Modular Training of Deep Neural Networks for Text Classification in Guarani
Jose Luis Vazquez, Carlos Ulises Valdez, Marvin Matías Agüero-Torales, Julio César Mello-Román, Jose Domingo Colbes, Sebastian Alberto Grillo
Abstract
We present a modular training approach for deep text classification in Guarani, where networks are split into sectors trained independently and later combined. This sector-wise backpropagation improves stability, reduces training time, and adapts to standard architectures like CNNs, LSTMs, and Transformers. Evaluated on three Guarani datasets—emotion, humor, and offensive language—our method outperforms traditional Bayesian-optimized training in both accuracy and efficiency.- Anthology ID:
- 2025.lowresnlp-1.8
- Volume:
- Proceedings of the First Workshop on Advancing NLP for Low-Resource Languages
- Month:
- September
- Year:
- 2025
- Address:
- Varna, Bulgaria
- Editors:
- Ernesto Luis Estevanell-Valladares, Alicia Picazo-Izquierdo, Tharindu Ranasinghe, Besik Mikaberidze, Simon Ostermann, Daniil Gurgurov, Philipp Mueller, Claudia Borg, Marián Šimko
- Venues:
- LowResNLP | WS
- SIG:
- Publisher:
- INCOMA Ltd., Shoumen, Bulgaria
- Note:
- Pages:
- 76–81
- Language:
- URL:
- https://preview.aclanthology.org/corrections-2026-01/2025.lowresnlp-1.8/
- DOI:
- Cite (ACL):
- Jose Luis Vazquez, Carlos Ulises Valdez, Marvin Matías Agüero-Torales, Julio César Mello-Román, Jose Domingo Colbes, and Sebastian Alberto Grillo. 2025. Modular Training of Deep Neural Networks for Text Classification in Guarani. In Proceedings of the First Workshop on Advancing NLP for Low-Resource Languages, pages 76–81, Varna, Bulgaria. INCOMA Ltd., Shoumen, Bulgaria.
- Cite (Informal):
- Modular Training of Deep Neural Networks for Text Classification in Guarani (Vazquez et al., LowResNLP 2025)
- PDF:
- https://preview.aclanthology.org/corrections-2026-01/2025.lowresnlp-1.8.pdf