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Abstract

Low-resource Neural Machine Translation is
highly sensitive to hyperparameters and needs
careful tuning to achieve the best results with
small amounts of training data. We focus on
exploring the impact of changes in the Trans-
former architecture on downstream translation
quality, and propose a metric to score the com-
putational efficiency of such changes. By exper-
imenting on English-Akkadian, German-Lower
Sorbian, English-Italian, and English-Manipuri,
we confirm previous finding in low-resource
machine translation optimization, and show
that smaller and more parameter-efficient mod-
els can achieve the same translation quality of
larger and unwieldy ones at a fraction of the
computational cost. Optimized models have
around 95% less parameters, while dropping
only up to 14.8% ChrF. We compile a list of
optimal ranges for each hyperparameter.

1 Introduction

Neural machine translation (NMT) has done mas-
sive progress in high-resource conditions, due
to the performance of models based on encoder-
decoder architectures, such as the Transformer
(Vaswani et al., 2017). Often, this progress did
not trickle down to low or extremely low-resource
languages, due to the huge requirements in terms of
available training data and computational resources
(Ranathunga et al., 2023). Default settings and as-
sumptions for high-resource scenarios, such as the
correlation of model size and performance, are not
true in a low-resource one. While some attempts
are being done to adapt and prompt large language
models (LLMs) for low-resource machine transla-
tion (Guo et al., 2024; Lu et al., 2024; Merx et al.,
2024; Aycock et al., 2025; Joshi et al., 2025; Khade
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et al., 2025), handling them is not always feasible
nor convenient. Suitable hardware may not be avail-
able to deploy or train sufficiently large models.
Moreover, even if capable hardware is available,
using LL.Ms may still be a suboptimal choice, since
it is much harder to freely fit the model and its ar-
chitecture to the scarce data. Moreover, as Petrov
et al. (2023) shows, LLMs’ own pre-trained tok-
enizers are biased against low-resource languages
due to their low share of training data. Considering
that even state-of-the-art LLMs underperform stan-
dard NMT (Robinson et al., 2023), employing them
when smaller options are available is inefficient.
Training a Transformer in these settings remains
a challenging task, and one that requires careful
hyperparameter tuning (Popel and Bojar, 2018).
However, if done correctly, it can lead to well-
performing and competitive models (van Biljon
et al., 2020; Araabi and Monz, 2020). Most of the
work regarding low-resource machine translation
focuses on several techniques, such as fine-tuning,
or transfer learning (Ranathunga et al., 2023). Re-
search on scaling and optimizing machine trans-
lation has mainly been done in a high-resource
setting (Ghorbani et al., 2022), or on other aspects
of training (Sennrich and Zhang, 2019; Araabi and
Monz, 2020; Signoroni and Rychly, 2024).
Following the finding that not only size, but also
shape of the Transformer influences downstream
performance (Tay et al., 2022), our work aims to
broaden the understanding of the scaling of ma-
chine translation in low-resource settings by exper-
imenting with four key components in the archi-
tecture of the Transformer model: encoder layers,
decoder layers, embedding size, and feedforward
dimension. We conduct experiments on one simu-
lated low-resource pair, and three true low-resource
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pairs, to explore the impact of each hyperparameter
on the downstream translation task. We propose a
novel Parameter Increase Efficiency Score (PIES)
to measure the efficiency of changing the configu-
ration of the model, and to find the most parameter-
efficient combinations for each dataset. We com-
pile a list of empirically-found optimal ranges for
each hyperparameter to inform future exploration
and training of low-resource machine translation
models.

We confirm that in low-resource conditions the
Transformer is highly susceptible to hyperparame-
ter variation. We also find that smaller models can
perform as well as much bigger models, at just a
tiny fraction of the computational cost.'

2 Related Work

Our work intersects previous studies on Trans-
former and Machine Translation scaling laws and
optimization on both high and low-resource lan-
guages.

2.1 Scaling Laws and Optimization

Works tackled the challenge of finding empirical
scaling laws that govern neural language model
scaling, considering model, computational, or
dataset size.

Tay et al. (2022) conduct extensive experiments
involving over 200 Transformer configurations con-
sidering both upstream and several downstream
tasks (though, crucially, not machine translation).
They find that model shape, and not only size
(Kaplan et al., 2020), strongly influences down-
stream performance. They also find that scaling
laws change substantially when considering met-
rics on actual downstream fine-tuning. Notably,
they show that scaling strategies differ at differ-
ent compute regions, and thus finding strategies at
small scale might not necessarily transfer or gener-
alize to higher compute regions.

Some work has also been conducted for machine
translation.

Ghorbani et al. (2022) explore scaling laws for
machine translation on a high-resource English-
German dataset. Their results indicate that the
scaling behavior is largely determined by the total
capacity of the model, and its allocation between
the encoder and the decoder. Moreover, they sug-
gest that scaling behavior of encoder-decoder NMT

"Full results and code is available at

https://github.com/edoardosignoroni/eff_archs_lowre
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models is predictable, but the scaling laws might
vary depending on the particular architecture or
task.

Gordon et al. (2021) study the predictability
of MT system performance as parameters/data in-
crease. They train many Transformers of various
sizes randomly selected subsets of data for Russian-
English, German-English, and Chinese-English.
Crucially, they find that extending their previous
experiments to datasets smaller than SOMB, us-
ing 0.05% - 0.0125% of the data, the data scaling
power law breaks down, indicating the impossibil-
ity of extrapolating extremely low-resource results
to medium and high-resource data regimes.

Some research (Hsu et al., 2020; Kasai et al.,
2021; Berard et al., 2021) has also departed from
the convention of using balanced encoder and de-
coders, resulting in "deep encoder, shallow de-
coder" models that can speed up inference while
maintaining a similar translation performance.

2.2 Optimization for Low-Resource Settings

Some studies have also been done on optimizing
NMT for low-resource scenarios.

Sennrich and Zhang (2019) find that best
practices differ between high-resource and low-
resource MT and that the latter is highly sensitive
to hyperparameters by training RNNs with differ-
ent techniques and hyperparameters on a simulated
English-German, and a true Korean-English low-
resource dataset.

Araabi and Monz (2020) trains Transformers for
a diverse set of true and simulated low-resource
pairs to find that a proper combination of Trans-
former configurations results in substantial im-
provements over a Transformer system with default
settings. For example, they observe that a shallower
Transformer combined with a smaller feed-forward
layer dimension and two attention heads is more
effective.

van Biljon et al. (2020) experiment with dif-
ferent Transformer configurations on the transla-
tion of three low-resource languages, showing that
medium (6 total layers) and shallow (2 total layers)
perform better than the canonical configuration of
6 encoder and 6 decoder layers.



3 Methodology

This section describes the dataset we tested on (Sec-
tion 3.1)2. It then reports the training framework
and the hyperparameters we used (Section 3.2).
Next, it explains our proposed efficiency metric
(Section 3.3). And finally, it outlines our experi-
mental setup (Section 3.4).

3.1 Datasets

Our experiments are carried out on publicly avail-
able low-resource datasets, and one simulated low-
resource dataset retrieved from OPUS (Tiedemann,
2009). The datasets involve both high-resource
languages (English, German, Italian), and a se-
lection of under-resourced languages (Akkadian,
Lower Sorbian, Manipuri). The datasets have be-
tween 21k and 50k sentence pairs, thus can be
considered as extremely low-resource (Ranathunga
et al., 2023). Their content is from different do-
mains, mainly news and Wikipedia text, except for
Akkadian, which is mostly assorted fragments of
cuneiform texts. The low-resource datasets have
their own validation and test splits, while for the
simulated English-Italian dataset we use the dev
and devtest splits from the Flores-200 benchmark
corpus (Goyal et al., 2022). The datasets are sum-
marized in Table 1.3

3.2 Hyperparameters and Training

After tokenizing the data using BPE (Sennrich
et al., 2016), as implemented in SentencePiece
(Kudo and Richardson, 2018), we learn separated
vocabularies for source and target with a size of 4k
items, without a frequency threshold.

We train Transformers (Vaswani et al., 2017)
with Fairseq (Ott et al., 2019) until BLEU score
on validation does not increase for 20 consecutive
epochs or until 50000 updates. As our baseline,
we chose a small model that performed sufficiently
well in previous experiments for all pairs. Its ar-
chitecture and training hyperparameters are given
in Table 2. We share embeddings between the en-
coder and the decoder. Each model is trained on a
single Nvidia A40 or A100 GPU.

During the experiments, we focus on tuning the
architecture of the model by changing the num-

2Appendix A provides more information about the lan-
guages involved.

3We use a simple Python script to split the tokenized data
at the newline character and the whitespace and then return
the length of the resulting lists to obtain the number of lines
and tokens for each pair.
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ber of encoder and decoder layers, the size of the
embeddings, and the feed forward dimension. We
leave all other hyperparameters unchanged. We
leave the number of heads at 2, following Araabi
and Monz (2020).

We will refer to the models with the follow-
ing naming scheme: enc_dec_embs_ffw_heads.
E.g. our baseline model may be referred as
4.4_256_1024_2.

3.3 Efficiency Score

To evaluate the efficiency of the models, we in-
troduce a Parameter Increase Efficiency Score, or
PIES, computed as follows:

size/score
106

PIES =
where score means a machine translation metric
such as COMET, ChrF, or BLEU, and size means
the total number of parameters of the model. Thus,
PIES is computed as the ratio between the size of
the model in number of parameters and the machine
translation score it achieved, divided by 1 million.
This is an easily interpretable and straightforward
metric that gives the millions of parameters needed
for each score point. A lower value denotes a more
efficient system.
We compute the total number of parameters for
each model as follows:

params =
2xExV)+(AxE?42x EXxF+9x E+F) x
enc+(8x E?24+2x Ex F+15x E+ F) x dec

where E is the size of the embeddings, V the
number of items in the vocabulary, F' is the feed-
forward dimension, and enc/dec is the number of
layers in the encoder/decoder, respectively.

To obtain the score for each model after training,
we generate test set translations for each model
and obtain sentence-level BLEU (Papineni et al.,
2002), ChrF (Popovi¢, 2015), ChrF++ (Popovié,
2017), and COMET (Rei et al., 2020) scores as im-
plemented in Hugging Face evaluate library.*
We employ bootstrap evaluation on 200 batches of
400 test sentences to obtain the final scores.

