuning has also
proven effective in low-resource dialectal NLP:
BERT on Arabic tweets (Mansour et al., 2020),
AfriBERTa on African languages (Ogueji et al.,
2021), and small multilingual models like mBERT
or XLM-R that often outperform larger LLMs in
limited-data regimes (Gurgurov et al., 2025).

3 Corpus

Because no labeled dataset exists to distinguish
Catalan and Valencian, we compiled a new bal-
anced corpus of 20 000 sentences (10 000 per vari-
ety). Sources included the Valencian government
gazette (DOGV) and the À Punt Media portal for
Valencian, and the Catalan government portal (gen-
cat.cat) and the 3Cat/324 news site for Catalan.

We preserved all original tokens (including dates,
headers, codes) to retain contextual cues, and only
applied lowercasing. Sentence segmentation was
carried out with regex rules plus manual review.
Each sentence received a binary label: Valencian
(1) or Catalan (0). The corpus was split into 80%
training (16 000 sentences) and 20% test (4 000),
ensuring class balance.

Data collection. We assembled 20 000 sentences
(10 000 per class) from public institutional and
media sources: the DOGV (https://dogv.gva.e
s) and À Punt Mèdia (https://www.apuntmedia
.es) for Valencian, and the Catalan government’s
public portal gencat.cat (https://web.gencat
.cat) (the Catalan equivalent of DOGV) and the
3Cat/324 news site (https://www.3cat.cat/324)
for Catalan. All texts retained original metadata
(dates, headers, codes) to leverage contextual cues.

Prior work has shown that case-sensitive mod-
els retain useful signals from capitalization and
diacritics without loss in accuracy (e.g., BETO vs.
lowercase BETO in Spanish; (Cóster and Martı́nez,
2021)), and that preserving punctuation and nu-
merals maintains structural cues crucial for text
classification (HaCohen-Kerner and Levin, 2020).

Preprocessing and labeling. Preprocessing fol-
lows Section 3: we only apply lowercasing. Sen-
tence segmentation uses regex rules with manual
review. Labels and the 80/20 split are as in Sec-
tion 3.

4 Methodology

Model. We fine-tune RoBERTa-base (Liu et al.,
2019), pre-trained on Catalan (Projecte AINA), for
binary classification.
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Training Setup.

• Optimizer: AdamW (weight decay 0.01).

• Learning rate: 2×10−5, linear warmup (500
steps), total 3 epochs.

• Batch size: 16.

• Scheduler: Linear decay to zero.

• Early stopping: validation loss, patience = 1
epoch.

Input Representation. We tokenized with the
standard RoBERTa tokenizer and truncated or
padded sentences to 128 tokens. All other pre-
processing followed the corpus description in Sec-
tion 3.

Implementation. The experiments were run with
HuggingFace Transformers v4.5.1 and PyTorch
v1.10.1 on a single NVIDIA T4 GPU (16GB) pro-
vided via Google Colab, with 25GB host RAM
available. We freeze the first 6 encoder layers for
the first epoch to stabilize training, then unfreeze
all layers.

Evaluation Protocol and Human Setup. Auto-
matic metrics (accuracy, precision, recall, F1) are
computed on the held-out test set of 4 000 sentences
(20% of the 20k corpus). In addition, we performed
a human evaluation on a separate pool of 6 000 sen-
tences (3 000 per variety). Following a statistically
representative sampling procedure (Barros et al.,
2021; Vázquez et al., 2010), we sampled up to 90
sentences per reviewer for each variety. We aimed
for a balanced mix of error and correct cases (up
to 45 each), though the exact proportions varied
due to random sampling. To increase cross-variety
exposure, some items came from the opposite class.
A native Valencian speaker (bilingual in Spanish)
annotated the Valencian-focused set, and a native
Catalan speaker (also bilingual in Spanish) anno-
tated the Catalan-focused set. We report per-class
acceptance rates (96.7% for Valencian, 97.7% for
Catalan) as the proportion of model predictions
confirmed by humans.

5 Experiments and Results

Following the training setup described in Section 4,
we fine-tuned RoBERTa-base for three epochs. Ta-
ble 1 reports automatic test metrics and human
acceptance rates.

Table 1: Automatic test metrics (n=4,000) and human
acceptance (n=6,000).

Acc (%) Prec Rec F1

Automatic (overall) 98.0 0.978 0.976 0.977
Valencian (auto) – 0.980 0.982 0.981
Catalan (auto) – 0.982 0.980 0.981

Human acceptance
Valencian 96.7%
Catalan 97.7%
Overall 97.2%

The automatic confusion matrix (Table 2) re-
mains unchanged, showing false positives and neg-
atives below 2%.

Predicted Catalan Predicted Valencian
True Catalan 1,960 40
True Valencian 35 1,965

Table 2: Confusion Matrix (n=4,000).

6 Discussion

While our model achieves 98% automatic accuracy,
human acceptance rates confirm high reliability
across both varieties: it correctly labels 96.7% of
Valencian sentences and 97.7% of Catalan ones, for
an overall 97.2% acceptance. This consistency sug-
gest robust performance, though further analysis is
needed to ensure the model does not over-rely on
contextual metadata and to better handle challeng-
ing or ambiguous cases.

7 Conclusions and Future Work

We have presented a lightweight classifier capable
of distinguishing between standard Catalan and
Valencian using minimal data and without dialect-
specific tools. Trained in 20,000 sentences with
contextual metadata, our model achieves automatic
accuracy 98%. Future directions include:

• Incorporating human acceptance rates for con-
fidence calibration.

• Extending training to informal varieties (e.g.,
social media dialects).

• Developing a dialect-aware tokenizer to better
handle metadata and numerals.

All trained model checkpoints and associated code
will be released upon acceptance. The resources
will be accessible at https://github.com/leurz
z/modelo-catalan-valenciano.
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Limitations

Our study is limited to formal, institutional sources;
generalisation to informal or noisy domains (e.g.,
social media) remains untested. In addition, we did
not run ablations to disentangle linguistic features
from metadata cues, and comparisons to alterna-
tive classifiers (e.g., SVMs or multilingual BERT)
remain for future work. These aspects should be
addressed to fully understand the robustness and
portability of our approach.
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Abstract

Machine Translation (MT) automatically
converts text from one language to another.
End-to-end Neural Machine Translation
(NMT) performs best when trained on large,
clean parallel data. In the Indic setting, the
Samanantar corpus is the largest public
resource, but its heterogeneous sources in-
troduce noise such as misalignments, dupli-
cates, boilerplate, and mistranslations, that
may limit model quality. We present an
exploratory, data-centric experiment: can
a simple, validation-calibrated filter that
removes non-parallel pairs before training
improve Indic NMT? Our filter scores each
pair with sentence-level Bilingual Evalu-
ation Understudy (BLEU) and discards
those below a single cutoff per direction τ =
Bdev/4 (with Bdev the corpus-level BLEU
on the validation set). We do not assume
this rule is optimal or universally applica-
ble; instead, we assess its effect on two Indic
language (IL) pairs—Hindi–English (HIN–
ENG) and Odia–English (ODI–ENG)—and
three training sizes (Full, Quarter, fixed
500k). Across BLEU, METEOR, and
RIBES, the filtered data yield consistent
gains, and IL→ENG directions outperform
ENG→IL even when trained on the same
data.

1 Introduction

Languages are vital for communication between
individuals, groups, and nations (Das et al.,
2025a) (Dalai et al., 2024). With increased
global interdependence and interactions be-
tween cultures, machine translation (MT) is
becoming more essential for promoting com-
munication as well as fostering collaboration
among individuals who speak various languages.
Nonetheless, accomplishing precise and intact
translations is still a crucial challenge when

the dataset comes into play. A “dataset” is an
extensive database of bilingual or multilingual
texts utilized as training data for MT systems.
It consists of pairs of interpretations from the
source language to the target language. To
examine these datasets, different MT models
are used, which learn the textual structures
and patterns in order to do the translation
more accurately. However, the quality of the
dataset used to train the MT models has a
significant effect on the precision as well as
the fluency of the output. When the dataset
used for training is of poor quality, with in-
accuracies, inconsistencies, or irrelevant data,
then the MT system’s performance will suffer,
resulting in poor translations or even nonsen-
sical outputs. Hence, the massive qualitative
dataset is important for the MT system.

In a multilingual country such as India, the
availability of massive, high-quality datasets
for Indian languages (ILs) is important for es-
tablishing an effective MT system (Dalai et al.,
2023), (Das et al., 2025b), (Kodati and Tene,
2025b). But it is observed that several ILs
have constrained or inadequate datasets, which
makes it challenging to establish robust MT
models for ILs. However, researchers have come
up with a massive parallel dataset collection
for ILs, i.e., the Samanantar Dataset (Ramesh
et al., 2022). Nevertheless, as this dataset has
been collected from a variety of sources, it
consists of an immense quantity of noise or
wrong translations. The existence of noise in
the dataset has an adverse effect on the effi-
ciency and precision of the MT task. As a
result, no MT models on ILs can generate flaw-
less translations (precisely convey the meaning
and actual translation from source to target
language).

Many researchers (Bala Das et al., 2024),
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(Kodati and Tene, 2025a), working with ILs
have recently built various MT systems and
models to experiment with various approaches
to translate ILs to ENG and vice versa; how-
ever, they are still unable to achieve correct
translation. The translation quality of models
built on ILs can vary according to their dataset
quality and quantity. Therefore, the individual
relevance of the quality and quantity of the
dataset during training remains an open ques-
tion. In order to encourage the enhancement
of MT for ILs, the performance evaluation of
the translation quality of machine-generated
output becomes increasingly important. Two
ILs, such as Hindi (HIN) and Odia (ODI), from
Samanantar datasets are taken into considera-
tion for the experiment in this paper in order
to eliminate and verify the impact of inaccu-
rate and dissimilar translations in translation
models. The motivation for selecting these lan-
guages is due to the fact that Odia has propor-
tionally fewer parallel sentence pairings than
Hindi (in the Samanantar Dataset), which is
linked to a bigger dataset. The different repre-
sentation sizes of these languages in the dataset
led to their selection. The paper also proposes
a novel technique to remove incorrect or dissim-
ilar translations from the dataset and checks
its effect on MT tasks. It also investigates how
different dataset divisions (into multiple sub-
sets) influence the translation quality. All the
translations are evaluated using standard eval-
uation metrics. A baseline system using NMT
models for 2 ILs is developed and examined in
this paper. This paper is arranged as follows:
Section 2 focuses on the dataset and languages
used for the experiment. Section 3 discusses
our methodology, which includes the algorithm
proposed for the removal of dissimilar transla-
tions from the dataset. Results are illustrated
in Section 4, and Section 5 gives the conclusion
and future work.

2 Dataset and Languages Used

For the experiment, Samanantar dataset is
used to compare and test the impact of
dataset quality and quantity on MT tasks using
Hindi (HIN) and Odia (ODI) languages. This
Samanantar dataset contains over 40 million
sentence pairs from English (ENG) to ILs. The
Flores200 dataset (Costa-jussà et al., 2022) is

utilized for testing purposes. A rich morpholog-
ical and structural variation can be seen in ILs,
which makes MT and NLP tasks challenging
(Das et al., 2022), (Vikram, 2013).

3 Methodology

The quality of the dataset cannot be guar-
anteed when obtained from different sources.
However, these datasets are crucial for an MT
system to function effectively and give a cor-
rect translation. For the experiment, we have
used both the original unfiltered (dataset taken
directly from Samanatar) and after removing
dissimilar translation (from the original data,
we have removed dissimilar translation). The
dataset is standardized and tokenized with the
Indic NLP library (Kunchukuttan, 2020) for
both Indian Languages. Previous research has
shown that filtering techniques can positively
and negatively affect training datasets (Stein-
grímsson et al., 2023), which motivates us to
explore these datasets. Therefore, this paper
proposes a novel technique that can be used
to remove sentences with incorrect translations
from the dataset.

3.1 A thresholding method for
removing dissimilar Translation:
To check the quality of dataset

While examining the dataset, it has been ob-
served that it possesses lots of incorrect trans-
lations or dissimilar mistranslations (Bala Das
et al., 2023). The term ‘‘dissimilar mistransla-
tions or incorrect translations’’ in the context
of a dataset refers to a translation that fails
to accurately represent the intended signifi-
cance of the original text. This can happen for
various reasons, including translation errors,
absence of contextual knowledge, variations in
the grammar and structure of the source and
target languages, or downright wrong transla-
tions. However, while training any MT models,
it acquires knowledge by analyzing examples
from these training datasets, and if this dataset
has dissimilar inaccurate translations, it can
cause improper learning. As a result, the model
is found to underperform in MT Tasks (provid-
ing wrong translations while converting source
to target languages). These dissimilar transla-
tions can impede model performance. A few
examples of dissimilar translations that can be
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observed in the Samanatar dataset are shown
in Table 1 and Table 2.

It is important to remove non-parallel (in-
correct) sentence pairs from the training data
so that MT models learn faithful source–tar-
get mappings. In this work, we apply a fully
automatic, no-human-in-the-loop filter before
final training and study its impact by training
on several corpus sizes (Full, Quarter, and a
fixed 500k subset for comparability). We use
the following notation. CTR and CV are the
training and validation sets. Their source/tar-
get sides are CTR|S , CTR|T and CV |S , CV |T . LS

and LT denote the source and target language
tags. A single training example is (x, y)∈CTR,
where x ∈ LS and y ∈ LT . The baseline
model’s best checkpoint is PB; its translation
of x is ŷ = PB(x). We compute two BLEU
scores: (i) corpus BLEU on the validation
set, Bdev = BLEU

(
CV |T , PB(CV |S)

)
, which

we use only to set a cutoff; and (ii) sentence-
level BLEU (with smoothing) for each pair,
b(x, y) = BLEU

(
y, ŷ

)
, which we use to keep or

discard pairs.
We define a single cutoff per direction as

τ =
Bdev
4

.

A training pair (x, y) is kept if b(x, y) ≥ τ and
discarded otherwise. Sentence-level BLEU is
typically lower and more variable than corpus
BLEU; the Bdev/4 calibration removes clear
mismatches while preserving useful pairs. Em-
pirically this often retains about 70–80% of
pairs; this is descriptive, not a fixed percentile
rule.

For EN→ODI, we translate the English side
of the validation set into Odia to obtain Bdev,
set τ = Bdev/4, then score each EN–ODI train-
ing pair by sentence-level BLEU and remove
pairs with b(x, y) < τ . We apply the same
procedure independently to ODI→EN and to
the Hindi pair. After filtering, we retrain
the final model from scratch on the retained
pairs. We report results for Unfiltered (origi-
nal data) and Filtered (after removing pairs
with b(x, y) < τ) at three sizes:
Case 1: Original (Full) dataset

Case 2: Quarter of the dataset

Case 3: 500k sentence pairs (chosen for com-
parability across languages)

Following are the steps conducted to remove
dissimilar translations from the dataset:

1. Train the model on the original unfiltered
dataset (without removing any dissimilar
sentences from the original dataset).

2. Use the newly created model to translate
the validation dataset and find its BLEU
score using the existing validation dataset
as a reference.

3. A threshold score (in this case, score/4) is
created using this BLEU score (here, score
means the corpus BLEU on the validation
set, i.e., Bdev, so the cutoff is τ = Bdev/4;
keep/discard decisions use sentence-level
BLEU).

4. The entire train set is translated using the
existing model checkpoints.

5. The translated training set is compared
with the original training set, and any sen-
tences that receive a BLEU score lower
than the computed threshold are elimi-
nated from the original dataset.

Algorithm 1 Removal of dissimilar translation
from the dataset
Input: Train dataset CTR, Validation dataset
CV , Source Language LS , CV |T denotes the
part of CV written in language T, Target
Language LT , Parameter: y-Number of
Epochs

1: TF ← CTR + CV

2: Train model on CTR from LS to LT for y
epochs with best checkpoints saved in PB

3: C ′
V |T ← PB(CV |S)

4: B ← BLEU(CV |T , C ′
V |T )

5: Threshold ← B/4 sentence pair (PS , PT )
in (CTR|S , CTR|T )

6: P ′
T ← PB(PS)

7: M ← BLEU(PT , P
′
T ) M < Threshold

8: Discard (PS , PT ) from CTR Return CTR

Finally, to map symbols in the pseudocode
to the prose above: B is the validation cor-
pus BLEU Bdev (so “B/4” equals the cut-
off τ = Bdev/4); the loop variables (PS , PT )
correspond to (x, y); P ′

T is the hypothesis ŷ;
and M is the sentence-level BLEU b(x, y) =
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Table 1: Few Examples of Wrong Translation Observed in Odia Language Dataset

Source Incorrect Translation from
dataset

Actual Translation

think about the hospital
administration staff, ambu-
lance drivers, ward boys, san-
itation workers who are serv-
ing others in these difficult
conditions.

ଅନ୍- ସ୍ୱାସ୍ଥ୍ୟ କର୍ମ ଚାରୀ, ପରିମଳ କର୍ମ

ଚାରୀ, କର୍ମ ଚାରୀ, କର୍ମ ଚାରୀ, କର୍ମ ଚାରୀ,

ଆମ୍ବୁଲାନ୍ସ ସେବା କ୍ଷେତ୍ର ରେ କାର୍ଯ ୍ୟରତ

ଅଛନ୍ତି । (swasthya karmachari,
parimala karmachari, karma-
chari, karmachari, karmachari,
ambulaans seba khetrare
karjyarata achhanti.)

ଡାକ୍ତରଖାନା ପ୍ର ଶାସନର କର୍ମ ଚାରୀ, ଆମ୍ବୁ

ଲାନ୍ସ ଡ୍ର ାଇଭର, ୱାର୍ଡ ବାଳକ, ପରିମଳ

କର୍ମ ଚାରୀ ଯେଉଁମାନେ ଏହି କଠିନ ପରି

ସ୍ଥି ତିରେ ଅନ୍ୟମାନଙୁ୍କ ସେବା କରୁ ଛନ୍ତି ସେ

ମାନଙ୍କ ବିଷୟରେ ଚିନ୍ତା କରନ୍ତୁ |(dak-
tarakhanaa prasasanara karma-
chari, ambulaans driver, ward
balaka, parimala karmachari je-
unmane ehi kathina paristhi-
tire anyamananku seba karuch-
hanti semananka bisayare chinta
karantu |)

ଏମାନେ ବହ

ୁ

ତ କଥା କହ

ୁ

ଛ

ନ୍ତି ।(emane bahuta katha
kahuchhanti.)

these matter a lot. They are talking a lot.

Table 2: Few Examples of Wrong Translation Observed in the Hindi Dataset

Source Incorrect Translation from
dataset

Actual Translation

on wednesday morning, sonu
singh, devendra singh and ab-
hishek singh came to the vil-
lage.

बीते बुधवार को गांव के रहने वाले दबंग

सोनू, अभिषेक और देवेन्द्र ने दलित

परिवार पर ताबड़तोड़ फायरिंग कर दी

थी।(beete budhavaar ko gaanv
ke rahane vaale dabang sonoo,
abhishek aur devendr ne dalit
parivaar par taabadatod phaa-
yaring kar dee thee.)

बुधवार की सुबह सोनू सिंह, देवेन्द्र सिह

और अभिषेक सिंह गांव आये।(bud-
havaar kee subah sonoo sinh,
devendr sinh aur abhishek sinh
gaanv aaye. )

one way is by being a good
listener.

हो । ”(ho) एक तरीका अच्छा श्रोता बनना है।(ek
tareeka achchha shrota banana
hai.)

jagat mashay remained
ever grateful.

मेरी बदनामी होगी।(meree
badanaamee hogee.)

जगत महाशय सदैव आभारी रहे।(jagat
mahaashay sadaiv aabhaaree
rahe)

BLEU(y, ŷ). The assignment TF ← CTR +CV

is a notational union; the model is trained on
CTR only.

Algorithm 1 describes the steps followed for
our experiment. Tables 3 and 4 show the statis-
tics of the dataset after filtering, as well as the
removal of dissimilar sentences that were found
in the dataset and the dissimilar translations
that were noted in the dataset.

3.2 Model Training
The MT model utilized is based on the trans-
former (Vaswani et al., 2017) architecture, with
six encoder-decoder pairs and 512 hidden lay-
ers and token embeddings. The models have
been constructed by the Fairseq (Ott et al.,
2019) library. The dataset is segmented using
the Byte Pair Encoding (BPE) technique (Sen-
nrich et al., 2015), which involves splitting the

words into more manageable subwords. Exper-
iments are conducted using unfiltered datasets
and, after removing dissimilar translations, ob-
tained from standardization and tokenization
using the Indic NLP library (Kunchukuttan,
2020).

4 Results and Discussion

MT evaluation is the most important phase
of any MT system. Three different evaluation
metrics are utilized to verify the system’s effec-
tiveness. These metrics are well-known and ef-
fective in determining the quality of translated
texts. METEOR (Banerjee and Lavie, 2005),
RIBES (Tan et al., 2015), and BLEU (Papineni
et al., 2002) are the evaluation metrics used in
this work. The evaluation uses the Flores-200
dataset (Costa-jussà et al., 2022) for testing.
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Table 3: Statistics of Dataset

Dataset Division Category Pairs Training Dataset

Full dataset Unfiltered ODI 990439
HIN 8431687

After Removal of Dissimilar translation ODI 938582
HIN 5246667

Quarter dataset Unfiltered ODI 247609
HIN 2115315

After Removal of Dissimilar translation ODI 232255
HIN 1760096

500K Sentences Unfiltered ODI 500000
dataset HIN 500000

After Removal of Dissimilar translation ODI 473747
HIN 439207

Table 4: Observed incorrect translations in the Dataset

Language Dataset Division Wrong Translation Observed Threshold

ODI Full 50860 1.729
Quarter 14357 0.299

500K 25256 1.009

HIN Full 3184023 8.166
Quarter 354222 7.505

500K 59281 6.132

Our model is run on a high-performance work-
station equipped with an Intel Xeon W-1290
CPU, with 10 physical cores and 20 threads
(3.20 GHz base frequency, up to 5.20 GHz
boost), providing robust multi-threading and
caching with 20 MiB of L3 cache. The sys-
tem includes 62 GB of RAM and an NVIDIA
Quadro RTX5000 GPU with 16GB of VRAM,
supported by driver version 535.154.05. The
system uses CUDA 11.5 for compilation and
is compatible with CUDA 12.2 for runtime
operations, optimizing model training perfor-
mance. Table 4 displays the scores of the mod-
els trained with different dataset sizes with-

out filtration and after the removal of dissimi-
lar translations. RIBES and METEOR scores
range from 0 to 1, whereas the BLEU score
ranges from 0 to 100.

The results show that after removing dissim-
ilar translations, the evaluation metrics out-
perform for Odia and Hindi languages. BLEU
score is calculated only using the precision of
the translation that is directly calculated over
all n-grams (n ranges from 0 to 4), and recall is
indirectly considered using the Brevity Penalty
(BP) that penalizes shorter translations. ME-
TEOR score, on the other hand, makes use
of precision and recall directly during calcula-
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Table 5: Evaluation Metrics with Unfiltered Dataset and After removal of Dissimilar translation from the
dataset

Dataset Division Category Pairs BLEU METEOR RIBES
Full dataset Unfiltered ENG-ODI 6.38 0.17 0.66

ODI-ENG 14.53 0.27 0.72
ENG-HIN 32.37 0.47 0.81
HIN-ENG 34.61 0.42 0.83

Dissimilar translation ENG-ODI 7.06 0.21 0.68
Removal ODI-ENG 16.22 0.33 0.73

ENG-HIN 32.45 0.50 0.81
HIN-ENG 35.32 0.53 0.84

500k Unfiltered ENG-ODI 3.48 0.11 0.61
Sentences ODI-ENG 9.15 0.20 0.65

dataset ENG-HIN 24.58 0.39 0.77
HIN-ENG 26.75 0.40 0.79

Dissimilar translation ENG-ODI 4.09 0.16 0.63
Removal ODI-ENG 10.25 0.26 0.67

ENG-HIN 25.44 0.43 0.77
HIN-ENG 26.81 0.47 0.81

Quarter Unfiltered ENG-ODI 1.06 0.06 0.46
dataset ODI-ENG 3.95 0.13 0.56

ENG-HIN 30.03 0.44 0.79
HIN-ENG 32.94 0.45 0.83

Dissimilar translation ENG-ODI 1.19 0.09 0.46
Removal ODI-ENG 4.67 0.17 0.58

ENG-HIN 30.76 0.48 0.80
HIN-ENG 32.96 0.51 0.83

tion and penalizes a translation based on the
number of chunks (fluent “chunks” of trans-
lations) it has, i.e., the lower the number of
chunks, the lesser the penalty. From the result,
it is clear that in most cases, dissimilar trans-
lation removal performs better in evaluation
metrics. The BLEU scores achieved are higher
than those of the unfiltered dataset. The re-
moval of grave dissimilar translations improves
dataset quality tremendously. The trade-off
between dataset quality and size is well paid
off in the case of Odia, wherein the loss in data
is at most 6% while the increase in BLEU score
is considerable. Results also reveal that ILs
to the English language performs better than
English to the ILs.

4.1 ENG - ODI and ODI - ENG

In the case of the ODI dataset, models trained
after removing dissimilar translation sentences
from the dataset outperform the unfiltered
dataset. The scores are found to be almost

linearly increasing as the dataset size increases,
and this implies room for improvement to
be proportional to the growth of the ODI
dataset. Using the ODI dataset, the lowest
scores (in terms of evaluation metrics) occur in
the quarter-sized dataset. The lowest BLEU
score is found to be 1.06 for the ODI-ENG
language for the quarter dataset. METEOR
and RIBES scores for the quarter dataset are
also less for the ENG-ODI language. For the
ODI dataset, it becomes clear that using the
full dataset division and removing Dissimilar
translation consistently produces positive re-
sults (i.e., 16.22 BLEU score) across a range of
dataset division categories. From all the cases,
the highest results in terms of evaluation met-
rics are achieved with the original, unfiltered
dataset with a BLEU score of 7.06 and 16.22 for
ENG-ODI and ODI-ENG, respectively. Some
outputs generated from the model are shown
in Table 6.
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Table 6: Sample Translation for ENG-ODI and ODI-ENG for different cases of dataset

Language
Pairs

Source Output generated Reference

ENG-ODI
(Full dataset)

ପରିଶେଷରେ ଅଗ୍ନି ଶମ

ଉଦ୍ଧାରକାରୀ ଦଳ ରାତି

11:35ଟା ସୁଦ୍ଧା ନିଆଁ

ଲିଭାଇଥିଲେ।

Finally, the fire was
doused by the rescue
team at 11: 35pm.

The fire rescue team fi-
nally doused the fire by
11:35 pm.

ODI-ENG ପରିଶେଷରେ ଅଗ୍ନି ଶମ

ଉଦ୍ଧାରକାରୀ ଦଳ ରାତି

11:35ଟା ସୁଦ୍ଧା ନିଆଁ

ଲିଭାଇଥିଲେ।

Fire rescue crews even-
tually doused the fire
by 11:35 pm.

The fire rescue team fi-
nally doused the fire by
11:35 p.m.

Table 7: Sample Translation for ENG-HIN and HIN-ENG generated from the Model

Language
Pairs

Source Output genertaed Reference

ENG-HIN he even suggests that
such abilities in inter-
preting human behav-
ior may be shared by
animals such as domes-
tic dogs.

वह यह भी सुझाव देता है कि

मानव व यवहार की व याख या

करने में ऐसी क षमताओं को

घरेलू कुततों जैसे जानवरों द

वारा साझा किया जा सकता

है।

वे यह भी सुझाव देते हैं

कि मानव व्यवहार में व्याख्या

करने की जो क्षमताएँ हैं उसे

पालतू कुत्ते जैसे जानवर के ज़-

रिए भी शेयर किया जा सकता

है.

HIN-ENG वे यह भी सुझाव देते हैं

कि मानव व्यवहार में व्याख्या

करने की जो क्षमताएँ हैं उसे

पालतू कुत्ते जैसे जानवर के ज़-

रिए भी शेयर किया जा सकता

है.

due to only eighteen
models available in a
day, many countries
failed to climb the
model podium.

with only eighteen
medals available a day,
a number of countries
have failed to make
the medal podium.

4.2 ENG-HIN and HIN-ENG
It has been observed that from all three cases,
the 500k sentences dataset with the removal of
the dissimilar translation for HIN has the low-
est BLEU score (24.54). In contrast, after re-
moving the dissimilar translation from the full
dataset, the BLEU score is 35.32. RIBES and
METEOR scores after dissimilar translation
removal from the full dataset for HIN-ENG are
0.53 and 0.84. Sample translations generated
by the model are shown in Table 7.

5 Conclusion and Future Work
This paper examines the impact of the dataset
in terms of size and quality for the MT task.
A few dissimilar translations are noticed in
the dataset of two languages, i.e., Hindi (HIN)
and Odia, shown in the paper. First, a base-
line NMT model is built for both languages
and then the method to remove the dissimilar
translation from the dataset is presented in
this paper. For all our experiments, various as-
sessment metrics, such as BLEU, RIBES, and
METEOR, are used to check the overall qual-
ity of translation. The results have shown that
removing dissimilar translations improves the

quality of translation. It is also noticed that,
even though the ILs-English and English-ILs
systems are trained using the same corpus, ILs-
English works more efficiently across all the
evaluation metrics since ILs often differ in sen-
tence form, word order, and morphology from
English. Additionally, based on the analysis of
th experiments, it is concluded that the size
of the dataset is directly proportional to the
quality of the translation. More language pairs
with different dataset sizes for MT tasks need
to be tested for future work. The impact of the
removal of Dissimilar translation with different
variations of the threshold will be studied and
investigated on other datasets to establish the
underlying reasons behind the observed results.

Limitations

This research mainly assesses and checks the
effects of dataset size and mistranslation re-
moval on the translation dataset, primarily
focusing on two Indian languages. Despite
its advantages, this method might not work
for other languages, especially those with dis-
tinct linguistic structures or low-resource traits.
Currently, our approach mainly uses particular
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criteria to find and exclude dissimilar trans-
lations, which could need to be improved for
wider use for other dataset. Future research
might look into expanding this strategy to ad-
ditional languages and assessing how well it
works in various contexts and areas. To im-
prove scalability, more studies should look into
automated error-detection techniques.

6 Ethics Statement
This research mainly focuses on improving the
quality of machine translation models for In-
dian Languages by checking and filtering trans-
lation data. The paper also proposes a novel
technique to remove incorrect or disimmilar
translations from the dataset and checks its
effect on MT tasks. It also investigates how
different dataset divisions (into multiple sub-
sets) influence the translation quality. We have
taken care to ensure that our training and eval-
uation processes do not contain any affecting
or biased content, and all of the data used in
our studies came from open sources.
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Abstract

Translating Dialectal Arabic (DA) into Mod-
ern Standard Arabic (MSA) is a complex task
due to the linguistic diversity and informal
nature of dialects, particularly in social me-
dia texts. To improve translation quality, we
propose a Multi-Task Learning (MTL) frame-
work that combines DA-MSA translation as
the primary task and dialect identification as
an auxiliary task. Additionally, we introduce
LahjaTube, a new corpus containing DA tran-
scripts and corresponding MSA and English
translations, covering four major Arabic di-
alects: Egyptian (EGY), Gulf (GLF), Levantine
(LEV), and Maghrebi (MGR), collected from
YouTube. We evaluate AraT5 and AraBART on
the Dial2MSA-Verified dataset under Single-
Task Learning (STL) and MTL setups. Our
results show that adopting the MTL framework
and incorporating LahjaTube into the training
data improve the translation performance, lead-
ing to a BLEU score improvement of 2.65
points over baseline models.

1 Introduction

Machine Translation (MT) is a Natural Language
Processing (NLP) task that aims to translate be-
tween natural languages automatically. Over the
last decade, Neural Machine Translation (NMT)
has improved translation quality by leveraging
deep learning to model complex linguistic patterns
from large datasets. A widely used NMT architec-
ture is the Sequence-to-Sequence (Seq2Seq) model,
which consists of an encoder-decoder framework
typically based on Recurrent Neural Networks
(RNNs) such as Long Short-Term Memory (LSTM)
or Gated Recurrent Unit (GRU)(Cho et al., 2014).
The encoder processes the input sentence into a
compressed representation, which the decoder then
uses to generate the translated output(Sutskever
et al., 2014). More recently, Transformer-based

models have surpassed earlier Seq2Seq architec-
tures by replacing recurrence with self-attention
and parallel computation (Vaswani et al., 2017),
resulting in faster translation, improved accuracy,
and better handling of long-range dependencies.
Furthermore, pre-trained Transformer-based mod-
els have demonstrated state-of-the-art performance
across various NLP tasks beyond machine transla-
tion, solidifying the Transformer as the dominant
architecture in modern NLP research (Qiu et al.,
2020).

Despite these advancements, low-resource lan-
guage translation remains a challenge, particularly
for Dialectal Arabic (DA) to Modern Standard Ara-
bic (MSA) translation. Arabic operates in a diglos-
sic environment: MSA is the standardised form
used in education, media, and formal communi-
cation, while DA is the informal variant shaped
by regional cultures, local expressions, and daily
communication (Salloum et al., 2014; Sadat et al.,
2014). The challenge in DA-MSA translation lies
in the variability across Arabic dialects. Each di-
alect has morphological and syntactic differences,
often incorporating borrowed words from other
languages and region-specific expressions (Mallek
et al., 2017). Moreover, the rise of social media
has further complicated these challenges, as Arabic
speakers frequently mix dialects, use slang, abbre-
viations, emojis, and code-switching with other
languages (Alruily, 2020).

To address these challenges, fine-tuning Arabic
pre-trained Transformer models such as AraBART
(Kamal Eddine et al., 2022) and AraT5 (Elmadany
et al., 2023) on dialect-specific corpora has proven
beneficial in overcoming data scarcity for DA-MSA
translation (Khered et al., 2025). Moreover, Multi-
Task Learning (MTL) has emerged as a promis-
ing approach for enhancing DA-MSA translation.
Instead of training a model solely for translation,
MTL enables joint training on multiple related
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tasks, such as MSA-English translation (Baniata
et al., 2018b), Part-Of-Speech (POS) tagging (Ba-
niata et al., 2018a) and translation of multiple di-
alects (Moukafih et al., 2021). These auxiliary
tasks provide additional linguistic signals that help
improve model generalisation, contextual under-
standing, and robustness to informal variations.
Our research builds upon normalising Arabic text
in social media and improving the results on the
Dial2MSA-Verified dataset (Khered et al., 2025)
by integrating an MTL framework. We also intro-
duce the LahjaTube dataset, a new corpus sourced
from YouTube videos, to enrich model training.
LahjaTube was developed to address the shortage
of DA-MSA translation datasets, particularly those
that include informal and real-world language from
major Arabic dialects as commonly found on social
media. Our objectives include:

• Develop an MTL framework for DA-MSA
translation that incorporates dialect identifica-
tion as an auxiliary task.

• Automatically collect and construct the Lah-
jaTube dataset, covering four major Arabic
dialects: Egyptian (EGY), Gulf (GLF), Levan-
tine (LEV), and Maghrebi (MGR) with their
corresponding MSA and English translations.

• Evaluate the performance of MTL models on
both DA-MSA translation and dialect identi-
fication tasks using the Dial2MSA-Verified
dataset. This includes training on different
combinations of datasets, incorporating the
newly introduced LahjaTube corpus.

The code for the MTL framework and sup-
plementary material for this paper are avail-
able online at https://github.com/khered20/

MTL-Dial2MSA.

2 Related Work

MTL is a machine learning technique that jointly
trains multiple tasks, allowing knowledge sharing
between related tasks (Zhang and Yang, 2017).
MTL has been explored in various NLP tasks (Ku-
mar et al., 2019; Chen et al., 2024) including those
with limited data resources (Mamta et al., 2022;
Guzman et al., 2024; Elgamal et al., 2024), leading
to more generalised representations.

In Arabic, MTL has been applied to various lin-
guistic tasks, including diacritic restoration, where
auxiliary tasks such as word segmentation and POS

tagging have been utilised to enhance accuracy
(Alqahtani et al., 2020). Similarly, dialect identifi-
cation has benefited from MTL approaches, with
hierarchical attention mechanisms improving fine-
grained classification at the city, state, and coun-
try levels (Abdul-Mageed et al., 2019). Moreover,
MTL has been integrated with pre-trained language
models such as MARBERT (Abdul-Mageed et al.,
2021) for Arabic dialect identification at both the
country and province levels, demonstrating that
sharing task-specific attention layers improves gen-
eralisation across Arabic varieties (El Mekki et al.,
2021). Additionally, Arabic Natural Language Un-
derstanding (ANLU) has been enhanced through
MTL frameworks that facilitate parameter sharing
across multiple tasks. This approach has led to
a notable performance on some tasks within the
ALUE benchmark, highlighting the importance of
carefully considering task relationships and loss
scaling (Alkhathlan and Alomar, 2024).

Recent studies in MTL with MT have revealed
that incorporating auxiliary tasks can improve trans-
lation performance (Zaremoodi et al., 2018; Pham
et al., 2023). In the context of DA-MSA trans-
lation, various MTL approaches have been pro-
posed. Baniata et al. (2018b) explored a unified
multitask NMT model where DA-MSA translation
served as the main task and MSA-English transla-
tion as the auxiliary task. The architecture utilised
a separate encoder for each task whilst sharing a
single decoder. Another study by Baniata et al.
(2018a) further improved MTL for Arabic dialect
translation by integrating POS tagging as an auxil-
iary task. This model adopted a shared-private Bi-
LSTM-CRF architecture, encoding DA sentences
and segment-level POS tags. The results demon-
strated that the POS tagging task improved the
translation BLEU score. Similarly, Moukafih et al.
(2021) adopted a seq2seq MTL framework, encod-
ing and decoding pairs of different dialects and
MSA within the PADIC-parallel dataset (Meftouh
et al., 2018) using a shared GRU model. Their
Many-to-One sitting improved the translation per-
formance, surpassing statistical MT models in 88%
of translation cases.

Our research focuses on Arabic social media nor-
malisation, specifically translating DA into MSA
within the Dial2MSA-Verified dataset (Khered
et al., 2025). The Dial2MSA-Verified, an exten-
sion of Dial2MSA (Mubarak, 2018), is a multi-
reference dataset covering tweets from four di-
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Figure 1: Architecture of the MTL framework processes a shared pre-trained encoder, followed by two parallel
tasks: a translation track that generates MSA text using a pre-trained decoder and a classification track that predicts
the dialect label

alects: EGY, MGR, GLF and LEV dialects with
their multiple MSA translations. Khered et al.
(2025) further explores joint and independent train-
ing strategies, demonstrating that joint training
across dialects leads to superior translation per-
formance. Additionally, transformer-based mod-
els, including AraT5 (Elmadany et al., 2023) and
AraBART (Kamal Eddine et al., 2022), have been
benchmarked, with AraT5 emerging as the best-
performing model. In this context, we propose
a novel MTL framework that leverages Arabic-
specific pre-trained Transformer models (AraT5,
AraBART) for DA-MSA translation and dialect
identification. Furthermore, we introduce Lah-
jaTube, a dataset containing four Arabic dialects,
each with multiple transcripts, along with their cor-
responding MSA and English translations to enrich
the training data.

3 MTL for DA-MSA Translation and
Dialect Identification

In this section, we present our Multi-Task Learning
(MTL) framework designed to simultaneously per-
form two tasks: DA-MSA translation and dialect
identification, as illustrated in Figure 1. This frame-
work is built upon state-of-the-art Transformer
models and optimises both tasks through shared
representations. The dataset used in this study con-
sists of Arabic dialectal sentences paired with their
corresponding MSA translations and dialect labels.
The labels encompass the four dialects: EGY, GLF,
LEV, MGR as well as MSA.

3.1 Architecture Overview

The architecture is based on a Transformer encoder-
decoder model that is specifically pre-trained in
Arabic Language, such as AraT5 and AraBART, en-

hanced with an additional classification head. The
architecture consists of the following components:

• Encoder converts the input DA text into
a high-dimensional vector representation,
which is shared between the translation and
classification tasks.

• Decoder generates the corresponding MSA
translation from the encoder’s representation.

• Classification Head is added to the encoder
output to perform dialect classification.

3.2 Loss Functions
Our model is trained using an MTL approach that
combines two objectives: dialect classification and
Seq2Seq translation. To achieve this, we define
two separate loss functions and combine them into
a weighted objective function.

Classification Loss For dialect classification, we
use a separate classification head, which applies a
linear transformation followed by a softmax activa-
tion. The model predicts the probability distribu-
tion over C dialect classes. The classification loss
is formulated using Cross-Entropy Loss:

Lclassification = −
C∑

c=1

yc log(ŷc) (1)

C is the total number of classes (four dialects and
MSA). yc is the true label, represented as a one-hot
vector. ŷc is the predicted probability for class c.

Translation Loss For the translation task, we
also use the Cross-Entropy Loss, which measures
the difference between the predicted probability
distribution and the actual target sequence. The
translation loss is defined as:
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Ltranslation = −
T∑

t=1

V∑

v=1

yt,v log(ŷt,v) (2)

T is the target sequence length and V is the vo-
cabulary size. yt,v is a one-hot vector representing
the true token at position t. ŷt,v is the predicted
probability for token v at position t.

Combined Loss Function To train the model
jointly for both tasks, we define a weighted combi-
nation of the translation and classification losses:

Ltotal = αLtranslation + (1− α)Lclassification (3)

where α is a hyperparameter in the range (0, 1) that
controls the relative importance of the two tasks.
This combined loss ensures the model learns the
classification and translation tasks simultaneously.

4 LahjaTube Dataset

In this section, we introduce the LahjaTube dataset,
a collection of transcripts from YouTube videos
covering DA from four Arabic-speaking regions:
EGY, GLF, LEV, and MGR. These transcripts are
accompanied by English translations which were
translated into MSA. The LahjaTube dataset is
available upon request for academic purposes.

4.1 Data Collection
The data collection concentrated on YouTube
videos created by content creators who speak one of
the four aforementioned dialects. We employed the
YouTube Data API v31 to select videos from coun-
tries representative of these dialects. The filtering
functions were used to include only videos under
Creative Commons Attribution licenses and con-
tain subtitles from both Arabic and English. Once
an initial set of videos was identified, we explored
the creators’ other videos that met our specific crite-
ria. We collected a total of 1,912 videos distributed
across the four selected dialects. For the caption
extraction process, we used the YouTube Video
Subtitles Scraper from the Apify platform2 to re-
trieve both the original Arabic transcripts and their
corresponding English translations.

4.2 Data Processing and Cleaning
To ensure the quality of the extracted data, we un-
dertook several cleaning and preprocessing steps.
First, each sample was defined according to the

1https://developers.google.com/
youtube/v3

2https://apify.com/

timestamped segments provided by YouTube sub-
titles, so that each instance in our dataset corre-
sponds to an English subtitle segment as deter-
mined by the video’s original caption timing. If
subtitles occurred with minimal time gaps and with-
out sentence-final punctuation, we merged them
into a single sample. In cases where a single sub-
title segment contained multiple short sentences
separated by in-line punctuation, we kept these
grouped as a single data instance. We also removed
any subtitle containing fewer than four words (in
either the dialectal Arabic or English lines) to re-
duce potential noise and ensure sufficient linguistic
content. Furthermore, the geographic location of a
video’s creator alone does not guarantee the actual
dialect of the transcripts, as the creator could use
different dialects or MSA, host guests from other
regions, or produce videos while travelling. We
addressed this by applying a dialect identification
model to verify the dialect used in each line, en-
suring our dataset includes only transcripts where
the identified dialect corresponds with the creator’s
known dialect. The model used is MTL-AraBART,
the high-performing dialect identification model
produced in this study, trained on the same datasets
used in Khered et al. (2025).

4.3 MSA Translation
To enable translation from DA to MSA, we gener-
ated MSA translations by translating the English
subtitles into MSA using the few-shot GPT-4o3

model via its API. For each dialect, we designed
a specific prompt that included three few-shot ex-
amples, which were manually selected from our
collected DA–English subtitle pairs. Native Arabic
speakers provided accurate MSA translations for
these selected dialectal samples, and these few ex-
amples were incorporated into the GPT-4o prompt.
As illustrated in Figure 2, [Dialect] specifies the
relevant dialect, while [DA] and [EN] refer to the
original DA transcript and its English translation,
respectively.

4.4 Corpus Statistics
The final corpus comprises a total of 31,938 tran-
scripts from YouTube videos distributed across the
four aforementioned dialects, along with their En-
glish and MSA translations. Subsequently, these
transcripts are distributed as shown in Table 1, cap-
turing a variety of dialect-specific expressions and

3https://platform.openai.com/docs/
models/#gpt-4o
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This is a text written in 
[Dialect] dialect: [DA]
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Translate the English 
into MSA and ensure it 
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as the dialectal text. 
Reply only with MSA 
translation.

A Few Shot Prompt Input

[MSA]

Output

Figure 2: Few-shot prompting strategy used to convert
English translations into MSA using the GPT-4o model

vocabulary. Table 1 provides detailed statistics in-
cluding the size of each dialect corpus, along with
the total and unique word counts for both the DA
and the corresponding MSA translations.

Dialect Size Total
Words

Unique
Words

Total
MSA
Words

Unique
MSA
Words

EGY 10,279 110,387 21,417 112,470 21,613
GLF 7,762 106,669 13,269 112,277 16,192
LEV 7,695 98,138 15,996 102,010 16,851
MGR 6,202 95,148 16,329 95,829 17,439

Table 1: Statistics for LahjaTube corpus

Table 2 highlights several examples from the
LahjaTube dataset. In some cases, such as the
LEV example, the text might start or end suddenly
because it could be part of a larger conversation.
Despite this, the English and MSA translations
accurately capture the original meaning of the DA
conversation, ensuring that all versions convey the
same text.

EGY وبالتالي ممكن انك تشيل الطاقة وتعوض مكانها بالكلام ده

MSA .وبالتالي يمكنك أن تزيل الطاقة وتستبدلها بهذا الكلام

EN Therefore, you can remove the energy and replace it with this talk.

GLF والله لاصدمه خله يكلمني والله لاصدمه طيب قل له خمسين ريال

MSA ريالحسناً، قل له خمسين. والله لأفاجئه، دعه يكلمني، والله لأفاجئه

EN
I swear I will shock him. Let him talk to me. I swear I will shock him. 
Okay, tell him fifty riyals.

LEV معك من القران بس ما بيعرف شو الحكم الفقهي بهال

MSA معك من القرآن لكنه لا يعرف ما هو الحكم الفقهي في هذا

EN
You know from the Qur’an, but he does not know what the jurisprudential 
ruling is on this

MGR ابادالمنافع دياله ذاكشي علاش جربته ولله الحمد لقيت عليه نتيجه 

MSA الآننتائجفوائده هي السبب الذي جعلني أجربه، ولله الحمد وجدت 

EN Its benefits are why I tried it, and thank God I found results now.

Table 2: DA transcripts with their MSA and English
translations from LahjaTube dataset

4.5 Human Evaluation of MSA Translations

We conducted a human evaluation on a subset of
200 DA-MSA translation pairs from LahjaTube,
with 50 samples per dialect. For each dialect, one
annotator, a native speaker of the relevant dialect,
evaluated only samples from their own dialect. The
evaluation followed the multi-dimensional method
proposed by Sadiq (2025), which assessed accu-
racy, fluency, style and tone, cultural suitability,
and terminology on a 1-5 scale. As shown in Ta-
ble 3, the MSA translations in LahjaTube showed
high overall quality, with average ratings above 4.5
across most criteria and dialects.

Dialect Acc Flu S&T Cult Term Average
EGY 4.42 4.3 3.7 4.32 4.22 4.19
GLF 4.74 4.72 4.12 4.82 4.74 4.63
LEV 4.62 4.6 4.12 4.74 4.82 4.58
MGR 4.62 4.6 4.16 4.72 4.74 4.57

Table 3: Average human evaluation scores (Acc = Ac-
curacy, Flu = Fluency, S&T = Style & Tone, Cult =
Cultural Suitability, Term = Terminology) for DA-MSA
translation on a LahjaTube subset (N=50 per dialect,
200 samples)

5 Experimental Design

We conduct experiments using the MTL structure,
where DA-MSA translation forms the primary task,
and dialect identification serves as an auxiliary task.
This structure allows the model to leverage informa-
tion about the dialect during the translation process,
potentially improving translation accuracy.

5.1 Dataset

The Dial2MSA-Verified dataset (Khered et al.,
2025) is a multi-reference evaluation dataset, fully
verified and sourced from social media, specifically
built for DA-MSA translation. Additionally, we
integrate the newly introduced LahjaTube dataset,
which was created from YouTube video transcripts
based on the same four dialects. For all experi-
ments reported in this work, we evaluated our mod-
els on the same fixed development and test sets
from Dial2MSA-Verified. As summarised in Table
4, the test set contains 2,000 samples per dialect,
with some dialect sentences paired with two or
three MSA translation references. To assess the
impact of the diversity in training data on model
performance, we experimented with three different
training subsets as presented in Table 4:
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• Subset 1: The same training set used in
Khered et al. (2025), which serves as a base-
line. It includes Dial2MSA-Verified-train
along with the following additional resources:
PADIC (Meftouh et al., 2018), MADAR-train
(Bouamor et al., 2018), Arabic STS (Al Su-
laiman et al., 2022), and Emi-NADI (Khered
et al., 2023) datasets. This is to compare the
performance of our new MTL models against
previous models.

• Subset 2: This training set combines
the Dial2MSA-Verified-train and LahjaTube
datasets. The goal of this subset is to evalu-
ate the effectiveness of our newly introduced
LahjaTube corpus for DA-MSA translation.

• Subset 3: The comprehensive training set, in-
corporating LahjaTube with all training data
from Subset 1. This setup aims to produce the
most effective translation models by leverag-
ing the largest dataset available.

Dataset EGY GLF LEV MGR
Dial2MSA-V-train 9,099 6,575 4,101 3,312

Su
bs

et
1 PADIC 0 0 12,824 25,648

MADAR-train 13,800 15,400 18,600 29,200
Arabic STS 2,758 2,758 0 0
Emi-NADI 0 2,712 0 0
Total-train-1 25,657 27,445 35,525 58,160

Su
bs

et
2 Dial2MSA-V-train 9,099 6,575 4,101 3,312

LahjaTube 10,279 7,762 7,695 6,202
Total-train-2 19,378 14,337 11,796 9,514

Su
bs

et
3 Training Subset 1 25,657 27,445 35,525 58,160

LahjaTube 10,279 7,762 7,695 6,202
Total-train-3 35,936 35,207 43,220 64,362
Dial2MSA-V-dev 200 200 200 200
Dial2MSA-V-test 2000 3-R 2000 3-R 2000 2-R 2000 2-R

Table 4: Dataset setup showing the sizes of the three
training subsets. In the test set, R indicates the number
of reference MSA translations per DA sentence

5.2 Model Configurations and Training Setup
In this study, we used the second version of AraT54

model (Elmadany et al., 2023), which is based on
the T5 architecture (Raffel et al., 2020). AraT5
has a 12-layer encoder and decoder with 768 hid-
den units per layer. We also used AraBART (Ka-
mal Eddine et al., 2022) model, based on the BART
architecture (Lewis et al., 2020), which features a
6-layer encoder and a 6-layer decoder, each with
768 hidden units. Both models are pre-trained on
large-scale Arabic corpora and further modified by
adding a classification head to the encoder’s output

4https://huggingface.co/UBC-NLP/
AraT5v2-base-1024

for our multi-task setup. The additional classifica-
tion head enables dialect classification, and its loss
is calculated separately, as detailed in Section 3.
We generated additional pairs from the MSA tar-
gets by replicating them as both source and target
sentences. These newly created pairs were assigned
to the MSA class. Each model is trained under two
different settings:

• Single-Task Learning (STL): The model is
trained exclusively for DA-MSA translation,
serving as the baseline.

• Multi-Task Learning (MTL): The model is
trained jointly for DA-MSA translation and
dialect identification.

5.3 Evaluation Metrics

We evaluate model performance using both trans-
lation and dialect classification metrics. For trans-
lation, we use the Bilingual Evaluation Under-
study (BLEU) (Papineni et al., 2002) and chrF++
(Popović, 2017) scores, both implemented in Sacre-
BLEU (Post, 2018). For dialect classification, we
report accuracy, which measures the percentage
of correctly predicted dialects, Macro-F1, which
computes the F1-score for each class and averages
them equally, and Weighted-F1, which adjusts for
class imbalance by weighting each class’s F1-score
based on the number of true instances.

5.4 Hyperparameter Optimisation

Each experiment is conducted under the same hy-
perparameter settings to ensure fair comparisons.
The configurations include a batch size of 16, a
learning rate of 5e-5, a maximum sequence length
of 128, and training for up to 20 epochs, with early
stopping applied if the best BLEU score on the
validation set does not improve for three consec-
utive epochs. BLEU was chosen as the primary
metric for early stopping since this study focuses
on translation quality. All experiments are run on
two Nvidia V100 GPUs. For the MTL setup, the
combined loss function, introduced in Section 3, is
optimised using weighting values of 0.3, 0.5, and
0.8 to examine the effect of different weighting
schemes.

6 Results and Discussion

In this section, we analyse the results of our experi-
ments for DA-MSA translation, comparing the per-
formance of the baseline STL models (STL-AraT5
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and STL-AraBART) from Khered et al. (2025) with
our proposed MTL models. For the dialect iden-
tification task, we use as a baseline the results re-
ported by Khered et al. (2025) for an ensemble
of multiple fine-tuned MARBERT models (Abdul-
Mageed et al., 2021). The MARBERT ensemble
was trained and optimised using the hyperparame-
ter described by Khered et al. (2022). We compare
these results against our proposed MTL models.
While we experimented with different values of α,
all results reported in this section are based on the
combined loss with α = 0.5, which achieved stable
performance on both tasks on the development set.

6.1 DA-MSA Translation
Table 5 measures the translation performance using
BLEU and chrF++ scores across the three proposed
training subsets. For Training Subset 1, the MTL
models generally outperform STL models from
Khered et al. (2025) in terms of both BLEU and
chrF++ scores, particularly for the GLF, LEV and
MGR dialects. The overall average BLEU score for
MTL-AraT5 reaches 42.23, compared to 41.12 for
STL-AraT5, while chrF++ increases from 62.05
to 62.84, highlighting the benefits of incorporating
dialect classification as an auxiliary task.

Model EGY GLF LEV MGR Avg

STL-AraT5
BLEU 30.94 53.96 45.37 34.24 41.12

Tr
ai

ni
ng

Su
bs

et
1 chrF++ 52.94 70.86 65.40 58.99 62.05

STL-AraBART
BLEU 29.87 51.38 43.07 32.95 39.32
chrF++ 52.26 69.49 64.13 58.12 61.00

MTL-AraT5
BLEU 29.71 55.31 48.39 35.53 42.23
chrF++ 52.21 72.01 67.19 59.95 62.84

MTL-AraBART
BLEU 29.52 53.79 45.98 33.12 40.60
chrF++ 52.31 70.96 66.08 58.48 61.96

STL-AraT5
BLEU 29.96 54.21 46.99 34.50 41.42

Tr
ai

ni
ng

Su
bs

et
2 chrF++ 52.34 71.43 66.52 59.44 62.71

STL-AraBART
BLEU 26.25 50.44 43.18 32.93 38.20
chrF++ 49.11 69.15 63.94 58.11 60.08

MTL-AraT5
BLEU 30.70 55.94 48.42 35.77 42.71
chrF++ 52.90 72.35 67.47 60.36 63.27

MTL-AraBART
BLEU 28.41 51.15 43.56 32.88 39.00
chrF++ 50.98 69.28 64.24 57.80 60.58

STL-AraT5
BLEU 31.00 54.27 47.68 35.16 42.03

Tr
ai

ni
ng

Su
bs

et
3 chrF++ 53.19 71.54 66.86 59.78 62.84

STL-AraBART
BLEU 29.96 53.37 46.64 32.70 40.67
chrF++ 52.34 70.70 66.19 57.57 61.70

MTL-AraT5
BLEU 31.73 56.51 50.31 36.55 43.77
chrF++ 53.81 72.71 68.54 60.77 63.96

MTL-AraBART
BLEU 29.70 54.41 46.81 34.18 41.27
chrF++ 52.49 70.77 66.19 58.66 62.03

Table 5: The translation performance of STL vs. MTL
models evaluated on the Dial2MSA-Verified test dataset,
where the results of STL models on Training Subset 1
are from Khered et al. (2025)

In Training Subset 2, which includes only sam-
ples from the Dial2MSA-Verified training set and
the new LahjaTube dataset, MTL models con-
tinue to outperform STL models, with MTL-AraT5

achieving the highest BLEU score of 42.71 and a
chrF++ score of 63.27. Surprisingly, this model
outperforms models trained on the larger Training
Subset 1, highlighting the effectiveness of the Lah-
jaTube dataset in improving DA-MSA translation.

The highest performance is observed in Training
Subset 3, where MTL-AraT5, fine-tuned on all
training datasets, achieves the best overall results,
with a BLEU score of 43.77 and a chrF++ score of
63.96. This demonstrates that combining diverse
datasets further improves translation quality.

6.2 Dialect Identification
Table 6 presents the classification performance of
the ensemble MARBERT baseline, as reported in
Khered et al. (2025), alongside the results of our
proposed MTL models (MTL-AraT5 and MTL-
AraBART) on the Dial2MSA-Verified test dataset.
While MTL-AraBART consistently achieves the
highest overall performance, a drop in the Macro-
Average F1-score is observed in all MTL models
compared to MARBERT. This drop is likely due
to the training setup: MARBERT was trained ex-
clusively on the four dialect classes, whereas the
MTL models were trained on both the four dialects
and MSA. Despite this, MTL-AraBART achieves
the best results on other metrics, with an accuracy
of 98.85% and a Weighted-F1 score of 99.10%, all
obtained with Training Subset 2, which includes
only the Dial2MSA-Verified-train and LahjaTube
datasets. These results highlight that dialect identi-
fication also benefits from the MTL framework.

Model Acc M-F1 W-F1

Training Subset 1
MARBERT 96.950 96.942 96.942
MTL-AraT5 95.750 77.867 97.334
MTL-AraBART 97.275 78.447 98.059

Training Subset 2
MTL-AraT5 98.213 78.943 98.678
MTL-AraBART 98.850 79.284 99.104

Training Subset 3
MTL-AraT5 98.450 79.125 98.906
MTL-AraBART 98.688 79.273 99.091

Table 6: Dialect identification performance of the en-
semble MARBERT baseline and our proposed MTL
models (MTL-AraT5 and MTL-AraBART), evaluated
on the Dial2MSA-Verified test dataset using Accu-
racy (Acc), Macro-Average F1 (M-F1), and Weighted-
Average F1 (W-F1) scores

6.3 Model Impact on Translation Quality
The results highlight the advantages of the MTL
approach for DA-MSA translation, demonstrating
consistent improvements over STL models. Trans-
lation performance improved when the weighting
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parameter prioritised DA-MSA translation while
still incorporating dialect identification (e.g., α =
0.5 or 0.8). In contrast, setting α to 0.3 resulted in a
decline in performance, likely due to the classifica-
tion task receiving greater importance, reducing the
model’s focus on translation. Among the architec-
tures, MTL-AraT5 emerges as the most effective
for DA-MSA translation, likely due to AraT5’s pre-
training on a more extensive and diverse Arabic
dataset. Additionally, the results highlight the sig-
nificance of the training dataset size and diversity,
as larger and more varied training datasets enhance
translation performance.

6.4 Error Analysis

To evaluate the impact of MTL on DA-MSA trans-
lation, we conducted a comparative analysis be-
tween the STL-AraT5 model and its multitask-
enhanced version, MTL-AraT5. Both models usu-
ally produce similar translations, often differing by
only one or two words. In many cases, these words
had multiple valid translations, making it difficult
to determine a single correct output. MTL-AraT5
consistently provides more contextually appropri-
ate translations, likely due to the additional inte-
gration of dialect classification, which enhances
the model’s ability to differentiate and preserve
dialect-specific meanings. However, misclassifica-
tion occasionally affected translation performance.
For example, when the model misclassified the in-
put as MSA, it assumed no translation was needed,
leading to the reproduction of the original dialectal
sentence instead of converting it to MSA.

Despite MTL-AraT5 demonstrating improve-
ments in handling idiomatic expressions and
dialect-specific phrases, STL-AraT5 performed bet-
ter in some instances, particularly in more straight-
forward lexical mappings. BLEU score compar-
isons reinforce these findings, indicating that while
both models achieve comparable overall perfor-
mance, MTL-AraT5 excels in dialect-sensitive con-
texts, whereas STL-AraT5 sometimes provides
more direct and literal translations.

7 Conclusion and Future Work

This paper proposed an MTL framework for DA-
MSA translation, integrating dialect identification
as an auxiliary task. To support this research, we
introduced LahjaTube, a new dataset of YouTube
video transcripts covering four major Arabic di-
alects with their corresponding MSA and English

translations. Our experiments with AraT5 and
AraBART showed that MTL improves translation
performance, particularly when LahjaTube is in-
cluded in the training. MTL-AraT5 achieves the
best overall translation performance, outperform-
ing both STL models and MTL-AraBART, with a
BLEU score of 43.77 and a chrF++ score of 63.96
when trained on the most comprehensive dataset
(Training Subset 3). Meanwhile, MTL-AraBART
consistently achieved the highest performance in di-
alect classification, reaching 98.85% accuracy and
a weighted-F1 score of 99.10% in Training Subset
2. These results indicate that both tasks, DA-MSA
translation and dialect identification, benefit from
the MTL approach, as incorporating dialect iden-
tification helps improve translation quality while
translation modelling enhances dialect classifica-
tion. Despite these improvements, challenges re-
main in handling transliterated words, informal
expressions, and code-switching. Additionally, op-
timising the balance between translation and classi-
fication tasks is an area for further research.

Building on our findings, future research can ex-
plore several directions to enhance DA-MSA trans-
lation. Expanding training data with additional di-
alectal resources and data augmentation techniques,
can improve generalisation. Additionally, utilising
large language models (LLMs) with decoder-only
Transformer architecture, such as LLaMA, Gemma,
and Jais, could improve DA-MSA translation by
taking advantage of their strong language under-
standing and transfer learning abilities.

Limitations

Despite the promising results of our MTL frame-
work, several limitations remain. Although Lah-
jaTube introduces a new source of dialectal data,
its coverage may be uneven, potentially under-
representing certain countries within each dialec-
tal region. While GPT-4o was used to generate
MSA translations from English, most translations
have not undergone manual verification, and only
a small subset was reviewed through human eval-
uation; thus, some errors or inconsistencies may
remain in the automatic MSA translations, which
could reduce overall quality. Furthermore, al-
though integrating dialect identification as an aux-
iliary task improves translation performance, mis-
classifying DA sentences as MSA can lead to in-
correct outputs, with the model simply reproducing
the input instead of providing a proper translation.
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Ethical Considerations

The LahjaTube dataset consists of transcriptions
from publicly available YouTube videos. To ensure
ethical and legal compliance, we exclusively col-
lected content licensed under Creative Commons,
which permits reuse, including speech transcription
for research purposes. Furthermore, we verified
that the dataset does not include personal, sensitive,
or harmful content. Moreover, the MSA transla-
tions were generated automatically from the En-
glish transcripts using the GPT-4o model. No man-
ual correction was performed on the entire dataset;
however, to assess the translation quality and sup-
port the reliability of LahjaTube, we conducted a
human evaluation of a small subset of 200 DA-
MSA translation pairs.
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Abstract

Neural Machine Translation (NMT) has
achieved significant progress especially for lan-
guages with large amounts of data (referred to
as high resource languages). However, most
of the world languages lack sufficient data and
are thus considered as low resource or endan-
gered. Previous research explored various tech-
niques for improving NMT performance on
low resource languages, with no guarantees
that they will perform similarly on other lan-
guages. In this work, we explore various low
resource NMT techniques for improving perfor-
mance on Moroccan Arabic (Darija), a dialect
of Arabic that is considered a low resource lan-
guage. We experiment with three techniques
that are prominent in low resource Natural
Language Processing (NLP), namely: back-
translation, paraphrasing and transfer learning.
Our results indicate that transfer learning, es-
pecially in combination with back-translation
is effective at improving translation perfor-
mance on Moroccan Arabic, achieving a BLEU
score of 26.79 on Darija→English and 9.98 on
English→Darija. 1

1 Introduction

Neural Machine translation (NMT) has achieved
impressive results for high resource languages, sup-
ported by extensive linguistic data and resources
that facilitate model training and optimization
(Johnson et al., 2017; Vaswani et al., 2017). How-
ever, due to limited data availability and inherent
linguistic complexity, significant performance gaps
remain for low-resource languages (Lakew et al.,
2020). This work addresses this critical gap by de-
veloping MT solutions for Moroccan Arabic (com-
monly referred to as Darija), a dialect characterized
by unique linguistic features and a lack of training
data. By focusing on Moroccan Arabic, this work
seeks to advance natural language processing (i.e.

