
Proceedings of the 1st Workshop on Advancing NLP for Low-Resource Languages associated with RANLP 2025,
pages 76–81, Varna, Bulgaria, Sep 13, 2025.

https://doi.org/10.26615/978-954-452-100-4-008

76

Modular Training of Deep Neural Networks for Text Classification in
Guarani
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Abstract

We present a modular training approach for
deep text classification in Guarani, where net-
works are split into sectors trained indepen-
dently and later combined. This sector-wise
backpropagation improves stability, reduces
training time, and adapts to standard architec-
tures like CNNs, LSTMs, and Transformers.
Evaluated on three Guarani datasets—emotion,
humor, and offensive language—our method
outperforms traditional Bayesian-optimized
training in both accuracy and efficiency.

1 Introduction

Natural language processing (NLP) for low-
resource languages has gained attention due to the
need for more inclusive technologies (Joshi et al.,
2020). Guarani, an indigenous language spoken by
over eight million people in Paraguay and neigh-
boring countries, remains underrepresented in digi-
tal resources.It lacks open corpora, standard mod-
els, and suffers from frequent code-switching with
Spanish (Estigarribia, 2016), which complicates
data collection. These particularities of the Guarani
language, coupled with the scarcity of labeled data
and pretrained modules, make it challenging to
train deep neural networks that generalize well
to downstream tasks such as sentiment analysis,
which are standard benchmark tasks (Mao et al.,
2023) for high-resource languages like English.

Some efforts in low-resource NLP for Guarani
have focused on corpus creation and benchmark-
ing. Chiruzzo et al. (2020) expanded initial
Guarani-Spanish sentence pairs into larger par-
allel collections, later unified and quality con-
trolled as the Jojajovai corpus (Chiruzzo et al.,
2022). Preliminary Guarani BERT (Devlin et al.,

2019) variants (including continuous-pretrained
and trained from scratch) have been trained on
Wikipedia-derived texts containing only ∼800K
tokens (Agüero-Torales et al., 2023), and Guarani
was added to large multilingual initiatives such as
’No Language Left Behind’ (NLLB Team et al.,
2022) and Google Translate (Bapna et al.,
2022). With regard to the text classification task,
there are some works with diverse results, mainly
for affective computing such as (i) (Agüero-Torales
et al., 2023) explores various deep neural text clas-
sification techniques for multidimensional affec-
tive analysis; and (ii) sentiment analysis (Rı́os
et al., 2014), covering approaches that range from
lexicon-based or traditional machine learning mod-
els (bag-of-words) to more sophisticated methods
such as fine-tuning multilingual transformer mod-
els (Vaswani et al., 2017).

On the other hand, traditional text classification
approaches in high-resource settings rely on end-
to-end backpropagation over large corpora and big
pretrained embeddings. When applied to Guarani,
these methods tend to overfit quickly or fail to con-
verge, since the number of tunable parameters far
exceeds the available supervision. Recent work
on low-resource NLP has mitigated these issues
through transfer learning and cross-lingual embed-
dings (e.g. Schuster et al. (2019)), or adapting
models trained in related languages or synthetic
data (Lucas et al., 2024). However, these strategies
remain monolithic: they update most network pa-
rameters at once, risking catastrophic forgetting of
pretrained knowledge or uneven adaptation across
layers (Kirkpatrick et al., 2017; Roy, 2024).

In parallel, modular and layer-wise training has
been proposed in other domains (e.g. vision) to
control the capacity of deep architectures (Tabrizi
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et al., 2024). By isolating each layer (or ’sector’)
and optimizing its weights separately, these meth-
ods reduce the dimensionality of each learning step,
reducing overfitting, and accelerating convergence
(Belilovsky et al., 2020). However, to our knowl-
edge, no prior work has applied a fully sector-wise
backpropagation scheme to text classification in a
truly low-resource language.