Mathur et al. (2020) argue for the retirement of
BLEU in favour of ChrF++. Sai B et al. (2023)

4Scores for metrics other than ChrF are available in the
Appendices (Tables 17-23) and in the GitHub repository.



Languages Abbreviation Dataset N. of Pairs Src Tokens Tgt Tokens
English-Akkadian eng-akk EvaCun 2023 45,269 1,177,138 630,535
German-Lower Sorbian deu-dsb WMT?22 Low-res shared Task 40,194 1,064,087 1,032,701
English-Italian eng-ita WikiMatrix Random Selection 50,000 1,571,843 1,723,391
English-Manipuri eng-mni WMT23 Indic Shared Task 21,287 748,407 715,548

Table 1: Summary of the datasets in our experiments. The columns report the languages in the dataset, its
original source, and the size of the training split in number of tokens and sentence pairs.

Parameters

vocabulary size 4,000
encoder layers 4
decoder layers 4
enc/dec embedding dim 256
enc/dec feed forward dim 1,024
enc/dec attention heads 2
optimizer adam
adam betas 0.9, 0.98
learning rate le-4
warmup updates 5,000
dropout 0.1
label smoothing 0.1
max tokens 16,000

Table 2: Hyperparameters for our baseline model.
For the other models in our experiments, we change
only the number of layers, the size of the embeddings,
and the feed forward dimension.

finds that ChrF++ performs the best among overlap
metrics for a selection of Indic languages. The re-
sults of recent WMT Metrics shared tasks (Freitag
et al., 2022) demonstrate that learned neural met-
rics are the most optimal. Among these, COMET
is the current state-of-the-art, and is widely em-
ployed in machine translation studies. However,
pretrained neural metrics are unreliable for unseen
languages, especially under-resourced ones. Works
such as the ones by Sai B et al. (2023) and Wang
et al. (2024) show that fine-tuned COMET models
perform better for specific sets of low-resource lan-
guages, than baseline models. For these reasons
we chose ChrF as the metric of reference in both
our observations and PIES.

By computing Pearson’s r between PIES and
ChrF score on the aggregate results of our exper-
iments, we obtain r=-0.543, indicating a negative
correlation between PIES and translation quality:
a lower PIES corresponds to a higher ChrF.
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3.4 Experiments

Our aim is to investigate efficient architectures for
low-resource machine translation models by tun-
ing hyperparameters such as encoder and decoder
layers, embeddings and feed forward dimension.
We fix all other training hyperparameters to values
found to be optimal or close to optimal in previ-
ous and preliminary experiments on the same data
(Signoroni and Rychly, 2024).

3.4.1 Experiment 1: Change One, Fix All

Hyperparameters
encoder layers

decoder layers
embedding dimension
feed forward dimension

2,4,6,8,12, 16, 24, 32
2,4,6,8,12, 16, 24, 32
256, 512, 1024, 2048, 4096
256, 512, 1024, 2048, 4096

Table 3: Values for each hyperparameter tried in
Experiment 1. Baseline values are in bold.

Size  Hyperparameters N. of Parameters
small 4_4_256_1024_2 8.5M<94M < 10M
base 6_6_512 2048 2  40M <48M < 53M
large 6_6_1024_4096_2 166M < 184M < 203M

Table 4: Baseline hyperparameters and sizes (in bold)
for the models in Experiment 2. We consider all pos-
sible architectures in a range of +10% parameters from
these baseline models.

Our first experiment focuses on changing only
one hyperparameter at a time in the architecture
of the model without controlling the total amount
of parameters. We start from our baseline values
of 4 encoder and decoder layers, embedding size
of 256, and feedforward dimension of 1024, and
change them one step at a time according to Table
3.

3.4.2 Experiment 2: Parameters Budget

In Experiment 2, we fix the number of parameters
to +£10% of transformer small, base, and large and
test all possible combinations of hyperparameters



that fall into the ranges given in Table 4. For each
dataset, we test each possible configuration that
falls within these ranges: 13 for small (counting the
baseline 4_4_256_1024_2 model), 58 for base, and
60 for large, that is 131 combinations for dataset,
for a total of 524 models. By allowing all possible
combinations of hyperparmeters, we overcome one
limitation of the previous setup, that is the chance
of missing possible optimal configurations due to
changing only one hyperparameter at a time.

4 Results
4.1 Experiment 1: Change One, Fix All

As we discuss the results of our experiments, recall
that a lower PIES denotes a more efficient model.

In Experiment 1, we start from the baseline
4 4 256_1024_2 model and increase or decrease
only one hyperparameter at a time, leaving all other
unchanged. Table 5 summarizes the results of Ex-
periment 1.

As expected, increasing the embedding size
leads to the biggest increase in model size, since
it scales quadratically with the amount of param-
eters. Conversely, all the other hyperparameters
we considered scale linearly with the number of
parameters, with feedforward dimension being the
least impactful per unit. Increasing the number of
decoder layers results in a slightly steeper rate of
increase in parameters than adding more encoder
layers.

In this experimental setup, we allow the model
size to grow freely. We observe that for all datasets
increasing embedding size to 2048 or 1024 leads
to the best ChrF scores, but also to disproportion-
ally big models, reaching 75M or 251M parame-
ters. For all four datasets, it is sufficient to scale
back both embedding size and feedforward dimen-
sion to 256 to obtain the most efficient configura-
tion. These optimized models have between 91.6%
and 97.5% parameters less than the best architec-
tures according to ChrF, while losing 1%-13.7%
of the translation performance. We argue this is a
favourable trade-off, especially in a low-resource
setting where it may be needed to train several
models in sequence for techniques such as back-
translation.

As a matter of comparison, we prompted two
language models, mt5-small (300M parameters)
(Xue et al., 2021) and Mistral Small (24B parame-
ters)”, for translation in a zero-shot scenario. mt5-

>https://mistral.ai/news/mistral-small-3-1
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small fails at translating between all pairs, even
the high-resource English-Italian®, reaching only
3.1 ChrF for deu-dsb. Consequently, using the
model in this way is very inefficient, as reflected
by hugely inflated PIES scores. The much bigger
Mistral Small fares much better for English-Italian,
achieving 59 ChrF, thus making it the best model
overall in our experiment for this pair. Its efficiency
is, however, debatable, as indicated by PIES scores
in the hundreds and thousands. With respect of the
low-resource pairs, Mistral Small fails for Akka-
dian and Manipuri, and performs poorly for Lower
Sorbian.

We then trained a new mt5-small model for each
pair by finetuning the original mt5-small on each
dataset for 5 epochs. As expected, this increased
ChrF and decreased PIES across all pairs. The best
performance is for English-Italian, which reaches
a ChrF of 44 points, comparable to other mod-
els trained from scratch. PIES is still quite high,
however, at 6.8. Finetuning significantly helps mt5-
small to make sense of unseen low-resource lan-
guages, especially with Lower Sorbian and Ma-
nipuri, but both performance and efficiency are
well below models trained from scratch. This sug-
gests that when only a small amount of data is
available, training from scratch may still be the
best choice, especially if the under-resourced lan-
guages in question are not in the training data of
the language model to finetune or adapt.

Table 7 gives ChrF and PIES for two language
models prompted for translation across the lan-
guage pairs in our experiment.’

4.2 Experiment 2: Parameters Budget

In Experiment 2, we limit the number of parame-
ters in three ranges, corresponding to the sizes of
Transformer small, base, and large (Table 4). The
higher number of combinations per dataset (131)
allows for observations regarding some average
trends in our results. To extrapolate optimal ranges
for the hyperparameters and their interactions, we
proceed in three steps: 1. we filter out all combi-
nations with a ChrF<35; 2. among these, we keep
only those with PIES<1; 3. we select ranges where
the remaining combinations are optimal across the
majority of the datasets. To generalize these ranges,

SEnglish and Italian are known to mt5. English has the
biggest share of the training data (5.67%), and Italian has the
sixth biggest (2.63%) of the total amount.

"Refer to Appendix B for information about the prompting
and finetuning of these models.



eng-akk deu-dsb eng_wiki-ita_wiki eng-mni
Best Model (ChrF) 4 4 2048 1024 2 4 4 2048 1024 2 4 4 20481024 2 4 4 1024_1024_2
ChrF 41.792 48.881 45.612 48.505
PIES 6.017 5.145 5.513 1.555
Num. Parameters 251M 251M 251M 75M
Best Model (PIES) 4.4 256_256_2 4 4 256_256_2 4 4 256_256_2 4 4 256_256_2
ChrF 39.681 44.527 45.156 41.844
PIES 0.158 0.141 0.139 0.150
Num. Parameters 6.3M 6.3M 6.3M 6.3M
A ChrF 1 -2.111 -4.354 -0.456 -6.661
% of best -5.052% -8.907 % -1.000 % -13.732%
A PIES | -5.859 -5.004 -5.374 -1.405
% of best -97.374% -89.308 % -97.479 % -90.354 %
A Params | -245M -245M -245M -6OM
% of best -97.507 % -97.490 % -97.507 % -91.600 %

Table 5: Best models from Experiment 1 according to ChrF and PIES. Below the model name (in the form
enc_dec_embs_ffw_heads), we report ChrF, PIES, and size of the model. In the bottom part of the table, we report
the differences in scores (AChrF 1, APIES |) and size (AParams ) between the best model for translation
quality (highest ChrF) and the most efficient one (lowest PIES), both in absolute terms and as a percentage (% of

best).
eng-akk deu-dsb eng_wiki-ita_wiki eng-mni
Best Model (ChrF) 6_8 1024 2048 2 12 2 1024 4096_2 12 2 1024 4096 _2 2 16_1024_256_2
ChrF 43.393 51.569 47.890 49.882
PIES 3.673 3.741 4.029 3.217
Num. Parameters 176M 193M 193M 160M
Size range large large large large
Best Model (PIES) 4_6_256_512_2 6_2_256_1024_2 6_2_256_1024_2 4 8 256_256_2
ChrF 38.811 44.001 45.347 44.483
PIES 0.229 0.202 0.196 0.200
Num. Parameters 8.9M 8.9M 8.9M 8.9M
Size range small small small small
A ChrF 1 -4.582 -7.568 -2.543 -5.339
% of best -10.559 % -14.790 % -5.310% -10.823%
A PIES | -3.444 -3.539 -3.833 -3.017
% of best -93.375% -94.600 % -95.135% -93.783 %
A Params | -167M -184M -184M -151M
% of best -94.943 % -95.389 % -95.389 % -94.438 %

Table 6: Best models from Experiment 2 according to ChrF and PIES. Below the model name (in the form
enc_dec_embs_[ffw_heads), we report ChrF, PIES, and size of the model. In the bottom part of the table, we report
the differences in scores (AChrF 1, APIES |) and size (AParams ) between the best model for translation
quality (highest ChrF) and the most efficient one (lowest PIES), both in absolute terms and as a percentage (% of

best).

we filter all combinations according to the values
we found, starting with the most impactful ones.
Table 8 summarizes these findings, and Table 9 re-
ports the possible optimal configurations we found.