1
https://github.com/RoscaAlex00/lowresource_mt

NLP) methods for underrepresented languages and
contribute to a more inclusive landscape in machine
translation.

The main objective of this paper is build a Darija-
English translation model using state-of-the-art low
resource NMT techniques. We experiment with
three techniques that have been shown to be ef-
fective in low resource scenarios (Haddow et al.,
2022), namely: back-translation, paraphrasing and
transfer learning. More specificaly, we apply back-
translation by training a model to translate from
the target to the source language and using it to
generate translations. We then translate monolin-
gual target sentences to the source language then
use them for training. For paraphrasing, we use
a paraphrasing model to generate synthetic copies
of the input sentence and use them to augment the
training set. In combination with paraphrasing and
back-translation, we experiment with transfer learn-
ing from publicly available pretrained models. We
fine-tune a multilingual model that supports Mo-
roccan Arabic, and given that Arabic is the mother
language of Moroccan Arabic, we also fine-tune a
bilingual model that is trained for Arabic-English
translation. Furthermore, we compose an encoder-
decoder translation model from the checkpoints
of a BERT model pretrained on Moroccan Arabic
and an Arabic to English translation model and we
fine-tune it for Darija→English translation.

Our results demonstrate the effectiveness of
transfer learning on training an NMT model for
Moroccan Arabic, especially when combined with
back-translation, achieving a BLEU score of 26.79
on Darija→English and 9.98 on English→Darija.
However, when evaluating on datasets from a differ-
ent domain, we find the improvements are unstable,
which questions the generalization of these tech-
niques to other domains. Furthermore, we observe
a significant disparity between translation direc-
tions: translating into English from Darija achieves
more than twice the performance of translating
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from English→Darija. This calls for further re-
search into democratizing NLP for low resource
languages such as Moroccan Arabic.

2 Related Works

Moroccan Arabic NLP: NLP resources for Mo-
roccan Arabic are characterized by scarcity. Previ-
ous work introduced resources for different NLP
tasks (Samih and Maier, 2016; Issam and Mrini,
2021; Boujou et al., 2021; Moussa and Mourhir,
2023). For machine translation, Tachicart et al.
(2014) introduce the Moroccan Dialect Electronic
Dictionary (MDED): a bilingual dictionary for Mo-
roccan and Modern Standard Arabic (MSA). Mrini
and Bond (2017) introduce Moroccan Darija Word-
Net (MDW): an extension of the Open Multilin-
gual WordNet (Bond and Foster, 2013) to Moroc-
can Arabic. Unfortunately, these works are lim-
ited to word level translations. Outchakoucht and
Es-Samaali (2021) introduce Darija Open Dataset
(DODa), a collaborative dataset of word and sen-
tence level translations between Darija and English.
In this work, we leverage this dataset for training
and evaluating machine translation models.

Low Resource NMT: Low resource NMT is an
active area of research with real-world impact. Var-
ious techniques were introduced to deal with data
and resource scarcity and were shown to be effec-
tive (Haddow et al., 2022). The most straightfor-
ward technique is data augmentation (Feng et al.,
2021), where rule based or neural based techniques
can be used to generate more data that can be used
for training. In this work, we study two success-
ful data augmentation techniques, namely, back-
translation (Sennrich et al., 2016, 2017; Hoang
et al., 2018; Edunov et al., 2018) and paraphras-
ing (Callison-Burch et al., 2006; Wang et al., 2016;
Mallinson et al., 2017). Back-translation transla-
tion target sentences to the source language using
an available model, while paraphrasing creates syn-
thetic copies of the source sentences. Furthermore,
previous work has shown the effectiveness of trans-
fer learning especially in low resource scenarios
(Zoph et al., 2016; Howard and Ruder, 2018; De-
vlin et al., 2019), where a model is pretrained on
large amounts of data and fine-tuned for a target
task or domain. We similarly leverage pretrained
models in combination with data augmentation and
evaluate their performance when fine-tuned on Mo-
roccan Arabic.

3 Methodology

3.1 Back-Translation

Back-translation is a frequently used technique for
data augmentation in machine translation (Sennrich
et al., 2016, 2017; Hoang et al., 2018; Edunov et al.,
2018). It helps to overcome the lack of parallel
corpora, particularly for languages with limited re-
sources such as Moroccan Arabic. This method
takes advantage of the greater availability of the
target language (i.e. English) to generate new syn-
thetic sentence pairs. The process begins with the
training of a target-to-source model (i.e. English-
to-Moroccan Arabic), which is used to translate the
target language text into the source language text.
This newly generated dataset is then included in the
training process of the source-to-target translation
model.

3.2 Paraphrasing

Similar to back-translation, paraphrasing aims at
augmenting the training data and diversifying the
linguistic structure and vocabulary of the input sen-
tences (Callison-Burch et al., 2006; Wang et al.,
2016), while preserving their original meaning.
Paraphrasing can be achieved either using rule
based techniques such as synonym replacement
or using neural models. Previous work shows that
neural based models generate better paraphrases
(Mallinson et al., 2017). In this work, we gen-
erate paraphrases of the source sentences using
BART-paraphrase 2 which is a BART model (Lewis
et al., 2020) fine-tuned for paraphrasing. We use
this model to paraphrase the English sentences
either on source or the target side depending on
the translation direction (i.e. English→Darija or
Darija→English). A single paraphrase for each
example is added to the dataset.

3.3 Transfer Learning

Transfer learning leverages knowledge learned dur-
ing pretraining to improve performance on closely
related tasks. It has been particularly effective in
low resource scenarios, since the pretrained model
is often trained on larger amount of data than is
available in the target task. We similarly apply
transfer learning by fine-tuning models that are
trained on massive amounts of data on translating
Moroccan Arabic.

2
https://huggingface.co/eugenesiow/bart-paraphrase
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4 Experiments

4.1 Datasets

For training and evaluation, we use the Darija
Open Dataset (i.e. DODa) (Outchakoucht and Es-
Samaali, 2021, 2024). It is of the largest dataset for
Darija-English translation with more than 45000
translation pairs. We split this dataset randomly
into a training, test and validation set in a ratio of
80%, 15% and 5% respectively.

To assess the generalization of our experi-
ments, we evaluate the models on two different
datasets that contain Darija-English translation
pairs. Specifically, we use translations from the
New Testament that were collected for Moroc-
can Arabic (Sajjad et al., 2020) which we refer
to as BIBLE, and MADAR (Bouamor et al., 2018),
which is a dataset that contains translations be-
tween English and 26 Arabic dialects including
Moroccan Arabic. These two test sets contain 500
and 5500 examples respectively.

For both backtranslation and paraphrasing, we
generate one copy of the training set and include it
in the training.

4.2 Models

No Language Left Behind (NLLB) (Team et al.,
2022): NLLB is a massively multilingual model
that supports more than 200 languages including
Moroccan Arabic. We fine-tune this model on
Darija→English and English→Darija. We use the
small distilled version of NLLB 3 for both direc-
tions.
OPUS-MT (Tiedemann and Thottingal, 2020): Is
an open source initiative that has released a col-
lection of resources and models. Although there
is no OPUS-MT translation model that supports
Moroccan Arabic, there are models that support
Arabic. Since Arabic is the mother language of
Darija, we experiment with fine-tuning OPUS-MT
English to Arabic (i.e. OPUS-MT-En-Ar 4) and
Arabic to English (i.e. OPUS-MT-Ar-En 5) models
on translating between English and Darija.
Encoder-decoder checkpointing (Rothe et al.,
2020): We experiment with composing a trans-
lation encoder-decoder from different pretrained
encoder and decoder checkpoints . Specifically,
we use a BERT (Devlin et al., 2019) model that is

3
https://huggingface.co/facebook/nllb-200-distilled-600M

4
https://huggingface.co/Helsinki-NLP/opus-mt-en-ar

5
https://huggingface.co/Helsinki-NLP/opus-mt-ar-en

pretrained for Moroccan Arabic (i.e. DarijaBERT 6

(Gaanoun et al., 2023)) to initialize the encoder, and
the decoder part of OPUS-MT Arabic to English
to initialize the decoder. Although the two models
are different, previous research (Rothe et al., 2020)
has shown that this can be effective for fine-tuning.

For training and evaluation details, please see
Appendix A.

5 Results and Discussion

5.1 Main Results
Table 1 and 2 show the BLEU score results
of our experiments on Darija→English and
English→Darija respectively on DODa, BIBLE
and MADAR test sets (we include chrF score
results in Appendix B). We first notice a sig-
nificant disparity between the performance on
Darija→English versus English→Darija, espe-
cially of NLLB, which is significantly better at
translating to English than to Darija. Furthermore,
the results show that fine-tuning consistently im-
proves performance over the base model especially
on the in-domain DODa test set. However, when
looking at BIBLE and MADAR test sets, we notice
that fine-tuning negatively affects the performance
of NLLB on Darija→English translation.

Back-translation leads to better results
than paraphrasing especially when translating
Darija→English. Paraphrasing is even worse
than fine-tuning on this direction. In the English-
to-Darija direction, paraphrasing consistently
outperforms fine-tuning. We attribute this disparity
to the direction of paraphrasing. In the case of
Darija→English translation, paraphrasing is ap-
plied to the target sentences, which can negatively
impact model outputs. In contrast, paraphrasing
the source sentences, as in English→Darija, tends
to be more robust and beneficial.

BERT-OPUS achieves the best results on DODa
Darija→English translation, with a slight improve-
ment over NLLB. This is still significant given that
BERT-OPUS is smaller than NLLB (i.e. 200M
parameters in BERT-OPUS compared to 600M pa-
rameters in NLLB), and is trained on significantly
less data. This shows the advantage of training
language specific models, where DarijaBERT is
pretrained on Darija sentences mined from the web.

Although NLLB supports Darija, the results
of translating English→Darija are very low, even
lower than 1 BLEU point on DODa and BIBLE test

6
https://huggingface.co/SI2M-Lab/DarijaBERT
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Model Dataset Base FT Para BT

NLLB
DODa 8.66 26.50 20.57 26.65
BIBLE 20.43 13.53 11.84 13.48

MADAR 29.31 27.44 28.27 28.19

OPUS-MT
DODa 2.03 14.39 10.52 15.89
BIBLE 4.05 4.30 4.42 4.80

MADAR 7.03 13.81 16.56 15.32

BERT-OPUS
DODa 0.00 26.78 20.54 26.79
BIBLE 0.05 1.94 1.46 2.32

MADAR 0.01 15.53 15.87 17.33

Table 1: We provide the BLEU score results on
Darija→English. Base shows the results of the pre-
trained model, FT the results after fine-tuning, Para
the results of fine-tuning on paraphrased dataset, and
BT shows the results of fine-tuning on the dataset with
back-translated data.

sets. Fine-tuning is effective especially on DODa
test set, increasing BLEU score by more than 7
BLEU points. Fine-tuning OPUS-MT is not as ef-
fective as fine-tuning NLLB (2.58 vs 8.10 after fine-
tuning respectively). This illustrates the effective-
ness of multilingual pretraining, while OPUS-MT-
En-Ar struggles to generalize to Moroccan Arabic
given its divergence from MSA.

Model Dataset Base FT Para BT

NLLB
DODa 0.82 8.10 9.68 9.98
BIBLE 0.04 0.34 0.82 0.94

MADAR 4.42 5.89 4.67 6.63

OPUS-MT
DODa 0.25 2.58 5.02 5.11
BIBLE 0.35 0.30 0.21 0.29

MADAR 1.30 2.05 2.16 3.20

Table 2: We provide the BLEU score results on
English→Darija. Base shows the results of the pre-
trained model, FT the results after fine-tuning, Para
the results of fine-tuning on paraphrase dataset, and BT
shows the results of fine-tuning on the dataset with back-
translated data.

5.2 Discussion

Disparity between Darija→English and
English→Darija performance: There is a
significant performance disparity between
Darija→English and English→Darija, where the
best BLEU score performance on Darija→English
is more than 16 BLEU points higher than the
performance on English→Darija. We expalin this
independently for the two models as follows: In
the case of NLLB, we attribute this discrepancy
to the amount of English data compared to Darija
data. NLLB was trained on significantly more

English than Darija data or even MSA data, which
makes translating into English easier, this can
be seen in the difference in performance of the
Base model on the two directions. In the case of
OPUS-MT, we explain the performance by the
linguistic difference between MSA and Darija,
where the decoder of OPUS-MT-EN-AR is trained
on generating MSA and struggles to translate into
Darija. This means that even after fine-tuning the
model will struggle to learn to generate in a new
vocabulary and linguistic structure.

Out of distribution generalization: We find that
fine-tuning on DODa dataset lacks generalization
on the BIBLE dataset, while the performance on
MADAR in general improves except for NLLB on
Darija→English (Table 1). We attribute this to the
fact that MADAR sentences are closely similar to
DODa sentences, while BIBLE data is significancy
different in domain, and uses a high number of rare
MSA words that are not used in Darija due to its
vernacular nature, which we suggest explains the
significant decrease in performance of NLLB on
BIBLE after fine-tuning on DODa (Table 1).

6 Conclusion

In this work, we apply three low resource tech-
niques to train machine translation models for En-
glish and Moroccan Arabic. Namely, we experi-
ment with paraphrasing, back-translation and trans-
fer learning. Our results show that combining
back-translation with transfer learning achieves
the best results, especially when fine-tuning a
massively multilingual model such as NLLB, or
an encoder that is pretrained on the source lan-
guage such as DarijaBERT. Furthermore, our re-
sults raise concerns about the generalization of
these techniques to out-of-domain datasets such as
the BIBLE, where fine-tuning can even degrade the
performance. Across all the techniques and models,
we see a significant disparity between the perfor-
mance on translating to English versus translating
from it to Darija. Overall, our work contributes to
the understanding of low-resource MT strategies
in real-world scenarios and highlights the need for
more equitable approaches to multilingual NLP. Fu-
ture work should focus on improving robustness
to domain shift, developing techniques that work
well in both translation directions and investing in
better resources and benchmarks for dialectal and
underrepresented languages like Moroccan Darija.
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Broader Impact

This work contributes to the broader goal of making
language technologies more inclusive by advanc-
ing machine translation for low-resource languages
and dialects such as Moroccan Darija. MT plays
an important role in enabling access to informa-
tion, public services, education and communica-
tion, especially in linguistically diverse regions
where speakers may have limited proficiency in
high-resource languages such as English or even
MSA. For many speakers of Moroccan Darija, MT
systems can support everyday tasks such as un-
derstanding online content, communicating across
language barriers and participating in digital plat-
forms that otherwise would be inaccessible. By
evaluating practical low-resource MT techniques
and revealing key challenges such as out-of-domain
generalization and translation direction asymme-
try, our work encourages the development of more
robust and equitable NLP systems.

At the same time, it is essential to recognize
limitations of current models and ensure that MT
systems are used responsibly, especially in high-
stakes domains like healthcare, law, and public
policy where human oversight is critical. Finally,
evaluating translation quality solely through auto-
mated metrics remains a limitation, therefore future
work should include human evaluations by native
Darija speakers to better assess usefulness, fluency
and cultural relevance.
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A Training and Evaluation

In all experiments, we keep the same data split to
ensure the robustness of the results. We experi-
mentally tune the hyperparameters of each model.
In Table 3, we list the final hyperparameters we
used for fine-tuning the models in both directions
(i.e. Darija→English and English→Darija). We
use HuggingFace transformers 7 library for training

7
https://huggingface.co/docs/transformers
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and evaluation. For more details, we release our
code publicly 8.

Hyperparameter NLLB OPUS-MT BERT-OPUS

Learning Rate 1e-5 1e-6 8e-5
Batch Size 4 16 16
Weight Decay 0.01 0.01 0.0
Number of Epochs 3 5 7
Warmup Steps 0 0 500

Table 3: Hyperparameters for fine-tuning each model.

B chrF Results

In this section, we provide the results of using chrF
metric to compute translation performance in Table
4 and 5.

Model Dataset Base FT Para BT

NLLB
DODa 31.35 43.24 43.63 44.68
BIBLE 42.54 36.69 34.32 37.08

MADAR 47.43 45.66 45.67 46.70

OPUS-MT
DODa 20.03 33.31 34.02 35.32
BIBLE 25.94 24.17 23.01 25.39

MADAR 25.46 31.58 32.89 32.94

BERT-OPUS
DODa 5.06 44.24 42.78 44.80
BIBLE 12.38 19.52 17.01 20.41

MADAR 6.89 33.29 32.95 35.27

Table 4: We provide the chrF score results on
Darija→English. Base shows the results of the pre-
trained model, FT the results after fine-tuning, Para
the results of fine-tuning on paraphrase dataset, and BT
shows the results of fine-tuning on the dataset with back-
translated data.

Model Dataset Base FT Para BT

NLLB
DODa 14.98 32.49 35.05 35.59
BIBLE 13.24 19.57 24.41 25.92

MADAR 26.27 33.50 32.40 35.35

OPUS-MT
DODa 13.27 22.55 26.48 26.74
BIBLE 20.84 19.56 17.32 20.77

MADAR 21.54 23.17 24.34 26.16

Table 5: We provide the chrF score results on
English→Darija. Base shows the results of the pre-
trained model, FT the results after fine-tuning, Para
the results of fine-tuning on paraphrase dataset, and BT
shows the results of fine-tuning on the dataset with back-
translated data.

8
https://github.com/RoscaAlex00/lowresource_mt
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Abstract

Low-resource Neural Machine Translation is
highly sensitive to hyperparameters and needs
careful tuning to achieve the best results with
small amounts of training data. We focus on
exploring the impact of changes in the Trans-
former architecture on downstream translation
quality, and propose a metric to score the com-
putational efficiency of such changes. By exper-
imenting on English-Akkadian, German-Lower
Sorbian, English-Italian, and English-Manipuri,
we confirm previous finding in low-resource
machine translation optimization, and show
that smaller and more parameter-efficient mod-
els can achieve the same translation quality of
larger and unwieldy ones at a fraction of the
computational cost. Optimized models have
around 95% less parameters, while dropping
only up to 14.8% ChrF. We compile a list of
optimal ranges for each hyperparameter.

1 Introduction

Neural machine translation (NMT) has done mas-
sive progress in high-resource conditions, due
to the performance of models based on encoder-
decoder architectures, such as the Transformer
(Vaswani et al., 2017). Often, this progress did
not trickle down to low or extremely low-resource
languages, due to the huge requirements in terms of
available training data and computational resources
(Ranathunga et al., 2023). Default settings and as-
sumptions for high-resource scenarios, such as the
correlation of model size and performance, are not
true in a low-resource one. While some attempts
are being done to adapt and prompt large language
models (LLMs) for low-resource machine transla-
tion (Guo et al., 2024; Lu et al., 2024; Merx et al.,
2024; Aycock et al., 2025; Joshi et al., 2025; Khade

et al., 2025), handling them is not always feasible
nor convenient. Suitable hardware may not be avail-
able to deploy or train sufficiently large models.
Moreover, even if capable hardware is available,
using LLMs may still be a suboptimal choice, since
it is much harder to freely fit the model and its ar-
chitecture to the scarce data. Moreover, as Petrov
et al. (2023) shows, LLMs’ own pre-trained tok-
enizers are biased against low-resource languages
due to their low share of training data. Considering
that even state-of-the-art LLMs underperform stan-
dard NMT (Robinson et al., 2023), employing them
when smaller options are available is inefficient.

Training a Transformer in these settings remains
a challenging task, and one that requires careful
hyperparameter tuning (Popel and Bojar, 2018).
However, if done correctly, it can lead to well-
performing and competitive models (van Biljon
et al., 2020; Araabi and Monz, 2020). Most of the
work regarding low-resource machine translation
focuses on several techniques, such as fine-tuning,
or transfer learning (Ranathunga et al., 2023). Re-
search on scaling and optimizing machine trans-
lation has mainly been done in a high-resource
setting (Ghorbani et al., 2022), or on other aspects
of training (Sennrich and Zhang, 2019; Araabi and
Monz, 2020; Signoroni and Rychlý, 2024).

Following the finding that not only size, but also
shape of the Transformer influences downstream
performance (Tay et al., 2022), our work aims to
broaden the understanding of the scaling of ma-
chine translation in low-resource settings by exper-
imenting with four key components in the archi-
tecture of the Transformer model: encoder layers,
decoder layers, embedding size, and feedforward
dimension. We conduct experiments on one simu-
lated low-resource pair, and three true low-resource
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pairs, to explore the impact of each hyperparameter
on the downstream translation task. We propose a
novel Parameter Increase Efficiency Score (PIES)
to measure the efficiency of changing the configu-
ration of the model, and to find the most parameter-
efficient combinations for each dataset. We com-
pile a list of empirically-found optimal ranges for
each hyperparameter to inform future exploration
and training of low-resource machine translation
models.

We confirm that in low-resource conditions the
Transformer is highly susceptible to hyperparame-
ter variation. We also find that smaller models can
perform as well as much bigger models, at just a
tiny fraction of the computational cost.1

2 Related Work

Our work intersects previous studies on Trans-
former and Machine Translation scaling laws and
optimization on both high and low-resource lan-
guages.

2.1 Scaling Laws and Optimization

Works tackled the challenge of finding empirical
scaling laws that govern neural language model
scaling, considering model, computational, or
dataset size.

Tay et al. (2022) conduct extensive experiments
involving over 200 Transformer configurations con-
sidering both upstream and several downstream
tasks (though, crucially, not machine translation).
They find that model shape, and not only size
(Kaplan et al., 2020), strongly influences down-
stream performance. They also find that scaling
laws change substantially when considering met-
rics on actual downstream fine-tuning. Notably,
they show that scaling strategies differ at differ-
ent compute regions, and thus finding strategies at
small scale might not necessarily transfer or gener-
alize to higher compute regions.

Some work has also been conducted for machine
translation.

Ghorbani et al. (2022) explore scaling laws for
machine translation on a high-resource English-
German dataset. Their results indicate that the
scaling behavior is largely determined by the total
capacity of the model, and its allocation between
the encoder and the decoder. Moreover, they sug-
gest that scaling behavior of encoder-decoder NMT

1Full results and code is available at
https://github.com/edoardosignoroni/eff_archs_lowre

models is predictable, but the scaling laws might
vary depending on the particular architecture or
task.

Gordon et al. (2021) study the predictability
of MT system performance as parameters/data in-
crease. They train many Transformers of various
sizes randomly selected subsets of data for Russian-
English, German-English, and Chinese-English.
Crucially, they find that extending their previous
experiments to datasets smaller than 50MB, us-
ing 0.05% - 0.0125% of the data, the data scaling
power law breaks down, indicating the impossibil-
ity of extrapolating extremely low-resource results
to medium and high-resource data regimes.

Some research (Hsu et al., 2020; Kasai et al.,
2021; Berard et al., 2021) has also departed from
the convention of using balanced encoder and de-
coders, resulting in "deep encoder, shallow de-
coder" models that can speed up inference while
maintaining a similar translation performance.

2.2 Optimization for Low-Resource Settings

Some studies have also been done on optimizing
NMT for low-resource scenarios.

Sennrich and Zhang (2019) find that best
practices differ between high-resource and low-
resource MT and that the latter is highly sensitive
to hyperparameters by training RNNs with differ-
ent techniques and hyperparameters on a simulated
English-German, and a true Korean-English low-
resource dataset.

Araabi and Monz (2020) trains Transformers for
a diverse set of true and simulated low-resource
pairs to find that a proper combination of Trans-
former configurations results in substantial im-
provements over a Transformer system with default
settings. For example, they observe that a shallower
Transformer combined with a smaller feed-forward
layer dimension and two attention heads is more
effective.

van Biljon et al. (2020) experiment with dif-
ferent Transformer configurations on the transla-
tion of three low-resource languages, showing that
medium (6 total layers) and shallow (2 total layers)
perform better than the canonical configuration of
6 encoder and 6 decoder layers.
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3 Methodology

This section describes the dataset we tested on (Sec-
tion 3.1)2. It then reports the training framework
and the hyperparameters we used (Section 3.2).
Next, it explains our proposed efficiency metric
(Section 3.3). And finally, it outlines our experi-
mental setup (Section 3.4).

3.1 Datasets

Our experiments are carried out on publicly avail-
able low-resource datasets, and one simulated low-
resource dataset retrieved from OPUS (Tiedemann,
2009). The datasets involve both high-resource
languages (English, German, Italian), and a se-
lection of under-resourced languages (Akkadian,
Lower Sorbian, Manipuri). The datasets have be-
tween 21k and 50k sentence pairs, thus can be
considered as extremely low-resource (Ranathunga
et al., 2023). Their content is from different do-
mains, mainly news and Wikipedia text, except for
Akkadian, which is mostly assorted fragments of
cuneiform texts. The low-resource datasets have
their own validation and test splits, while for the
simulated English-Italian dataset we use the dev
and devtest splits from the Flores-200 benchmark
corpus (Goyal et al., 2022). The datasets are sum-
marized in Table 1.3

3.2 Hyperparameters and Training

After tokenizing the data using BPE (Sennrich
et al., 2016), as implemented in SentencePiece
(Kudo and Richardson, 2018), we learn separated
vocabularies for source and target with a size of 4k
items, without a frequency threshold.

We train Transformers (Vaswani et al., 2017)
with Fairseq (Ott et al., 2019) until BLEU score
on validation does not increase for 20 consecutive
epochs or until 50000 updates. As our baseline,
we chose a small model that performed sufficiently
well in previous experiments for all pairs. Its ar-
chitecture and training hyperparameters are given
in Table 2. We share embeddings between the en-
coder and the decoder. Each model is trained on a
single Nvidia A40 or A100 GPU.

During the experiments, we focus on tuning the
architecture of the model by changing the num-

2Appendix A provides more information about the lan-
guages involved.

3We use a simple Python script to split the tokenized data
at the newline character and the whitespace and then return
the length of the resulting lists to obtain the number of lines
and tokens for each pair.

ber of encoder and decoder layers, the size of the
embeddings, and the feed forward dimension. We
leave all other hyperparameters unchanged. We
leave the number of heads at 2, following Araabi
and Monz (2020).

We will refer to the models with the follow-
ing naming scheme: enc_dec_embs_ffw_heads.
E.g. our baseline model may be referred as
4_4_256_1024_2.

3.3 Efficiency Score

To evaluate the efficiency of the models, we in-
troduce a Parameter Increase Efficiency Score, or
PIES, computed as follows:

PIES = size/score
106

where score means a machine translation metric
such as COMET, ChrF, or BLEU, and size means
the total number of parameters of the model. Thus,
PIES is computed as the ratio between the size of
the model in number of parameters and the machine
translation score it achieved, divided by 1 million.
This is an easily interpretable and straightforward
metric that gives the millions of parameters needed
for each score point. A lower value denotes a more
efficient system.

We compute the total number of parameters for
each model as follows:

params =
(2×E×V )+(4×E2+2×E×F +9×E+F )×
enc+(8×E2+2×E×F +15×E+F )×dec

where E is the size of the embeddings, V the
number of items in the vocabulary, F is the feed-
forward dimension, and enc/dec is the number of
layers in the encoder/decoder, respectively.

To obtain the score for each model after training,
we generate test set translations for each model
and obtain sentence-level BLEU (Papineni et al.,
2002), ChrF (Popović, 2015), ChrF++ (Popović,
2017), and COMET (Rei et al., 2020) scores as im-
plemented in Hugging Face evaluate library.4

We employ bootstrap evaluation on 200 batches of
400 test sentences to obtain the final scores.

Mathur et al. (2020) argue for the retirement of
BLEU in favour of ChrF++. Sai B et al. (2023)

4Scores for metrics other than ChrF are available in the
Appendices (Tables 17-23) and in the GitHub repository.
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Languages Abbreviation Dataset N. of Pairs Src Tokens Tgt Tokens
English-Akkadian eng-akk EvaCun 2023 45,269 1,177,138 630,535
German-Lower Sorbian deu-dsb WMT22 Low-res shared Task 40,194 1,064,087 1,032,701
English-Italian eng-ita WikiMatrix Random Selection 50,000 1,571,843 1,723,391
English-Manipuri eng-mni WMT23 Indic Shared Task 21,287 748,407 715,548

Table 1: Summary of the datasets in our experiments. The columns report the languages in the dataset, its
original source, and the size of the training split in number of tokens and sentence pairs.

Parameters
vocabulary size 4,000
encoder layers 4
decoder layers 4
enc/dec embedding dim 256
enc/dec feed forward dim 1,024
enc/dec attention heads 2
optimizer adam
adam betas 0.9, 0.98
learning rate 1e-4
warmup updates 5,000
dropout 0.1
label smoothing 0.1
max tokens 16,000

Table 2: Hyperparameters for our baseline model.
For the other models in our experiments, we change
only the number of layers, the size of the embeddings,
and the feed forward dimension.

finds that ChrF++ performs the best among overlap
metrics for a selection of Indic languages. The re-
sults of recent WMT Metrics shared tasks (Freitag
et al., 2022) demonstrate that learned neural met-
rics are the most optimal. Among these, COMET
is the current state-of-the-art, and is widely em-
ployed in machine translation studies. However,
pretrained neural metrics are unreliable for unseen
languages, especially under-resourced ones. Works
such as the ones by Sai B et al. (2023) and Wang
et al. (2024) show that fine-tuned COMET models
perform better for specific sets of low-resource lan-
guages, than baseline models. For these reasons
we chose ChrF as the metric of reference in both
our observations and PIES.

By computing Pearson’s r between PIES and
ChrF score on the aggregate results of our exper-
iments, we obtain r=-0.543, indicating a negative
correlation between PIES and translation quality:
a lower PIES corresponds to a higher ChrF.

3.4 Experiments

Our aim is to investigate efficient architectures for
low-resource machine translation models by tun-
ing hyperparameters such as encoder and decoder
layers, embeddings and feed forward dimension.
We fix all other training hyperparameters to values
found to be optimal or close to optimal in previ-
ous and preliminary experiments on the same data
(Signoroni and Rychlý, 2024).

3.4.1 Experiment 1: Change One, Fix All

Hyperparameters
encoder layers 2, 4, 6, 8, 12, 16, 24, 32
decoder layers 2, 4, 6, 8, 12, 16, 24, 32
embedding dimension 256, 512, 1024, 2048, 4096
feed forward dimension 256, 512, 1024, 2048, 4096

Table 3: Values for each hyperparameter tried in
Experiment 1. Baseline values are in bold.

Size Hyperparameters N. of Parameters
small 4_4_256_1024_2 8.5M < 9.4M < 10M
base 6_6_512_2048_2 40M < 48M < 53M
large 6_6_1024_4096_2 166M < 184M < 203M

Table 4: Baseline hyperparameters and sizes (in bold)
for the models in Experiment 2. We consider all pos-
sible architectures in a range of ±10% parameters from
these baseline models.

Our first experiment focuses on changing only
one hyperparameter at a time in the architecture
of the model without controlling the total amount
of parameters. We start from our baseline values
of 4 encoder and decoder layers, embedding size
of 256, and feedforward dimension of 1024, and
change them one step at a time according to Table
3.

3.4.2 Experiment 2: Parameters Budget
In Experiment 2, we fix the number of parameters
to ±10% of transformer small, base, and large and
test all possible combinations of hyperparameters
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that fall into the ranges given in Table 4. For each
dataset, we test each possible configuration that
falls within these ranges: 13 for small (counting the
baseline 4_4_256_1024_2 model), 58 for base, and
60 for large, that is 131 combinations for dataset,
for a total of 524 models. By allowing all possible
combinations of hyperparmeters, we overcome one
limitation of the previous setup, that is the chance
of missing possible optimal configurations due to
changing only one hyperparameter at a time.

4 Results

4.1 Experiment 1: Change One, Fix All
As we discuss the results of our experiments, recall
that a lower PIES denotes a more efficient model.

In Experiment 1, we start from the baseline
4_4_256_1024_2 model and increase or decrease
only one hyperparameter at a time, leaving all other
unchanged. Table 5 summarizes the results of Ex-
periment 1.

As expected, increasing the embedding size
leads to the biggest increase in model size, since
it scales quadratically with the amount of param-
eters. Conversely, all the other hyperparameters
we considered scale linearly with the number of
parameters, with feedforward dimension being the
least impactful per unit. Increasing the number of
decoder layers results in a slightly steeper rate of
increase in parameters than adding more encoder
layers.

In this experimental setup, we allow the model
size to grow freely. We observe that for all datasets
increasing embedding size to 2048 or 1024 leads
to the best ChrF scores, but also to disproportion-
ally big models, reaching 75M or 251M parame-
ters. For all four datasets, it is sufficient to scale
back both embedding size and feedforward dimen-
sion to 256 to obtain the most efficient configura-
tion. These optimized models have between 91.6%
and 97.5% parameters less than the best architec-
tures according to ChrF, while losing 1%-13.7%
of the translation performance. We argue this is a
favourable trade-off, especially in a low-resource
setting where it may be needed to train several
models in sequence for techniques such as back-
translation.

As a matter of comparison, we prompted two
language models, mt5-small (300M parameters)
(Xue et al., 2021) and Mistral Small (24B parame-
ters)5, for translation in a zero-shot scenario. mt5-

5https://mistral.ai/news/mistral-small-3-1

small fails at translating between all pairs, even
the high-resource English-Italian6, reaching only
3.1 ChrF for deu-dsb. Consequently, using the
model in this way is very inefficient, as reflected
by hugely inflated PIES scores. The much bigger
Mistral Small fares much better for English-Italian,
achieving 59 ChrF, thus making it the best model
overall in our experiment for this pair. Its efficiency
is, however, debatable, as indicated by PIES scores
in the hundreds and thousands. With respect of the
low-resource pairs, Mistral Small fails for Akka-
dian and Manipuri, and performs poorly for Lower
Sorbian.

We then trained a new mt5-small model for each
pair by finetuning the original mt5-small on each
dataset for 5 epochs. As expected, this increased
ChrF and decreased PIES across all pairs. The best
performance is for English-Italian, which reaches
a ChrF of 44 points, comparable to other mod-
els trained from scratch. PIES is still quite high,
however, at 6.8. Finetuning significantly helps mt5-
small to make sense of unseen low-resource lan-
guages, especially with Lower Sorbian and Ma-
nipuri, but both performance and efficiency are
well below models trained from scratch. This sug-
gests that when only a small amount of data is
available, training from scratch may still be the
best choice, especially if the under-resourced lan-
guages in question are not in the training data of
the language model to finetune or adapt.

Table 7 gives ChrF and PIES for two language
models prompted for translation across the lan-
guage pairs in our experiment.7

4.2 Experiment 2: Parameters Budget

In Experiment 2, we limit the number of parame-
ters in three ranges, corresponding to the sizes of
Transformer small, base, and large (Table 4). The
higher number of combinations per dataset (131)
allows for observations regarding some average
trends in our results. To extrapolate optimal ranges
for the hyperparameters and their interactions, we
proceed in three steps: 1. we filter out all combi-
nations with a ChrF<35; 2. among these, we keep
only those with PIES<1; 3. we select ranges where
the remaining combinations are optimal across the
majority of the datasets. To generalize these ranges,

6English and Italian are known to mt5. English has the
biggest share of the training data (5.67%), and Italian has the
sixth biggest (2.63%) of the total amount.

7Refer to Appendix B for information about the prompting
and finetuning of these models.
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eng-akk deu-dsb eng_wiki-ita_wiki eng-mni
Best Model (ChrF) 4_4_2048_1024_2 4_4_2048_1024_2 4_4_2048_1024_2 4_4_1024_1024_2

ChrF 41.792 48.881 45.612 48.505
PIES 6.017 5.145 5.513 1.555

Num. Parameters 251M 251M 251M 75M
Best Model (PIES) 4_4_256_256_2 4_4_256_256_2 4_4_256_256_2 4_4_256_256_2

ChrF 39.681 44.527 45.156 41.844
PIES 0.158 0.141 0.139 0.150

Num. Parameters 6.3M 6.3M 6.3M 6.3M
∆ ChrF ↑
% of best

-2.111
-5.052%

-4.354
-8.907%

-0.456
-1.000%

-6.661
-13.732%

∆ PIES ↓
% of best

-5.859
-97.374%

-5.004
-89.308%

-5.374
-97.479%

-1.405
-90.354%

∆ Params ↓
% of best

-245M
-97.507%

-245M
-97.490%

-245M
-97.507%

-69M
-91.600%

Table 5: Best models from Experiment 1 according to ChrF and PIES. Below the model name (in the form
enc_dec_embs_ffw_heads), we report ChrF, PIES, and size of the model. In the bottom part of the table, we report
the differences in scores (∆ChrF ↑, ∆PIES ↓) and size (∆Params ↓) between the best model for translation
quality (highest ChrF) and the most efficient one (lowest PIES), both in absolute terms and as a percentage (% of
best).

eng-akk deu-dsb eng_wiki-ita_wiki eng-mni
Best Model (ChrF) 6_8_1024_2048_2 12_2_1024_4096_2 12_2_1024_4096_2 2_16_1024_256_2

ChrF 43.393 51.569 47.890 49.882
PIES 3.673 3.741 4.029 3.217

Num. Parameters
Size range

176M
large

193M
large

193M
large

160M
large

Best Model (PIES) 4_6_256_512_2 6_2_256_1024_2 6_2_256_1024_2 4_8_256_256_2
ChrF 38.811 44.001 45.347 44.483
PIES 0.229 0.202 0.196 0.200

Num. Parameters
Size range

8.9M
small

8.9M
small

8.9M
small

8.9M
small

∆ ChrF ↑
% of best

-4.582
-10.559%

-7.568
-14.790%

-2.543
-5.310%

-5.339
-10.823%

∆ PIES ↓
% of best

-3.444
-93.375%

-3.539
-94.600%

-3.833
-95.135%

-3.017
-93.783%

∆ Params ↓
% of best

-167M
-94.943%

-184M
-95.389%

-184M
-95.389%

-151M
-94.438%

Table 6: Best models from Experiment 2 according to ChrF and PIES. Below the model name (in the form
enc_dec_embs_ffw_heads), we report ChrF, PIES, and size of the model. In the bottom part of the table, we report
the differences in scores (∆ChrF ↑, ∆PIES ↓) and size (∆Params ↓) between the best model for translation
quality (highest ChrF) and the most efficient one (lowest PIES), both in absolute terms and as a percentage (% of
best).

we filter all combinations according to the values
we found, starting with the most impactful ones.
Table 8 summarizes these findings, and Table 9 re-
ports the possible optimal configurations we found.

At a glance, it can be observed that pruning mod-
els that are either too deep or too imbalanced in
terms of encoder and decoder layers leads, on av-
erage, to better ChrF and PIES, and greatly re-

duces the size of the models. Limiting embed-
ding size may reduce quality, however this can be
circumvented by selecting balanced architectures
according to other criteria. We can also observe
that setting the feedforward dimension in the sug-
gested range, when taken in relation to the number
of encoder and decoder layers, slightly increases
both ChrF and PIES. Further experiments may ad-
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Model Metric eng-akk deu-dsb eng_wiki-ita_wiki eng-mni
mt5-small

(300M)
ChrF 0.070 3.101 1.584 0.004
PIES 4271.370 96.729 189.406 82101.976

mt5-small-finetuned
(300M)

ChrF 7.136 32.681 44.033 25.687
PIES 42.043 9.180 6.813 11.679

mistral-small
(24B)

ChrF 0.358 18.332 59.086 4.966
PIES 67039.379 1309.188 406.190 4832.926

Table 7: ChrF and PIES for zero-shot mt5-small, finetuned mt5-small, and zero-shot Mistral-Small.

Filter Low High Remaining Configurations Avg ChrF Avg PIES Avg Size (in M)
Initial - - 524 33.93 5.06 102M
layer_sum 6 18 244 42.137 2.087 84.2
embs 256 512 148 40.659 0.898 31.8
enc_layers 2 12 136 41.491 0.871 31.7
dec_layers 2 12 132 41.653 0.806 31.3
layer_diff -6 8 116 41.999 0.771 30.8
ffw 256 2048 92 42.163 0.675 27.3
enc/dec 0.25 3 92 42.163 0.675 27.3
embs/ffw 0.125 2 92 42.163 0.675 27.3
embs/enc 21.333 256 92 42.163 0.675 27.3
embs/dec 32 128 92 42.163 0.675 27.3
embs/num_layers 16 51.2 92 42.163 0.675 27.3
ffw/dec 21.333 1024 92 42.163 0.675 27.3
ffw/enc 32 1024 88 42.3 0.695 28.1

Table 8: Optimal ranges of the hyperparameters and their interactions. The first two columns give minimum
and maximum values for each one. The other report the remaining configurations after filtering the possible
combinations, and their average ChrF, PIES, and size in millions of parameters.

dress the impact of this particular relation. In sum-
mary, optimal architectures should have a limited
number of layers (6 to 18), which must be not too
unbalanced on either encoder or decoder side (-6
to 8 encoder - decoder difference; 0.125 to 3 en-
coder/decoder ratio). Embedding size should be
kept on the smaller side (256 to 512), while feed-
forward dimension can be bigger (up to 2048).

If we apply these guidelines to the full results,
without prior filtering for ChrF and PIES, we are
left with the 22 combinations in Table 9, out of
the initial 131 per dataset. Apart from four, all
have an average ChrF > 40, and six have an average
PIES > 1. All of these are of base size. There is a
noticeable gap between PIES for this size bracket
and small, which features the best efficiency scores.

Table 6 reports the best models and scores in Ex-
periment 2. All the best model according to ChrF
are in the large range, whereas the most efficient
ones according to PIES are in the small bracket. For
two datasets, deu-dsb and eng_wiki-ita_wiki, the
best ChrF model is the same (12_2_1024_4096_2).
The best ChrF model for eng-mni is quite peculiar:

Model Avg ChrF Avg PIES Size (in M)
6_2_256_1024_2 42.757 0.209 8.9
4_6_256_512_2 42.062 0.212 8.9
4_4_256_1024_2 42.836 0.221 9.4
8_4_256_512_2 41.845 0.226 9.4
6_8_256_256_2 42.470 0.229 9.7
6_6_256_512_2 42.859 0.233 10.0
4_8_256_256_2 39.176 0.242 8.9
2_8_256_512_2 40.237 0.247 9.4
2_6_256_1024_2 40.762 0.254 9.9
8_6_256_256_2 36.428 0.316 9.2
8_6_512_1024_2 45.171 0.885 39.8
6_4_512_2048_2 44.738 0.894 39.8
4_6_512_2048_2 45.423 0.925 41.9
6_8_512_1024_2 44.926 0.937 41.9
12_4_512_1024_2 43.269 0.978 41.9
2_8_512_2048_2 44.249 0.998 44.0
8_4_512_2048_2 45.516 1.015 46.1
6_6_512_2048_2 44.920 1.077 48.2
12_6_512_1024_2 43.353 1.122 48.3
6_12_512_512_2 40.087 1.258 45.1
6_12_512_256_2 38.743 1.316 40.4
8_8_512_1024_2 38.762 1.484 46.2

Table 9: Optimal model configurations and their size,
with ChrF and PIES averaged over all four datasets.
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Figure 1: Correlation matrix of ChrF and PIES with other hyperparameters and their interactions. A lower PIES
is better.

it has just 2 encoder layers, 16 decoder layers, an
embedding size of 1024, and a narrow feedforward
of just 256. Again we see decrements in ChrF be-
tween 5.3% and 14.8%, against a 95% reduction
in number of parameters. While bigger models
may in principle achieve a slightly higher ChrF,
this comes at the cost of efficiency. We argue that
in a low-resource scenario, when both data and
hardware are scarce, the increased computational
cost needed to find and train the optimal model in
this size range is not well spent. Smaller models
can achieve a comparable, or almost comparable
translation performance, at just a fraction of the
cost. This is also true for exploratory runs, or in-
termediate stages of development, such as systems
for backtranslation.

From Figure 1, reporting the correlation between
ChrF and PIES and all the features in our study, we
can point out some interesting observations. The
number of layers is the most impactful hyperparam-
eter for both ChrF and PIES. Deeper architectures
lose both in terms of quality and efficiency. It fol-
lows that the number of encoder and decoder layers
impacts the metrics, with changes in the encoder
slightly more important for ChrF, and changes in
the decoder a bit more impactful on PIES. Embed-
ding dimension is relevant for both metrics. Feed-
forward appears to have a lesser impact. According
to these findings, balancing embeddings dimen-
sion, the number of layers in the encoder and
the decoder, and their interactions is key to an
efficient model with good translation quality.

5 Conclusions

In this paper, we explored scaling and optimizing
the Transformer architecture for low-resource ma-
chine translation by experimenting with several
hundred configurations over four language pairs.

We confirm previous findings that the Trans-
former, and low-resource NMT in general, is highly
sensitive to hyperparameters in low-resource con-
ditions, and that standard settings are not optimal.
We observe some trends and interactions between
the number of encoder and decoder layers, embed-
ding size, feedforward dimension, and the quality
of the translation.

We propose PIES as a novel metric to measure
the efficiency of changing a model’s architecture,
and use it to show that increasing model size is
not always the optimal choice, since smaller and
balanced models can reach a comparable perfor-
mance for a fraction of the computational cost. We
also outline some empirical findings and guidelines
regarding the optimal hyperparameter ranges that
result in more efficient low-resource machine trans-
lation models.

Limitations

The main limitations of our experiments are the
following. First, the dataset selection, while try-
ing to be diverse both in terms of typology (Ger-
manic, Slavic, Romance, Tibeto-Burman, Semitic)
and writing system (Latin, Bengali, Cuneiform),
is only a tiny fraction of the world’s 7000+ lan-
guages. If we include, also historical ones, such
is the case with Akkadian, the number grows even
more. We acknowledge that this fact may hinder
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generalization, and to avoid even more grid search
and computation, we attempted to gain as much
information as possible from these datasets. We
leave to future work to test our intuitions on a wider
range of languages.

Second, we could not perform a systematic qual-
itative analysis on the outputs of the models, and
had to rely on automated metrics to score the trans-
lations. This comes with another set of problems
altogether, that is out of the scope of this paper to
discuss. This is also relevant for PIES, which in its
present iteration is closely correlated with the trans-
lation metric. In the future, we plan to extend it to
account for multiple metrics, and to consider also
train and inference times, and environmental con-
cerns. For now, it is only as good as the translation
metric chosen to compute it.

Lastly, we are aware that testing all possible com-
binations, across all hyperparameters, is a monu-
mental task that evades the scope of just one paper.
We focused on four specific architecture hyperpa-
rameters and their interactions. Other possible op-
timal configurations, that may need other changes
in training hyperparameters (e. g. learning rate,
dropout, etc.) to work best are left to future work.
The same can be said for all LLMs, for which archi-
tecture cannot be modified as freely, with one led
to employ different approaches such as fine-tuning
and prompting techniques. These fall outside the
scope of this paper and are left to future work.

Ethical Considerations

We did not collect any new data for these exper-
iments, as we used publicly available dataset or
parts thereof. The systems we trained are not in-
tended to be deployed or used in any actual trans-
lation scenario, in such a case, they will incur in
biases, errors, and issues common to this kind of
NLP models, and as such they should be used with
care. We are also aware of the environmental cost
of training language models and tried our best to
avoid grid search all the while getting a meaningful
picture of the topic at hand.

Following (Lacoste et al., 2019), we estimate
that our experiments lasted 4200 GPU hours on a
private infrastructure with a carbon efficiency of
0.59 kgCO2eq/kWh for a total emissions of 708
kgCO2eq.
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Martin Popel and Ondřej Bojar. 2018. Training tips
for the transformer model. The Prague Bulletin of
Mathematical Linguistics, 110(1):43–70.
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A Languages

Lower Sorbian (“Dolnoserbšćina”) is a West
Slavic language predominantly spoken in eastern
Germany by approximately 7,000 native speakers.
Most of these speakers are from older generations,
making the language critically endangered. Writ-
ten in Latin script with additional diacritics, Lower
Sorbian features six grammatical cases and a dual
number system for nouns, pronouns, adjectives,
and verbs. It does not employ articles. The dataset
for our experiments was compiled by the Witaj
Sprachzentrum 8 (Witaj Language Centre) (Weller-
di Marco and Fraser, 2022).

Manipuri (“Meiteilon”) is a Tibeto-Burman lan-
guage recognized as one of the official languages in
the Indian state of Manipur and at the national level.
It is spoken by approximately 1.8 million native
speakers, primarily the Meitei people, both in Ma-
nipur and neighboring regions. UNESCO classifies
Manipuri as "vulnerable." The language exhibits
extensive suffixation with limited prefixation and
follows an SVO word order. Other linguistic char-
acteristics include agglutinative verb morphology,
tone, a lack of grammatical person, number, and
gender distinctions, and a focus on aspect rather
than tense (Pal et al., 2023). Manipuri is written
using several scripts, including the Meitei and Ben-
gali scripts, with the latter being used for all the
Manipuri data in our experiments. The Latin script
is also employed. The dataset is a modified ver-
sion (Pal et al., 2023) based on previous work by
Haddow and Kirefu (2020), Laitonjam and Ran-
bir Singh (2021), and Huidrom et al. (2021). Each
segment of the data set contains mainly news and
other informational texts.

Akkadian, an extinct East Semitic language,
was spoken in ancient Mesopotamia from the third
millennium BCE until the 1st century CE. It uti-
lized the cuneiform script, a logophonetic writing
system in which symbols could serve as logograms,
determinatives, or phonograms/syllabograms, each
with a distinct interpretation. Akkadian is a fu-
sional language with grammatical case and em-
ploys a root-based consonantal system. The dataset
used in our study is derived from portions of
the ORACC corpus 9 and mainly comprises Neo-
Assyrian royal inscriptions and administrative cor-
respondence. The stylistic variation between gen-
res poses challenges for NLP (Gutherz et al., 2023).

8https://www.witaj-sprachzentrum.de/
9https://oracc.museum.upenn.edu/index.html

Additionally, because of the medium of preserva-
tion (clay tablets), the data is often incomplete,
with truncated sentences.

B Large Language Models’ Prompting
and Finetuning

mt5-small was prompted and finetuned using the
HuggingFace Transfomers library, while Mistral
Small was prompted with Ollama. For mt5-
small, we used the prompt ’Translate SRC to
TGT: SRC_EXAMPLE’. For fine-tuning, we re-
structured the data in a similar way, by giving the
prompt, the source line, as input, and the target
line as label. For Mistral Small, we opted for a
somewhat more complex ’Translate the following
text from SRC to TGT. Write only the translation.
SRC: SRC_EXAMPLE TGT: ’

C Tables and Charts

Below we report the results of our experiments.
Tables 10 and 11 summarize the ChrF and PIES
scores for each pair and size bracket of Experiment
2. Figures and plot the trend of ChrF when modi-
fying each hyperparameter for each pair. Figures
4 and 5 show the counts of optimal configurations
(ChrF>35 and PIES<1) for each hyperparameter
across all datasets. Figure 6 report the average
ChrF and PIES for the configurations in the opti-
mal range for each language pair and size bracket.
Finally, Tables 12 to 18 contain the BLEU, ChrF,
and COMET scores for all combinations in Experi-
ment 1 and 2.
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tgt size_tag min max median mean
akk base 4.901 42.568 19.969 23.426
akk large 6.088 43.394 30.677 26.093
akk small 14.408 39.211 35.026 32.287
dsb base 3.017 48.324 41.664 32.098
dsb large 2.898 51.569 47.095 36.073
dsb small 37.982 44.329 43.008 42.741
ita_wiki base 2.928 46.282 43.531 33.336
ita_wiki large 1.599 47.890 44.698 34.910
ita_wiki small 42.504 45.347 44.919 44.708
mni base 7.917 48.299 43.241 38.805
mni large 7.733 49.883 44.606 40.643
mni small 35.996 45.960 43.443 42.614
all base 2.928 48.324 38.619 31.915
all large 1.599 51.569 41.837 34.430
all small 14.408 45.960 42.987 40.588

Table 10: Minimum, Maximum, Average, and Median ChrF values by language and size bracket in Experiment 2

tgt size_tag min max median mean
akk base 0.935 9.100 2.196 2.907
akk large 3.673 29.323 5.951 10.493
akk small 0.229 0.636 0.284 0.315
dsb base 0.848 14.655 1.076 2.614
dsb large 3.131 59.464 3.950 9.467
dsb small 0.202 0.255 0.219 0.221
ita_wiki base 0.861 16.206 1.067 2.378
ita_wiki large 3.346 101.225 4.204 9.545
ita_wiki small 0.196 0.228 0.210 0.211
mni base 0.836 5.048 1.031 1.395
mni large 3.218 22.284 3.953 5.422
mni small 0.200 0.269 0.217 0.223
all base 0.836 16.206 1.165 2.322
all large 3.131 101.225 4.397 8.732
all small 0.196 0.636 0.222 0.243

Table 11: Minimum, Maximum, Average, and Median PIES values by language and size bracket in Experiment 2
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Figure 2: Charts plotting ChrF for each hyperparameter against the increase in number of parameters.
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Figure 3: Charts plotting ChrF for each hyperparameter against the increase in number of parameters. (Continued)
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Figure 4: Heatmaps of the counts of configurations that achieve ChrF>35 with a PIES<1.
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Figure 5: Heatmaps of the counts of configurations that achieve ChrF>35 with a PIES<1. (Continued)
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Figure 6: Average ChrF and PIES for the configurations in the optimal ranges, per size bracket. A lower PIES is
better.
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Table 12: Results for Experiment 1

src tgt model bleu chrf comet src tgt model bleu chrf comet

eng akk 2_4_256_1024_2 29.91 38.95 0.93 eng_wiki ita_wiki 4_4_256_1024_2 12.59 43.86 0.59
eng akk 4_2_256_1024_2 29.25 37.32 0.93 eng_wiki ita_wiki 4_4_256_2048_2 13.38 45.08 0.61
eng akk 4_4_256_256_2 30.23 39.68 0.93 eng_wiki ita_wiki 4_4_256_4096_2 13.59 44.74 0.6
eng akk 4_4_256_512_2 30.03 38.67 0.93 eng_wiki ita_wiki 4_4_512_1024_2 13.53 45.28 0.6
eng akk 4_4_256_1024_2 30.05 38.83 0.93 eng_wiki ita_wiki 4_4_1024_1024_2 13.48 45.2 0.61
eng akk 4_4_256_2048_2 29.82 38.43 0.93 eng_wiki ita_wiki 4_4_2048_1024_2 14.04 45.61 0.62
eng akk 4_4_256_4096_2 30.61 40.86 0.93 eng_wiki ita_wiki 4_4_4096_1024_2 12.93 44.06 0.59
eng akk 4_4_512_1024_2 30.33 40.49 0.93 eng_wiki ita_wiki 4_6_256_1024_2 13.31 44.91 0.6
eng akk 4_4_1024_1024_2 29.99 41.18 0.93 eng_wiki ita_wiki 4_8_256_1024_2 13.57 44.86 0.6
eng akk 4_4_2048_1024_2 30.17 41.79 0.93 eng_wiki ita_wiki 4_12_256_1024_2 12.38 43.64 0.57
eng akk 4_4_4096_1024_2 28.41 38.81 0.93 eng_wiki ita_wiki 4_16_256_1024_2 13.07 44.33 0.58
eng akk 4_6_256_1024_2 30.27 39.59 0.93 eng_wiki ita_wiki 4_24_256_1024_2 13.57 45.23 0.61
eng akk 4_8_256_1024_2 30.07 39.68 0.93 eng_wiki ita_wiki 4_32_256_1024_2 2.18 19.42 0.26
eng akk 4_12_256_1024_2 28.41 33.85 0.93 eng_wiki ita_wiki 6_4_256_1024_2 13.28 44.79 0.61
eng akk 4_16_256_1024_2 23.26 16.96 0.9 eng_wiki ita_wiki 8_4_256_1024_2 13.74 45.15 0.61
eng akk 4_24_256_1024_2 15.94 7.76 0.77 eng_wiki ita_wiki 12_4_256_1024_2 13.55 44.86 0.61
eng akk 4_32_256_1024_2 15.61 7.54 0.8 eng_wiki ita_wiki 16_4_256_1024_2 3.68 24.42 0.36
eng akk 6_4_256_1024_2 29.45 38.41 0.93 eng_wiki ita_wiki 24_4_256_1024_2 3.26 21.55 0.35
eng akk 8_4_256_1024_2 23.95 23.18 0.92 eng_wiki ita_wiki 32_4_256_1024_2 2.81 19.07 0.34
eng akk 12_4_256_1024_2 27.73 33.21 0.93 eng mni 2_4_256_1024_2 16.15 44.33 0.69
eng akk 16_4_256_1024_2 27.81 32.55 0.93 eng mni 4_2_256_1024_2 16.93 44.01 0.69
eng akk 24_4_256_1024_2 27.53 30.62 0.93 eng mni 4_4_256_256_2 13.93 41.84 0.68
eng akk 32_4_256_1024_2 21.49 16.32 0.89 eng mni 4_4_256_512_2 16.06 43.39 0.69
deu dsb 2_4_256_1024_2 28.06 43.7 0.63 eng mni 4_4_256_1024_2 18.03 44.45 0.7
deu dsb 4_2_256_1024_2 28.45 43.92 0.62 eng mni 4_4_256_2048_2 18.2 44.75 0.7
deu dsb 4_4_256_256_2 28.41 44.53 0.63 eng mni 4_4_256_4096_2 20.45 46.11 0.7
deu dsb 4_4_256_512_2 27.93 43.58 0.63 eng mni 4_4_512_1024_2 20.2 47.35 0.71
deu dsb 4_4_256_1024_2 28.09 43.01 0.62 eng mni 4_4_1024_1024_2 21.88 48.5 0.71
deu dsb 4_4_256_2048_2 29.28 45.19 0.64 eng mni 4_4_2048_1024_2 21.45 48.36 0.7
deu dsb 4_4_256_4096_2 28.53 43.95 0.63 eng mni 4_4_4096_1024_2 18.7 43.87 0.68
deu dsb 4_4_512_1024_2 29.34 46.72 0.64 eng mni 4_6_256_1024_2 17.09 44.29 0.69
deu dsb 4_4_1024_1024_2 29.96 48.29 0.65 eng mni 4_8_256_1024_2 19.53 45.3 0.7
deu dsb 4_4_2048_1024_2 30.48 48.88 0.65 eng mni 4_12_256_1024_2 18.1 44.36 0.69
deu dsb 4_4_4096_1024_2 29.8 48.28 0.64 eng mni 4_16_256_1024_2 19.56 45.53 0.7
deu dsb 4_6_256_1024_2 27.21 42.85 0.62 eng mni 4_24_256_1024_2 18.84 45.54 0.69
deu dsb 4_8_256_1024_2 27.65 42.74 0.62 eng mni 4_32_256_1024_2 4.0 16.61 0.42
deu dsb 4_12_256_1024_2 28.25 44.73 0.63 eng mni 6_4_256_1024_2 18.39 44.71 0.7
deu dsb 4_16_256_1024_2 27.34 44.02 0.63 eng mni 8_4_256_1024_2 18.74 45.11 0.7
deu dsb 4_24_256_1024_2 27.08 44.6 0.63 eng mni 12_4_256_1024_2 15.59 39.42 0.68
deu dsb 4_32_256_1024_2 11.53 25.88 0.51 eng mni 16_4_256_1024_2 14.96 37.9 0.68
deu dsb 6_4_256_1024_2 27.77 43.28 0.62 eng mni 24_4_256_1024_2 13.63 35.27 0.66
deu dsb 8_4_256_1024_2 27.82 43.06 0.62 eng mni 32_4_256_1024_2 1.56 8.89 0.42
deu dsb 12_4_256_1024_2 27.14 41.99 0.62
deu dsb 16_4_256_1024_2 16.14 22.42 0.52
deu dsb 24_4_256_1024_2 15.52 20.33 0.51
deu dsb 32_4_256_1024_2 13.81 15.04 0.48
eng_wiki ita_wiki 2_4_256_1024_2 12.77 44.22 0.59
eng_wiki ita_wiki 4_2_256_1024_2 13.72 45.05 0.62
eng_wiki ita_wiki 4_4_256_256_2 13.46 45.16 0.61
eng_wiki ita_wiki 4_4_256_512_2 13.65 45.14 0.61
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Table 13: Results for Experiment 2 (Part 1/6)

src tgt model bleu chrf comet src tgt model bleu chrf comet

eng akk 2_2_1024_1024_2 29.32 37.35 0.93 eng akk 6_16_1024_512_2 29.16 38.74 0.93
eng akk 2_2_2048_4096_2 29.53 39.33 0.93 eng akk 6_24_256_2048_2 17.19 8.29 0.78
eng akk 2_4_512_4096_2 31.08 42.57 0.93 eng akk 6_24_512_4096_2 22.44 6.93 0.77
eng akk 2_4_2048_256_2 29.88 40.84 0.93 eng akk 6_32_256_1024_2 17.55 7.46 0.78
eng akk 2_6_256_1024_2 26.61 28.13 0.93 eng akk 8_4_256_512_2 29.67 38.25 0.93
eng akk 2_8_256_512_2 25.76 26.4 0.92 eng akk 8_4_512_2048_2 30.68 42.29 0.93
eng akk 2_8_512_2048_2 30.31 41.23 0.94 eng akk 8_4_1024_4096_2 30.18 42.55 0.93
eng akk 2_8_1024_4096_2 29.94 41.77 0.93 eng akk 8_6_256_256_2 23.57 14.41 0.88
eng akk 2_12_512_1024_2 24.67 26.49 0.92 eng akk 8_6_512_1024_2 30.06 40.84 0.93
eng akk 2_12_1024_2048_2 30.48 42.58 0.93 eng akk 8_8_256_4096_2 22.16 13.1 0.88
eng akk 2_16_512_256_2 20.85 4.9 0.75 eng akk 8_8_512_1024_2 21.25 15.6 0.88
eng akk 2_16_1024_256_2 30.24 42.42 0.93 eng akk 8_8_1024_2048_2 22.59 14.15 0.89
eng akk 2_16_1024_512_2 30.1 41.81 0.93 eng akk 8_12_512_256_2 20.22 14.54 0.89
eng akk 2_16_1024_1024_2 30.81 43.07 0.93 eng akk 8_12_512_512_2 20.67 15.01 0.9
eng akk 2_24_256_2048_2 15.62 8.01 0.78 eng akk 8_12_1024_512_2 21.77 14.94 0.88
eng akk 2_24_512_4096_2 16.75 7.89 0.84 eng akk 8_12_1024_1024_2 22.37 16.06 0.91
eng akk 4_2_1024_256_2 30.08 40.15 0.93 eng akk 8_16_1024_256_2 21.07 15.57 0.91
eng akk 4_2_1024_512_2 29.27 37.93 0.93 eng akk 8_32_256_1024_2 17.49 7.52 0.78
eng akk 4_2_2048_512_2 28.78 37.81 0.93 eng akk 8_32_512_2048_2 24.66 6.09 0.74
eng akk 4_2_2048_1024_2 29.4 39.11 0.93 eng akk 12_2_256_512_2 28.6 35.03 0.93
eng akk 4_4_256_1024_2 30.18 38.92 0.93 eng akk 12_2_1024_4096_2 28.09 37.46 0.93
eng akk 4_6_256_512_2 29.87 38.81 0.93 eng akk 12_4_256_256_2 26.68 28.97 0.93
eng akk 4_6_512_2048_2 31.0 42.54 0.93 eng akk 12_4_256_4096_2 28.29 34.0 0.93
eng akk 4_6_1024_4096_2 29.65 42.02 0.93 eng akk 12_4_512_1024_2 29.17 36.83 0.93
eng akk 4_8_256_256_2 25.09 24.74 0.93 eng akk 12_4_1024_2048_2 22.01 15.21 0.89
eng akk 4_8_1024_4096_2 30.74 42.5 0.93 eng akk 12_6_256_4096_2 27.56 30.33 0.93
eng akk 4_12_256_4096_2 23.5 18.49 0.91 eng akk 12_6_512_1024_2 29.52 37.17 0.93
eng akk 4_12_512_512_2 22.87 13.21 0.89 eng akk 12_6_1024_2048_2 29.04 38.79 0.93
eng akk 4_12_1024_1024_2 30.45 42.45 0.93 eng akk 12_8_512_512_2 28.55 35.78 0.93
eng akk 4_12_1024_2048_2 30.45 42.74 0.93 eng akk 12_8_1024_1024_2 20.41 16.14 0.9
eng akk 4_16_512_256_2 30.3 39.35 0.93 eng akk 12_12_512_256_2 22.66 18.15 0.91
eng akk 4_16_1024_256_2 30.01 42.16 0.93 eng akk 12_12_1024_256_2 21.42 18.64 0.91
eng akk 4_16_1024_512_2 28.1 39.74 0.93 eng akk 12_12_1024_512_2 22.83 16.31 0.9
eng akk 4_24_256_2048_2 14.81 8.03 0.77 eng akk 12_16_256_2048_2 17.54 8.26 0.78
eng akk 4_24_512_4096_2 20.75 7.12 0.78 eng akk 12_16_512_4096_2 19.53 10.25 0.84
eng akk 6_2_256_1024_2 29.45 38.24 0.93 eng akk 12_32_256_1024_2 17.82 9.23 0.8
eng akk 6_2_512_4096_2 30.55 41.64 0.93 eng akk 12_32_512_2048_2 18.07 9.72 0.82
eng akk 6_2_2048_256_2 28.64 36.5 0.93 eng akk 16_2_256_256_2 27.06 30.64 0.93
eng akk 6_4_512_2048_2 29.93 39.88 0.94 eng akk 16_2_256_4096_2 26.15 26.97 0.92
eng akk 6_6_256_512_2 29.98 39.21 0.93 eng akk 16_2_512_1024_2 27.54 34.01 0.93
eng akk 6_6_512_2048_2 29.85 40.58 0.93 eng akk 16_2_1024_2048_2 28.46 37.33 0.93
eng akk 6_6_1024_4096_2 27.61 39.26 0.93 eng akk 16_4_512_512_2 26.23 31.16 0.93
eng akk 6_8_256_256_2 29.7 37.99 0.93 eng akk 16_4_1024_2048_2 28.41 35.7 0.93
eng akk 6_8_512_1024_2 30.04 40.92 0.93 eng akk 16_6_512_512_2 28.35 35.79 0.93
eng akk 6_8_1024_2048_2 30.97 43.39 0.93 eng akk 16_6_1024_1024_2 26.32 28.94 0.91
eng akk 6_12_256_4096_2 31.09 41.63 0.94 eng akk 16_8_512_256_2 21.81 18.5 0.9
eng akk 6_12_512_256_2 20.87 15.17 0.89 eng akk 16_8_1024_512_2 20.68 17.16 0.89
eng akk 6_12_512_512_2 22.29 21.44 0.92 eng akk 16_8_1024_1024_2 28.35 36.26 0.92
eng akk 6_12_1024_1024_2 22.22 14.15 0.9 eng akk 16_12_256_2048_2 24.71 23.05 0.92
eng akk 6_16_1024_256_2 30.27 41.0 0.94 eng akk 16_12_512_4096_2 22.74 19.9 0.92
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Table 14: Results for Experiment 2 (Part 2/6)

