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Abstract

Speech technology remains out of reach for
most of the 2,300+ languages in Africa. We
present the first systematic assessment of large-
scale synthetic voice corpora for African ASR.
We apply a three-step process: LLM-driven text
creation, TTS voice synthesis, and ASR fine-
tuning. Eight out of ten languages for which we
create synthetic text achieved readability scores
above 5 out of 7. We evaluated ASR improve-
ment for three (Hausa, Dholuo, Chichewa) and
created more than 2,500 hours of synthetic
voice data at below 1% of the cost of real data.
W2v-BERT 2.0 speech encoder fine-tuned on
250h real and 250h synthetic data in Hausa
matched a 500h real-data-only baseline, while
579h real and 450h to 993h synthetic data cre-
ated the best performance. We also present
gender-disaggregated ASR performance evalu-
ation. For very low-resource languages, gains
varied: Chichewa WER improved by →6.5%
with a 1:2 real-to-synthetic ratio; a 1:1 ratio
for Dholuo showed similar improvements on
some evaluation data, but not on others. Inves-
tigating intercoder reliability, ASR errors and
evaluation datasets revealed the need for more
robust reviewer protocols and more accurate
evaluation data. All data and models are pub-
licly released to invite further work to improve
synthetic data for African languages.

1 Introduction

Africa is home to over 2,300 languages, the vast ma-
jority of which have neither functional automatic
speech recognition to transcribe speech nor speech
synthesis to generate it (Orife et al., 2020). Yet
speech technology holds great promise in provid-
ing a more inclusive digital experience, especially
for vulnerable groups.

Conventional approaches to creating speech tech-
nology rely on human data collection in as-yet un-
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supported languages, incurring substantial costs
estimated at more than US$100–150 per hour, even
in the best case1. As most speech recognition mod-
els need several hundred hours of training data to
achieve performance sufficient for practical appli-
cation, with current investments in AI for develop-
ment, human data collection is prohibitively costly
to cover the many languages that remain unsup-
ported. We support further investment in African
language technology, but even if it were to become
available, those investments have opportunity costs,
diverting funds that could otherwise be spent on
other interventions.

Therefore, we are investigating synthetic voice
data as a complementary approach to create and
improve automatic speech recognition (ASR) in
African languages. The principle hypothesis moti-
vating our work is that we can leverage Large Lan-
guage Models (LLMs) and Text-to-Speech (TTS)
models to create synthetic voice data of sufficient
quality to improve automatic speech recognition
models. Our work shows that this synthetic voice
data can be created for less than 1% of the cost of
collecting real human data2, while holding poten-
tial to complement this human data in creating and
improving ASR models for African languages.

2 Synthetic Data: Risks and Rewards

Synthetic data—machine-generated text or
speech—has become a well-researched topic in
major languages like English in recent years (for
an overview, see Liu et al. (2024)). Much of this
research is motivated by concerns that all readily

1Based on internal estimates. The authors of Nai-
jaVoices report that the ‘true cost’ of the whole dataset is
more than US$600,000. Assuming an equal split across
the three languages in the dataset, this would imply a
true cost per hour of Hausa data of US$ →345.42, see
https://naijavoices.com/membership.

2This is excluding fixed costs in both cases, like setting up
data collection platforms for real data or TTS model develop-
ment.
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available data for the development of AI models
has been leveraged (Villalobos et al., 2024), and
therefore further advancements spurred by data
scaling will require new approaches to create
data. Other concerns like privacy (Abay et al.,
2018) or costs (Gilardi et al., 2023) also prompted
research on synthetic data. Additionally, there is
a growing body of research into synthetic data in
low-resource languages which, save for several
notable exceptions, so far only offers limited
evidence for African languages.

For automatic speech recognition, Huang et al.
(2023) have shown that for English, synthetic data
generation using large-scale pre-trained neural net-
works in combination with TTS models, a process
similar to ours, can reduce word error rate (WER)
by between 9 and 15% (see also Moslem (2024)
and Hu et al. (2021)). Gokay and Yalcin (2019)
report reductions of around 15% in WER for Turk-
ish, Yang et al. (2024) between 27.45 and 45.85%
for Chinese dialects and Zevallos (2022) 8.73%
for Quechua. Joshi et al. (2025) find that adding
synthetic data in Hindi improves Bhojpuri ASR
performance by 4.7 points WER on average. Wang
et al. (2020) also demonstrate that an approximate
50/50 combination of human and synthetic data
performed comparably to the same amount of hu-
man data alone. In a very successful application,
Xu et al. (2020) achieve 17% WER for Lithuanian
using only 1.3 hours of labeled and 12 hours of
unlabeled data.3

As this research shows, there is a body of
research on synthetic data for low-resource lan-
guages, but African languages have been rarely
covered. There are notable exceptions for synthetic
text (Abdulmumin et al., 2022; Kreutzer et al.,
2022), linguistically informed data augmentation
and synthetic data frameworks (Ajuzieogu, 2023)
and synthetic text for language and topic classifica-
tion models (Quinjica and Adelani, 2024; Adelani
et al., 2024).

While previous research shows the potential of
synthetic data to complement human data in the
data-scarce situation that we face in many African
languages, the research also highlights limitations

3We recommend not to compare WER between languages
because of substantial morphological differences, i.e. depend-
ing on the language a single word might carry different se-
mantic meaning while it is always counted individually in
the WER. Furthermore, evaluation datasets such as FLORES
and, by extension, FLEURS have known shortcomings which
differ by language, see Abdulmumin et al. (2024) for an inves-
tigation for African languages.

and risks. Most limitations stem from the gap be-
tween real and synthetic data (Hu et al., 2021), as
well as from synthetic data inheriting and poten-
tially amplifying the same biases as the models
used to create it (Wyllie et al., 2024; Wang et al.,
2025). Certain tone and noise that are typically
present in real-world data are often missing from
synthetic data (Xue et al., 2022; Hu et al., 2021).
Many commonly used LLMs have been shown to
exhibit a bias towards Western, industrialized cul-
tural norms and a lack of cultural understanding
in other contexts (Rao et al. (2023), Magdy et al.
(2025) for Arabic, Pranida et al. (2025) and Putri
et al. (2024) for Sundanese and Indonesian). Creat-
ing synthetic text will likely aggravate this missing
representation, especially for semantically mean-
ingful tasks such as machine translation.

3 Methodology

Our process of creating and evaluating synthetic
voice data has three key steps:

1. Generate and evaluate synthetic text using an
LLM

2. Generate and evaluate synthetic voice data
with a Text-to-Speech (TTS) model based on
the synthetic text

3. Fine-tune an automatic speech recognition
(ASR) model with different ratios of human
and synthetic voice data and evaluate perfor-
mance differences

We describe our methods and details for those steps
separately:

3.1 Step 1: Synthetic Text Generation and
Evaluation

We created and evaluated synthetic text for the fol-
lowing 10 African languages: Hausa, Northern So-
mali, Yoruba, Wolof, Dholuo, Kanuri, Chichewa,
Twi, Kinande, and Bambara. Additionally, we in-
cluded small-scale generations and evaluations for
two further languages, Yemba and Ewondo, but
with only very poor performance. Our language
selection criteria aimed to select languages that
represent African language diversity through the
representation of different regions, language fami-
lies, and speaker populations (see Appendix A).
Beyond linguistic diversity, we also considered
practical factors, such as the capacity of the Trans-
lators without Borders (TWB) linguist community
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for text evaluation and the availability of key pub-
licly available datasets (e.g., open.bible, FLEURS,
Common Voice) necessary for subsequent steps.

For the synthetic text generation, the system
prompt (see Appendix B) instructs the LLM to gen-
erate simple short sentences and questions directly
in the target language, as well as to return English
translations for further evaluation of language un-
derstanding. We incorporated two-shot prompting
for contextual guidance. The topic of synthetic text
generation can be configured in the prompt. Our ex-
periments sampled equally from 34 distinct themes
with 17 themes covering the UN Sustainable De-
velopment Goals and 17 themes covering the most
common topics covered in the FLORES/FLEURS
dataset extracted through language topic modelling.
We primarily evaluated LLMs provided by OpenAI
and Anthropic, especially GPT-4o, GPT-4.5, o1,
Claude 3.5 and Claude 3.7.

Automated evaluation of the synthetic text is not
feasible for low-resource languages and we relied
on human evaluation. For each language we gener-
ated 1,200 randomly shuffled sentences over two
rounds for a few different configurations (usually
three LLMs).4 Linguists on the Translators without
Borders (TWB) platform were sourced according
to their native language and experience delivering
linguistic tasks. TWB linguist reviewers rate each
sentence on five key metrics intended to capture
the quality of the sentence in the target language
and understanding: 1) Readability and Naturalness
[1–7], 2) Grammatical Correctness (Yes/No), 3) All
Words Real (Yes/No), 4) Notable Error in Trans-
lation (Yes/No), and 5) Adequacy and Accuracy
of Translation [1–7]. Based on the human evalua-
tion, we selected the configuration (LLM) with the
highest mean Readability and Naturalness.

For the subset of languages selected for subse-
quent synthetic voice generation and ASR fine-
tuning, we generated a large corpora of between
650,000 and 674,000 sentences with the best per-
forming LLM (see Appendix C for details). The
text generation process was identical to that used
for text evaluation, except that we utilized a batch
processing API for reduced cost.

4For most experiments, we opted for a two-round sen-
tence generation and evaluation approach, in which we first
compared the readability and naturalness of 600 sentences
generated by 3-4 LLMs and subsequently generated another
600 sentences using the best model to analyze the impact of
theme. After discovering that our experiments were frequently
not yielding significant differences between themes, we opted
for more equal sampling among different LLMs.