At a glance, it can be observed that pruning mod-
els that are either too deep or too imbalanced in
terms of encoder and decoder layers leads, on av-
erage, to better ChrF and PIES, and greatly re-
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duces the size of the models. Limiting embed-
ding size may reduce quality, however this can be
circumvented by selecting balanced architectures
according to other criteria. We can also observe
that setting the feedforward dimension in the sug-
gested range, when taken in relation to the number
of encoder and decoder layers, slightly increases
both ChrF and PIES. Further experiments may ad-



Model Metric eng-akk  deu-dsb eng_wiki-ita_wiki eng-mni
mtS-small ChrF 0.070 3.101 1.584 0.004
(300M) PIES 4271.370  96.729 189.406 82101.976
mtS-small-finetuned ChrF 7.136 32.681 44.033 25.687
(300M) PIES 42.043 9.180 6.813 11.679
mistral-small ChrF 0.358 18.332 59.086 4.966
(24B) PIES  67039.379 1309.188 406.190 4832.926

Table 7: ChrF and PIES for zero-shot mt5-small, finetuned mt5-small, and zero-shot Mistral-Small.

Filter Low High Remaining Configurations Avg ChrF Avg PIES Avg Size (in M)
Initial - - 524 33.93 5.06 102M
layer_sum 6 18 244 42.137 2.087 84.2
embs 256 512 148 40.659 0.898 31.8
enc_layers 2 12 136 41.491 0.871 31.7
dec_layers 2 12 132 41.653 0.806 31.3
layer_diff -6 8 116 41.999 0.771 30.8
ffw 256 2048 92 42.163 0.675 27.3
enc/dec 0.25 3 92 42.163 0.675 27.3
embs/ffw 0.125 2 92 42.163 0.675 27.3
embs/enc 21.333 256 92 42.163 0.675 27.3
embs/dec 32 128 92 42.163 0.675 27.3
embs/num_layers 16 51.2 92 42.163 0.675 27.3
ffw/dec 21.333 1024 92 42.163 0.675 27.3
ffw/enc 32 1024 88 423 0.695 28.1

Table 8: Optimal ranges of the hyperparameters and their interactions. The first two columns give minimum
and maximum values for each one. The other report the remaining configurations after filtering the possible
combinations, and their average ChrF, PIES, and size in millions of parameters.

dress the impact of this particular relation. In sum-
mary, optimal architectures should have a limited
number of layers (6 to 18), which must be not too
unbalanced on either encoder or decoder side (-6
to 8 encoder - decoder difference; 0.125 to 3 en-
coder/decoder ratio). Embedding size should be
kept on the smaller side (256 to 512), while feed-
forward dimension can be bigger (up to 2048).

If we apply these guidelines to the full results,
without prior filtering for ChrF and PIES, we are
left with the 22 combinations in Table 9, out of
the initial 131 per dataset. Apart from four, all
have an average ChrF > 40, and six have an average
PIES > 1. All of these are of base size. There is a
noticeable gap between PIES for this size bracket
and small, which features the best efficiency scores.

Table 6 reports the best models and scores in Ex-
periment 2. All the best model according to ChrF
are in the large range, whereas the most efficient
ones according to PIES are in the small bracket. For
two datasets, deu-dsb and eng_wiki-ita_wiki, the
best ChrF model is the same (12_2_1024_4096_2).
The best ChrF model for eng-mni is quite peculiar:
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Model Avg ChrF  Avg PIES Size (in M)
6_2_256_1024_2 42.757 0.209 8.9
4_6_256_512_2 42.062 0.212 8.9
4 4 256_1024_2 42.836 0.221 94
8_4 256_512_2 41.845 0.226 9.4
6_8_256_256_2 42.470 0.229 9.7
6_6_256_512_2 42.859 0.233 10.0
4_8_256_256_2 39.176 0.242 8.9
2_8.256_512_2 40.237 0.247 9.4
2.6_256_1024_2 40.762 0.254 9.9
8_6_256_256_2 36.428 0.316 9.2
8_6.512_1024_2 45.171 0.885 39.8
6_4_512_2048_2 44.738 0.894 39.8
4_6_512_2048_2 45.423 0.925 41.9
6_8_512_1024_2 44.926 0.937 41.9
12.4.512_1024_2 43.269 0.978 41.9
2.8.512.2048_2 44.249 0.998 44.0
8_4 512.2048_2 45.516 1.015 46.1
6_6_512_2048_2 44.920 1.077 48.2
12_6_512_1024_2 43.353 1.122 48.3
6_12 512 5122 40.087 1.258 45.1
6_12_512_256_2 38.743 1.316 40.4
8.8 51210242 38.762 1.484 46.2

Table 9: Optimal model configurations and their size,
with ChrF and PIES averaged over all four datasets.



Correlation of ChrF and PIES with Other Features (all)
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Figure 1: Correlation matrix of ChrF and PIES with other hyperparameters and their interactions. A lower PIES

is better.

it has just 2 encoder layers, 16 decoder layers, an
embedding size of 1024, and a narrow feedforward
of just 256. Again we see decrements in ChrF be-
tween 5.3% and 14.8%, against a 95% reduction
in number of parameters. While bigger models
may in principle achieve a slightly higher ChrF,
this comes at the cost of efficiency. We argue that
in a low-resource scenario, when both data and
hardware are scarce, the increased computational
cost needed to find and train the optimal model in
this size range is not well spent. Smaller models
can achieve a comparable, or almost comparable
translation performance, at just a fraction of the
cost. This is also true for exploratory runs, or in-
termediate stages of development, such as systems
for backtranslation.

From Figure 1, reporting the correlation between
ChrF and PIES and all the features in our study, we
can point out some interesting observations. The
number of layers is the most impactful hyperparam-
eter for both ChrF and PIES. Deeper architectures
lose both in terms of quality and efficiency. It fol-
lows that the number of encoder and decoder layers
impacts the metrics, with changes in the encoder
slightly more important for ChrF, and changes in
the decoder a bit more impactful on PIES. Embed-
ding dimension is relevant for both metrics. Feed-
forward appears to have a lesser impact. According
to these findings, balancing embeddings dimen-
sion, the number of layers in the encoder and
the decoder, and their interactions is key to an
efficient model with good translation quality.
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5 Conclusions

In this paper, we explored scaling and optimizing
the Transformer architecture for low-resource ma-
chine translation by experimenting with several
hundred configurations over four language pairs.

We confirm previous findings that the Trans-
former, and low-resource NMT in general, is highly
sensitive to hyperparameters in low-resource con-
ditions, and that standard settings are not optimal.
‘We observe some trends and interactions between
the number of encoder and decoder layers, embed-
ding size, feedforward dimension, and the quality
of the translation.

We propose PIES as a novel metric to measure
the efficiency of changing a model’s architecture,
and use it to show that increasing model size is
not always the optimal choice, since smaller and
balanced models can reach a comparable perfor-
mance for a fraction of the computational cost. We
also outline some empirical findings and guidelines
regarding the optimal hyperparameter ranges that
result in more efficient low-resource machine trans-
lation models.

Limitations

The main limitations of our experiments are the
following. First, the dataset selection, while try-
ing to be diverse both in terms of typology (Ger-
manic, Slavic, Romance, Tibeto-Burman, Semitic)
and writing system (Latin, Bengali, Cuneiform),
is only a tiny fraction of the world’s 7000+ lan-
guages. If we include, also historical ones, such
is the case with Akkadian, the number grows even
more. We acknowledge that this fact may hinder



generalization, and to avoid even more grid search
and computation, we attempted to gain as much
information as possible from these datasets. We
leave to future work to test our intuitions on a wider
range of languages.

Second, we could not perform a systematic qual-
itative analysis on the outputs of the models, and
had to rely on automated metrics to score the trans-
lations. This comes with another set of problems
altogether, that is out of the scope of this paper to
discuss. This is also relevant for PIES, which in its
present iteration is closely correlated with the trans-
lation metric. In the future, we plan to extend it to
account for multiple metrics, and to consider also
train and inference times, and environmental con-
cerns. For now, it is only as good as the translation
metric chosen to compute it.

Lastly, we are aware that testing all possible com-
binations, across all hyperparameters, is a monu-
mental task that evades the scope of just one paper.
We focused on four specific architecture hyperpa-
rameters and their interactions. Other possible op-
timal configurations, that may need other changes
in training hyperparameters (e. g. learning rate,
dropout, etc.) to work best are left to future work.
The same can be said for all LLMs, for which archi-
tecture cannot be modified as freely, with one led
to employ different approaches such as fine-tuning
and prompting techniques. These fall outside the
scope of this paper and are left to future work.

Ethical Considerations

We did not collect any new data for these exper-
iments, as we used publicly available dataset or
parts thereof. The systems we trained are not in-
tended to be deployed or used in any actual trans-
lation scenario, in such a case, they will incur in
biases, errors, and issues common to this kind of
NLP models, and as such they should be used with
care. We are also aware of the environmental cost
of training language models and tried our best to
avoid grid search all the while getting a meaningful
picture of the topic at hand.

Following (Lacoste et al., 2019), we estimate
that our experiments lasted 4200 GPU hours on a
private infrastructure with a carbon efficiency of
0.59 kgCO3zeq/kWh for a total emissions of 708
kgCO2eq.
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A Languages

Lower Sorbian (“Dolnoserbséina”) is a West
Slavic language predominantly spoken in eastern
Germany by approximately 7,000 native speakers.
Most of these speakers are from older generations,
making the language critically endangered. Writ-
ten in Latin script with additional diacritics, Lower
Sorbian features six grammatical cases and a dual
number system for nouns, pronouns, adjectives,
and verbs. It does not employ articles. The dataset
for our experiments was compiled by the Witaj
Sprachzentrum 8 (Witaj Language Centre) (Weller-
di Marco and Fraser, 2022).