src tgt model bleu chrf comet src tgt model bleu chrf comet

eng akk 16_12_1024_256_2 20.4 15.52 0.89 deu dsb 4_4_256_1024_2 28.09 43.01 0.62
eng akk 16_16_256_2048_2 15.97 8.39 0.81 deu dsb 4_6_256_512_2 26.91 42.86 0.62
eng akk 16_16_512_4096_2 16.2 11.54 0.81 deu dsb 4_6_512_2048_2 28.82 45.93 0.63
eng akk 16_24_256_1024_2 17.39 8.28 0.8 deu dsb 4_6_1024_4096_2 31.57 49.65 0.65
eng akk 16_32_256_1024_2 24.86 6.13 0.74 deu dsb 4_8_256_256_2 28.06 43.14 0.62
eng akk 16_32_512_2048_2 16.7 7.76 0.82 deu dsb 4_8_1024_4096_2 32.1 50.21 0.66
eng akk 24_2_512_256_2 27.45 32.36 0.93 deu dsb 4_12_256_4096_2 27.49 42.94 0.62
eng akk 24_2_512_512_2 27.56 33.44 0.93 deu dsb 4_12_512_512_2 28.78 45.54 0.63
eng akk 24_2_1024_1024_2 27.51 33.86 0.93 deu dsb 4_12_1024_1024_2 30.11 47.66 0.65
eng akk 24_4_256_2048_2 21.96 12.81 0.9 deu dsb 4_12_1024_2048_2 31.2 48.69 0.65
eng akk 24_4_512_256_2 25.96 31.73 0.93 deu dsb 4_16_512_256_2 28.8 46.63 0.64
eng akk 24_4_1024_512_2 27.35 33.82 0.92 deu dsb 4_16_1024_256_2 29.46 47.91 0.65
eng akk 24_6_256_2048_2 21.88 11.6 0.87 deu dsb 4_16_1024_512_2 30.57 48.87 0.65
eng akk 24_6_512_4096_2 19.84 8.84 0.85 deu dsb 4_24_256_2048_2 12.22 24.03 0.5
eng akk 24_6_1024_256_2 27.85 35.54 0.92 deu dsb 4_24_512_4096_2 15.34 29.54 0.53
eng akk 24_6_1024_512_2 23.13 22.75 0.9 deu dsb 6_2_256_1024_2 27.86 44.0 0.63
eng akk 24_8_256_2048_2 21.87 8.91 0.82 deu dsb 6_2_512_4096_2 29.87 47.84 0.64
eng akk 24_8_512_4096_2 20.25 9.48 0.86 deu dsb 6_2_2048_256_2 28.13 46.89 0.64
eng akk 24_8_1024_256_2 26.93 32.41 0.92 deu dsb 6_4_512_2048_2 28.34 45.13 0.64
eng akk 24_24_256_1024_2 17.66 8.16 0.82 deu dsb 6_6_256_512_2 27.4 42.87 0.62
eng akk 24_24_512_2048_2 24.81 6.16 0.74 deu dsb 6_6_512_2048_2 30.05 46.83 0.64
eng akk 24_32_256_512_2 19.73 8.9 0.8 deu dsb 6_6_1024_4096_2 32.08 50.72 0.66
eng akk 32_2_256_2048_2 21.87 8.76 0.83 deu dsb 6_8_256_256_2 27.48 42.48 0.62
eng akk 32_2_512_4096_2 22.38 7.18 0.86 deu dsb 6_8_512_1024_2 28.41 45.33 0.63
eng akk 32_2_1024_256_2 20.99 15.41 0.9 deu dsb 6_8_1024_2048_2 33.03 50.91 0.66
eng akk 32_12_256_1024_2 23.7 17.46 0.91 deu dsb 6_12_256_4096_2 28.67 44.24 0.63
eng akk 32_16_256_1024_2 14.03 7.99 0.77 deu dsb 6_12_512_256_2 29.46 46.16 0.64
eng akk 32_16_512_2048_2 18.57 8.35 0.83 deu dsb 6_12_512_512_2 28.63 45.56 0.64
eng akk 32_32_256_512_2 19.11 8.39 0.82 deu dsb 6_12_1024_1024_2 31.58 49.56 0.65
eng akk 32_32_256_4096_2 24.52 6.24 0.74 deu dsb 6_16_1024_256_2 30.51 48.94 0.65
eng akk 32_32_512_1024_2 16.92 8.25 0.82 deu dsb 6_16_1024_512_2 31.32 50.22 0.66
deu dsb 2_2_2048_4096_2 28.96 46.8 0.65 deu dsb 6_24_256_2048_2 10.04 13.03 0.46
deu dsb 2_4_512_4096_2 29.43 46.96 0.64 deu dsb 6_24_512_4096_2 8.71 15.32 0.45
deu dsb 2_4_2048_256_2 29.03 47.44 0.64 deu dsb 6_32_256_1024_2 10.96 24.02 0.5
deu dsb 2_6_256_1024_2 28.35 44.33 0.63 deu dsb 8_4_256_512_2 26.89 42.42 0.62
deu dsb 2_8_256_512_2 28.84 43.92 0.63 deu dsb 8_4_512_2048_2 29.05 46.24 0.64
deu dsb 2_8_512_2048_2 27.02 44.16 0.63 deu dsb 8_4_1024_4096_2 32.82 51.13 0.67
deu dsb 2_8_1024_4096_2 29.98 47.89 0.65 deu dsb 8_6_256_256_2 28.06 43.52 0.62
deu dsb 2_12_512_1024_2 28.46 45.47 0.63 deu dsb 8_6_512_1024_2 30.38 46.91 0.64
deu dsb 2_12_1024_2048_2 29.99 47.56 0.64 deu dsb 8_8_256_4096_2 27.89 43.46 0.62
deu dsb 2_16_512_256_2 29.11 46.67 0.64 deu dsb 8_8_512_1024_2 31.31 47.63 0.65
deu dsb 2_16_1024_256_2 29.41 47.41 0.64 deu dsb 8_8_1024_2048_2 31.24 49.36 0.65
deu dsb 2_16_1024_512_2 30.36 48.81 0.65 deu dsb 8_12_512_256_2 28.07 45.09 0.63
deu dsb 2_16_1024_1024_2 30.68 49.03 0.65 deu dsb 8_12_512_512_2 28.69 45.59 0.64
deu dsb 2_24_256_2048_2 27.0 44.05 0.63 deu dsb 8_12_1024_512_2 31.46 49.17 0.66
deu dsb 2_24_512_4096_2 29.72 47.3 0.65 deu dsb 8_12_1024_1024_2 31.66 50.01 0.66
deu dsb 4_2_1024_256_2 29.47 46.86 0.64 deu dsb 8_16_1024_256_2 31.34 50.58 0.66
deu dsb 4_2_1024_512_2 29.71 48.32 0.65 deu dsb 8_32_256_1024_2 11.97 26.74 0.51
deu dsb 4_2_2048_512_2 27.07 45.25 0.63 deu dsb 8_32_512_2048_2 13.85 30.58 0.53
deu dsb 4_2_2048_1024_2 28.91 47.68 0.64 deu dsb 12_2_256_512_2 27.53 42.04 0.61
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Table 15: Results for Experiment 2 (Part 3/6)

src tgt model bleu chrf comet src tgt model bleu chrf comet

deu dsb 12_2_1024_4096_2 33.18 51.57 0.67 deu dsb 24_24_512_2048_2 9.03 3.64 0.4
deu dsb 12_4_256_256_2 28.59 43.07 0.62 deu dsb 24_32_256_512_2 5.29 3.32 0.38
deu dsb 12_4_256_4096_2 26.51 41.66 0.62 deu dsb 32_2_256_2048_2 11.11 6.02 0.44
deu dsb 12_4_512_1024_2 29.51 46.58 0.64 deu dsb 32_2_512_4096_2 5.8 5.57 0.42
deu dsb 12_4_1024_2048_2 30.87 49.04 0.65 deu dsb 32_2_1024_256_2 15.96 22.55 0.52
deu dsb 12_6_256_4096_2 26.13 40.19 0.6 deu dsb 32_12_256_1024_2 12.44 10.4 0.46
deu dsb 12_6_512_1024_2 30.35 47.13 0.65 deu dsb 32_16_256_1024_2 12.44 10.01 0.46
deu dsb 12_6_1024_2048_2 30.34 47.96 0.65 deu dsb 32_16_512_2048_2 10.36 9.99 0.44
deu dsb 12_8_512_512_2 28.85 44.68 0.63 deu dsb 32_32_256_512_2 10.26 3.02 0.39
deu dsb 12_8_1024_1024_2 30.41 48.14 0.65 deu dsb 32_32_256_4096_2 5.24 3.13 0.41
deu dsb 12_12_512_256_2 28.8 45.28 0.64 deu dsb 32_32_512_1024_2 10.79 2.9 0.4
deu dsb 12_12_1024_256_2 31.39 48.98 0.65 eng_wiki ita_wiki 2_2_1024_1024_2 12.56 44.02 0.59
deu dsb 12_12_1024_512_2 32.07 49.79 0.66 eng_wiki ita_wiki 2_2_2048_4096_2 13.56 44.71 0.61
deu dsb 12_16_256_2048_2 26.18 40.04 0.61 eng_wiki ita_wiki 2_4_512_4096_2 13.86 44.95 0.61
deu dsb 12_16_512_4096_2 26.25 41.22 0.61 eng_wiki ita_wiki 2_4_2048_256_2 12.37 43.23 0.57
deu dsb 12_32_256_1024_2 10.84 19.88 0.49 eng_wiki ita_wiki 2_6_256_1024_2 13.43 44.79 0.61
deu dsb 12_32_512_2048_2 7.47 3.75 0.4 eng_wiki ita_wiki 2_8_256_512_2 13.1 44.67 0.6
deu dsb 16_2_256_256_2 24.96 37.98 0.6 eng_wiki ita_wiki 2_8_512_2048_2 12.93 44.14 0.59
deu dsb 16_2_256_4096_2 15.16 17.72 0.49 eng_wiki ita_wiki 2_8_1024_4096_2 13.74 44.96 0.61
deu dsb 16_2_512_1024_2 17.76 24.74 0.54 eng_wiki ita_wiki 2_12_512_1024_2 12.54 43.97 0.59
deu dsb 16_2_1024_2048_2 18.64 28.2 0.55 eng_wiki ita_wiki 2_12_1024_2048_2 13.1 44.71 0.61
deu dsb 16_4_512_512_2 17.65 25.5 0.53 eng_wiki ita_wiki 2_16_512_256_2 13.04 45.0 0.59
deu dsb 16_4_1024_2048_2 17.98 27.12 0.55 eng_wiki ita_wiki 2_16_1024_256_2 13.42 45.15 0.61
deu dsb 16_6_512_512_2 18.54 26.36 0.54 eng_wiki ita_wiki 2_16_1024_512_2 13.19 44.68 0.61
deu dsb 16_6_1024_1024_2 17.22 27.33 0.54 eng_wiki ita_wiki 2_16_1024_1024_2 13.42 44.85 0.61
deu dsb 16_8_512_256_2 18.76 26.24 0.54 eng_wiki ita_wiki 2_24_256_2048_2 12.31 43.76 0.58
deu dsb 16_8_1024_512_2 18.9 28.61 0.55 eng_wiki ita_wiki 2_24_512_4096_2 3.16 24.5 0.28
deu dsb 16_8_1024_1024_2 18.49 28.1 0.55 eng_wiki ita_wiki 4_2_1024_256_2 12.73 44.67 0.59
deu dsb 16_12_256_2048_2 16.13 21.51 0.51 eng_wiki ita_wiki 4_2_1024_512_2 12.76 44.19 0.59
deu dsb 16_12_512_4096_2 17.47 25.2 0.53 eng_wiki ita_wiki 4_2_2048_512_2 13.04 44.83 0.59
deu dsb 16_12_1024_256_2 18.15 29.32 0.55 eng_wiki ita_wiki 4_2_2048_1024_2 13.91 45.42 0.62
deu dsb 16_16_256_2048_2 16.62 20.96 0.51 eng_wiki ita_wiki 4_4_256_1024_2 13.4 44.92 0.61
deu dsb 16_16_512_4096_2 17.78 24.4 0.53 eng_wiki ita_wiki 4_6_256_512_2 13.68 45.07 0.61
deu dsb 16_24_256_1024_2 8.87 3.16 0.4 eng_wiki ita_wiki 4_6_512_2048_2 14.15 45.72 0.62
deu dsb 16_32_256_1024_2 6.44 4.5 0.39 eng_wiki ita_wiki 4_6_1024_4096_2 14.7 46.49 0.65
deu dsb 16_32_512_2048_2 10.55 4.15 0.41 eng_wiki ita_wiki 4_8_256_256_2 12.97 44.34 0.59
deu dsb 24_2_512_256_2 16.25 24.86 0.52 eng_wiki ita_wiki 4_8_1024_4096_2 14.53 45.99 0.63
deu dsb 24_2_512_512_2 16.83 24.89 0.52 eng_wiki ita_wiki 4_12_256_4096_2 11.88 42.9 0.56
deu dsb 24_2_1024_1024_2 18.11 25.05 0.54 eng_wiki ita_wiki 4_12_512_512_2 13.4 45.14 0.6
deu dsb 24_4_256_2048_2 12.05 10.72 0.46 eng_wiki ita_wiki 4_12_1024_1024_2 13.84 45.25 0.62
deu dsb 24_4_512_256_2 17.07 24.17 0.53 eng_wiki ita_wiki 4_12_1024_2048_2 13.91 45.54 0.62
deu dsb 24_4_1024_512_2 17.84 26.84 0.54 eng_wiki ita_wiki 4_16_512_256_2 13.58 45.21 0.62
deu dsb 24_6_256_2048_2 13.07 12.1 0.47 eng_wiki ita_wiki 4_16_1024_256_2 13.92 45.8 0.62
deu dsb 24_6_512_4096_2 11.96 15.7 0.47 eng_wiki ita_wiki 4_16_1024_512_2 14.01 45.91 0.62
deu dsb 24_6_1024_256_2 18.5 24.87 0.54 eng_wiki ita_wiki 4_24_256_2048_2 3.22 26.13 0.28
deu dsb 24_6_1024_512_2 18.55 26.37 0.55 eng_wiki ita_wiki 4_24_512_4096_2 2.35 22.59 0.26
deu dsb 24_8_256_2048_2 12.73 12.56 0.46 eng_wiki ita_wiki 6_2_256_1024_2 13.81 45.35 0.61
deu dsb 24_8_512_4096_2 13.9 16.93 0.5 eng_wiki ita_wiki 6_2_512_4096_2 14.02 45.48 0.62
deu dsb 24_8_1024_256_2 17.26 26.91 0.53 eng_wiki ita_wiki 6_2_2048_256_2 14.07 45.9 0.62
deu dsb 24_24_256_1024_2 7.41 4.06 0.41 eng_wiki ita_wiki 6_4_512_2048_2 14.59 46.28 0.63
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Table 16: Results for Experiment 2 (Part 4/6)

src tgt model bleu chrf comet src tgt model bleu chrf comet

eng_wiki ita_wiki 6_6_256_512_2 13.51 45.14 0.61 eng_wiki ita_wiki 16_2_512_1024_2 3.76 25.12 0.35
eng_wiki ita_wiki 6_6_512_2048_2 14.27 45.57 0.61 eng_wiki ita_wiki 16_2_1024_2048_2 4.01 26.05 0.35
eng_wiki ita_wiki 6_6_1024_4096_2 15.27 46.69 0.65 eng_wiki ita_wiki 16_4_512_512_2 4.03 26.47 0.37
eng_wiki ita_wiki 6_8_256_256_2 13.61 45.16 0.61 eng_wiki ita_wiki 16_4_1024_2048_2 3.89 26.76 0.38
eng_wiki ita_wiki 6_8_512_1024_2 13.73 45.33 0.61 eng_wiki ita_wiki 16_6_512_512_2 4.05 25.89 0.38
eng_wiki ita_wiki 6_8_1024_2048_2 14.4 46.14 0.65 eng_wiki ita_wiki 16_6_1024_1024_2 4.02 27.6 0.38
eng_wiki ita_wiki 6_12_256_4096_2 12.2 43.39 0.56 eng_wiki ita_wiki 16_8_512_256_2 3.96 27.52 0.38
eng_wiki ita_wiki 6_12_512_256_2 13.54 45.62 0.61 eng_wiki ita_wiki 16_8_1024_512_2 4.22 28.34 0.38
eng_wiki ita_wiki 6_12_512_512_2 13.39 45.05 0.61 eng_wiki ita_wiki 16_8_1024_1024_2 4.0 28.29 0.38
eng_wiki ita_wiki 6_12_1024_1024_2 14.61 46.4 0.64 eng_wiki ita_wiki 16_12_256_2048_2 3.48 23.67 0.37
eng_wiki ita_wiki 6_16_1024_256_2 14.4 46.27 0.63 eng_wiki ita_wiki 16_12_512_4096_2 3.63 25.0 0.38
eng_wiki ita_wiki 6_16_1024_512_2 14.41 46.48 0.64 eng_wiki ita_wiki 16_12_1024_256_2 4.16 28.04 0.39
eng_wiki ita_wiki 6_24_256_2048_2 3.03 25.75 0.28 eng_wiki ita_wiki 16_16_256_2048_2 3.47 23.38 0.37
eng_wiki ita_wiki 6_24_512_4096_2 2.25 20.31 0.25 eng_wiki ita_wiki 16_16_512_4096_2 3.69 24.9 0.38
eng_wiki ita_wiki 6_32_256_1024_2 2.59 23.99 0.27 eng_wiki ita_wiki 16_24_256_1024_2 1.41 5.47 0.22
eng_wiki ita_wiki 8_4_256_512_2 13.44 45.07 0.6 eng_wiki ita_wiki 16_32_256_1024_2 1.33 2.99 0.21
eng_wiki ita_wiki 8_4_512_2048_2 14.38 46.27 0.63 eng_wiki ita_wiki 16_32_512_2048_2 1.38 6.65 0.22
eng_wiki ita_wiki 8_4_1024_4096_2 15.74 47.32 0.67 eng_wiki ita_wiki 24_2_512_256_2 3.79 24.36 0.35
eng_wiki ita_wiki 8_6_256_256_2 13.37 44.82 0.6 eng_wiki ita_wiki 24_2_512_512_2 3.65 23.5 0.34
eng_wiki ita_wiki 8_6_512_1024_2 13.99 45.65 0.62 eng_wiki ita_wiki 24_2_1024_1024_2 3.69 25.0 0.37
eng_wiki ita_wiki 8_8_256_4096_2 12.89 44.41 0.58 eng_wiki ita_wiki 24_4_256_2048_2 3.04 21.33 0.36
eng_wiki ita_wiki 8_8_512_1024_2 13.97 45.77 0.62 eng_wiki ita_wiki 24_4_512_256_2 3.64 25.14 0.37
eng_wiki ita_wiki 8_8_1024_2048_2 15.01 46.59 0.65 eng_wiki ita_wiki 24_4_1024_512_2 3.73 24.99 0.36
eng_wiki ita_wiki 8_12_512_256_2 13.7 45.62 0.61 eng_wiki ita_wiki 24_6_256_2048_2 2.86 20.14 0.35
eng_wiki ita_wiki 8_12_512_512_2 13.59 45.17 0.61 eng_wiki ita_wiki 24_6_512_4096_2 2.85 20.86 0.38
eng_wiki ita_wiki 8_12_1024_512_2 14.92 46.66 0.65 eng_wiki ita_wiki 24_6_1024_256_2 3.77 26.25 0.38
eng_wiki ita_wiki 8_12_1024_1024_2 15.06 46.97 0.65 eng_wiki ita_wiki 24_6_1024_512_2 3.59 26.53 0.38
eng_wiki ita_wiki 8_16_1024_256_2 14.88 47.08 0.65 eng_wiki ita_wiki 24_8_256_2048_2 2.93 20.88 0.36
eng_wiki ita_wiki 8_32_256_1024_2 3.23 26.48 0.28 eng_wiki ita_wiki 24_8_512_4096_2 2.93 22.32 0.38
eng_wiki ita_wiki 8_32_512_2048_2 3.68 28.03 0.29 eng_wiki ita_wiki 24_8_1024_256_2 3.57 26.02 0.38
eng_wiki ita_wiki 12_2_256_512_2 13.02 44.15 0.59 eng_wiki ita_wiki 24_24_256_1024_2 1.81 2.93 0.22
eng_wiki ita_wiki 12_2_1024_4096_2 16.12 47.89 0.66 eng_wiki ita_wiki 24_24_512_2048_2 1.38 2.46 0.22
eng_wiki ita_wiki 12_4_256_256_2 13.52 45.23 0.61 eng_wiki ita_wiki 24_32_256_512_2 1.48 7.86 0.23
eng_wiki ita_wiki 12_4_256_4096_2 13.37 44.22 0.59 eng_wiki ita_wiki 32_2_256_2048_2 2.56 18.81 0.33
eng_wiki ita_wiki 12_4_512_1024_2 13.87 45.61 0.62 eng_wiki ita_wiki 32_2_512_4096_2 2.24 17.43 0.33
eng_wiki ita_wiki 12_4_1024_2048_2 15.61 47.63 0.66 eng_wiki ita_wiki 32_2_1024_256_2 2.76 18.58 0.34
eng_wiki ita_wiki 12_6_256_4096_2 12.64 43.68 0.58 eng_wiki ita_wiki 32_12_256_1024_2 2.68 20.44 0.34
eng_wiki ita_wiki 12_6_512_1024_2 14.0 45.74 0.61 eng_wiki ita_wiki 32_16_256_1024_2 2.67 20.64 0.35
eng_wiki ita_wiki 12_6_1024_2048_2 15.34 47.16 0.66 eng_wiki ita_wiki 32_16_512_2048_2 2.46 19.93 0.36
eng_wiki ita_wiki 12_8_512_512_2 14.28 46.03 0.62 eng_wiki ita_wiki 32_32_256_512_2 1.66 3.55 0.22
eng_wiki ita_wiki 12_8_1024_1024_2 14.57 46.41 0.63 eng_wiki ita_wiki 32_32_256_4096_2 1.41 1.6 0.2
eng_wiki ita_wiki 12_12_512_256_2 13.37 45.32 0.6 eng_wiki ita_wiki 32_32_512_1024_2 1.55 2.37 0.21
eng_wiki ita_wiki 12_12_1024_256_2 15.24 47.12 0.64 eng mni 2_2_1024_1024_2 20.5 47.35 0.7
eng_wiki ita_wiki 12_12_1024_512_2 14.67 46.45 0.64 eng mni 2_2_2048_4096_2 21.32 47.97 0.7
eng_wiki ita_wiki 12_16_256_2048_2 11.27 42.02 0.54 eng mni 2_4_512_4096_2 20.97 47.45 0.7
eng_wiki ita_wiki 12_16_512_4096_2 11.97 42.82 0.56 eng mni 2_4_2048_256_2 21.57 48.18 0.7
eng_wiki ita_wiki 12_32_256_1024_2 1.29 3.86 0.21 eng mni 2_6_256_1024_2 19.46 45.8 0.7
eng_wiki ita_wiki 12_32_512_2048_2 3.77 27.69 0.29 eng mni 2_8_256_512_2 18.62 45.96 0.7
eng_wiki ita_wiki 16_2_256_256_2 11.92 42.5 0.56 eng mni 2_8_512_2048_2 20.65 47.48 0.7
eng_wiki ita_wiki 16_2_256_4096_2 3.27 21.27 0.35 eng mni 2_8_1024_4096_2 21.7 48.53 0.71
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Table 17: Results for Experiment 2 (Part 5/6)

src tgt model bleu chrf comet src tgt model bleu chrf comet

eng mni 2_12_512_1024_2 20.96 48.15 0.71 eng mni 8_6_512_1024_2 20.32 47.29 0.71
eng mni 2_12_1024_2048_2 21.94 49.38 0.71 eng mni 8_8_256_4096_2 18.93 41.98 0.68
eng mni 2_16_512_256_2 20.96 47.99 0.71 eng mni 8_8_512_1024_2 19.81 46.04 0.7
eng mni 2_16_1024_256_2 21.51 49.88 0.71 eng mni 8_8_1024_2048_2 21.33 48.04 0.71
eng mni 2_16_1024_512_2 21.52 49.7 0.71 eng mni 8_12_512_256_2 19.55 46.84 0.71
eng mni 2_16_1024_1024_2 21.68 48.97 0.71 eng mni 8_12_512_512_2 20.57 47.32 0.71
eng mni 2_24_256_2048_2 18.53 45.07 0.69 eng mni 8_12_1024_512_2 21.6 48.25 0.71
eng mni 2_24_512_4096_2 21.14 48.14 0.7 eng mni 8_12_1024_1024_2 21.16 47.83 0.71
eng mni 4_2_1024_256_2 20.08 46.9 0.7 eng mni 8_16_1024_256_2 20.48 47.36 0.71
eng mni 4_2_1024_512_2 20.46 47.53 0.7 eng mni 8_32_256_1024_2 4.71 18.75 0.45
eng mni 4_2_2048_512_2 19.91 46.03 0.69 eng mni 8_32_512_2048_2 8.73 29.97 0.54
eng mni 4_2_2048_1024_2 20.23 46.64 0.69 eng mni 12_2_256_512_2 14.79 39.85 0.68
eng mni 4_4_256_1024_2 17.38 44.5 0.69 eng mni 12_2_1024_4096_2 19.94 45.84 0.7
eng mni 4_6_256_512_2 14.69 41.51 0.68 eng mni 12_4_256_256_2 15.01 39.36 0.68
eng mni 4_6_512_2048_2 20.61 47.51 0.7 eng mni 12_4_256_4096_2 17.39 38.81 0.68
eng mni 4_6_1024_4096_2 22.28 49.07 0.71 eng mni 12_4_512_1024_2 19.2 44.07 0.7
eng mni 4_8_256_256_2 17.69 44.48 0.69 eng mni 12_4_1024_2048_2 19.98 44.33 0.69
eng mni 4_8_1024_4096_2 22.02 49.02 0.71 eng mni 12_6_256_4096_2 17.57 38.62 0.68
eng mni 4_12_256_4096_2 19.78 45.44 0.7 eng mni 12_6_512_1024_2 19.01 43.38 0.69
eng mni 4_12_512_512_2 20.77 47.58 0.71 eng mni 12_6_1024_2048_2 19.39 44.1 0.69
eng mni 4_12_1024_1024_2 21.61 49.21 0.71 eng mni 12_8_512_512_2 18.57 43.11 0.69
eng mni 4_12_1024_2048_2 21.86 48.87 0.71 eng mni 12_8_1024_1024_2 19.74 44.36 0.69
eng mni 4_16_512_256_2 20.2 47.73 0.71 eng mni 12_12_512_256_2 18.94 43.92 0.7
eng mni 4_16_1024_256_2 21.86 48.67 0.71 eng mni 12_12_1024_256_2 20.07 44.85 0.7
eng mni 4_16_1024_512_2 21.74 49.41 0.71 eng mni 12_12_1024_512_2 19.2 45.0 0.7
eng mni 4_24_256_2048_2 19.64 45.94 0.7 eng mni 12_16_256_2048_2 17.19 39.29 0.68
eng mni 4_24_512_4096_2 4.15 16.81 0.42 eng mni 12_16_512_4096_2 19.34 43.19 0.69
eng mni 6_2_256_1024_2 16.71 43.44 0.69 eng mni 12_32_256_1024_2 3.96 16.01 0.42
eng mni 6_2_512_4096_2 20.56 47.24 0.7 eng mni 12_32_512_2048_2 3.51 16.37 0.41
eng mni 6_2_2048_256_2 19.46 45.47 0.69 eng mni 16_2_256_256_2 12.51 36.0 0.66
eng mni 6_4_512_2048_2 20.61 47.66 0.71 eng mni 16_2_256_4096_2 15.8 36.51 0.66
eng mni 6_6_256_512_2 17.38 44.22 0.69 eng mni 16_2_512_1024_2 17.12 41.31 0.69
eng mni 6_6_512_2048_2 20.14 46.7 0.7 eng mni 16_2_1024_2048_2 19.83 43.59 0.69
eng mni 6_6_1024_4096_2 21.54 48.65 0.71 eng mni 16_4_512_512_2 18.0 41.83 0.69
eng mni 6_8_256_256_2 17.31 44.25 0.7 eng mni 16_4_1024_2048_2 18.93 43.39 0.68
eng mni 6_8_512_1024_2 20.77 48.13 0.71 eng mni 16_6_512_512_2 17.97 42.24 0.69
eng mni 6_8_1024_2048_2 21.45 47.59 0.7 eng mni 16_6_1024_1024_2 18.44 42.31 0.68
eng mni 6_12_256_4096_2 19.68 45.01 0.7 eng mni 16_8_512_256_2 17.6 41.4 0.69
eng mni 6_12_512_256_2 20.82 48.02 0.71 eng mni 16_8_1024_512_2 19.05 42.87 0.68
eng mni 6_12_512_512_2 20.82 48.3 0.71 eng mni 16_8_1024_1024_2 19.36 42.82 0.68
eng mni 6_12_1024_1024_2 21.23 49.09 0.71 eng mni 16_12_256_2048_2 16.53 38.3 0.67
eng mni 6_16_1024_256_2 21.32 48.92 0.71 eng mni 16_12_512_4096_2 18.58 41.19 0.68
eng mni 6_16_1024_512_2 21.22 48.73 0.71 eng mni 16_12_1024_256_2 19.05 43.73 0.69
eng mni 6_24_256_2048_2 19.62 46.48 0.7 eng mni 16_16_256_2048_2 17.28 38.61 0.67
eng mni 6_24_512_4096_2 4.63 17.12 0.43 eng mni 16_16_512_4096_2 19.24 41.86 0.68
eng mni 6_32_256_1024_2 2.69 11.42 0.37 eng mni 16_24_256_1024_2 2.55 7.92 0.39
eng mni 8_4_256_512_2 15.21 41.64 0.68 eng mni 16_32_256_1024_2 3.52 14.28 0.4
eng mni 8_4_512_2048_2 20.79 47.27 0.71 eng mni 16_32_512_2048_2 2.8 12.5 0.4
eng mni 8_4_1024_4096_2 21.31 47.73 0.7 eng mni 24_2_512_256_2 15.61 40.47 0.68
eng mni 8_6_256_256_2 16.37 42.96 0.69 eng mni 24_2_512_512_2 16.97 40.52 0.68
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Table 18: Results for Experiment 2 (Part 6/6)

src tgt model bleu chrf comet

eng mni 24_2_1024_1024_2 18.43 42.35 0.68
eng mni 24_4_256_2048_2 14.6 34.64 0.66
eng mni 24_4_512_256_2 15.55 38.65 0.67
eng mni 24_4_1024_512_2 18.81 42.09 0.68
eng mni 24_6_256_2048_2 15.31 34.31 0.66
eng mni 24_6_512_4096_2 15.34 33.19 0.65
eng mni 24_6_1024_256_2 18.17 41.86 0.68
eng mni 24_6_1024_512_2 18.12 41.28 0.68
eng mni 24_8_256_2048_2 15.26 34.28 0.66
eng mni 24_8_512_4096_2 14.54 32.52 0.65
eng mni 24_8_1024_256_2 17.72 40.74 0.67
eng mni 24_24_256_1024_2 3.18 12.24 0.4
eng mni 24_24_512_2048_2 2.8 12.81 0.4
eng mni 24_32_256_512_2 2.7 11.38 0.38
eng mni 32_2_256_2048_2 7.27 24.19 0.61
eng mni 32_2_512_4096_2 2.29 13.55 0.51
eng mni 32_2_1024_256_2 17.45 39.5 0.67
eng mni 32_12_256_1024_2 12.51 29.79 0.6
eng mni 32_16_256_1024_2 15.71 33.21 0.6
eng mni 32_16_512_2048_2 13.77 31.34 0.6
eng mni 32_32_256_512_2 2.4 10.86 0.38
eng mni 32_32_256_4096_2 1.27 8.05 0.37
eng mni 32_32_512_1024_2 1.81 7.73 0.38
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Abstract

The paper presents the large dataset IfGPT,
which contains available corpora and datasets
for Bulgarian, and describes methods to con-
tinuously expand it with unduplicated and un-
biased Bulgarian data. The samples in the
dataset are annotated with metadata that enable
effective extraction of domain- and application-
oriented datasets for fine-tuning or Retrieval
Augmented Generation (RAG) of large lan-
guage models (LLMs). The paper focuses on
the description of the extended metadata of the
IfGPT dataset and its management in a graph
database.

1 Introduction

The large-scale transformer-based models
(Vaswani et al., 2017) have significantly changed
the state of the art in language processing.
There are two basic steps in the development of
LLMs, both of which have to do with datasets:
Pre-training on large text data and subsequent
fine-tuning for a specific task with suitable data.

Developing datasets for LLMs is a major chal-
lenge for languages with limited resources. These
include:

Data scarcity There are few sources for compil-
ing large datasets for pre-training and fine-tuning
LLMs for languages such as Bulgarian, whose rel-
atively low production of authentic digital texts is
predetermined by the relatively small number of its
speakers.1

Copyright restrictions It is even more difficult
to find datasets that do not raise copyright issues
and are available for both non-commercial and com-
mercial use.2

1https://datareportal.com/reports/
digital-2025-bulgaria

2The Bulgarian Intellectual Property Rights Act of 2023
liberalises the use of texts that are accessible digitally or in
digital form for automatic analysis, but some proprietary col-
lections that are protected by copyright and are not accessible.

Quality of the data Freely accessible data is
often noisy and inhomogeneous and can therefore
cause problems or lead to distortions. Procedures
for data cleansing and selecting only high-quality
texts further limit the scope of the data.

In this paper, we present the large dataset
IfGPT,3 which contains some already available
corpora and datasets for Bulgarian, as well as
methods for its continuous expansion with non-
duplicated, clean Bulgarian data. The samples in
the dataset are annotated with metadata that enable
effective extraction of domain- and application-
oriented datasets. The paper focuses on the descrip-
tion of the extended metadata of the IfGPT dataset
and its management in a graph-based database.

The aim is to avoid the redundant compilation of
datasets by different users and the multiple efforts
for cleaning the data and to facilitate the reuse of
the data for solving different application tasks. The
main contribution of our work can be summarised
as follows:

(a) Merging several relatively large text collec-
tions for Bulgarian into one dataset with standard-
ised metadata description and document formats.

(b) Adding new texts to the dataset in a standard-
ised way.

(c) Deploying and customising a set of tools in
a chain for text cleaning, deduplication, detection
of sensitive and biassed information to ensure the
quality of the data.

(d) Providing a uniform metadata description for
all documents in the datasets and organising the
metadata categories in a graph representation, orig-
inally proposed for the Bulgarian National Corpus
(Koeva et al., 2012) and extended to the present
IfGPT dataset.

(e) Providing means to efficiently query meta-
data to find suitable text documents for a given

3https://ifgpt.dcl.bas.bg/en/
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LLM fine-tuning or Retrieval Augmented Genera-
tion (RAG) task.

2 Large text datasets

Recent advances in the development of LLMs
have demonstrated the effectiveness of their pre-
training on large text datasets. Despite the fact that
some technologies enable shorter parts of training
datasets for specific domains and/or languages, the
growing demand for language modelling data for
most languages, including Bulgarian, remains a
challenge. Here we will briefly present some of the
widely used and recently created large text datasets
used for pre-training.

CommonCrawl creates and maintains an open
web crawl dataset. Since 2008, CommonCrawl
has collected petabytes of data, including raw web
page data, metadata, and text extractions. Com-
monCrawl is typically used to retrieve subsets of
websites during a specific time period. Due to
the noisy and low-quality information in web data
(Luccioni and Viviano, 2021), it is necessary to
clean and filter the data before using it. There
are a number of filtered datasets based on Com-
monCrawl including Bulgarian. OSCAR (Open
Super-large Crawled Aggregated coRpus) is a large
multilingual corpus created by language classifi-
cation and filtering of the CommonCrawl dataset
(Abadji et al., 2022). It covers 152 languages and
offers both original and deduplicated versions of
the data. Similarly, the C4 (Raffel et al., 2020) and
mC4 (Xue et al., 2020) datasets were derived from
Common Crawl. These corpora were created using
heuristic methods to filter out non-linguistic con-
tent (such as boilerplate or noise) and underwent
extensive deduplication. While C4 was developed
for English only, mC4 covers over 100 languages.
Another related resource is CC100 (Conneau et al.,
2020), which provides monolingual data for more
than 100 languages. It was created by processing
CommonCrawl snapshots collected between Jan-
uary and December 2018.

Many of the large datasets do not contain Bul-
garian, e.g. Pile, an 825 GB English text corpus
developed for large-scale language model training
(Gao et al., 2020); MassiveText, a collection of
large English language text datasets from various
sources, including websites, books, news articles
and code (Rae et al., 2022), etc.

There are several studies that present available
datasets and categorise them under different as-

pects: (1) Pre-training Corpora; (2) Instruction
Fine-tuning Datasets; (3) Preference Datasets; (4)
Evaluation Datasets; (5) Traditional Natural Lan-
guage Processing Corpora (Liu et al., 2024; Lu
et al., 2024). The IfGPT dataset presented here
can be used as (part of) a pre-training dataset, a
fine-tuning dataset (with some modifications), an
evaluation dataset (with some modifications), and
a traditional natural language processing dataset.
However, our motivation for its compilation, man-
agement and extension is the fine-tuning of LLMs
or RAG applications.

3 Data sources for IfGPT dataset

When collecting and pre-processing data for fine-
tuning LLMs, the aim is to collect as much diverse
Bulgarian language data as possible that is human-
generated, of high quality, does not contain sen-
sitive, false or ethically unacceptable information,
is not repetitive and is accompanied by accurate
information about its source and the licence for its
use.

The components of the IfGPT dataset can be
categorised into three main groups depending on
the type of text, its composition and its possible
uses: 1) collections of texts (corpora) that have al-
ready been created and processed and are available
to us, 2) other existing datasets of Bulgarian texts
that need to be reviewed, downloaded and, if neces-
sary, the format of the texts and metadata converted
to the format and metadata of the IfGPT dataset,
3) compilation of new datasets through targeted
crawling and processing of the identified texts for
filtering, cleaning, deduplicating and adding meta-
data.

3.1 Brief description of existing text
collections (corpora)

The existing text collections include corpora cre-
ated for linguistic and corpus-related studies and
corpora created for various NLP projects, e.g. for
training machine translation systems. The Bulgar-
ian National Corpus (BulNC) contains a wide
range of texts of different sizes, different media
types (written and spoken), different styles, differ-
ent time periods (synchronous and diachronic) and
different licences. Each text in the collection is la-
belled with metadata (Koeva et al., 2012). BulNC
was originally compiled from the Bulgarian Lexico-
graphical Archive and the Text Archive for Written
Bulgarian, which make up 55.95% of the corpus.
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Later, the EMEA corpus (medical administrative
texts) and the OpenSubtitles corpus (film subtitles)
were added, accounting for 1.27% and 8.61% of
BulNC respectively. The remaining texts were au-
tomatically crawled and include a large number
of administrative texts, news from monolingual
and multilingual sources, scientific texts and pop-
ular science texts. The BulNC currently contains
around 420,000,000 words and more than 10,000
text samples. Each text sample is provided with
a detailed metadata description in a separate file,
which makes it possible to extract subcorpora from
specific domains and, if permitted, to distribute
them with original licences. The texts are stored
both in a word-per-line format (or ‘vertical’ format,
in which each line contains a token, its lemma, the
part of speech and grammatical features) and in a
raw text format.

The dataset General News in Bulgarian con-
tains news from different thematic domains. The
news items and their metadata were collected auto-
matically from various (mainly Bulgarian) Internet
sources: 11,840 web domains and 2,116,739 web
pages. The total number of words in the collected
general news in Bulgarian language amounts to
601,330,975 words, spread over 33,375,366 sen-
tences and about 28,000 texts. A crawling platform
was used for the identification and collection of
monolingual data from web pages, the removal of
near-duplicates at the document level, and text nor-
malisation and cleaning (Koeva et al., 2020). The
extracted texts were structured into JSON files con-
taining extracted metadata and an automatic cate-
gorisation of the content into 185 thematic domains
(ordered by probability). The main domains with
the largest number of documents are: Economics;
Sociology; Politics; Law; Business; Commerce;
Education; Administration; School; Leisure; and
History. The links to the original sources and the
distribution licences (if indicated in the sources)
are part of the metadata.

The corpus Bulgarian CURLICAT (Curated
Multilingual Language Resources for CEF.AT)
consists of texts from various sources (Váradi et al.,
2022). The collection comprises 113,087 docu-
ments divided into seven thematic domains: Cul-
ture, Education, European Union, Finance, Politics,
Economy and Science. All documents are licenced
under CC-BY, CC-BY-SA and CC-BY-NC. The
texts are linguistically annotated and are available

in CoNLL-U Plus format.4

The corpus Bulgarian MARCELL (Multilin-
gual resources for CEF.AT in the legal domain)
consists of legislative documents divided into fif-
teen types (Váradi et al., 2020). The time span
of the documents ranges from 1946 to 2023 and
the texts were extracted from the Bulgarian State
Gazette, the official gazette of the Bulgarian gov-
ernment, in which documents from official insti-
tutions such as the government, the Bulgarian Na-
tional Assembly, the Constitutional Court, etc. are
published. The Bulgarian corpus consists of 25,283
documents categorised into eleven types: Admin-
istrative Court; Agreements; Amendments, legal
acts; Conventions; Decrees; Decrees of the Council
of Ministers; Directives; Instructions; Laws (legal
acts); Memoranda; Resolutions. The documents
were annotated in CoNLL-U Plus format. The
dataset comprises around 45,000,000 tokens and
3,281,000 sentences.

Our work on the datasets already available to us
is currently focused on three directions: Identifying
texts that are suitable for distribution (with appro-
priate licences and not duplicated in other selected
parts); standardising the format of the texts pro-
vided in addition to the original formats, raw text
format and JSONL format;5 and, where necessary,
harmonising metadata (categories and values).

3.2 Use of other available datasets
In recent years, many large datasets have been cre-
ated and gradually expanded with new data, with a
focus on open datasets without usage restrictions.
These include CommonCrawl;6 and its cleaned
derivatives such as C47 and CC-100;8 OPUS Cor-
pora;9 etc.

Datasets are also distributed via well-known
language repositories such as ELG, CLARIN,
GitHub, HuggingFace, etc. For example, at the
time of writing, HuggingFace has 258 text datasets
containing Bulgarian; the ELG catalogue has 388
corpora containing Bulgarian; etc.

The main problems with these are that: (a) Bul-
garian and other low-resource languages are rarely
included; (b) if they are, they are only a small part

4https://universaldependencies.org/
ext-format.html

5https://jsonlines.org/
6https://commoncrawl.org
7https://github.com/google-research/

text-to-text-transfer-transformer#c4
8https://data.statmt.org/cc-100/
9https://opus.nlpl.eu/
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of the data; (c) they may already be included in
the datasets available to us; (d) they may not fulfil
the quality requirements both in terms of overall
data quality and suitability for training; (e) their
availability on the web often means that they have
already been included in the LLMs.

The aim here is to avoid overlaps with texts
that have already been collected and to carry out a
massive textual clean-up in order to filter out mal-
formed texts and irrelevant data. The next step is
to assign as many metadata as possible and convert
the documents into the standardised format.

3.3 Compilation of new datasets through
targeted crawling

A regularly updated source for the provision of new
text data has been identified:

(a) Repositories for scientific papers, disserta-
tions and other research publications such as: Bul-
garian Portal for Open Science, a platform pro-
viding free access to full texts of articles published
in Bulgarian scientific journals, selected scientific
books together with extensive bibliographic meta-
data, etc.; scientific and popular science journals
and blogs; websites of universities and research in-
stitutions publishing scientific papers, dissertations,
etc. from various domains.

(b) Public administrative data provided by the
Bulgarian National Assembly (parliamentary min-
utes and the Government Gazette), ministries, agen-
cies and municipalities.

(c) Data from websites and technical documen-
tation of companies from various domains and
with appropriate licences.

(d) Websites of media: newspapers, television
and radio stations that publish news from various
domains and have appropriate licences.

Sources that have already been used for the col-
lection of resources (see 3.1) can be monitored and
crawled to update the datasets. When adding new
text samples, the same format of the text, metadata
and annotations is used to ensure compatibility with
the procedures for validation, data enrichment and
extraction of subsets of the data. In addition, the
metadata provides a reliable means of filtering data
(by source, year, domain, etc.) for more efficient
deduplication (see 3.4.1).

To this end, we need reliable means to assess
data diversity and techniques to improve it. Particu-
lar attention should be paid to less frequent linguis-
tic phenomena, which firstly are not well captured

in smaller datasets and secondly are crucial for
ensuring and maintaining linguistic diversity.

One of the biggest challenges is to find and use
data with suitable licences that allow sharing of the
data (as part of the dataset). Many existing datasets
disregard the restrictions on sharing and consider it
sufficient to provide appropriate references to the
source and authorship of the text samples.

3.4 Procedures for improving the quality of
the dataset

Any application that needs to reliably represent a
domain requires diverse, balanced and unbiased
data. The following techniques are important to
provide high quality data.

3.4.1 Removing duplicates
Deduplication has been shown to improve the qual-
ity of data and the performance of LLMs, in partic-
ular by removing overlap between training and test
data, allowing for more reliable evaluation (Lee
et al., 2022).

The first pre-filtering step relies on metadata and
involves matching texts by source, year, domain,
title, author, etc. to quickly identify and remove
identical text samples which come from different
dataset sources. This significantly improves the
efficiency of further deduplication.

The main deduplication method we implement
is based on the MinHash and Locality Sensitive
Hashing (LSH) algorithm, which is widely used
for this purpose (Leskovec et al., 2020; Lee et al.,
2022; Albalak et al., 2024) and which provides an
efficient way to identify even near-duplicates. The
algorithm estimates the n-gram similarity between
all pairs of text samples and identifies those with
high n-gram overlap.

The deduplication procedures are implemented
in a pipeline to facilitate ongoing deduplication as
the dataset is regularly updated with new texts.

3.4.2 Handling formatting, boilerplate, web
navigation elements from texts

For the extraction of raw text from HTML docu-
ments, we used CSS selectors to mark the elements
we wanted to extract. In addition, various tech-
niques are used for raw text extraction (Koeva et al.,
2020): automatic correction of hyphenated words
based on vocabulary, regular expressions to filter
out metadata, sentence tokenisation and language
detection to filter out non-Bulgarian sentences, etc.
Since there are also PDF documents, we used a
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PDF to text converter to extract text data. Addi-
tional scripts were written to remove headers and
footers from the PDF documents. The extracted
paragraphs were merged based on a heuristic anal-
ysis of capitalisation and lexical content when a
sentence crossed a paragraph boundary. Scanned
and OCR-recognised PDF files were not processed
due to their lower quality, and text and paragraphs
written in languages other than Bulgarian (mostly
English) were removed.

3.4.3 Identification of sensitive personal data,
biases, etc.

A pressing ethical issue that is essential in the de-
velopment of large datasets with diverse sources
is the identification and removal (e.g. masking) of
personally identifiable information (Kober et al.,
2023). However, the identification and removal
of personally identifiable information is a difficult
task due to the different types and forms as well as
the inconsistent definitions, especially in various
data protection laws (Song et al., 2025). A number
of methods have been developed, including those
based on machine learning techniques (Kulkarni
and Cauvery, 2021; Shahriar et al., 2024), Trans-
formers (Johnson et al., 2020; Shahriar et al., 2024)
and rule-based identification (Jaikumar et al., 2023)
as well as masking or tokenisation to remove per-
sonally identifiable information. In our approach,
we experimented with the MAPA anonymisation
package for Bulgarian10 and with some naive rule-
based methods to detect sentences of the document
with potentially sensitive information and mark
their number per document in the metadata.

The increasing development of LLMs has led to
consideration of the biases inherent in them, result-
ing in the development of a range of techniques to
measure and eliminate bias, particularly in relation
to social issues. The main groups of techniques
that address bias include: (a) the introduction of
metrics to assess and identify bias in datasets; (b)
techniques to reduce bias in the pre-processing,
training and post-processing stages. Gallegos et al.
(2024) summarises a wide range of current research
focused on better understanding and preventing the
propagation of bias in LLMs. Our goal is to score
the documents in our dataset according to the per-
centage of potentially biased or abusive sentences
and include this information in the metadata for
further use, text filtering, etc. In this way, we can

10https://mapa-project.eu/

make a selection of documents for fine-tuning with-
out sensitive and biased content, but we can also
use the data for further research on bias. Currently,
the classification of potentially biased sentences is
being developed.

3.5 Current structure of the IfGPT dataset

The current structure of the IfGPT dataset in terms
of the source datasets of the text samples, the do-
main distribution and the size is shown in Table
1. The newly compiled dataset has a standardised
representation of the metadata and text formats and
was subjected to the data quality improvement pro-
cedures (see 3.4). The process of expanding IfGPT
dataset with clean data is ongoing.

Source # texts # tokens Licence
MARCELL 25K 45M PD
CURLICAT 113K 35M CC
BulNC Admin 17K 79M PD
BulNC Wikipedia 89K 41M CC/GNU
BulNC Subtitles 146K 27M OPUS

Table 1: Current structure of IfGPT (August 2025). Li-
cences: PD – public domain, CC – Creative Commons
(various), GNU – GNU Free Documentation License,
other open or restrictive licenses.

The metadata description of the texts within the
IfGPT dataset is available to search and extract
subsets.11

4 File format

Some of the documents in the IfGPT dataset are
already available in vertical format, in CoNLL-U
Plus format or in JSON format. The metadata is
included in both the CoNLL-U Plus and JSON
format, while in the vertical format the metadata
is available in separate associated files. All doc-
uments are also saved in raw text format before
being annotated and converted to either CoNLL-U
Plus or JSON format.

The metadata descriptions are in the form of
attribute-value pairs. For some categories, the val-
ues are predefined, e.g. for the media type, for
others, e.g. the title of the document, any value is
permitted.

The IfGPT dataset is provided in JSONL format
for the LLM tasks, but the other available format
versions can be requested if required.

11https://ifgpt.dcl.bas.bg/
ifgpt-dataset/
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5 Metadata categories

Metadata is essential to ensure efficient and effec-
tive selection of datasets for fine-tuning and RAG
for specific domains and applications. Fine-tuning
of LLMs is performed as a language-dependent
task, focusing on a specific language, in our case
Bulgarian, and further reducing the scope to a spe-
cific domain, task, etc. This requires the selection
of a dataset with relevant data to ensure successful
fine-tuning. On the other hand, metadata can be
used not only for the selection of datasets suitable
for RAG, but also for more effective methods of
filtering information in RAG based on metadata
(Bruni et al., 2025). Even though we emphasise the
importance of metadata, we must point out that the
empirical evaluation of the efficiency of metadata
descriptions is beyond the scope of this study.

All four text collections (described in 3.1) have
been supplied with metadata. The metadata of the
Bulgarian National Corpus is aimed at searching
and retrieving information for the needs of corpus
and language research in general and therefore has
a complex graph-based structure of related cate-
gories (Koeva et al., 2016). The metadata for the
resource General News in Bulgarian is simply a cat-
egorisation into up to six most likely thematic do-
mains (sports, politics, history, etc.). The metadata
for the other two multilingual resources that also
contain Bulgarian (MARCELL and CURLICAT)
are synchronised between the different languages
to form a single subset of categories. All four re-
sources have overlapping metadata, and based on
our task we have defined a set of metadata that
is mandatory for each document (regardless of
whether there are categories with a null value) and
metadata that is optional. Optional metadata is
metadata that is already assigned to the document
but is not part of the mandatory metadata.

The following mandatory metadata is defined for
the documents:

Identifier – unique identifier of the document in
all collections, created with the language code bg
as a prefix;

Licence – the conditions for use, i.e. CC BY-SA
4.0 licence;

PublicationDate – the date of original publica-
tion of the document (if available) in ISO 8601
format;

DocumentTitle – human-readable title (name)
of the document;

Source – the name of the organisation that pub-

lished the source document, i.e. journal, publisher,
blog, website, etc.;

Medium – whether the document is text, audio,
image or video;

Url – the original individual address where the
document was retrieved from, if applicable;

Domain – classification of a specific thematic
domain selected from a predefined list of 24 do-
mains; up to six domains can be listed;

Keywords – extracted terms that specify the
document; up to six keywords can be listed;

NumberWords – the total number of words in
the document;

NumberSentences – the total number of sen-
tences in the document;

NumberTokens – the total number of tokens in
the document;

PersonallyIdentifiableInformation – the per-
centage of tokens in the total number of tokens in
the document;

BiasedInformation – the percentage of tokens
in the total number of tokens in the document.

The following metadata is optional for the docu-
ments:

Author – name(s) of the person(s) who created
the text in the source document;

Style – the literary style of the text in the doc-
ument, selected from a predefined list: Fantasy,
Administrative, Legal, Journalism, etc.;

Type – specifies the type of the source document
(e.g. book, chapter, essay, newspaper article, blog
post, etc.);

Subdomain – a further classification of docu-
ments into narrower categories, e.g. scientific do-
mains for the field of science or cultural domains
for the field of culture; a subdomain is linked to a
specific domain;

TranslatedDocument – whether the document
was originally created in Bulgarian or whether it
has been translated;

CollectionDate – the date of collection of the
document in ISO 8601 format;

LicenseLink – the link to the licence on the
source’s website, if available;

NumberParagraph – the total number of para-
graphs in the document;

TaskCategories - the applications (selected
from a predefined list) for which the template
was developed or is suitable, e.g. for question-
answering.
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Some of the metadata values are extracted auto-
matically. The main techniques for automatically
extracting metadata are: (a) metatextual techniques,
which consist of extracting information from the
HTML markup of the original files; and (b) tex-
tual techniques, which consist of text analysis and
heuristics using a set of language resources. The
following metadata values are automatically ex-
tracted from the HTML sources: Author, Docu-
mentTitle, PublicationDate. The classification in-
formation includes the thematic domain of the texts,
their genre and type as well as the results of the text
analysis. In some cases, the source may contain
classification labels according to an assumed do-
main and/or genre classification of the source, e.g.
texts on a news website may be divided into edito-
rials and articles of different domains – business,
sports, etc.

Some metadata values are generated automati-
cally. These are statistical information resulting
from the processing of the text that includes the
number of words, tokens, sentences, etc. Admin-
istrative metadata such as the document identifier,
language code and source are also generated.

In order to improve the quality and quantity of
the metadata used to describe each text entry, sev-
eral procedures are defined. These procedures aim
to identify contextually relevant descriptors to fill
in missing values in the metadata. The reasons for
incomplete data are manifold: in some cases, the
data is not collected (by the users/authors), the web-
site where the text is stored does not store certain
types of data, it may be difficult or impossible to
extract it from the online source, or it may be the
result of data integration errors.

The task can be performed as a multi-class clas-
sification using heuristics, statistical methods or
machine learning. It has been pointed out that
traditional statistical methods for data imputation
often do not provide an accurate and comprehen-
sive description as they do not analyse the semantic
context and relationships within the data (Jin et al.,
2025). Mei et al. (2021) propose the use of a pre-
trained language model to assign metadata based
on semantic features of the text and its descrip-
tion. Alyafeai et al. (2025) uses LLMs to automat-
ically extract metadata from scientific articles by
analysing context length and few-shot learning.

So far, we use more traditional methods for ex-
tracting metadata – statistical and rule-based, de-
pending on the source of the document, the original

format of the document (PDF, HTML, etc.) and
the structure of the document itself. As we want
to harmonise the metadata of existing datasets and
new incoming texts, extending and standardising
the metadata of available documents may require
re-crawling the sources and repeating the text ex-
traction process. We will upgrade the methods and
tolls we use (Koeva et al., 2020) with the functional-
ities of applications like Trafilatura (Alyafeai et al.,
2025), Maker,12 etc.

6 Metadata management

Graph databases are designed to efficiently pro-
cess large amounts of interconnected data. They
can be scaled horizontally by adding more nodes
to the database, while maintaining performance
even for complex queries. The most commonly
used graph databases are Neo4J, Microsoft Azure
Cosmos DB, ArangoDB, TigerGraph and Amazon
Neptune. Neo4J13 is one of the most popular graph
databases due to its high performance, support for
the Cypher query language (Francis et al., 2018)
and strong community support.

To effectively utilise the properties of a graph
database when storing metadata, a schema is de-
signed that captures the most important entities
and their connections. The nodes of the metadata
schema are defined as follows:

Document nodes with the properties: Identifier,
Title, Source, Domain, Author, Licence, etc.;

Domain nodes with the properties Name and
Parent category;

Author nodes with the properties Name and
optional details such as Biography;

Source nodes with the properties Name and
Url;

Licence nodes with a single property Type.

The graph edges, which represent the relations
between the nodes, are defined as follows:

Document-Domain of type BELONGS TO;

Domain-Domain of type SUBCATEGORY OF;

Document-License of type LICENSED WITH;

Document-Author of type WRITTEN BY;

Document-Source of type PUBLISHED IN.

12https://github.com/datalab-to/marker
13https://neo4j.com/
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Example 1: Processing a document with Cypher QL

Integrating the datasets into a vector database
such as ChromaDB14 can improve the efficiency of
storing and querying vector representations of text
data, which is critical for RAG technology. The
conversion of text data into vector representations
can be done using embeddings generated by spe-
cialised models such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019) or other transformer-
based architectures. The purpose of these vectors
is to capture semantic information about the text
and use it for similarity searches.

To integrate ChromaDB into a graph database,
the unique identifier is stored for each document
or vector representation, depending on the granu-
larity required for a particular task. An example
workflow for processing Bulgarian texts with Chro-
maDB is presented below:
→ Vectorise the text using a selected embedding
model. Save these vectors in ChromaDB with
unique IDs.
→ Store metadata in the Neo4J graph database by
creating nodes for sentences or documents and stor-
ing metadata such as Author, Source and Domain.
→ Also save the vector ID from ChromaDB as a
property of the node.
→ Query similar documents using ChromaDB to
find the closest vectors to a given query vector and
retrieve the IDs of these vectors. Use this to query
the graph database for the corresponding metadata.

14https://www.trychroma.com/

7 Conclusion

The most important results reported in this paper in-
clude the compilation of the IfGPT dataset for Bul-
garian and the development of a metadata schema
with graph-structured categories that enables effi-
cient searching in the metadata. We also provide
an online search interface in the metadata that en-
ables the identification of smaller datasets tailored
to specific domains and applications.

The metadata description of the IfGPT dataset
contains a large number of categories that describe
the text samples on different levels. Some of the
most important metadata categories for the compi-
lation of domain- and application-specific datasets
are the following:

Domain information: A set of characteristics
used to comprehensively describe the domain of
the text was produced, including style, domain,
subdomain. The source can also provide informa-
tion about the domain, e.g. scientific journals in
different domains or subsections of a news source.

Keywords: A schematic description of the con-
tent of the text sample can be created automatically
based on the title, abstract (if available) or full text.

Sensitive personal data and biases: The parts
containing sensitive personal data and biases are
not removed or replaced by neutral data, but the
percentage of such content in a document is calcu-
lated and can thus vary the strictness of the criteria
for exclusion from certain datasets.

Using a graph database to store metadata of-
fers several advantages over traditional relational
databases or file-based systems. One of the main
advantages is the ability to effectively model com-
plex relationships between linguistic entities.

To summarise, a suitable dataset such as IfGPT
– as large as possible, equipped with rich metadata
for efficient search and retrieval of suitable docu-
ments, clearly defined tasks and thematic domains,
and adequately managed with a graph database
integrated with a database of embeddings – will
enable fast and efficient fine-tuning of LLMs and
Retrieval Augmented Generation.

Acknowledgment

The present study is carried out within the project
Infrastructure for Fine-tuning Pre-trained Large
Language Models, Grant Agreement No. ПВУ
– 55 from 12.12.2024 /BG-RRP-2.017-0030-C01/.

72



Limitations

The main practical constraints involve the lack of
extensive and diverse sources for collecting texts
from specialised domains in Bulgarian. Addition-
ally, specialised texts are often distributed in PDF
format, which presents challenges for maintaining
high text quality in the data.

For metadata, automatic collection may be in-
adequate, as online sources often provide limited
information about the text. Conversely, manual
metadata description is inefficient in terms of hu-
man effort and time. As high-quality metadata is
important for correct dataset selection, some evalu-
ation metrics for automatically assigned metadata,
ensuring its completeness and consistency, need to
be developed.
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2022. Introducing the CURLICAT Corpora:
Seven-language Domain Specific Annotated Corpora
from Curated Sources. In Proceedings of the
Thirteenth Language Resources and Evaluation
Conference, pages 100–108, Marseille, France.
European Language Resources Association.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Linting Xue, Noah Constant, Adam Roberts, Mihir
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua,
and Colin Raffel. 2020. mT5: A massively multi-
lingual pre-trained text-to-text transformer. CoRR,
abs/2010.11934.

75



Proceedings of the 1st Workshop on Advancing NLP for Low-Resource Languages associated with RANLP 2025,
pages 76–81, Varna, Bulgaria, Sep 13, 2025.

https://doi.org/10.26615/978-954-452-100-4-008

Modular Training of Deep Neural Networks for Text Classification in
Guarani
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Abstract

We present a modular training approach for
deep text classification in Guarani, where net-
works are split into sectors trained indepen-
dently and later combined. This sector-wise
backpropagation improves stability, reduces
training time, and adapts to standard architec-
tures like CNNs, LSTMs, and Transformers.
Evaluated on three Guarani datasets—emotion,
humor, and offensive language—our method
outperforms traditional Bayesian-optimized
training in both accuracy and efficiency.

1 Introduction

Natural language processing (NLP) for low-
resource languages has gained attention due to the
need for more inclusive technologies (Joshi et al.,
2020). Guarani, an indigenous language spoken by
over eight million people in Paraguay and neigh-
boring countries, remains underrepresented in digi-
tal resources.It lacks open corpora, standard mod-
els, and suffers from frequent code-switching with
Spanish (Estigarribia, 2016), which complicates
data collection. These particularities of the Guarani
language, coupled with the scarcity of labeled data
and pretrained modules, make it challenging to
train deep neural networks that generalize well
to downstream tasks such as sentiment analysis,
which are standard benchmark tasks (Mao et al.,
2023) for high-resource languages like English.