3.2 Step 2: Synthetic Voice Data Generation
and Evaluation

Based on the results of the evaluation of the syn-
thetic text generation in Step 1, we selected three
languages for the creation and evaluation of syn-
thetic voice data: Hausa, Dholuo and Chichewa.

As necessary conditions, we required languages
where at least one LLM was capable of generating
synthetic text of sufficient quality. Due to limita-
tions in time and resources, we also required that at
least two of the three languages have available data
for fine-tuning or training TTS models, as well as
available ASR evaluation data.

Beyond those necessary conditions, our goal was
to maximize the variance of the speaker popula-
tions, available ASR training data, language fami-
lies, and geography.

We used the open.bible corpus (Global Bible Ini-
tiative, n.d.) of Bible recordings to fine-tune and
evaluate different TTS models. We excluded this
data from our ASR training data for this reason.
The open.bible corpus only contains recordings of
Bible recitations by male speakers, and given the
training data which we used, our synthetic voice
data is also exclusively male. This raises the risk
that the resulting ASR models show gendered per-
formance, e.g. that they perform worse for female
speakers than for male speakers. To investigate
this risk, we also evaluated gender bias in the ASR
performance where the evaluation data allows this.

For each language, we fine-tuned both the XTTS-
v2 model (Casanova et al., 2024) and VITS or one
of its variants, specifically YourTTS (Casanova
et al., 2023), using the Coqui TTS framework, and
building on the BibleTTS project (Meyer et al.,
2022). XTTS-v2 does not support any African
languages, but has been fine-tuned for Wolof.5

For fine-tuning YourTTS, we used the checkpoint
trained on the CML-TTS dataset (Oliveira et al.,
2023) that supports eight languages. We used the
original BibleTTS model for Hausa, but also re-
trained the model based on a revised processing of
the open.bible corpus, a different checkpoint and
different hyperparameters (“Modified Bible TTS”).
For Hausa and Chichewa, we also evaluated the
available MMS TTS models (Pratap et al., 2023)6.

Transformer-based TTS models like XTTS have
5https://huggingface.co/galsenai/xTTS

-v2-wolof
6The MMS TTS model language coverage is available at

https://dl.fbaipublicfiles.com/mms/misc/
language_coverage_mms.html

https://huggingface.co/galsenai/xTTS-v2-wolof
https://huggingface.co/galsenai/xTTS-v2-wolof
https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html
https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html
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the problem of hallucinating, especially at the
end of audio files. To remedy this issue, we re-
transcribed the synthetic audio files with an exist-
ing ASR model and then calculated the ratio of the
length of the transcript to the length of the original
synthetic text. We only generate synthetic data with
XTTS for Hausa and used the MMS-1B (Pratap
et al., 2023) for this analysis. This method does not
rely on the accuracy of the ASR model used but as-
sumes a basic performance to ensure that the length
of the re-transcription is meaningful.7 We finally
removed outliers of this ratio of less than 0.85 and
more than 1.06 which indicate that the TTS model
had hallucinated additional words not present in
the original synthetic text or omitted words that
were. We picked the cut-off points by manually
expecting →100 samples. This process removed
→26.9% of the synthetic audio created by XTTS.8

After training a total of ten TTS models across
all three languages, we evaluated 337 synthetic au-
dio samples per model with the help of two native
speakers from the TWB Community per language.
As commonly applied, our evaluation included in-
telligibility and naturalness on five-point scales.

We then selected YourTTS, the best-performing
TTS model across all three languages, to create syn-
thetic voice data corpora of 993h for Hausa, 775h
for Dholuo and 550h for Chichewa (see Appendix
C for details). For Hausa, we also created 450h
of synthetic data with XTTS, the only transformer-
based model. We make these synthetic data cor-
pora openly available on CLEAR Global’s Hugging
Face page9.10

To improve the robustness of our models to noisy
acoustic environments, we augmented the synthetic

7In most cases in which this method would be applied, a
minimum of real data to train a basic but not highly capable
ASR model should be available (e.g. for the complementary
human data in later ASR training or from the training data of
the TTS model). In addition, models like MMS cover a large
number of languages albeit often with only poor performance
which should still be sufficient for this approach.

8After filtering the synthetic voice data, the dataset created
with XTTS consists of a substantially larger share of questions
(→40%), indicating that XTTS hallucinates less for questions
than for normal sentences. To avoid bias in our synthetic voice
training data, we sampled a subset of these questions to create
a dataset with the original share of questions (25%), resulting
in a smaller dataset of 450 hours and removal of →42.7% of
the original data.

9https://huggingface.co/CLEAR-Global
10We also created a large Chichewa text corpus with Claude

3.7 as part of our investigation of duplicates. We created the
synthetic voice data based on the Claude 3.5 corpus which we
had evaluated before but also make the Claude 3.7 text corpus
available on CLEAR Global’s HuggingFace page.

data by adding noise. We mixed the clean synthetic
data with noise samples drawn from the Room
Impulse Response and Noise Database11. For each
utterance, we randomly sampled the signal-to-noise
ratio (SNR) from a normal distribution with mean
50dB and standard deviation 15dB. Similarly, we
randomized the audio amplitude using a normal
distribution (µ = ↑20 dB, ω = 5dB).

3.3 Step 3: ASR Model Fine-tuning and
Evaluation

Given the substantial differences in available ASR
training data between the three languages for which
we created synthetic voice data, we conducted our
ASR evaluation based on two scenarios: a medium
data scenario with Hausa as the representative lan-
guage and a low data scenario with Dholuo and
Chichewa as the representative languages.

3.3.1 Medium Data Scenario: Hausa
Through the NaijaVoices project (Emezue et al.,
2025), we had over 500 hours of human Hausa
voice data available. Only a few other African
languages like Igbo and Yoruba (NaijaVoices)
or Swahili, Kinyarwanda, Kabyle, and Luganda
(Common Voice) have available datasets of compa-
rable size. This led us to investigate whether syn-
thetic voice data can substitute human data at this
training corpus size, therefore allowing languages
with smaller corpora to achieve similar ASR per-
formance. In this scenario, we keep the total size

of the training data corpus constant, but vary the

ratio between real and synthetic data.
As a result, we investigated ASR performance

for training with 500h of real data, a 1:1 ratio of
250h of real and 250h of synthetic data, and a 1:4
ratio of 100h of real data and 400h of synthetic data.
With 100h and 250h of real data, this also covers
scenarios that, while not currently the case, are
realistically achievable for many African languages.
We trained models for all data ratios with synthetic
data created with YourTTS and XTTS separately.

We also needed to rule out the case that ASR
models might saturate at a given amount of hu-
man training data of one single source, meaning
that comparable performance at different ratios be-
tween real and synthetic stems from the model
being saturated (e.g. showing no or only very low
marginal improvements beyond 100h of real data).
We therefore also trained the same models on only
100h and 250h of real data.

11https://www.openslr.org/28/

https://huggingface.co/CLEAR-Global
https://www.openslr.org/28/
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Finally, we trained ASR models on all data avail-
able to us: one model on 579h of real human data
mixed with 993h of synthetic data created with
YourTTS and one model with 579h of real data
mixed with 450h of synthetic data created with
XTTS.

We evaluated the ASR performance on our Nai-
jaVoices test set split, the FLEURS test set (Con-
neau et al., 2022), and the Common Voice test set
(Mozilla Foundation, 2024a). We conducted the
analysis of gender bias in ASR performance on the
NaijaVoices and Common Voice test sets.12

Since the NaijaVoices dataset did not provide
splits at the time, we performed a split to generate
train, validation, and test sets that contain 579.1,
3.6, and 3.4 hours of data, respectively. We ensured
the per-split sets of speakers and transcriptions are
mutually exclusive.13

3.3.2 Low Data Scenario: Dholuo and
Chichewa

In contrast to Hausa, we only had 19 and 34 hours
of usable human data available for Dholuo and
Chichewa, respectively.14 Although this is gener-
ally insufficient data to train general purpose ASR
ready for practical application, this is representa-
tive of many African languages. As the human
data available is itself insufficient, we kept the to-
tal amount of human data constant in this scenario
and added increasing amounts of synthetic data to

the training corpus. The total size of the training
corpus consequently increases in this scenario.

For both languages, we trained ASR models on
just the human data available, and 1:1, 1:2, and 1:4
ratios of human and synthetic data. Given some
indications of improvement for Chichewa, we also
trained a 1:9 ratio of 34h of human and 307h of
synthetic data.

We evaluated the Dholuo ASR models on the
FLEURS test set (Conneau et al., 2022) and
the Common Voice test set (Mozilla Foundation,
2024b), and the Chichewa ASR models on the
FLEURS test set and the Zambezi Voice test set
(Sikasote et al., 2023).

12The Hausa FLEUR test set only includes a single male
speaker.

13Splits are now available on their Huggingface website
https://huggingface.co/datasets/naijavoi
ces/naijavoices-dataset/tree/main/split

14We use 10 hours from Common Voice (Mozilla Founda-
tion, 2025; Ardila et al., 2020) and 9 hours from the FLEURS
train set (Conneau et al., 2022) for Dholuo. We use 10
hours from the FLEURS train set and 24 hours from Zam-
bezi Voice (Sikasote et al., 2023) for Chichewa.