Manipuri (“Meiteilon”) is a Tibeto-Burman lan-
guage recognized as one of the official languages in
the Indian state of Manipur and at the national level.
It is spoken by approximately 1.8 million native
speakers, primarily the Meitei people, both in Ma-
nipur and neighboring regions. UNESCO classifies
Manipuri as "vulnerable." The language exhibits
extensive suffixation with limited prefixation and
follows an SVO word order. Other linguistic char-
acteristics include agglutinative verb morphology,
tone, a lack of grammatical person, number, and
gender distinctions, and a focus on aspect rather
than tense (Pal et al., 2023). Manipuri is written
using several scripts, including the Meitei and Ben-
gali scripts, with the latter being used for all the
Manipuri data in our experiments. The Latin script
is also employed. The dataset is a modified ver-
sion (Pal et al., 2023) based on previous work by
Haddow and Kirefu (2020), Laitonjam and Ran-
bir Singh (2021), and Huidrom et al. (2021). Each
segment of the data set contains mainly news and
other informational texts.

Akkadian, an extinct East Semitic language,
was spoken in ancient Mesopotamia from the third
millennium BCE until the 1st century CE. It uti-
lized the cuneiform script, a logophonetic writing
system in which symbols could serve as logograms,
determinatives, or phonograms/syllabograms, each
with a distinct interpretation. Akkadian is a fu-
sional language with grammatical case and em-
ploys a root-based consonantal system. The dataset
used in our study is derived from portions of
the ORACC corpus ° and mainly comprises Neo-
Assyrian royal inscriptions and administrative cor-
respondence. The stylistic variation between gen-
res poses challenges for NLP (Gutherz et al., 2023).

8https://www.witaj-sprachzentrum.de/
*https://oracc.museum.upenn.edu/index html
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Additionally, because of the medium of preserva-
tion (clay tablets), the data is often incomplete,
with truncated sentences.

B Large Language Models’ Prompting
and Finetuning

mt5-small was prompted and finetuned using the
HuggingFace Transfomers library, while Mistral
Small was prompted with Ollama. For mt5-
small, we used the prompt ’Translate SRC to
TGT: SRC_EXAMPLE’. For fine-tuning, we re-
structured the data in a similar way, by giving the
prompt, the source line, as input, and the target
line as label. For Mistral Small, we opted for a
somewhat more complex *Translate the following
text from SRC to TGT. Write only the translation.
SRC: SRC_EXAMPLE TGT: ’

C Tables and Charts

Below we report the results of our experiments.
Tables 10 and 11 summarize the ChrF and PIES
scores for each pair and size bracket of Experiment
2. Figures and plot the trend of ChrF when modi-
fying each hyperparameter for each pair. Figures
4 and 5 show the counts of optimal configurations
(ChrF>35 and PIES<]1) for each hyperparameter
across all datasets. Figure 6 report the average
ChrF and PIES for the configurations in the opti-
mal range for each language pair and size bracket.
Finally, Tables 12 to 18 contain the BLEU, ChrF,
and COMET scores for all combinations in Experi-
ment 1 and 2.



tgt size_tag min max median  mean

akk base 4901 42.568 19.969 23.426
akk large 6.088 43.394 30.677 26.093
akk small 14408 39.211 35.026 32.287
dsb base 3.017 48.324 41.664 32.098
dsb large 2.898 51.569 47.095 36.073
dsb small 37.982 44.329 43.008 42.741
ita_wiki base 2928 46.282 43.531 33.336
ita_wiki large 1.599 47.890 44.698 34910
ita_wiki small 42.504 45347 44919 44.708
mni base 7917 48.299 43.241 38.805
mni large 7.733 49.883 44.606 40.643
mni small 35996 45960 43.443 42614
all base 2928 48.324 38.619 31915
all large 1.599 51.569 41.837 34.430
all small 14.408 45960 42987 40.588

Table 10: Minimum, Maximum, Average, and Median ChrF values by language and size bracket in Experiment 2

tgt size_tag min max median mean
akk base 0.935 9.100 2.196  2.907
akk large 3.673  29.323 5.951 10.493
akk small 0.229 0.636 0.284 0.315
dsb base 0.848 14.655 1.076  2.614
dsb large 3.131 59.464 3.950 9.467
dsb small 0.202 0.255 0.219 0.221

ita_wiki base 0.861 16.206 1.067  2.378
ita_wiki large 3.346 101.225 4204  9.545
ita_wiki small 0.196 0.228 0.210  0.211

mni base 0.836 5.048 1.031  1.395
mni large 3218 22.284 3953 5422
mni small 0.200 0.269  0.217 0.223
all base 0.836  16.206 1.165  2.322
all large 3.131 101.225 4397 8.732
all small 0.196 0.636  0.222  0.243

Table 11: Minimum, Maximum, Average, and Median PIES values by language and size bracket in Experiment 2
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Table 12: Results for Experiment 1

sre tgt model bleu chrf comet |src tgt model bleu chrf comet
eng akk 2.4 2561024 2 2991 38.95 0.93|eng_wiki ita_wiki 4 4_256_1024_2 12.59 43.86 0.59
eng akk 4 2 256_1024_2 29.25 37.32  0.93|eng_wiki ita_wiki 4_4_256_2048 2 13.38 45.08 0.61
eng akk 4.4 256_256_2 30.23 39.68 0.93|eng_wiki ita_wiki 4_4_256_4096_2 13.59 4474 0.6
eng akk 4 4 256512 2 30.03 38.67 0.93|eng_wiki ita_wiki 4_4_512 1024 2 13.53 4528 0.6
eng akk 4 4 256_1024_2 30.05 38.83 0.93|eng_wiki ita_wiki 4_4_1024_1024_2 13.48 452 0.61
eng akk 4 4 2562048 2 29.82 38.43 0.93|eng_wiki ita_wiki 4_4 2048 _1024_2 14.04 45.61 0.62
eng akk 4 4 256_4096_2 30.61 40.86 0.93|eng_wiki ita_wiki 4_4_4096_1024_2 12.93 44.06 0.59
eng akk 4 4 512 10242 30.33 40.49 0.93|eng_wiki ita_wiki 4_6_256_1024_2 13.31 4491 0.6
eng akk 4 41024 1024_2 29.99 41.18 0.93|eng_wiki ita_wiki 4_8_256_1024_2 13.57 4486 0.6
eng akk 4 4 2048 1024_2 30.17 41.79  0.93 |eng_wiki ita_wiki 4_12_256_1024_2 12.38 43.64 0.57
eng akk 4 4 4096_1024 2 28.41 38.81 0.93|eng_wiki ita_wiki 4_16_256_1024_2 13.07 44.33 0.58
eng akk 4 6.256_1024_2 30.27 39.59 0.93|eng_wiki ita_wiki 4_24 256_1024_2 13.57 45.23 0.61
eng akk 4 8 256_1024_2 30.07 39.68 0.93|eng_wiki ita_wiki 4_32_256_1024_2 2.18 19.42 0.26
eng akk 4 12 256_1024_2 28.41 33.85 0.93|eng_wiki ita_wiki 6_4_256_1024_2 13.28 44.79 0.61
eng akk 4_16_256_1024_2 23.26 16.96  0.9|eng_wiki ita_wiki 8_4_256_1024_2 13.74 45.15 0.61
eng akk 4 24 2561024 2 1594 7.76 0.77 |eng_wiki ita_wiki 12_4 256_1024_2 13.55 44.86 0.61
eng akk 4 32 2561024 2 15.61 7.54  0.8|eng_wiki ita_wiki 16_4_256_1024_2 3.68 2442 0.36
eng akk 6_4_256_1024_2 29.45 38.41 0.93|eng_wiki ita_wiki 24_4_256_1024_2 3.26 21.55 0.35
eng akk 8 4 256_1024_2 23.95 23.18 0.92|eng_wiki ita_wiki 32 4 _256_1024_2 2.81 19.07 0.34
eng akk 12_4_256_1024_2 27.73 33.21 0.93|eng mni 2.4 .256_1024_2 16.15 4433  0.69
eng akk 16_4 256_1024_2 27.81 32.55 0.93|eng mni 4.2 256_1024 2 1693 44.01 0.69
eng akk 24 4 256_1024_2 27.53 30.62 0.93|eng mni 4.4 .256_256_2 1393 41.84 0.68
eng akk 32 4 256_1024_2 21.49 16.32 0.89|eng mni 4.4 2565122 16.06 4339 0.69
deu dsb 2 4 256_1024_ 2 28.06 43.7 0.63|eng mni 4.4 2561024 _2 18.03 4445 0.7
deu dsb 4 2 2561024 2 28.45 4392 0.62|eng mni 4.4 2562048 2 182 44775 0.7
deu dsb 4 4 256_256_2 28.41 44.53 0.63|eng mni 4 4 256_4096_2 2045 46.11 0.7
deu dsb 4.4.256_512 2 2793 4358 0.63|eng mni 4.4 512 1024 2 202 4735 0.71
deu dsb 4.4 256_1024_2 28.09 43.01 0.62|eng mni 4.4 1024_1024_2 21.88 485 0.71
deu dsb 4 4 256_2048_2 29.28 45.19 0.64|eng mni 4.4 2048 1024 2 21.45 4836 0.7
deu dsb 4 4 256_4096_2 28.53 43.95 0.63|eng mni 4.4 4096_1024_ 2 18.7 43.87 0.68
deu dsb 4 4 512_1024_2 29.34 46.72 0.64 |eng mni 4_6.256_1024_ 2 17.09 4429 0.69
deu dsb 4.4.1024_1024_2 29.96 48.29 0.65|eng mni 4.8.256_1024_2 19.53 453 0.7
deu dsb 442048 1024_2 30.48 48.88 0.65|eng mni 412 .256_1024_2 18.1 4436 0.69
deu dsb 4 4 4096_1024_2 29.8 48.28 0.64|eng mni 4_.16_256_1024_2 19.56 4553 0.7
deu dsb 4 _6.256_1024_ 2 27.21 4285 0.62|eng mni 424 256_1024_2 18.84 45.54 0.69
deu dsb 4 8 256_1024_2 27.65 42.74 0.62|eng mni 432 256_1024 2 4.0 16.61 042
deu dsb 4_12_256_1024_2 28.25 44.73  0.63|eng mni 6_4_256_1024_2 18.39 44.71 0.7
deu dsb 4.16_256_1024_2 27.34 44.02 0.63|eng mni 8 4 .256_1024_2 18.74 45.11 0.7
deu dsb 4 24 256_1024_2 27.08 44.6 0.63|eng mni 12_4 256_1024_2 15.59 39.42 0.68
deu dsb 4 32 256_1024 2 11.53 25.88 0.51|eng mni 16_4_256_1024_2 14.96 37.9 0.68
deu dsb 6_4.256_1024_ 2 27.77 4328 0.62|eng mni 24 4 256_1024_2 13.63 35.27 0.66
deu dsb 8.4 256_1024_2 27.82 43.06 0.62|eng mni 32.4.256_1024_2 1.56 8.89 0.42
deu dsb 12 4 256_1024_2 27.14 41.99 0.62