Some efforts in low-resource NLP for Guarani
have focused on corpus creation and benchmark-
ing. Chiruzzo et al. (2020) expanded initial
Guarani-Spanish sentence pairs into larger par-
allel collections, later unified and quality con-
trolled as the Jojajovai corpus (Chiruzzo et al.,
2022). Preliminary Guarani BERT (Devlin et al.,

2019) variants (including continuous-pretrained
and trained from scratch) have been trained on
Wikipedia-derived texts containing only ∼800K
tokens (Agüero-Torales et al., 2023), and Guarani
was added to large multilingual initiatives such as
’No Language Left Behind’ (NLLB Team et al.,
2022) and Google Translate (Bapna et al.,
2022). With regard to the text classification task,
there are some works with diverse results, mainly
for affective computing such as (i) (Agüero-Torales
et al., 2023) explores various deep neural text clas-
sification techniques for multidimensional affec-
tive analysis; and (ii) sentiment analysis (Rı́os
et al., 2014), covering approaches that range from
lexicon-based or traditional machine learning mod-
els (bag-of-words) to more sophisticated methods
such as fine-tuning multilingual transformer mod-
els (Vaswani et al., 2017).

On the other hand, traditional text classification
approaches in high-resource settings rely on end-
to-end backpropagation over large corpora and big
pretrained embeddings. When applied to Guarani,
these methods tend to overfit quickly or fail to con-
verge, since the number of tunable parameters far
exceeds the available supervision. Recent work
on low-resource NLP has mitigated these issues
through transfer learning and cross-lingual embed-
dings (e.g. Schuster et al. (2019)), or adapting
models trained in related languages or synthetic
data (Lucas et al., 2024). However, these strategies
remain monolithic: they update most network pa-
rameters at once, risking catastrophic forgetting of
pretrained knowledge or uneven adaptation across
layers (Kirkpatrick et al., 2017; Roy, 2024).

In parallel, modular and layer-wise training has
been proposed in other domains (e.g. vision) to
control the capacity of deep architectures (Tabrizi
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et al., 2024). By isolating each layer (or ’sector’)
and optimizing its weights separately, these meth-
ods reduce the dimensionality of each learning step,
reducing overfitting, and accelerating convergence
(Belilovsky et al., 2020). However, to our knowl-
edge, no prior work has applied a fully sector-wise
backpropagation scheme to text classification in a
truly low-resource language.

This work is based on the layer-wise loss assign-
ments approach for layer-wise training (Belilovsky
et al., 2020, 2019), which trains each layer using
an auxiliary coupled model that can have several
layers. Our approach decomposes a deep network
into successive parameterized sectors, each trained
as a shallow subnetwork on intermediate represen-
tations. We then recombine the trained sectors into
a full model, preserving both pretrained knowledge
and local adjustments. This sector-wise backpropa-
gation delivers the following benefits:

• It constrains the number of parameters up-
dated at each step, resulting in more stable
training curves on small Guarani datasets.

• It preserves cross-sector knowledge transfer
by propagating learned representations for-
ward between stages.

• It consistently integrates with any architec-
ture built from standard layers (e.g., convo-
lutional (LeCun et al., 1989), Long Short-
Term Memory (Hochreiter and Schmidhuber,
1997, LSTM) or transformers (Vaswani et al.,
2017)), allowing the adaptation of existing
models.

We validate our proposal on three Guarani
corpora for affective computing (Agüero-Torales
et al., 2023), namely: i) gn-humor-detection, ii)
gn-offensive-language-identification, and iii) gn-
emotion-recognition. In experiments, our sector-
wise method outperforms conventional end-to-end
training and standard baselines by significant mar-
gins. The remainder of this paper is structured as
follows. Section 2 details our sector-wise optimiza-
tion algorithm. Section 3 presents the experimental
results, and Section 4 concludes our work.

2 Sector-wise Backpropagation

The modular optimization applied in this work is
based on the concept of sector. A sector consists
of a parameterized layer and all subsequent non-
parameterized layers until the next parameterized

Algorithm 1 Sector-wise Local Backpropagation
and Network Reconstruction
1: Initialize: Architecture D, sectors S1, . . . , Sn, null net-

work R0

2: while stop condition not met do
3: Sector Backpropagation
4: for i = 1 to n− 1 do
5: Create Ni by adding a layer similar to the last

layer of D on top of sector Si

6: Train Ni for one epoch using instances fi−1(x)
for x ∈ X , with the same label as x

7: Compute fi(x) for each x ∈ X by evaluating the
penultimate layer output of Ni

8: end for
9: Network Reconstruction

10: R0 ← ∅
11: for i = 1 to n− 2 do
12: Extract Si from trained Ni preserving learned

parameters
13: Connect Si to Ri−1 according to D, forming Ri

14: end for
15: Connect Rn−2 to Nn−1 according to D, forming

Ri−1

16: end while
17: return Ri−1

layer. For example, in a network with architecture
C1–P1–P2–C2–P3–C3 (where Ci are fully con-
nected layers and Pi are pooling layers), the sectors
would be:

S1 = C1–P1–P2, S2 = C2–P3, S3 = C3.
Given a network D and a training set X , for each

epoch, the method proceeds in three main steps:

1. For each sector Si (excluding the last), con-
struct a shallow network Ni composed of Si

and an output layer identical to that of D.

2. Train each Ni using transformed instances
fi−1(x), where f0(x) = x, and we define
fi(x) as the output of Ni with its output layer
removed.

3. Rebuild D by stacking the trained sectors and
removing the auxiliary output layers, except
for the final one.

In the earlier example, the auxiliary networks
created would be:
N1 = C1–P1–P2–C ′

3, N2 = C2–P3–C3,
where C ′

3 replicates C3. N1 is trained on x ∈ X ,
and N2 is trained on transformed outputs f1(x).
Algorithm 1 formalises the proposal.

3 Results

Experiments were conducted on three datasets
(over their train-dev-test splits): gn-humor-
detection (fun and no-fun classes), gn-offensive-
language-identification (offensive and no-offensive
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classes), and gn-emotion-recognition (happy, an-
gry, sad and other classes) (Agüero-Torales et al.,
2023); using 10-fold cross-validation. Three model
architectures were tested on each dataset: a 1D
convolutional network (Omernick and Chollet,
2019; Waibel et al., 1989), a transformer-based
model (Nandan, 2020; Vaswani et al., 2017), and a
bidirectional LSTM (Chollet, 2020; Schuster and
Paliwal, 1997).

Each model was trained under three configura-
tions: i) Standard backpropagation with fixed hy-
perparameters, ii) Backpropagation with Bayesian
hyperparameter optimization and iii) Sector-based
backpropagation (the proposed method).

For configurations 1 and 3, training was per-
formed using a batch size of 32, learning rate of
0.001, the Adam optimizer, and sparse categorical
cross-entropy loss. For configuration 2, Bayesian
optimization was applied with the following do-
mains: i) optimizer ∈ {adam, rmsprop, sgd},
ii) learning rate ∈ (1e-5, 1e-1) with a log-uniform
distribution and iii) Batch size ∈ [16, 128].

Table 1: Average accuracy on the gn-humour-detection
dataset as the number of training epochs increases.
Model 1 is a 1D ConvNet, model 2 is a Transformer,
and model 3 is a Bidirectional LSTM.

Mod. Epoch Simp. Bayes. Prop.
1 2 71.27 71.27 70.27
1 4 69.92 70.38 71.46
1 6 70.19 69.95 71.27
1 8 65.58 68.99 71.22
1 10 66.12 68.78 71.76
2 2 71.27 71.27 73.28
2 4 71.27 71.25 73.52
2 6 71.82 71.27 74.09
2 8 62.33 71.27 73.55
2 10 59.62 71.27 73.98
3 2 64.54 64.66 68.92
3 4 64.85 66.02 69.16
3 6 58.27 65.39 70.46
3 8 63.04 65.18 69.40
3 10 64.23 65.15 70.54

Table 1 presents the corresponding results for
the gn-humor-detection dataset. They are grouped
according to the models (first column), consider-
ing different epochs (second column), followed by
the average accuracy for each configuration. Con-
sidering each model, the transformer-based one
achieved the highest accuracy among the others.
More interestingly, our proposal obtained a better
performance in nearly all cases (except for model
1 with 2 epochs). In terms of accuracy, the best
configuration recorded (74.09%) is the transformer-
based architecture when trained with the proposal

Table 2: Average accuracy on the gn-offensive-language-
identification dataset as the number of training epochs
increases. Model 1 is a 1D ConvNet, model 2 is a
Transformer, and model 3 is a Bidirectional LSTM.

Mod. Epoch Simp. Bayes. Prop.
1 2 83.87 84.22 85.12
1 4 80.41 78.96 85.02
1 6 82.72 82.35 86.31
1 8 81.11 81.66 87.00
1 10 70.28 81.27 86.94
2 2 83.87 84.15 89.84
2 4 84.10 82.42 89.59
2 6 83.40 83.96 89.77
2 8 82.40 85.97 90.09
2 10 82.32 86.89 89.95
3 2 86.87 88.32 87.72
3 4 70.74 87.81 88.41
3 6 85.71 88.04 88.20
3 8 86.25 88.00 88.02
3 10 87.48 88.44 89.51

for 6 epochs. Moreover, for the first two configu-
rations, the average accuracy generally decreases
slightly as the number of epochs increases. This
behaviour does not appear in our proposal.

For the gn-offensive-language-identification
dataset, the results are presented in Table 2. In gen-
eral, the average accuracies are higher than in the
first dataset (>80% in almost all combinations). As
before, our proposal achieved better performance in
nearly all cases (except for model 3 with 2 epochs),
and by a significantly larger margin for the 1D
ConvNet and transformer-based models. In this
dataset, the best configuration recorded (90.09%)
is the transformer-based architecture when trained
with the proposal for eight epochs.

Table 3: Average accuracy on the gn-emotion-
recognition dataset as the number of training epochs
increases. Model 1 is a 1D ConvNet, model 2 is a Trans-
former, and model 3 is a Bidirectional LSTM.

Mod. Epoch Simp. Bayes. Prop.
1 2 37.78 48.92 55.43
1 4 41.27 49.30 55.05
1 6 49.84 50.98 55.43
1 8 50.16 50.06 55.97
1 10 45.71 49.21 56.10
2 2 37.78 36.00 48.29
2 4 45.08 39.87 51.71
2 6 47.30 47.62 55.27
2 8 47.62 47.84 55.87
2 10 51.75 53.08 56.03
3 2 45.71 52.06 55.17
3 4 50.19 52.48 56.92
3 6 51.83 52.86 58.35
3 8 52.70 51.30 57.75
3 10 52.06 53.33 57.84

Table 3 shows the results for the last dataset,
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gn-emotion-recognition. In this case, the accuracy
values are substantially lower than those presented
in Tables 1 and 2; therefore, it is the most challeng-
ing dataset. Another interesting point is that, for
all epoch values, the results for the bidirectional
LSTM-based models are superior to those of the
other models. As with the previous datasets, our
proposal consistently outperforms the other config-
urations. The best accuracy (58.35%) corresponds
to the bidirectional LSTM model with the proposal,
trained for six epochs.

Figures 1, 2, and 3 illustrate the average execu-
tion times observed across models. The results sug-
gest that execution time is more strongly influenced
by the network architecture than by the dataset it-
self. For the 1D ConvNet and bidirectional LSTM
architectures, sector-based training achieved exe-
cution speeds approximately two and three times
faster, respectively, compared to standard backprop-
agation. The proposal yielded speedups of up to
32× in relation to traditional backpropagation with
Bayesian optimization. In the case of the Trans-
former architecture, sector-based training incurred
an execution time up to 10% longer than traditional
training; however, with Bayesian optimization, it
demonstrated a 12× improvement in efficiency.

4 Conclusion

The experiments as a whole showed three notable
advantages of sector training over traditional meth-
ods for text classification in Guarani using deep ar-
chitectures. Firstly, for each dataset and algorithm,
the highest average accuracy was always achieved
by sector training during some epoch. This ad-
vantage ranged from less than 1% to almost 6%
compared to the best value achieved by traditional
methods. Second, the average accuracy is more sta-
ble for sector training, which does not show signif-
icant declines in later epochs, as can happen with
traditional methods. Finally, the greatest advan-
tage identified is the efficiency in execution time of
sector training, which was not always lower than
traditional simple backpropagation, but was never-
theless 12 to 32 times less costly than traditional
backpropagation with Bayesian optimisation and
with superior accuracy. This is noteworthy because
traditional backpropagation with Bayesian optimi-
sation represents the best traditional configuration
in terms of average accuracy.

As future work, we plan to evaluate the approach
on multi-class classification tasks with alternative
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Figure 1: Average execution time for the gn-emotion-
recognition dataset.

loss functions, extend experiments to more tasks
and languages, and analyze its scalability with dif-
ferent sector sizes and smaller datasets.

Limitations

The evaluation was restricted to three small
Guarani affective computing datasets, which may
limit generalization to other tasks or languages.
Moreover, the scalability of sector-wise backprop-
agation to larger architectures and broader bench-
marks remains to be explored.

Disclaimer

During the preparation of this work the authors
used generative tools in order to fix misspellings
and improve writing. After using these tools, the
authors reviewed and edited the content as needed
and take full responsibility for the content of the
publication.

Code Availability

The code for reproducing the experiments pre-
sented in this paper is publicly accessible at https:
//gitlab.com/pinv01-401/dloptimizer.
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Abstract

The field of Information Retrieval (IR) increas-
ingly recognizes the importance of inclusivity,
yet addressing the needs of low-resource lan-
guages, especially those with informal variants,
remains a significant challenge. This paper ad-
dresses a critical gap in effective IR systems for
Roman Urdu, a romanized version of Urdu i.e
a language with millions of speakers, widely
used in digital communication yet severely un-
derrepresented in research and tooling. Roman
Urdu presents unique complexities due to its
informality, lack of standardized spelling con-
ventions, and frequent code-switching with En-
glish. Crucially, prior to this work, there was
a complete absence of any Roman Urdu IR
dataset or dedicated retrieval work. To address
this critical gap, we present the first-ever large-
scale IR MS-marco translated dataset specifi-
cally for Roman Urdu, created through a multi-
hop pipeline involving English-to-Urdu transla-
tion followed by Urdu-to-Roman Urdu translit-
eration. Using this novel dataset, we train and
evaluate a multilingual retrieval model, achiev-
ing substantial improvements over traditional
lexical retrieval baselines (MRR@10: 0.19 vs.
0.08; Recall@10: 0.332 vs. 0.169). This work
lays foundational benchmarks and methodolo-
gies for Roman Urdu IR especially using the
transformer based models, significantly con-
tributing to inclusive information access and
setting the stage for future research in informal,
Romanized, and low-resource languages.

1 Introduction

Advancements in Information Retrieval (IR) have
predominantly served high-resource languages,
largely due to the availability of extensive training
data and well-optimized models. As a result, in-
formal and low-resource languages remain largely
excluded from the benefits of modern IR systems.

Urdu is spoken by over 70 million people in
South Asia and remains an important medium for

written and verbal communication, especially in
Pakistan and parts of India. Despite its widespread
use, Urdu is underrepresented in digital language
technologies due to challenges such as its Perso-
Arabic script, right-to-left writing direction, and
complex morphology, issues that are less severe
in high-resource languages like Arabic or Chinese
due to better tooling and research support.

Alongside standard Urdu, Roman Urdu (Urdu
written in the Latin script) has become the domi-
nant form of informal communication on platforms
like Instagram, WhatsApp, and social media. Its
popularity stems from practical constraints, such as
the lack of easy-to-use Urdu keyboards and famil-
iarity with Latin characters. (Safdar et al., 2020)
However, Roman Urdu poses its own set of chal-
lenges, including inconsistent spelling, informal
grammar, and frequent code-switching, making it
especially difficult for information retrieval (IR)
systems.

A key barrier in developing effective IR systems
for both Urdu and Roman Urdu is the lack of large-
scale, labeled datasets. Manual creation is often
impractical, and while machine translation offers
a scalable alternative, it can introduce semantic
drift or misalignment. Recent work has begun ad-
dressing these issues for Urdu, but Roman Urdu
remains largely overlooked. This work addresses
the gap by constructing the first large-scale Roman
Urdu IR benchmark. Our approach builds upon
prior efforts in multilingual IR and transliteration.
Following the methodology introduced in multilin-
gual mMARCO (Nguyen et al., 2016a), we begin
by translating the English MS MARCO dataset
into Urdu as described by (Butt et al., 2025a), us-
ing a state-of-the-art translation model IndicTrans2
(Ramesh et al., 2022). To convert this Urdu data
into Roman Urdu, we leverage a high-accuracy
transliteration model as proposed in (Butt et al.,
2025b) to outperform traditional approaches us-
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ing transformer-based architectures and masked
language modeling. Note that we go through this
hopping process because there does not exist any
open access model for direct translation of English
to Roman-Urdu.

Our main contributions are:

• Construction of the First Roman Urdu IR
Dataset: We generate a large-scale Roman
Urdu version of MS MARCO via a multi-step
translation and transliteration pipeline, main-
taining semantic alignment with the original
data.

• Development of a Roman Urdu IR Model:
We fine-tune a multilingual IR model on the
new dataset and demonstrate that it signifi-
cantly outperforms the baseline, which strug-
gles with informal and inconsistent spellings
in Roman Urdu.

• Scalable and Reusable Methodology: Our
approach provides a practical framework that
can be adapted for other low-resource or Ro-
manized scripts facing similar linguistic chal-
lenges.

• Public Release of Resources: To support
future research, we make our Roman Urdu
dataset, fine-tuned model, and code publicly
available on Hugging Face and GitHub.1 2 3

2 Background on Romanization &
Roman Urdu

Many multilingual communities, particularly
across South Asia and Africa, use the Latin script
(i.e., English alphabet) to write their native lan-
guages, a process known as romanization. This
practice emerged from early limitations in comput-
ing and mobile technologies, where keyboards and
software lacked support for non-Latin scripts. As a
result, speakers of languages such as Urdu, Hindi,
Bengali, and Arabic began using Roman charac-
ters to represent their native words. The trend was
further reinforced by the global rise of the internet,
where English remains dominant, making Roman-
ized writing a convenient and accessible alternative
for digital communication.

1https://huggingface.co/Mavkif/roman-urdu-mt5-
mmarco

2https://huggingface.co/datasets/Mavkif/roman-urdu-
msmarco-dataset

3https://github.com/UmerTariq1/MS-Marco-Translation-
and-IR

Figure 1: Examples of Romanization in English → Urdu
→ Roman-Urdu and English → German → Romanized-
German.

Among these, Roman Urdu has seen especially
widespread use across social media, e-commerce,
online news, and informal messaging. Unlike
standardized Latin-based scripts, however, Roman
Urdu lacks any formal spelling conventions, lead-
ing to highly inconsistent, user-dependent, and pho-
netic spellings. The same word may appear in
multiple forms based on how a speaker hears or
pronounces it.

This lack of orthographic standardization poses
significant challenges for NLP and IR models,
which must account for noisy spelling, informal
grammar, and frequent code-switching with En-
glish. As a result, building robust Roman Urdu
datasets and retrieval models requires not just large-
scale training data, but approaches that can handle
spelling variation and contextual ambiguity in a
low-resource setting. An example of a sentence in
English, Urdu and Roman-Urdu and an an exam-
ple of a sentence in English, Germany and Hypo-
thethical Romanized-German language (to show
example of how it would look) is given in 1

3 Related Work

Roman Urdu, despite being widely used online,
has remained almost completely absent from re-
trieval research. Prior efforts have focused mostly
on sentiment classification or dictionary creation
(Smat26, 2023; Zahid et al., 2020), with no stan-
dardized datasets or IR models available for this
variant. The lack of relevance-labeled resources
and the informal nature of the script, non-standard
spelling, code-switching with English, and incon-
sistent grammar, pose serious challenges for build-
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ing retrieval models. This work is the first to di-
rectly address these challenges at scale. (Safdar
et al., 2020)

In contrast, Urdu IR has recently seen progress
through translation-based methods. (Butt et al.,
2025a) translated the MS MARCO dataset
(Nguyen et al., 2016b) into Urdu using IndicTrans2,
producing over 8.8 million passages and 500,000+
queries. This dataset enabled fine-tuning of a multi-
lingual mT5 reranker (Xue et al., 2021) and showed
substantial performance gains over zero-shot and
BM25 (Robertson and Walker, 1994) baselines. In-
dicTrans2 was chosen for its strong performance
over Google Translate and OPUS-MT (Tiedemann,
2012), achieving a chrF++ score of 68.2.

Transliteration has also been studied in Ro-
man Urdu, mainly using the Roman-Urdu-Parl
corpus (Alam and Hussain, 2022). Early mod-
els used RNNs (Elman, 1990), but recent work
by (Butt et al., 2025a) introduced a transformer-
based transliteration model with MLM pretraining,
significantly improving cross-domain robustness.
That model forms the core of the Urdu→Roman
Urdu step in our multi-hop pipeline.

Although multilingual IR research has produced
general-purpose models like mBERT (Devlin et al.,
2018), XLM-R (Conneau, 2019), LaBSE (Feng
et al., 2020), and mT5 (Xue et al., 2021), these
models struggle on underrepresented scripts like
Roman Urdu due to minimal pretraining exposure.
Efforts like mMARCO translated MS MARCO
into 13 languages (Nguyen et al., 2016a) but ex-
cluded Urdu and Roman Urdu. Other multilingual
IR benchmarks (e.g., MIRACL (Yu et al., 2021),
Mr.TyDi (Clark et al., 2020)) offer limited or no
coverage of these languages.

Our work bridges this gap by combining transla-
tion and transliteration to construct a Roman Urdu
version of MS MARCO and training the first neural
IR model for this script. It serves as a foundational
benchmark for retrieval in Romanized low-resource
languages.

4 Experimental Setup

4.1 Dataset Creation

We create our Roman Urdu IR dataset via a multi-
hop translation process starting from the English
MS MARCO dataset. Initially, we translate MS
MARCO passages and queries into Urdu using the
IndicTrans2 translation model, chosen for its strong
performance on South Asian languages as previ-

Figure 2: Example query and passage pair in English,
Urdu (translated), and Roman Urdu (transliterated).

ously demonstrated by (Butt et al., 2025a). The
Urdu dataset comprises over 8.8 million passages
and 500,000+ queries, serving as a reliable inter-
mediate step.

Next, we transliterate this whole Urdu dataset
into Roman Urdu using a previously developed
transliteration model (Butt et al., 2025b), which em-
ploys a transformer-based architecture (m2m100
(Fan et al., 2021)) fine-tuned on the Roman-Urdu-
Parl corpus and augmented with Masked Language
Modeling (MLM) pretraining. This step ensures
robust handling of spelling variations common in
Roman Urdu. This results in the Roman-Urdu ver-
sion of the whole publically available English MS-
Marco passage ranking dataset.

4.2 Potential Issues With
Translated/Transliterated Dataset

Although machine translation provides a scalable
solution, it can also lead to semantic drift and con-
text loss. These issues are especially pronounced
in multi-hop pipelines like ours (English→ Urdu
→ Roman Urdu), where small inconsistencies can
compound and negatively affect retrieval perfor-
mance. Despite these challenges, the resulting
dataset is the first large-scale Roman Urdu resource
for information retrieval, making it a valuable foun-
dation for future work.

An illustrative example of this semantic mis-
alignment is shown in Figure 2.

4.3 Retrieval Model

We adopt a two-stage retrieval pipeline. First, a
BM25 index serves as the base retriever, returning
the top k=1000 candidates per query to ensure
high recall. These candidates are then re-ranked
using a multilingual reranker based on the mT5
architecture, which has been shown effective in
multilingual IR tasks such as mMARCO.

Following the same approach as previously
shown in (Butt et al., 2025a), we fine-tuned the
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mMARCO model on the whole Roman Urdu
dataset. While mT5 is pretrained on a diverse set of
languages, it does not include Roman Urdu, mak-
ing fine-tuning necessary to adapt to the script’s
informal and non-standard characteristics.

We frame retrieval as a binary relevance classi-
fication task in a sequence-to-sequence setup. For
each query–passage pair, the model is trained to
generate “yes” for relevant passages and “no” oth-
erwise. At inference time, we compute a softmax
over the generated tokens to obtain relevance scores
for reranking.

The training configuration mirrors that of the
mmarco model: a learning rate of 0.001, dropout
of 0.1, and an effective batch size of 128 (batch size
32 with gradient accumulation over 4 steps). This
consistent setup enables meaningful comparison
between retrieval performance in Urdu and Roman
Urdu, isolating the effects of linguistic representa-
tion.

4.4 Evaluation

We evaluate retrieval performance using standard
IR metrics that reflect different aspects of ef-
fectiveness. We report MRR@10, Recall@10,
MAP@10, NDCG@10, and Precision@10 to pro-
vide a comprehensive view of overall ranking qual-
ity and the system’s ability to surface relevant re-
sults.

Zero-shot multilingual models were not used
as they fail to comprehend Roman Urdu’s infor-
mal structure and inconsistent spelling. Since no
prior baselines for Roman Urdu IR exist, we use
BM25 as the only meaningful comparison. Our
significantly outperforming reranker demonstrates
the effectiveness of the transliteration pipeline and
model fine-tuning.

5 Results Discussion

We present the performance of our Roman Urdu
IR model in Table 1, comparing our fine-tuned
multilingual reranker against the BM25 baseline.

The reranker consistently outperforms BM25
across all metrics, achieving an MRR@10 of
0.1903 and Recall@10 of 0.3326, which is more
than double the baseline values. Significant gains
are also observed in MAP, NDCG, and Precision,
indicating improvements in both early ranking and
overall retrieval quality. This improvement is par-
ticularly notable given the noisy and inconsistent
nature of Roman Urdu, which poses a challenge

for lexical methods like BM25 that rely on exact to-
ken overlap. In contrast, the reranker benefits from
contextual modeling and cross-lingual knowledge.

Compared to earlier results in Urdu IR (Butt
et al., 2025a), the Roman Urdu model performs
slightly lower (e.g., Urdu MRR@10: 0.248), which
is expected due to the added noise introduced dur-
ing transliteration. Nonetheless, the performance
remains strong considering the informal nature of
the script and lack of standardization.

These results validate our multi-hop pipeline and
establish both the dataset and model as practical
baselines for future research on retrieval in Roman-
ized, informal, and low-resource languages.

Metric BM25 Our Fine-tuned Reranker
MAP@10 0.0502 0.1262
MRR@10 0.0846 0.1903
NDCG@10 0.1218 0.2572
Precision@10 0.0177 0.0347
Recall@10 0.1699 0.3326

Table 1: Retrieval performance comparison on Roman
Urdu MS MARCO (6980 queries).

6 Future Work and Conclusion

This paper presented the first large-scale Roman
Urdu Information Retrieval dataset and bench-
mark, showing that fine-tuning a multilingual
reranker substantially outperforms traditional meth-
ods. This approach effectively addresses the infor-
mal spelling and lack of standardization in Roman
Urdu.

Future work could focus on reducing error propa-
gation in the data pipeline, improving the transliter-
ation model with more diverse data, and exploring
subword or phonetic representations to better han-
dle spelling variations. Our pipeline could also be
extended to other Romanized scripts like Arabizi
or Roman Hindi, broadening its application and
fostering digital inclusion. This work provides a
solid foundation and valuable resources for future
research in Roman Urdu information retrieval

Limitations

While our work establishes the first large-scale
Urdu and Roman Urdu resources for information
retrieval, several limitations should be noted. First,
the translation and transliteration pipeline intro-
duces potential sources of semantic drift and con-
text loss. These effects are particularly pronounced
in multi-hop translation (English→ Urdu→ Ro-
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man Urdu), where small inconsistencies can com-
pound and reduce retrieval accuracy.

Second, our evaluation is limited to the MS
MARCO-derived dataset. Although this provides a
strong and widely used benchmark, it does not fully
capture the diversity of information needs or lin-
guistic phenomena in real-world Urdu and Roman
Urdu usage.

Finally, due to time and resource constraints, we
focused on establishing reliable baselines rather
than exploring advanced modeling techniques or
large-scale hyperparameter tuning. We view this
work as a foundation for future improvements, such
as expanding coverage to other domains, experi-
menting with alternative translation models, and
refining retrieval strategies.

Broader Impact Statement

This work aims to improve digital information ac-
cess for speakers of Roman Urdu, an informal and
widely used script that has been historically ignored
in language technology research. By providing the
first large-scale dataset and retrieval model for Ro-
man Urdu, our work contributes to a more inclusive
digital ecosystem, enabling better access to search
and knowledge for communities that rely on non-
standardized, Romanized scripts.

Given the widespread use of Roman Urdu in
South Asia, especially among younger and less
formally educated populations, this research could
help bridge digital inequality and support more
equitable participation in online information spaces.
Furthermore, our open-source release of models
and datasets encourages transparency and reuse for
similar languages and regions.

However, we also acknowledge that increased ac-
cess to search and retrieval tools in informal scripts
may be leveraged in unintended ways, such as mis-
information or targeted advertising. Mitigating
these risks requires responsible deployment and
careful contextualization of the technology. We
encourage future researchers and practitioners to
work in collaboration with local communities to
ensure that such tools are developed and used ethi-
cally.
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Abstract

In this work, we present a case study that
explores various tasks centered around the
topic of migration in Slovak, a low-resource
language, such as topic relevance and geo-
graphical relevance classification, and migra-
tion source/destination location term extraction.
Our results demonstrate that native (Slovak)
prompts yield a modest, task-dependent gains,
while large models show significant robustness
to prompt variations compared to their smaller
counterparts. Analysis reveals that instructions
(system or task) emerge as the most critical
prompt component, more so than the exam-
ples sections, with task-specific performance
benefits being more pronounced than overall
language effects.

1 Introduction

Large Language Models (LLMs) have become a
cornerstone in addressing a multitude of Natural
Language Processing (NLP) tasks, significantly
transforming the field by enabling machines to
understand and generate human-like text. Their
prominence is particularly notable in multilingual
contexts, driven by their strong zero-shot and
few-shot performance, especially when coupled
with sophisticated reasoning mechanisms (Vatsal
et al., 2025a). These models, often trained on vast
datasets, exhibit proficiency across a diverse ar-
ray of languages and have demonstrated effective-
ness in numerous downstream applications, includ-
ing tasks such as natural language understanding,
common-sense reasoning, and question-answering,
thereby capturing both the syntax and semantics
of texts (Vatsal et al., 2025a). Modern multilin-

gual LLMs are capable of performing tasks across
more than 100 languages, representing a significant
breakthrough in NLP (Vatsal et al., 2025a).

The typical mode of operation for these mod-
els involves prompt- or context-engineering, where
specific instructions are provided to guide the LLM
towards correctly solving the task at hand (Wahle
et al., 2024; Lu et al., 2024). However, the ultimate
efficacy of this approach is heavily contingent upon
the nuances of the prompt employed, including its
formatting and the organization of data within it
(He et al., 2024; Ngweta et al., 2025; Gan and
Mori, 2023; Razavi et al., 2025). This sensitivity
is of particular importance in multilingual scenar-
ios. The language in which a prompt induces an
LLM to perform the reasoning component of its
computation can exert a significant influence on
the final performance (Poelman and de Lhoneux,
2024). For instance, LLMs may struggle to ad-
here to all specified rules within complex prompts,
and innovative prompting strategies, such as trans-
lating error-prone rules into different languages,
have been proposed to enhance their reasoning and
understanding (Wang et al., 2025). Research is ac-
tively exploring methods to improve multilingual
reasoning, with a focus on augmenting the ability
of LLMs to handle diverse languages and intricate
reasoning tasks (Vatsal et al., 2025b). Techniques
like multilingual instruction tuning and dynamic,
language-aware prompting (e.g., language-specific
trigger tokens) aim to bolster reasoning capabili-
ties and consistency across various languages (Roll,
2025; Vatsal et al., 2025a).

Despite these advancements, challenges persist,
particularly for low-resource languages, which of-
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ten suffer from a scarcity of training data and com-
putational resources. Cross-lingual transfer learn-
ing, which leverages data and models from high-
resource languages, is a key research area for im-
proving NLP performance in these settings (Vat-
sal et al., 2025a). Slovak, for example, is a lan-
guage where dedicated transformer-based models
like SlovakBERT have been developed to establish
benchmarks and advance NLP capabilities (Piku-
liak et al., 2022). The investigation of abstract
multilingual reasoning, especially for extremely
low-resource languages, often involves inducing
linguistic patterns from seed exemplars through
methods like analogical prompting (Vatsal et al.,
2025a).

In this work, we present a case study that ex-
plores the application of LLMs to various tasks
centered around the topic of migration in Slovak,
a low-resource language. Specifically, we explore
tasks such as topic relevance classification, geo-
graphical relevance classification, and the extrac-
tion of migration source and destination location
terms. This study aims to illuminate the intrica-
cies of prompting LLMs for specialized tasks in a
low-resource linguistic context, with a particular fo-
cus on how prompt design and reasoning language
affect performance in migration-related NLP appli-
cations.

2 Related Work

The effectiveness of Large Language Models
(LLMs) in multilingual contexts has become a
critical research area, particularly as these mod-
els demonstrate varying performance across dif-
ferent languages and cultural contexts. The field
of multilingual prompt engineering has emerged
as a crucial technique for enhancing LLM perfor-
mance across diverse linguistic landscapes. Com-
prehensive overviews usually confirm significant
disparities in research attention, with high-resource
languages getting substantially more focus than
their low-resource counterparts, “other languages”.
While most NLP tasks are heavily concentrated in
high-resource language settings, there is motiva-
tion to bridge these domains through cross-lingual
transfer learning (Vatsal et al., 2025a). An impor-
tant fact is that multilingual prompt engineering
faces unique challenges to ensure consistent per-
formance across languages, as LLMs often exhibit
disparities in performance depending on the avail-
ability of training data for different languages. This

finding directly relates to our focus on Slovak as
a low-resource language, where such disparities
become limiting in specialized domains.

The sensitivity of LLMs to prompt formula-
tion and formatting has been identified as a crit-
ical factor affecting model performance. The con-
cept of prompt sensitivity prediction demonstrates
that small variations in prompt phrasing, struc-
ture, or punctuation can lead to substantially dif-
ferent outputs, even totally misleading the LLMs
on tasks they previously solved correctly. (Razavi
et al., 2025). This serves as the foundational work
that formalizes prompt sensitivity as a system-
atic challenge when working with LLMs. More-
over, systematic examination of the impact of
different prompt templates on LLM performance
across various tasks results in performance varia-
tion. Different template selections can cause the
performance to fluctuate by up to 40% on smaller
LLMs, while larger ones demonstrate greater ro-
bustness to these format variations (He et al., 2024).
These findings suggest that prompt formatting con-
siderations become more critical when working
with low-resource languages; however, there is no
universally optimal format across the usual NLP
tasks. The effectiveness of each is highly context-
dependent on models, tasks, or context window
sizes. Inspection of prompt sensitivity by examin-
ing how different prompt components interact with
model architectures could provide insights into why
sensitivity occurs. For instance, CoT prompting
significantly increases sensitivity to variations de-
spite maintaining similar accuracy in comparison
to basic ‘static’ prompts. (Lu et al., 2024). In
general, instructions seem to provide more stable
performance than complex ongoing reasoning. The
Mixture of Format (MoF) addresses the prompt
brittleness problem by deliberately varying the for-
matting of few-shot examples rather than seeking a
single one-size-fits-all optimal format. MoF main-
tains semantic content while diversifying the tex-
tual format. This results in improved robustness
compared to traditional fixed-format prompts while
preserving task performance. The approach aims
to reduce prompt brittleness across various LLMs
and tasks (Ngweta et al., 2025).

The reasoning mechanisms in multilingual set-
tings have received a considerable amount of at-
tention, particularly regarding Chain-of-Thought
(CoT) prompting strategies, in order to remedy per-
formance disparities across languages. Methods
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like XLT (Huang et al., 2023) demonstrate a sys-
tematic approach where LLMs first translate the
input from the native language to English, solve the
task, generate reasoning chains, and then format
the output accordingly, while consistently outper-
forming other approaches across multiple datasets.
Building on this concept, Cross-lingual Prompting
(CLP) (Qin et al., 2023) introduces a two-step pro-
cess focusing on cross-lingual alignment, where
the model generates reasoning chains in English
rather than the native language to establish repre-
sentations between languages. Interestingly, the
whole process could be extended by introducing
greater linguistic flexibility - Cross-lingual self-
consistent prompting (CLSP), allowing LLMs to
comprehend tasks and employ reasoning steps in
different languages before selecting the most con-
sistent answer across different language-based rea-
soning chains, implying that English is not always
the best default option. The same could be inferred
from the evaluation of language-specific optimiza-
tion, represented as a parameter-efficient frame-
work that learns language-specific trigger tokens
through gradient-based search (Roll, 2025). Re-
sults show that autoprompting like this can yield
significant performance improvements over static,
translated prompts. Even without the autogener-
ation, the language-specific prompt engineering
can be effective with systematic prompt template
adaptation for specific languages (Gan and Mori,
2023)

3 Dataset

For experimental evaluations, we employ a theme-
specific Slovak annotated dataset that classifies con-
tent for multiple tasks. This dataset focuses on ana-
lyzing how migration is portrayed in Slovak media
from 2003 to 2022, by examining individual me-
dia pieces - news articles. The key classification
dimensions are:

• Theme Relevance on article-level is about cat-
egorizing content according to its connection
to human migration within the specified time-
frame, with classifications of strong, weak, or
not-relevant.

• Geographical Relevance on sentence-level
distinguishes between content that pertains to
Slovakia (i.e., migration to, from, or through
the country), versus content that does not re-
late to the country.

• Location Extraction on sentence-level facili-
tates an extraction task, with sentences anno-
tated by identified source and target locations,
according to the annotation guidelines.

For Theme Relevance, we have used a subset
from the whole corpus, given its extensive volume
(1,800,000 articles from years 2003-2024). The
subset was created by stratified sampling, which
was applied annually. Every article item in the
subset received annotations from a minimum of
three separate annotators using an Argilla interface,
and only those instances where the majority of an-
notators agreed were retained in the final dataset.
Inter-annotator agreement, measured by Krippen-
dorff’s α, was 0.326, indicating only low-moderate
agreement; we note this as a limitation and encour-
age cautious interpretation. For more details on the
original dataset, see (Hamerlik et al., 2024) and the
Appendix C

For the Locality Extraction and Geographical
Relevance tasks, we have manually curated a
dataset comprising several thousand sentences on
migration, sourced from original Slovak-media ar-
ticles published in 2022 and 2024, as a subset. This
dataset is therefore partitioned into two subsets tai-
lored for the aforementioned tasks. While many
sentences overlap between subsets, some are exclu-
sive due to task-specific relevance. The sentences
cover migration related to conflicts in Ukraine,
Syria, and Gaza, supplemented by other diverse
scenarios (e.g., political or economic migration)
to ensure broad representation. The annotation fo-
cused on identifying source and target migration
locations, excluding purely transit mentions. Near-
identical sentences derived from modified press re-
leases were deduplicated. During the annotations,
three authors conducted manual annotation follow-
ing the guidelines detailed in Appendix A; while
sentences lacking complete annotator agreement
were removed to maintain data quality. For more
information about the datasets see the Appendix
section B

The dataset comprises a thorough compilation of
human-labeled sentences focused on migration top-
ics, sourced from 2323 distinct articles. Two spe-
cialized subsets were created from this collection:
a Slovakia-focused subset with 2736 annotated ex-
amples, and a geographic locality extraction sub-
set containing 1652 human-annotated samples de-
signed for identifying and extracting location infor-
mation. The complete dataset was divided using

90



stratified sampling with a 70:20:10 distribution for
training, validation, and testing sets, maintaining
balanced class representation across all partitions.

4 Experiments

The following section represents the results from
non-reasoning as well as reasoning model within
the prompt sensibility case study in native and en-
glish ‘default’ language setup.

Based on the results outlined in Table 1 on non-
reasoning and reasoning model testing, there are
some insights to be inferred relevant to the prompt
strategy. The main setup for experiments with rea-
soning models was about forcing them to reason in
their native language. However we only managed
to force two models to reason in Slovak: grok-3-
mini and qwen-235B-a22b, while only the grok
was consistent with it. We note that achieving this
behavior resembled a “jailbreak” more than con-
ventional prompting. Furthermore, after initial ex-
perimentation, we excluded phi-4-reasoning-plus
from the experiment runs to save computational
resources because of its underperforming results.
We also excluded the geographical relevance task
with reasoning models as the results had already
plateaued with non-reasoning ones.
ZeroShot as a strong baseline

Basic prompt instructions often match more com-
plex approaches such as RAG and FewShot, espe-
cially when dealing with simpler tasks like geo-
graphical relevance. Also, these migration clas-
sifications tasks are relatively well-defined con-
ceptually, which could help models to solve them
with high precision without further detailed exam-
ple guiding. Worse performance for theme rele-
vance task across the board was expected due to
heavy class imbalance of the data set (see section
C). Overall, zeroshot yields significant efficiency
gains in comparison with the other two approaches,
meaning that simpler tasks benefit less from com-
plex prompting strategies.
Native Language Advantage

Language prompting reveals interesting pattern
throughout the experiments - making some im-
provements with native-language prompting on the
defined tasks although prompts show mixed advan-
tages across both model types with no consistently
clear language preference pattern. While the great-
est impact was on the structured extraction task -
location extraction, the diminishing but still mean-
ingful returns were also relevant for geographic

relevance and theme relevance. However, in case
of geo. relevance, the overall score for the task
was great across the whole setup because of its
simple design. Overall, the results demonstrate
a consistent pattern where Slovak prompts often
outperform English ones. This aligns with find-
ings from related literature, where native-language
prompting could yield consistent improvements.
It also seems that specific tasks like entity extrac-
tion could benefit the most from native language
prompts because of exact coverage of all the nu-
ances within the language, yielding the greatest
impact.

“To reason, or not to reason, that is the question!”
Based on the case study results, non-reasoning

models demonstrate better consistency compared
to reasoning models across utilized tasks. Non-
reasoning models show smaller performance vari-
ance on theme relevance (0.36 range vs 0.20) and
achieve more stable baseline performance on loca-
tion extraction (minimum 0.7711 vs 0.4858), while
both model types achieve similar peak performance
levels. Reasoning models represent higher volatil-
ity but with possible better performances (for in-
stance theme relevance). Simultaneously, dramati-
cally lower minimums on location extraction, sug-
gesting volatile behavior. Overall, the data reveals
that, non-reasoning models offer more stable per-
formance on these specialized tasks.

The Table 2 depicts assessed statistical signifi-
cance using bootstrap confidence intervals (2000
resamples) on mean F1 score differences (Dror
et al., 2020). We computed paired bootstrap CIs
over per-system paired differences, resampling
with replacement at the system level for 2000 it-
erations; we report the mean paired difference
and 95% CIs. No multiple-comparison correc-
tion was applied. Despite theme relevance show-
ing the largest effect size (Slovak -0.021 points
worse), high variance prevented statistical signifi-
cance (95% CI: [-0.058, 0.015]). Location extrac-
tion showed a smaller but more consistent Slovak
advantage (+0.017 points) with sufficient precision
to achieve significance (95% CI: [0.003, 0.033]).
Geo relevance showed minimal difference (+0.005
points, 95% CI: [-0.006, 0.015]). While statisti-
cally significant, the practical significance of the
1.7 percentage point improvement in location ex-
traction F1 scores should be interpreted within the
context of task-specific performance levels (Slovak:
0.810 vs English: 0.792).
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Category Models Method Task
Theme rel. Geo rel. Loc ext.

ENG SVK ENG SVK ENG SVK
N

on
-r

ea
so

ni
ng

m
od

el
s

gpt-4o
RAG 0.4518 0.4551 0.9771 0.9769 0.8734 0.8764
FewShot 0.5357 0.5277 0.9771 0.9816 0.8767 0.8675
ZeroShot 0.4413 0.4552 0.9726 0.9816 0.8542 0.8654

gemini-2.5-flash
RAG 0.4709 0.5357 0.9449 0.9882 0.7771 0.8433
FewShot 0.4615 0.5645 0.9541 0.9682 0.8795 0.8675
ZeroShot 0.4709 0.4484 0.9541 0.9682 0.7711 0.8855

llama-3.3-70B
RAG 0.4709 0.6130 0.9582 0.9335 0.8132 0.8373
FewShot 0.5592 0.6513 0.9598 0.9335 0.8554 0.8735
ZeroShot 0.4678 0.4160 0.9377 0.9462 0.8253 0.8373

deepseek-chat-v3
RAG 0.6003 0.5357 0.9722 0.9719 0.8313 0.8554
FewShot 0.4464 0.3012 0.9722 0.9722 0.8739 0.8727
ZeroShot 0.5357 0.2944 0.9623 0.9767 0.8674 0.8823

R
ea

so
ni

ng
m

od
el

s

grok-3-mini
RAG 0.4709 0.4709 - - 0.8876 0.8633
FewShot 0.6130 0.4709 - - 0.8835 0.8554
ZeroShot 0.4709 0.4709 - - 0.7831 0.8493

phi-4-reasoning-plus
RAG - - - - 0.4887 0.5520
FewShot - - - - 0.4858 0.5404
ZeroShot - - - - 0.5545 0.5139

gemini-2.5-flash
RAG 0.4709 0.4550 - - 0.8465 0.8045
FewShot 0.4709 0.4678 - - 0.8494 0.7892
ZeroShot 0.4647 0.4451 - - 0.6344 0.6084

qwen3-235B-a22b
RAG 0.5443 0.4583 - - 0.8266 0.8813
FewShot 0.4550 0.6003 - - 0.8253 0.8735
ZeroShot 0.4550 0.4550 - - 0.7530 0.8096

deepseek-r1-0528
RAG 0.4647 0.4647 - - 0.8195 0.8478
FewShot 0.6431 0.4518 - - 0.8373 0.8493
ZeroShot 0.5443 0.4647 - - 0.8193 0.8554

Table 1: Results comparing different LLMs across tasks with the English and Slovak prompt versions including
reasoning traces for reasoning models and CoT for non reasoning

4.1 Prompts Ablation

The utilized ablation study of prompt brittleness
employed a systematic methodology of prompt sec-
tion removals. The main aim was to identify the
main contributions of two core prompt elements:

• Task Description - task

• Examples - ex

The layout of prompt elements could be seen in
Figure 2

To achieve reasonable comparisons, verify the
alignment with existing literature and save compu-
tational/cost resources we have utilized for these
experiments GPT-4.1 and GPT-4.1-nano models,
while multiple experimental variants were tested.
The complete prompt - full which contains every

section, then single-component removal variations
- no_task, no_ex and double-component removal -
none.

As shown in Table 3 and Figure 16, the full
prompt provides the strongest baseline across mod-
els (best overall: gpt-4o, Macro F1 = 0.9862).
Removing both the task instruction and examples
(“none”) causes the largest degradation (about 50%–
77%): gpt-4o-mini 0.9729→0.2284 (−76.52%),
gpt-4.1 0.9727→0.3261 (−66.48%), and gpt-4o
0.9862→0.3730 (−62.18%). Removing only the
task instruction also hurts, particularly on smaller
variants (gpt-4o-mini −24.29%, gpt-4.1-nano
−9.66%), while larger models are only mildly af-
fected (about 1%–1.5%). By contrast, removing ex-
amples has little cost and can help: gpt-4.1-nano
improves to 0.8601 (+17.66%), gpt-4.1 increases
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Task n Mean English Mean Slovak Difference 95% Bootstrap CI Significance

Theme Relevance 24 0.499 0.478 -0.021 [-0.058, 0.015] n.s.
Geo Relevance 12 0.962 0.967 +0.005 [-0.006, 0.015] n.s.
Location Extraction 27 0.792 0.810 +0.017 [0.003, 0.033] CI excludes 0

Table 2: Statistical analysis of Slovak vs English F1 performance using bootstrap confidence intervals (2000
resamples). Difference = Slovak - English. "CI excludes 0" indicates statistical significance. Note: Theme relevance
shows larger effect size but high variance; Location extraction shows smaller effect but lower variance and larger
sample size, explaining significance pattern.

Model Variant Macro F1 ∆ F1 (%)

gpt-4.1 full 0.9727 –
no task 0.9595 -1.35
no ex 0.9771 0.46
none 0.3261 -66.48

gpt-4.1-mini full 0.9727 –
no task 0.9111 -6.33
no ex 0.9727 0.00
none 0.4830 -50.34

gpt-4.1-nano full 0.7310 –
no task 0.6604 -9.66
no ex 0.8601 17.66
none 0.3762 -48.53

gpt-4o full 0.9862 –
no task 0.9722 -1.41
no ex 0.9771 -0.92
none 0.3730 -62.18

gpt-4o-mini full 0.9729 –
no task 0.7365 -24.29
no ex 0.9727 -0.02
none 0.2284 -76.52

Table 3: Macro F1 scores and percentage delta values
for GPT models across different prompt variants in the
ablation study. Bold values indicate the highest score
for each model. ∆ F1 (%) shows the percentage perfor-
mance drop relative to the full prompt baseline.

slightly (+0.46%), gpt-4.1-mini is unchanged,
and only gpt-4o dips marginally (−0.92%). Over-
all, explicit task instructions are essential for perfor-
mance; examples are optional and may even hinder
smaller models (see Appendix E for similar studies
on models by other providers).

5 Conclusion

Findings of this case study demonstrate that na-
tive Slovak prompting could yield better results
than English across migration-related NLP tasks in
target language. Zero-shot prompting proved effec-
tive as a baseline approach especially on simpler
classification tasks. The ablation study shows that
removing both the task description and examples
(“none”) causes the largest collapse (48%–77%
across models). Dropping only the task instruction

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Δ macro-F1 (max − min) across variants

gpt-4.1

gpt-4.1-mini

gpt-4.1-nano

gpt-4o

gpt-4o-mini

openai: model spread (+ absolute macro-F1 for ALL variants)

Δ bar (max−min) F1 none F1 task F1 ex F1 task+ex

0.0 0.2 0.4 0.6 0.8 1.0
Absolute macro-F1

Figure 1: Distribution of macro F1 across prompt vari-
ants. For each model panel, we plot max min macro F1
(bars) per model and overlay per variant absolute macro
F1 (points) on a twin top x axis, with thin lines showing
the min–max span. Models are alphabetized.

prompt_structure:
instructions: |

You are an expert text analyzer.
Follow these guidelines:
- Be precise and accurate
- Consider context and nuance
...

task_description: |
Analyze the text and extract
migration -related information:
1. Identify migration themes
2. Determine geo relevance to Slovakia
3. Extract migration vectors
...

examples: |
Example 1:
Input: "Families moved from villages
to Bratislava ..."
Output: Theme: relevant , Geo: relevant ...

Example 2:
Input: "Weather in Paris was sunny ..."
Output: Theme: not_relevant ...
...

# Ablation variants: full , no_ex , no_instr ,
# no_task , instr+ex, task+ex, task+instr

Figure 2: Example prompt structure used for ablation
study.
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yields small losses for large models (about 1%–
1.5%) but substantial drops for smaller variants (up
to 24.29%). Removing examples has minimal cost
and can even help. Overall, explicit task instruc-
tions are the critical prompt component, while ex-
amples are optional. Combined with our language
analysis, native-language prompting yields modest,
task-dependent gains (significant only for location
extraction), and larger models are inherently more
robust to prompt formatting changes.

6 Limitations

Several limitations should be acknowledged in our
study.

• Statistical analysis is based on single-run ex-
periments without replication across multiple
random seeds, due to computational/cost re-
sources constraints.

• The Slovak-specific nature of our study con-
strains broader applicability to other low-
resource languages. While our findings
demonstrate native language reasoning bene-
fits for Slovak, the extent to which these re-
sults transfer to other linguistic contexts with
different morphological complexity or train-
ing data availability could be different.

Acknowledgments

This work was partially funded by European
Union, under the project lorAI - Low Resource
Artificial Intelligence, GA No. 101136646,
https://doi.org/10.3030/101136646 and by grant
APVV-21-0114.

References
Rotem Dror, Lotem Peled-Cohen, Segev Shlomov, and

Roi Reichart. 2020. Statistical significance testing
for natural language processing. Synthesis Lectures
on Human Language Technologies, 13:1–116.

Chengguang Gan and Tatsunori Mori. 2023. Sensitivity
and robustness of large language models to prompt
template in japanese text classification tasks.

Endre Hamerlik, Marek Šuppa, Miroslav Blšták, Jozef
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A Annotation guidelines

Locality Extraction Guidelines
Migration Vector consists of an locality origin -
SOURCE and DESTINATION locality that rep-
resents the movement of people. Annotations of
migration vectors should be based on explicit tex-
tual evidence, not on inference or assumption as
these could be wrong. Always define localities on
Slovak nominative case in the annotation.
Text Analysis Process

• Step 1

Begin by carefully reading the entire text.
Identify all mentioned localities and pay at-
tention to surrounding contextual clues and
linguistic markers for establishing direction
of migration between them.

• Step 2

After localities identification, classify each of
them according to their roles in the migration
vectors as SOURCE locality - if the locality
functions as origin point where migration be-
gan, DESTINATION locality - if the locality
functions as destination point wher migration
ended. Some localities present within text
might be TRANSIT localities - where migra-
tion movement did not originate or ended. Ad-
ditionally there might be UNRELATED local-
ities with no direct connection to migration
patterns.

• Step 3

After locality role assessment within mi-
gration patterns, establish final SOURCE-
DESTINATION migration pairs that represent
the migration vectors. This involves connec-
tion of origin localities with their correspond-
ing destinations, while excluding transit or
unrelated localities.

Special Considerations when identifying migra-
tion vectors from text:

• Migration within historical context require the
same methodological approach as contempo-
rary ones

• Similarly, for hypothetical migration scenar-
ios same thorough analytical process should
be done

• Annotations related to locality extraction
should remain firmly anchored in the text, it
is recommended to avoiding inferences about
locations not explicitly mentioned or inferred
from contextual clues

• If there are present multiple migration vectors
within the inspected sample, treat each unique
combination as a distinct migration vector

• If there is ambiguous directional informa-
tion, meaning text does not clearly estab-
lish whether identified localities serves as
SOURCE or DESTINATION localities, do
not try to guess intended direction and anno-
tate them as None.

Locality Relevance Guidelines
Determine whether a sentence contains content re-
lated specifically to Slovak locations.

Text Analysis Process

• Read and analyze the text for both explicit and
implicit mention of Slovakia, Slovak places or
direct references to Slovak people and other
entities.

• ext mentioning Slovakia as a country, a
specific location within Slovakia or content
directly related to Slovak people, entities
whether explicitly stated or implied is consid-
ered as related to Slovak localities.

• Text which does not mention Slovak locations
or contains references to broader ranges like
Europe or completely different locations is
considered as not-related to Slovak locali-
ties.

Ambiguous cases: When encountering potentially
ambiguous terms, rely on context to determine the
correct reference.
Theme Relevance Guidelines Determine whether
a text contains content thematically related to
human migration within the specified timeframe
(2003-2022). Text Analysis Process

• Read and analyze the text for explicit and
implicit references to human movement, dis-
placement, or relocation patterns.

• Text mentioning migration flows, refugee
movements, immigration policies, emigration
patterns, asylum seekers, or population dis-
placement whether contemporary or historical
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within the timeframe is considered themati-
cally relevant to migration.

• Text discussing unrelated topics such as an-
imal migration, data migration, seasonal
tourism, or brief mentions of movement with-
out migration context is considered as not
thematically relevant to migration.

• Verify that migration-related content falls
within the specified temporal scope (2003-
2022) or discusses migration patterns with
clear relevance to this period.

Ambiguous cases: When encountering border-
line cases such as economic mobility or tempo-
rary worker programs, assess whether the content
fundamentally addresses human migration patterns
rather than other forms of movement.

B Location Extraction & Geo Relevance

B.1 Samples

Below are examples demonstrating scenarios in
which migration vectors contain undetermined ori-
gin or destination points.

Example – Source Locality Unknown

Input
In 2018, during a visit to a migrant facility
in Texas, she wore a jacket with the slogan
‘I Really Don’t Care, Do U?’

Output
Source: None
Destination: Texas

Example – Destination Locality Unknown

Input
"We’re determined to do whatever we can to
stop Syria from falling apart, prevent masses
of people fleeing from Syria, and naturally, to
curb the spread of terrorism and extremism,"
according to the minister, as reported by AFP
news agency.

Output
Source: Syria
Destination: None

Example – Both Localities Unknown

Input
The Defense Minister also highlighted how
Smer’s longstanding positions on the Ukraine
conflict and migration issues are proving pre-
scient. He pointed out that events are increas-
ingly validating what the party has maintained
all along.

Output
Source: None
Destination: None

B.2 Statistics

The Figures below depict various statistics of the
dataset, such as its character (Figure 6) and token
(Figure 7) length distributions, label distributions
(Figure 16), and locality distribution (Table 4).

Figure 3: Distribution of the dataset: character length in
the final dataset

Figure 4: Distribution of the dataset: token length in the
final dataset. The tokens originate from the SlovakBERT
tokenizer.
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Figure 5: Final relevance dataset distribution across
train, validation, and test splits with consistent class
ratios.

Locality Unknown count Percentage
Source 717 43.40
Destination 441 26.69
Combined 0 0.00

Table 4: The distribution of “Unknown” localities (i.e.
when either the Source or Destination field is not filled
in for a specific sample) in the various subsets of the
final dataset. Note that the result in the Combined row
shows that either Source or Destination field are always
filled in in the final dataset.

C Theme Relevance

C.1 Statistics
The Figures below depict various statistics of the
dataset, such as its character (Figure 6) and token
(Figure 7) length distributions, label distributions
(Figure 16), and locality distribution (Table 4).

Figure 6: Distribution of the dataset: character length in
the final dataset

Figure 7: Distribution of the dataset: token length in the
final dataset. The tokens originate from the SlovakBERT
tokenizer.

Figure 8: Final relevance dataset distribution across
train, validation, and test splits with consistent class
ratios.
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D Grok-3-mini Reasoning Traces in
Native Language

{
"logprobs ": null ,
"finish_reason ": "stop",
"native_finish_reason ": "stop",
"index ": 0,
"message ": {

"role": "assistant",
"content ": "Moje uvazovanie: Najprv analyzujem
otazku. Pouzivatel sa pyta na hodnotu
druhej odmocniny z cisla dva , co znamena
matematicky vyraz sqrt (2)...

Odpoved: Odmocnina z dvoch , to znamena sqrt (2),
je iracionalne cislo. Jeho presna hodnota
je sqrt (2), ale priblizne sa rovna 1 ,414..." ,
"refusal ": null ,
"reasoning ": "Pockaj , mam spravny prikaz.
System mi hovori , ze musim mysliet
v slovencine , takze moje uvazovanie musi
byt vylucne v slovencine ...

Najskor pochopme otazku cloveka:
'Kolko je odmocnina z dvoch?' To je
v slovencine a znamena 'What is the
square root of two?'...

Kroky pre odpoved:
1. Analyzuj otazku: Clovek sa pyta na sqrt (2)
2. Vypocitaj: sqrt (2) je priblizne 1.414
3. Odpovedz v slovencine ..."

}
}

Figure 9: Example of Slovak reasoning output of Grok-
3-mini showing native language reasoning traces in both
content and reasoning fields.

E Task Prompts

E.1 Theme Relevance Prompt

E.2 Locality Extraction Prompt

E.3 Geo Relevance Prompt

prompt: |
REASONING METHODOLOGY:
You are a systematic Slovak text analyst who thinks
step -by-step. Work through reasoning process visibly
in Slovak language before any conclusion.

MANDATORY PROCESS:
- Analyze textual evidence systematically
- Cite specific phrases to support claims
- Question assumptions , consider alternatives
- Distinguish explicit facts from inferences
- Only conclude after complete analysis

CORE REQUIREMENTS:
- All internal reasoning MUST be in Slovak
- Every analysis MUST be in Slovak
- English thoughts prohibited
- Slovak in reasoning section MANDATORY

TASK: Classify Slovak text for migration relevance.
Output RELEVANCIA:SILNA if about migration , migrants ,
emigration/immigration , asylum , refugees , borders.
Otherwise RELEVANCIA:SLABA.

CHAIN -OF-THOUGHT (in Slovak):
1. List migration terms with citations
2. Provide linguistic evidence
3. Distinguish facts from conclusions
4. State interpretation: RELEVANCIA:SILNA/SLABA
5. Consider alternatives , explain rejections
6. Assess confidence: High/Medium/Low

OUTPUT FORMAT:
1. Chain -of-Thought Analysis (Slovak)
2. Final line: Label: RELEVANCIA:<SILNA|SLABA >

Confidence: <High|Medium|Low >

Classify: {{ text }}

Figure 10: Slovak chain-of-thought prompt for migra-
tion theme classification.
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prompt: |
REASONING METHODOLOGY:
You are a systematic Slovak text analyst who thinks
step -by-step. Work through reasoning process visibly
in Slovak language before any conclusion.

MANDATORY PROCESS:
- Analyze textual evidence systematically
- Cite specific phrases to support claims
- Question assumptions , consider alternatives
- Distinguish explicit facts from inferences
- Only conclude after complete analysis

EVIDENCE STANDARDS:
Every locality identification must include exact
textual citation and linguistic justification
(prepositions , verb forms , grammatical markers).

CORE REQUIREMENTS:
- All internal reasoning MUST be in Slovak
- Every analysis MUST be in Slovak
- English thoughts prohibited
- Slovak in reasoning section MANDATORY

TASK: Identify migration vectors (FROM and TO localities)
from Slovak text. Communicate with aliens who
understand only Slovak thought processes.

ATTENTION: YOU MUST THINK IN SLOVAK!

CHAIN -OF-THOUGHT REQUIREMENTS (in Slovak):
1. List all localities with exact citations
2. Provide linguistic evidence (prepositions , verbs)
3. Distinguish explicit info from conclusions
4. State main interpretation of migration vector
5. Consider alternatives , explain rejections
6. Assess confidence with specific reasons

INSTRUCTIONS:
1. Identify Localities: Extract all mentioned localities
2. Handle Unclear: Mark as "None" if unclear
3. Determine Direction: Establish FROM and TO
4. Ignore Transit: Focus on start/end points only
5. Multiple Vectors: Identify each unique FROM -TO pair
6. Output Format: "FROM: [locality], TO: [locality ]"
7. Language: Use Slovak (nominative case)

OUTPUT FORMAT:
1. Chain -of-Thought Analysis (Slovak , 6 steps above)
2. Analysis of localities mentioned
3. Reasoning for migration vector identification
4. Final answer: FROM: [locality], TO: [locality]

Or "None" if not identifiable
5. Confidence: High/Medium/Low

Extract localities from: {text_content}

Figure 11: Prompt for migration vector extraction with
mandatory native language reasoning.

prompt: |
REASONING METHODOLOGY:

You are a systematic Slovak text analyst who thinks
step -by-step. Work through reasoning process visibly
in Slovak language before any conclusion.

MANDATORY PROCESS:
- Analyze textual evidence systematically
- Cite specific phrases to support claims
- Question assumptions , consider alternatives
- Distinguish explicit facts from inferences
- Only conclude after complete analysis

ATTENTION: YOU MUST THINK IN SLOVAK!

RULES:
- All reasoning MUST be in Slovak
- Every analysis MUST be in Slovak
- No English thoughts - they cause neural interference
- Slovak in reasoning section MANDATORY
- Reasoning section MUST contain ONLY Slovak text

TASK: Determine georelevance in Slovak text: Does it
mention

any locality in Slovakia or Slovakia itself?
Communicate with beings who understand only Slovak
thought processes.