3.3.3 ASR Model Selection and Evaluation
For step 3, we fine-tuned the W2v-BERT 2.0
speech encoder (Communication et al., 2023), for
which our results indicated continued improvement
for fine-tuning with 100h and 250h of real data.15

This model was pre-trained on 4.5M hours of un-
labelled audio data covering more than 143 lan-
guages. The pre-training crucially includes Hausa
but not Dholuo and Chichewa. Details on our hy-
perparameters can be found in Appendix O.

We estimated the confidence intervals for WER
and CER by performing bootstrap resampling on
each evaluation set (Raschka, 2020; Efron, 1992).
For each of 1,000 iterations16, we randomly drew
m samples with replacement—where m equals the
size of the original test set—and computed WER
and CER of each resampled set. We then calculated
the mean and standard deviation of WER and CER
across all bootstrapped samples.

4 Results and Discussion

4.1 Synthetic Text Generation
For 8 of 10 languages, at least one LLM generated
sentences with a Readability and Naturalness rating
mean greater than 5.0 on a seven-point scale (see
Figure 1). In general, we found that Claude 3.5
Sonnet performed the best for the languages stud-
ied here, outperforming OpenAI’s GPT-4o and o1
models for 8 of 10 languages. Summary statistics
aggregated by language and LLM for all metrics
examined are provided in Appendix D.

Of the languages studied here, Kanuri and Ki-
nande are classified as category 0 (lowest resource,
"The Left-Behinds") according to the taxonomy
established by Joshi et al. (2021).17 This data
scarcity directly impacts the effectiveness of LLMs
in these languages, as evidenced by our findings:

15We also fine-tuned the MMS-1B model (Pratap et al.,
2023) on the Hausa subset of the NaijaVoices dataset using
adapters. We found that the model’s performance doesn’t im-
prove or only improves marginally by adding real data beyond
50 hours, and the addition of synthetic data consistently de-
grades performance (see Appendix I for results). This aligns
with research by Nabende et al. (unpublished) who compare
different ASR architectures for African languages and their
data scaling behavior.

16This is five times more than the usual number of iterations
between 50 and 200 recommended by Efron and Tibshirani
(1994) and in line with what Koehn (2004) proposes for similar
applications in machine translation.

17While this categorization is partially outdated, only lim-
ited data collection has taken place in those low-resourced
languages. Of the languages we studied, Dholuo was not clas-
sified by Joshi et al. (2021), but would probably be classified
as category 0 or 1.

https://huggingface.co/datasets/naijavoices/naijavoices-dataset/tree/main/split
https://huggingface.co/datasets/naijavoices/naijavoices-dataset/tree/main/split
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Figure 1: Comparison of Readability and Naturalness [1..7] scores for synthetic text generated by various LLMs for
10 African languages. Errors bars show standard deviation.

Synthetic text generation in these languages consis-
tently demonstrates the poorest performance, with
mean Readability and Naturalness ratings falling
below 4.0 on a seven-point scale.18 During the
large-scale Chichewa text generation, we observed
large amount of sentence duplication: Claude 3.5
Sonnet generated only 37% unique sentences out
of 700,000, while Claude 3.7 Sonnet exhibited sig-
nificantly less duplication, with 86% of 530,400
sentences being unique. Subsequent analysis re-
vealed that unique sentence generation decreases
with batch size (see Appendix G for details).

4.1.1 Inter-coder Reliability Investigation
A persistent challenge in low-resource language
evaluation is the limited availability of expert lin-
guist reviewers, a constraint that significantly im-
pacts the reliability of assessments. This study was
no exception, with most text samples being eval-
uated by two to three linguists per language. A
two-way analysis of variance (ANOVA) demon-
strates that not just model choice, but also linguist
identity significantly affected readability ratings (p
< 0.05), with linguist identity explaining a larger
proportion of variance than the model itself for
Chichewa, Kanuri, Northern Somali, and Wolof.

In a supplementary analysis for Kanuri, ten lin-
guists independently rated 100 sentences each gen-
erated by Claude 3.5 Sonnet, Claude 3.7 Sonnet,
GPT-4o, and GPT-4.5. We performed a bootstrap
analysis, resampling varying numbers of raters.
Increasing the number of raters consistently nar-
rowed the 95% confidence intervals across all mod-

18We explored fine-tuning and a separate language quality
classifier to retain only high quality out put but both did not
yield improved results. Details are available in Appendix E.

els, indicating improved rating stability. Especially
GPT-4o benefitted from additional raters with the
95% confidence interval reducing from 5.86 to 3.91
when increasing the number of raters from two to
four (further details are available in Appendix F).

4.2 Synthetic Voice Generation
Our findings indicate that the TTS model, albeit
not its architecture, has a substantial impact on syn-
thetic voice data quality, with the best model outper-
forming the worst by up to 2.03 points for intelligi-
bility and 1.72 points for naturalness on a five-point
scale. The VITS-based YourTTS models generally
performed best (Intelligibility: Hausa: 4.5, Dhu-
luo: 4.71, Chichewa: 4.45), although VITS-based
MMS performed better in naturalness for Chichewa
(MMS: 4.03 versus YourTTS: 3.82) where we pri-
oritized intelligibility and therefore YourTSS (de-
tailed results are available in Appendix H). We find
that the quality of the TTS model probably does not
matter beyond a certain threshold. The Hausa ASR
models trained on synthetic data generated using
YourTTS don’t outperform those trained on data
generated by XTTS, even though the former TTS
model outperforms the latter on both intelligibility
and naturalness.

4.3 ASR Model Performance with Synthetic
Data

4.3.1 Medium Data Scenario: Hausa
While the performance differs between the eval-
uation datasets, in general, replacing half of the
human data with synthetic data, i.e. 250h:250h,
in model training yields performance equally or
marginally better than a model trained on 500h of
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Data ratios FLEURS NaijaVoices Common Voice
WER CER WER CER WER CER

500h constant
100h:400h 28.58

(28.63 ± 0.86)
10.64

(10.04 ± 0.47)
24.57

(24.57 ± 0.33)
6.26

(6.26 ± 0.12)
17.95

(17.94 ± 0.67)
3.73

(3.73 ± 0.16)
250h:250h 26.17

(26.23 ± 0.65)
9.01

(9.03 ± 0.42)
22.91

(22.92 ± 0.31)
5.84

(5.84 ± 0.17)
18.69

(18.68 ± 0.67)
3.67

(3.73 ± 0.16)
500h:0h 26.91

(26.9 ± 0.67)
9.64

(9.63 ± 0.47)
22.49

(22.5 ± 0.34)
5.71

(5.72 ± 0.11)
17.91

(17.9 ± 0.67)
3.60

(3.61 ± 0.15)

Full data
579h:450h

XTTS
25.73

(25.75 ± 0.63)
8.96

(8.97 ± 0.44)
22.43

(22.42 ± 0.33)
5.74

(5.74 ± 0.11)
18.16

(18.17 ± 0.67)
3.44

(3.44 ± 0.15)
579h:993h
YourTTS

28.42
(28.47 ± 0.98)

11.22
(11.27 ± 0.79)

22.06
(22.06 ± 0.3)

5.64
(5.64 ± 0.12)

17.45
(17.42 ± 0.66)

3.45
(3.45 ± 0.15)

Table 1: WER and CER for Wav2Vec-Bert 2.0 Hausa models trained on different ratios of real and synthetic
XTTS-generated data. In parentheses, we present bootstrapped mean and standard deviation WER and CER.

real data for models trained with XTTS-generated
data (see Table 1).19 On the Common Voice test set,
the model trained on a 1:4 ratio performs equally
to the model trained on 500h of real data. The best
performing model across most evaluation sets and
metrics resulted from training on all data available,
albeit with only minor improvements.

The data ablation study indicated that the ASR
models does not saturate at 100h or 250h of data as
the models trained with synthetic data still showed
the same slight improvements as with adding real
data.

Investigating gender bias, we found that on aver-
age the fine-tuned models perform slightly worse
for male voices than for female voices (see the Ap-
pendix M for detailed results), despite our synthetic
voice data being exclusively male. The gender-
disaggregated performance on the NaijaVoices and
Common Voice test sets showed an average dif-
ference in WER/ CER of → 1.82/ → ↑0.17 and
→ 1.29/ → 0.57 percentage points, respectively
(positive numbers indicate worse performance for
male speakers).

4.3.2 Low Data Scenario: Dholuo and
Chichewa

For Dholuo and Chichewa, we added increasing
amounts of synthetic data to increase the total train-
ing corpus. Therefore, we would expect improve-
ments in performance as the training corpus size
increases.

For Dholuo, the results depended on the test
set. On FLEURS, no amount of synthetic data im-

19More details on models trained on YourTTS-generated
data and on the data ablation are available in Appendix J.

proved the WER and improvements in CER were
not statistically significant (e.g. the improvement
6.06 to 6.00 CER when adding 77h of synthetic
data is well within the standard deviation of 0.29
and 0.23, respectively). On Common Voice, adding
19h of synthetic data for a 1:1 ratio improved per-
formance from 30.64 ± 0.51 to 28.76 ± 0.46 WER
and from 6.99 ± 0.22 to 6.09 ± 0.15 CER. Adding
further synthetic data did not yield further improve-
ments. Full results are available in Appendix K.