This work is based on the layer-wise loss assign-
ments approach for layer-wise training (Belilovsky
et al., 2020, 2019), which trains each layer using
an auxiliary coupled model that can have several
layers. Our approach decomposes a deep network
into successive parameterized sectors, each trained
as a shallow subnetwork on intermediate represen-
tations. We then recombine the trained sectors into
a full model, preserving both pretrained knowledge
and local adjustments. This sector-wise backpropa-
gation delivers the following benefits:

• It constrains the number of parameters up-
dated at each step, resulting in more stable
training curves on small Guarani datasets.

• It preserves cross-sector knowledge transfer
by propagating learned representations for-
ward between stages.

• It consistently integrates with any architec-
ture built from standard layers (e.g., convo-
lutional (LeCun et al., 1989), Long Short-
Term Memory (Hochreiter and Schmidhuber,
1997, LSTM) or transformers (Vaswani et al.,
2017)), allowing the adaptation of existing
models.

We validate our proposal on three Guarani
corpora for affective computing (Agüero-Torales
et al., 2023), namely: i) gn-humor-detection, ii)
gn-offensive-language-identification, and iii) gn-
emotion-recognition. In experiments, our sector-
wise method outperforms conventional end-to-end
training and standard baselines by significant mar-
gins. The remainder of this paper is structured as
follows. Section 2 details our sector-wise optimiza-
tion algorithm. Section 3 presents the experimental
results, and Section 4 concludes our work.

2 Sector-wise Backpropagation

The modular optimization applied in this work is
based on the concept of sector. A sector consists
of a parameterized layer and all subsequent non-
parameterized layers until the next parameterized

Algorithm 1 Sector-wise Local Backpropagation
and Network Reconstruction
1: Initialize: Architecture D, sectors S1, . . . , Sn, null net-

work R0

2: while stop condition not met do
3: Sector Backpropagation
4: for i = 1 to n− 1 do
5: Create Ni by adding a layer similar to the last

layer of D on top of sector Si

6: Train Ni for one epoch using instances fi−1(x)
for x ∈ X , with the same label as x

7: Compute fi(x) for each x ∈ X by evaluating the
penultimate layer output of Ni

8: end for
9: Network Reconstruction

10: R0 ← ∅
11: for i = 1 to n− 2 do
12: Extract Si from trained Ni preserving learned

parameters
13: Connect Si to Ri−1 according to D, forming Ri

14: end for
15: Connect Rn−2 to Nn−1 according to D, forming

Ri−1

16: end while
17: return Ri−1

layer. For example, in a network with architecture
C1–P1–P2–C2–P3–C3 (where Ci are fully con-
nected layers and Pi are pooling layers), the sectors
would be:

S1 = C1–P1–P2, S2 = C2–P3, S3 = C3.
Given a network D and a training set X , for each

epoch, the method proceeds in three main steps:

1. For each sector Si (excluding the last), con-
struct a shallow network Ni composed of Si

and an output layer identical to that of D.

2. Train each Ni using transformed instances
fi−1(x), where f0(x) = x, and we define
fi(x) as the output of Ni with its output layer
removed.

3. Rebuild D by stacking the trained sectors and
removing the auxiliary output layers, except
for the final one.

In the earlier example, the auxiliary networks
created would be:
N1 = C1–P1–P2–C ′

3, N2 = C2–P3–C3,
where C ′

3 replicates C3. N1 is trained on x ∈ X ,
and N2 is trained on transformed outputs f1(x).
Algorithm 1 formalises the proposal.

3 Results

Experiments were conducted on three datasets
(over their train-dev-test splits): gn-humor-
detection (fun and no-fun classes), gn-offensive-
language-identification (offensive and no-offensive



78

classes), and gn-emotion-recognition (happy, an-
gry, sad and other classes) (Agüero-Torales et al.,
2023); using 10-fold cross-validation. Three model
architectures were tested on each dataset: a 1D
convolutional network (Omernick and Chollet,
2019; Waibel et al., 1989), a transformer-based
model (Nandan, 2020; Vaswani et al., 2017), and a
bidirectional LSTM (Chollet, 2020; Schuster and
Paliwal, 1997).