deu dsb 16_4_256_1024_2 16.14 22.42 0.52

deu dsb 24 4 256_1024_2 15.52 20.33  0.51

deu dsb 32_4 256_1024_2 13.81 15.04 0.48

eng_wiki ita_wiki 2_4_256_1024_2 12.77 4422 0.59

eng_wiki ita_wiki 4_2_256_1024_2 13.72 45.05 0.62

eng_wiki ita_wiki 4_4 256_256_2 13.46 45.16 0.61

eng_wiki ita_wiki 4_4_256_512_2 13.65 45.14 0.61
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Table 13: Results for Experiment 2 (Part 1/6)

src tgt model bleu chrf comet|src tgt model bleu chrf comet
eng akk 2_2 1024_1024_2 29.32 37.35 0.93|eng akk 6_16_1024_512_2 29.16 38.74 0.93
eng akk 2_2 2048_4096_2 29.53 39.33 0.93|eng akk 6_24_256_2048_2 17.19 829 0.78
eng akk 2_4 512_4096_2 31.08 42.57 0.93|eng akk 6_24_512_4096_2 22.44 693 0.77
eng akk 2_4 2048 256_2 29.88 40.84 0.93|eng akk 6_32_256_1024_2 17.55 7.46 0.78
eng akk 2_6_256_1024_2 26.61 28.13 0.93|eng akk 8_4_256_512_2 29.67 38.25 0.93
eng akk 2_8 256_512_2 2576 26.4 0.92|eng akk 8_4_512_2048_2 30.68 4229 0.93
eng akk 2_8 512_2048_2 30.31 41.23 0.94|eng akk 8_4 1024_4096_2 30.18 42.55 0.93
eng akk 2_8 1024_4096_2 29.94 41.77 0.93|eng akk 8_6_256_256_2 23.57 1441 0.88
eng akk 2_12_512_1024_2 24.67 2649 0.92|eng akk 8_6_512_1024_ 2  30.06 40.84 0.93
eng akk 2_12_1024_2048_2 30.48 42.58 0.93|eng akk 8_8 256_4096_2 22.16 13.1 0.88
eng akk 2_16_512.256_2 2085 49 0.75|eng akk 8 8 512_1024 2 2125 15.6 0.88
eng akk 2_16_1024_256_2 30.24 4242 0.93|eng akk 8_8_1024 2048 _2 22.59 14.15 0.89
eng akk 2_16_1024_512_2 30.1 41.81 0.93|eng akk 8_12_512_256_2 20.22 14.54 0.89
eng akk 2_16_1024_1024_2 30.81 43.07 0.93|eng akk 8_12_512_512_ 2  20.67 15.01 0.9
eng akk 2_24 256_2048_2 15.62 8.01 0.78|eng akk 8_12_1024_512_2 21.77 14.94 0.88
eng akk 2_24 512 4096_2 16.75 7.89 0.84|eng akk 8_12_1024_1024_2 22.37 16.06 0.91
eng akk 4_2_1024_256_2 30.08 40.15 0.93|eng akk 8_16_1024_256_2 21.07 1557 091
eng akk 4.2 1024_512_2 29.27 37.93 0.93|eng akk 8_32_256_1024_2 17.49 7.52 0.78
eng akk 4_2 2048 _512_2 28.78 37.81 0.93|eng akk 8_32_512 _2048_2 24.66 6.09 0.74
eng akk 4_2 2048_1024_2 294 39.11 0.93|eng akk 12_2 256_512_2 28.6 35.03 0.93
eng akk 4_4 256_1024_2 30.18 38.92 0.93|eng akk 12_2_1024_4096_2 28.09 37.46 0.93
eng akk 4_6_256_512_2 29.87 38.81 0.93(eng akk 12_4 256_256_2 26.68 2897 0.93
eng akk 4_6_512_2048_2 31.0 42.54 0.93|eng akk 12_4_256_4096_2 2829 34.0 0.93
eng akk 4_6_1024_4096_2 29.65 42.02 0.93|eng akk 12_4_512_1024_2 29.17 36.83 0.93
eng akk 4_8 256_256_2 25.09 2474 093 |eng akk 12_4 1024_2048_2 22.01 1521 0.89
eng akk 4_8 1024_4096_2 30.74 42.5 0.93|eng akk 12_6_256_4096_2 27.56 30.33 0.93
eng akk 4_12_256_4096_2 235 1849 091|eng akk 12_6_512_1024_2 29.52 37.17 0.93
eng akk 4_12_512_512_2 22.87 13.21 0.89|eng akk 12_6_1024_2048_2 29.04 38.79 0.93
eng akk 4_12_1024_1024_2 30.45 42.45 0.93|eng akk 12_8_512_512_2 28.55 3578 0.93
eng akk 4_12_1024_2048_2 30.45 4274 0.93|eng akk 12_8_1024_1024_2 20.41 16.14 0.9
eng akk 4_16_512_256_2 30.3 3935 0.93|eng akk 12_12_512_256_2 22.66 18.15 091
eng akk 4_16_1024_256_2 30.01 42.16 0.93|eng akk 12_12_1024_256_2 21.42 18.64 0.91
eng akk 4_16_1024_512_2 28.1 39.74 0.93|eng akk 12_12_1024_512_2 22.83 16.31 0.9
eng akk 4_24_256_2048_2 14.81 8.03 0.77|eng akk 12_16_256_2048_2 17.54 826 0.78
eng akk 4_24 512_4096_2 20.75 7.12 0.78|eng akk 12_16_512_4096_2 19.53 10.25 0.84
eng akk 6_2 256_1024_2 29.45 38.24 0.93|eng akk 12_32_256_1024_2 17.82 9.23 0.8
eng akk 6_2_512_4096_2 30.55 41.64 0.93|eng akk 12_32_512_2048_2 18.07 9.72 0.82
eng akk 6_2 2048 _256_2 28.64 36.5 0.93|eng akk 16_2_256_256_2 27.06 30.64 0.93
eng akk 6_4 5122048 2 29.93 39.88 0.94|eng akk 16_2_256_4096_2 26.15 26.97 0.92
eng akk 6_6_256_512_2 29.98 39.21 0.93(eng akk 16_2_512_1024_2 27.54 34.01 0.93
eng akk 6_6_512_2048_2 29.85 40.58 0.93|eng akk 16_2_1024_2048_2 28.46 37.33 0.93
eng akk 6_6_1024_4096_2 27.61 39.26 0.93|eng akk 16_4_512_512_2 26.23 31.16 0.93
eng akk 6_8 256_256_2 29.7 37.99 0.93|eng akk 16_4_1024_2048_2 28.41 357 0.93
eng akk 6_8 512_1024_2  30.04 40.92 0.93|eng akk 16_6_512_512_2 28.35 35.79 0.93
eng akk 6_8 1024 2048 _2 30.97 43.39 0.93|eng akk 16_6_1024_1024_2 26.32 28.94 0091
eng akk 6_12_256_4096_2 31.09 41.63 0.94|eng akk 16_8_512 256 2 21.81 18.5 0.9
eng akk 6_12_512_256_2 20.87 15.17 0.89|eng akk 16_8_1024_512_2 20.68 17.16 0.89
eng akk 6_12_512 512 2 2229 21.44 0.92|eng akk 16_8_1024_1024_2 28.35 36.26 0.92
eng akk 6_12_1024_1024_2 22.22 14.15 0.9 |eng akk 16_12_256_2048_2 24.71 23.05 0.92
eng akk 6_16_1024_256_2 30.27 41.0 0.94|eng akk 16_12_512_4096_2 22.74 19.9 0.92
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Table 14: Results for Experiment 2 (Part 2/6)