In contrast, for Chichewa (see Table L.1), we
found consistent improvements when adding syn-
thetic data. Adding 68 hours of synthetic data for a
1:2 ratio between real and synthetic data and adding
307h of synthetic data for a 1:9 ratio resulted in the
best performing models. On Zambezi Voice, the
1:2 ratio yielded the best absolute performance of
18.54 ± 0.71 WER and 4.41 ± 0.38 CER although
this is not statistically better than the performance
of a 1:9 ratio (18.71 ± 0.70 WER and 4.48 ± 0.38
CER, with the 34h:0h baseline resulting in 19.76 ±
0.70 WER and 4.52 ± 0.40 CER). Evaluation on
the FLEURS test set confirms these results, only
that the 1:9 exhibited best absolute WER perfor-
mance (34h:0h: 35.39 ± 0.59 WER and 7.67 ±
0.40 CER, 34h:68h: 33.4 ± 0.59 WER and 7.15 ±
0.36 CER, 34h:307h: 32.95 ± 0.61 WER and 7.25
± 0.38 CER, full results are available in Appendix
L).

Unfortunately, the available evaluation data did
not allow an analysis of performance by gender
as all speakers were either female (Dholuo), male
(Chichewa FLEURS test set) or metadata wasn’t
available (Zambezi Voice).
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4.3.3 Evaluation Challenges Due to
Non-standardized Scripts and Potential
Errors in Evaluation Data

Spot checks of the errors by different models in-
dicated that part of the word error rate might be
due to non-standardized scripts and diacritics in
Hausa, Dholuo, and Chichewa, where different but
equally legitimate ways of writing the same word
are counted as errors and where diacritics are not
consistently used or transcribed. This aligns with
work on potential limitations of WER (Aksënova
et al., 2021) and benchmarking for Indic languages
(Watts et al., 2024).

Although a thorough analysis of this issue is be-
yond the scope of this paper, we extracted the words
from the evaluation transcripts that were most of-
ten incorrectly transcribed. Native speakers than
evaluated these errors. This analysis indicates that
we potentially underestimate the ASR performance.
Of 19 to 20 errors per language evaluated, the eval-
uators labeled all 19 as no errors for Dholuo, 20
as no errors for Hausa (with 4 errors in the evalu-
ation transcript), and 2 out of 20 as no errors for
Chichewa (see Appendix N for examples). Those
wrongly labeled errors often stem from varying use
of special characters or different, but equally legiti-
mate, spellings. Those results also imply that com-
parisons of WER between languages are not robust,
as those issues differ between languages in kind
and number. Text normalization as a potential rem-
edy is an ongoing field of research. However, some
research has shown that current techniques might
not be appropriate for low-resource languages with
non-Latin scripts (Manohar et al., 2024).

5 Conclusion

We investigated the creation of synthetic text and
voice data for 10 African languages. Our results
show that synthetic text generation with LLMs
is feasible for various languages, except for the
lowest-resource languages such as Kanuri or Ki-
nande. Our results also show promising utility of
synthetic voice data in complementing human data
when training ASR models. But our results also
indicate that a minimum of human data is needed.
For Hausa, we show that the use of synthetic data
either worsens the performance for male voices or
does not increase gender bias in ASR performance,
depending on the evaluation dataset and in spite of
our synthetic data only including male voices. Fur-
ther investigations also illustrated the challenges of

working with human evaluators in low-resource lan-
guages where code-mixing and non-standardized
scripts are common, as well as the limitations and
shortcomings of existing evaluation datasets and
resulting metrics.

Limitations

Our work is limited to the selected languages, and
future research would need to expand the language
coverage of studies on synthetic data for African
languages. In addition, we could only explore a
certain set of parameters for our data generation
pipeline and model training. As illustrated in the
previous sections, our results are also limited by
potential issues in the evaluation datasets that we
used, despite their common usage. Furthermore,
we present our findings on challenges in human
evaluation for low-resource languages, which we
think require further investigation.

Future Work

Our research could show the utility of synthetic
voice data in a controlled setting on commonly
used evaluation sets. Future research should fur-
ther investigate the robustness of synthetic data for
use in practical applications. This might include in-
vestigating the utility of multiple-speaker TTS and
voice cloning based on very small voice samples
to create more diverse or targeted synthetic data
(Ogun et al., 2024; Yang et al., 2024). Future work
should also investigate methods and effectiveness
of increasing text diversity and options to target text
generation to specific domains and use cases (see
Yang et al. (2024), Chen et al. (2024) and Finch and
Choi (2024)). Our work illustrates the challenges
in human evaluation. Future work to improve in-
tercoder reliability should include better evalua-
tion guidelines and identification of key metrics
indicating downstream performance. The exam-
ples presented illustrate that beyond synthetic data,
ASR evaluation in low-resource languages requires
further investigation to handle non-standardized
scripts, either through semantic measures, mea-
sures robust to plurality in spellings or language-
appropriate normalizers, and work on improved
evaluation datasets. Lastly, further work should be
undertaken to investigate other uses of synthetic
data in African languages.



160

Acknowledgements

CLEAR Global is grateful for the support of the
Gates Foundation that enabled this work and the
sub-award and partnership with Dimagi. The au-
thors are indebted to Polly Harlow and Arisha Sid-
diqui, whose organizational skills we could not
replace. We are also grateful to Daniel Wilson at
XRI Global, Muhammad Abdul-Mageed and his
team at the University of British Columbia, and
Howard Lakougna at the Gates Foundation, who
provided trusted partnership and valuable feedback.
We thank Alp Öktem at CLEAR Global for review
and feedback and Joyce Nabende, Alvin Nahabwe,
and the team at Makerere University for the close
collaboration and exchange around their related
project on ASR in African languages, which in-
formed and strengthened our work. Lastly, we
would like to thank the evaluators from the TWB
Community, without whom we could not have im-
plemented this research.

This work was supported by the Gates Founda-
tion (Grant number INV-076358). The conclusions
and opinions expressed in this work are those of
the authors alone and shall not be attributed to the
Foundation.

References
Nazmiye Abay, Yan Zhou, Murat Kantarcioglu, Bhavani

Thuraisingham, and Latanya Sweeney. 2018. Privacy
preserving synthetic data release using deep learning.
In Joint European Conference on Machine Learning

and Knowledge Discovery in Databases, pages 510–
526.

Idris Abdulmumin, Michael Beukman, Jesujoba Alabi,
Chris Chinenye Emezue, Everlyn Chimoto, Tosin
Adewumi, Shamsuddeen Muhammad, Mofetoluwa
Adeyemi, Oreen Yousuf, Sahib Singh, and Tajud-
deen Gwadabe. 2022. Separating grains from the
chaff: Using data filtering to improve multilingual
translation for low-resourced African languages. In
Proceedings of the Seventh Conference on Machine

Translation (WMT), pages 1001–1014, Abu Dhabi,
United Arab Emirates (Hybrid). Association for Com-
putational Linguistics.

Idris Abdulmumin, Sthembiso Mkhwanazi, Mahlatse
Mbooi, Shamsuddeen Hassan Muhammad,
Ibrahim Said Ahmad, Neo Putini, Miehleketo Math-
ebula, Matimba Shingange, Tajuddeen Gwadabe,
and Vukosi Marivate. 2024. Correcting FLORES
evaluation dataset for four African languages. In
Proceedings of the Ninth Conference on Machine

Translation, pages 570–578, Miami, Florida, USA.
Association for Computational Linguistics.

David Ifeoluwa Adelani, Hannah Liu, Xiaoyu Shen,
Nikita Vassilyev, Jesujoba O. Alabi, Yanke Mao, Hao-
nan Gao, and Annie En-Shiun Lee. 2024. Sib-200: A
simple, inclusive, and big evaluation dataset for topic
classification in 200+ languages and dialects.

Uchechukwu Ajuzieogu. 2023. Ethical Data Augmen-

tation Techniques for Low-Resource Language AI:

A Framework for African Languages. Ph.D. thesis,
University of Nigera.

Alëna Aksënova, Daan van Esch, James Flynn, and
Pavel Golik. 2021. How might we create better
benchmarks for speech recognition? In Proceedings

of the 1st Workshop on Benchmarking: Past, Present

and Future, pages 22–34, Online. Association for
Computational Linguistics.

Rosana Ardila, Megan Branson, Kelly Davis, Michael
Kohler, Josh Meyer, Michael Henretty, Reuben
Morais, Lindsay Saunders, Francis Tyers, and Gre-
gor Weber. 2020. Common voice: A massively-
multilingual speech corpus. In Proceedings of the

Twelfth Language Resources and Evaluation Confer-

ence, pages 4218–4222, Marseille, France. European
Language Resources Association.

Edresson Casanova, Kelly Davis, Eren Gölge, Görkem
Göknar, Iulian Gulea, Logan Hart, Aya Aljafari,
Joshua Meyer, Reuben Morais, Samuel Olayemi, and
Julian Weber. 2024. Xtts: a massively multilingual
zero-shot text-to-speech model.

Edresson Casanova, Julian Weber, Christopher Shulby,
Arnaldo Candido Junior, Eren Gölge, and Moacir An-
tonelli Ponti. 2023. Yourtts: Towards zero-shot multi-
speaker tts and zero-shot voice conversion for every-
one.

Hao Chen, Abdul Waheed, Xiang Li, Yidong Wang, Jin-
dong Wang, Bhiksha Raj, and Marah I. Abdin. 2024.
On the diversity of synthetic data and its impact on
training large language models.