Each model was trained under three configura-
tions: i) Standard backpropagation with fixed hy-
perparameters, ii) Backpropagation with Bayesian
hyperparameter optimization and iii) Sector-based
backpropagation (the proposed method).

For configurations 1 and 3, training was per-
formed using a batch size of 32, learning rate of
0.001, the Adam optimizer, and sparse categorical
cross-entropy loss. For configuration 2, Bayesian
optimization was applied with the following do-
mains: i) optimizer ∈ {adam, rmsprop, sgd},
ii) learning rate ∈ (1e-5, 1e-1) with a log-uniform
distribution and iii) Batch size ∈ [16, 128].

Table 1: Average accuracy on the gn-humour-detection
dataset as the number of training epochs increases.
Model 1 is a 1D ConvNet, model 2 is a Transformer,
and model 3 is a Bidirectional LSTM.

Mod. Epoch Simp. Bayes. Prop.
1 2 71.27 71.27 70.27
1 4 69.92 70.38 71.46
1 6 70.19 69.95 71.27
1 8 65.58 68.99 71.22
1 10 66.12 68.78 71.76
2 2 71.27 71.27 73.28
2 4 71.27 71.25 73.52
2 6 71.82 71.27 74.09
2 8 62.33 71.27 73.55
2 10 59.62 71.27 73.98
3 2 64.54 64.66 68.92
3 4 64.85 66.02 69.16
3 6 58.27 65.39 70.46
3 8 63.04 65.18 69.40
3 10 64.23 65.15 70.54

Table 1 presents the corresponding results for
the gn-humor-detection dataset. They are grouped
according to the models (first column), consider-
ing different epochs (second column), followed by
the average accuracy for each configuration. Con-
sidering each model, the transformer-based one
achieved the highest accuracy among the others.
More interestingly, our proposal obtained a better
performance in nearly all cases (except for model
1 with 2 epochs). In terms of accuracy, the best
configuration recorded (74.09%) is the transformer-
based architecture when trained with the proposal

Table 2: Average accuracy on the gn-offensive-language-
identification dataset as the number of training epochs
increases. Model 1 is a 1D ConvNet, model 2 is a
Transformer, and model 3 is a Bidirectional LSTM.

Mod. Epoch Simp. Bayes. Prop.
1 2 83.87 84.22 85.12
1 4 80.41 78.96 85.02
1 6 82.72 82.35 86.31
1 8 81.11 81.66 87.00
1 10 70.28 81.27 86.94
2 2 83.87 84.15 89.84
2 4 84.10 82.42 89.59
2 6 83.40 83.96 89.77
2 8 82.40 85.97 90.09
2 10 82.32 86.89 89.95
3 2 86.87 88.32 87.72
3 4 70.74 87.81 88.41
3 6 85.71 88.04 88.20
3 8 86.25 88.00 88.02
3 10 87.48 88.44 89.51

for 6 epochs. Moreover, for the first two configu-
rations, the average accuracy generally decreases
slightly as the number of epochs increases. This
behaviour does not appear in our proposal.

For the gn-offensive-language-identification
dataset, the results are presented in Table 2. In gen-
eral, the average accuracies are higher than in the
first dataset (>80% in almost all combinations). As
before, our proposal achieved better performance in
nearly all cases (except for model 3 with 2 epochs),
and by a significantly larger margin for the 1D
ConvNet and transformer-based models. In this
dataset, the best configuration recorded (90.09%)
is the transformer-based architecture when trained
with the proposal for eight epochs.

Table 3: Average accuracy on the gn-emotion-
recognition dataset as the number of training epochs
increases. Model 1 is a 1D ConvNet, model 2 is a Trans-
former, and model 3 is a Bidirectional LSTM.