src tgt model bleu chrf comet|src tgt model bleu chrf comet
eng akk 16_12_1024_256_2 20.4 15.52 0.89|deu dsb 4_4_256_1024 2  28.09 43.01 0.62
eng akk 16_16_256_2048_2 1597 8.39 0.81|deu dsb 4_6_256_512_2 2691 42.86 0.62
eng akk 16_16_512_4096_2 16.2 11.54 0.81|deu dsb 4_6_512_2048_2  28.82 4593 0.63
eng akk 16_24_256_1024_2 17.39 §8.28 0.8|deu dsb 4_6_1024_4096_2 31.57 49.65 0.65
eng akk 16_32_256_1024_2 24.86 6.13 0.74|deu dsb 4_8_256_256_2 28.06 43.14 0.62
eng akk 16_32 512 2048_2 16.7 7.76 0.82|deu dsb 4_8_1024_4096_2 32.1 50.21 0.66
eng akk 24 _2 512_256_2 2745 3236 0.93|deu dsb 4_12_256_4096_2 27.49 4294 0.62
eng akk 24_2 512 512_2 27.56 33.44 0.93|deu dsb 4_12_512_512_ 2 28.78 45.54 0.63
eng akk 24_2 1024_1024_2 27.51 33.86 0.93|deu dsb 4_12_1024_1024_2 30.11 47.66 0.65
eng akk 24_4_256_2048_2 21.96 12.81 0.9|deu dsb 4_12_1024_2048_2 31.2 48.69 0.65
eng akk 24 4 512 256_2 2596 31.73 0.93|deu dsb 4_16_512_256_2 28.8 46.63 0.64
eng akk 24 4 1024 _512_2 27.35 33.82 0.92|deu dsb 4_16_1024_256_2 29.46 4791 0.65
eng akk 24_6_256_2048_2 21.88 11.6 0.87|deu dsb 4_16_1024_512_2 30.57 48.87 0.65
eng akk 24_6_512_4096_2 19.84 8.84 0.85|deu dsb 4_24 256_2048_2 12.22 24.03 0.5
eng akk 24_6_1024_256_2 27.85 35.54 0.92|deu dsb 4_24 512 _4096_2 15.34 29.54 0.53
eng akk 24_6_1024_512_2 23.13 22.75 0.9|deu dsb 6_2_256_1024_2 27.86 44.0 0.63
eng akk 24_8_256_2048 2 21.87 891 0.82|deu dsb 6_2_512_4096_2 29.87 47.84 0.64
eng akk 24_8_512_4096_2 20.25 9.48 0.86|deu dsb 6_2_2048_256_2 28.13 46.89 0.64
eng akk 24_8_1024_256_2 2693 32.41 0.92|deu dsb 6_4_512 2048 2 28.34 45.13 0.64
eng akk 24_24 256_1024_2 17.66 8.16 0.82|deu dsb 6_6_256_512_2 27.4 4287 0.62
eng akk 24_24 512 2048 2 24.81 6.16 0.74|deu dsb 6_6_512_2048_2 30.05 46.83 0.64
eng akk 2432 256_512_2 19.73 8.9 0.8|deu dsb 6_6_1024_4096_2 32.08 50.72 0.66
eng akk 32_2 256_2048_2 21.87 8.76 0.83|deu dsb 6_8_256_256_2 2748 4248 0.62
eng akk 322 512 4096_2 2238 7.18 0.86|deu dsb 6_8_512 1024 2  28.41 45.33 0.63
eng akk 32_2 1024_256_2 20.99 15.41 0.9 |deu dsb 6_8_1024_2048_2 33.03 5091 0.66
eng akk 32_12_256_1024_2 23.7 17.46 0.91|deu dsb 6_12_256_4096_2 28.67 44.24 0.63
eng akk 32_16_256_1024_2 14.03 7.99 0.77|deu dsb 6_12_512_256_2 29.46 46.16 0.64
eng akk 32_16_512_2048_2 18.57 835 0.83|deu dsb 6_12_512_512 2 28.63 45.56 0.64
eng akk 32 32 256_512_2 19.11 8.39 0.82|deu dsb 6_12_1024_1024_2 31.58 49.56 0.65
eng akk 32 32 256_4096_2 24.52 6.24 0.74|deu dsb 6_16_1024_256_2 30.51 48.94 0.65
eng akk 3232 512_1024_2 1692 8.25 0.82|deu dsb 6_16_1024_512_2 31.32 50.22 0.66
deu dsb 2_2 2048_4096_2 2896 46.8 0.65|deu dsb 6_24_256_2048_2 10.04 13.03 0.46
deu dsb 2_4_512_4096_2 2943 46.96 0.64|deu dsb 6_24 512 4096_2 871 1532 0.45
deu dsb 2_4 2048 _256_2 29.03 47.44 0.64|deu dsb 6_32_256_1024_2 10.96 24.02 0.5
deu dsb 2_6_256_1024_2  28.35 44.33 0.63|deu dsb 8_4_256_512_2 26.89 4242 0.62
deu dsb 2_8_256_512_2 28.84 4392 0.63|deu dsb 8_4_512_2048_2 29.05 46.24 0.64
deu dsb 2_8 512 2048 2 27.02 44.16 0.63|deu dsb 8_4_1024_4096_2 32.82 51.13 0.67
deu dsb 2_8_1024_4096_2 2998 47.89 0.65|deu dsb 8_6_256_256_2 28.06 43.52 0.62
deu dsb 2_12 512 1024 2 28.46 4547 0.63|deu dsb 8_6_512_1024_ 2  30.38 46.91 0.64
deu dsb 2_12_1024_2048_2 29.99 47.56 0.64|deu dsb 8_8_256_4096_2 27.89 4346 0.62
deu dsb 2_16_512_256_2  29.11 46.67 0.64|deu dsb 8_8_512_1024 2  31.31 47.63 0.65
deu dsb 2_16_1024_256_2 29.41 47.41 0.64|deu dsb 8_8_1024_2048_ 2 31.24 4936 0.65
deu dsb 2_16_1024_512_2 30.36 48.81 0.65|deu dsb 8_12_512_256_2 28.07 45.09 0.63
deu dsb 2_16_1024_1024_2 30.68 49.03 0.65|deu dsb 8_12_512 512 2  28.69 45.59 0.64
deu dsb 2_24 256_2048_2 27.0 44.05 0.63|deu dsb 8_12_1024_512_2 31.46 49.17 0.66
deu dsb 2_24 512 4096_2 29.72 473 0.65|deu dsb 8_12_1024_1024_2 31.66 50.01 0.66
deu dsb 4_2_1024_256_2 2947 46.86 0.64|deu dsb 8_16_1024_256_2 31.34 50.58 0.66
deu dsb 4.2 1024 _512_2 29.71 48.32 0.65|deu dsb 8_32_256_1024_2 11.97 26.74 0.51
deu dsb 4_2 2048 _512_ 2 27.07 4525 0.63|deu dsb 8_32_ 512 2048_2 13.85 30.58 0.53
deu dsb 4_2_2048_1024_2 2891 47.68 0.64|deu dsb 12_2 _256_512_2 27.53 42.04 0.61
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Table 15: Results for Experiment 2 (Part 3/6)

src tgt model bleu chrf comet|src tgt model bleu chrf comet
deu dsb 12_2_1024_4096_2 33.18 51.57 0.67|deu dsb 24 24 512 2048 2 9.03 3.64 04
deu dsb 12_4_256_256_2 28.59 43.07 0.62|deu dsb 24 32 256_512.2 529 332 0.38
deu dsb 12_4_256_4096_2 26.51 41.66 0.62|deu dsb 32.2.256.2048 2 11.11 6.02 0.44
deu dsb 12_4 512_1024_2 29.51 46.58 0.64 |deu dsb 32_2 512_4096_2 58 557 042
deu dsb 12_4_1024_2048_2 30.87 49.04 0.65|deu dsb 32_2_1024_256_2 1596 22.55 0.52
deu dsb 12_6_256_4096_2 26.13 40.19  0.6|deu dsb 32_12_.256_1024_2 12.44 104 0.46
deu dsb 12_6_512_1024_2 30.35 47.13  0.65|deu dsb 32_16_256_1024_2 12.44 10.01 0.46
deu dsb 12_6_1024_2048_2 30.34 47.96 0.65|deu dsb 32_.16_512_2048_ 2 10.36 9.99 0.44
deu dsb 12_8_512_512_ 2 28.85 44.68 0.63|deu dsb 32322565122 1026 3.02 0.39
deu dsb 12_8 1024 1024 _2 30.41 48.14 0.65|deu dsb 3232 256_4096_2 5.24 3.13 041
deu dsb 12_12_512_256_2  28.8 45.28 0.64 |deu dsb 3232 512_1024.2 10.79 29 04
deu dsb 12_12_1024_256_2 31.39 48.98 0.65|eng_wiki ita_wiki 2_2_1024_1024_2 12.56 44.02 0.59
deu dsb 12_12_1024_512_2 32.07 49.79 0.66|eng_wiki ita_wiki 2_2 2048 4096_2 13.56 44.71 0.61
deu dsb 12_16_256_2048_2 26.18 40.04 0.61|eng_wiki ita_wiki 2_4_512_4096_2 13.86 4495 0.61
deu dsb 12_16_512_4096_2 26.25 41.22 0.61 [eng_wiki ita_wiki 2_4 2048 256_2 12.37 43.23 0.57
deu dsb 12_32_256_1024_2 10.84 19.88 0.49|eng_wiki ita_wiki 2_6_256_1024_2 13.43 44.79 0.61
deu dsb 12_32_512 2048 2 7.47 3.775  0.4|eng_wiki ita_wiki 2_8_256_512_2 13.1 44.67 0.6
deu dsb 16_2_256_256_2 2496 3798  0.6|eng_wiki ita_wiki 2_8 512 2048 2 1293 44.14 0.59
deu dsb 16_2_256_4096_2 15.16 17.72 0.49|eng_wiki ita_wiki 2_8_1024_4096_2 13.74 4496 0.61
deu dsb 16_2_512_1024_2 17.76 24.74 0.54|eng_wiki ita_wiki 2_12_512_1024_2 12.54 4397 0.59
deu dsb 16_2_ 1024 _2048_2 18.64 282 0.55|eng_wiki ita_wiki 2_12_1024 2048 2 13.1 44.71 0.61
deu dsb 16_4 512 512 2 17.65 25.5 0.53|eng_wiki ita_wiki 2_16_512 256 2  13.04 45.0 0.59
deu dsb 16_4_1024_2048_2 17.98 27.12 0.55|eng_wiki ita_wiki 2_16_1024_256_2 13.42 45.15 0.61
deu dsb 16_6_512 512 2  18.54 26.36 0.54|eng_wiki ita_wiki 2_16_1024_512 2 13.19 44.68 0.61
deu dsb 16_6_1024_1024_2 17.22 27.33 0.54 |eng_wiki ita_wiki 2_16_1024_1024_2 13.42 44.85 0.61
deu dsb 16_8 512 _256_2  18.76 26.24 0.54|eng_wiki ita_wiki 2_24 256_2048 2 12.31 43.76 0.58
deu dsb 16_8_1024_512_2 18.9 28.61 0.55|eng_wiki ita_wiki 2_24 512 _4096_2 3.16 24.5 0.28
deu dsb 16_8_1024_1024_2 18.49 28.1 0.55|eng_wiki ita_wiki 4_2 1024 _256_2 12.73 44.67 0.59
deu dsb 16_12_256_2048_2 16.13 21.51 0.51|eng_wiki ita_wiki 4_2_1024_512_2 12.76 44.19 0.59
deu dsb 16_12_512_4096_2 17.47 252 0.53|eng_wiki ita_wiki 4_2 2048 512_2  13.04 44.83 0.59
deu dsb 16_12_1024_256_2 18.15 29.32 0.55|eng_wiki ita_wiki 4_2_2048_1024_2 1391 4542 0.62
deu dsb 16_16_256_2048_2 16.62 20.96 0.51|eng_wiki ita_wiki 4_4_256_1024_2 134 4492 0.61
deu dsb 16_16_512 4096_2 17.78 24.4 0.53|eng_wiki ita_wiki 4_6_256_512 2 13.68 45.07 0.61
deu dsb 16_24_256_1024_2 8.87 3.16  0.4|eng_wiki ita_wiki 4_6_512_2048_ 2 14.15 4572 0.62
deu dsb 16_32_256_1024_ 2 644 4.5 0.39|eng_wiki ita_wiki 4_6_1024_4096_2 14.7 46.49 0.65
deu dsb 16_32_512_2048_2 10.55 4.15 0.41|eng_wiki ita_wiki 4_8_256_256_2 12.97 44.34  0.59
deu dsb 24_2 512 256_2 1625 24.86 0.52|eng_wiki ita_wiki 4_8_1024_4096_2 14.53 4599 0.63
deu dsb 24_2 5125122 16.83 24.89 0.52|eng_wiki ita_wiki 4_12_256_4096_2 11.88 429 0.56
deu dsb 24_2_1024_1024_2 18.11 25.05 0.54|eng_wiki ita_wiki 4_12_512_512_2 13.4 45.14 0.6
deu dsb 24_4_256_2048_2 12.05 10.72 0.46|eng_wiki ita_wiki 4_12_1024_1024_2 13.84 4525 0.62
deu dsb 24_4 512 _256_ 17.07 24.17 0.53|eng_wiki ita_wiki 4_12_1024_2048_2 13.91 4554 0.62
deu dsb 24_4_1024_512_2 17.84 26.84 0.54|eng_wiki ita_wiki 4_16_512_256_2 13.58 4521 0.62
deu dsb 24_6_256_2048 2 13.07 12.1 0.47|eng_wiki ita_wiki 4_16_1024_256_2 1392 458 0.62
deu dsb 24_6_512 4096_2 1196 15.7 0.47|eng_wiki ita_wiki 4_16_1024_512 2 14.01 4591 0.62
deu dsb 24_6_1024_256_2 18.5 24.87 0.54|eng_wiki ita_wiki 4_24 256_2048 2 3.22 26.13 0.28
deu dsb 24_6_1024 512 2 18.55 26.37 0.55|eng_wiki ita_wiki 4_24 512 4096_2 2.35 2259 0.26
deu dsb 24_8 256_2048 2 12.73 12.56 0.46|eng_wiki ita_wiki 6_2_256_1024_2 13.81 4535 0.61
deu dsb 24_8 512 4096_2 139 1693  0.5|eng_wiki ita_wiki 6_2 512 4096_2 14.02 4548 0.62
deu dsb 24_8_1024_256_2 17.26 2691 0.53|eng_wiki ita_wiki 6_2_ 2048 256_2 14.07 459 0.62
deu dsb 24 24 _256_1024_2 7.41 4.06 0.41|eng_wiki ita_wiki 6_4_512_2048_2 14.59 46.28 0.63
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Table 16: Results for Experiment 2 (Part 4/6)