Seamless Communication, Loïc Barrault, Yu-An Chung,
Mariano Coria Meglioli, David Dale, Ning Dong,
Mark Duppenthaler, Paul-Ambroise Duquenne,
Brian Ellis, Hady Elsahar, Justin Haaheim, John Hoff-
man, Min-Jae Hwang, Hirofumi Inaguma, Christo-
pher Klaiber, Ilia Kulikov, Pengwei Li, Daniel Licht,
Jean Maillard, Ruslan Mavlyutov, Alice Rakotoari-
son, Kaushik Ram Sadagopan, Abinesh Ramakr-
ishnan, Tuan Tran, Guillaume Wenzek, Yilin Yang,
Ethan Ye, Ivan Evtimov, Pierre Fernandez, Cynthia
Gao, Prangthip Hansanti, Elahe Kalbassi, Amanda
Kallet, Artyom Kozhevnikov, Gabriel Mejia Gonza-
lez, Robin San Roman, Christophe Touret, Corinne
Wong, Carleigh Wood, Bokai Yu, Pierre Andrews,
Can Balioglu, Peng-Jen Chen, Marta R. Costa-jussà,
Maha Elbayad, Hongyu Gong, Francisco Guzmán,
Kevin Heffernan, Somya Jain, Justine Kao, Ann
Lee, Xutai Ma, Alex Mourachko, Benjamin Pelo-
quin, Juan Pino, Sravya Popuri, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, Anna Sun, Paden
Tomasello, Changhan Wang, Jeff Wang, Skyler Wang,

https://doi.org/10.1007/978-3-030-10925-7_31
https://doi.org/10.1007/978-3-030-10925-7_31
https://aclanthology.org/2022.wmt-1.98/
https://aclanthology.org/2022.wmt-1.98/
https://aclanthology.org/2022.wmt-1.98/
https://doi.org/10.18653/v1/2024.wmt-1.44
https://doi.org/10.18653/v1/2024.wmt-1.44
http://arxiv.org/abs/2309.07445
http://arxiv.org/abs/2309.07445
http://arxiv.org/abs/2309.07445
https://doi.org/10.13140/RG.2.2.18121.66407
https://doi.org/10.13140/RG.2.2.18121.66407
https://doi.org/10.13140/RG.2.2.18121.66407
https://doi.org/10.18653/v1/2021.bppf-1.4
https://doi.org/10.18653/v1/2021.bppf-1.4
https://aclanthology.org/2020.lrec-1.520/
https://aclanthology.org/2020.lrec-1.520/
http://arxiv.org/abs/2406.04904
http://arxiv.org/abs/2406.04904
http://arxiv.org/abs/2112.02418
http://arxiv.org/abs/2112.02418
http://arxiv.org/abs/2112.02418
http://arxiv.org/abs/2410.15226
http://arxiv.org/abs/2410.15226


161

and Mary Williamson. 2023. Seamless: Multilingual
expressive and streaming speech translation.

Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang,
Vera Axelrod, Siddharth Dalmia, Jason Riesa, Clara
Rivera, and Ankur Bapna. 2022. Fleurs: Few-shot
learning evaluation of universal representations of
speech.

Anna Dixon. 2024. Talk at openai devday 2024, com-
munity spotlight: Dimagi. https://www.youtub
e.com/watch?v=Cj4MU_CJhwU. Accessed: May
2025.

Bradley Efron. 1992. Bootstrap methods: Another look
at the jackknife. In Samuel Kotz and Norman L. John-
son, editors, Breakthroughs in Statistics: Methodol-

ogy and Distribution, pages 569–593. Springer New
York, New York, NY.

Bradley Efron and Robert J. Tibshirani. 1994. An Intro-

duction to the Bootstrap. Chapman and Hall/CRC.

Chris Emezue, NaijaVoices Community, Busayo
Awobade, Abraham Owodunni, Handel Emezue, Glo-
ria Monica Tobechukwu Emezue, Nefertiti Nneoma
Emezue, Sewade Ogun, Bunmi Akinremi, David Ife-
oluwa Adelani, and Chris Pal. 2025. The nai-
javoices dataset: Cultivating large-scale, high-quality,
culturally-rich speech data for african languages.

James D. Finch and Jinho D. Choi. 2024. Diverse and
effective synthetic data generation for adaptable zero-
shot dialogue state tracking. In Findings of the Asso-

ciation for Computational Linguistics: EMNLP 2024,
pages 12527–12544, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli.
2023. Chatgpt outperforms crowd workers for
text-annotation tasks. Proceedings of the National

Academy of Sciences, 120(30).

Global Bible Initiative. n.d. Open.bible translation cor-
pus [data set]. https://open.bible. Accessed
May 2025.

Ramazan Gokay and Hulya Yalcin. 2019. Improving
low resource turkish speech recognition with data
augmentation and tts. In 2019 16th International

Multi-Conference on Systems, Signals and Devices

(SSD), pages 357–360.

Ting-Yao Hu, Mohammadreza Armandpour, Ashish
Shrivastava, Jen-Hao Rick Chang, Hema Koppula,
and Oncel Tuzel. 2021. Synt++: Utilizing imperfect
synthetic data to improve speech recognition.

Zhuangqun Huang, Gil Keren, Ziran Jiang, Shashank
Jain, David Goss-Grubbs, Nelson Cheng, Farnaz Ab-
tahi, Duc Le, David Zhang, Antony D’Avirro, Ethan
Campbell-Taylor, Jessie Salas, Irina-Elena Veliche,
and Xi Chen. 2023. Text generation with speech
synthesis for asr data augmentation.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2021. The state and
fate of linguistic diversity and inclusion in the nlp
world.

Sakshi Joshi, Eldho Ittan George, Tahir Javed, Kaushal
Bhogale, Nikhil Narasimhan, and Mitesh M. Khapra.
2025. Recognizing Every Voice: Towards Inclusive
ASR for Rural Bhojpuri Women. In Interspeech

2025, pages 4243–4247.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of the

2004 Conference on Empirical Methods in Natural

Language Processing, pages 388–395, Barcelona,
Spain. Association for Computational Linguistics.

Tai K Koo and Mae Y Li. 2016. A guideline of selecting
and reporting intraclass correlation coefficients for re-
liability research. Journal of Chiropractic Medicine,
15(2):155–163. Erratum in: J Chiropr Med. 2017
Dec;16(4):346. doi: 10.1016/j.jcm.2017.10.001.

Julia Kreutzer, Isaac Caswell, Lisa Wang, Ahsan Wahab,
Daan van Esch, Nasanbayar Ulzii-Orshikh, Allah-
sera Tapo, Nishant Subramani, Artem Sokolov, Clay-
tone Sikasote, Monang Setyawan, Supheakmungkol
Sarin, Sokhar Samb, Benoît Sagot, Clara Rivera, An-
nette Rios, Isabel Papadimitriou, Salomey Osei, Pe-
dro Ortiz Suarez, Iroro Orife, Kelechi Ogueji, An-
dre Niyongabo Rubungo, Toan Q. Nguyen, Math-
ias Müller, André Müller, Shamsuddeen Hassan
Muhammad, Nanda Muhammad, Ayanda Mnyak-
eni, Jamshidbek Mirzakhalov, Tapiwanashe Matan-
gira, Colin Leong, Nze Lawson, Sneha Kudugunta,
Yacine Jernite, Mathias Jenny, Orhan Firat, Bonaven-
ture F. P. Dossou, Sakhile Dlamini, Nisansa de Silva,
Sakine Çabuk Ballı, Stella Biderman, Alessia Bat-
tisti, Ahmed Baruwa, Ankur Bapna, Pallavi Baljekar,
Israel Abebe Azime, Ayodele Awokoya, Duygu Ata-
man, Orevaoghene Ahia, Oghenefego Ahia, Sweta
Agrawal, and Mofetoluwa Adeyemi. 2022. Quality
at a glance: An audit of web-crawled multilingual
datasets. Transactions of the Association for Compu-

tational Linguistics, 10:50–72.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe
Zhang, Jinmeng Rao, Steven Zheng, Daiyi Peng, Diyi
Yang, Denny Zhou, and Andrew M. Dai. 2024. Best
practices and lessons learned on synthetic data.

Samar Mohamed Magdy, Sang Yun Kwon, Fakhraddin
Alwajih, Safaa Taher Abdelfadil, Shady Shehata, and
Muhammad Abdul-Mageed. 2025. JAWAHER: A
multidialectal dataset of Arabic proverbs for LLM
benchmarking. In Proceedings of the 2025 Confer-

ence of the Nations of the Americas Chapter of the

Association for Computational Linguistics: Human

Language Technologies (Volume 1: Long Papers),
pages 12320–12341, Albuquerque, New Mexico. As-
sociation for Computational Linguistics.