1. Detect Slovak Localities: Identify explicit mentions
of any locality in Slovakia or Slovakia itself

2. Avoid Over -Interpretation: Do not infer relevance
from vague regional hints

3. Ignore Foreign -only Mentions: If text contains only
foreign localities , output 0

4. Output Format:
- Provide Reasoning: Explain in Slovak why text

is or is not georelevant
- Final Decision: Output 1 if Slovak georelevance

confirmed , otherwise 0
- Confidence Level: High/Medium/Low

5. Language: Use Slovak (nominative case)

STEPS:
1. Analyze text for explicit Slovak place names
2. Use reasoning to confirm or reject georelevance
3. Output final binary label and explain confidence

OUTPUT FORMAT:
1. Analysis of localities mentioned
2. Reasoning for georelevance
3. Final answer: 1 if Slovak locality mentioned , 0

otherwise

NOTES:
- Do not infer; only explicit mentions count
- For borderline mentions , choose 0 and justify
- Always reason in Slovak

Please determine the georelevance of the following text:
{text_content}

Figure 12: Prompt for geographical relevance classifica-
tion with binary output format.
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F Prompt Ablation

F.1 Complete Prompt Ablation Study Results

Model Variant Macro F1 ∆ F1 (%)

gemini-2.0-flash full 0.9633 –
no task 0.9458 -1.81
no ex 0.9130 -5.22
none 0.2614 -72.87

gemini-2.0-flash-lite full 0.9424 –
no task 0.8409 -10.77
no ex 0.9548 1.32
none 0.2401 -74.52

gemini-2.5-flash full 0.8209 –
no task 0.7648 -6.84
no ex 0.9815 19.56
none 0.5241 -36.16

gemini-2.5-flash-lite full 0.8644 –
no task 0.9130 5.62
no ex 0.9768 13.00
none 0.2836 -67.19

gemini-2.5-pro full 0.9677 –
no task 0.9170 -5.24
no ex 0.9677 0.00
none 0.6472 -33.13

gemini-flash-1.5 full 0.9470 –
no task 0.5547 -41.42
no ex 0.9729 2.73
none 0.2742 -71.04

gemini-flash-1.5-8b full 0.8564 –
no task 0.5876 -31.38
no ex 0.9685 13.09
none 0.3198 -62.66

gemini-pro-1.5 full 0.8707 –
no task 0.7146 -17.93
no ex 0.8129 -6.63
none 0.2503 -71.25

gemma-2-27b-it full 0.8601 –
no task 0.3361 -60.92
no ex 0.9387 9.13
none 0.2228 -74.10

gemma-2-9b-it full 0.5197 –
no task 0.5101 -1.85
no ex 0.8105 55.96
none 0.3464 -33.36

gemma-3-12b-it full 0.9720 –
no task 0.8051 -17.17
no ex 0.9639 -0.83
none 0.2228 -77.08

gemma-3-27b-it full 0.9908 –
no task 0.9508 -4.04
no ex 0.9773 -1.36
none 0.5184 -47.68

Table 5: Macro F1 scores and percentage delta values
for select models provided by Google

Model Variant Macro F1 ∆ F1 (%)

llama-4-maverick full 0.7692 –
no task 0.7504 -2.44
no ex 0.7005 -8.94
none 0.2171 -71.77

llama-4-scout full 0.9541 –
no task 0.8541 -10.48
no ex 0.9585 0.46
none 0.2228 -76.65

Table 6: Macro F1 scores and percentage delta values
for select models provided by Meta-Llama

Model Variant Macro F1 ∆ F1 (%)

ministral-3b full 0.8711 –
no task 0.4992 -42.69
no ex 0.9077 4.20
none 0.2910 -66.59

ministral-8b full 0.6942 –
no task 0.4175 -39.86
no ex 0.8797 26.72
none 0.3280 -52.75

mistral-7b-instruct-v0.1 full 0.5367 –
no task 0.4857 -9.51
no ex 0.7198 34.12
none 0.3204 -40.29

mistral-medium-3 full 0.9509 –
no task 0.8409 -11.57
no ex 0.9555 0.49
none 0.2691 -71.70

mistral-medium-3.1 full 0.9458 –
no task 0.9314 -1.52
no ex 0.9462 0.04
none 0.4129 -56.34

mistral-nemo full 0.8482 –
no task 0.8852 4.36
no ex 0.7037 -17.04
none 0.2882 -66.02

mistral-small-24b full 0.9727 –
no task 0.8304 -14.62
no ex 0.9552 -1.80
none 0.4139 -57.45

mistral-small-3.1-24b full 0.9768 –
no task 0.7747 -20.68
no ex 0.9725 -0.44
none 0.4334 -55.63

Table 7: Macro F1 scores and percentage delta values
for select models provided by Mistral
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Model Variant Macro F1 ∆ F1 (%)

qwen3-14b full 0.9768 –
no task 0.9630 -1.41
no ex 0.9768 0.00
none 0.2870 -70.62

qwen3-235b-a22b full 0.9768 –
no task 0.9674 -0.96
no ex 0.9582 -1.90
none 0.2740 -71.94

qwen3-235b-a22b-2507 full 0.9636 –
no task 0.7146 -25.84
no ex 0.9552 -0.87
none 0.4025 -58.23

qwen3-30b-a3b full 0.9722 –
no task 0.9815 0.95
no ex 0.9623 -1.02
none 0.3784 -61.08

qwen3-30b-a3b-instruct full 0.9725 –
no task 0.8519 -12.40
no ex 0.9770 0.46
none 0.2205 -77.32

qwen3-32b full 0.9537 –
no task 0.9675 1.44
no ex 0.9768 2.42
none 0.3467 -63.65

qwen3-8b full 0.9768 –
no task 0.9578 -1.94
no ex 0.9722 -0.46
none 0.3227 -66.96

Table 8: Macro F1 scores and percentage delta values
for select models provided by Qwen

F.2 Prompt Ablation Study Figures By
Provider
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Figure 13: Distribution of macro F1 across prompt ver-
sions on gemma model variants. For each model panel,
we plot max-min macro F1 (bars) per model and overlay
per variant absolute macro F1 (points) on a twin top x-
axis, with thin lines showing the min-max span. Models
are alphabetized.
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Figure 14: Distribution of macro-F1 across prompt ver-
sions on llama model variants . For each model panel,
we plot max-min macro-F1 (bars) per model and over-
lay per-variant absolute macro-F1 (points) on a twin
top x-axis, with thin lines showing the min–max span.
Models are alphabetized.
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Figure 15: Distribution of macro-F1 across prompt ver-
sions on mistral model variants. For each model panel,
we plot max-min macro-F1 (bars) per model and over-
lay per-variant absolute macro-F1 (points) on a twin
top x-axis, with thin lines showing the min–max span.
Models are alphabetized.
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Figure 16: Distribution of macro-F1 across prompt ver-
sions on qwen model variants. For each model panel,
we plot max-min macro-F1 (bars) per model and over-
lay per-variant absolute macro-F1 (points) on a twin
top x-axis, with thin lines showing the min–max span.
Models are alphabetized.
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Abstract

Performance of syntactic parsers is reduced for
longer sentences. While some of this reduction
can be explained by the tendency of longer sen-
tences to be more syntactically complex as well
as the increase of candidate governor number,
some of it is due to longer sentences being more
challenging to encode. This is especially rel-
evant for low-resource scenarios such as pars-
ing of written sources in historical languages
(e.g. medieval and early-modern European lan-
guages), in particular legal texts, where sen-
tences can be very long whereas the amount of
training material remains limited. In this paper,
we present a new method for explicitly using
the arc length information in order to bias the
scores produced by a graph-based parser. With
a series of experiments on Norman and Gascon
data, in which we divide the test data according
to sentence length, we show that indeed explicit
length coding is beneficial to retain parsing per-
formance for longer sentences.

Introduction

As a rule, when syntactic parsing models are evalu-
ated, the general Labeled Attachment Score (LAS)
is calculated without taking into account perfor-
mance for different sentence lengths. The LAS
assesses the performance of a parser by consider-
ing the number of words that have been assigned
both the correct syntactic head and the correct label
(Nivre and Fang, 2017).

For treebanks of low-resourced languages or lan-
guage varieties (e.g. medieval languages) where
small amounts of annotated data exist, precision
of the annotation is paramount for syntactic re-
search and constitution of reliable training cor-
pora; manual revision of automatic parsing is there-
fore required. When correcting automatic annota-
tion of historical French texts (e.g. Old, Middle
and sixteenth-century French), it was empirically
observed by the authors that the performance of

parsers is significantly reduced on longer sentences;
we elaborate on this in the next paragraph. Some
errors appear counter-intuitive, e.g. distance be-
tween the token and its head, the direction of the
arc, especially in the case of nominal dependents
such as det and case. Thus, the longer the sentence,
the higher the likelihood that, for example, an arti-
cle would be attached to a noun several tokens to
the left when its actual head is the next token to the
right.

To give an example, we tested a model trained
on one type data on a similar target corpus. First,
we trained a dependency parser, BertForDeprel
(Guiller, 2020), an open source model, based
on Dozat and Manning (Dozat et al., 2017) ar-
chitecture. For the embedding layer, we used
XLM-RoBERTa multilingual model. This parser
was trained on Old French (UD_Old_French–
PROFITEROLE@2.16 corpus (Prévost et al., 2024)
and achieved a global LAS of 89% and UAS of
92%. To evaluate its performance and assess its
sensitivity to sentence length, we used a small sam-
ple from the 13th-century chronicle Histoire anci-
enne jusqu’à César (HaC-Sample). The sentences
were selected from the digital edition of the chap-
ter ’Rome II’ from the manuscript BnF fr. 20125
(Morcos et al., 2021) and manually annotated and
validated. The language and the genre of the target
corpus as well as the principles of sentence seg-
mentation were the same as in the training corpus.

The HaC-Sample dataset was divided into ten
groups based on sentence length to examine the
influence of length on parsing performance. The
result of the parsing presented in graph 1 shows
that the parser has better performance on medium-
length sentences. Performance decreases for
shorter and longer sentences, however. This drop
may be explained by the lack of syntactic structure
for the shorter sentences and the rise of syntactic
complexity in the longer ones.
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Figure 1: LAS and UAS parsing performance by sentence length group on HaC-Sample.

Related Work

The impact of sentence length on the accuracy of
dependency parsers has been highlighted in dif-
ferent studies. (Gulordava and Merlo, 2016) con-
ducted multilingual evaluation using artificially-
generated treebanks, demonstrating that word vari-
ability and longer dependencies significantly de-
grade parser performance independently of the lan-
guage or the treebank size. (Anderson and Gómez-
Rodríguez, 2020) introduced the concept of Inher-
ent Dependency Displacement Bias, which shows
the bias of the parsing algorithm in handling the
distance and direction of syntactic arcs. The au-
thors found a strong correlation between sentence
length and parsing accuracy. (Ajusha and Ajees,
2024) investigated the challenges in Malayalam,
southern Dravidian language, where they found
that the parsers struggled on long distance depen-
dencies. These studies emphasize sentence length
as a linguistic factor affecting parser performance.

At the same time, to address the problem of
improving parser accuracy, previous researchers
focused on the incorporation of morphosyntactic
features into parsing models. (Nguyen and Ver-
spoor, 2018) showed that high-quality PoS (Part-
of-speech) tagging can improve parsing accuracy
in biomedical texts. In the context of low-resource
languages, (Anderson et al., 2021) demonstrated
that predicted Universal PoS tags can significantly
enhance the parsing, even in the absence of gold
tags. (Ziane and Romanova, 2024) explored pre-

finetuning of a parser with PoS tagging, thus bias-
ing the parser’s behaviour to improve its learning
algorithm. On the other hand, (Altıntaş and Tantuğ,
2023) ’s approach focused on architectural enhance-
ment of the parser. By injecting global sentence
embedding and CNN-based local context features
into the arc scoring layer, this method empowered
the graph based parser.

In this work, we aim to address specifically the
problem of sentence length in dependency parsing
in the context of low-resource historical texts. The
method is based on the idea of biasing the scores
produced by the parser to reflect the arc length
information in 16th-century Norman (Guernsey)
and medieval Gascon treebanks.

Corpus

For the experiments described below we used two
of the corpora of the latest release of the Universal
Dependencies collection (@2.16 released 15 May
2025) with the longest average sentence length. We
selected corpora of medieval Romance languages,
both belonging to the legal genre.

The "Norman" corpus, UD_French-ALTS@2.16
(42,832 tokens; 1,269 sentences) (Romanova et al.,
2025) is a corpus of court proceedings from the
island of Guernsey (1563-1569) transcribed from
the manuscript of the register Crime I preserved
at Guernsey Greffe (court archives of the island).1

1https://github.com/UniversalDependencies/UD_
French-ALTS.
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A legal text, it contains many long formulaic sen-
tences, complex sentences and lists. The register
is written in French, the language of the court of
justice on Guernsey in the sixteenth century. How-
ever, since the island was under the British rule, the
scribes were not obliged to follow the ordinances
of Villers-Cotterêts (1539), which imposed the use
of standard French in the official documents of the
Kingdom of France. The language of Crime I there-
fore exhibits numerous dialectal (Norman) features
such spellings and morphological characteristics
of Northern French dialects. Like Old and Mid-
dle French, it is characterised by high degree of
variation of forms and word orders. The average
sentence length for the dev part of the corpus is
40,22 tokens, for the test part 36,16 tokens.

The "Gascon" corpus, UD_Occitan-
CorAG@2.16 (1,094 sentences; 37,585 tokens)
(Francioni et al., 2025) contains two medieval
(one thirteenth-century and one fifteenth-century)
legal manuals.2 Gascon is a dialect of Old Occitan.
This is the first available UD-annotated corpus
in any medieval variety of Occitan. The average
sentence length for the dev part of the corpus is
29,13 tokens, for the test part 35,24 tokens.

Both corpora were annotated in Parts-of-Speech
(PoS), syntactic functions and heads in the Univer-
sal Dependencies (UD) framework (de Marneffe
et al., 2021) by progressively adapting a model for
Old and Middle French based on Profiterole corpus
(Prévost et al., 2024) using ArboratorGrew soft-
ware (Guibon et al., 2020) and built-in BertForDe-
prel parser (Guiller, 2020). Automatic annotation
was manually checked.

The data for the experiments described below
was split into three groups 70% train, 20% test and
10% dev, then the test group was divided into ten
groups by length of the sentence.

Methodology and results

Length-Biased Graph Parser

As mentioned above, graph based parsers suffer
a drop in quality as sentence length increases.
There are several compounding factors leading
to this. Longer sentences tend to be more syn-
tactically complex with several levels of subordi-
nated clauses for example. Moreover, longer se-
quences tend to be harder to handle for recurrent
neural networks. The number of potential gover-

2https://github.com/UniversalDependencies/UD_
Occitan-CorAG.

nors simply increases with the length of the sen-
tence and, whereas the number of valid dependen-
cies increases linearly with the length of the sen-
tence, the number of invalid dependencies increases
quadratically with it.

However, we noticed that even very simple er-
rors appear in very long sentences, such as deter-
miners attaching to nouns tens of tokens away. The
most likely explanation for this is the difficulty
for the biaffine layer to use the relative distance
between tokens in order to reduce the score of un-
likely long distance dependencies. We therefore
propose to add a biasing mechanism beside the bi-
affine layer to help the parser avoid invalid long
dependencies.

The basic idea is to add a multiplicative bias
to the biaffine layer in order to boost or diminish
the scores of arcs based on their signed distances.
However, since different syntactic relations can
have very different lengths and directions, we need
to add extra information about each arc.

Therefore, we hypothesized that learning a bias
for each triplet of governor PoS-tag, dependent
PoS-tag and signed length of the arc should help the
parser select better heads for words that have very
local relations such as determiners or adjectives.

The biases for the selection of the relation label
are based on the pair of governor-dependent PoS-
tags and the dependency relation.

We also experimented with biasing over the
signed length of the relation, however the results
did not seem to improve. This may be due to the
small size of our training data, and maybe with
a bigger training set results would become more
interesting.

In order to easily experiment with different
biasing methods, we worked with our own re-
implementation of (Dozat et al., 2017)’s graph-
parser.3

We now describe the arc’s length biasing mech-
anism. Given a sentence x of length n, the base
parser produces the arc score matrix S ∈ Rn×n and
the relation label score tensor R ∈ Rn×n×r, where
r is the number of dependency relation labels.

Let P{0, 1}n×p be the matrix of one-hot en-
coded PoS-tags corresponding to x, where p is the
number of PoS-tags types. Let l be the maximum
arc length we want to consider, every longer edges
will be cast to ±l. Then, let D{0, 1}n×n×(2l+1)

3Code can be downloaded at https://github.com/
MathieuDehouck/LowRes-Parser.
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be the tensor encoding signed edge lengths in a
one-hot manner:

Dijk =

{
1 if k = max(min(i− j, l),−l) + l ,

0 otherwise.

The arc biases Barc and relation biases Brel are
then computed as follows:

Barc = (P ⊗ P T ⊗D)Θarc,

Brel = (P ⊗ P T ⊗ 1r)Θrel,

where Θarc ∈ Rp×p×(2l+1) and Θrel ∈ Rp×p×r

are learnable parameters, 1r is the vector of length
r where each entry is a 1, and where ⊗ notes the
Kronecker product.

The final scores are then S⊙Barc and R⊙Brel,
where ⊙ notes the Hadamard product.

Since we chose to work with multiplicative bi-
ases, values bigger than 1 are positive biases and
values below are negative biases.

Experiments
In order to test the capacity of arc biasing to in-
crease parsers’ ability to handle longer sentences,
we experimented with four parsing scenarios.

We trained parsers using only word embeddings
taken from an encoder large language model as
a simple baseline (Embedding). We then trained
parsers using concatenated word and PoS-tag em-
beddings (+ PoS). This is a stronger baseline. Then,
we trained parsers that only bias the arcs’ scores
based on their lengths, but do not bias the relations’
scores (+ Arc bias). This is equivalent to setting
Θrel to 1 and not updating it. Finally, we trained
parsers that bias both arcs’ and relations’ scores as
described in previous section (+ Rel bias).

For the embedding layer, we use the BERTrade
language model (Grobol et al., 2022) trained specif-
ically for Medieval French for both Norman and
Gascon text since the only natively Occitan encoder
we found had a too short context length to represent
our sentences. While Occitan and Medieval French
are closely related languages, this is obviously a
sub-optimal situation and will explain the relative
quality of the Gascon parser. When a word is split
into multiple tokens by the encoder’s tokenizer, we
only keep the representation of the first token.

The PoS-tags embeddings are learned alongside
the rest of the parser’s parameters. In order to see

the influence of the biases on the parsing quality of
longer sentences we split the Norman and Gascon
test sets into subsets of similarly sized sentences.
The detail of the splits are reported in table 1 for
the Norman data and in table 2 for the Gascon data.

Sentences Number of Number of
length sentences tokens
5 - 10 24 195

11 - 20 121 1973
21 - 30 82 2008
31 - 40 49 1731
41 - 50 25 1140
51 - 60 22 1196
61 - 80 19 1291

81 - 137 5 505
All 347 6673

Table 1: Sizes of the Norman test subsets based on
sentence length.

Results are thus reported for the whole test set
and for each length based subset. They are aver-
aged over 5 runs initialized with different random
seed.

Results
Results for the Norman parsing experiment are re-
ported in table 3 and those for the Gascon experi-
ment are reported in table 4.

As we can see from table 3, adding PoS-tags
embeddings already improves a lot the parsing ca-
pacity of the models.

However, while the models with and without arc
and relation biasing are on par for sentences of
length up to 60 tokens when they can use PoS-tags,
for longer sentences, the biased models have a clear
advantage. For sentences of length between 61 and
80 tokens, biased parsers show a 1.25 unlabeled
attachment score point (UAS) increase and a 1.20
labeled attachment score point (LAS) increase. For
sentences beyond 81 tokens, it reaches 3.09 UAS
and 2.89 LAS points increase.

Thus arc biasing indeed seems to help maintain-
ing a better parsing accuracy for longer sentences.

Table 4 gives a very similar picture.
However, since the parsers are of an overall

lower quality due to the mismatch between the
pre-training language of the encoder and the lan-
guage it is applied to, the effects are even more
marked. Here, even for reasonably sized sentences
(less than 60 tokens) the biased models already
show an advantage over the non biased ones.
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Sentences Number of Number of
length sentences tokens

5 10 27 227
11 20 88 1347
21 30 52 1316
31 40 32 1124
41 50 26 1173
51 60 16 886
61 70 6 388
71 80 14 1063
81 90 6 520
91 100 4 371

101 125 5 535
126 150 3 391
151 175 2 304
176 200 2 355

All 285 10007

Table 2: Sizes of the Gascon test subsets based on sen-
tence length.

We go from +0.38 UAS point for sentences of
lengths between 21 and 30 tokens, to +2.49 UAS
for sentences between 71 and 80 tokens, to up to
+9.67 UAS for sentences of lengths between 151
and 175 tokens.

Figure 2 and figure 3 represent the evolution of
the percentage of UAS error reduction for different
models with respect to the baseline, embedding
only, parser for the ALTS Norman and the CorAG
Gascon test sets respectively.

We see that on both figures, the curves repre-
senting the UAS error reduction for the two arcs’
length-biased models (with and without relation
label biasing) stay close together around the 40 %
line, while the curve corresponding to the unbiased
model starts departing from the other two for longer
sentences (more than 60 tokens) getting below the
30 % line.

It is also interesting to note that despite the Nor-
man and Gascon models having very different per-
formances, the error reduction of the PoS-tag in-
formed and the arcs’ length-biased models are sur-
prisingly similar.

However, we do not know if it is a meaningful
phenomenon or if it is just a coincidence and thus
it needs further investigation.

These results indeed seem to support the ability
of arc and relation biasing to improve accuracy of
longer sentences parsing.

This is true even with respect to models that use

Group test set Parser UAS LAS

5 - 10

Embedding 90.15 83.49
+ PoS 97.85 94.46
+ Arc bias 97.64 94.46
+ Rel bias 97.23 94.05

11 - 20

Embedding 92.60 89.72
+ PoS 95.43 93.75
+ Arc bias 95.45 93.75
+ Rel bias 95.57 94.01

21 - 30

Embedding 89.28 85.64
+ PoS 92.30 90.13
+ Arc bias 92.59 90.54
+ Rel bias 92.87 90.98

31 - 40

Embedding 88.39 84.84
+ PoS 93.19 91.18
+ Arc bias 92.92 91.00
+ Rel bias 92.96 91.22

41 - 50

Embedding 86.79 83.60
+ PoS 91.68 89.72
+ Arc bias 91.54 89.70
+ Rel bias 91.61 89.61

51 - 60

Embedding 86.76 83.70
+ PoS 91.69 90.27
+ Arc bias 91.99 90.72
+ Rel bias 91.62 90.27

61 - 80

Embedding 87.02 84.32
+ PoS 89.70 88.23
+ Arc bias 90.84 89.14
+ Rel bias 90.95 89.43

81 - 137

Embedding 83.92 80.55
+ PoS 87.60 86.26
+ Arc bias 90.38 88.36
+ Rel bias 90.69 89.15

All

Embedding 88.65 85.37
+ PoS 92.46 90.64
+ Arc bias 92.78 90.96
+ Rel bias 92.85 91.14

Table 3: Results of the experiments on Norman data.
Performance metrics (UAS and LAS) for different test
subsets, grouped by sentence length, across four parser
variants: word Embedding alone, + PoS tags embed-
ding, + Arc bias, and +Rel bias.
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Figure 2: Graphical representation of the error reduction with respect to the baseline, embedding only, model UAS
score for each sentence length-based ALTS Norman test subset. Bullets (•) represent the + PoS model. Asterisks
(∗) represent the + Arc bias model. Squares (■) represent the + Rel bias model.

5 11 21 31 41 51 61 71 81 91 101 126 151 176
10 20 30 40 50 60 70 80 90 100 125 150 175 200

10 %

20 %

30 %

40 %

50 %

60 %

70 %

Figure 3: Graphical representation of the error reduction with respect to the baseline, embedding only, model UAS
score for each sentence length-based CorAG Gascon test subset. Bullets (•) represent the + PoS model. Asterisks
(∗) represent the + Arc bias model. Squares (■) represent the + Rel bias model.
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Group test set Parser UAS LAS

5 - 10

Embedding 66.61 57.53
+ PoS 80.26 76.30
+ Arc bias 81.23 76.12
+ Rel bias 82.11 77.36

11 - 20

Embedding 65.66 55.99
+ PoS 79.82 75.77
+ Arc bias 81.14 76.60
+ Rel bias 80.88 76.38

21 - 30

Embedding 67.57 57.95
+ PoS 81.73 77.63
+ Arc bias 82.11 77.31
+ Rel bias 81.63 77.25

31 - 40

Embedding 65.36 56.94
+ PoS 79.80 75.21
+ Arc bias 79.95 75.27
+ Rel bias 80.32 75.53

41 - 50

Embedding 60.90 52.23
+ PoS 76.47 73.08
+ Arc bias 77.24 73.59
+ Rel bias 76.83 73.23

51 - 60

Embedding 57.47 47.88
+ PoS 76.00 71.74
+ Arc bias 77.20 72.37
+ Rel bias 76.32 71.38

61 - 70

Embedding 60.31 53.40
+ PoS 76.49 73.20
+ Arc bias 78.30 74.85
+ Rel bias 77.32 74.18

71 - 80

Embedding 59.12 48.62
+ PoS 72.47 67.70
+ Arc bias 74.96 69.80
+ Rel bias 74.43 69.13

81 - 90

Embedding 59.00 47.77
+ PoS 74.96 71.31
+ Arc bias 77.42 72.58
+ Rel bias 75.88 71.58

91 - 100

Embedding 62.26 52.56
+ PoS 81.08 76.33
+ Arc bias 85.39 80.97
+ Rel bias 83.83 80.11

101 - 125

Embedding 53.83 43.63
+ PoS 68.75 64.45
+ Arc bias 77.05 71.78
+ Rel bias 75.18 70.88

126 - 150

Embedding 56.21 48.49
+ PoS 68.59 65.17
+ Arc bias 71.76 68.34
+ Rel bias 71.61 68.59

151 - 175

Embedding 53.03 49.21
+ PoS 60.33 58.68
+ Arc bias 69.87 67.43
+ Rel bias 70.20 67.89

176 - 200

Embedding 49.75 36.85
+ PoS 62.87 58.31
+ Arc bias 68.79 63.38
+ Rel bias 69.69 62.59

All

Embedding 61.30 51.97
+ PoS 76.01 71.97
+ Arc bias 78.17 73.65
+ Rel bias 77.71 73.31

Table 4: Results of the experiments on Gascon data.
Performance metrics (UAS and LAS) for different test
subsets, grouped by sentence length, across four parser
variants: word Embedding alone, + PoS tags embed-
ding, + Arc bias, and +Rel bias.

the same overall input features (word embeddings
and PoS-tags) suggesting that a proper encoding of
arcs’ length is beneficial for longer sentences.

Discussion

In addition to increasing the parser’s accuracy, PoS-
tag based biases are easily interpretable by humans.
Since these are multiplicative biases, a value above
1 is a positive bias and a value smaller than 1 is
a negative bias. Figure 4 represents the value of
length biases for a selection of pairs of PoS-tags.
Biases corresponding to the NOUN-DET pairs are
represented by black bullets.

The positions -1 and -2 are the only ones with
a positive bias (1.23 and 1.20 respectively). This
aligns perfectly with the fact that, in Medieval and
early Modern French, determiners come right be-
fore their nouns, save a potential adjectival phrase.
The biggest negative bias appears at position -5
with a value of 79.

There are a number of constructions where a
determiner appears five tokens before a noun while
not being governed by this very noun. Here we give
just a few examples with English glosses below.

Le sabmedy .xe. jour du moes

the saturday 10th day of_the month

de l′ uylle , du pain

of the oil , of_the bread

son filz venoient en sa maison

their son came in their house

Overall there are 346 such instances in the train-
ing data and not a single one where a determiner
would attach to a noun four tokens away.

On the same figure, we represent the biases
learnt for the VERB-PRON pairs with crosses. Here
we see that contrary to the NOUN-DET arcs, there are
positive biases corresponding to both left and right
arcs.

This too, aligns well with Medieval and Modern
French grammar. In Modern French, pronouns tend
to appear before their verb, but inversion is com-
mon in orders (direct and indirect object pronouns
follow imperative verbs) and questions as well as a
way to introduce reported speech.

Furthermore, pronouns were more mobile in Me-
dieval French.
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Figure 4: Samples of arc biases learnt on the ALTS Norman treebank. Bullets (•) represent the NOUN-DET arcs and
crosses (×) represent the VERB-PRON arcs.

Future Work

Arc and relation label biasing can be easily applied
to any parser that gives access to the score tensors
on top of the actual structure prediction. So it
would be interesting to see how this can be used in
order to do a very light weight form of fine-tuning
of already trained models.

Indeed some graph-based parsers actually take
raw text as input and predict PoS-tags at the same
time as the arcs’ scores, so we would need to wait
for this PoS-tag prediction in order to bias the arcs’
scores. Furthermore, we still need to perform a
more complete investigation of the learnt biases
and we also intend to investigate their usability
for transfer and language comparison, since they
encode grammatical rules in a very simple format.

Eventually, since taking inspiration from the
models that predict PoS-tags and dependency
scores at the same time, in a multi-task learning
spirit, teaching parsers to predict the signed length
of an arc based on its governor’s and dependent’s
representations could help them avoiding invalid
long dependencies better, maybe even without hav-
ing to bias.

Conclusion

We have presented first experiments towards tack-
ling reduced performance of syntactic parsing in
longer sentences: directly biasing the scores of the
arcs in order to reflect their length. This is espe-
cially relevant when working with historical written
texts, particularly of the administrative and legal
types. These experiments point to the necessity to
learn the length and direction of arc between the
syntactic function and its head and the direction
of the arc from the training corpus. We have seen
that the experiments presented allow beginning to
improve the scores.

Limitations

A more detailed analysis of these trends is needed,
including a detailed error analysis, evaluating statis-
tic significance of the results, testing on a wider va-
riety of corpora and using bootstrapping scenarios.
We believe that in order to improve performances
on longer sentences a hierarchical approach to pars-
ing may be beneficial.
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Abstract

We evaluate four representative large language
models, namely GPT-4o, Gemini, Llama, and
DeepSeek on a suite of linguistic and cultural
tasks in Persian, covering grammar, paraphras-
ing, inference, translation, factual recall, ana-
logical reasoning, and a Hofstede-based cul-
tural probe under direct and role-based prompts.
Our findings reveal consistent performance de-
clines, alongside systematic misalignment with
Iranian cultural norms. Role-based prompt-
ing yields modest improvements but does not
fully restore cultural fidelity. We conclude that
advancing truly multilingual models demands
richer Persian resources, targeted adaptation,
and evaluation frameworks that jointly assess
fluency and cultural alignment.

1 Introduction

Despite rapid advances in large language mod-
els (LLMs), their multilingual capabilities remain
deeply uneven. For dominant languages such as
English, modern LLMs exhibit high performance
in linguistic fluency, factual accuracy, and socio-
cultural alignment (Jin et al., 2024; Lai et al.,
2023a). However, for low-resource languages like
Persian (Farsi), model outputs often degrade gram-
matically, semantically, and culturally, leading to
concrete societal risks of digital invisibility or mis-
representation for over 90 million native speakers
worldwide (Eberhard et al., 2025).

Persian occupies a unique linguistic and cultural
position, spoken across Iran, Afghanistan (Dari),
and Tajikistan (Tajik), with rich Indo-European and
Arabic influences and substantial regional variation.
Additionally, it has a distinct character set unshared
with other languages that have at least the Latin
character set as common ground. Yet it remains
vastly underrepresented in pretraining corpora for
LLMs: in the Common Crawl dataset—one of the
largest public web corpora—Persian constitutes
less than 0.1 % of content versus over 45 % for

English (Common Crawl, 2025). Existing LLM
evaluations and audit tools are predominantly An-
glocentric, overlooking language-specific dispari-
ties and fairness considerations in Persian.

To address this oversight, we present a joint em-
pirical analysis of linguistic competence and cul-
tural sensitivity in state-of-the-art LLMs operat-
ing in Persian (GPT-4o (OpenAI, 2024), Gemini
(Google DeepMind, 2024), Llama (Meta AI, 2025),
DeepSeek (DeepSeek-AI et al., 2025)). Build-
ing on and extending established cultural prob-
ing methods (Masoud et al., 2025; Moosavi Mon-
azzah et al., 2025) alongside linguistic diagnos-
tics benchmarks (Atox and Clark, 2024; Abaskohi
et al., 2024), we systematically expose where—and
why—these models fail on Persian tasks, from sub-
tle grammatical nuances to culturally grounded ref-
erences.

We make three key, novel and unique contribu-
tions to the study of LLM performance in Persian.

• Comprehensive evaluation suite. We assem-
ble four representative LLMs and test them
on:

– Linguistic tasks: spelling correction and
paraphrasing,

– World-knowledge QA: factual recall and
analogical reasoning,

– Cultural probing: Hofstede-style role
simulation in Persian.

• Fairness-aware lens. We demonstrate that
simple “act-as” prompts fail to elicit Per-
sian cultural perspectives, and that translation-
based interventions yield gains only for bilin-
gual users.

• Cultural prompting insights. We provide
quantitative evidence of Western bias in Per-
sian outputs, highlighting systemic misalign-
ment rather than deliberate prejudice.

111

https://doi.org/10.26615/978-954-452-100-4-012


By diagnosing these failures, we reveal struc-
tural biases in contemporary LLMs and call for
inclusive evaluation methods and culturally-aware
model tuning for low-resource languages.

2 Related Work

Several benchmarks have emerged to evaluate LLM
performance on Persian tasks. The ParsiNLU
suite (Daniel Khashabi, 2020) provides multiple-
choice QA, paraphrase, natural language infer-
ence (NLI), and translation splits drawn from
Google autocomplete, forums, and exam questions.
FAspell (Barari and QasemiZadeh, 2005) offers
real-world spelling errors collected from students
and professional typists. Both were mainly devel-
oped to benchmark task-specific pre-trained and/or
fine-tuned machine learning models. More recent
work by Abaskohi (Abaskohi et al., 2024) bench-
marks GPT-3.5-turbo and GPT-4 on ParsiNLU,
showing gains when inputs are translated into En-
glish but underscoring persistent deficits in direct
Persian prompting.

In-context learning and prompt design are criti-
cal for cross-lingual transfer. Brown et al. (2020) in-
troduced zero- and few-shot prompting, which has
since been adapted to multilingual settings (Atox
and Clark, 2024). AlKhamissi et al. (2024) showed
that persona-based prompts—e.g. “answer as a
respondent from Egypt”—can markedly shift out-
puts and improve alignment with local survey data
for languages like Arabic and English. Likewise,
Masoud et al. (2025) applied explicit role prim-
ing to probe cultural dimensions. However, these
studies remain anchored to languages with rela-
tively rich pretraining resources and depend on
overt “act-as” formulations or direct translation.
PERCUL, by contrast, tackles Persian—a gen-
uinely low-resource language with its own script
and morphology—eschewing explicit role prompts
in favor of embedding cultural concepts within
short, human-curated narratives and assessing im-
plicit comprehension via multiple-choice ques-
tions (Moosavi Monazzah et al., 2025).

Broad evaluation frameworks such as HELM
(Holistic Evaluation of Language Models) high-
light major coverage and metric gaps for under-
represented languages (Liang et al., 2022). Build-
ing on this, Kharchenko et al. (2024) applied
Hofstede’s cultural dimensions across 36 coun-
tries—showing that even well-resourced languages
suffer inconsistent cultural fidelity in LLM outputs.

Focusing on Persian, PerCul (Moosavi Monazzah
et al., 2025) uncovers substantial misalignment
in cultural references, while the Cultural Align-
ment Test (CAT) of Masoud et al. (2025) quanti-
tatively demonstrates a persistent Western bias in
role-based prompts. Together, these works under-
score the necessity of a fairness-aware lens that
jointly evaluates linguistic competence and cultural
sensitivity in low-resource settings like Persian.

3 Methodology

In this section we describe the four state-of-the-
art LLMs we evaluate, the tasks and datasets we
employ, our prompt engineering strategies, and the
metrics used to quantify performance. You can find
our prompts and the subsets of the datasets that we
have used on GitHub.1

3.1 Model Selection
We evaluate four representative multilingual LLMs,
chosen to span closed- and open-source, commer-
cial and community-driven models as shown in
Table 1.

All models were accessed via their respective
APIs using default temperature and top-p settings,
except for Llama 3.3 which was accessed via Deep-
Infra due to hardware limitations. While all of
the models tested are multilingual, Llama 3.3 is
the only model that does not officially support Per-
sian. However, the model card states that other
languages may still work, as the data was likely
included during training (Meta AI, 2025). This
might seem like an improper comparison at first,
but we were interested in whether official support
makes a difference, as we assume the underlying
training data to be broadly similar.

3.2 Tasks and Datasets
We cover two major task families: one to probe
linguistic competence as well as factual knowl-
edge, and one to probe cultural sensitivity in Per-
sian. Each linguistic task was randomly sampled

1https://github.com/zhaw-iwi/
LowResNLP-Evaluating-LLM-Capabilities-for-Persian

1https://openai.com/index/
gpt-4o-system-card/

2https://blog.google/
technology/google-deepmind/
google-gemini-ai-update-december-2024/

3https://github.com/meta-llama/
llama-models/blob/main/models/llama3_
3/MODEL_CARD.md

4https://api-docs.deepseek.com/news/
news1226
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Model Developer Open? Persian support

GPT-4o1 OpenAI Closed Yes
Gemini 2.0 Flash2 Google DeepMind Closed Yes
Llama 3.3 70B Instruct3 Meta AI Open No (official)
DeepSeek-V34 DeepSeek-AI Open Unspecified

Table 1: High-level comparison of model properties used for our experiments (OpenAI, 2024; Google DeepMind,
2024; Meta AI, 2025; DeepSeek-AI et al., 2025).

for 350 items to have comparable task size and a
manageable runtime per experiment. Where possi-
ble and applicable we also report ignorance of task
instructions separately, as we think that a lack of
instruction-adherence is not the same as a wrong
answer.

Linguistic tasks

• Spelling correction. We sample 350 word-
pairs (“misspelled“, “corrected“) from the
FAspell corpus (Barari and QasemiZadeh,
2005). We used the part of the dataset that con-
tains real-life collected human-made errors by
elementary school children and professional
typists. The models are prompted in Persian
and English to output only the corrected form;
we compute exact-match Accuracy.

• Paraphrase classification. From
the ParsiNLU paraphrase
dataset (Daniel Khashabi, 2020), we
randomly sampled 350 pairs. The data has
been collected from Google auto-complete
and Persian forums and was annotated by na-
tive speakers (Daniel Khashabi, 2020). Using
a 2-shot prompt in Persian or English, our
probed models label pairs as paraphrases (1)
or non-paraphrases (0). The expected output
is a single digit (0/1) with no explanation;
extra text is treated as a format failure (see
§3.4). We report Accuracy.

• Entailment classification. We sample
350 examples from the ParsiNLU NLI
split (Daniel Khashabi, 2020). Models receive
premise–hypothesis pairs and decide “entail-
ment”, “neutral”, or “contradiction” in Persian
or English few-shot. Expected output is a sin-
gle token from {e, n, c}; any other string is
considered a format failure. we report Accu-
racy.

• Machine translation. We sample 350 pairs for
English→Persian from the ParsiNLU trans-

lation split (Daniel Khashabi, 2020; Kashefi,
2018). The data was collected from human-
made translations. Models translate few-shot
and we evaluate with BLEU score.

• Factual recall. We sample 350 multiple-
choice questions from the ParsiNLU “com-
mon knowledge” partition. The questions
have been mostly taken from college entry
exams (Daniel Khashabi, 2020). Models were
prompted to choose between 3–4 options and
we report Accuracy.

• Analogical reasoning. We sample 350 ques-
tions from the ParsiNLU “literature” parti-
tion, that mostly require analogical reason-
ing, similar to (Atox and Clark, 2024). Items
are multiple-choice (3–4 options). The model
is instructed to output only the option letter
(A/B/C/D). We again report Accuracy.

Class counts for all classification tasks are re-
ported in Table 4 in Appendix A. NLI (”e”/”n”/”c”),
factual recall (1–4), and logical reasoning (1–4)
are near-balanced, while paraphrase is moderately
skewed toward non-paraphrases (≈62/38).

3.3 Cultural Probing
To expose how well our models internalize deeply
held cultural values, we draw on Hofstede’s well-
validated VSM13 framework, which distills cross-
national survey data into six interpretable dimen-
sions: Power Distance (PDI), Individualism vs.
Collectivism (IDV), Masculinity vs. Femininity
(MAS), Uncertainty Avoidance (UAI), Long-Term
vs. Short-Term Orientation (LTO), and Indulgence
vs. Restraint (IVR) . Prior work demonstrates that
these latent variables are encoded in language use
and can be probed via structured questionnaires .

We administer the 24 VSM13 items in Persian
using their standard 5-point Likert format. For
each model and scenario we collect 100 indepen-
dent completions and compute per-item means and
standard deviations, as follows:
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• VSM13 indices: the six dimension scores via
Hofstede’s original formulas,

• Response variability: the per-item standard
deviation across 100 trials,

• Cross-scenario stability. Definition. Let
ri,s ∈ [1, 5] denote the mean Likert response
for item i ∈ {1, . . . , Q} under scenario s. For
any two scenarios s, t, we define

Stability(s, t) = 1− 1

4Q

Q∑

i=1

|ri,s − ri,t|,

with Q = 24.

This normalizes the maximum per-item dif-
ference of 4 (on a 1–5 scale) to [0, 1].
In our main comparison we use s =
Language and t = Citizen; we also report
(s, t) = (Persian,English) and (US, Iran)
where noted.

By embedding these six dimensions directly in
our probes, we can (1) align with prior cultural-
alignment studies, (2) explain which aspects of Ira-
nian cultural values each model struggles to reflect,
and (3) quantify the effect of simple role prompts
on deep cultural representation, complementing
narrative or cloze-style benchmarks.

3.4 Prompt Design
For each task, we compare prompts in Persian ver-
sus English (when applicable), and act-as versus
direct forms for cultural probing. We decided to
include English instructions, as at least earlier ver-
sions of ChatGPT proved to be more consistent
when prompted with English task instruction (Lai
et al., 2023b). The prompts for Persian and En-
glish were created by a Persian native speaker
and translated to English (L2) by the same per-
son. Linguistic and knowledge tasks use few-shot
templates, except for grammar correction using
zero-shot prompts, and cultural probing uses zero-
shot VSM13-style templates. Find an English (for
comprehension) example for the grammar correc-
tion task below:
The following word has a spelling
mistake. Just write the correct form of
it without any explanation and without
any diacritical marks (such as "’").
Just one word: {word}

More can be found on our GitHub repository for
reproducibility.

4 Results

4.1 Language Proficiency
On paraphrase detection, Fig. 2 shows that GPT-
4o and Gemini achieve the highest accuracies in
Persian and English, with barely a difference be-
tween the two. DeepSeek (82 % for Persian vs
68 % for English) and Llama 3.3 (81 % for Per-
sian vs 46 % for English) show larger cross-lingual
gaps, indicating weaker native-Persian paraphrase
understanding. Their behaviour seems to show that
the findings of Lai et al. (2023b) cannot be trans-
ferred to all scenarios as Llama and Gemini per-
form clearly better with Persian prompts than when
prompted in English. Failure rates remain near
zero for GPT-4o across both languages, but rise to
19–42 % for DeepSeek and Llama when prompted
in English (bottom panel in Fig.2). For reference,
the paraphrase split’s majority-class baseline is
216/350 = 61.7%, so accuracies around 80% can-
not be attributed to class skew alone (see Table 4
in Appendix A).

Entailment exhibits a similar pattern: GPT-
4o/Persian attains 80 % accuracy (English 82 %),
Gemini/Persian 74 % vs 80 % and Llama/Persian
11 % vs 66 %. DeepSeek and Llama effectively fail
few-shot Persian NLI, but English prompts partially
rescue performance. This highlights that direct Per-
sian zero-shot inference remains highly unreliable
for some models for the entailment tasks. Com-
paring our results to Abaskohi et al. (2024) the
GPT family seems to have improved overall, while
Llama 3.3 and Deepseek-V3 fall behind the older
GPT models probed in their experiments.

All models fall below 35 % accuracy in Persian
grammar correction with Persian prompts: GPT-4o
(34 %), Gemini (33 %), DeepSeek (24 %), Llama
(18 %). English prompts even fall slightly below
the Persian prompt variants. Failure rates are corre-
spondingly low (2–5 %) for GPT-4o, Gemini and
Deepseek with Persian prompts but climb to 11
% for Llama in Persian. The corresponding error
rates for English prompts are higher for all tested
models. While we have no prior experiments in
Persian for comparison, for English accuracies as
high as around 90 % can be achieved (Atox and
Clark, 2024).

Table 2 reports BLEU scores for Persian-
prompted and English-prompted translations for
English→Persian. Overall, translation perfor-
mance is uniformly low across models, with
no clear advantage for prompting in either lan-
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guage. GPT-4o and Gemini lead marginally,
while Llama trails behind, indicating that even
state-of-the-art LLMs produce only rudimentary
Persian translations without specialized MT fine-
tuning (Abaskohi et al., 2024).

Model Persian Prompt BLEU English Prompt
BLEU

GPT-4o 5.79 5.92
Gemini 5.85 5.79
DeepSeek 5.67 5.85
Llama 4.48 4.34

Table 2: Final BLEU scores for each model for En-
glish→Persian translations.

4.2 World-Knowledge Tasks

Accuracy in factual multiple-choice remains under
33 % for all models. GPT-4o leads at 27 % for
Persian and 33 % for English prompts, followed
by Gemini (32 % for Persian and 32 % for En-
glish), DeepSeek (11 % for Persian and 15 % for
English), and Llama (15 % for Persian and 10 %
for English). Failure rates reflect these low scores,
with DeepSeek and Llama failing around 50 % of
the time in Persian, versus 15 % for GPT-4o. The
highest failure rate is reported as 63 % for Llama
prompted in English.

Logical reasoning is the most challenging: GPT-
4o achieves only 22 % for Persian and 25 % for
English prompts, Gemini 21 % for both Persian
and English prompts, DeepSeek 13 % for Persian
and 19 % for English prompts, and Llama 15 % for
Persian and 21 % for English prompts. Failure rates
exceed 40 % for DeepSeek and Llama in Persian,
underscoring profound gaps in few-shot reasoning
capabilities for low-resource languages. Further
our results are comparable to Abaskohi et al. (2024)
who reported 30% accuracy as highest result with
earlier models from the GPT family.

4.3 Task Failures

While our main results focus on aggregate accuracy
and cultural alignment, we observed systematic
breakdowns on individual tasks that reveal distinct
failure modes beyond mere score drops. In the
Persian-prompted natural language inference (NLI)
task, for example, all models struggled with for-
mat compliance and label consistency. DeepSeek
frequently returned full explanations rather than
the single-token labels e/n/c, making over 90 %
of its outputs unparseable and driving its mea-

说明：第一句讨论文学，第二句谈及金融，二者
无蕴含关系。
HttpServletRequest.getParameter("foo");

Figure 1: Example of a Llama NLI failure under Per-
sian prompting: a Persian label, Chinese explanation
(rendered via CJK), and stray Java code.

sured accuracy to 0 %. Even when a valid la-
bel was produced, predictions were erratic: en-
tailment was over-predicted (many gold neutrals
→ “e”) and contradictions were missed. Gemini
and Llama exhibited similar breakdowns under Per-
sian prompts—verbose multi-language responses
or outright format violations, despite far cleaner be-
havior when the same tasks were presented in En-
glish. These failures point to (1) poor instruction-
following in Persian, (2) cross-lingual reasoning
deficits, and (3) the necessity of enforcing strict
output constraints in evaluation.

Moreover, Llama displayed a particularly dra-
matic failure mode when we used English prompts
on Persian inputs: rather than perform NLI, it of-
ten “refused” or generated incoherent multilingual
“meltdowns”, as exemplified in Fig. 1.

Such outputs mix Persian, Chinese, English ex-
planations and even Java code fragments—utterly
unusable for NLI. This “language-agnostic melt-
down” contrasts with its occasionally strong perfor-
mance when it does obey instructions in Persian,
underscoring that Llama does not necessarily bene-
fit from English task prompting.

Similar issues arose in other classification tasks
(paraphrase detection, factual QA): models ei-
ther produced out-of-range labels (e.g. “5” in a
1–4 multiple-choice task) or collapsed into in-
finite loops of repeated tokens when prompted
in English. These error patterns underscore
that—beyond low overall accuracy—LLMs can
exhibit total instruction-following failures or catas-
trophic generation breakdowns once they operate
outside their primary training language. Gemini
even claimed at some point that it was an English
language model, when prompted in English for a
Persian task. Addressing such task-specific failures
will require both tighter prompt engineering (e.g.
enforced format templates or sanity-checks) and
targeted architectural or fine-tuning interventions
to stabilize behavior in Persian.
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4.4 Key Takeaways

Across linguistic and knowledge tasks, (1) GPT-
4o and Gemini retain the highest baseline accu-
racy in Persian, (2) English prompts yield small
gains for strong models but “rescue” performance
only for weaker ones, and (3) open-source mod-
els (DeepSeek, Llama) struggle markedly in Per-
sian few-shot settings. These disparities reveal sys-
tematic cross-lingual performance gaps and moti-
vate deeper investigations into cultural and prompt-
engineering interventions in low-resource contexts.

4.5 Cultural Alignment

We define alignment as the correct ordering of Hof-
stede dimension scores for the Iran/United States
pair. Table 3 reports alignment per dimension (✓/✗)
and the overall proportion aligned. We compare
each model’s VSM13 indices under both Persian-
only (“Language”) and act-as-Iranian (“Citizen”)
prompts against the ground-truth ordering.

Under Persian-only (“Language”) prompts,
DeepSeek aligns on 2 / 6 dimensions (33 %), GPT-
4o on 3 / 6 (50 %), and both Llama and Gemini
on 4 / 6 (67 %). With the act-as-Iranian (“Citi-
zen”) prompt, alignment rises to 67 % (4 / 6) for
DeepSeek, 50 % (3 / 6) for GPT-4o, and 83 % (5
/ 6) for both Llama and Gemini. All four models
correctly rank Individualism (IDV), Uncertainty
Avoidance (UAI), and Indulgence vs. Restraint
(IVR) under the “Citizen” prompt. Only Llama
and Gemini correctly order Long-Term Orienta-
tion (LTO), and none correctly order Masculin-
ity (MAS). Explicit role cues therefore partially
mitigate—but do not eliminate—cultural misalign-
ment.

Across the 24 VSM13 items, GPT-4o exhibits
the lowest variability (Persian σ = 0.0876; IR
Citizen σ = 0.0319), followed by Llama (σ =
0.0982; 0.0393). DeepSeek shows moderate vari-
ability (σ = 0.1634; 0.1382), and Gemini the
highest (σ = 0.2740; 0.3132). Cross-scenario
similarity—measured as Stability(s, t) = 1 −
1
4Q

∑Q
i=1 |ri,s− ri,t|, Q = 24, is highest for Llama

(0.917 Pers vs. Eng; 0.903 US vs. Iran), then GPT-
4o (0.892; 0.889), DeepSeek (0.872; 0.920), and
lowest for Gemini (0.823; 0.858). These consis-
tency trends mirror the index alignment results.

While Llama and Gemini capture the strongest
overall alignment with Iran’s Hofstede profile (83
% under “Citizen” prompts), DeepSeek and GPT-
4o show more modest performance—DeepSeek

improving from 33 % to 67 %, and GPT-4o re-
maining at 50 %. Role-based prompts boost
alignment—lifting Llama and Gemini to 83 %,
DeepSeek to 67 %, and GPT-4o to 50 %. Yet no
model achieves perfect ordering, especially on PDI
and MAS. Because even the best models in our
sample misorder at least on one dimension, we
recommend fine-tuning on Persian sociolinguistic
corpora to reduce this error.

5 Discussion

Across our suite of tasks, Persian-prompted per-
formance consistently lags behind the English-
prompted baseline, and “act-as-Iranian” role cues
do virtually nothing to close that gap on core lan-
guage skills. For instance, in spelling correction
(Section 4.1) GPT-4o drops from 42 % to 27 % ac-
curacy (–15 pp) when moving to Persian prompts,
while Gemini falls from 40 % to 30 % (–10 pp).
DeepSeek and Llama see smaller, yet still substan-
tial, losses (–5 pp and –6 pp respectively). Para-
phrase classification is slightly more robust—GPT-
4o only loses 2 pp (84 %→82 %), Llama 7 pp
(81 %→74 %)—but again the “act-as” instruction
shifts these by at most 1–2 pp, confirming that sim-
ple role-play cues cannot compensate for missing
Persian fluency.

Knowledge-based tasks show somewhat smaller
but still significant gaps. In factual QA (Section
4.2), GPT-4o gains a modest +5 pp when switching
to English prompts (27 %→32 %), while Llama
actually declines (25 %→18 %)—a 7 pp drop. Log-
ical reasoning tops out at only 25 % for GPT-4o
even under English prompts (22 % in Persian).
Auto-translating Persian inputs into English recov-
ers another 5–10 pp across tasks, but still falls short
of the English-native baseline (≈ 85 % reported
in purely English benchmarks). Thus, translation
remains only a partial band-aid, benefiting those
with bilingual pipelines but doing little to improve
direct Persian interactions. Additionally, task fail-
ures were not analyzed in the translation task, as
it would have required a more sophisticated task
failure detection than mere formatting.

Our cultural-probing results (Section 4.5) fur-
ther illustrate systemic misalignment rather than
probably deliberate bias. Models like GPT-4o and
Llama exhibit very low answer variance (σ≈0.02)
yet repeatedly misorder key Hofstede dimen-
sions—Power Distance and Masculinity—under
both Persian-only and “act-as” prompts. This pat-
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Figure 2: Accuracy and task failure rates across all models and tasks.

tern mirrors findings in AlKhamissi et al. (2024),
where neither simple role cues nor monolingual
fine-tuning fully closed the gap on World Values
Survey alignment. In that work, only by combin-
ing native-language prompting with targeted fine-
tuning (“Anthropological Prompting”) did align-
ment approach parity. Our Persian results point in
the same direction: without richer Persian pretrain-
ing data and more sophisticated cultural scaffold-
ing, LLMs remain skewed toward WEIRD norms.

Together, our two axes of failure imply that
“knowing Persian” and “thinking Persian” are
separable challenges. Improving linguistic flu-
ency demands probably targeted in-language data,
lightweight fine-tuning or adapters on diverse Per-
sian corpora (news, literature, social media), as
task-specific fine-tuned SOTA models still outper-
form LLMs (Abaskohi et al., 2024). Deepening
cultural fidelity will likewise require more than

zero-shot role cues. Anthropological or chain-
of-thought prompting(AlKhamissi et al., 2024),
and richer Persian cultural text in pretraining, are
the most plausible routes to reliable alignment.
Only by coupling linguistic adaptation with cul-
tural grounding can future LLMs begin to serve
Persian speakers with both fluency and fidelity.

6 Future Work

To build on these findings, future work should
broaden both the linguistic and cultural horizons.
Expanding beyond Iranian Persian to include for
example Dari and Tajik variants would reveal
whether the gaps we observe are universal or
dialect-specific. Incorporating human-in-the-loop
evaluations will be essential for judging fluency,
cultural appropriateness and downstream utility.
On the modeling side, it will be important to study
how fine-tuning on curated Persian corpora (e.g.
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Dimension Ground Truth DeepSeek GPT-4o Llama Gemini
Language Citizen Language Citizen Language Citizen Language Citizen

PDI [United States, Iran] ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓

IDV [Iran, United States] ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MAS [Iran, United States] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗

UAI [United States, Iran] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LTO [Iran, United States] ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

IVR [Iran, United States] ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓

Overall Accuracy — 33 % 67 % 50 % 50 % 67 % 83% 67% 83 %

Table 3: Cultural Alignment Ranking Comparison Across Models. ✓ = correct ranking alignment with ground truth;
✗ = incorrect alignment.

newswire, literature, social media) affects both lin-
guistic competence and cultural alignment. Chain-
of-thought/“anthropological” prompting may un-
lock deeper, context-sensitive reasoning that zero-
shot setups cannot (AlKhamissi et al., 2024). Fi-
nally, cultural evaluation itself stands to benefit
from complementary frameworks (e.g. narrative-
driven tests like PerCul or multi-dimensional sur-
vey simulations) to triangulate the complex ways
LLMs mirror—or misrepresent—real-world per-
spectives.

7 Conclusion

Our experiments reveal stark cross-lingual perfor-
mance gaps in today’s leading LLMs: models
that achieve near-state-of-the-art results in English
suffer accuracy losses when the same task types
are presented in Persian (Atox and Clark, 2024).
Few-shot prompt designs in English or Persian
cannot compensate for the underlying paucity of
high-quality Persian data or the models’ limited
instruction-following in a non-Latin script.

Likewise, simple “act-as” cultural prompts do
little to recover a faithful Iranian profile: even
the best models misorder core Hofstede dimen-
sions and show only modest alignment gains, un-
derscoring a deeper misalignment that goes beyond
surface-level persona shifts. Together, our findings
argue that achieving true multilingual equity will
require more than smarter prompts—it demands
richer, culturally representative pretraining data,
targeted adaptation (e.g. fine-tuning or adapters on
Persian resources), and human-centered evaluation
frameworks that can validate both linguistic fluency
and cultural nuance.

Limitations

Our study offers another look into Persian SOTA
LLM performance, but its scope is inevitably con-

strained. We focus on a handful of benchmark tasks
(spelling, paraphrase/NLI, QA, analogy, transla-
tion) and sample only 350 examples per split; many
important phenomena—idiomatic usage, named-
entity recognition, temporal inference or dialectal
variation (Dari, Tajik) fall outside our purview. We
rely mostly on automated metrics (exact-match ac-
curacy, BLEU, Hofstede VSM13 indices) and only
qualitatively analyzed task failures. Moreover, all
reported scores are single-shot estimates from one
run. No standard errors or deviations are shown, so
the precision of our comparisons is limited. Future
work should increase the number of runs (e.g., via
repeated trials) and expand the dataset to enable
error-bar visualizations and more robust statisti-
cal inference. Finally, our cultural probe leans on
Hofstede’s dimensions—a well-known but not un-
controversial framework—and tests only direct Per-
sian prompts or simple “act like an Iranian” cues,
without exploring richer narrative or survey-based
approaches, or other nationalities that have Persian
native speakers.
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Appendix

A Class Balance

Entailment (e/n/c) 122 110 118
Paraphrase (0/1) 216 134
Factual Recall (1–4) 98 88 94 70
Logical Reasoning (1–4) 75 102 93 80

Table 4: Counts per class (gold labels) for sampled
splits.
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Abstract
Advancements in LLMs have largely over-
looked low-resource languages (LRLs), cre-
ating a gap in evaluation benchmarks. To
address this for Georgian, a Kartvelian lan-
guage, we introduce GeoLogicQA. This
novel, manually-curated benchmark as-
sesses LLMs’ logical and inferential rea-
soning through 100 questions. Questions
cover syllogistic deduction, inferential read-
ing comprehension, common-sense reason-
ing, and arithmetic, adapted from challeng-
ing sources (Kangaroo Mathematics Com-
petition) and validated by native Georgian
speakers for linguistic nuances. Initial eval-
uations of state-of-the-art LLMs (Gemini
2.5 Flash, DeepSeek-V3, Grok-3, GPT-4o)
show an average accuracy of 64% to 83%,
significantly exceeding the human baseline
of 47%. While demonstrating strong rea-
soning potential, error analysis reveals per-
sistent challenges in multi-step combina-
torial and highly constrained inferential
tasks. GeoLogicQA is a public resource
for tracking progress and diagnosing weak-
nesses in Georgian LLMs. We plan to ex-
pand the benchmark and establish a public
leader-board to foster continuous improve-
ment.

1 Introduction
The rapid evolution of Large Language Mod-
els (LLMs), like GPT-4 and Llama 3, has
revolutionized AI, excelling in natural lan-
guage generation and problem-solving. This
progress is largely due to vast computational
resources and datasets in high-resource lan-
guages (HRLs), primarily English (OpenAI
et al., 2024). Consequently, low-resource lan-
guages (LRLs) face a significant disparity in
LLM development and evaluation, lacking ap-
propriate benchmarks to assess their true ca-
pabilities.

Georgian, a Kartvelian agglutinative lan-
guage, exemplifies this resource gap in NLP.
Existing Georgian NLP resources are insuffi-
cient for evaluating the deeper cognitive abil-
ities of modern generative LLMs, failing to
test complex logical reasoning, inferential com-
prehension, or common-sense understanding.
The critical question for Georgian NLP has
evolved from “Can a model process Georgian
text?” to “Can a model think in Georgian?”,
requiring evaluation beyond just a pattern
recognition.

This work introduces GeoLogicQA, a novel,
manually-curated evaluation benchmark de-
signed to assess the logical and inferential rea-
soning abilities of LLMs in Georgian language.
It offers a diverse set of multiple-choice ques-
tions covering syllogistic deduction, inferential
reading comprehension, common-sense reason-
ing, and arithmetic problem-solving, aiming
to diagnose model weaknesses. Our primary
goal is to provide a rigorous, publicly acces-
sible resource for tracking progress and fos-
ter more robust Georgian LLMs. Initial eval-
uations of models like ChatGPT, DeepSeek,
Gemini, and Grok on our 100-question bench-
mark show an average performance below 70%
accuracy, highlighting significant challenges in
complex Georgian reasoning.

The paper is structured as follows: Section 2
reviews existing LLM evaluation benchmarks
and Georgian NLP resources. Section 3 de-
tails GeoLogicQA’s design principles, task cat-
egories, and data curation. Section 4 outlines
the experimental setup, presents baseline re-
sults from LLM evaluations on GeoLogicQA,
and analyzes performance and error patterns,
followed by section 5, were implications, limita-
tions, and future work is discussed. The work
is concluded by section 6, which summarizes
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the contributions and emphasizes the broader
impact of the resource.

2 Background and Related Work
The landscape of Natural Language Processing
has been significantly shaped by the develop-
ment of sophisticated evaluation benchmarks
that measure the capabilities of large language
models. These benchmarks serve as crucial
instruments for comparing models, identify-
ing their strengths, and diagnosing their lim-
itations (Wang et al., 2019). Our work on
GeoLogicQA is situated within this broader
context, while simultaneously addressing the
unique challenges presented by low-resource
languages.

2.1 Benchmark Creation for LRLs
Benchmark is a set of standardized tests that
assess LLM performance across various tasks.
Creating benchmarks for LRLs involves sev-
eral steps that ensure the evaluation is mean-
ingful, fair, and generalizable across models.
The challenges faced by Georgian NLP are not
unique, many low-resource languages world-
wide contend with similar limitations in terms
of data availability and evaluation infrastruc-
ture. Consequently, there has been a growing
global movement within the NLP community
to address this disparity by creating dedicated
benchmarks for LRLs. Efforts often involve:

• Typical strategies that translate high-
resource-language (HRL) benchmarks
into low-resource languages (LRLs)
often lose culturally-specific context or
meaning, limiting faithful assessment of
reasoning capabilities in the target LRL
(Ghafoor et al., 2021). Further, studies
such as (Alhanai et al., 2024) show that
direct translations of benchmarks (e.g.,
Winogrande, MMLU into low-resource
African languages) underperform until
cultural adjustments are incorporated—
highlighting that simple translation
fails to preserve the nuanced reasoning
demands of the original tasks.

• Collaborative efforts involving native
speakers and linguists are crucial for
curating high-quality, culturally relevant
datasets; empirical evidence shows that

native-written corpora enhance lexical di-
versity and cultural content (Cahyawi-
jaya et al., 2023), while participatory
and community-centric approaches ensure
linguistic authenticity and foster richer
dataset design (Ousidhoum et al., 2025).

• Developing benchmarks tailored to spe-
cific linguistic phenomena or reasoning
types that are particularly challenging for
a given LRL. This approach helps diag-
nose unique model weaknesses (Goyal and
Dan, 2025; Sánchez et al., 2024; Bean
et al., 2024).

By developing GeoLogicQA,1 a manually-
curated benchmark for Georgian logical rea-
soning, we contribute to the crucial effort of
creating equitable and culturally-relevant eval-
uations for LLMs in low-resource languages.

2.2 Evaluation Benchmarks in HRLs
In high-resource languages, particularly En-
glish, a rich ecosystem of evaluation bench-
marks exists, each targeting different facets of
language understanding and reasoning. Promi-
nent examples include:

GLUE (General Language Under-
standing Evaluation) and its successor,
SuperGLUE: A collection of diverse natu-
ral language understanding tasks, such as sen-
timent analysis, textual entailment, question
answering, and paraphrase detection (Wang
et al., 2019). They assess a model’s ability to
capture semantic and syntactic nuances across
various linguistic phenomena. While founda-
tional, GLUE and SuperGLUE primarily eval-
uate general language understanding rather
than complex, multi-step logical reasoning.

MMLU (Massive Multitask Language
Understanding): A significant advancement
in evaluating LLMs by testing knowledge and
reasoning across 57 diverse subjects, including
humanities, social sciences, STEM, and profes-
sional disciplines (Hendrycks et al., 2021). It
is designed to be challenging, often requiring
zero-shot or few-shot inference, and assesses
a model’s ability to apply pre-trained knowl-
edge to novel problems. MMLU’s focus on a
wide array of academic and professional sub-
jects makes it a strong indicator of a model’s

1https://github.com/irakli97/GeoLogicQA.
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general intelligence and reasoning capabilities
beyond simple pattern matching.

Big-Bench (Beyond the Imitation
Game Benchmark): Includes over 200 tasks,
many of which are specifically designed to
push the boundaries of LLM capabilities, en-
compassing logical reasoning, common-sense
reasoning, mathematical problem-solving, and
creative writing (Srivastava et al., 2023). Big-
Bench Hard (BBH), a subset of the most chal-
lenging Big-Bench tasks, explicitly targets rea-
soning abilities that are difficult for current
LLMs, often involving multi-hop deduction,
complex causal relationships, or counterfac-
tual reasoning. These benchmarks provide a
robust framework for assessing higher-order
cognitive functions in LLMs.