src tgt model bleu chrf comet|src tgt model bleu chrf comet
eng_wiki ita_wiki 6_6_256_512_2 13.51 45.14 0.61|eng_wiki ita_wiki 16_2_512_1024_2 3.76 25.12 0.35
eng_wiki ita_wiki 6_6_512_2048_2  14.27 4557 0.61 |eng_wiki ita_wiki 16_2_1024_2048_2 4.01 26.05 0.35
eng_wiki ita_wiki 6_6_1024_4096_2 15.27 46.69 0.65|eng_wiki ita_wiki 16_4_512_512_2 4.03 2647 0.37
eng_wiki ita_wiki 6_8_256_256_2 13.61 45.16 0.61 |eng_wiki ita_wiki 16_4_1024_2048_2 3.89 26.76 0.38
eng_wiki ita_wiki 6_8_512_1024_2  13.73 45.33  0.61 [eng_wiki ita_wiki 16_6_512_512_2 4.05 25.89 0.38
eng_wiki ita_wiki 6_8_1024 2048 2 144 46.14 0.65|eng_wiki ita_wiki 16_6_1024_1024_2 4.02 27.6 0.38
eng_wiki ita_wiki 6_12_256_4096_2 12.2 4339 0.56|eng_wiki ita_wiki 16_8 512_256_2 3.96 27.52 0.38
eng_wiki ita_wiki 6_12_512 256_2  13.54 45.62 0.61 |eng_wiki ita_wiki 16_8_1024_512 2  4.22 2834 0.38
eng_wiki ita_wiki 6_12_512 512 2 1339 45.05 0.61|eng_wiki ita_wiki 16_8 1024 1024 _2 4.0 2829 0.38
eng_wiki ita_wiki 6_12_1024_1024_2 14.61 464 0.64|eng_wiki ita_wiki 16_12_256_2048_ 2 3.48 23.67 0.37
eng_wiki ita_wiki 6_16_1024_256_2 14.4 46.27 0.63|eng_wiki ita_wiki 16_12_512 4096_2 3.63 25.0 0.38
eng_wiki ita_wiki 6_16_1024 512 2 14.41 46.48 0.64|eng_wiki ita_wiki 16_12_1024_256_2 4.16 28.04 0.39
eng_wiki ita_wiki 6_24_256_2048_2 3.03 25.75 0.28|eng_wiki ita_wiki 16_16_256_2048_2 3.47 23.38 0.37
eng_wiki ita_wiki 6_24 512 4096_2 225 20.31 0.25|eng_wiki ita_wiki 16_16_512 4096_2 3.69 249 0.38
eng_wiki ita_wiki 6_32_256_1024_2 2.59 23.99 0.27|eng_wiki ita_wiki 16_24 256 1024 2 141 547 0.22
eng_wiki ita_wiki 8_4_256_512_2 13.44 45.07 0.6 |eng_wiki ita_wiki 16_32_256_1024_ 2 133 299 0.21
eng_wiki ita_wiki 8_4_512_2048_2  14.38 46.27 0.63|eng_wiki ita_wiki 16_32_512 2048 2 1.38 6.65 0.22
eng_wiki ita_wiki 8_4_1024_4096_2 15.74 47.32 0.67 |eng_wiki ita_wiki 24_2_512_256_2 3.79 24.36  0.35
eng_wiki ita_wiki 8_6_256_256_2 13.37 44.82 0.6 |eng_wiki ita_wiki 24_2 512 512 2 3.65 235 034
eng_wiki ita_wiki 8_6_512_1024_2 13.99 45.65 0.62|eng_wiki ita_wiki 24_2_1024_1024_2 3.69 25.0 0.37
eng_wiki ita_wiki 8_8_256_4096_2  12.89 44.41 0.58|eng_wiki ita_wiki 24_4_256_2048_2  3.04 21.33 0.36
eng_wiki ita_wiki 8_8_512_1024_2 13.97 4577 0.62|eng_wiki ita_wiki 24_4_512_256_2 3.64 25.14 0.37
eng_wiki ita_wiki 8_8_1024_2048_2 15.01 46.59 0.65|eng_wiki ita_wiki 24_4_1024_512 2  3.73 2499 0.36
eng_wiki ita_wiki 8_12_512_256_2 13.7 45.62 0.61 |eng_wiki ita_wiki 24_6_256_2048_2 2.86 20.14 0.35
eng_wiki ita_wiki 8_12_512 512 2  13.59 45.17 0.61|eng_wiki ita_wiki 24_6_512_4096_2 2.85 20.86 0.38
eng_wiki ita_wiki 8_12_1024_512_2 14.92 46.66 0.65|eng_wiki ita_wiki 24_6_1024_256_2 3.77 26.25 (.38
eng_wiki ita_wiki 8_12_1024_1024_2 15.06 46.97 0.65|eng_wiki ita_wiki 24_6_1024_512 2  3.59 26.53 0.38
eng_wiki ita_wiki 8_16_1024 _256_2 14.88 47.08 0.65|eng_wiki ita_wiki 24_8 256 _2048 2  2.93 20.88 0.36
eng_wiki ita_wiki 8_32_256_1024_2 3.23 2648 0.28|eng_wiki ita_wiki 24_8 512 4096_2 293 2232 0.38
eng_wiki ita_wiki 8 32 512 2048 2 3.68 28.03 0.29|eng_wiki ita_wiki 24 8 1024 256_2  3.57 26.02 0.38
eng_wiki ita_wiki 12_2 256_512 2 13.02 44.15 0.59|eng_wiki ita_wiki 24_24 256_1024_2 1.81 293 0.22
eng_wiki ita_wiki 12_2_1024_4096_2 16.12 47.89 0.66 |eng_wiki ita_wiki 24_24 512 2048_2 1.38 2.46 0.22
eng_wiki ita_wiki 12_4 256_256_2  13.52 4523 0.61 |eng_wiki ita_wiki 24 32 256 _512. 2 148 7.86 0.23
eng_wiki ita_wiki 12_4_256_4096_2 13.37 4422 0.59|eng_wiki ita_wiki 32_2_256_2048_ 2 2.56 18.81 0.33
eng_wiki ita_wiki 12_4 512 1024 2 13.87 45.61 0.62|eng_wiki ita_wiki 32_2 512 4096_2 2.24 17.43 0.33
eng_wiki ita_wiki 12_4 1024 2048 2 15.61 47.63 0.66|eng_wiki ita_wiki 32_2 1024 256 _2 2.76 1858 0.34
eng_wiki ita_wiki 12_6_256_4096_2 12.64 43.68 0.58|eng_wiki ita_wiki 32_12_256_1024_2 2.68 20.44 0.34
eng_wiki ita_wiki 12_6_512_1024_2 14.0 45.74 0.61 |eng_wiki ita_wiki 32_16_256_1024_2 2.67 20.64 0.35
eng_wiki ita_wiki 12_6_1024_2048_2 15.34 47.16 0.66 |eng_wiki ita_wiki 32_16_512_2048_2 2.46 19.93 0.36
eng_wiki ita_wiki 12_8_512 512 2 14.28 46.03 0.62|eng_wiki ita_wiki 32_32_256_512_2 1.66 3.55 0.22
eng_wiki ita_wiki 12_8_1024_1024_2 14.57 46.41 0.63|eng_wiki ita_wiki 32_32_256_4096_2 1.41 1.6 0.2
eng_wiki ita_wiki 12_12_512 256_2 13.37 4532  0.6|eng_wiki ita_wiki 32_32_512_1024_ 2 1.55 237 0.21
eng_wiki ita_wiki 12_12_1024_256_2 15.24 47.12 0.64|eng mni 2.2.1024_1024_2  20.5 47.35 0.7
eng_wiki ita_wiki 12_12_1024_512_2 14.67 46.45 0.64|eng mni 2.2 2048 4096_2 2132 4797 0.7
eng_wiki ita_wiki 12_16_256_2048_2 11.27 42.02 0.54|eng mni 2_4.512_4096_2 20.97 47.45 0.7
eng_wiki ita_wiki 12_16_512_4096_2 11.97 42.82 0.56|eng mni 2.4 2048 256_2 2157 48.18 0.7
eng_wiki ita_wiki 12_32_256_1024_2 1.29 3.86 0.21|eng mni 2 62561024 2 19.46 45.8 0.7
eng_wiki ita_wiki 12_32 512 2048 _2 3.77 27.69 0.29|eng mni 28256512 2 18.62 4596 0.7
eng_wiki ita_wiki 16_2 256 256_2 11.92 42.5 0.56|eng mni 28512 2048 2 20.65 4748 0.7
eng_wiki ita_wiki 16_2_256_4096_2 3.27 21.27 0.35|eng mni 2_8.1024_4096_2  21.7 48.53 0.71
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Table 17: Results for Experiment 2 (Part 5/6)