Kavya Manohar, Leena G Pillai, and Elizabeth Sherly.
2024. What is lost in normalization? exploring pit-
falls in multilingual asr model evaluations.

http://arxiv.org/abs/2312.05187
http://arxiv.org/abs/2312.05187
http://arxiv.org/abs/2205.12446
http://arxiv.org/abs/2205.12446
http://arxiv.org/abs/2205.12446
https://www.youtube.com/watch?v=Cj4MU_CJhwU
https://www.youtube.com/watch?v=Cj4MU_CJhwU
https://doi.org/10.1007/978-1-4612-4380-9_41
https://doi.org/10.1007/978-1-4612-4380-9_41
https://doi.org/10.1201/9780429246593
https://doi.org/10.1201/9780429246593
http://arxiv.org/abs/2505.20564
http://arxiv.org/abs/2505.20564
http://arxiv.org/abs/2505.20564
https://doi.org/10.18653/v1/2024.findings-emnlp.731
https://doi.org/10.18653/v1/2024.findings-emnlp.731
https://doi.org/10.18653/v1/2024.findings-emnlp.731
https://doi.org/10.1073/pnas.2305016120
https://doi.org/10.1073/pnas.2305016120
https://open.bible
https://doi.org/10.1109/SSD.2019.8893184
https://doi.org/10.1109/SSD.2019.8893184
https://doi.org/10.1109/SSD.2019.8893184
http://arxiv.org/abs/2110.11479
http://arxiv.org/abs/2110.11479
http://arxiv.org/abs/2305.16333
http://arxiv.org/abs/2305.16333
http://arxiv.org/abs/2004.09095
http://arxiv.org/abs/2004.09095
http://arxiv.org/abs/2004.09095
https://doi.org/%7B10.21437/Interspeech.2025-2734%7D
https://doi.org/%7B10.21437/Interspeech.2025-2734%7D
https://aclanthology.org/W04-3250/
https://aclanthology.org/W04-3250/
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
http://arxiv.org/abs/2404.07503
http://arxiv.org/abs/2404.07503
https://aclanthology.org/2025.naacl-long.613/
https://aclanthology.org/2025.naacl-long.613/
https://aclanthology.org/2025.naacl-long.613/
http://arxiv.org/abs/2409.02449
http://arxiv.org/abs/2409.02449


162

Josh Meyer, David Ifeoluwa Adelani, Edresson
Casanova, Alp Öktem, Daniel Whitenack Julian We-
ber, Salomon Kabongo, Elizabeth Salesky, Iroro
Orife, Colin Leong, Perez Ogayo, Chris Emezue,
Jonathan Mukiibi, Salomey Osei, Apelete Agbolo,
Victor Akinode, Bernard Opoku, Samuel Olanre-
waju, Jesujoba Alabi, and Shamsuddeen Muhammad.
2022. Bibletts: a large, high-fidelity, multilingual,
and uniquely african speech corpus.

Yasmin Moslem. 2024. Leveraging synthetic audio data
for end-to-end low-resource speech translation.

Mozilla Foundation. 2024a. Common voice dataset
version 17.0 [data set]. https://commonvoic
e.mozilla.org/en/datasets. Accessed May
2025.

Mozilla Foundation. 2024b. Common voice dataset
version 19.0 [data set]. https://commonvoic
e.mozilla.org/en/datasets. Accessed May
2025.

Mozilla Foundation. 2025. Common voice dataset ver-
sion 21.0 [data set]. https://commonvoice.mo
zilla.org/en/datasets. Accessed May 2025.

Sewade Ogun, Abraham T. Owodunni, Tobi Olatunji,
Eniola Alese, Babatunde Oladimeji, Tejumade
Afonja, Kayode Olaleye, Naome A. Etori, and Tosin
Adewumi. 2024. 1000 african voices: Advancing in-
clusive multi-speaker multi-accent speech synthesis.

Frederico S. Oliveira, Edresson Casanova, Arnaldo Cân-
dido Júnior, Anderson S. Soares, and Arlindo
R. Galvão Filho. 2023. Cml-tts a multilingual dataset
for speech synthesis in low-resource languages.

Iroro Orife, Julia Kreutzer, Blessing Sibanda, Daniel
Whitenack, Kathleen Siminyu, Laura Martinus,
Jamiil Toure Ali, Jade Abbott, Vukosi Marivate, Sa-
lomon Kabongo, Musie Meressa, Espoir Murhabazi,
Orevaoghene Ahia, Elan van Biljon, Arshath Ramk-
ilowan, Adewale Akinfaderin, Alp Öktem, Wole
Akin, Ghollah Kioko, Kevin Degila, Herman Kamper,
Bonaventure Dossou, Chris Emezue, Kelechi Ogueji,
and Abdallah Bashir. 2020. Masakhane – machine
translation for africa.

Salsabila Zahirah Pranida, Rifo Ahmad Genadi, and
Fajri Koto. 2025. Synthetic data generation for
culturally nuanced commonsense reasoning in low-
resource languages.

Vineel Pratap, Andros Tjandra, Bowen Shi, Paden
Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky,
Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi,
Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning
Hsu, Alexis Conneau, and Michael Auli. 2023. Scal-
ing speech technology to 1,000+ languages.

Rifki Afina Putri, Faiz Ghifari Haznitrama, Dea Adhista,
and Alice Oh. 2024. Can llm generate culturally rele-
vant commonsense qa data? case study in indonesian
and sundanese.

Osvaldo Luamba Quinjica and David Ifeoluwa Adelani.
2024. Angofa: Leveraging ofa embedding initializa-
tion and synthetic data for angolan language model.

Abhinav Sukumar Rao, Aditi Khandelwal, Kumar Tan-
may, Utkarsh Agarwal, and Monojit Choudhury.
2023. Ethical reasoning over moral alignment: A
case and framework for in-context ethical policies
in LLMs. In Findings of the Association for Com-

putational Linguistics: EMNLP 2023, pages 13370–
13388, Singapore. Association for Computational
Linguistics.

Sebastian Raschka. 2020. Model evaluation, model se-
lection, and algorithm selection in machine learning.

Patrick E. Shrout and Joseph L. Fleiss. 1979. Intra-
class correlations: uses in assessing rater reliability.
Psychological Bulletin, 86(2):420–428.

C. Sikasote, K. Siaminwe, S. Mwape, B. Zulu, M. Phiri,
M. Phiri, D. Zulu, M. Nyirenda, and A. Anastasopou-
los. 2023. Zambezi voice: A multilingual speech
corpus for zambian languages. In Proceedings of

Interspeech 2023, pages 3984–3988.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Be-
siroglu, Lennart Heim, and Marius Hobbhahn. 2024.
Will we run out of data? limits of llm scaling based
on human-generated data.

Gary Wang, Andrew Rosenberg, Zhehuai Chen,
Yu Zhang, Bhuvana Ramabhadran, Yonghui Wu, and
Pedro Moreno. 2020. Improving speech recognition
using consistent predictions on synthesized speech.
In ICASSP 2020 - 2020 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing

(ICASSP), pages 7029–7033.

Ze Wang, Zekun Wu, Jeremy Zhang, Xin Guan,
Navya Jain, Skylar Lu, Saloni Gupta, and Adriano
Koshiyama. 2025. Bias amplification: Large lan-
guage models as increasingly biased media.

Ishaan Watts, Varun Gumma, Aditya Yadavalli, Vivek
Seshadri, Manohar Swaminathan, and Sunayana
Sitaram. 2024. Pariksha: A large-scale investigation
of human-llm evaluator agreement on multilingual
and multi-cultural data.

Sierra Wyllie, Ilia Shumailov, and Nicolas Papernot.
2024. Fairness feedback loops: Training on synthetic
data amplifies bias.

Jin Xu, Xu Tan, Yi Ren, Tao Qin, Jian Li, Sheng Zhao,
and Tie-Yan Liu. 2020. Lrspeech: Extremely low-
resource speech synthesis and recognition.

Shaofei Xue, Jian Tang, and Yazhu Liu. 2022. Improv-
ing speech recognition with augmented synthesized
data and conditional model training. In 2022 13th In-

ternational Symposium on Chinese Spoken Language

Processing (ISCSLP), pages 443–447.

http://arxiv.org/abs/2207.03546
http://arxiv.org/abs/2207.03546
http://arxiv.org/abs/2406.17363
http://arxiv.org/abs/2406.17363
https://commonvoice.mozilla.org/en/datasets
https://commonvoice.mozilla.org/en/datasets
https://commonvoice.mozilla.org/en/datasets
https://commonvoice.mozilla.org/en/datasets
https://commonvoice.mozilla.org/en/datasets
https://commonvoice.mozilla.org/en/datasets
http://arxiv.org/abs/2406.11727
http://arxiv.org/abs/2406.11727
http://arxiv.org/abs/2306.10097
http://arxiv.org/abs/2306.10097
http://arxiv.org/abs/2003.11529
http://arxiv.org/abs/2003.11529
http://arxiv.org/abs/2502.12932
http://arxiv.org/abs/2502.12932
http://arxiv.org/abs/2502.12932
http://arxiv.org/abs/2305.13516
http://arxiv.org/abs/2305.13516
http://arxiv.org/abs/2402.17302
http://arxiv.org/abs/2402.17302
http://arxiv.org/abs/2402.17302
http://arxiv.org/abs/2404.02534
http://arxiv.org/abs/2404.02534
https://doi.org/10.18653/v1/2023.findings-emnlp.892
https://doi.org/10.18653/v1/2023.findings-emnlp.892
https://doi.org/10.18653/v1/2023.findings-emnlp.892
http://arxiv.org/abs/1811.12808
http://arxiv.org/abs/1811.12808
https://doi.org/10.1037//0033-2909.86.2.420
https://doi.org/10.1037//0033-2909.86.2.420
https://doi.org/10.21437/Interspeech.2023-1979
https://doi.org/10.21437/Interspeech.2023-1979
http://arxiv.org/abs/2211.04325
http://arxiv.org/abs/2211.04325
https://doi.org/10.1109/ICASSP40776.2020.9053831
https://doi.org/10.1109/ICASSP40776.2020.9053831
http://arxiv.org/abs/2410.15234
http://arxiv.org/abs/2410.15234
http://arxiv.org/abs/2406.15053
http://arxiv.org/abs/2406.15053
http://arxiv.org/abs/2406.15053
http://arxiv.org/abs/2403.07857
http://arxiv.org/abs/2403.07857
http://arxiv.org/abs/2008.03687
http://arxiv.org/abs/2008.03687
https://doi.org/10.1109/ISCSLP57327.2022.10037977
https://doi.org/10.1109/ISCSLP57327.2022.10037977
https://doi.org/10.1109/ISCSLP57327.2022.10037977


163

Guanrou Yang, Fan Yu, Ziyang Ma, Zhihao Du, Zhifu
Gao, Shiliang Zhang, and Xie Chen. 2024. Enhanc-
ing low-resource asr through versatile tts: Bridging
the data gap.