These HRL benchmarks have been instru-
mental in driving the rapid progress of LLMs
by providing standardized, rigorous, and pub-
licly accessible evaluation tools. They allow re-
searchers to track performance, pinpoint weak-
nesses, and develop more sophisticated mod-
els.

2.3 NLP Resources for Georgian
Despite the global advancements in NLP, the
Georgian language faces significant challenges
due to its low-resource status (Pakray et al.,
2025). The availability of high-quality train-
ing data and advanced NLP tools for Georgian
is notably limited compared to HRLs. Exist-
ing resources primarily include several initia-
tives focused on compiling Georgian text cor-
pora from various sources, such as Wikipedia,
news articles, and literary works. These cor-
pora are valuable for foundational tasks like
language modeling and morphological analysis
(Doborjginidze and Lobzhanidze, 2016). Lim-
ited parallel corpora exist for machine trans-
lation between Georgian and other languages,
supporting cross-lingual transfer. Also, the
tools for Part-of-Speech tagging, lemmatiza-
tion, and dependency parsing have been de-
veloped, aiding in basic linguistic analysis
(Giorkhelidze, 2017). However, these existing
resources predominantly cater to traditional
NLP tasks and surface-level linguistic analy-
sis. They largely fall short in providing the
challenging, reasoning-focused datasets neces-
sary to evaluate the deep language understand-
ing and inferential capabilities of modern gen-

erative LLMs. The scarcity of structured,
annotated data designed for complex logical
inference means that current Georgian NLP
lacks the benchmarks required to gauge how
well LLMs can process and reason with Geor-
gian text beyond simple recognition or trans-
lation. There is a marked absence of stan-
dardized datasets that demand multi-step rea-
soning, logical deduction, or nuanced common-
sense inference in Georgian, creating a signif-
icant gap in the evaluation framework for ad-
vanced Georgian LLMs.

3 The GeoLogicQA Benchmark:
Design and Curation

The GeoLogicQA benchmark is meticulously
designed to provide a robust evaluation of
Large Language Models’ (LLMs) logical and
inferential reasoning capabilities specifically
within the Georgian language. This section
details the core design principles, the diverse
task categories included, and the rigorous data
collection and validation processes employed
to ensure the benchmark’s quality and validity.
Because of the unique linguistic characteristics
of the Georgian language, including its agglu-
tinative nature and prevalent polysemy (Ma
et al., 2020), we had to apply careful curation
when designing the GeoLogicQA benchmark
to overcome these challenges.

3.1 Design Principles
GeoLogicQA’s design is underpinned by sev-
eral core principles aimed at comprehensively
assessing LLMs’ reasoning in a low-resource
language context.

3.1.1 Focus on Logic and Inference
GeoLogicQA explicitly prioritizes tasks that
demand genuine logical and inferential reason-
ing, moving beyond simple keyword matching,
surface-level pattern recognition, or statistical
correlations. The fundamental aim is to as-
certain whether an LLM can truly “think in
Georgian,” grasping complex relationships and
deriving non-explicit conclusions, rather than
merely processing and reproducing text. This
necessitates questions that require multi-step
reasoning, an understanding of causality, and
the ability to synthesize information from var-
ious premises.
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3.1.2 Linguistic and Cultural Nuance
GeoLogicQA deeply integrates Georgian lin-
guistic and cultural nuances. Questions
weren’t just translated; they were crafted to
be natural, culturally relevant, and contex-
tually appropriate for native Georgian speak-
ers. This means scenarios, idioms, and com-
mon knowledge referenced in the questions
genuinely resonate within the Georgian con-
text, avoiding awkward translations that could
distort meaning or reasoning challenges.

Crucially, the design process addressed pol-
ysemy in Georgian, where words and phrases
can have multiple meanings. For example,
“მანძილის დაფარვა” can mean “to cover dis-
tance” or “to cover something with a lid.” To
prevent misinterpretations by LLMs due to lin-
guistic misunderstanding rather than a lack
of reasoning, question designers carefully con-
structed sentences and scenarios. They pro-
vided unambiguous contextual cues, ensuring
only the intended meaning was conveyed. This
precise phrasing was paramount to isolating
and testing true reasoning rather than surface-
level recognition.

3.1.3 Task Diversity
GeoLogicQA incorporates a diverse range of
reasoning task categories to provide a compre-
hensive assessment of LLMs’ cognitive abili-
ties. These categories include syllogistic and
deductive reasoning, reading comprehension
with inference, common-sense reasoning, and
arithmetic reasoning. This diversity ensures
that the benchmark evaluates a broad spec-
trum of reasoning skills, preventing LLMs
from excelling based on proficiency in only one
type of task.

3.1.4 Quality Assurance
The creation and validation of questions for
GeoLogicQA followed a rigorous, multi-stage
quality assurance process. Each question was
meticulously reviewed to ensure it was unam-
biguous, logically sound, and genuinely tested
complex reasoning rather than simple recall or
pattern matching. This iterative process in-
volved expert review and refinement to elimi-
nate any potential for misinterpretation or an
unintended correct answer, guaranteeing the
integrity of the evaluation.

3.2 Task Categories and Examples
GeoLogicQA comprises four distinct task cate-
gories, each designed to probe specific facets of
logical and inferential reasoning. The follow-
ing examples illustrate the type of questions
included in each category:

3.2.1 Category 1: Syllogistic &
Deductive Reasoning

Description: Tasks requiring deriving a logi-
cally sound conclusion from a set of premises.
These questions often test a model’s ability to
follow chains of inference and identify valid de-
ductions.

Example: Georgian: “ყოველ მონეტას აქვს
ორი მხარე, 'გერბი' და 'საფასური'. მაგიდაზე
ძევს ხუთი მონეტა, ხუთივე ზემოთ იყურება
'გერბით'. ყოველ ბიჯზე უნდა ამოვატრიალოთ
ზუსტად სამი მონეტა. იპოვეთ ბიჯების ის
უმცირესი რაოდენობა, რომლის შემდეგაც
ხუთივე მონეტა ზემოთ იქნება 'საფასურით'.”
English: “Five coins are lying on a table with
the ”heads” side up. At each step you must
turn over exactly three of the coins. What is
the least number of steps required to have all
the coins lying with the “tails” side up?”

3.2.2 Category 2: Reading
Comprehension with Inference

Description: Presenting a short paragraph
or scenario and asking a question where the
answer is not explicitly stated but must be in-
ferred from the provided text, requiring deeper
understanding and synthesis of information.

Example: Georgian: “კინოთეატრში ერთ
რიგში ზის 23 ცხოველი. თითოეული ცხოველი
არის ან თახვი ან კენგურუ. თითოეულ
ცხოველს ჰყავს სულ მცირე ერთი მეზობელი,
რომელიც კენგურუა. ყველაზე მეტი რამდენი
თახვი შეიძლება იყოსრიგში?” English: “There
are 23 animals sitting in a row at the cinema.
Each animal is either a beaver or a kangaroo.
Everyone has at least one neighbour who is a
kangaroo. What is the largest possible num-
ber of beavers in the row?”

3.2.3 Category 3: Common-Sense
Reasoning

Description: Questions relying on implicit,
everyday knowledge about the world and prac-
tical understanding of cause-and-effect rela-

124



tionships, adapted for a Georgian cultural con-
text.

Example: Georgian: “აისბერგს კუბის
ფორმა აქვს. მისი მოცულობის 90% არის
წყლის ზედაპირის ქვემოთ. წყლის ზედაპირის
ზემოთ ჩანს კუბის მხოლოდ სამი წიბოს ნაწილი.
ამ ნაწილების სიგრძეებია: 24 მ, 25 მ და 27 მ.
იპოვეთ კუბის წიბოს სიგრძე.” English: “An
iceberg has the shape of a cube. Exactly 90%
of its volume is hidden below the surface of
the water. Three edges of the cube are par-
tially visible over the water. The visible parts
of these edges are 24m, 25m and 27m. How
long is an edge of the cube?”

3.2.4 Category 4: Arithmetic
Reasoning

Description: Word problems that require ex-
tracting numerical quantities, understanding
relationships, and performing basic to moder-
ately complex calculations within a narrative
context.

Example: Georgian: “იპოვეთ 1 ·2 ·3 ·4 ·5 ·4 ·
3·2·1 ნამრავლის ბოლოორი ციფრის ჯამი.” En-
glish: “What is the sum of the last two digits
of the product 1 · 2 · 3 · 4 · 5 · 4 · 3 · 2 · 1?”

3.3 Data Collection and Validation
The quality and challenge of GeoLogicQA are
rooted in its careful data collection and rigor-
ous validation processes.

3.3.1 Source
The questions used in GeoLogicQA were
adapted from the annual Kangaroo Mathe-
matics Competitions, organized by the “As-
sociation Kangourou sans Frontières (AKSF)”
(https://www.aksf.org) and officially translated
into Georgian by its representatives in Geor-
gia. We primarily selected problems from the
9th to 12th-grade levels to ensure a high level
of cognitive demand and complexity, making
them suitable for evaluating advanced reason-
ing capabilities in LLMs.

Crucial modifications were made to ensure
AI interpretability without altering the core
reasoning challenge. This involved standard-
izing mathematical notations (e.g., usingˆ for
powers), adding parentheses for clarity, and
converting essential visual information from
image-based questions into descriptive text.
This last step was only done when the un-

derlying logical reasoning could be fully pre-
served without the visual component, avoiding
the need for computer vision. We obtained ex-
plicit permission from AKSF for ethical data
sourcing.

3.3.2 Validation Process
A rigorous multi-step verification process was
implemented to ensure the quality, clarity, and
correctness of each question and its intended
answer:

• Initial Drafting and Adaptation: The
core research team was responsible for the
initial drafting and adaptation of ques-
tions from the source materials, ensuring
adherence to the design principles.

• Expert Review by Native Speakers:
Each adapted question underwent rigor-
ous review by a panel of at least two inde-
pendent native Georgian speakers. This
panel critically evaluated each question
for linguistic clarity, potential ambigu-
ities (particularly addressing polysemy),
naturalness of expression, and the un-
equivocal correctness of the designated an-
swer. This step was paramount in re-
fining the questions for precision and en-
suring they truly assessed reasoning in
Georgian, eliminating any linguistic pit-
falls that might mislead an LLM.

• Pilot Testing on Human Subjects: A
subset of the questions was pilot tested on
human subjects to establish a human per-
formance baseline. These selected ques-
tions are notoriously challenging for hu-
man students, as evidenced by the pub-
lished average of 47% correct answers by
students on the Kangaroo Mathematics
Competition questions.2 It is important
to note that this relatively high percent-
age reflects the fact that participants in
the upper grades of the competition are
typically students with a strong interest
and background in mathematics. This hu-
man baseline provides a vital context for
evaluating LLM performance, highlight-
ing the benchmark’s inherent difficulty
even for human solvers.

2Source: https://kenguru.ge/olympiad.
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3.3.3 Statistics
The benchmark comprises of 100 questions.

4 Experimental Setup and Baseline
Results

This section details the experimental method-
ology employed to evaluate large language
models (LLMs) on the GeoLogicQA bench-
mark and presents the baseline results. We
describe the specific models chosen, the evalua-
tion protocol, and an in-depth analysis of their
performance, including an error breakdown to
highlight common challenges.

4.1 LLM Models
For the evaluation of logical and inferential rea-
soning capabilities in Georgian, a selection of
advanced large language models was chosen.
The models evaluated were GPT-4o, Gem-
ini 2.5 Flash, DeepSeek-V3, and Grok-3.
These models represent a diverse set of cur-
rent state-of-the-art LLMs, offering a robust
comparison of their performance on complex
reasoning tasks in a low-resource language.

4.2 Evaluation Protocol
To ensure a consistent and fair assessment of
each model’s inherent reasoning abilities, a
standardized evaluation protocol was strictly
adhered to.

4.2.1 Prompting Strategy
For all evaluations, a zero-shot prompt-
ing strategy was employed. The full ques-
tion text in Georgian, as presented in the
GeoLogicQA benchmark, was directly submit-
ted to each model without any additional in-
structions, examples, or specific formatting
cues. This approach was chosen to assess
the models’ inherent reasoning capabilities in
Georgian without external scaffolding. This
method provides a direct measure of how well
models understand and respond to novel, com-
plex questions solely based on their pre-trained
knowledge and reasoning faculties.

4.2.2 Metric
The performance of each LLM was quantified
by its accuracy, defined as the percentage of
correctly answered questions out of the total
100 questions in the GeoLogicQA benchmark.
A correct answer was determined by an exact

match with the ground truth solution. This bi-
nary metric provides a clear and unambiguous
measure of successful reasoning.

4.3 Results
The baseline performance of the evaluated
LLMs on the GeoLogicQA benchmark is pre-
sented in Table 1. For comparison, we in-
clude a human baseline derived from the per-
formance of 9th to 12th-grade students on the
adapted questions from the annual Kangaroo
Mathematics Competition in Georgia.3

Model Accuracy (%)
Gemini 2.5 Flash 83.00
DeepSeek-V3 74.00
Grok-3 67.00
GPT-4o 64.00
Human Baseline 47.0

Table 1: Baseline performance of evaluated LLMs
and human subjects on the GeoLogicQA bench-
mark.

4.4 Analysis and Error Breakdown
The results demonstrate a clear hierarchy in
performance among the evaluated LLMs, with
Gemini 2.5 Flash emerging as the top-
performing model, achieving an accuracy of
83.00%. Following closely were DeepSeek-
V3 (74.00%), Grok-3 (67.00%), and GPT-
4o (64.00%). A significant observation is
that all evaluated LLMs substantially sur-
passed the human baseline performance
of 47.0%. This indicates that current ad-
vanced LLMs possess a considerable advantage
over human subjects on these specific types of
logical and inferential reasoning tasks in Geor-
gian, despite the benchmark’s design to chal-
lenge models in a low-resource linguistic con-
text.

While all models performed well above the
human baseline, an analysis of specific errors
reveals common challenging categories and
unique failure modes. Syllogistic and Deduc-
tive Reasoning questions, as well as complex
Arithmetic Reasoning tasks, often proved to
be the most difficult for the models, aligning

3Data adapted from the official Geor-
gian Kangaroo Competition statistics, avail-
able at https://www.kenguru.ge/posts/
7700b50e-a89e-41c2-a6c8-24cab065b424.
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with the inherent complexity of these problem
types.

To illustrate, consider the following exam-
ples of observed errors:

• In a Syllogistic & Deductive Rea-
soning question about flipping five coins,
where “Five coins are lying on a table with
the ”heads” side up. At each step you
must turn over exactly three of the coins.
What is the least number of steps required
to have all the coins lying with the “tails”
side up?” all evaluated models failed
to provide the correct minimum number
of steps. This suggests a fundamental
challenge in multi-step combinatorial rea-
soning.

• For an Arithmetic Reasoning question
that asked to “What is the sum of the last
two digits of the product 1·2·3·4·5·4·3·2·
1?” Gemini 2.5 Flash and DeepSeek-
V3 correctly identified the answer,
while GPT-4o and Grok-3 were incor-
rect. This highlights varying levels of nu-
merical reasoning and attention to detail
among the models for specific arithmetic
properties.

• A Reading Comprehension with In-
ference question posed a scenario: “In
a cinema row, there are 23 animals sit-
ting. Each animal is either a beaver or
a kangaroo. Every animal has at least
one neighbor who is a kangaroo. What
is the maximum number of beavers there
can be in the row?” Interestingly, Grok-
3 was the only model to correctly
answer this question, whereas Gemini
2.5 Flash, GPT-4o, and DeepSeek-V3 all
failed. This particular instance points
to Grok-3’s potentially stronger ability
to handle complex conditional constraints
and infer maximum possibilities in a con-
strained environment.

• Another commonly challenging problem
involved determining a specific digit in
a product of “six consecutive numbers”
forming a 12-digit number of the form
’abb cdd cdd abb’. In this Arithmetic
Reasoning task, Gemini 2.5 Flash

and DeepSeek-V3 provided the cor-
rect answer, while GPT-4o and Grok-
3 did not. This error pattern indi-
cates that some models struggle more
with reverse engineering numerical prop-
erties or identifying specific digit values
within large products based on structural
constraints.

These examples underscore that while LLMs
show robust performance on average, specific
types of logical puzzles and intricate numerical
challenges continue to pose significant hurdles,
revealing areas for future model improvement
in handling complex reasoning in Georgian.

5 Discussion
5.1 Key Takeaways
State-of-the-art Large Language Models
(LLMs) consistently outperformed the human
baseline of 47.0% on GeoLogicQA, a bench-
mark for logical and inferential reasoning in
Georgian. Gemini 2.5 Flash led with 83.00%
accuracy, followed by DeepSeek-V3 (74.00%),
Grok-3 (67.00%), and GPT-4o (64.00%).
This demonstrates a significant advantage for
LLMs in structured logical and arithmetic
problems, even in a low-resource language like
Georgian. This performance gap underscores
the rapid advancements in LLM reasoning.
While LLMs excel at precise, multi-step
deduction, they still struggle with complex
multi-step combinatorial problems and nu-
anced inferential reading comprehension
requiring the synthesis of multiple constraints.
The varied performance across problem types
highlights that no single model is universally
superior, emphasizing the need for continued
refinement in intricate logical deductions
within low-resource language contexts.

5.2 Future Work
Building upon GeoLogicQA’s initial release,
our future work will focus on several key di-
rections to expand its utility and impact:

• Benchmark Expansion: We plan to
significantly expand the GeoLogicQA
dataset by curating hundreds of addi-
tional questions. This expansion will not
only increase statistical robustness but
also allow for the inclusion of new task
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categories. Potential additions include
questions testing understanding of figura-
tive language, detection of logical falla-
cies in natural arguments, and more com-
plex causal reasoning scenarios that re-
quire deeper narrative comprehension.

• Public Leaderboard and Commu-
nity Contributions: To foster contin-
uous progress and facilitate comparative
research, we intend to establish a publicly
accessible leaderboard. This platform will
allow researchers to submit their mod-
els’ performance on GeoLogicQA, track-
ing advancements in Georgian LLM rea-
soning over time. Furthermore, we will
actively encourage community contribu-
tions to the benchmark, inviting native
Georgian speakers, linguists, and AI re-
searchers to propose new questions and
reasoning challenges. This collaborative
approach will ensure the benchmark re-
mains dynamic, comprehensive, and re-
flective of the evolving needs of the Geor-
gian NLP community.

6 Conclusion
This paper introduces GeoLogicQA, the first
dedicated benchmark for evaluating logical
and inferential reasoning capabilities of Large
Language Models in the Georgian language.
Through meticulous manual curation and rig-
orous validation, GeoLogicQA provides a chal-
lenging set of 100 questions spanning syllo-
gistic deduction, inferential reading compre-
hension, common-sense reasoning, and arith-
metic problem-solving. Our baseline evalua-
tions demonstrate that contemporary LLMs,
notably Gemini 2.5 Flash, DeepSeek-V3, Grok-
3, and GPT-4o, significantly outperform hu-
man subjects on these complex Georgian rea-
soning tasks, highlighting the advanced logi-
cal capabilities of current models even in low-
resource linguistic contexts.

The creation and public release of
GeoLogicQA address a critical gap in
the evaluation infrastructure for Georgian
Natural Language Processing, moving beyond
superficial linguistic analysis to probe deeper
cognitive abilities. This benchmark will serve
as a vital resource for the research community,
enabling systematic tracking of progress, iden-

tifying specific areas for model improvement,
and fostering the development of more robust
and intelligent LLMs for Georgian. As we
continue to expand and refine GeoLogicQA,
we emphasize the urgent and ongoing need
for community-driven resource creation to
ensure equitable and comprehensive AI devel-
opment across the world’s diverse linguistic
landscape, ultimately paving the way for
truly multilingual and reasoning-capable AI
systems.

Limitations of GeoLogicQA
While a valuable step, GeoLogicQA has limita-
tions. Firstly, its modest size of 100 questions
limits statistical confidence compared to larger
benchmarks, hindering comprehensive analy-
sis across diverse logical challenges. Secondly,
GeoLogicQA primarily focuses on structured
logical, inferential, and arithmetic reasoning,
lacking coverage of broader human-like reason-
ing. It currently omits common-sense reason-
ing (e.g., social understanding, ethical dilem-
mas, logical fallacy detection) and deep un-
derstanding of Georgian cultural nuances like
idioms or proverbs. Finally, its reliance on
adapted Math competition questions, though
ensuring high cognitive demand, constrains
the scope to formalized problems with single
correct answers. This may not fully capture
the breadth of real-world, open-ended, am-
biguous, or creative reasoning challenges.
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Abstract
The rise of social media has amplified both
the visibility and vulnerability of marginalized
communities, such as the transgender popula-
tion in South Asia. While hate speech detection
has seen considerable progress in high resource
languages like English, under-resourced and
code mixed languages such as Roman Urdu
remain significantly understudied. This pa-
per presents a novel Roman Urdu dataset de-
rived from Instagram comments on transgen-
der related content, capturing the intricacies
of multilingual, code-mixed, and emoji-laden
social discourse. We introduce a transphobic
slur lexicon specific to Roman Urdu and a se-
mantic emoji classification grounded in con-
textual usage. These resources are utilized to
perform fine-grained classification of sentiment
and hate speech using both traditional machine
learning models and transformer-based archi-
tectures. The findings show that our custom-
trained BERT-based models, Senti-RU-Bert
and Hate-RU-Bert, show the best performance,
with F1 scores of 80.39% for sentiment classi-
fication and 77.34% for hate speech classifica-
tion. Ablation studies reveal consistent perfor-
mance gains when slur and emoji features are
included.

1 Introduction

In recent years, there has been a significant increase
in social networks and content consumption. What
people share on social media platforms has a di-
rect impact on their daily lives (Aziz et al., 2023).
Social media has become a powerful platform for
sharing ideas and perspectives; however, it is also
increasingly misused to spread hate against individ-
uals, groups, and communities. Such content poses
serious threats to social harmony, online safety, and
mental health (Sharma et al., 2025), contributing to
the alarming rise in hate speech.

Hateful speech is a type of language which con-
veys the negative sentiment that can shame users

while also promoting radicalism and inciting vio-
lence (Gitari et al., 2015). Hate speech is a growing
issue, especially in the comment sections of social
media platforms such as Instagram, Facebook, and
YouTube. Several approaches to categorizing hate
speech on social media platforms were investigated
in the study (Martins et al., 2018). They presented
a combination of machine learning and lexicon-
based methods for predicting hate speech. Notably,
they employed emotional content in sentences to
improve the detection accuracy of hate speech.

While hate speech detection in English (Shahi
and Majchrzak, 2024; Pan et al., 2024; Gandhi
et al., 2024) have been widely studied, low resource
South Asian languages remain significantly under-
explored, leaving millions of social media users
vulnerable. In Pakistan, for instance, around 26%
of the population is bilingual, leading to frequent
code mixing in user generated content (Aziz et al.,
2023). This linguistic diversity often results in
text that blends English script with local languages
such as Roman Urdu and Roman Sindhi posing
unique challenges for automated detection systems.
Addressing this gap requires the development of
dedicated resources for these underrepresented lan-
guages.

Although sentiment analysis in Roman Urdu
has received some attention in prior work, sub-
stantial limitations persist. Several Roman Urdu
datasets are publicly available, and previous studies
have focused on unsupervised lexical normaliza-
tion (Mehmood et al., 2020b) and the impact of
lexical variation on sentiment classification (Man-
zoor et al., 2020). Notable efforts include the Ro-
man Urdu E-commerce Dataset (RUECD), which
comprises 26,824 customer reviews from DarazPK
(Chandio et al., 2022), a binary-labeled dataset of
11,000 reviews across six domains (Mehmood et al.,
2019), and a third dataset with 3,241 annotated at-
titudes (Mehmood et al., 2020a). Despite these
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efforts, Roman Urdu remains a low-resource lan-
guage, and progress in sentiment and hate speech
detection is hindered by a lack of standardized lin-
guistic tools and comprehensive annotated datasets
(Khan et al., 2024). This scarcity highlights the
pressing need for further research and resource de-
velopment to support natural language understand-
ing in code-mixed, under-resourced settings.

Existing studies on Urdu language television dra-
mas reveal a distorted portrayal of transgender char-
acters, often exaggerating dominance and neglect-
ing economic violence while emphasizing psycho-
logical abuse (Mehmood et al., 2020b; Manzoor
et al., 2020; Ullah et al., 2024). Despite such media
shaping cultural discourse, no curated Roman Urdu
dataset exists that reflects the unique linguistic pat-
terns and hate speech dynamics in social media
discussions about transgender people in Pakistan.
This underscores an urgent need to build special-
ized Roman Urdu datasets for hate speech detection
that can more accurately capture the sociolinguistic
realities of digital discourse in underrepresented
languages and communities.

In this study, we address the underexplored issue
of hate speech and sentiment analysis in Roman
Urdu social media discourse, particularly focus-
ing on transgender related content. We construct a
novel dataset of Instagram comments that reflects
real-world multilingual and code-mixed usage, en-
riched with emojis and varying sentiment. To cap-
ture the specific linguistic and multimodal nuances
of online hate, we also develop a Roman Urdu
transphobic slur lexicon and a context aware emoji
classification. These resources enable deeper anal-
ysis of abuse patterns and facilitate fine-grained
feature extraction. Building on these contributions,
we perform a thorough evaluation of traditional ma-
chine learning models and transformer-based archi-
tectures, comparing their performance across dif-
ferent combinations of textual, lexical, and emoji-
based features for both sentiment and hate speech
classification tasks. This comprehensive approach
highlights the complexities of detecting hate in low
resource, code-mixed contexts and offers tools to
improve detection and understanding in similar so-
ciolinguistic settings. Following are three main
contribution of this study:

• Creation of a novel, Roman Urdu dataset from
Instagram comments on transgender related
content, incorporating multilingual and emoji-
inclusive text.

• Development of a Roman Urdu based trans-
phobic slur lexicon and an emoji classifica-
tion, enabling fine grained linguistic and mul-
timodal feature enrichment.

• Conducted a comprehensive evaluation of ML
and transformer models using text, emoji, and
slur features for sentiment and hate speech
classification.

2 Dataset

The dataset used in this study was collected from
the Instagram comment sections of Binax Studio1,
a social media page focusing on transgender ori-
ented content in Pakistan. The dataset comprises
comments written in multiple languages, includ-
ing Roman Urdu, Urdu (Arabic script), Hindi (De-
vanagari), Arabic, English and a high frequency of
emojis. Given their dominance in the dataset, we
retained only comments written in Roman Urdu or
code-mixed Roman Urdu (i.e., Roman Urdu com-
bined with English or emojis), as well as purely
emoji based expressions, for further analysis. A
zero-shot learning approach with human feedback
was employed to label the comments. A typical
prompt provided to the model was:

“Analyze the following text and return
JSON with exactly these keys: - sen-
timent: one of ’positive’, ’neutral’, or
’negative’ - negative type: if sentiment
is ’negative’, classify it as ’abusive’,
’threatening’, ’call for action’, or ’other’.
Else null. - language: detect the lan-
guage or script used, like ’Urdu’, ’Ro-
man Urdu’, ’English’, etc. Consider
emoji and transliteration.”

For reliability, two bilingual authors (fluent in
Urdu, Roman Urdu, and English) independently ex-
amined 200 model labeled comments. Substantial
agreement was achieved with the model’s assign-
ments (Cohen’s κ = 0.75), and any differences
were settled through discussion, which informed
adjustments to the labeling guidelines.

Table 1 summarizes the distribution of content
types in the dataset. A majority of the comments
(1584) were written in Roman Urdu without emojis,
followed closely by 1282 comments that combined

1https://www.instagram.com/binax.
studio
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Roman Urdu with emojis. Additionally, 294 com-
ments consisted entirely of emojis. The dataset was
annotated for two key tasks:

Table 1: Distribution of Content Types with Examples

Content Type Count Example

Roman Urdu 1584 Ab khusron ky bhi podcast
hongy?

Roman Urdu +
Emoji

1282 Apko dekh kr ma kya hi

judge krunga

Emoji Only 294

Total 3160 –

2.1 Task 1: Sentiment Analysis

The first task involved classifying each comment
into one of three sentiment categories: Positive,
Neutral, or Negative. This task captures the overall
emotional tone of public engagement with trans-
gender content (Mao et al., 2024).

• Positive: Comments that express support, ad-
miration, or encouragement.

Example: ”Jaan ho ”

Translation: ”You are my life”

• Neutral: Comments that are factual, descrip-
tive, or unclear in tone.

Example: “yaar yeh q ka mtlv kya hai”

Translation: ”Hey, what does this mean?”

• Negative: Comments expressing disapproval,
mockery, or hostility.

Example: ”Saleh hijre”

Translation: ”Damn eunuch”

2.2 Task 2: Hate Speech Classification

The second task involved classifying hate speech
present in the comments into four categories: Abu-
sive, Threat, Call for Action, and Other. This cate-
gorization aims to capture different intensities and
types of harmful speech targeting transgender indi-
viduals (Kumar et al., 2025).

• Abusive: Insults, slurs, or dehumanizing lan-
guage directed at transgender people.

Example: “Tum dono ki MKC”

Translation: ”You both are motherf***ers”
(highly offensive)

• Threat: Explicit or implicit threats of vio-
lence or harm.

Example: “The scream at the end will be u
screaming when i will execute u. Fitnah phe-
late ho tum loug. JAHANAMMI!!”

Translation: ”You spread chaos. The scream
at the end will be yours when I execute you.
You are hell-bound!!”

• Call for Action: Urging others to act against
transgender individuals, including boycotts or
violence.

Example: “Report karo inko”

Translation: ”Report them”

• Other: Includes misgendering, sarcastic de-
rision, or religiously framed delegitimization
that doesn’t fit the above but still contributes
to a hostile environment.

Example: “Ouch”

Translation: Same in English; sarcastic or
mocking tone.

Table 2 presents the distribution of sentiment and
hate speech categories within the filtered dataset.
Out of 3160 comments, the majority (1603) ex-
pressed negative sentiment, followed by 966 pos-
itive and 591 neutral comments. In terms of hate
speech, 1225 comments were labeled as abusive,
while a smaller number fell into the categories of
other (339), threatening (22), and call for action
(17).

Table 2: Distribution of Sentiment and Hate Speech
Categories

Sentiment Count Hate Speech Type Count

Negative 1603 Abusive 1225
Positive 966 Other 339
Neutral 591 Threatening 22
– – Call for Action 17

3 Linguistic Analysis

This section explores the linguistic features and af-
fective cues used in online discourse targeting trans-
gender individuals, particularly in Roman Urdu.
We focus on two key dimensions: (1) lexical abuse
through Roman Urdu slurs, and (2) the affective
and rhetorical functions of emojis in these hos-
tile or supportive comments. Together, they reveal
how language and visual symbols convey support,
mockery, identity assertion, or threats.
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3.1 Emoji Classification Design
To analyze the role of emojis in transgender-related
discourse, we developed a custom taxonomy based
on contextual usage rather than Unicode semantics.
As shown in Figure 1, we identified ten functional
categories: Supportive/Affective (affection, soli-
darity), Mocking/Dismissive (ridicule, sarcasm),
Identity Pride (queer or gender identity markers),
Aggressive/Threatening (symbolic violence, hostil-
ity), Gesture/Emphasis (tone amplification), Reli-
gious/Moral (judgment) Humor/Ambiguous (irony,
camp), Sadness/Vulnerability (grief, helplessness),
Body/Gendered (physical or sexed features), and
Mock Femininity (caricatured feminized traits). Al-
though each emoji was placed in one main category
based on its context, in rare cases, the same emoji
could fit into more than one category depending
on how it was used. Building on the taxonomy,
Figure 2 presents the distribution of emoji usage
across the dataset. The most frequent category was
Mocking (38.76%), highlighting the prevalence of
ridicule and sarcasm. This was followed by Sup-
portive/Affective (27.33%), indicating a substantial
presence of emotional solidarity. Mock Feminin-
ity (8.84%) and Aggressive/Threatening (7.51%)
emojis also appeared prominently, often signaling
coded transphobia or symbolic hostility.

3.2 Construction of Transphobic Slur Lexicon
for Roman Urdu

We constructed a domain specific lexicon by iden-
tifying 124 unique slurs from the comment dataset.
This lexicon includes both explicit terms and more
implicit or coded expressions used in South Asian
digital discourse (e.g., chakka, khusra, etc). The
lexicon construction was in done in following 4
steps.

3.2.1 Orthographic Normalization:
To consolidate orthographic variants of abusive
terms, we applied phoneme aware normalization
rules that convert common Roman Urdu digraphs
and vowel elongations into base forms (e.g., “gan-
doo”, “gaanduu” → gandu). This step was im-
plemented using regular expressions and phonetic
substitution rules that we manually created to
handle common Roman Urdu spelling variants
(e.g.,“aa”/“a”). As no standardized resources ex-
ist for Roman Urdu normalization, our rules were
iteratively refined through manual inspection of
sample outputs. To group closely related variants
and misspellings, tokens were clustered based on

Levenshtein edit distance (threshold ≤ 2). This ap-
proach ensured that minor typographical variations
were treated as a single lexeme.

3.2.2 Token Filtering and Frequency
Thresholding:

We removed stopwords using an expanded bilin-
gual stopword list covering both Roman Urdu and
English function words. Tokens with a frequency
less than three were discarded to focus on com-
monly used terms.

3.2.3 Manual Filtering:
After converting minor typographical variations
into single lexemes, we obtained 664 tokens. These
were manually reviewed to remove ambiguous or
contextually irrelevant words, resulting in a final
curated lexicon of 124 semantically abusive and
transphobic slurs.

Table 3 shows the most common abusive and
transphobic slurs found in our dataset. These slurs
frequently appeared in user comments and were
retained in our final lexicon after normalization
and manual review. Many of the terms, such as bc
and bkl, are abbreviations or phonetic spellings,
but within the comment context, they clearly func-
tion as tools of verbal abuse. While this data is
specific to our collected dataset, it reflects a wider
trend of how such harmful language is casually and
repeatedly used in online conversations related to
transgender topics in the South Asian social media
space.

Table 3: Most common slurs in the dataset based on our
Roman Urdu Transphobic Slur lexicon

Normalized Count Description

bc 58 Abbreviation of incest-
based Urdu profanity

khusra 57 Slur for transgender
person (Roman Urdu
for Khusra)

gand 44 Vulgar term for but-
tocks (Roman Urdu)

bkl 32 Abbreviation for “idiot”
or “stupid” in abuse
contexts

gandu 24 Used in the context of
abuse to call someone
F*gg*t

Table 4 shows the most common co-occurrences
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Figure 1: Proposed Emoji Classification

Figure 2: Emoji Distribution Based on Proposed Emoji
Classification

between transphobic slurs and emojis within Ro-
man Urdu comments. These combinations were
extracted from our dataset and reveal how users
often use affective emojis especially the (joy)
emoji alongside abusive terms like gand, bc, and
chakka. The use of such emojis tends to amplify
mockery, express sarcasm, or downplay the abuse,
making it seem more casual. This highlights an im-
portant multimodal layer of hate speech and shows
why emoji signals should be included in models
that detect implicit or indirect abuse.

Table 4: Top Slur Emoji Co-occurrences by Frequency

Slur (Description) Emoji Count

gand (buttocks) 29

bc (incest profanity) 19

chakka (trans slur) 18

lan (penis) 15

chod (f**k) 14

Table 5 presents examples of how emojis fre-
quently appear alongside transphobic or vulgar

slurs in Roman Urdu social media comments.
Each row includes a commonly used slur, its co-
occurring emoji, the frequency of this pairing, and
an anonymized usage example translated into En-

glish. Emojis like (laughter) or (mockery)
often shift the emotional tone either by making
the abuse sound humorous, sarcastic, or more in-
tense. These combinations reflect a deliberate use
of visual cues to strengthen or mask hateful intent,
making the abuse seem more socially acceptable or
performative. The findings emphasize the need to
treat emojis not just as add-ons, but as important
features in detecting and understanding online hate
speech.

Table 5: Examples of Emoji Usage in Slur Contexts

Slur Emoji Count Example

gando 29 ”Gando log ” ”F*gg*t
people” with mocking
laughter.

lanat 5 ”Lanat ”
”Shame/curse” with
repeated hand gestures.

chutiya 3 ”Chutiya promoting nu-

dity ” Sarcastic or
mocking tone.

bc 3 ”Chaako ki podcast
are bc” ”Chaako” is a
derogatory slur for trans-
gender people, and ”bc” is
a strong abusive term

4 Experimental Settings

We conducted comprehensive experiments for two
classification tasks: (i) Sentiment analysis (positive,

135



neutral, negative), and (ii) Hate speech classifica-
tion (e.g., abusive, threatening, etc.). Each task was
evaluated using both traditional machine learning
models and fine tuned transformer based model.

4.1 Dataset Preprocessing and Feature
Engineering

We have dataset D = {(xi, yi)}Ni=1, where each xi
is a instance of the dataset (i.e. comment on an
Instagram post) and yi ∈ Y is the corresponding
label (for either sentiment or hate speech category),
we augmented the inputs with structured linguistic
and contextual features to capture additional social
and semantic cues beyond raw text.

Each input xi was decomposed into its base text
ti, a categorical emoji feature ei ∈ E , and a bi-
nary indicator si ∈ {0, 1} for the presence of slurs.
The slur flag si is computed based on a manually
curated lexicon lexslur of 124 normalized Roman
Urdu transgender related slurs. The flag is defined
as:

si =

{
1 if ∃w ∈ lexslurw ∈ Tok(ti)
0 otherwise

(1)

In equation 1 Tok(ti) denotes the tokenized form
of the comment ti. The emoji feature ei was de-
rived by mapping each emoji in ti to a predefined
semantic category (e.g., mocking, affective, gesture,
threat).

To systematically evaluate the contribution of
each feature type, we defined four feature sets:
(i) Ftext = {ti}, representing raw text only; (ii)
Ftext+emoji = {ti, ei}, which includes emoji cate-
gory alongside text; (iii) Ftext+slur = {ti, si}, incor-
porating slur presence; and (iv) Fall = {ti, ei, si},
the full feature combination. These sets were used
across experiments to assess the role of lexical and
paralinguistic features under controlled compar-
isons.

4.2 Modeling and Evaluation
Once dataset preprocessing and feature engineer-
ing is done, the next step is perform machine learn-
ing modeling and evaluation across both sentiment
analysis and hate speech type classification tasks.
We implemented two modeling approaches: one
based on traditional machine learning (ML) algo-
rithms with bag of words representations, and an-
other using a custom fine tuned BERT (Devlin et al.,
2019) based transformer model. For consistency

each model was trained and tested using a strati-
fied 80/20 train-test split with fixed random seed to
ensure reproducibility.

4.2.1 Traditional Machine Learning Models
For classical approaches, we trained a diverse
set of supervised classifiers: Logistic Regression
(LogReg), Linear Support Vector Machine (Lin-
earSVC), Multinomial Naive Bayes (Multinomi-
alNB), Random Forest, XGBoost, and LightGBM.
In this modeling approach the textual input ti
was converted into numerical form using TF-IDF
(De Santis et al., 2024) vectorization, capturing
both unigrams and bigrams (n-gram range = (1,
2)) and restricted to a maximum of 5000 features.
Emoji categories ei ∈ E were encoded using one-
hot encoding, and the slur flag si ∈ {0, 1} was
passed through as a numeric binary feature.

4.2.2 Transformer Based Model
To model context and semantic nuance directly
from raw text, we trained a task specific trans-
former classifier based on BERT (bert-base-
uncased). Input text was tokenized using the cor-
responding WordPiece tokenizer (Schönle et al.,
2024), subword information, and special tokens.
Each input sequence was truncated or padded to
a maximum length of 128 tokens and passed to
the BERT encoder. The transformer model was
implemented using the HuggingFace Transformers
library2. All experiments were conducted with a
batch size of 8, 3 epochs of training with 50 logging
steps.

4.2.3 Model Evaluation
Both traditional machine learning models and the
transformer based model were evaluated using stan-
dard classification metrics: Accuracy, Precision,
Recall, and F1 Score. All metrics were computed
using weighted averaging, which accounts for the
distribution of samples across classes and ensures
that minority classes are not ignored during evalu-
ation. To ensure a fair and consistent comparison
across all models and feature combinations, the
dataset was partitioned into 80% training and 20%
testing subsets using stratified sampling, preserving
the original class proportions in both splits.

5 Results

This section presents the performance outcomes
of various models applied to two primary tasks:

2https://huggingface.co/
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Sentiment Classification and Negativity Type (hate
speech) Classification. We evaluate both traditional
machine learning classifiers and a transformer-
based BERT model using four different feature
configurations: text only (T), text with emoji fea-
tures (T+E), text with slur features (T+S), and all
features combined (T+E+S). For experiments in-
cluding emojis (E) and slur flags (S), these features
were concatenated as auxiliary inputs to the BERT
classifier’s final hidden layer before the classifica-
tion head. The evaluation metrics include Accuracy,
Precision, Recall, and F1 Score. All experiments
were conducted on Google Colab with a 16 GB
RAM and 128 GB disk environment.

Table 6 presents the comparative performance
of multiple models across two classification tasks:
Sentiment Detection and Hate speech Classifica-
tion. All models were evaluated using a unified fea-
ture set comprising textual (T), emoji features (E),
and slur features (S). Among traditional machine
learning models, LinearSVC and Random Forest
demonstrated relatively strong and consistent per-
formance. However, BERT-based models (Senti-
RU-BERT and Hate-RU-BERT) outperformed all
baselines across both tasks, achieving the highest
accuracy (80.54% for sentiment, 78.01% for neg-
ativity type) and F1 scores (80.39% and 77.34%
respectively). Our domain specific variants, Senti-
RU-BERT and Hate-RU-BERT, fine-tuned on Ro-
man Urdu data with emoji and slur context, yielded
the best results. These findings shows the effec-
tiveness of contextual embeddings in capturing
the nuanced affective and abusive signals in under-
resourced, code-mixed languages especially when
enhanced with multimodal cues.

Table 6: Performance (Accuracy, Precision, Recall, F1)
for Sentiment and Hate Speech Classification

Task Model Acc. Prec. Rec. F1

Sentiment

LinearSVC 74.37 74.77 74.37 74.54
LogReg 74.21 73.51 74.21 73.09
RandomForest 73.26 73.72 73.26 73.46
XGBoost 71.99 73.62 71.99 72.60
MultinomialNB 68.83 74.00 68.83 63.60
LightGBM 68.04 70.11 68.04 68.77
Senti-RU-BERT 80.54 80.29 80.54 80.39

Negativity

LinearSVC 72.15 71.21 72.15 71.19
LogReg 71.68 71.11 71.68 70.17
RandomForest 74.21 74.43 74.21 72.86
XGBoost 71.20 69.85 71.20 70.36
MultinomialNB 71.36 72.20 71.36 69.86
LightGBM 68.67 67.99 68.67 67.83
Hate-RU-BERT 78.01 76.75 78.01 77.34

Table 7 presents a detailed ablation study re-
porting F1 scores for different combinations of
input features Text only (T), Text + Emoji fea-
tures (T+E), Text + Slur features (T+S), and all
combined (T+E+S) across various models for both
sentiment and negativity classification. For senti-
ment classification, the best results were consis-
tently achieved with the T+E+S combination. Tra-
ditional models like LinearSVC (74.54), Logistic
Regression (73.09), and Random Forest (73.46)
showed marked improvements over their text-only
baselines (66.74, 64.94, and 66.79 respectively).
Notably, Senti-RU-BERT attained the highest F1
score of 80.77 with the T+E setting, slightly out-
performing the T+E+S score (80.39), suggesting
that emojis alone contributed more than slurs in
this transformer model. Among traditional models,
XGBoost (72.60) and LightGBM (68.77) also ben-
efited from feature fusion, while MultinomialNB
saw the greatest relative gain jumping from 45.75
(T) to 63.60 (T+E+S). In the case of hate speech
type classification, results were more nuanced. The
highest F1 score was obtained by Hate-RU-BERT
with 77.64 using T+S, showing that slur features
were particularly informative for this task. Among
classical models, Random Forest (73.88) and Lo-
gistic Regression (72.45) also achieved their top
scores using T+S, indicating the value of slur-based
lexical signals for distinguishing hate subtypes. In-
terestingly, unlike the sentiment task, adding emo-
jis (T+E) showed limited or no improvement here.
The overall best traditional performance came from
Random Forest with T+S (73.88), while Multinomi-
alNB, though less effective overall, reached 72.03
with T+S its peak performance across all configura-
tions. These results validate that incorporating task
specific linguistic signals such as emojis for senti-
ment and slurs for hate subtype detection improves
classifier performance.

6 Limitations

Despite achieving strong performance on both sen-
timent and hate speech classification tasks, sev-
eral limitations persist. First, the class imbalance,
especially in the hate speech subtype categories
(e.g., threatening, call for action), may bias the
models toward more frequent classes like abusive.
This limits generalizability and reduces sensitiv-
ity to underrepresented categories. Second, many
instances of hate speech in our dataset exhibit sub-
tle or context-dependent abuse, including sarcasm,
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Table 7: Ablation Study: F1 Score Comparison Across Feature Sets and Models

Features LinearSVC LogReg RandomForest XGBoost MultinomialNB LightGBM Senti-RU-BERT / Hate-RU-BERT

Sentiment

T 66.74 64.94 66.79 64.41 45.75 54.09 72.65
T+E 73.25 71.10 71.36 68.76 62.52 63.28 80.77
T+S 68.00 66.82 68.62 66.75 46.83 57.85 74.31
T+E+S 74.54 73.09 73.46 72.60 63.60 68.77 80.39

Negativity Type

T 70.70 69.54 70.21 68.58 69.22 60.71 76.14
T+E 70.76 69.44 69.53 68.49 68.36 61.21 76.82
T+S 72.42 72.45 73.88 69.46 72.03 68.06 77.64
T+E+S 71.19 70.17 72.86 70.36 69.86 67.83 77.34

code switching, or rhetorical phrasing, which re-
main challenging for both traditional models and
BERT. Although auxiliary features like slur flags
and emoji categories improve performance, they
cannot fully capture nuanced socio-pragmatic cues.

7 Future Work

Future work can focus on curating more balanced
and culturally grounded datasets for Roman Urdu
and code-switched text, incorporating linguistic an-
notation informed by sociolinguistic cues to better
detect subtle or indirect expressions of hate speech.
Further to deal with class imbalance the dataset
should be curated in such a way that there is bal-
ance between both overrepresented and underrepre-
sented classes such as such as threatening or call for
action. This can also be achieved through targeted
data augmentation techniques like paraphrasing,
back translation, or synthetic oversampling. Fu-
ture work could also explore applying more recent
large language models (e.g., GPT or open-source
alternatives).

8 Conclusion

This study presents a novel computational approach
to analyzing online discourse concerning trans-
gender communities in Pakistan, with a particu-
lar emphasis on Roman Urdu—a low-resource,
code-mixed language prevalent across social me-
dia platforms. We introduce a comprehensive
Instagram-based dataset annotated for both sen-
timent and hate speech, and further enrich this re-
source through the development of a Roman Urdu
transphobic slur lexicon and an emoji classification
grounded in contextual semantics. Experimental
evaluations reveal that transformer-based architec-
tures, notably BERT, consistently outperform tra-
ditional machine learning models on both classi-

fication tasks, achieving F1 scores of 80.39% for
sentiment and 77.34% for hate speech detection.
Ablation analyses demonstrate that the integration
of lexicon-based and emoji-derived features yields
significant performance improvements, especially
in identifying implicit or nuanced forms of hate
speech. These findings highlight the critical role
of culturally and linguistically informed resources
in advancing hate speech detection in low-resource
settings. By integrating domain-specific linguis-
tic insights with state-of-the-art natural language
processing techniques, this work establishes foun-
dational tools, benchmarks, and methodologies for
future research in socially-aware, multilingual, and
inclusive NLP.
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Abstract

False information poses a significant global
challenge, and manually verifying claims is
a time-consuming and resource-intensive pro-
cess. In this research paper, we experiment
with different approaches to investigate the ef-
fectiveness of large language models (LLMs) in
classifying factual claims by their veracity and
generating justifications in English and Telugu.
The key contributions of this work include the
creation of a bilingual English-Telugu dataset
and the benchmarking of different veracity clas-
sification approaches based on LLMs.

1 Introduction

In today’s technological world, claim verification
plays an important role (Zhang and Gao, 2023),
which aims to assess the veracity of claims as
“true” or “false” by validating them against trustwor-
thy sources (Panchendrarajan and Zubiaga, 2024).
This is necessary to combat false information, es-
pecially in multilingual countries such as India,
where false information can be propagated in mul-
tiple languages via translation technology (Quelle
et al., 2025). According to Pradeep et al. (2021),
claim verification involves three key steps: (1) re-
trieval of documents, (2) rationale selection, and
(3) label prediction. Currently, multilingual LLMs
significantly improve the claim verification process
(Schlichtkrull et al., 2023) compared to traditional
approaches such as manual fact-checking and sim-
ple machine learning classifiers. These language
models not only evaluate claims, but also provide
justifications, thereby offering a level of explana-
tion that traditional natural language processing
(NLP) approaches often lack (Dmonte et al., 2024).
To date, most of the work on claim verification in
fact-checking has been performed in English. In
this work, we address this shortcoming by creating

a new fact-checking dataset in Telugu, allowing for
large-scale experimentation in Telugu, a language
spoken by over 200 million people in the world
(Mallareddy, 2012). We achieve this by translating
our manually created English dataset into Telugu,
resulting in a bilingual English–Telugu dataset that
supports multilingual claim verification. Further-
more, LLMs pose several limitations, such as ten-
dencies to hallucinate (Li et al., 2024), they exhibit
biases (Lin et al., 2025), smaller models may oper-
ate within limited context windows (Ratner et al.,
2023), and models may rely on knowledge that
may be outdated due to cutoff dates (Cheng et al.,
2024). In order to address these challenges, we use
Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) with different components, such as
prompt compression (Li et al., 2025), document
re-ranking (Hui et al., 2022) and query rewriting
(Ma et al., 2023).

We explore two research questions.

RQ1: How well do LLMs classify domain-
specific claims in English versus Telugu?

RQ2: How do different models and ap-
proaches impact the quality of justifications
provided by LLMs in a English-Telugu multi-
lingual setting?

To address these research questions, we intro-
duce a new dataset named Preethi1 that covers
both English and Telugu. Our experiments demon-
strate that RAG-based approach, achieves the high-
est claim verification scores in both English and
Telugu. For justification generation, RAG-based
approach obtains the best average score for En-
glish, while Simple Prompting achieves the highest
average score for Telugu.

1We make our complete dataset available at https:
//huggingface.co/datasets/Blue7Bird/
Preethi_dataset
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2 Related Work

2.1 Datasets Related to Indian Languages
Several datasets have been proposed for detecting
false information in the Indian context. Sharma
and Garg (2021b) introduce the Indian Fake News
Dataset (IFND), a monolingual English dataset
comprising 56,714 claims across various categories
relevant to the Indian context. Each claim in IFND
is labeled as “true” or “fake”. Similarly, Gupta and
Srikumar (2021) develop the X-Fact dataset, which
includes 31,189 claims and supports multiple In-
dian languages-though not Telugu. X-Fact has five
labels “true”, “mostly-true”, “partly-true”, “mostly-
false”, and “false”. Singhal et al. (2022) anno-
tate the Fact Drill dataset, which comprises 22,435
false claims in 13 Indian regional languages, in-
cluding fewer than 2,000 samples in Telugu. How-
ever, the dataset is not publicly available. Mittal
et al. (2023) present the X-CLAIM dataset, which
focuses on the identification of claims in multi-
lingual social media posts. X-CLAIM contains
7,000 real-world claims across five Indian regional
languages and English, but only 107 Telugu sam-
ples in its test set. Schlichtkrull et al. (2023) de-
velop the AVeriTeC dataset, comprising 4,568 real-
world claims in English. Each claim in AVeriTeC is
classified into one of the four labels: “supported”,
“refuted”, “not enough evidence” and “conflicting
evidence/cherry-picking”. Raja et al. (2023) create
the Dravidian Fake News Dataset (DFND), which
consists of 26,000 news articles in Telugu, Tamil,
Kannada, and Malayalam, annotated with binary
labels: “true” or “fake”. However, the DFND is
not open source, which poses challenges for repro-
ducibility and further research.

Although some of these datasets support claim
verification to varying degrees in Indian languages,
none, except AVeriTeC, include human-annotated
justifications and Question Answer (QA) pairs.
Yet AVeriTeC is not designed for the Indian con-
text. This highlights a research gap: the absence
of open source, human-annotated QA pairs, and
justification-rich resources for misinformation de-
tection in low-resource Indian languages such as
Telugu for the Indian context.

2.2 RAG and Other Approaches with LLMs
Recent advances in claim verification have used
LLMs and RAG frameworks for claim verification
processes (Dmonte et al., 2024). Singal et al. (2024)
develop a RAG pipeline that extracts relevant ev-

idence sentences from a knowledge base, which
are then passed into an LLM for classification.
Yue et al. (2024) introduce a Retrieval-Augmented
Fact Verification framework through the synthe-
sis of contrasting arguments (RAFTS) to deter-
mine the veracity of the claim. Katranidis and
Barany (2024) propose Facts as a Function ap-
proach (FaaF), which is based on RAG, to eval-
uate the factual accuracy of the text generated by
LLMs. Vykopal et al. (2024) present a comprehen-
sive review of claim verification frameworks that
use LLMs, focusing on methods such as RAG and
fine-tuning. Our work is different from previous
research, as we implement a RAG pipeline that
enhances LLMs’ fact-checking capability, using
Automatic Scraping, integrating both foundational
and Advanced RAG components. We use Really
Simple Syndication (RSS) (Wikipedia contributors,
2024) feeds from reputable Indian news sources,
chosen for their longstanding credibility and wide
readership, to access up-to-date information to as-
sess new claims, as LLMs’ have knowledge cutoff
dates and may contain outdated information.

3 Preethi Dataset

Figure 1: Statistical information of the Preethi dataset
about true and false claims across five categories

In this research work, we have created the
Preethi dataset, which is based on the publicly avail-
able IFND (Sharma and Garg, 2021a). A claim, as
defined by Panchendrarajan and Zubiaga (2024), is
a statement that can be verified against evidence.
The IFND has several inconsistencies such as in-
complete claims, non-claims, questions, and entries
with multiple claims; these inconsistencies compro-
mise its overall quality as these claims cannot be
verified against evidence, see Table 1 for exam-
ples of inconsistent claims. We chose IFND be-
cause it is publicly available and its inconsistencies
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highlight the need for a refined and higher-quality
resource, an opportunity we address through the
creation of Preethi dataset. We have manually an-
notated a dataset of 5,006 claims in English with
five topics from IFND, namely Covid-19, Election,
Government, Misleading, and Violence. Statisti-
cal details of the Preethi dataset are presented in
Figure 1. The Preethi dataset is not a strict sub-
set of IFND. Of the 2,568 true claims, 2,500 are
sourced from IFND. Among the 2,438 false claims,
2,435 are collected from fact-checking websites.
Following, Egelhofer and Lecheler (2019) we treat
partially true claims from fact-checking sources as
false, given their potential to spread misinforma-
tion similar to fully false claims. To reconstruct
complete claims from inconsistent IFND entries,
we use their original sources, identified via Google
Web Search (Google, 2024a) and, when necessary,
Microsoft Copilot (Microsoft, 2024).

Claim Inconsistency
This Video Is Not Of UP Police Chasing A......... Incomplete
Did Israel bomb Iranian nuclear facilities? Question
Drop, Don’t Extend It Non-claim
India’s Ministry of Culture has NOT announced
a relief....Fact Check: Chill. Iceland hasn’t de-
clared religions as weapons of mass destruction

Multiple claims

Table 1: Inconsistent claims in IFND

Inspired by the AVeriTeC, we provide additional
metadata for each claim, including supporting doc-
uments from the Web, the date of the claim, gold
justifications, and gold QA pairs. Gold justifi-
cations and gold QA pairs are created manually
based on the information in the supporting docu-
ments. To maintain the quality of the dataset, we
have involved three annotators who were trained
via detailed guidelines. We achieve a Cohen’s
Kappa agreement score of 80% for claim verac-
ity labels and 75% for boolean QA pairs, indicat-
ing substantial inter-annotator agreement. In ad-
dition, all abstractive and extractive QA pairs are
manually checked by annotators for correctness
and relevance by verifying them against support-
ing documents. To make our dataset available in
Telugu, we translate the English dataset using the
Google Translate API (Google, 2024b). To assess
the quality of the translated data, we perform a
back-translation from Telugu to English and com-
pare it with the original English version. This re-
sults in a BLEU (Papineni et al., 2002) score of
0.255 and a METEOR (Banerjee and Lavie, 2005)
score of 0.659, indicating moderate consistency be-
tween the original and back-translated texts. How-

ever, the raw machine translations are not directly
used in our experiments. Instead, three native Tel-
ugu speakers have manually post-edited the ma-
chine translated output and removed the syntactic
and semantic errors. The final Telugu dataset is
used for experiments, ensuring high-quality transla-
tions and minimizing the potential bias introduced
by machine translation errors. We calculate post-
edits by comparing the initial machine-translated
Telugu dataset with the final manually annotated
Telugu dataset using Pyter (pyter developers, 2024)
to measure the translation error rate (TER) (Snover
et al., 2006). A total of 31,465 post-edits are made.
Table 2 compares Preethi dataset to the existing
benchmark datasets.

Dataset Justifications Supports Telugu QA Pairs
X-CLAIM ✗ ✓ ✗
AVeriTeC ✓ ✗ ✓
DFND ✗ ✓ ✗
IFND ✗ ✗ ✗
X-Fact ✗ ✗ ✗
Fact Drill ✗ ✓ ✗
Preethi (ours) ✓ ✓ ✓

Table 2: Comparison of Preethi dataset with benchmark
datasets.

3.1 QA Pairs

Each claim in our dataset has three manually cre-
ated QA pair types; see Table 3 for examples.

Boolean: Our dataset contains 4,010 indirect
and 996 direct boolean QA pairs. Direct QA pairs
rephrase the claim itself as a yes/no question, while
indirect QA pairs pose a related yes/no question
that helps verify the validity of the claim.

Abstractive: QA pairs are created by summariz-
ing the relevant information about the claim.

Extractive: QA pairs, in which the answer is a
direct snippet or a phrase taken word-for-word.

Claim The Eiffel Tower is in London

QA Type Question(Q) & Answer(A)

Direct Boolean Q: Is the Eiffel Tower in London? A: No

Indirect Boolean Q: Is the Eiffel Tower in France? A: Yes

Abstractive Q: What is the Eiffel Tower? A: a well known monument....

Extractive Q: Where is the Eiffel Tower? A: Paris, France.

Table 3: Boolean, Abstractive and Extractive QA pairs

4 Methodology and Experiments

This section discusses different approaches that are
used in our experiments: 1) Simple Prompting and
RAG approaches that include 2) Naive RAG; 3) Ad-
vanced RAG and 4) Automatic Scraping. In our
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Figure 2: RAG Approaches

experiments, we use gold justifications to evaluate
the justifications generated by LLMs and gold QA
pairs to assess the quality of QA pairs generated by
LLMs. For claim veracity evaluation, we use F1
score. In order to evaluate the justifications gener-
ated by LLMs, we use METEOR, ROUGE-L (R-L)
(Lin, 2004), ChrF (Popović, 2015), BERTScore
(Zhang* et al., 2020) and BLEURT (Sellam et al.,
2020). We make our complete code 2 and addi-
tional details public.

4.1 Simple Prompting
In Simple Prompting, we use a zero-shot approach
(Wei et al., 2022), where the LLM relies solely
on its pre-trained knowledge and general language
understanding to classify only claims, operating
without any additional supporting documents. In
this approach the LLM is given a claim as input,
and it is tasked to classify a claim as “false” or
“true” and provide reasoning or justification for its
decision. Without such explanations, the classifica-
tion may appear arbitrary or unsupported. For the
experiments, we consider the Simple Prompting
approach as a baseline.

4.2 RAG Approaches
Since LLMs are not updated regularly and have a
fixed knowledge cut-off date, they may hallucinate.
To address this, we use RAG. In order to find sup-
porting documents for claims, we use the Cohere
c4ai-command-r7b-12-2024 (Cohere For AI, 2024)
model for English and Telugu. To handle the large
number of new claims that appear every day, we
use RSS feeds. These feeds are updated regularly
by different on-line news sources, providing up-to-

2https://github.com/formallinguist/
Automatic-Fact-Checking

date information. To manage this data, we choose
the MongoDB (MongoDB Inc., 2024) database for
our experiments. It is a NoSQL database suitable
for unstructured data, making it ideal for storing
RSS feeds and supporting documents retrieved by
Cohere. We collect RSS feeds from reliable In-
dian news sources such as NDTV (NDTV, 2024)
for English and Eenadu (Eenadu, 2024) for Telugu.
Chroma (Chroma, 2024), a vector database, is used
to store documents using vector representations.

4.2.1 Naive RAG
In the Naive RAG approach, as shown in Figure
2 (excluding the steps highlighted in blue), the
process unfolds as follows:

Step 1: Cohere c4ai-command-r7b-12-2024
model is prompted to provide supporting docu-
ments for a given claim. These documents are
then stored in MongoDB.

Step 2: The MongoDB retriever, which uses
string matching, identifies, and retrieves documents
relevant to the claim. The retrieved documents
are processed through the LangChain text splitter
(LangChain, Inc., 2025), which divides documents
into smaller segments.

Step 3: These segments are converted to vec-
tor embeddings using multilingual E5 Text embed-
dings (Wang et al., 2024). These embeddings are
then stored in Chroma.

Step 5: Cosine similarity is used to compare
the embeddings of the claim with the documents
stored in Chroma. The top three documents with
the highest cosine similarity scores are retrieved
from Chroma and used as evidence for the LLM.

Step 6: Finally, the LLM analyzes the evidence
in the context of the claim and classifies the claim
as true or false, along with justifications for its
decision.

4.2.2 Advanced RAG
Advanced RAG is similar to Naive RAG but with
additional components such as query re-writing,
document re-ranking, and prompt compression. In
Figure 2 the additional components of Advanced
RAG are highlighted in blue.

Query Re-writing: For query re-writing, we
use the Cohere c4ai-command-r7b-12-2024 model,
which modifies the original claim to improve its
quality for better retrieval of documents. This in-
cludes correcting spelling errors, rephrasing, or
adding additional context to a claim for better un-
derstanding. See Table 4 for examples. According
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to Skitalinskaya and Wachsmuth (2023), the cri-
teria for re-writing a claim include maintaining
syntactic and semantic coherence, being grammat-
ically correct, and removing ambiguity. A good
claim is precise, includes relevant context, and is
not ambiguous. In our experiments, we observe
that 50 % - 60 % of claims undergo this process.
We calculate this using string matching. We have
manually verified 50 claims in English and Telugu
to check the quality of the re-written claims. We
observe that re-written claims in English are syn-
tactically and semantically coherent, while Telugu
re-written claims have grammatical errors.

Document Re-ranking: For document
re-ranking, we use bert-multilingual-passage-
reranking-msmarco (ambeRoad, 2022). It
calculates the relevance of each document with
respect to the claim and then sorts the documents
by the scores to determine the best matches. This
ensures the documents that are most relevant for
the claim are ranked higher for further processing.
Unlike cosine similarity in the Naive RAG
approach, which only compares vector proximity,
here, the CrossEncoder evaluates the relationship
between the claim and the document in context.
The top three re-ranked documents are considered
for further processing.

Prompt Compression: For prompt compres-
sion, we use the Cohere c4ai-command-r7b-12-
2024 model. This involves reducing the length of
a prompt while retaining its most important infor-
mation. This helps in scenarios where there is a
limited context window for an LLM.

4.2.3 Automatic Scraping

In Automatic Scraping, we extract content
from URL in the supporting documents of
the Preethi dataset using BeautifulSoup (BS4)
(Richardson). To overcome the limitation of
the context window of the LLMs, we use
a sentence-transformers/paraphrase-multilingual-
mpnet-base-v2 (Reimers and Gurevych, 2019).
This model identifies the most relevant sentences
from the supporting documents by comparing their
semantic similarity to the given claim. We retrieve
up to 3,000 characters of content that are most rele-
vant to the claim. This selected content is then used
as the context for the LLM and is referred to as the
refined context. This approach is repeatable with
new data if the claim and its URL are available.