Mod. Epoch Simp. Bayes. Prop.
1 2 37.78 48.92 55.43
1 4 41.27 49.30 55.05
1 6 49.84 50.98 55.43
1 8 50.16 50.06 55.97
1 10 45.71 49.21 56.10
2 2 37.78 36.00 48.29
2 4 45.08 39.87 51.71
2 6 47.30 47.62 55.27
2 8 47.62 47.84 55.87
2 10 51.75 53.08 56.03
3 2 45.71 52.06 55.17
3 4 50.19 52.48 56.92
3 6 51.83 52.86 58.35
3 8 52.70 51.30 57.75
3 10 52.06 53.33 57.84

Table 3 shows the results for the last dataset,
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gn-emotion-recognition. In this case, the accuracy
values are substantially lower than those presented
in Tables 1 and 2; therefore, it is the most challeng-
ing dataset. Another interesting point is that, for
all epoch values, the results for the bidirectional
LSTM-based models are superior to those of the
other models. As with the previous datasets, our
proposal consistently outperforms the other config-
urations. The best accuracy (58.35%) corresponds
to the bidirectional LSTM model with the proposal,
trained for six epochs.

Figures 1, 2, and 3 illustrate the average execu-
tion times observed across models. The results sug-
gest that execution time is more strongly influenced
by the network architecture than by the dataset it-
self. For the 1D ConvNet and bidirectional LSTM
architectures, sector-based training achieved exe-
cution speeds approximately two and three times
faster, respectively, compared to standard backprop-
agation. The proposal yielded speedups of up to
32× in relation to traditional backpropagation with
Bayesian optimization. In the case of the Trans-
former architecture, sector-based training incurred
an execution time up to 10% longer than traditional
training; however, with Bayesian optimization, it
demonstrated a 12× improvement in efficiency.

4 Conclusion

The experiments as a whole showed three notable
advantages of sector training over traditional meth-
ods for text classification in Guarani using deep ar-
chitectures. Firstly, for each dataset and algorithm,
the highest average accuracy was always achieved
by sector training during some epoch. This ad-
vantage ranged from less than 1% to almost 6%
compared to the best value achieved by traditional
methods. Second, the average accuracy is more sta-
ble for sector training, which does not show signif-
icant declines in later epochs, as can happen with
traditional methods. Finally, the greatest advan-
tage identified is the efficiency in execution time of
sector training, which was not always lower than
traditional simple backpropagation, but was never-
theless 12 to 32 times less costly than traditional
backpropagation with Bayesian optimisation and
with superior accuracy. This is noteworthy because
traditional backpropagation with Bayesian optimi-
sation represents the best traditional configuration
in terms of average accuracy.

As future work, we plan to evaluate the approach
on multi-class classification tasks with alternative
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Figure 1: Average execution time for the gn-emotion-
recognition dataset.

loss functions, extend experiments to more tasks
and languages, and analyze its scalability with dif-
ferent sector sizes and smaller datasets.

Limitations

The evaluation was restricted to three small
Guarani affective computing datasets, which may
limit generalization to other tasks or languages.
Moreover, the scalability of sector-wise backprop-
agation to larger architectures and broader bench-
marks remains to be explored.

Disclaimer

During the preparation of this work the authors
used generative tools in order to fix misspellings
and improve writing. After using these tools, the
authors reviewed and edited the content as needed
and take full responsibility for the content of the
publication.

Code Availability

The code for reproducing the experiments pre-
sented in this paper is publicly accessible at https:
//gitlab.com/pinv01-401/dloptimizer.
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flexiones sobre la (socio)lingüı́stica paraguaya, writ-
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Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
2022. No language left behind: Scaling human-
centered machine translation.

Mark Omernick and François Chollet.
2019. Text classification from scratch.
https://keras.io/examples/nlp/text_
classification_from_scratch/.

Kaushik Roy. 2024. Lifelong Learning with Neural
Network. Ph.D. thesis, MONASH University.

Adolfo A. Rı́os, Pedro J. Amarilla, and Gustavo
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