Rodolfo Zevallos. 2022. Text-to-speech data augmenta-
tion for low resource speech recognition.

http://arxiv.org/abs/2410.16726
http://arxiv.org/abs/2410.16726
http://arxiv.org/abs/2410.16726
http://arxiv.org/abs/2204.00291
http://arxiv.org/abs/2204.00291


164

Appendix A Language Overview

Language Estimated L1 Speaker Population Language Family Region

Hausa 50,000,000 Chadic West Africa
Northern Somali 22,000,000 Cushitic East Africa
Yoruba 54,000,000 Niger-Congo (Volta-Niger) West Africa
Wolof 5,500,000 Niger-Congo (Atlantic) West Africa
Chichewa 9,700,000 Bantu Southern Africa
Dholuo 5,000,000 Nilotic East Africa
Kanuri 9,600,000 Saharan West-Central Africa
Twi 9,000,000 Kwa West Africa
Kinande 10,000,000 Bantu Central Africa
Bambara 10,000,000 Niger-Congo (Mande) West Africa

Table A.1: Estimated first language (L1) speaker populations, language family, and regions for African languages
for which we created and evaluated synthetic text data.
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Appendix B LLM Prompt for Synthetic Text Generation

Figure B.1: Synthetic text generation prompt to generate simple sentences in target language and English translations.
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Appendix C Models Used and Dataset Sizes for Synthetic Datasets

Language Synthetic text
corpus

LLM used for text
generation

Synthetic voice
corpus

TTS model used
for voice data

generation

Hausa 674,000 sentences GPT-4o 574.39 hours
(450 hours with
original share of

questions)

XTTS (fine-tuned)

Hausa 674,000 sentences GPT-4o 993 hours YourTTS
(fine-tuned)

Dholuo 666,000 sentences Claude 3.7 Sonnet 775 hours YourTTS
(fine-tuned)

Chichewa 650,000 sentences Claude 3.5 Sonnet 550 hours YourTTS
(fine-tuned)

Table C.1: Overview of models used for synthetic data generation and resulting synthetic datasets per language.
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Appendix D Synthetic Text Generation Language Evaluation Summary Statistics

Language Model Readability
&
Naturalness
[1..7]

Grammatical
Correctness
[0,1]

Real Words
[0,1]

Notable Er-
ror [0,1]

Adequacy
&
Accuracy
[1..7]

Bambara

Claude 3.5
Sonnet

6.08 ± 1.18 0.82 ± 0.38 0.82 ± 0.38 0.21 ± 0.41 5.83 ± 1.41

Claude 3.7
Sonnet

5.80 ± 1.26 0.78 ± 0.41 0.78 ± 0.42 0.25 ± 0.43 5.63 ± 1.43

GPT-4o 3.72 ± 2.08 0.20 ± 0.40 0.31 ± 0.46 0.87 ± 0.34 2.54 ± 1.34

GPT-4.5 3.95 ± 1.84 0.24 ± 0.43 0.43 ± 0.50 0.78 ± 0.41 2.85 ± 1.40

Chichewa

Claude 3.5
Sonnet

5.88 ± 1.05 0.75 ± 0.43 0.87 ± 0.33 0.13 ± 0.33 4.62 ± 1.81

Claude 3.5
Sonnet*

5.20 ± 1.77 0.67 ± 0.47 0.92 ± 0.28 0.27 ± 0.44 4.91 ± 1.62

GPT-4o 5.73 ± 1.11 0.76 ± 0.43 0.91 ± 0.29 0.19 ± 0.40 4.54 ± 1.66

O1 5.00 ± 1.72 0.59 ± 0.49 0.84 ± 0.37 0.25 ± 0.44 4.02 ± 1.62

Hausa
Claude 3.5
Sonnet

5.14 ± 1.26 0.38 ± 0.49 0.47 ± 0.50 0.63 ± 0.48 5.07 ± 1.39

GPT-4o 5.67 ± 0.94 0.59 ± 0.49 0.64 ± 0.48 0.42 ± 0.49 5.63 ± 1.03

Kanuri

Claude 3.5
Sonnet

2.67 ± 1.64 0.02 ± 0.14 0.14 ± 0.34 0.58 ± 0.49 1.38 ± 0.98

Claude 3.7
Sonnet

1.18 ± 0.57 0.00 ± 0.00 0.00 ± 0.07 1.00 ± 0.00 1.33 ± 0.64

GPT-4o 1.55 ± 0.70 0.02 ± 0.14 0.00 ± 0.00 0.51 ± 0.50 1.40 ± 1.39

GPT-4.5 2.02 ± 2.10 0.11 ± 0.32 0.11 ± 0.32 0.91 ± 0.29 2.03 ± 2.00

O1 1.51 ± 0.64 0.00 ± 0.00 0.00 ± 0.00 0.51 ± 0.50 1.03 ± 0.30

Dholuo
Claude 3.5
Sonnet

5.91 ± 1.42 0.78 ± 0.42 0.94 ± 0.24 0.48 ± 0.50 5.82 ± 1.48

GPT-4o 3.45 ± 2.01 0.15 ± 0.36 0.85 ± 0.36 0.91 ± 0.29 3.22 ± 2.01

O1 3.64 ± 2.09 0.22 ± 0.42 0.80 ± 0.40 0.87 ± 0.34 3.23 ± 1.99
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Language Model Readability
&
Naturalness
[1..7]

Grammatical
Correctness
[0,1]

Real
Words
[0,1]

Notable
Error [0,1]

Adequacy
&
Accuracy
[1..7]

Kinande

Claude 3.5
Sonnet

3.61 ±
1.77

0.26 ±
0.44

0.31 ±
0.46

0.79 ±
0.41

2.99 ±
1.73

Claude 3.7
Sonnet

3.38 ±
1.61

0.22 ±
0.41

0.28 ±
0.45

0.79 ±
0.41

2.86 ±
1.57

GPT-4o 1.77 ±
0.96

0.01 ±
0.10

0.01 ±
0.10

0.98 ±
0.14

1.58 ±
0.94

GPT-4.5 2.51 ±
1.31

0.08 ±
0.26

0.10 ±
0.30

0.90 ±
0.30

2.16 ±
1.27

Northern Somali
Claude 3.5
Sonnet

6.06 ±
1.28

0.485 ±
0.50

0.94 ±
0.24

0.33 ±
0.47

6.37 ±
1.03

GPT-4o 6.03 ±
1.35

0.78 ±
0.41

0.97 ±
0.17

0.19 ±
0.39

6.50 ±
0.97

O1 5.97 ±
1.43

0.47 ±
0.50

0.95 ±
0.23

0.30 ±
0.46

6.33 ±
1.06

Twi

Claude 3.5
Sonnet

5.53 ±
1.50

0.62 ±
0.49

0.71 ±
0.45

0.54 ±
0.50

5.18 ±
1.91

Claude 3.7
Sonnet

5.49 ±
1.51

0.40 ±
0.49

0.52 ±
0.50

0.62 ±
0.48

4.74 ±
1.94

GPT-4o 4.67 ±
1.81

0.49 ±
0.50

0.81 ±
0.39

0.71 ±
0.45

4.10 ±
2.04

O1 4.35 ±
1.91

0.38 ±
0.49

0.63 ±
0.48

0.73 ±
0.44

3.87 ±
2.11

Wolof
Claude 3.5
Sonnet

5.77 ±
0.93

0.93 ±
0.25

0.66 ±
0.47

0.31 ±
0.46

5.97 ±
1.35

GPT-4o 5.04 ±
1.54

0.97 ±
0.17

0.82 ±
0.39

0.65 ±
0.48

4.94 ±
1.77

O1 5.04 ±
1.41

0.97 ±
0.18

0.72 ±
0.45

0.25 ±
0.43

4.96 ±
1.66

Yoruba
Claude 3.5
Sonnet

6.14 ±
0.86

0.93 ±
0.26

0.96 ±
0.19

0.25 ±
0.43

5.92 ±
1.16

GPT-4o 5.59 ±
1.37

0.68 ±
0.47

0.97 ±
0.18

0.46 ±
0.50

5.54 ±
1.43

O1 5.35 ±
1.38

0.71 ±
0.46

0.90 ±
0.30

0.54 ±
0.50

5.26 ±
1.51
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Appendix E Fine-tuning GPT-4o for Improved Sentence Generation in Low-resource
Languages

Similar to the work presented by Dixon (2024), who fine-tuned GPT-4o for improved performance in
Sheng, we applied instruction fine-tuning to OpenAI GPT-4o, defining a machine translation task using
the FLORES20 (Conneau et al., 2022) English-to-Hausa dev dataset. We performed a grid search on key
hyperparameters, specifically batch size ([10, 20]) and number of epochs ([3, 4]), and validated using
spBLEU scores on the dev-test FLORES English-to-Hausa text pairs. We identified a batch size of 10 and
3 epochs as optimal settings. Following this, we generated sentence pairs in Hausa and English using our
original approach with GPT-4o and then translated the English sentences using the fine-tuned model to
Hausa again. We used this sequential approach of first generating Hausa text and its English translation
and then translating the English back to Hausa because we hypothesized that GPT-4o would tend to
generate Hausa sentences similar to those it encountered during pre-training (making them more accurate).
Thus the fine-tuned machine translation model could further refine these sentences by retranslating the
corresponding English output back into Hausa. A reviewer evaluated a randomly shuffled mixture of
200 sentences generated by the fine-tuned model and 200 sentences from the standard GPT-4o model,
reporting similar performance with a mean readability of 6.00 ± 0.78 for the fine-tuned model compared
to 5.98 ± 0.72 for GPT-4o.