4.3 Evaluation of QA pairs

In claim verification, asking good questions is cru-
cial (Schlichtkrull et al., 2023). To assess the qual-
ity of QA pairs generated by LLMs, we calculate
their similarity to gold-standard QA pairs. We
use an in-context learning approach (Dong et al.,
2024), where the gold QA pair serve as reference
to guide the LLM in generating boolean, abstrac-
tive, and extractive QA pairs in the desired for-
mat for a claim. For evaluation, we follow the
approach of Schlichtkrull et al. (2023), we first
compute METEOR scores and then apply the Hun-
garian algorithm (Kuhn, 1955) to identify the opti-
mal one-to-one matching between LLM-generated
and gold-standard QA pairs by maximizing ME-
TEOR scores. Table 7 provides English and Telugu
scores.

4.4 Experiments

We use the models listed in Table 5 for experiments.

Versions of models Parameters

Gemma-2 (Team, 2024) 9B
Llama-3 (AI@Meta, 2024) 70B
Llama-3.3 (Meta, 2024) 70B
Llama-3 (Meta, 2024) 8B
Mixtral (Jiang et al., 2024) 8x7B

Table 5: Models for experiments

We select models that are trained on publicly
available online data. All LLMs are instructed in
English, and we experiment with three different
prompt templates, selecting the best-performing
one for our experiments. To ensure consistency
of the results, each experiment is conducted three
times, with same temperature. We calculate vari-
ance across the three runs for both English and
Telugu using the F1 scores of the best-performing
models. For English, the Naive RAG exhibits the
highest variance, while the Advanced RAG shows
the lowest. For Telugu, Automatic Scraping results
in the highest variance, whereas the Naive RAG has
the lowest. Table 6 shows average scores of model
performance across English and Telugu datasets.
We use multiple evaluation metrics in our experi-
ments to gain a comprehensive understanding of
the models’ performance, as no single metric can
fully capture the quality of a model’s output for
justification generation.
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No. Original Claim Re-written Claim
1 Jharkhand new hotspot of illicit opium culti-

vation: NCB
The NCB reports significant opium cultivation in
Jharkhand, identifying it as a potential hotspot.

2 Govt confident of privatising Air India,
BPCL by first half of 2021-22 divestment
secretary

The Indian Government’s Divestment Strategy:
Privatization of Air India and BPCL by 2022
and the Secretary’s Statement on Future Plans.

Table 4: Comparison of original and re-written claims

Model
Approach F1 (Claim Verif.) English Justification Generation Scores Telugu Justification Generation Scores

En Te METEOR R-L ChrF BLEURT BERTScore Avg-En METEOR R-L ChrF BLEURT BERTScore Avg-Te

Llama-3-70B

SP 80.16 42.95 0.288 0.283 39.92 0.48 0.87 0.464 0.126 0.165 25.34 0.45 0.72 0.343
N-RAG 58.16 40.77 0.267 0.275 38.51 0.47 0.86 0.451 0.140 0.163 23.94 0.44 0.71 0.339
A-RAG 61.21 44.31 0.256 0.259 41.11 0.56 0.88 0.473 0.134 0.174 26.08 0.48 0.72 0.354

AS 86.14 80.45 0.281 0.289 37.72 0.47 0.89 0.461 0.123 0.162 24.70 0.45 0.72 0.340

Llama-3.3-70B

SP 75.07 70.68 0.275 0.275 38.55 0.47 0.89 0.459 0.172 0.229 32.79 0.51 0.71 0.390
N-RAG 57.44 38.86 0.286 0.282 35.41 0.43 0.87 0.444 0.106 0.123 27.04 0.40 0.72 0.324
A-RAG 59.38 41.76 0.259 0.250 37.81 0.42 0.88 0.437 0.135 0.174 28.29 0.43 0.72 0.348

AS 77.22 80.58 0.308 0.318 39.81 0.49 0.90 0.482 0.163 0.196 31.84 0.50 0.73 0.381

Llama-3-8B

SP 56.21 48.45 0.294 0.279 39.85 0.50 0.89 0.472 0.138 0.194 29.64 0.42 0.73 0.356
N-RAG 52.41 47.29 0.266 0.280 37.59 0.45 0.86 0.446 0.139 0.184 28.21 0.41 0.72 0.347
A-RAG 60.11 49.75 0.254 0.304 38.41 0.49 0.89 0.464 0.133 0.203 29.61 0.44 0.72 0.358

AS 70.83 50.77 0.288 0.291 38.64 0.47 0.87 0.461 0.124 0.164 25.96 0.42 0.72 0.338

Mixtral-8x7B

SP 56.95 49.22 0.285 0.273 38.94 0.49 0.88 0.463 0.110 0.129 27.59 0.29 0.72 0.305
N-RAG 57.19 51.24 0.293 0.303 37.51 0.47 0.86 0.460 0.153 0.172 28.39 0.41 0.73 0.350
A-RAG 59.26 55.49 0.280 0.293 38.66 0.51 0.89 0.472 0.146 0.213 28.66 0.43 0.72 0.359

AS 84.08 73.86 0.316 0.340 41.03 0.48 0.87 0.483 0.087 0.114 23.27 0.28 0.70 0.283

Gemma-2-9B

SP 64.72 57.41 0.208 0.283 31.89 0.46 0.87 0.428 0.125 0.183 26.66 0.43 0.73 0.347
N-RAG 62.21 52.39 0.197 0.264 30.51 0.45 0.87 0.417 0.103 0.173 28.41 0.43 0.72 0.342
A-RAG 63.81 50.77 0.180 0.283 34.74 0.49 0.90 0.440 0.094 0.213 30.49 0.46 0.72 0.358

AS 83.23 78.05 0.217 0.277 36.77 0.48 0.87 0.442 0.114 0.152 24.68 0.42 0.72 0.331

Table 6: Scores across different metrics for English (En) and Telugu (Te). Approaches include Simple Prompting
(SP), Naive RAG (N-RAG), Advanced RAG (A-RAG), and Automatic Scraping (AS). The best results for each
metric and language are highlighted in bold, while the best scores per metric and language for each model are
underlined. ChrF scores are normalized (divided by 100) when computing average scores for English and Telugu.

Model En Te

Llama-3-70B 0.101 0.072
Llama-3.3-70B 0.140 0.090
Llama-3-8B 0.178 0.124
Mixtral-8x7B 0.208 0.089
Gemma-2-9B 0.126 0.079

Table 7: QA pairs Hungarian METEOR scores for En-
glish (En) and Telugu (Te). Best scores are highlighted
in bold

5 Results and Discussion

We analyze claim verification and justification gen-
eration results for English and Telugu to answer
RQ1 and RQ2, and also analyze QA pair results.

5.1 Claim Verification

In order to answer RQ1, we examine the claim
verification results presented in Table 6.

5.1.1 English
Simple Prompting: Within the Simple Prompting
approach across models, Llama-3-70B achieves
the highest F1 score, likely due to its large size

and English-focused training, enabling strong rea-
soning without external supporting documents. In
contrast, Llama-3-8B performs the worst, likely
due to its smaller size. Interestingly, Llama-3-70B
outperforms both Naive and Advanced RAG un-
der Simple Prompting, showing the largest perfor-
mance gap of 23.95 points of F1 score between the
best and worst performing models.

Automatic Scraping: We observe that all mod-
els obtain their highest F1 scores with this approach.
With Automatic Scraping Llama-3-70B has the
highest F1 score and Llama-3-8B has the lowest
F1 score. This suggests that Automatic Scraping
provides high-quality, relevant context that helps
LLMs verifying and classifying the claims. All
models perform better with Automatic Scraping
compared to Simple Prompting.

Naive RAG: Gemma-2-9B achieves the highest
F1 score and Llama-3-8B has the lowest F1 score.
We observe that the Naive RAG approach does not
improve the models’ performance with respect to
Simple Prompting except for Mixtral-8x7B. One
possible reason for the relatively low F1 scores
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across models is that the Cohere model may not
retrieve suitable supporting documents, particularly
for claims related to the Indian context. This limita-
tion at the evidence retrieval stage can significantly
impact the quality of context available to the LLM,
thus reducing overall performance.

Advanced RAG: Gemma-2-9B achieves the
highest F1 score and Mixtral-8x7B shows the low-
est F1 score. We observe that models consistently
perform slightly better with Advanced RAG com-
pared to Naive RAG. This improvement may be at-
tributed to the additional components in Advanced
RAG that enhance the models’ overall performance.
However, results with the Simple Prompting ap-
proach remain superior except for Llama-3-8B and
Mixtral-8x7B. Notably, this approach results in the
smallest performance gap of 4.55 points in average
F1 score between the best and worst performing
models.

5.1.2 Telugu
Simple Prompting: Within the Simple Prompting
approach, Llama-3.3-70B obtains the highest F1
score, likely due to some knowledge of Telugu in its
pre-training data, as it was trained on open-source
web documents. In contrast, all other models have
low F1 scores. This could be due to the limited
presence of Telugu in their pre-training corpora.

Naive RAG: Gemma-2-9B has the highest F1
score and Llama-3.3-70B has the lowest F1 score.
The relatively low scores across models may be
attributed to the Cohere model’s limited ability to
retrieve relevant supporting documents for claims
in Telugu. Since Telugu is a low-resource language,
the amount and quality of content available in it
would be significantly lower compared to English.
In this approach, only Mixtral-8x7B performs bet-
ter than the models with Simple Prompting. This
approach has the lowest performance gap of 14.03
F1 points between the best and the worst perform-
ing models.

Advanced RAG: Mixtral-8x7B has the high-
est F1 score and Llama-3.3-70B has the lowest F1
score. The F1 scores across models suggest that the
Advanced RAG generally performs slightly better
than the Naive RAG for Telugu, with the excep-
tion of Gemma-2-9B. This exception may be due
to Gemma-2-9B not having received suitable docu-
ments as context. The modest improvements seen
with Advanced RAG can likely be attributed to its
additional components. However, F1 scores for
Telugu remain relatively low compared to those for

English. Among the evaluated models, Llama-3-
70B, Llama-3-8B, and Mixtral-8x7B outperform
Simple Prompting.

Automatic Scraping: Under this method, in
which the context is in English, Llama-3.3-70B
achieves the highest F1 score, demonstrating its
ability to transfer knowledge from English to Tel-
ugu. In comparison, the smaller Llama-3-8B
has the lowest F1 score. These results highlight
that LLMs perform significantly better in Tel-
ugu when provided with suitable supporting docu-
ments. Here, all models perform better than Simple
Prompting. The performance gap between the best
and the lowest performing model is 29.81 average
F1 score, which is highest using this technique.

Automatic scraping has the highest scores for
claim verification as it uses reliable supporting doc-
uments as context. To answer RQ1, our exper-
iments show that LLMs perform better at claim
verification in English compared to Telugu.

5.2 Justification Generation

As shown in Table 6, we compare the results of
justification generation score (JGS) for Telugu and
English to answer RQ2. JGS is an average of ME-
TEOR, R-L, ChrF, BLUERT and BERTScore. We
observe that for English and Telugu different mod-
els and approaches have high scores across differ-
ent metrics. However, for English, Mixtral-8x7B
with Automatic Scraping has the highest overall
average JGS. The best overall JGS in Telugu is at-
tained by Llama-3.3-70B using Simple Prompting.
Manual review of 100 justifications from various
methods reveals no clear link between claim verifi-
cation and JGS.

5.3 QA pairs

As shown in Table 7, Mixtral-8x7B achieves the
highest METEOR score for English, likely because
it is trained on predominantly English data. In con-
trast, Llama-3-8B, despite being a small model,
achieves the best METEOR score for Telugu. This
performance may result from its closer adherence
to the reference QA pairs, whereas larger mod-
els tend to “hallucinate” or be creative (Lin et al.,
2022), which negatively affects similarity scores .

6 Error Analysis

In this section, we present the qualitative and quan-
titative error analysis for English and Telugu.
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6.1 Qualitative Error Analysis

We manually analyze 100 samples from the best
performing models for each task: Llama-3-70B
(English) and Llama-3.3-70B (Telugu) for claim
verification; Mixtral-8x7B (English) and Llama-
3.3-70B (Telugu) for justification generation.

6.1.1 Claim Verification

Figure 3: Different types of Errors

We have focused on identification of biases (Dev
et al., 2022), hallucinations (Li et al., 2024), re-
trieval, and translation errors. Biases are unfair pat-
terns in responses that occur when the model favors
certain views, stereotypes, or groups over others.
As shown in Example one in Figure 3, there is a po-
tential bias toward labeling individuals as terrorists.
Hallucinations occur when LLMs generate infor-
mation that is factually incorrect. In Example two
in Figure 3 the language model hallucinates about
the pricing of the Covishield vaccine. Retrieval
errors in RAG approaches refer to the failing of
the model to obtain relevant or sufficient contextual
knowledge to support accurate reasoning, leading
to incorrect or unsupported output. Example three
in Figure 3 shows that the retrieved documents
are not related to the claim about kumaraswamy
and tipu jayanti. Finally, translation errors are
uniquely observed when there is a language mis-
match in the claim or between claim and context -
for example, when there are acronyms in English
and the claim is in Telugu. In such scenarios, the
models attempt to translate the English acronyms
to Telugu as in Example four in Figure 3 where
it can be observed that BRO acronym which is in
English is translated to “brother” in Telugu.

Approach B H R O

SP 13.14% 4.81% – 1.92%
AS 4.91% 1.02% 3.85% 4.08%
N-RAG 12.12% 5.39% 13.54% 10.76%
A-RAG 11.98% 1.22% 16.75% 9.27%

Table 8: English errors with percentage (relative to 5006
claims). B: Biases, H: Hallucinations, R: Retrieval, O:
Other.

Approach B H R T O

SP 5.17% 10.71% – – 13.16%
AS 1.00% 2.46% – 0.26% 12.86%
N-RAG 8.79% 9.35% 1.62% 8.63% 20.59%
A-RAG 0.50% 8.25% 10.53% – 13.18%

Table 9: Telugu errors. B: Biases, H: Hallucinations, R:
Retrieval, T: Translation, O: Other.

6.2 Justification Generation

We manually evaluate generated 100 justifications
against the gold-standard justifications from differ-
ent approaches. We observe that Automatic Scrap-
ing enables LLMs to generate good-quality justifi-
cations in English and Telugu. Manual inspection
further reveals that the quality of text generation
is generally good for English across different mod-
els and approaches. However, outputs in Telugu
often exhibit syntactic and semantic errors, along
with instances of Tenglish (a mix of Telugu and En-
glish) script.

6.3 Quantitative Error Analysis

We use the mistral-saba-24B LLM (AI, 2025)
as a judge, following an in-context learning ap-
proach.We manually select one misclassified claim
with its justification from each error type as a
demonstration for the judge. Misclassified claims
and their justifications are filtered and they are then
classified by the LLM into the predefined error
categories, with uncategorized errors labeled as
“Other.” Tables 8 and 9 report category-wise error
percentages. Manual verification of 50 errors per
language confirms accurate quantification.

7 Conclusion

In this project, we introduced a new English-Telugu
claim verification dataset with manually annotated
QA pairs and justifications. We used it to bench-
mark Simple Prompting and RAG approaches with
LLMs. Our results show that the models perform
better in English than in Telugu, highlighting chal-
lenges in claim verification and justification gener-
ation in Telugu.
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Limitations

The results of our experiments are based on a
dataset of 5,006 claims with only two labels from
five topics. Performance may vary with larger and
more diverse datasets. In India, claims occur in
multiple languages, but for this study, we work in
one language at a time. We need to explore differ-
ent prompt templates for Telugu and English, as
some templates perform better than others. Our
dataset consists only of textual claims, excluding
images and videos, which are also commonly as-
sociated with the spread of false claims. Although
we have relied on lexical and semantic similarity
metrics, we have not incorporated additional text
generation metrics to detect hallucinations. Our
evaluation relies exclusively on automatic metrics
such as R-L, METEOR, and BERTScore. While
these provide surface-level and semantic overlap,
they may not adequately capture the true quality
of either QA pairs or justifications. In particular,
justifications can often be expressed in many valid
ways that differ substantially from the reference,
leading to artificially low metric scores, while con-
versely, outputs that are lexically or semantically
similar to the reference may still be incorrect. The
limited variance in our reported BERTScore val-
ues (0.70–0.73) for Telugu further suggests that
these metrics may not be sensitive enough to mean-
ingful differences in justification quality. A more
robust assessment would require human evaluation,
which could better judge correctness, faithfulness,
and usefulness of both the questions/answers and
the justifications. Future work should therefore
complement automatic metrics with systematic hu-
man evaluation. Naive RAG and Advanced RAG
approaches that we use for experiments often re-
quire significant processing time, particularly for
languages like Telugu. This is due to the complex-
ity of tokenization, retrieval, and generation stages,
which may not be as optimized for low-resource
languages as they are for English. We have used
RSS feeds from only a small number of sources and
we have not performed ablation studies on the indi-
vidual components of Advanced RAG. Since our
dataset is derived through translation from English,
it may not fully represent native Telugu. Transla-
tions tend to exhibit different levels of formality,
topic distribution, and cultural biases compared to
texts in Telugu produced by native speakers. There-
fore, while our dataset serves as a useful resource,
we acknowledge that future work should prioritize

collecting and incorporating more native-authored
Telugu data.
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Abstract

Speech technology remains out of reach for
most of the 2,300+ languages in Africa. We
present the first systematic assessment of large-
scale synthetic voice corpora for African ASR.
We apply a three-step process: LLM-driven text
creation, TTS voice synthesis, and ASR fine-
tuning. Eight out of ten languages for which we
create synthetic text achieved readability scores
above 5 out of 7. We evaluated ASR improve-
ment for three (Hausa, Dholuo, Chichewa) and
created more than 2,500 hours of synthetic
voice data at below 1% of the cost of real data.
W2v-BERT 2.0 speech encoder fine-tuned on
250h real and 250h synthetic data in Hausa
matched a 500h real-data-only baseline, while
579h real and 450h to 993h synthetic data cre-
ated the best performance. We also present
gender-disaggregated ASR performance evalu-
ation. For very low-resource languages, gains
varied: Chichewa WER improved by →6.5%
with a 1:2 real-to-synthetic ratio; a 1:1 ratio
for Dholuo showed similar improvements on
some evaluation data, but not on others. Inves-
tigating intercoder reliability, ASR errors and
evaluation datasets revealed the need for more
robust reviewer protocols and more accurate
evaluation data. All data and models are pub-
licly released to invite further work to improve
synthetic data for African languages.

1 Introduction

Africa is home to over 2,300 languages, the vast ma-
jority of which have neither functional automatic
speech recognition to transcribe speech nor speech
synthesis to generate it (Orife et al., 2020). Yet
speech technology holds great promise in provid-
ing a more inclusive digital experience, especially
for vulnerable groups.

Conventional approaches to creating speech tech-
nology rely on human data collection in as-yet un-

→Current affiliation: Datafoss
†Authors are listed in alphabetical order. Corresponding

author: Christian Resch

supported languages, incurring substantial costs
estimated at more than US$100–150 per hour, even
in the best case1. As most speech recognition mod-
els need several hundred hours of training data to
achieve performance sufficient for practical appli-
cation, with current investments in AI for develop-
ment, human data collection is prohibitively costly
to cover the many languages that remain unsup-
ported. We support further investment in African
language technology, but even if it were to become
available, those investments have opportunity costs,
diverting funds that could otherwise be spent on
other interventions.

Therefore, we are investigating synthetic voice
data as a complementary approach to create and
improve automatic speech recognition (ASR) in
African languages. The principle hypothesis moti-
vating our work is that we can leverage Large Lan-
guage Models (LLMs) and Text-to-Speech (TTS)
models to create synthetic voice data of sufficient
quality to improve automatic speech recognition
models. Our work shows that this synthetic voice
data can be created for less than 1% of the cost of
collecting real human data2, while holding poten-
tial to complement this human data in creating and
improving ASR models for African languages.

2 Synthetic Data: Risks and Rewards

Synthetic data—machine-generated text or
speech—has become a well-researched topic in
major languages like English in recent years (for
an overview, see Liu et al. (2024)). Much of this
research is motivated by concerns that all readily

1Based on internal estimates. The authors of Nai-
jaVoices report that the ‘true cost’ of the whole dataset is
more than US$600,000. Assuming an equal split across
the three languages in the dataset, this would imply a
true cost per hour of Hausa data of US$ →345.42, see
https://naijavoices.com/membership.

2This is excluding fixed costs in both cases, like setting up
data collection platforms for real data or TTS model develop-
ment.
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available data for the development of AI models
has been leveraged (Villalobos et al., 2024), and
therefore further advancements spurred by data
scaling will require new approaches to create
data. Other concerns like privacy (Abay et al.,
2018) or costs (Gilardi et al., 2023) also prompted
research on synthetic data. Additionally, there is
a growing body of research into synthetic data in
low-resource languages which, save for several
notable exceptions, so far only offers limited
evidence for African languages.

For automatic speech recognition, Huang et al.
(2023) have shown that for English, synthetic data
generation using large-scale pre-trained neural net-
works in combination with TTS models, a process
similar to ours, can reduce word error rate (WER)
by between 9 and 15% (see also Moslem (2024)
and Hu et al. (2021)). Gokay and Yalcin (2019)
report reductions of around 15% in WER for Turk-
ish, Yang et al. (2024) between 27.45 and 45.85%
for Chinese dialects and Zevallos (2022) 8.73%
for Quechua. Joshi et al. (2025) find that adding
synthetic data in Hindi improves Bhojpuri ASR
performance by 4.7 points WER on average. Wang
et al. (2020) also demonstrate that an approximate
50/50 combination of human and synthetic data
performed comparably to the same amount of hu-
man data alone. In a very successful application,
Xu et al. (2020) achieve 17% WER for Lithuanian
using only 1.3 hours of labeled and 12 hours of
unlabeled data.3

As this research shows, there is a body of
research on synthetic data for low-resource lan-
guages, but African languages have been rarely
covered. There are notable exceptions for synthetic
text (Abdulmumin et al., 2022; Kreutzer et al.,
2022), linguistically informed data augmentation
and synthetic data frameworks (Ajuzieogu, 2023)
and synthetic text for language and topic classifica-
tion models (Quinjica and Adelani, 2024; Adelani
et al., 2024).

While previous research shows the potential of
synthetic data to complement human data in the
data-scarce situation that we face in many African
languages, the research also highlights limitations

3We recommend not to compare WER between languages
because of substantial morphological differences, i.e. depend-
ing on the language a single word might carry different se-
mantic meaning while it is always counted individually in
the WER. Furthermore, evaluation datasets such as FLORES
and, by extension, FLEURS have known shortcomings which
differ by language, see Abdulmumin et al. (2024) for an inves-
tigation for African languages.

and risks. Most limitations stem from the gap be-
tween real and synthetic data (Hu et al., 2021), as
well as from synthetic data inheriting and poten-
tially amplifying the same biases as the models
used to create it (Wyllie et al., 2024; Wang et al.,
2025). Certain tone and noise that are typically
present in real-world data are often missing from
synthetic data (Xue et al., 2022; Hu et al., 2021).
Many commonly used LLMs have been shown to
exhibit a bias towards Western, industrialized cul-
tural norms and a lack of cultural understanding
in other contexts (Rao et al. (2023), Magdy et al.
(2025) for Arabic, Pranida et al. (2025) and Putri
et al. (2024) for Sundanese and Indonesian). Creat-
ing synthetic text will likely aggravate this missing
representation, especially for semantically mean-
ingful tasks such as machine translation.

3 Methodology

Our process of creating and evaluating synthetic
voice data has three key steps:

1. Generate and evaluate synthetic text using an
LLM

2. Generate and evaluate synthetic voice data
with a Text-to-Speech (TTS) model based on
the synthetic text

3. Fine-tune an automatic speech recognition
(ASR) model with different ratios of human
and synthetic voice data and evaluate perfor-
mance differences

We describe our methods and details for those steps
separately:

3.1 Step 1: Synthetic Text Generation and
Evaluation

We created and evaluated synthetic text for the fol-
lowing 10 African languages: Hausa, Northern So-
mali, Yoruba, Wolof, Dholuo, Kanuri, Chichewa,
Twi, Kinande, and Bambara. Additionally, we in-
cluded small-scale generations and evaluations for
two further languages, Yemba and Ewondo, but
with only very poor performance. Our language
selection criteria aimed to select languages that
represent African language diversity through the
representation of different regions, language fami-
lies, and speaker populations (see Appendix A).
Beyond linguistic diversity, we also considered
practical factors, such as the capacity of the Trans-
lators without Borders (TWB) linguist community
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for text evaluation and the availability of key pub-
licly available datasets (e.g., open.bible, FLEURS,
Common Voice) necessary for subsequent steps.

For the synthetic text generation, the system
prompt (see Appendix B) instructs the LLM to gen-
erate simple short sentences and questions directly
in the target language, as well as to return English
translations for further evaluation of language un-
derstanding. We incorporated two-shot prompting
for contextual guidance. The topic of synthetic text
generation can be configured in the prompt. Our ex-
periments sampled equally from 34 distinct themes
with 17 themes covering the UN Sustainable De-
velopment Goals and 17 themes covering the most
common topics covered in the FLORES/FLEURS
dataset extracted through language topic modelling.
We primarily evaluated LLMs provided by OpenAI
and Anthropic, especially GPT-4o, GPT-4.5, o1,
Claude 3.5 and Claude 3.7.

Automated evaluation of the synthetic text is not
feasible for low-resource languages and we relied
on human evaluation. For each language we gener-
ated 1,200 randomly shuffled sentences over two
rounds for a few different configurations (usually
three LLMs).4 Linguists on the Translators without
Borders (TWB) platform were sourced according
to their native language and experience delivering
linguistic tasks. TWB linguist reviewers rate each
sentence on five key metrics intended to capture
the quality of the sentence in the target language
and understanding: 1) Readability and Naturalness
[1–7], 2) Grammatical Correctness (Yes/No), 3) All
Words Real (Yes/No), 4) Notable Error in Trans-
lation (Yes/No), and 5) Adequacy and Accuracy
of Translation [1–7]. Based on the human evalua-
tion, we selected the configuration (LLM) with the
highest mean Readability and Naturalness.

For the subset of languages selected for subse-
quent synthetic voice generation and ASR fine-
tuning, we generated a large corpora of between
650,000 and 674,000 sentences with the best per-
forming LLM (see Appendix C for details). The
text generation process was identical to that used
for text evaluation, except that we utilized a batch
processing API for reduced cost.

4For most experiments, we opted for a two-round sen-
tence generation and evaluation approach, in which we first
compared the readability and naturalness of 600 sentences
generated by 3-4 LLMs and subsequently generated another
600 sentences using the best model to analyze the impact of
theme. After discovering that our experiments were frequently
not yielding significant differences between themes, we opted
for more equal sampling among different LLMs.

3.2 Step 2: Synthetic Voice Data Generation
and Evaluation

Based on the results of the evaluation of the syn-
thetic text generation in Step 1, we selected three
languages for the creation and evaluation of syn-
thetic voice data: Hausa, Dholuo and Chichewa.

As necessary conditions, we required languages
where at least one LLM was capable of generating
synthetic text of sufficient quality. Due to limita-
tions in time and resources, we also required that at
least two of the three languages have available data
for fine-tuning or training TTS models, as well as
available ASR evaluation data.

Beyond those necessary conditions, our goal was
to maximize the variance of the speaker popula-
tions, available ASR training data, language fami-
lies, and geography.

We used the open.bible corpus (Global Bible Ini-
tiative, n.d.) of Bible recordings to fine-tune and
evaluate different TTS models. We excluded this
data from our ASR training data for this reason.
The open.bible corpus only contains recordings of
Bible recitations by male speakers, and given the
training data which we used, our synthetic voice
data is also exclusively male. This raises the risk
that the resulting ASR models show gendered per-
formance, e.g. that they perform worse for female
speakers than for male speakers. To investigate
this risk, we also evaluated gender bias in the ASR
performance where the evaluation data allows this.

For each language, we fine-tuned both the XTTS-
v2 model (Casanova et al., 2024) and VITS or one
of its variants, specifically YourTTS (Casanova
et al., 2023), using the Coqui TTS framework, and
building on the BibleTTS project (Meyer et al.,
2022). XTTS-v2 does not support any African
languages, but has been fine-tuned for Wolof.5

For fine-tuning YourTTS, we used the checkpoint
trained on the CML-TTS dataset (Oliveira et al.,
2023) that supports eight languages. We used the
original BibleTTS model for Hausa, but also re-
trained the model based on a revised processing of
the open.bible corpus, a different checkpoint and
different hyperparameters (“Modified Bible TTS”).
For Hausa and Chichewa, we also evaluated the
available MMS TTS models (Pratap et al., 2023)6.

Transformer-based TTS models like XTTS have
5https://huggingface.co/galsenai/xTTS

-v2-wolof
6The MMS TTS model language coverage is available at

https://dl.fbaipublicfiles.com/mms/misc/
language_coverage_mms.html
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the problem of hallucinating, especially at the
end of audio files. To remedy this issue, we re-
transcribed the synthetic audio files with an exist-
ing ASR model and then calculated the ratio of the
length of the transcript to the length of the original
synthetic text. We only generate synthetic data with
XTTS for Hausa and used the MMS-1B (Pratap
et al., 2023) for this analysis. This method does not
rely on the accuracy of the ASR model used but as-
sumes a basic performance to ensure that the length
of the re-transcription is meaningful.7 We finally
removed outliers of this ratio of less than 0.85 and
more than 1.06 which indicate that the TTS model
had hallucinated additional words not present in
the original synthetic text or omitted words that
were. We picked the cut-off points by manually
expecting →100 samples. This process removed
→26.9% of the synthetic audio created by XTTS.8

After training a total of ten TTS models across
all three languages, we evaluated 337 synthetic au-
dio samples per model with the help of two native
speakers from the TWB Community per language.
As commonly applied, our evaluation included in-
telligibility and naturalness on five-point scales.

We then selected YourTTS, the best-performing
TTS model across all three languages, to create syn-
thetic voice data corpora of 993h for Hausa, 775h
for Dholuo and 550h for Chichewa (see Appendix
C for details). For Hausa, we also created 450h
of synthetic data with XTTS, the only transformer-
based model. We make these synthetic data cor-
pora openly available on CLEAR Global’s Hugging
Face page9.10

To improve the robustness of our models to noisy
acoustic environments, we augmented the synthetic

7In most cases in which this method would be applied, a
minimum of real data to train a basic but not highly capable
ASR model should be available (e.g. for the complementary
human data in later ASR training or from the training data of
the TTS model). In addition, models like MMS cover a large
number of languages albeit often with only poor performance
which should still be sufficient for this approach.

8After filtering the synthetic voice data, the dataset created
with XTTS consists of a substantially larger share of questions
(→40%), indicating that XTTS hallucinates less for questions
than for normal sentences. To avoid bias in our synthetic voice
training data, we sampled a subset of these questions to create
a dataset with the original share of questions (25%), resulting
in a smaller dataset of 450 hours and removal of →42.7% of
the original data.

9https://huggingface.co/CLEAR-Global
10We also created a large Chichewa text corpus with Claude

3.7 as part of our investigation of duplicates. We created the
synthetic voice data based on the Claude 3.5 corpus which we
had evaluated before but also make the Claude 3.7 text corpus
available on CLEAR Global’s HuggingFace page.

data by adding noise. We mixed the clean synthetic
data with noise samples drawn from the Room
Impulse Response and Noise Database11. For each
utterance, we randomly sampled the signal-to-noise
ratio (SNR) from a normal distribution with mean
50dB and standard deviation 15dB. Similarly, we
randomized the audio amplitude using a normal
distribution (µ = ↑20 dB, ω = 5dB).

3.3 Step 3: ASR Model Fine-tuning and
Evaluation

Given the substantial differences in available ASR
training data between the three languages for which
we created synthetic voice data, we conducted our
ASR evaluation based on two scenarios: a medium
data scenario with Hausa as the representative lan-
guage and a low data scenario with Dholuo and
Chichewa as the representative languages.

3.3.1 Medium Data Scenario: Hausa
Through the NaijaVoices project (Emezue et al.,
2025), we had over 500 hours of human Hausa
voice data available. Only a few other African
languages like Igbo and Yoruba (NaijaVoices)
or Swahili, Kinyarwanda, Kabyle, and Luganda
(Common Voice) have available datasets of compa-
rable size. This led us to investigate whether syn-
thetic voice data can substitute human data at this
training corpus size, therefore allowing languages
with smaller corpora to achieve similar ASR per-
formance. In this scenario, we keep the total size
of the training data corpus constant, but vary the
ratio between real and synthetic data.

As a result, we investigated ASR performance
for training with 500h of real data, a 1:1 ratio of
250h of real and 250h of synthetic data, and a 1:4
ratio of 100h of real data and 400h of synthetic data.
With 100h and 250h of real data, this also covers
scenarios that, while not currently the case, are
realistically achievable for many African languages.
We trained models for all data ratios with synthetic
data created with YourTTS and XTTS separately.

We also needed to rule out the case that ASR
models might saturate at a given amount of hu-
man training data of one single source, meaning
that comparable performance at different ratios be-
tween real and synthetic stems from the model
being saturated (e.g. showing no or only very low
marginal improvements beyond 100h of real data).
We therefore also trained the same models on only
100h and 250h of real data.

11https://www.openslr.org/28/
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Finally, we trained ASR models on all data avail-
able to us: one model on 579h of real human data
mixed with 993h of synthetic data created with
YourTTS and one model with 579h of real data
mixed with 450h of synthetic data created with
XTTS.

We evaluated the ASR performance on our Nai-
jaVoices test set split, the FLEURS test set (Con-
neau et al., 2022), and the Common Voice test set
(Mozilla Foundation, 2024a). We conducted the
analysis of gender bias in ASR performance on the
NaijaVoices and Common Voice test sets.12

Since the NaijaVoices dataset did not provide
splits at the time, we performed a split to generate
train, validation, and test sets that contain 579.1,
3.6, and 3.4 hours of data, respectively. We ensured
the per-split sets of speakers and transcriptions are
mutually exclusive.13

3.3.2 Low Data Scenario: Dholuo and
Chichewa

In contrast to Hausa, we only had 19 and 34 hours
of usable human data available for Dholuo and
Chichewa, respectively.14 Although this is gener-
ally insufficient data to train general purpose ASR
ready for practical application, this is representa-
tive of many African languages. As the human
data available is itself insufficient, we kept the to-
tal amount of human data constant in this scenario
and added increasing amounts of synthetic data to
the training corpus. The total size of the training
corpus consequently increases in this scenario.

For both languages, we trained ASR models on
just the human data available, and 1:1, 1:2, and 1:4
ratios of human and synthetic data. Given some
indications of improvement for Chichewa, we also
trained a 1:9 ratio of 34h of human and 307h of
synthetic data.

We evaluated the Dholuo ASR models on the
FLEURS test set (Conneau et al., 2022) and
the Common Voice test set (Mozilla Foundation,
2024b), and the Chichewa ASR models on the
FLEURS test set and the Zambezi Voice test set
(Sikasote et al., 2023).

12The Hausa FLEUR test set only includes a single male
speaker.

13Splits are now available on their Huggingface website
https://huggingface.co/datasets/naijavoi
ces/naijavoices-dataset/tree/main/split

14We use 10 hours from Common Voice (Mozilla Founda-
tion, 2025; Ardila et al., 2020) and 9 hours from the FLEURS
train set (Conneau et al., 2022) for Dholuo. We use 10
hours from the FLEURS train set and 24 hours from Zam-
bezi Voice (Sikasote et al., 2023) for Chichewa.

3.3.3 ASR Model Selection and Evaluation
For step 3, we fine-tuned the W2v-BERT 2.0
speech encoder (Communication et al., 2023), for
which our results indicated continued improvement
for fine-tuning with 100h and 250h of real data.15

This model was pre-trained on 4.5M hours of un-
labelled audio data covering more than 143 lan-
guages. The pre-training crucially includes Hausa
but not Dholuo and Chichewa. Details on our hy-
perparameters can be found in Appendix O.

We estimated the confidence intervals for WER
and CER by performing bootstrap resampling on
each evaluation set (Raschka, 2020; Efron, 1992).
For each of 1,000 iterations16, we randomly drew
m samples with replacement—where m equals the
size of the original test set—and computed WER
and CER of each resampled set. We then calculated
the mean and standard deviation of WER and CER
across all bootstrapped samples.

4 Results and Discussion

4.1 Synthetic Text Generation
For 8 of 10 languages, at least one LLM generated
sentences with a Readability and Naturalness rating
mean greater than 5.0 on a seven-point scale (see
Figure 1). In general, we found that Claude 3.5
Sonnet performed the best for the languages stud-
ied here, outperforming OpenAI’s GPT-4o and o1
models for 8 of 10 languages. Summary statistics
aggregated by language and LLM for all metrics
examined are provided in Appendix D.

Of the languages studied here, Kanuri and Ki-
nande are classified as category 0 (lowest resource,
"The Left-Behinds") according to the taxonomy
established by Joshi et al. (2021).17 This data
scarcity directly impacts the effectiveness of LLMs
in these languages, as evidenced by our findings:

15We also fine-tuned the MMS-1B model (Pratap et al.,
2023) on the Hausa subset of the NaijaVoices dataset using
adapters. We found that the model’s performance doesn’t im-
prove or only improves marginally by adding real data beyond
50 hours, and the addition of synthetic data consistently de-
grades performance (see Appendix I for results). This aligns
with research by Nabende et al. (unpublished) who compare
different ASR architectures for African languages and their
data scaling behavior.

16This is five times more than the usual number of iterations
between 50 and 200 recommended by Efron and Tibshirani
(1994) and in line with what Koehn (2004) proposes for similar
applications in machine translation.

17While this categorization is partially outdated, only lim-
ited data collection has taken place in those low-resourced
languages. Of the languages we studied, Dholuo was not clas-
sified by Joshi et al. (2021), but would probably be classified
as category 0 or 1.
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Figure 1: Comparison of Readability and Naturalness [1..7] scores for synthetic text generated by various LLMs for
10 African languages. Errors bars show standard deviation.

Synthetic text generation in these languages consis-
tently demonstrates the poorest performance, with
mean Readability and Naturalness ratings falling
below 4.0 on a seven-point scale.18 During the
large-scale Chichewa text generation, we observed
large amount of sentence duplication: Claude 3.5
Sonnet generated only 37% unique sentences out
of 700,000, while Claude 3.7 Sonnet exhibited sig-
nificantly less duplication, with 86% of 530,400
sentences being unique. Subsequent analysis re-
vealed that unique sentence generation decreases
with batch size (see Appendix G for details).

4.1.1 Inter-coder Reliability Investigation
A persistent challenge in low-resource language
evaluation is the limited availability of expert lin-
guist reviewers, a constraint that significantly im-
pacts the reliability of assessments. This study was
no exception, with most text samples being eval-
uated by two to three linguists per language. A
two-way analysis of variance (ANOVA) demon-
strates that not just model choice, but also linguist
identity significantly affected readability ratings (p
< 0.05), with linguist identity explaining a larger
proportion of variance than the model itself for
Chichewa, Kanuri, Northern Somali, and Wolof.

In a supplementary analysis for Kanuri, ten lin-
guists independently rated 100 sentences each gen-
erated by Claude 3.5 Sonnet, Claude 3.7 Sonnet,
GPT-4o, and GPT-4.5. We performed a bootstrap
analysis, resampling varying numbers of raters.
Increasing the number of raters consistently nar-
rowed the 95% confidence intervals across all mod-

18We explored fine-tuning and a separate language quality
classifier to retain only high quality out put but both did not
yield improved results. Details are available in Appendix E.

els, indicating improved rating stability. Especially
GPT-4o benefitted from additional raters with the
95% confidence interval reducing from 5.86 to 3.91
when increasing the number of raters from two to
four (further details are available in Appendix F).

4.2 Synthetic Voice Generation

Our findings indicate that the TTS model, albeit
not its architecture, has a substantial impact on syn-
thetic voice data quality, with the best model outper-
forming the worst by up to 2.03 points for intelligi-
bility and 1.72 points for naturalness on a five-point
scale. The VITS-based YourTTS models generally
performed best (Intelligibility: Hausa: 4.5, Dhu-
luo: 4.71, Chichewa: 4.45), although VITS-based
MMS performed better in naturalness for Chichewa
(MMS: 4.03 versus YourTTS: 3.82) where we pri-
oritized intelligibility and therefore YourTSS (de-
tailed results are available in Appendix H). We find
that the quality of the TTS model probably does not
matter beyond a certain threshold. The Hausa ASR
models trained on synthetic data generated using
YourTTS don’t outperform those trained on data
generated by XTTS, even though the former TTS
model outperforms the latter on both intelligibility
and naturalness.

4.3 ASR Model Performance with Synthetic
Data

4.3.1 Medium Data Scenario: Hausa
While the performance differs between the eval-
uation datasets, in general, replacing half of the
human data with synthetic data, i.e. 250h:250h,
in model training yields performance equally or
marginally better than a model trained on 500h of
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Data ratios FLEURS NaijaVoices Common Voice
WER CER WER CER WER CER

500h constant
100h:400h 28.58

(28.63 ± 0.86)
10.64

(10.04 ± 0.47)
24.57

(24.57 ± 0.33)
6.26

(6.26 ± 0.12)
17.95

(17.94 ± 0.67)
3.73

(3.73 ± 0.16)
250h:250h 26.17

(26.23 ± 0.65)
9.01

(9.03 ± 0.42)
22.91

(22.92 ± 0.31)
5.84

(5.84 ± 0.17)
18.69

(18.68 ± 0.67)
3.67

(3.73 ± 0.16)
500h:0h 26.91

(26.9 ± 0.67)
9.64

(9.63 ± 0.47)
22.49

(22.5 ± 0.34)
5.71

(5.72 ± 0.11)
17.91

(17.9 ± 0.67)
3.60

(3.61 ± 0.15)

Full data
579h:450h

XTTS
25.73

(25.75 ± 0.63)
8.96

(8.97 ± 0.44)
22.43

(22.42 ± 0.33)
5.74

(5.74 ± 0.11)
18.16

(18.17 ± 0.67)
3.44

(3.44 ± 0.15)
579h:993h
YourTTS

28.42
(28.47 ± 0.98)

11.22
(11.27 ± 0.79)

22.06
(22.06 ± 0.3)

5.64
(5.64 ± 0.12)

17.45
(17.42 ± 0.66)

3.45
(3.45 ± 0.15)

Table 1: WER and CER for Wav2Vec-Bert 2.0 Hausa models trained on different ratios of real and synthetic
XTTS-generated data. In parentheses, we present bootstrapped mean and standard deviation WER and CER.

real data for models trained with XTTS-generated
data (see Table 1).19 On the Common Voice test set,
the model trained on a 1:4 ratio performs equally
to the model trained on 500h of real data. The best
performing model across most evaluation sets and
metrics resulted from training on all data available,
albeit with only minor improvements.

The data ablation study indicated that the ASR
models does not saturate at 100h or 250h of data as
the models trained with synthetic data still showed
the same slight improvements as with adding real
data.

Investigating gender bias, we found that on aver-
age the fine-tuned models perform slightly worse
for male voices than for female voices (see the Ap-
pendix M for detailed results), despite our synthetic
voice data being exclusively male. The gender-
disaggregated performance on the NaijaVoices and
Common Voice test sets showed an average dif-
ference in WER/ CER of → 1.82/ → ↑0.17 and
→ 1.29/ → 0.57 percentage points, respectively
(positive numbers indicate worse performance for
male speakers).

4.3.2 Low Data Scenario: Dholuo and
Chichewa

For Dholuo and Chichewa, we added increasing
amounts of synthetic data to increase the total train-
ing corpus. Therefore, we would expect improve-
ments in performance as the training corpus size
increases.

For Dholuo, the results depended on the test
set. On FLEURS, no amount of synthetic data im-

19More details on models trained on YourTTS-generated
data and on the data ablation are available in Appendix J.

proved the WER and improvements in CER were
not statistically significant (e.g. the improvement
6.06 to 6.00 CER when adding 77h of synthetic
data is well within the standard deviation of 0.29
and 0.23, respectively). On Common Voice, adding
19h of synthetic data for a 1:1 ratio improved per-
formance from 30.64 ± 0.51 to 28.76 ± 0.46 WER
and from 6.99 ± 0.22 to 6.09 ± 0.15 CER. Adding
further synthetic data did not yield further improve-
ments. Full results are available in Appendix K.

In contrast, for Chichewa (see Table L.1), we
found consistent improvements when adding syn-
thetic data. Adding 68 hours of synthetic data for a
1:2 ratio between real and synthetic data and adding
307h of synthetic data for a 1:9 ratio resulted in the
best performing models. On Zambezi Voice, the
1:2 ratio yielded the best absolute performance of
18.54 ± 0.71 WER and 4.41 ± 0.38 CER although
this is not statistically better than the performance
of a 1:9 ratio (18.71 ± 0.70 WER and 4.48 ± 0.38
CER, with the 34h:0h baseline resulting in 19.76 ±
0.70 WER and 4.52 ± 0.40 CER). Evaluation on
the FLEURS test set confirms these results, only
that the 1:9 exhibited best absolute WER perfor-
mance (34h:0h: 35.39 ± 0.59 WER and 7.67 ±
0.40 CER, 34h:68h: 33.4 ± 0.59 WER and 7.15 ±
0.36 CER, 34h:307h: 32.95 ± 0.61 WER and 7.25
± 0.38 CER, full results are available in Appendix
L).

Unfortunately, the available evaluation data did
not allow an analysis of performance by gender
as all speakers were either female (Dholuo), male
(Chichewa FLEURS test set) or metadata wasn’t
available (Zambezi Voice).
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4.3.3 Evaluation Challenges Due to
Non-standardized Scripts and Potential
Errors in Evaluation Data

Spot checks of the errors by different models in-
dicated that part of the word error rate might be
due to non-standardized scripts and diacritics in
Hausa, Dholuo, and Chichewa, where different but
equally legitimate ways of writing the same word
are counted as errors and where diacritics are not
consistently used or transcribed. This aligns with
work on potential limitations of WER (Aksënova
et al., 2021) and benchmarking for Indic languages
(Watts et al., 2024).

Although a thorough analysis of this issue is be-
yond the scope of this paper, we extracted the words
from the evaluation transcripts that were most of-
ten incorrectly transcribed. Native speakers than
evaluated these errors. This analysis indicates that
we potentially underestimate the ASR performance.
Of 19 to 20 errors per language evaluated, the eval-
uators labeled all 19 as no errors for Dholuo, 20
as no errors for Hausa (with 4 errors in the evalu-
ation transcript), and 2 out of 20 as no errors for
Chichewa (see Appendix N for examples). Those
wrongly labeled errors often stem from varying use
of special characters or different, but equally legiti-
mate, spellings. Those results also imply that com-
parisons of WER between languages are not robust,
as those issues differ between languages in kind
and number. Text normalization as a potential rem-
edy is an ongoing field of research. However, some
research has shown that current techniques might
not be appropriate for low-resource languages with
non-Latin scripts (Manohar et al., 2024).

5 Conclusion

We investigated the creation of synthetic text and
voice data for 10 African languages. Our results
show that synthetic text generation with LLMs
is feasible for various languages, except for the
lowest-resource languages such as Kanuri or Ki-
nande. Our results also show promising utility of
synthetic voice data in complementing human data
when training ASR models. But our results also
indicate that a minimum of human data is needed.
For Hausa, we show that the use of synthetic data
either worsens the performance for male voices or
does not increase gender bias in ASR performance,
depending on the evaluation dataset and in spite of
our synthetic data only including male voices. Fur-
ther investigations also illustrated the challenges of

working with human evaluators in low-resource lan-
guages where code-mixing and non-standardized
scripts are common, as well as the limitations and
shortcomings of existing evaluation datasets and
resulting metrics.

Limitations

Our work is limited to the selected languages, and
future research would need to expand the language
coverage of studies on synthetic data for African
languages. In addition, we could only explore a
certain set of parameters for our data generation
pipeline and model training. As illustrated in the
previous sections, our results are also limited by
potential issues in the evaluation datasets that we
used, despite their common usage. Furthermore,
we present our findings on challenges in human
evaluation for low-resource languages, which we
think require further investigation.

Future Work

Our research could show the utility of synthetic
voice data in a controlled setting on commonly
used evaluation sets. Future research should fur-
ther investigate the robustness of synthetic data for
use in practical applications. This might include in-
vestigating the utility of multiple-speaker TTS and
voice cloning based on very small voice samples
to create more diverse or targeted synthetic data
(Ogun et al., 2024; Yang et al., 2024). Future work
should also investigate methods and effectiveness
of increasing text diversity and options to target text
generation to specific domains and use cases (see
Yang et al. (2024), Chen et al. (2024) and Finch and
Choi (2024)). Our work illustrates the challenges
in human evaluation. Future work to improve in-
tercoder reliability should include better evalua-
tion guidelines and identification of key metrics
indicating downstream performance. The exam-
ples presented illustrate that beyond synthetic data,
ASR evaluation in low-resource languages requires
further investigation to handle non-standardized
scripts, either through semantic measures, mea-
sures robust to plurality in spellings or language-
appropriate normalizers, and work on improved
evaluation datasets. Lastly, further work should be
undertaken to investigate other uses of synthetic
data in African languages.
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Appendix A Language Overview

Language Estimated L1 Speaker Population Language Family Region

Hausa 50,000,000 Chadic West Africa
Northern Somali 22,000,000 Cushitic East Africa
Yoruba 54,000,000 Niger-Congo (Volta-Niger) West Africa
Wolof 5,500,000 Niger-Congo (Atlantic) West Africa
Chichewa 9,700,000 Bantu Southern Africa
Dholuo 5,000,000 Nilotic East Africa
Kanuri 9,600,000 Saharan West-Central Africa
Twi 9,000,000 Kwa West Africa
Kinande 10,000,000 Bantu Central Africa
Bambara 10,000,000 Niger-Congo (Mande) West Africa

Table A.1: Estimated first language (L1) speaker populations, language family, and regions for African languages
for which we created and evaluated synthetic text data.
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Appendix B LLM Prompt for Synthetic Text Generation

Figure B.1: Synthetic text generation prompt to generate simple sentences in target language and English translations.
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Appendix C Models Used and Dataset Sizes for Synthetic Datasets

Language Synthetic text
corpus

LLM used for text
generation

Synthetic voice
corpus

TTS model used
for voice data

generation

Hausa 674,000 sentences GPT-4o 574.39 hours
(450 hours with
original share of

questions)

XTTS (fine-tuned)

Hausa 674,000 sentences GPT-4o 993 hours YourTTS
(fine-tuned)

Dholuo 666,000 sentences Claude 3.7 Sonnet 775 hours YourTTS
(fine-tuned)

Chichewa 650,000 sentences Claude 3.5 Sonnet 550 hours YourTTS
(fine-tuned)

Table C.1: Overview of models used for synthetic data generation and resulting synthetic datasets per language.
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Appendix D Synthetic Text Generation Language Evaluation Summary Statistics

Language Model Readability
&
Naturalness
[1..7]

Grammatical
Correctness
[0,1]

Real Words
[0,1]

Notable Er-
ror [0,1]

Adequacy
&
Accuracy
[1..7]

Bambara

Claude 3.5
Sonnet

6.08 ± 1.18 0.82 ± 0.38 0.82 ± 0.38 0.21 ± 0.41 5.83 ± 1.41

Claude 3.7
Sonnet

5.80 ± 1.26 0.78 ± 0.41 0.78 ± 0.42 0.25 ± 0.43 5.63 ± 1.43

GPT-4o 3.72 ± 2.08 0.20 ± 0.40 0.31 ± 0.46 0.87 ± 0.34 2.54 ± 1.34

GPT-4.5 3.95 ± 1.84 0.24 ± 0.43 0.43 ± 0.50 0.78 ± 0.41 2.85 ± 1.40

Chichewa

Claude 3.5
Sonnet

5.88 ± 1.05 0.75 ± 0.43 0.87 ± 0.33 0.13 ± 0.33 4.62 ± 1.81

Claude 3.5
Sonnet*

5.20 ± 1.77 0.67 ± 0.47 0.92 ± 0.28 0.27 ± 0.44 4.91 ± 1.62

GPT-4o 5.73 ± 1.11 0.76 ± 0.43 0.91 ± 0.29 0.19 ± 0.40 4.54 ± 1.66

O1 5.00 ± 1.72 0.59 ± 0.49 0.84 ± 0.37 0.25 ± 0.44 4.02 ± 1.62

Hausa
Claude 3.5
Sonnet

5.14 ± 1.26 0.38 ± 0.49 0.47 ± 0.50 0.63 ± 0.48 5.07 ± 1.39

GPT-4o 5.67 ± 0.94 0.59 ± 0.49 0.64 ± 0.48 0.42 ± 0.49 5.63 ± 1.03

Kanuri

Claude 3.5
Sonnet

2.67 ± 1.64 0.02 ± 0.14 0.14 ± 0.34 0.58 ± 0.49 1.38 ± 0.98

Claude 3.7
Sonnet

1.18 ± 0.57 0.00 ± 0.00 0.00 ± 0.07 1.00 ± 0.00 1.33 ± 0.64

GPT-4o 1.55 ± 0.70 0.02 ± 0.14 0.00 ± 0.00 0.51 ± 0.50 1.40 ± 1.39

GPT-4.5 2.02 ± 2.10 0.11 ± 0.32 0.11 ± 0.32 0.91 ± 0.29 2.03 ± 2.00

O1 1.51 ± 0.64 0.00 ± 0.00 0.00 ± 0.00 0.51 ± 0.50 1.03 ± 0.30

Dholuo

Claude 3.5
Sonnet

5.91 ± 1.42 0.78 ± 0.42 0.94 ± 0.24 0.48 ± 0.50 5.82 ± 1.48

GPT-4o 3.45 ± 2.01 0.15 ± 0.36 0.85 ± 0.36 0.91 ± 0.29 3.22 ± 2.01

O1 3.64 ± 2.09 0.22 ± 0.42 0.80 ± 0.40 0.87 ± 0.34 3.23 ± 1.99
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Language Model Readability
&
Naturalness
[1..7]

Grammatical
Correctness
[0,1]

Real
Words
[0,1]

Notable
Error [0,1]

Adequacy
&
Accuracy
[1..7]

Kinande

Claude 3.5
Sonnet

3.61 ±
1.77

0.26 ±
0.44

0.31 ±
0.46

0.79 ±
0.41

2.99 ±
1.73

Claude 3.7
Sonnet

3.38 ±
1.61

0.22 ±
0.41

0.28 ±
0.45

0.79 ±
0.41

2.86 ±
1.57

GPT-4o 1.77 ±
0.96

0.01 ±
0.10

0.01 ±
0.10

0.98 ±
0.14

1.58 ±
0.94

GPT-4.5 2.51 ±
1.31

0.08 ±
0.26

0.10 ±
0.30

0.90 ±
0.30

2.16 ±
1.27

Northern Somali

Claude 3.5
Sonnet

6.06 ±
1.28

0.485 ±
0.50

0.94 ±
0.24

0.33 ±
0.47

6.37 ±
1.03

GPT-4o 6.03 ±
1.35

0.78 ±
0.41

0.97 ±
0.17

0.19 ±
0.39

6.50 ±
0.97

O1 5.97 ±
1.43

0.47 ±
0.50

0.95 ±
0.23

0.30 ±
0.46

6.33 ±
1.06

Twi

Claude 3.5
Sonnet

5.53 ±
1.50

0.62 ±
0.49

0.71 ±
0.45

0.54 ±
0.50

5.18 ±
1.91

Claude 3.7
Sonnet

5.49 ±
1.51

0.40 ±
0.49

0.52 ±
0.50

0.62 ±
0.48

4.74 ±
1.94

GPT-4o 4.67 ±
1.81

0.49 ±
0.50

0.81 ±
0.39

0.71 ±
0.45

4.10 ±
2.04

O1 4.35 ±
1.91

0.38 ±
0.49

0.63 ±
0.48

0.73 ±
0.44

3.87 ±
2.11

Wolof

Claude 3.5
Sonnet

5.77 ±
0.93

0.93 ±
0.25

0.66 ±
0.47

0.31 ±
0.46

5.97 ±
1.35

GPT-4o 5.04 ±
1.54

0.97 ±
0.17

0.82 ±
0.39

0.65 ±
0.48

4.94 ±
1.77

O1 5.04 ±
1.41

0.97 ±
0.18

0.72 ±
0.45

0.25 ±
0.43

4.96 ±
1.66

Yoruba

Claude 3.5
Sonnet

6.14 ±
0.86

0.93 ±
0.26

0.96 ±
0.19

0.25 ±
0.43

5.92 ±
1.16

GPT-4o 5.59 ±
1.37

0.68 ±
0.47

0.97 ±
0.18

0.46 ±
0.50

5.54 ±
1.43

O1 5.35 ±
1.38

0.71 ±
0.46

0.90 ±
0.30

0.54 ±
0.50

5.26 ±
1.51
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Appendix E Fine-tuning GPT-4o for Improved Sentence Generation in Low-resource
Languages

Similar to the work presented by Dixon (2024), who fine-tuned GPT-4o for improved performance in
Sheng, we applied instruction fine-tuning to OpenAI GPT-4o, defining a machine translation task using
the FLORES20 (Conneau et al., 2022) English-to-Hausa dev dataset. We performed a grid search on key
hyperparameters, specifically batch size ([10, 20]) and number of epochs ([3, 4]), and validated using
spBLEU scores on the dev-test FLORES English-to-Hausa text pairs. We identified a batch size of 10 and
3 epochs as optimal settings. Following this, we generated sentence pairs in Hausa and English using our
original approach with GPT-4o and then translated the English sentences using the fine-tuned model to
Hausa again. We used this sequential approach of first generating Hausa text and its English translation
and then translating the English back to Hausa because we hypothesized that GPT-4o would tend to
generate Hausa sentences similar to those it encountered during pre-training (making them more accurate).
Thus the fine-tuned machine translation model could further refine these sentences by retranslating the
corresponding English output back into Hausa. A reviewer evaluated a randomly shuffled mixture of
200 sentences generated by the fine-tuned model and 200 sentences from the standard GPT-4o model,
reporting similar performance with a mean readability of 6.00 ± 0.78 for the fine-tuned model compared
to 5.98 ± 0.72 for GPT-4o.

Similarly, we applied the same fine-tuning methodology to Kanuri, using 5,000 Kanuri-English sentence
pairs from the Gamayun dataset21, maintaining default OpenAI hyperparameters for fine-tuning. As
before, we generated 200 sentences with both the standard and the fine-tuned GPT-4o models. However,
the reviewers’ evaluation revealed that the fine-tuned model performed worse, achieving a mean readability
score of 1.18 ± 0.57 compared to 1.55 ± 0.70 for the standard GPT-4o.

20https://huggingface.co/datasets/openlanguagedata/flores_plus
21https://huggingface.co/datasets/CLEAR-Global/Gamayun-kits
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Appendix F Synthetic Kanuri Text Inter-rater Reliability Analysis

As reported, our two-way analysis of variance
(ANOVA), with LLM and Linguist ID as categor-
ical factors demonstrates that both model choice
and linguist identity significantly affected readabil-
ity ratings (p < 0.05). Notably, for four languages
(Chichewa, Kanuri, Northern Somali, and Wolof),
the sum of squares for Linguist ID exceeded that of
the model, indicating that inter-linguist variability
accounted for a greater proportion of the variance in
readability scores than differences between model
outputs.

This appendix analyzes inter-rater reliability
for 400 sentences generated in Kanuri using the
methodology described in Section 3.1. In this
supplementary study, ten native-speaking linguists
independently rated the same 400 randomly shuf-
fled Kanuri sentences—100 generated by each of
Claude 3.5 Sonnet, Claude 3.7 Sonnet, GPT-4o,
and GPT-4.5— on three metrics meant to capture
language quality in the target language: readabil-
ity and naturalness of the sentence, grammatical
correctness and all words being from the target
language. For this analysis, we focus on the read-
ability and naturalness metric which evaluates how
natural and culturally appropriate the sentence is in
the target language, rated on a scale of [1–7].

Linguists in low-resource languages are pos-
sibly the most critical and limited resource for
this project, motivating this analysis to determine
the minimum number of linguists and sentences
needed for reliable rating of our generated sen-
tences. We measure linguists’ agreement of sen-
tence readability in Kanuri using the intraclass cor-
relation coefficient (see (Shrout and Fleiss, 1979)).
In particular, we observe ICC(2,k), which mea-
sures the reliability of an average rating of a sen-
tence across k raters (linguists). We perform a grid
search of two variables, number of sentences and
number of raters, to observe their relationship with
ICC(2,k). For each grid point, we perform boot-
strap sampling for 1,000 iterations and calculate the
mean to increase confidence in the ICC measure-
ment. According to (Koo and Li, 2016), ICC values
can be interpreted as follows: "values less than 0.5,
between 0.5 and 0.75, between 0.75 and 0.9, and
greater than 0.90 are indicative of poor, moderate,
good, and excellent reliability, respectively."

Figure F.1 shows the impact of sentence vol-

ume and number of linguists on ICC(2,k) for each
LLM. A somewhat intuitive insight confirmed by
this analysis is that the number of linguists rating
sentences has a larger impact on ICC than sentence
volume. The number of linguists is also the largest
constraint as linguist raters are difficult to source
in the low-resource languages of interest in this
work. For Claude 3.5 and Claude 3.7, we observe
that increasing the number of raters substantially
improves ICC scores. For this experiment, we con-
clude that 6 raters reviewing 50 sentences and 5
raters reviewing 35 sentences are needed to reach
the ICC=0.5 moderate threshold for Claude 3.5 and
Claude 3.7, respectively. For the OpenAI models
(GPT-4o and GPT-4.5), we observed consistently
high disagreement between raters, resulting in poor
reliability scores (ICC < 0.5) even with the maxi-
mum number of raters and sentences tested.

We also resampled raters with replacement and
a random subset of 50 sentences to empirically
estimate the mean readability and naturalness rat-
ings with 95% confidence intervals (Figure F.2).
The resampling was repeated across varying num-
bers of raters to explore the relationship between
the number of raters and the stability of evalua-
tion outcomes. Increasing the number of raters
consistently narrowed the 95% confidence inter-
vals across all models, indicating improved rating
stability. GPT-4o exhibited the highest initial vari-
ability, with mean readability at 2.61 and a wide
95% confidence interval range of 5.86 when rated
by two linguists; this range decreased notably to
3.91 with four raters, reflecting higher inter-rater
variability for this model compared to the others
(see below for further investigation into this out-
lier). In contrast, ratings for Claude 3.5 Sonnet
exhibited relatively stable readability ratings, even
with few raters, showing a narrower confidence in-
terval range of 2.60 for two raters, reducing slightly
to 2.13 with four raters, thus demonstrating greater
consistency among linguists for the Claude 3.5 Son-
net model.

A heatmap of the mean readability rating agree-
ment among Kanuri raters points to an expected
linguist bias and general agreement in model rank-
ing, with the notable exception of GPT-4o (see
Figure F.3). Specifically, three linguists rated GPT-
4o highest, with two raters providing mean ratings
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(a)

(b)

(c)

(d)

Figure F.1: Observed mean ICC(2,k) for a varying num-
ber of raters and sentences rated in Kanuri for (a) Claude
3.5 Sonnet, (b) Claude 3.7 Sonnet, (c) GPT-4o and (d)
GPT4.5.

Figure F.2: Mean Kanuri readability and naturalness
score by rater sample size. The shaded regions repre-
sent 95% confidence intervals derived from bootstrap
analysis.

Figure F.3: Heatmap of mean Kanuri readability scores
by individual linguists. Each cell displays the average
score assigned by each linguist rater for sentences gen-
erated by different models.

of 6.6 or higher. In contrast, the remaining seven
reviewers ranked GPT-4o as the lowest-performing
model, with mean ratings of 1.4 or lower. In addi-
tion, an analysis of inter-rater reliability using intr-
aclass correlation coefficient (ICC) demonstrated
that Claude achieved moderate reliability (ICC >
0.5) with 5-6 linguists rating 35-50 sentences. In
contrast, GPT models showed poor reliability even
with 10 linguists, further emphasizing the differ-
ences in rater agreement among models. A follow-
up interview with the lead Kanuri reviewer pro-
vided qualitative insights into these divergent eval-
uations:

• GPT-4o: The sample text was identified as
high-quality Hausa, not Kanuri.

• GPT-4.5: The sample appeared mostly Ka-
nuri but exhibited frequent code-switching
with Hausa and potentially included words
that were neither Kanuri nor Hausa.

• Claude 3.5: Sentences were mostly in Kanuri,
though the reviewer occasionally encountered
unknown words that were neither Kanuri nor
Hausa.

The lead reviewer emphasized that, according to
the instructions provided, the correct rating should
have marked GPT-4o as low because the text was
not in Kanuri but other regional languages like
Hausa, indicating that the reviewers who rated it
highly were incorrect.
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Appendix G Duplication Challenges for Large Quantity Synthetic Text Generation

During this large-scale text generation, we observed an unexpected large amount of sentence duplication.
Specifically, using Claude 3.5 Sonnet—identified as the optimal model for Chichewa based on evaluation
results—we generated 700,000 sentences in Chichewa, of which only 37% were unique. In comparison,
text generated using Claude 3.7 Sonnet exhibited significantly less duplication, with 86% of 530,400
sentences being unique.