src tgt model bleu chrf comet|src tgt model bleu chrf comet
eng mni 2_12_512_1024_2 20.96 48.15 0.71|eng mni 8§_6_512_1024_2 20.32 47.29 0.71
eng mni 2_12_1024_2048 2 21.94 49.38 0.71|eng mni 8_8_256_4096_2 18.93 41.98 0.68
eng mni 2_16_512_256_2 20.96 47.99 0.71|eng mni 8_8_512_1024_2 19.81 46.04 0.7
eng mni 2_16_1024_256_2 21.51 49.88 0.71 |eng mni 8_8_1024_2048_2 21.33 48.04 0.71
eng mni 2_16_1024_512_2 21.52 497 0.71|eng mni 8_12_512_256_2 19.55 46.84 0.71
eng mni 2_16_1024_1024_2 21.68 48.97 0.71|eng mni 8_12_512_512_2  20.57 4732 0.71
eng mni 2_24_256_2048_2 18.53 45.07 0.69|eng mni 8_12_1024_512_2 21.6 48.25 0.71
eng mni 2_24_512_4096_2 21.14 48.14 0.7|eng mni 8§_12_1024_1024_2 21.16 47.83 0.71
eng mni 4_2 1024 _256_2 20.08 46.9 0.7|eng mni 8_16_1024_256_2 20.48 47.36 0.71
eng mni 4_2 1024_512_2 20.46 47.53 0.7|eng mni 8_32_256_1024_2 471 1875 0.45
eng mni 4_2 2048 _512_2 1991 46.03 0.69|eng mni 8_32_512 2048 2 8.73 29.97 0.54
eng mni 4_2 2048_1024_2 20.23 46.64 0.69|eng mni 12_2 256_512_2 14.79 39.85 0.68
eng mni 4_4 256_1024_ 2 17.38 44.5 0.69|eng mni 12_2_1024_4096_2 19.94 45.84 0.7
eng mni 4_6_256_512_2 14.69 41.51 0.68|eng mni 12_4_256_256_2 15.01 39.36  0.68
eng mni 4_6_512_2048_2 20.61 47.51 0.7|eng mni 12_4_256_4096_2 17.39 38.81 0.68
eng mni 4_6_1024_4096_2 2228 49.07 0.71|eng mni 12_4 512_1024 2  19.2 44.07 0.7
eng mni 4_8_256_256_2 17.69 4448 0.69 |eng mni 12_4 1024_2048_2 19.98 44.33 0.69
eng mni 4_8_1024_4096_2 22.02 49.02 0.71|eng mni 12_6_256_4096_2 17.57 38.62 0.68
eng mni 4_12_256_4096_2 19.78 45.44 0.7|eng mni 12_6_512_1024_2 19.01 43.38 0.69
eng mni 4_12_512_512_2 20.77 47.58 0.71|eng mni 12_6_1024_2048_2 19.39 44.1 0.69
eng mni 4_12_1024_1024_2 21.61 49.21 0.71|eng mni 12_8_512_512_2 18.57 43.11 0.69
eng mni 4_12_1024_2048_2 21.86 48.87 0.71|eng mni 12_8 1024_1024_2 19.74 4436 0.69
eng mni 4_16_512_256_2 20.2 47.73 0.71|eng mni 12_12_512_256_2 18.94 43.92 0.7
eng mni 4_16_1024_256_2 21.86 48.67 0.71|eng mni 12_12_1024_256_2 20.07 44.85 0.7
eng mni 4_16_1024_512_2 21.74 4941 0.71|eng mni 12_12_1024_512_2 19.2 450 0.7
eng mni 4_24_256_2048_2 19.64 45.94 0.7|eng mni 12_16_256_2048_2 17.19 39.29 0.68
eng mni 4_24_512_4096_2 4.15 16.81 0.42|eng mni 12_16_512_4096_2 19.34 43.19 0.69
eng mni 6_2 256 1024 2 16.71 4344 0.69|eng mni 12_32_256_1024_2 3.96 16.01 042
eng mni 6_2 512 4096_2 20.56 47.24 0.7|eng mni 12_32_512_2048_2 3.51 1637 0.41
eng mni 6_2 2048 _256_2 19.46 4547 0.69|eng mni 16_2_256_256_2 12.51 36.0 0.66
eng mni 6_4 512 2048 2 20.61 47.66 0.71|eng mni 16_2_256_4096_2 15.8 36.51 0.66
eng mni 6_6_256_512_2 17.38 4422 0.69|eng mni 16_2_512_1024_2 17.12 41.31 0.69
eng mni 6_6_512_2048_2 20.14 46.7 0.7|eng mni 16_2_1024_2048_2 19.83 43.59 0.69
eng mni 6_6_1024_4096_2 21.54 48.65 0.71|eng mni 16_4_512_512_2 18.0 41.83 0.69
eng mni 6_8_256_256_2 17.31 44.25 0.7|eng mni 16_4_1024_2048_2 18.93 43.39 (.68
eng mni 6_8 512 1024 2 20.77 48.13 0.71|eng mni 16_6_512_512.2 17.97 42.24 0.69
eng mni 6_8_1024_2048_2 21.45 47.59 0.7|eng mni 16_6_1024_1024_2 18.44 4231 0.68
eng mni 6_12_256_4096_2 19.68 45.01 0.7|eng mni 16_8_512_256_2 176 414 0.69
eng mni 6_12_512_256_2 20.82 48.02 0.71|eng mni 16_8_1024_512_2 19.05 42.87 0.68
eng mni 6_12_512 512 2 20.82 483 0.71|eng mni 16_8_1024_1024_2 19.36 42.82 0.68
eng mni 6_12_1024_1024 2 21.23 49.09 0.71|eng mni 16_12_256_2048_2 16.53 38.3 0.67
eng mni 6_16_1024_256_2 21.32 48,92 0.71|eng mni 16_12_512_4096_2 18.58 41.19 0.68
eng mni 6_16_1024_512_2 21.22 48.73 0.71|eng mni 16_12_1024_256_2 19.05 43.73 0.69
eng mni 6_24_256_2048_2 19.62 46.48 0.7|eng mni 16_16_256_2048_2 17.28 38.61 0.67
eng mni 6_24_512_4096_2 4.63 17.12 0.43|eng mni 16_16_512_4096_2 19.24 41.86 0.68
eng mni 6_32_256_1024_2 2.69 1142 0.37|eng mni 16_24_256_1024_2 2.55 7.92 0.39
eng mni 8_4_256_512_2 15.21 41.64 0.68|eng mni 16_32_256_1024_2 3.52 14.28 0.4
eng mni 8_4_512_2048_2 20.79 47.27 0.71|eng mni 16_32_512_2048_2 2.8 12.5 0.4
eng mni 8_4 1024_4096_2 21.31 47.73 0.7|eng mni 24_2_512_256_2 15.61 4047 0.68
eng mni 8_6_256_256_2 16.37 4296 0.69|eng mni 24_2_512_512_2 16.97 40.52 0.68
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Table 18: Results for Experiment 2 (Part 6/6)

src tgt model bleu chrf comet
eng mni 24_2_1024_1024_2 18.43 42.35 0.68
eng mni 24_4_256_2048_2 14.6 34.64 0.66
eng mni 24_4_512_256_2 15.55 38.65 0.67
eng mni 24_4_1024_512_2 18.81 42.09 0.68
eng mni 24_6_256_2048_2 15.31 3431 0.66
eng mni 24_6_512_4096_2 15.34 33.19 0.65
eng mni 24_6_1024_256_2 18.17 41.86 0.68
eng mni 24_6_1024_512_2 18.12 41.28 0.68
eng mni 24_8_256_2048_ 2 15.26 34.28 0.66
eng mni 24_8_512_4096_2 14.54 32.52 0.65
eng mni 24_8_1024_256_2 17.72 40.74 0.67
eng mni 24_24_256_1024_2 3.18 12.24 0.4
eng mni 24_24 512 2048 2 2.8 12.81 04
eng mni 24_32_256_512_2 2.7 11.38 0.38
eng mni 32_2_256_2048 2 7.27 24.19 0.61
eng mni 32_2 512_4096_2 2.29 13.55 0.51
eng mni 32_2_1024_256_2 1745 39.5 0.67
eng mni 32_12_256_1024_2 12.51 29.79 0.6
eng mni 32_16_256_1024_2 15.71 33.21 0.6
eng mni 32_16_512_2048_2 13.77 31.34 0.6
eng mni 32_32_256_512_2 2.4 10.86 0.38
eng mni 32_32_256_4096_2 1.27 8.05 0.37
eng mni 32_32_512_1024_.2 1.81 7.73 0.38
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