To further investigate, we performed a simulation study, subsampling the batch requests without
replacement (n=1000 subsamples per observation) to assess the rate of unique sentence generation as
a function of batch size (Figure G.1). Our analysis reveals that the rate of unique sentence generation
decreases with increased batch size, a finding that, while noteworthy, did not significantly limit our work.
The deduplicated Chichewa corpus generated by Claude 3.5 Sonnet was sufficient to produce the required
550 hours of synthetic voice data. Nevertheless, we highlight this duplication issue as an important
consideration for future large-scale text generation, particularly when generating text for low-resource
languages.

Figure G.1: Anthropic Claude unique sentence generation for large-scale Chichewa synthetic text corpora generation.

172



Appendix H Human Evaluation of TTS Models for Hausa, Dholuo and Chichewa

Model Architecture Hausa Dholuo Chichewa
Intell. Natural. Intell. Natural. Intell. Natural.

MMS VITS 2.47 2.35 – – 4.35 4.03
Original BibleTTS VITS 3.53 3.53 – – – –
New BibleTTS VITS 3.00 2.89 – – – –
XTTS Transformer-based 3.72 3.55 3.61 3.34 2.79 2.85
YourTTS VITS 4.50 4.07 4.71 4.59 4.45 3.82

Table H.1: Human evaluation of intelligibility and naturalness of different TTS models for Hausa, Dholuo and
Chichewa.

Appendix I MMS-1B Performance for Hausa across Different Ratios of Real and
Synthetic Data

Real-to-synthetic data ratios FLEURS NaijaVoices Common Voice
WER CER WER CER WER CER

50h:0 30.34 10.45 34.72 9.00 27.26 5.67
500h:0 29.13 9.19 34.92 9.02 27.22 5.62
250h:250h XTTS 29.77 10.16 37.61 9.63 28.43 5.87
100h:400h XTTS 30.27 9.86 38.95 10.12 27.42 5.91
50h:450h XTTS 31.88 10.82 40.42 10.52 28.92 6.15
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Appendix J Hausa Wav2Vec-BERT 2.0 ASR Detailed Results

Real-to-synthetic data ratios FLEURS NaijaVoices Common Voice
WER CER WER CER WER CER

500h constant training corpus size
100h:400h XTTS 28.58

(28.63 ±
0.86)

10.64
(10.04 ±

0.47)

24.57
(24.57 ±

0.33)

6.26
(6.26 ±

0.12)

17.95
(17.94 ±

0.67)

3.73
(3.73 ±

0.16)
100h:400h YourTTS 29.85

(29.88 ±
0.9)

11.57
(11.64 ±

0.7)

27.33
(27.33 ±

0.34)

7.11
(7.11 ±

0.12)

19.8
(19.8 ±

0.68)

4.16
(4.16 ±

0.17)
250h:250h XTTS 26.17

(26.23 ±
0.65)

9.01
(9.03 ±

0.42)

22.91
(22.92 ±

0.31)

5.84
(5.84 ±

0.17)

18.69
(18.68 ±

0.67)

3.67
(3.73 ±

0.16)
250h:250h YourTTS 27.02

(27.03 ±
0.87)

10.47
(10.5 ± 0.7)

23
(22.99 ±

0.3)

5.75
(5.75 ±

0.11)

18.73
(18.74 ±

0.69)

3.64
(3.64 ±

0.16)

Real data ablation
100h:0 30.23

(30.25 ±
0.81)

10.58
(10.6 ±

0.54)

24.06
(24.07 ±

0.34)

6.23
(6.24 ±

0.12)

19.53
(19.52 ±

0.67)

4.03
(4.03 ±

0.16)
250h:0 27.8

(27.79 ±
0.78)

10.21
(10.19 ±

0.57)

23.01
(23.0 ±

0.31)

5.75
(5.75 ±

0.17)

19.04
(19.04 ±

0.67)

3.76
(3.76 ±

0.15)
500h:0h 26.91

(26.9 ±
0.67)

9.64
(9.63 ±

0.47)

22.49
(22.5 ±

0.34)

5.71
(5.72 ±

0.11)

17.91
(17.9 ±

0.67)

3.60
(3.61 ±

0.15)

Full data
579h:450h XTTS 25.73

(25.75 ±
0.63)

8.96
(8.97 ±

0.44)

22.43
(22.42 ±

0.33)

5.74
(5.74 ±

0.11)

18.16
(18.17 ±

0.67)

3.44
(3.44 ±

0.15)
579h:993h YourTTS 28.42

(28.47 ±
0.98)

11.22
(11.27 ±

0.79)

22.06
(22.06 ±

0.3)

5.64
(5.64 ±

0.12)

17.45
(17.42 ±

0.66)

3.45
(3.45 ±

0.15)

Table J.1: WER and CER for Wav2Vec-Bert 2.0 Hausa models trained on different ratios of real and synthetic data.
In parentheses, we present bootstrapped mean and standard deviation WER and CER.
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Appendix K Dholuo Wav2Vec-BERT 2.0 ASR Detailed Results

Real-to-synthetic data ratios FLEURS CommonVoice
WER CER WER CER

19h:0h 26.92
(26.92 ± 0.91)

6.07
(6.06 ± 0.29)

30.65
(30.64 ± 0.51)

6.99
(6.99 ± 0.22)

19h:19h 27.15
(27.22 ± 0.83)

6.43
(6.45 ± 0.30)

28.75
(28.76 ± 0.46)

6.10
(6.09 ± 0.15)

19h:38h 29.4
(29.4 ± 0.86)

6.61
(6.59 ± 0.30)

29.25
(29.27 ± 0.49)

6.55
(6.56 ± 0.21)

19h:77h 28.28
(28.26 ± 0.73)

6.01
(6.00 ± 0.23)

30.18
(30.2 ± 0.50)

6.69
(6.69 ± 0.17)

Table K.1: WER and CER for Wav2Vec-Bert 2.0 Dholuo models trained on different ratios of real and synthetic
data. In parentheses, we present bootstrapped mean and standard deviation WER and CER.

Appendix L Chichewa Wav2Vec-BERT 2.0 ASR Detailed Results

Real-to-synthetic data ratios FLEURS Zambezi Voice
WER CER WER CER

34h:0h 35.38
(35.39 ± 0.59)

7.67
(7.67 ± 0.40)

19.76
(19.76 ± 0.70)

4.51
(4.52 ± 0.40)

34h:34h 34.32
(34.33 ± 0.59)

7.56
(7.55 ± 0.39)

19.90
(19.86 ± 0.74)

4.57
(4.56 ± 0.39)

34h:68h 33.39
(33.4 ± 0.59)

7.15
(7.15 ± 0.36)

18.53
(18.54 ± 0.71)

4.38
(4.41 ± 0.38)

34h:102h 34.10
(34.1 ± 0.61)

7.42
(7.43 ± 0.41)

20.28
(20.3 ± 0.76)

4.74
(4.75 ± 0.40)

34h:136h 34.72
(34.71 ± 0.59)

7.65
(7.65 ± 0.40)

21.20
(21.21 ± 0.72)

4.96
(4.97 ± 0.39)

34h:307h 32.95
(32.95 ± 0.61)

7.27
(7.25 ± 0.38)

18.69
(18.71 ± 0.70)

4.46
(4.48 ± 0.38)

Table L.1: WER and CER for Wav2Vec-Bert 2.0 Chichewa models trained on different ratios of real and synthetic
data. In parentheses, we present bootstrapped mean and standard deviation WER and CER.
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Appendix M Hausa Wav2Vec-BERT 2.0 ASR Results by Gender

Real:Synth Ratio FLEURS NaijaVoices Common Voice
Male Female Male Female Male Female
(n=1) (n=620) (n=2845) (n=1679) (n=180) (n=34)

WER CER WER CER WER CER WER CER WER CER WER CER

500h:0 28.57 8.57 26.91 9.64 23.11 5.63 21.43 5.86 19.23 3.85 13.19 2.45
100h:400h XTTS 42.86 12.86 28.57 10.64 25.36 6.28 23.24 6.23 17.35 3.82 14.47 2.80
100h:400h YourTTS 42.86 15.71 29.84 11.57 28.47 7.15 25.41 7.03 19.58 4.20 21.70 4.29
250h:250h XTTS 35.71 14.29 26.16 9.00 23.35 5.71 22.16 6.05 18.47 3.68 17.87 3.68
250h:250h YourTTS 35.71 10.00 27.01 10.47 23.42 5.64 22.28 5.93 19.72 3.89 14.04 2.63
579h:450h XTTS 42.86 11.43 25.71 8.96 23.06 5.68 21.39 5.85 17.70 3.46 13.62 2.80
579h:993h YourTTS 35.71 10.00 28.41 11.22 22.54 5.51 21.26 5.85 17.77 3.60 17.45 3.06

Table M.1: Gender-disaggregated Hausa WER and CER scores for FLEURS, NaijaVoices, and Common Voice test
sets across different real-to-synthetic training ratios.

176



Appendix N Human evaluation of ASR model errors

Table N.1: Human evaluation of ASR model errors in Hausa.

Evaluation transcript Model output Evaluator
assessment

Evaluator comments

sautin dala da wasan
haske na daya daga
cikin abubuwa masu
dadi a fanni kananan
yara

sautin dala da wasan
haske na ɗaya daga
cikin abubuwa masu
daɗi a fanni ƙananan
yara

No error The only difference is
the use of special Hausa
characters.

a wasu wurare minti
daya ya isa ruwa ya
tafasa amma a wasu
wuraren kuma yana
bukatar mintuna da
yawa

a wasu wurare minti
ɗaya ya isa ruwa ya
tafasa amma a wasu
wuraren kuma yana
buƙatar mintuna da
yawa

No error The only difference is
the use of special Hausa
characters.

a sauran biranen
kasar italiya da kuma
sauran kasashen duniya
musamman a poland
an kafa makamancin
ginuwar wanda ya
samu dubiyar jama’a
da dama

a sauran biranen
ƙasar italiya da kuma
sauran ƙasashen duniya
musamman a foland
an kafa makamancin
ginuwar wanda ya
samu dubiyar jama’a
da dama

No error The only difference is
the use of special Hausa
characters.

aukuwar tsananin
yanayin yanki da na
lokacin sun hada da
guguwar iska hadari
mai dusar kankara
guguwar kankara da
guguwar ƙura

aukuwar tsananin
yanayin yanki da na
lokacin sun haɗa da
guguwar iska hadari
mai dusar ƙanƙara
guguwar ƙanƙara da
guguwar kura

No error The only difference is
the use of special Hausa
characters.

garken zaki sun kunshi
maza manya daya zuwa
uku masu dangantaka
tare da mata da dama
har zuwa talatin tare da
’ya’ya

garken zaki sun ƙunshi
maza manya ɗaya zuwa
uku masu dangantaka
tare da mata da dama
har zuwa talatin tare da
yaya

No error The only difference is
the use of special Hausa
characters.

dong ɗan kasar koriya
ne

dung ɗan ƙasar koriya
ne

No error The only difference is
the use of special Hausa
characters.

Continued on next page
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Table N.1: (continued) Human evaluation of ASR model errors in Hausa.

Evaluation
Transcription

Model output Evaluator
assessment

Evaluator comment

manyan jami’ai ne
kawai suka samu
damar shiga wurin
shugaban kasar

manyan jami’ai ne
kawai suka samu
damar shiga wurin
shugaban ƙasar

No error The only difference is
the use of special Hausa
characters.

dalibai sun yi wasan
kwallo

ɗalibai sun yi wasan
ƙwallo

No error The only difference is
the use of special Hausa
characters.

dalibai sun kai ziyara
gidan masu tabin
hankali

ɗalibai sun kai ziyara
gidan masu taɓin
hankali

No error The only difference is
the use of special Hausa
characters.

dakin karatun yana
dauke da dalibai kusan
dubu daya

ɗakin karatun yana
ɗauke da ɗalibai kusan
dubu ɗaya

No error The only difference is
the use of special Hausa
characters.

sai karfe tara na
dare za’a sanar da
sakamakon zaɓen

sai ƙarfe tara na dare za
a sanar da sakamakon
zaɓen

No error The only difference is
the use of special Hausa
characters.

za’a yi mata aiki a
ƙwaƙwalwa

za a yi mata aiki a
ƙwaƙwalwa

Error in
evaluation
transcript

Grammatically, the correct
form is ‘za a’, not ‘za’a’.
However, many people are
using ‘za’a’.

ana shan magani idan
ba’a da lafiya

ana shan magani idan
ba a da lafiya

Error in
evaluation
transcript

Grammatically, the correct
form is ‘ba a’, not ‘a’ba’.
However, many people are
using ‘ba’a’.

abuja na cikin nijeria abuja na cikin najeriya No error Both ‘Nijeriya’ and
‘Naijeriya’ are used, so it
depends on the newspaper
or individual.

oguta karamin jiha ce a
cikin nijeria

oguta ƙaramin jiha ce a
cikin najeriya

No error The only difference is
the use of special Hausa
characters.

sitika ɗin ƴana ɗa ƙyau sitika ɗin yana da kyau Error in
evaluation
transcript

The only difference is
the use of special Hausa
characters. And there are
wrong use of the special
characters e.g ƴana The
correct version is yana.

ƴan shi’a sun yi tattaki
jiya

yan shi’a sun yi tattaki
jiya

No error The only difference is
the use of special Hausa
characters.

Continued on next page
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Table N.1: (continued) Human evaluation of ASR model errors in Hausa.

Evaluation
Transcription

Model output Evaluator
assessment

Evaluator comment

macaroni abincin ƴan
italiya ne

makaroni abincin yan
italiya ne

No error The only difference is
the use of special Hausa
characters.

kula da alaƙa mai ƙarfi
da ƴan uwa

kula da alaƙa mai ƙarfi
da yan’uwa

No error The only difference is
the use of special Hausa
characters.

mallam aminu dan
kasuwa ne à kasuwan
kure

malam aminu ɗan
kasuwa ne a kasuwan
kure

Error in
evaluation
transcript

Error in the evaluation
transcript. There is no à in
Hausa wrting sytle that we
physically see and read.
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Table N.2: Human evaluation of ASR model errors in Dholuo.

Evaluation transcript Model output Evaluator as-
sessment

Evaluator comments

e piny kenya mano en
ketho maduong’ ahinya

e piny kenya mano en
ketho maduong’ ahinya

No error Written Luo uses apostrophe at
the final syllable as in the word
maduong’ but this does not re-
sult in a difference in meaning.

tuwo mar sukari ema ne
onego owadawano

tuo mar sukari ema ne
onego owadwano

No error Excellent, in Luo we either say
‘tuo’ or ‘tuwo’.

e wi mano tuwo mar
corona ne oketho chenro
mag somo e pinje

e wi mano tuo mar corona
ne oketho chenro mag
somo e pinje

No error

otho sa adek okinyi otho saa adek okinyi No error No error, we either use ‘sa’ or
‘saa’.

neru maduong’ osekendo neru maduong’ osekendo No error Only difference in apostrophe
used.

seche moko ginyalo bedo
jii ariyo ma penjo penjo

seche moko ginyalo bedo
ji ariyo ma penjo penjo

No error No error, it’s either ‘ji’ or ‘jii’.
This a feature in Luo for mono-
syllabics.

dhii uywe kund dhok dhi uywe kund dhok No error See comments above.

welo dhii e kanisa
kawuono

welo dhi e kanisa
kawuono

No error See comments above.

ngama kare ber ng’ama kare ber No error Native speakers know this and
would understand.

unega kayiem nang’o unega kayiem nang’o No error

pesa jadoung ile pesa jadoung’ ile No error Again optional final apostrophe.

ng’ama nigi jadoung
machiegni

ng’ama nigi jadoung’
machiegni

No error

en chieng’ maduong en chieng’ maduong’ No error

antie gi othinyo mangeny antie gi othinyo mang’eny No error

we bedo gi gombo
mangeny

we bedo gi gombo
mang’eny

No error

mol mar trafik en timo
nonro kata puonjruok
kuom timbe mag joriembo
kod mtokni e seche ma
gisudo e kind kuonde
ariyo to kod tudruoge
magitimo e kindgi giwegi

mol mar trafik en timo
nonro kata puonjruok
kuom timbe mag joriembo
kod mtokni e seche mag-
isudo e kind kuonde ariyo
to kod tudruoge magitimo
e kindgi giwegi

No error No error, ‘u’ is an alternative for
‘wu’.

Continued on next page

180



Table N.2: (continued) Human evaluation of ASR model errors in Dholuo.

Evaluation transcript Model output Evaluator as-
sessment

Evaluator comment

onge wach achiel e piny
duto ma lero tiend kaka
mwandu molosi ichako
luongi ni gima nyachon
kembe moko mag solo os-
uru lero kuom mwandu
mosteetieko higni maloyo
100 kaka gigo ma nyachon

onge wach achiel e piny
duto malero tiend kaka
mwandu molosi ichako
luongi ni gima nyachon
kembe moko mag solo os-
uru lero kuom mwandu
mosteetieko higni maloyo
100 kaka gigo ma nyachon

No error

jarieko manyinge aristolet
nowacho ni gik moko olos
kod riwo achiel ariyo kata
ang’wen mag gigi piny pii
muya kod mach

jarieko manyinge aristotle
nowacho ni gik moko olos
kod riwo achiel ariyo kata
ang’wen mag gigi piny pii
muya kod mach

No error See my comment on monosyl-
labics.

atom moko nitiere kod
nyukila ma ok ochung’
motegno ma tiende ni
gibarore ga ka otwomgi
matin kata ka ok otwomgi
chutho

atom moko ni tiyoore kod
nyukila ma ok ochung’
motegno matiende ni
gibarore ga ka otwomgi
matin kata ka ok otwomgi
chutho

No error

Table N.3: Human evaluation of ASR model errors in Chichewa.

Evaluation transcript Model output Evaluator as-
sessment

Evaluator comments

pa maulendo ena makam-
pani ena akuluakulu ali
ndi ndege zao koma pa
maulendo ena makampani
ang’onoang’ono amakhala
ndi vuto

pamaulendo ena makam-
pani ena akuluakulu ali
ndi ndege zawo koma pa-
maulendo ena makampani
ang’onoang’ono amakhala
ndi vuto

Error Model Output: grammar rules
requires that pamaulendo writ-
ten disjunctively as it is not
a locative partical. Tran-
script: zao is gramatically
wrong, should be written as
zawo

ana okulira kwaokha
osakumana ndi anthu
akhoza kutheka kuchi-
tilidwa nkhanzza kapena
kuzunzidwa asanasiyei-
dwe kapena kuthawa

ana okulira kwaokha
osakumana ndi anthu
akhoza kutheka kuchi-
tilidwa nkhanzza kapena
kuzuzidwa asanasiyeidwe
kapena kuthawa

Error Model Output: kuzuzidwa is
a spelling error, it should be
kuzunzidwa.

Continued on next page
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Table N.3: (continued) Human evaluation of ASR model errors in Chichewa.

Evaluation transcript Model output Evaluator as-
sessment

Evaluator comment

ma blog amathanidzaniso
ana asukulu kuphunzila
kulemba ngakhalke kuti
poyamba ophunzila
amayamba ndi kulakwista
galamala ndi zilembo
za mawu kupeza kwa
anthu omweolega ku-
mathandizila kusintha
izi

ma blogamothandizaso
ana asukulu kuphunzila
kulemba ngakhalke kuti
poyamba ophunzila
amayamba ndi kulakwitsa
galamala ndi zilembo
zamawu kupeza kwa
anthu owenerenga ku-
mathandizila kusintha
izi

Error Model Output: blog-
amothandizaso is unknown
word made from combination
of two or three words. This
would confuse the reader.
Amayambamba is a wrong
spelling, it should be as in
Transcription: amayamba.

ngoziyi inachitikira
mwamba m’mapiri atali
ndipo akukhulupilira kuti
zinachitika chifukwa cha
adani achiwembu

ngoziyi inachitikira
m’mwamba m’mapiri
atali ndipo akukhulupilira
kuti zinachitika chifukwa
cha adani achiwembu

Error Transcription: atali should be
aatali as in model output. a chib-
wembu is normally written con-
junctively and should be achib-
wembu as in Model Output.

ku barcelona chiyankhulo
chovomelezeka ndi cata-
lan ndikli sipanishi theka
la anthu akudziwa cata-
lan ambiri amachimvetsa
ndiipo pafupifupi onse
amamva ndikudziwsa chi
sipanishi

ku barcelona chiyankhulo
chovomelezeka ndi cata-
lan ndi chi sipanishi theka
la anthu akudziwa cata-
lan ambiri amachimvetsa
ndiipo pafupifupi onse
amamva ndikudziwsa chi
sipanishi

Error Transcription: chi should not
be combined with chi but rather
goes together with the name
of the language to read: chis-
apnishi. Chi and sipanishi
should be written conjunctively.
Model Output: Chi and sipan-
ishi should be written conjunc-
tively.

zolegeza zathawi zonse
mu metro zimapangidwa
muchilankhulo chachi
kalatani basi koma
zosiyanasiyana zimasulu-
tidwa kudzera makina a
kompyuta mu zilankhulo
zosiyanasiyanansiya
kuphatikizikachisapanishi
chingerezi falansa arabic
ndi japanese

zolegeza za nthawi
zonse mu metro zima-
pangidwa muchilankhulo
chachi kalatani basi
koma zosiyanasiyana
zimasulutidwa kudzera
makina a kompyuta mu
zilankhulo zosiyanasiyana
kuphatikizika chisipanishi
chingerezi falansa arabic
ndi japanese

Error Transcription: chi should not
be combined with chi but rather
goes together with the name
of the language to read: chis-
apnishi. Kompyuta should
be kompyuta. chisipanishi
chingerezi falansa arabic ndi
japanese should have commas
in between.

owona zangozi zokugwa
madziidzi ku mpoto kwa
mariana ati palibe zomve
zidanowoneka pomwe
analengezera a nation

owona zangozi zokugwa
mwaziizizi kumpoto kwa
mariana ati palibe zomve
zidanowoneka pomwe
analengezera a nation

Error Transcription: madziidzi is an
incomplete word which should
read mwadziidzi. Model Out-
put: Mwazizizi is gramatically
incorrect.

Continued on next page
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Table N.3: (continued) Human evaluation of ASR model errors in Chichewa.

Evaluation transcript Model output Evaluator as-
sessment

Evaluator comment

apia ndi likulu la
samoa tauinyi ili
pachilumba cha upolu
ndipo pali chilengedwe
chachilengedwe cha anthu
ochepera pa 40000

apia ndi likulu la
samoa tauinyi ili
pachilumba cha upolu
ndipo pali chilengedwe
chachilengedwe cha anthu
ochepera pa 4000

Error Model Output: City of a pia
should be Apia and the a should
not be separated from pia.

safari ndi mawu
amene amatchulidwa
kawirikawiri ndiipo
amatanthauza ulendo
wopamtunda wokaona
nyama zokongola za-
kutchire za ku africa
kawirikawiri ku savanna

safari ndi mawu
amene amatchulidwa
kawirikawiri ndiipo
amatanthauza ulendo
wopamtunda wokaona
nyama zokongola za-
kutchire zaku africa
kawirikawiri ku savanna

Error Model Output: zaku should be
written separately as za ku.

kutenga sitima za
m’madzi kunyamulira
katundu ndi njira yoyenera
zedi yonyamulira anthu
wochuluka komanso
katundu kuwoloka pa
nyanja

kutenga sitima za
m’madzi kunyamulira
katundu ndi njira yoyen-
era zedi yonyamulira
anthu ochuluka komanso
katundu kooloka panyanja

Error Model Output: kooloka is
wrong spelling of kuwoloka

mkulu wophunzitsa pa
sukulu ya ukachenjede
ya dundee university a
pulofesa pamela fergu-
son adati atolankhani
akuoneka kuti akuyenda
mu chiwopsezo aka-
masindikiza zithunzi
ndi zina zotero za oga-
nizilidwa kupalamula
milandu

mgalu wophunzitsa pa-
sukulu yaukachenjede ya
dud university a pulofesa
pamella fegason adati
atolankhani akuoneka kuti
akuyenda mu chiopsezo
akamasindikiza zithuzi
ndi zina zotero za oga-
nizilidwa kupalamula
milandu

Error Model Output: mgulu is wrong
spelling of mkulu. Yaukachen-
jede should be written as ya
ukachenjede

thandizo loiyikidwa
m’maphunziro apa
kompyuta ndipo akuyen-
era kufunsa kupanga
zina zakefotokozera
ndondomeko zomwe
zikanakhala zovuta kwa
ophunzira

thandizo loiyikidwa
m’maphunziro
apakompyuta ndipo
akuyenera kufunsa
kupanga zina zake ndiku-
fotokozera ndunudmiko
zomwe zikanakhala
zovuta kwa ophunzira

Error Model Output: ndunudmiko
is wrong spelling of ndon-
domeko and kompyuta should
read kompyuta.

Continued on next page
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Table N.3: (continued) Human evaluation of ASR model errors in Chichewa.

Evaluation transcript Model output Evaluator as-
sessment

Evaluator comment

bomba la fission limag-
wira ntchito pamene li-
mafuna mphamvu kuti
liyike pamodzi ma nucleus
wochulukana ndi ma pro-
ton ambiri ndi ma neutron

bomba la fission limag-
wira ntchito pamene li-
mafuna mphamvu kuti
liyike pamodzi ma nucleus
wochulukana ndi ma pro-
ton ambiri ndi ma neutron

No error

ma ion ndima proton
a hydrogen amathot-
holedwa popeza hydrogen
amakhala ndi proton
imodzi ndi electron
imodzi

ma ion ndi ma proton
a hydrogen amathot-
holedwa popeza hydrogen
amakhala ndi proton
imodzi ndi electron
imodzi

Error Model Output: amatho-
toleledwa is wrong spelling of
amathotholedwa

wakhalapo akulepher-
era kumwa mankhwala
ofunikira pochiza ululu
omwe akumva chifukwa
cha matenda alowedwa pa
masewera

wakhalapo akulepherera
kumwa mankhwala ofu-
nikira pochiza ululu omwe
akumva chifukwa cha ma-
tenda olestedwa pamasew-
era

No error Transcription: Woyima should
be oyima. Model Output:
Kuwumikizana is wrong
spelling of kulumikizana. Maro
is wrong spelling of Malo.

zilumba zambiri
zing’onoang’ono ndi
mayiko woyima powapita
kulumikizana ndi dziko la
france ndi ziko la arabic
ndi japanese

zilumba zambiri
zing’onoang’ono ndi
mayiko woyima powapita
kulumikizana ndi dziko la
france ndi ziko la arabic
ndi japanese

Error Transcription: Woyima should
be oyima. Model Output:
Kuwumikizana is wrong
spelling of kulumikizana. Maro
is wrong spelling of Malo.

kuwonetsera kwa nyumba
zomwe zimapangidwa ma-
wonedweko a hong kong
skyline akutchulidwa
victoria harpur bar
tatchi yowala kwambiri
m’madera oyandikira
doko chikwangwanzi
akamapereka zikwang-
wanzi m’dera lozungulira
zonyamula anthu omwe
amafika mochuluka

kuwonetsera kwa nyumba
zomwe zimapangidwa ma-
wonedweko a hongkong
skyline akutchulidwa
victoria harpur bar
tatchi yowala kwambiri
m’madera oyandikira
doko chikwangwanzi
akamapereka zikwang-
wanzi mdera lozungulira
zonyamula anthu omwe
amafika mochuluka

Error Model Output: victoria harpur
is misspelling of victoria har-
bour.

Continued on next page
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Table N.3: (continued) Human evaluation of ASR model errors in Chichewa.

Evaluation transcript Model output Evaluator as-
sessment

Evaluator comment

kujambula makamera ama-
chita kusiyana atakhala
pa kompyuta pakuma-
sulira kwa mwachangu
amene ang’ono chinthu
chinasache kupeza kwa
linako kapena wotsek-
ereza monga ndondomeko
yomwe ingathe ku-
pangidwa ndi anthu
ochepa

kujambula makamera ama-
chita kusiyana atakhala
pa kompyuta pakuma-
sulira kwa mwachangu
amene ang’ono chinthu
chinasache kupeza kwa
linako kapena wotsek-
ereza monga ndondomeko
yomwe ingathe ku-
pangidwa ndi anthu
ochepa

Error Transcription: Milisecond
should be transliterated to
Milisekondi. Model Output:
miliceand is a wrong spelling of
millisecond which is normally
transliterated as milisecond.

pamene mafumu ndi aku-
luakulu mabanja ndi zo-
chitika mufunikanso kuti
mufikeko nsanga ngati
kuli msanga apafupi ndi
nyumba

pamene mafumu ndi aku-
luakulu mabanja ndi zo-
chitika mufunikanso kuti
mufikeko nsanga ngati
kuli msanga apafupi ndi
nyumba

Error Model Output: mufikeko is
wrong spelling of mufikeko.

pakuti mu nthawi yao
kuonjeza kuwala kwa siku-
nali wuto monga anali pa
makolo m’pang’ono ama-
funika kuwala koopsa ku-
fikila kusiyana ndi omwe
amaganidwa makono ano

pakuti mu nthawi yao
kuonjeza kuwala kwa siku-
nali wuto monga anali pa
makolo m’pang’ono ama-
funika kuwala koopsa ku-
fikila kusiyana ndi omwe
amaganidwa makono ano

Error Model Output: panu is wrong
spelling of pano. Campus
should be transliterated to kam-
pasi or just describe what a cam-
pus is.
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Appendix O Wav2Vec-BERT 2.0 Hyperparameters

Hyperparameter Value
Learning rate 3e-05
Warmup ratio 0.1
Evaluation steps 1000
Early stopping patience 5
Add adapter True
Mask time probability 0
Attention dropout 0.05
Feature projection dropout 0.05
Hidden layer dropout 0.05
CTC zero infinity True

Table O.1: Common Wav2Vec-BERT 2.0 hyperparameters.

Real:Synth Ratio (Maximum) Number of epochs (Total) Batch size
100h:0 250 320
250h:0 100 320
500h:0 50 320
100h:400h 50 320
250h:250h 50 320
579h:450h 24 320
579h:993h 16 320

Table O.2: Hausa Wav2Vec-BERT 2.0 Hyperparameters. We keep epoch-hours constant, that is the number of
epochs multiplied by the total duration of the training dataset in hours.

(Maximum) Number of steps (Total) Batch size
100000 64

Table O.3: Dholuo and Chichewa Wav2Vec-BERT 2.0 hyperparameters.
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Abstract

Arabic machine translation remains a funda-
mentally challenging task, primarily due to
the lack of comprehensive annotated resources.
This study evaluates the performance of Meta’s
NLLB-200 model in translating Modern Stan-
dard Arabic (MSA) into three regional dialects:
Saudi, Maghribi, and Egyptian Arabic using
a manually curated dataset of hotel reviews.
We applied a multi-criteria human annotation
framework to assess translation correctness, di-
alect accuracy, and sentiment and aspect preser-
vation. Our analysis reveals significant varia-
tion in translation quality across dialects. While
sentiment and aspect preservation were gener-
ally high, dialect accuracy and overall trans-
lation fidelity were inconsistent. For Saudi
Arabic, over 95% of translations required hu-
man correction, highlighting systemic issues.
Maghribi outputs demonstrated better dialec-
tal authenticity, while Egyptian translations
achieved the highest reliability with the lowest
correction rate and fewest multi-criteria fail-
ures. These results underscore the limitations
of current multilingual models in handling in-
formal Arabic varieties and highlight the im-
portance of dialect-sensitive evaluation.

1 Introduction

Arabic is spoken by hundreds of millions across
more than twenty countries, yet it remains signif-
icantly underrepresented in natural language pro-
cessing (NLP) (Darwish et al., 2021; Premasiri
et al., 2022). This is particularly acute for Arabic
dialects, which diverge from Modern Standard Ara-
bic (MSA) in terms of morphology, syntax, phonol-
ogy, and vocabulary (Shoufan and Alameri, 2015).
Dialects lack orthographic standardisation, exhibit
wide regional variation, and are primarily used in
informal and spoken contexts (El-Haj et al., 2024).
As a result, NLP systems trained predominantly on
MSA often perform poorly on dialectal data, lim-

iting their effectiveness in real-world applications
(Almansor and Al-Ani, 2017).

Machine translation (MT) of Arabic reflects
these challenges. While MSA serves as the for-
mal written standard, dialects are the primary
medium of everyday communication across the
Arab world. Their structural and lexical variation,
combined with the absence of standardised norms,
complicates the development of MT systems ca-
pable of handling the full spectrum of Arabic va-
rieties (Zouidine and Khalil, 2025). Recent ad-
vancements in multilingual MT, such as Meta’s
NLLB-200 model, which incorporates FLORES-
200 language codes, have extended support to
low-resource languages, including Arabic dialects
(Costa-jussà et al., 2022). Building on this, our
study evaluates NLLB-200’s performance in the
reverse translation direction: from MSA into three
major dialects; Saudi, Maghribi, and Egyptian.
We introduce ADOR, (Arabic Dialects for Hotel
Reviews) manually annotated dataset. ADOR as-
sesses translation quality across four key dimen-
sions: semantic correctness, dialect authenticity,
sentiment preservation, and aspect category align-
ment. Using a structured human annotation proto-
col and error taxonomy, we offer both quantitative
and qualitative insights into the capabilities and
limitations of current MT systems.

The remainder of this paper is structured as fol-
lows: Section 2 reviews related work; Section 3
outlines the NLLB-200 architecture; Section 4 de-
scribes the dataset and preprocessing steps; Sec-
tion 5 details the annotation framework; Section 6
presents the evaluation results; and Section 7 con-
cludes with directions for future work.

2 Related Work

Meta’s NLLB-200 model (Costa-jussà et al., 2022)
supports over 200 languages and includes Arabic
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dialects via FLORES-200 codes. However, its per-
formance in dialectal settings remains limited. At-
wany et al. (2024) evaluated NLLB-200 on dialect-
to-MSA translation for divergent varieties includ-
ing Gulf, Egyptian, Levantine, Iraqi, and Maghrebi,
highlighting the inaccuracy of treating dialects as
standard source languages due to their complexity.

Mousi et al. (2025), while not focused on trans-
lation, benchmarked performance across dialects
and highlighted substantial disparities, reinforcing
the need for dialect-aware evaluation protocols. A
complementary perspective is offered by Yakhni
and Chehab (2025), who studied Lebanese dialect-
to-English translation. Their findings showed that
NLLB ability to preserve cultural nuance in infor-
mal, idiomatic content is limited.

Finally, Boughorbel et al. (2024) addressed
English-to-Arabic translation by translating the
TinyStories dataset using NLLB-3B. They found
that relying solely on MT introduced linguistic and
cultural noise, and showed that further pre-training
on a small corpus of native-generated Arabic sto-
ries improved output quality.

Collectively, these studies demonstrate that ex-
isting MT systems struggle with dialectal Ara-
bic across multiple translation directions. They
also emphasise the need for native speaker evalua-
tion, cultural grounding, and dialect-specific bench-
marks. Our work builds on these insights by evalu-
ating NLLB-200 translations from MSA into three
arabic dialects using a structured human-annotated
framework.

3 Meta’s No Language Left Behind
(NLLB-200)

The No Language Left Behind (NLLB-200) model
(Costa-jussà et al., 2022), developed by Meta, is
a multilingual encoder–decoder transformer archi-
tecture designed to improve machine translation
(MT) for low-resource languages. It supports di-
rect translation between over 200 languages using
FLORES-200 language codes, including several
Arabic dialects.

NLLB-200 uses a unified encoder to process
source text and a decoder that generates output con-
ditioned on the target language or dialect. In this
study, we use the model to translate from MSA
into three Arabic dialects: Saudi, Maghribi and
Egyptian. These dialects are explicitly supported
within the model’s language inventory, enabling di-
rect generation without intermediate normalisation

to MSA.

4 Data

This study uses the Arabic hotel reviews dataset
from SemEval 2016 Task 5 on Aspect-Based Senti-
ment Analysis (ABSA) (Pontiki et al., 2016). The
original dataset comprises over 10,000 sentences
written in Modern Standard Arabic (MSA), each
annotated with one or more aspect terms, sentiment
polarities (positive, negative, neutral), and aspect
categories. To ensure consistency and relevance for
downstream translation and manual annotation, the
dataset underwent several preprocessing steps.

Sentence Deduplication Duplicate entries were
removed by grouping reviews with identical sen-
tence text. For each unique sentence, all associated
sentiment, aspect target, and category annotations
were aggregated to retain the full range of opinions
tied to that sentence.

Text Cleaning The text was normalised using
the Ruqya library by removing special characters,
hashtags, and diacritics (tashkı̄l). This step ensured
uniform formatting and reduced noise, making the
data more suitable for input into translation models.

Length Filtering Sentences with fewer than six
words were excluded, as they typically lacked the
contextual richness necessary for meaningful trans-
lation and sentiment analysis.

Polarity Consolidation Since a single sentence
could be annotated with multiple aspect-level polar-
ities, a rule-based approach was applied to assign
one consolidated sentiment label:

• Sentences containing both positive and nega-
tive polarities were labelled as neutral.

• If a neutral polarity co-occurred with either
positive or negative, the non-neutral polarity
was retained.

• If only one polarity was present, it was used
as the sentence-level label.

All consolidated sentiment labels were then man-
ually reviewed to ensure correctness and internal
consistency.

Following these preprocessing steps, the result-
ing dataset consisted of 538 sentences, balanced
across sentiment classes: 200 positive, 200 nega-
tive, and 138 neutral.
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5 Annotation Framework

Following the dialectal translation process, each
sentence was manually evaluated by a native
speaker of the corresponding dialect. The purpose
of the annotation task was to assess the quality of
the machine-generated translations across multiple
linguistic and semantic dimensions.

Each annotator received a structured annotation
template in CSV format containing the original
MSA sentence, the machine-translated dialectal
sentence, the sentiment label, and the associated
aspect categories. One native speaker was assigned
per dialect to ensure linguistic authenticity. An-
notations were conducted independently for each
dialect.

Annotators were instructed to assess each trans-
lation according to six criteria:

1. Translation Correctness: Does the translation
accurately convey the meaning of the original
sentence?

2. Dialect Accuracy: Is the sentence rendered in
the appropriate dialect?

3. Sentiment Preservation: Is the original senti-
ment polarity maintained in the translation?

4. Target Preservation: Is the aspect or subject
of the sentence correctly preserved?

5. Corrected Sentence: If needed, a revised ver-
sion of the translated sentence.

6. Target Correctness: A corrected version of
the aspect/target if it was omitted, distorted,
or unclear.

The first four criteria were assessed using binary
labels (Yes/No) to reduce subjectivity and enforce
consistency. The final two were free-text fields
used only when corrections were necessary.

All annotators received a detailed guideline doc-
ument outlining each evaluation criterion. For clar-
ity, definitions were provided alongside examples
of both accurate and flawed translations, helping an-
notators distinguish between acceptable variation
and critical errors. The guidelines also included
instructions for identifying mismatches, particu-
larly in sentiment and aspect categories, empha-
sising the importance of accurately preserving key
content from the original MSA sentence. Anno-
tators were familiarised with common translation

error patterns, such as literal translations of idioms,
the use of formal MSA constructions in dialectal
output, and inappropriate lexical choices. In such
cases, they were expected to revise translations to
align with dialect norms while maintaining the in-
tended meaning. Finally, procedures were outlined
for handling ambiguous or incomplete translations,
encouraging annotators to flag unclear outputs and
consult the MSA source sentence before making
corrections. Regular check-ins ensured consistency
across dialects and allowed for immediate resolu-
tion of ambiguities. Upon completion, all annota-
tion files were manually reviewed.

Although each dialect was annotated by a sin-
gle native speaker, the structured process, guided
instructions, and direct oversight helped ensure a
high level of annotation reliability.

6 Evaluation Results and Discussion

The evaluation is based on a structured annotation
framework designed to assess semantic correctness,
dialectal fidelity, and sentiment preservation. It
provides both quantitative metrics and qualitative
insights into the limitations of NLLB-200 in trans-
lating MSA into regional Arabic dialects.

6.1 Overview of Annotation Outcomes

Table 1 summarises annotator judgments across
four binary evaluation criteria. While all three di-
alects show high sentiment and aspect category
preservation scores, there is a clear disparity in
translation correctness and dialect accuracy. Egyp-
tian translations were rated highest in both crite-
ria, 84.7% correctness and 76.6% dialect accuracy,
indicating stronger adaptation by NLLB-200 for
Egyptian Arabic. Maghribi follows with 77.6%
correctness and 44.4% accuracy, while Saudi trails
with the lowest scores. These results suggest that
NLLB-200 is more effective at generating fluent
and regionally appropriate outputs for Maghribi
than for Saudi Arabic.

6.2 Sentiment Agreement

Given that each sentence in the dataset was pre-
annotated with sentiment labels prior to translation,
the Sentiment Preservation score can be interpreted
as a measure of annotator agreement. Specifically,
a “Yes” label indicates that the human reviewer
agreed that the sentiment expressed in the trans-
lated sentence matches that of the original MSA
input. Agreement rates were high for all the three
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Criterion Saudi Maghribi Egyptian
Yes (%) No (%) Yes (%) No (%) Yes (%) No (%)

Translation Correctness 68.4 31.6 77.6 22.4 84.7 15.3
Dialect Accuracy 5.2 94.8 44.4 55.6 76.6 23.4
Sentiment Preservation 98.9 1.1 90.9 9.1 94.6 5.4
Target Preservation 91.4 8.6 90.5 9.5 92.3 7.7

Table 1: Binary annotation outcomes across key criteria.Values represent the proportion of “Yes” and “No” judgments
for each dialect.

Dialect Avg Criteria Score Correction Rate (%) ≥ 2 Failures (%) ≥ 3 Failures (%)
Saudi 0.684 95.17 26.21 5.02
Maghribi 0.776 55.58 18.22 11.34
Egyptian 0.867 31.04 13.01 2.97

Table 2: Summary of translation evaluation statistics across dialects. Criteria score reflects average binary ratings
for translation correctness, dialect accuracy, sentiment preservation, and target preservation.

dialects; 98.88% for Saudi, 94.60 for Egyptian and
90.71% for Maghribi. That affirm the reliability
of the original sentiment labels and the annotators’
consistency, lending additional credibility to the
overall annotation process.

6.3 Error Distribution and Correction
Analysis

Table 2 presents aggregated error metrics, includ-
ing average criteria scores, correction rates, and
the frequency of compound evaluation failures.
Among the three dialects, Egyptian outputs re-
quired the fewest corrections (31.04%) and exhib-
ited the lowest rate of multi-criteria failures, indi-
cating greater reliability and better alignment with
dialectal norms. In contrast, Saudi Arabic trans-
lations had a significantly higher correction rate
(95.17%) compared to Maghribi (55.58%), rein-
forcing earlier observations that Saudi outputs de-
manded more extensive post-editing. This finding
is consistent with the low dialect accuracy score
and highlights systemic challenges in the model’s
ability to generate fluent and authentic Saudi ver-
nacular.

Although Maghribi translations were more ac-
curate on average, they exhibited a slightly higher
rate of cases with three or more simultaneous eval-
uation failures (11.34%), which indicate that, de-
spite closer alignment with dialect norms, certain
Maghribi translations required broader structural
revisions to address subtler fluency or coherence
issues.

6.4 Interpretation
These results collectively illustrate the need for
human-centered, dialect-sensitive evaluation frame-
works in Arabic MT. While NLLB-200 demon-

strates promising performance on some dimen-
sions, it struggles with dialectal fluency and se-
mantic fidelity.

The data also highlights the importance of man-
ual correction and targeted annotation, as many
outputs superficially appear fluent but fail under
semantic or dialectal review. These insights un-
derscore the limitations of automatic metrics in
low-resource dialect contexts and support the value
of qualitative human validation as part of the evalu-
ation process.

7 Conclusion and Future Work

This study presented a structured evaluation of
NLLB-200’s ability to translate MSA into three
major Arabic dialects: Saudi, Maghribi, and Egyp-
tian. Using ADOR, a manually annotated bench-
mark grounded in linguistic and semantic criteria,
we identified systematic translation errors and high-
lighted performance variability across dialects. The
Findings revealed that while NLLB-200 achieves
high rates of sentiment and aspect preservation,
its performance on dialect accuracy and transla-
tion correctness remains inconsistent. Saudi Arabic
translations exhibited a high dependency on human
correction, pointing to the model’s difficulty in han-
dling dialects that are lexically and syntactically
distant from MSA. In contrast, Maghribi transla-
tions demonstrated better dialect fidelity and re-
quired fewer revisions. Notably, Egyptian outputs
achieved the highest overall reliability, with the
lowest correction rate and the fewest multi-criteria
failures, suggesting stronger alignment between
NLLB-200 output and Egyptian dialect norms.

Building on this work, future efforts will expand
the dialectal coverage of the dataset to include ad-
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ditional varieties such as Levantine and Yemeni di-
alects. To enhance annotation reliability, multiple
annotators will be recruited per dialect, enabling
inter-annotator agreement analysis and reducing
subjectivity in evaluation.
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Abstract

Readability assessment plays a crucial
role in education and text accessibility.
While numerous indices exist for English
and have been extended to Romance and
Slavic languages, Bulgarian remains under-
served in this regard. This paper reviews
established readability metrics across
these language families, examining their
underlying features and modelling methods.
We then report the first attempt to develop
a readability index for Bulgarian, using
end-of-school-year assessment questions
and literary works targeted at children
of various ages. Key linguistic attributes,
namely, word length, sentence length,
syllable count, and information content
(based on word frequency), were extracted,
and their first two statistical moments,
mean and variance, were modelled against
grade levels using linear and polynomial
regression. Results suggest that polynomial
models outperform linear ones by capturing
non-linear relationships between textual
features and perceived difficulty, but may
be harder to interpret. This work provides
an initial framework for building a reliable
readability measure for Bulgarian, with
applications in educational text design,
adaptive learning, and corpus annotation.

1 Introduction

The importance of text comprehensibility is
undeniable and even crucial in cases, such as
the medical domain and emergency situations
(Temnikova et al., 2015; Friedman et al., 2008).
The most straightforward way to estimate how
comprehensible a text is is to understand how
easy it is to read by a target group of readers.
The linguistic characteristics that make a text
easier or harder to read are referred to as
readability. Its significance is shown by the fact a

substantial number of languages have seen work
on quantifying readability and improving it
through measures, such as manual or automatic
text simplification (Alfear et al., 2024; Al-
Thanyyan and Azmi, 2021; Siddharthan, 2014;
Saggion and Hirst, 2017).

A text readability index is a language-specific
tool that requires appropriate resources for its
creation. Bulgarian NLP has a half century-
long tradition yet in this aspect it ranks among
the lower-resourced languages, as it lacks such
an index or the specific age-appropriate text
corpora that would support its creation. This
motivates our work, which represents the first
steps towards building a readability index for
Bulgarian.

2 Background

Readability is defined as the effect of all
elements that make a text more or less
comprehensible to a group of readers. Some
scholars consider that readability is also linked
to how interesting the text is (Dale and Chall,
1949; DuBay, 2004; Klare, 1963; McLaughlin,
1969; Hargis et al., 1998). Text complexity
can be affected on multiple levels, from
morphology to pragmatics, some of which
are hard to evaluate automatically. Most
frequently, readability is estimated through a
combination of surface linguistic features, such
as the average length of words in characters
or syllables, the average sentence length in
words, the words’ difficulty estimated by their
frequency in large corpora or their mere
presence in a corpus of a certain size. These
features are then typically used as attributes
of some type of regression, where the predictor
aims to approximate the quantified reading
level of the training texts, and the resulting
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formula is evaluated in terms of goodness of
fit, through the coefficient of determination
r2 on unseen data. The regression equation,
which contains simple arithmetic operations
and language-specific numerical parameters, is
then used as “readability index”. These indices
were originally created to find reading material
that matched the reading abilities of students
of a certain grade or age.

These traditional readability indices have
been criticised for their somewhat simplistic
approach, which does not take into account
factors at the syntactic, semantic, and
pragmatic levels, the logical order of ideas,
etc. Some of these shortcomings have been
addressed in recent readability tools and
resources.

One such example is the English-
language Medical Research Council (MRC)
Psycholinguistic Database (Coltheart, 1981)
and Coh-Metrix (Graesser et al., 2004). MRC
is a lexical database containing values for
several psychological features for more than
150,000 English words. The features include
familiarity, age of acquisition, concreteness,
word length, etc. Coh-Metrix is an automatic
text analysis tool that detects deeper text
complexity and comprehensibility features,
such as cohesion, word frequency, concreteness,
familiarity, and sentence structure complexity.

Coh-Metrix has also been adapted for
Spanish (Quispesaravia et al., 2016) and
Brazilian Portuguese (Scarton and Alúısio,
2010). A similarly complex tool, called ErreXail,
was created for Basque (Gonzalez-Dios et al.,
2014). Machine Learning (ML) models have
also begun being used to estimate text
readability, making use of more complex
representations, such as embeddings. Such
models have been created for several languages
including English, Spanish, Basque, French,
Catalan, Italian, French, and Slovene, variously
based on regression, classifiers, random forests,
neural networks, or transformers (Vajjala
and Meurers, 2012; Vajjala and Lučić, 2018;
Madrazo Azpiazu and Pera, 2021; Martinc
et al., 2019).

2.1 English Readability Indices

While readability indices have their limitations,
they constitute the first step towards estimating
text comprehensibility. Unsurprisingly, the

language best supported with readability
resources is English, and its readability indices
are often adapted to other languages by
obtaining a new set of language-specific
numerical parameters. Here are some of the
best known readability indices for English:

• Flesch Reading Ease (Flesch, 1948)

FRE = 206.835− 1.015 #words
#sentences − 84.6#syllables

#words

• Flesch-Kincaid Grade Level (Kincaid
et al., 1975), which outputs a U.S. school
grade level.

FKGL = 0.39 #words
#sentences + 11.8#syllables

#words − 15.59

• Gunning Fog Index (Gunning, 1952)

Fog Index = 0.4 #words
#sentences + 100#complex words

#words

• SMOG Index (McLaughlin, 1969),
designed for health literacy texts.

SMOG Grade =
1.0430

√
#polysyllabic words 30

#sentences + 3.1291

• Coleman-Liau Index (Coleman and
Liau, 1975)

CLI = 0.0588L− 0.296S − 15.8

where L = average letters per 100 words
and S = average sentences per 100 words

• Automated Readability Index (ARI)
(Senter and Smith, 1967), which also
outputs a U.S. grade level.

ARI = 4.71#characters
#words + 0.5 #words

#sentences − 21.43

2.2 Readability Beyond English

All features used above are easy to compute,
which has led to efforts to adopt these indices
for many other languages. Some of them are
shown in Table 1. There are also readability
formulae for several Slavic languages, which are
mostly adapted from English (see Table 2).

To the best of our knowledge, there is no
Bulgarian readability index. Both research and
practical solutions on that topic remain limited.
In fact, the Bulgarian official educational
regulations do not mention readability.1 There
is not even a universally accepted Bulgarian
term for this concept. Within the limited
body of existing literature in Bulgarian on

1https://www.mon.bg/nfs/2018/01/naredba_6_
11.08.2016_bg_ezik.pdf
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the subject, readability is variously referred
to as “четимост” (Sharkova and Garov, 2015)
and “четивност” (Borisova, 2017), despite
certain authors arguing in favour of the latter
term (Angelova, 2018).

References to readability indices (RI) in
Bulgarian publications are rare and typically
pertain to educational curricula up to the
fourth grade. In such cases, the methodologies
mentioned are often based on adaptations of
indices originally developed for the Russian
language (Yocheva, 2017).2

There has beeen research to create primary
education texts in Bulgarian annotated
with reading difficulty. This resource was
created by translating Italian children’s texts
into Bulgarian, calculating several of their
readability characteristics, and correlating
them with finger-tracking results from 73
Bulgarian children (Pirelli and Koeva, 2024;
Lento et al., 2024; Koeva et al., 2023). However,
the aim of this research was never to create
a Bulgarian readability index, and the use of
translated texts is a limitation of the corpus.
This leaves our article as the first to present
efforts towards creating a readability formula
for Bulgarian.

3 Data

The initial dataset consisted of a collection of
68 texts of national external assessment exams
for grades 4, 7 and 10,3 as well as the end
of grade 12 Bulgarian matriculation exam.4

The texts are published on the website of the
Ministry of Science and Education, and we
have only used those parts that test language
comprehension for our purposes. The texts used
in the matriculation exams are a balanced,
50:50 sample from Bulgarian modern classics
and journalistic publications. The final dataset
also incorporates 49 excerpts of fiction books
in Bulgarian listed as recommended reading for
grades 1–12. For each grade, several excerpts of
approximately 1000 words have been selected:
6 or 7 for grades 1–4, and 3 for grades 5–12.

2The links to these adapted formulas are currently
inaccessible for analysis due to restrictions on access to
Russian websites.

3https://www.mon.bg/obshto-
obrazovanie/natsionalno-vanshno-otsenyavane-nvo/

4https://www.mon.bg/obshto-
obrazovanie/darzhavni-zrelostni-izpiti-dzi/izpitni-
materiali-za-dzi-po-godini/
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Figure 1: Descriptive statistics of data: Assessment
texts (top), Literary prose (bottom)

The texts included both Bulgarian originals and
translations. The year of publication was chosen
to be around the middle of the 20th century
as the best trade-off between representing
Bulgarian as currently spoken and the lack of
copyright. Note there is one mediaeval text
adapted to modern Bulgarian. The texts are
only in prose – due to the chosen focus of the
task poetry was not included. Figure 1 contains
descriptive statistics for each of the two parts
of the corpus.

4 Methodology

For the purposes of this study, a number of
choices need to be made and the outcomes
compared. To begin with, one needs to find
a suitable and representative dataset of texts
corresponding to various levels of readability.
Ideally, each text will have its readability level
assigned on an ordinal or absolute (numerical)
scale. With such explicit annotation, one can
train an ordinal, linear, etc. regression model
expressing the readability level as a function of
a salient set of features defined over the text,
typically relating to such statistics as word and
sentence length or word frequency.

Optional preprocessing steps, such as
stemming, mapping words to lexemes, removing
words from the closed lexicon (also known as
stop-words) may be carried out. After that,
the chosen statistics x1, . . . , xn are calculated
for each text and a regression model is fitted
in order to express the readability score as a
function of these statistics.

A linear model ŷ = f(x) is the obvious
first stop in the search for the best model
due to its simplicity and interpretability, e.g.
the longer the average length of the words
and the sentences, the less readable the text.
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Language Index Predicted Features
German Amstad (Amstad, 1978) Reading-ease

score (higher =
easier)

Average sentence
length (ASL);
Average word
length in syllables
(AWL)

German Wiener Sachtextformel
(Bamberger and Vanecek,
1984)

age or education
level

Proportion of
words with
three or more
syllables; ASL;
Proportion of
words with six or
more characters;
Proportion of one-
syllable words

Swedish,
Danish,
Norwegian

LIX (Lesbarhetsindex)
(Björnsson, 1968)

ASL; Percentage
of long words (>6
letters)

Dutch Brouwer Leesindex
(Brouwer, 1963)

ideal Dutch
proficiency

ASL; AWL

French Flesch Douma (Douma,
1960)

ASL; AWL

Romanian Dascălu’s adaptation
(Dascălu et al., 2015)

Sentence/syllable/
word length;
Lexical
complexity,
parts of speech

Japanese JARI (Fujita et al., 2012) kana/kanji counts,
word/sentence
length,
character/word
complexity

Chinese CRIE (Chinese
Readability Index
Explorer) (Sung et al.,
2015)

School-year level
classification
(Year1–12)

Lexical (word
length, stroke
count); Syntactic,
semantic features

Arabic (AbuShaira, 2011) Morphological,
lexical, syntactic
text features

Persian (Behzadi and
Mohammadi, 2017)

Sentence length,
word length,
lexical density

Hindi (Kumar et al., 2020) sentence length,
word length,
syllable/character
counts

Indonesian Dwiyanto’s Score
(Pranowo, 2011)

Average number
of paragraphs,
# sentences
per paragraph;
sentence length;
share (in %)
of: extended
sentences,
compound
sentences,
sentences
with polysemy,
passive sentences,
unfamiliar words,
abstract words,
specialised terms,
conjunctions,
loan words and
phrases)

Table 1: Non-English readability indices
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Language Formula Features
Polish Jastrzębski’s Index (Jastrzębski, 1981) ASL, AWL
Czech Flesch adaptation (Čech, 2013) ASL, AWL (syllables)
Slovak Flesch adaptation (Ivanová, 2010) ASL, AWL (syllables)
Serbian &
Croatian

Flesch / LIX (Mihaljević and Skelin,
2017)

ASL proportion
of long words (>6
chars), syllable
counts

Russian (Solovyev et al., 2018) sentence length,
word length,
syntactic complexity,
vocabulary metrics

Russian (Solovyev et al., 2023) ASL, AWL, frequency
list of the Russian
elementary school
textbooks

Table 2: Readability indices for Slavic languages

Additional features derived from the original
ones (and known as basis functions) can be
added to the data in order to search for non-
linear relationships, e.g. if it appears that the
growth of the readability index is faster than
linear with respect to the sentence length (sl),
one could add the feature (sl2) in order to
better approximate that relationship. Similarly,
interaction terms, that is, the product of two
original features could be added as a new
feature to capture the fact that doubling
both the average word length and the average
sentence length results in more than double
the growth of the readability score. All of the
above can easily be achieved through the use
of polynomial regression, which combines all
original features into all possible terms of up
to a certain order n, e.g. for n = 2, all terms of
type xi × xj ∀i,∀j will be added.

The result of the regression is evaluated on
unseen data using the so called coefficient of
determination, r2. A value of 1 indicates all
unseen data fits perfectly the model, r2 = 0
corresponds to a model that is no better than
simply predicting the average score of the texts
in the training data set in all cases, without
considering any of the attributes. Negative
values of r2 are possible despite the somewhat
oddly chosen name of this evaluation metric,
and would suggest a fit that is even worse, e.g.
the model predicts trends that are opposite to
the ones observed in the data.

The most common features used in the
majority of related indices are the average word
length expressed as a number of characters and
the average number of words in the sentence.

We are also adopting these here. In addition,
we consider the average number of syllables
per word, which is calculated as the number
of vowels or graphemes containing a vowel.
Bulgarian orthography is mostly phonetic with
a few infrequent digraphs (дж, дз) and complex
graphemes, such as ч = ch, щ = sht, ю = iu/yu
and я = ia/ya, yet such a feature may prove
useful if readability is related to, say, the length
of prosody patterns within a word.

Adding the standard deviation σ of at least
some of the features is another attempt better
to represent the underlying distributions: while
two texts may have the same average number of
words per sentence, a greater σ would mean the
text is more likely to have sentences of extreme
length, which may prove more challenging to
the reader.

It may be helpful to mention that the
default expectation for word count is to find
an overdispersed distribution, with variance σ2

greater than the mean, e.g.:

V ariance = Mean+
Mean2

k

while the number of letters per word produces
tighter distributions with variance closer to
the mean, which is modelled well by a Poisson
(µ = σ2) or negative Binomial distribution.

We have also experimented with features
reflecting how common or rare a given word is
in the data. This was either quantified, using
Shannon entropy, log2P (wi) or represented as
a Boolean feature expressing whether the word
appeared at all in the training data.
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Figure 2: Coefficients for best-performing Linear
Regression
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Figure 3: Coefficients for best-performing
Polynomial-2 Regression

5 Results

We found that linear regression offered the
easiest to interpret model, but performed worse
than the polynomial regression with degree two.
We also discovered that removing the words
of the closed vocabulary always improved the
results, so all reported findings in the rest of
this section make use of this preprocessing step.
The following results are based on what we
referred to as the main dataset earlier in the
text.

The coefficients for the best-performing
linear and quadratic regression are displayed in
Figures 2 and 3.

Considering the linear regression approach,
we found that the input features that result in
the best fit are the standard deviation of word

length, the mean and the standard deviation
of sentence length, and the mean number of
syllables per word (x1 to x4):

ŷ = 1.32x1 + 0.43x2 − 0.09x3 + 0.35x4

The r2 = 0.41 goodness of fit is an
encouraging, if not exciting, result. The fact
that word length standard deviation is present
in the equation, but the mean is not, appears
less puzzling when we are reminded of the
Poisson-like distribution of this property, where
µ ≈ σ.

The polynomial regression with degree 2
outperformed the linear regression by almost
44% with r2 = 0.59. Seven features were used
in the best model, namely, word length mean,
sentence length mean and standard deviation,
syllables per word count mean and standard
deviation, and Shannon entropy mean and
standard deviation, x1 to x7, respectively.

ŷ =

− 2.6372x1 − 0.7867x2 + 1.7984x3

− 4.1278x2
1 − 2.8260x2

2 − 3.8334x2
3

+ 2.0329x4 + 1.8077x5 − 0.5070x6 + 0.2704x7

− 4.0808x2
4 − 0.8801x2

5 + 0.2061x2
6 − 0.5575x2

7

+ 11.9439x1x2 − 25.1250x1x3 + 8.9497x1x4

− 1.2169x1x5 + 2.9605x1x6 + 2.4798x1x7

+ 7.2979x2x3 − 9.0990x2x4 + 0.9970x2x5

+ 2.2256x2x6 − 3.2815x2x7 + 21.9574x3x4

− 2.2181x3x5 − 1.0012x3x6 + 4.8432x3x7

+ 1.1557x4x5 − 2.0520x4x6 − 1.9476x4x7

− 0.9511x5x6 − 0.0247x5x7 + 0.8845x6x7

We experimented with Polynomial-2
regression not containing any interaction
terms to see if the better results stem in the
non-linear relationship between individual
features and the predicted output, but the
results dropped substantially, to r2 = 0.43.

ŷ =

− 9.4568x1 + 0.0155x2 + 0.8595x3 + 5.9938x4

+ 10.8226x5 − 1.9557x6 + 2.9524x7

+ 7.8462x2
1 − 0.0820x2

2 − 0.6443x2
3 − 4.6842x2

4

− 9.3665x2
5 + 1.0714x2

6 − 3.1744x2
7

6 Discussion

The results so far indicate that more data
may be needed, as the strong contribution
of interaction terms, which do not appear in
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any of the indices of Section 2.1, is suggestive
of overfitting. Our unreported results on the
assessment texts alone, which are essentially
end of school year comprehension questions,
showed that the authors of these questions did
not make an effort to adjust their style to the
age of the reader in any meaningful way. We
also discovered that removing the words of the
closed lexicon (the so-called stop list) improves
the outcome.

7 Conclusions

In conclusion, this study reviewed established
readability metrics across multiple language
families and introduced the first attempt to
develop a readability index for Bulgarian.
By analyzing end-of-school-year assessment
materials and children’s literature, key
linguistic features–word length, sentence
length, syllable count, and information content–
were extracted and statistically modelled
against grade levels. The findings indicate that
polynomial regression more effectively captures
the non-linear relationship between these
features and text difficulty compared to linear
models, though with reduced interpretability.
This research lays the groundwork for a
Bulgarian readability index, with promising
applications in educational content creation,
adaptive learning systems, and the legal
domain.

8 Work Limitations

We are aware that the surface linguistic
characteristics of our choice do not reflect all
aspects of text comprehensibility. At the same
time, using only features that are expected
to have a bearing on the level of readability
was a helpful way to gauge the suitability of
texts used. We expect to see additional features,
such as embeddings, included in our future
experiments as we gradually expand our corpus.

9 Ethical and Legal Considerations
and Broader Impact

We are only using data in the public domain
in this study. Publishing a readability index
can only contribute to social goals, such
as providing accessible, easy to understand
information to the public.

Our work sheds light on the surface linguistic
complexity and readability characteristics of
Bulgarian exam materials and Bulgarian
literature books recommended to specific school
age groups. Our finding that the materials for
different school classes cannot be distinguished
on the basis of psycholinguistic characteristics
known to affect text comprehension (DuBay,
2004) should probably lead to more in-depth
experiments to test whether such materials
are appropriate for the Bulgarian school
grades they were designed for. In such a way,
our findings may assist in improving school
education.

Our specific interest is creating a formula
to provide a measurable way to estimate
the readability of Bulgarian laws. The Law
on Normative Acts and Decree No 883 of
24.04.1974 on the implementation of the Law
on Normative Acts represent the Bulgarian
legal framework that ensures new laws are
clear, complete, and easy to interpret. Its
main principles are: Precision of Norms,
Interpretation of Ambiguities, Prohibition of
Extensive Interpretation, and Filling Legal
Gaps. These principles are designed to ensure
clarity, completeness, and legal predictability,
protecting citizens’ rights and maintaining
consistency in the legal system. The ability
to quantify these desirable properties of a text
would provide support to the strive for high
quality legislation that meets the requirements
of the rule of law and ensures legal certainty.
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