Similarly, we applied the same fine-tuning methodology to Kanuri, using 5,000 Kanuri-English sentence
pairs from the Gamayun dataset21, maintaining default OpenAI hyperparameters for fine-tuning. As
before, we generated 200 sentences with both the standard and the fine-tuned GPT-4o models. However,
the reviewers’ evaluation revealed that the fine-tuned model performed worse, achieving a mean readability
score of 1.18 ± 0.57 compared to 1.55 ± 0.70 for the standard GPT-4o.

20https://huggingface.co/datasets/openlanguagedata/flores_plus
21https://huggingface.co/datasets/CLEAR-Global/Gamayun-kits

https://huggingface.co/datasets/openlanguagedata/flores_plus
https://huggingface.co/datasets/CLEAR-Global/Gamayun-kits


170

Appendix F Synthetic Kanuri Text Inter-rater Reliability Analysis

As reported, our two-way analysis of variance
(ANOVA), with LLM and Linguist ID as categor-
ical factors demonstrates that both model choice
and linguist identity significantly affected readabil-
ity ratings (p < 0.05). Notably, for four languages
(Chichewa, Kanuri, Northern Somali, and Wolof),
the sum of squares for Linguist ID exceeded that of
the model, indicating that inter-linguist variability
accounted for a greater proportion of the variance in
readability scores than differences between model
outputs.

This appendix analyzes inter-rater reliability
for 400 sentences generated in Kanuri using the
methodology described in Section 3.1. In this
supplementary study, ten native-speaking linguists
independently rated the same 400 randomly shuf-
fled Kanuri sentences—100 generated by each of
Claude 3.5 Sonnet, Claude 3.7 Sonnet, GPT-4o,
and GPT-4.5— on three metrics meant to capture
language quality in the target language: readabil-
ity and naturalness of the sentence, grammatical
correctness and all words being from the target
language. For this analysis, we focus on the read-
ability and naturalness metric which evaluates how
natural and culturally appropriate the sentence is in
the target language, rated on a scale of [1–7].

Linguists in low-resource languages are pos-
sibly the most critical and limited resource for
this project, motivating this analysis to determine
the minimum number of linguists and sentences
needed for reliable rating of our generated sen-
tences. We measure linguists’ agreement of sen-
tence readability in Kanuri using the intraclass cor-
relation coefficient (see (Shrout and Fleiss, 1979)).
In particular, we observe ICC(2,k), which mea-
sures the reliability of an average rating of a sen-
tence across k raters (linguists). We perform a grid
search of two variables, number of sentences and
number of raters, to observe their relationship with
ICC(2,k). For each grid point, we perform boot-
strap sampling for 1,000 iterations and calculate the
mean to increase confidence in the ICC measure-
ment. According to (Koo and Li, 2016), ICC values
can be interpreted as follows: "values less than 0.5,
between 0.5 and 0.75, between 0.75 and 0.9, and
greater than 0.90 are indicative of poor, moderate,
good, and excellent reliability, respectively."

Figure F.1 shows the impact of sentence vol-

ume and number of linguists on ICC(2,k) for each
LLM. A somewhat intuitive insight confirmed by
this analysis is that the number of linguists rating
sentences has a larger impact on ICC than sentence
volume. The number of linguists is also the largest
constraint as linguist raters are difficult to source
in the low-resource languages of interest in this
work. For Claude 3.5 and Claude 3.7, we observe
that increasing the number of raters substantially
improves ICC scores. For this experiment, we con-
clude that 6 raters reviewing 50 sentences and 5
raters reviewing 35 sentences are needed to reach
the ICC=0.5 moderate threshold for Claude 3.5 and
Claude 3.7, respectively. For the OpenAI models
(GPT-4o and GPT-4.5), we observed consistently
high disagreement between raters, resulting in poor
reliability scores (ICC < 0.5) even with the maxi-
mum number of raters and sentences tested.

We also resampled raters with replacement and
a random subset of 50 sentences to empirically
estimate the mean readability and naturalness rat-
ings with 95% confidence intervals (Figure F.2).
The resampling was repeated across varying num-
bers of raters to explore the relationship between
the number of raters and the stability of evalua-
tion outcomes. Increasing the number of raters
consistently narrowed the 95% confidence inter-
vals across all models, indicating improved rating
stability. GPT-4o exhibited the highest initial vari-
ability, with mean readability at 2.61 and a wide
95% confidence interval range of 5.86 when rated
by two linguists; this range decreased notably to
3.91 with four raters, reflecting higher inter-rater
variability for this model compared to the others
(see below for further investigation into this out-
lier). In contrast, ratings for Claude 3.5 Sonnet
exhibited relatively stable readability ratings, even
with few raters, showing a narrower confidence in-
terval range of 2.60 for two raters, reducing slightly
to 2.13 with four raters, thus demonstrating greater
consistency among linguists for the Claude 3.5 Son-
net model.

A heatmap of the mean readability rating agree-
ment among Kanuri raters points to an expected
linguist bias and general agreement in model rank-
ing, with the notable exception of GPT-4o (see
Figure F.3). Specifically, three linguists rated GPT-
4o highest, with two raters providing mean ratings
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(a)

(b)

(c)

(d)

Figure F.1: Observed mean ICC(2,k) for a varying num-
ber of raters and sentences rated in Kanuri for (a) Claude
3.5 Sonnet, (b) Claude 3.7 Sonnet, (c) GPT-4o and (d)
GPT4.5.

Figure F.2: Mean Kanuri readability and naturalness
score by rater sample size. The shaded regions repre-
sent 95% confidence intervals derived from bootstrap
analysis.

Figure F.3: Heatmap of mean Kanuri readability scores
by individual linguists. Each cell displays the average
score assigned by each linguist rater for sentences gen-
erated by different models.

of 6.6 or higher. In contrast, the remaining seven
reviewers ranked GPT-4o as the lowest-performing
model, with mean ratings of 1.4 or lower. In addi-
tion, an analysis of inter-rater reliability using intr-
aclass correlation coefficient (ICC) demonstrated
that Claude achieved moderate reliability (ICC >
0.5) with 5-6 linguists rating 35-50 sentences. In
contrast, GPT models showed poor reliability even
with 10 linguists, further emphasizing the differ-
ences in rater agreement among models. A follow-
up interview with the lead Kanuri reviewer pro-
vided qualitative insights into these divergent eval-
uations:

• GPT-4o: The sample text was identified as
high-quality Hausa, not Kanuri.

• GPT-4.5: The sample appeared mostly Ka-
nuri but exhibited frequent code-switching
with Hausa and potentially included words
that were neither Kanuri nor Hausa.

• Claude 3.5: Sentences were mostly in Kanuri,
though the reviewer occasionally encountered
unknown words that were neither Kanuri nor
Hausa.

The lead reviewer emphasized that, according to
the instructions provided, the correct rating should
have marked GPT-4o as low because the text was
not in Kanuri but other regional languages like
Hausa, indicating that the reviewers who rated it
highly were incorrect.
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Appendix G Duplication Challenges for Large Quantity Synthetic Text Generation

During this large-scale text generation, we observed an unexpected large amount of sentence duplication.
Specifically, using Claude 3.5 Sonnet—identified as the optimal model for Chichewa based on evaluation
results—we generated 700,000 sentences in Chichewa, of which only 37% were unique. In comparison,
text generated using Claude 3.7 Sonnet exhibited significantly less duplication, with 86% of 530,400
sentences being unique.

To further investigate, we performed a simulation study, subsampling the batch requests without
replacement (n=1000 subsamples per observation) to assess the rate of unique sentence generation as
a function of batch size (Figure G.1). Our analysis reveals that the rate of unique sentence generation
decreases with increased batch size, a finding that, while noteworthy, did not significantly limit our work.
The deduplicated Chichewa corpus generated by Claude 3.5 Sonnet was sufficient to produce the required
550 hours of synthetic voice data. Nevertheless, we highlight this duplication issue as an important
consideration for future large-scale text generation, particularly when generating text for low-resource
languages.

Figure G.1: Anthropic Claude unique sentence generation for large-scale Chichewa synthetic text corpora generation.
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Appendix H Human Evaluation of TTS Models for Hausa, Dholuo and Chichewa

Model Architecture Hausa Dholuo Chichewa
Intell. Natural. Intell. Natural. Intell. Natural.

MMS VITS 2.47 2.35 – – 4.35 4.03
Original BibleTTS VITS 3.53 3.53 – – – –
New BibleTTS VITS 3.00 2.89 – – – –
XTTS Transformer-based 3.72 3.55 3.61 3.34 2.79 2.85
YourTTS VITS 4.50 4.07 4.71 4.59 4.45 3.82

Table H.1: Human evaluation of intelligibility and naturalness of different TTS models for Hausa, Dholuo and
Chichewa.

Appendix I MMS-1B Performance for Hausa across Different Ratios of Real and
Synthetic Data

Real-to-synthetic data ratios FLEURS NaijaVoices Common Voice
WER CER WER CER WER CER

50h:0 30.34 10.45 34.72 9.00 27.26 5.67
500h:0 29.13 9.19 34.92 9.02 27.22 5.62
250h:250h XTTS 29.77 10.16 37.61 9.63 28.43 5.87
100h:400h XTTS 30.27 9.86 38.95 10.12 27.42 5.91
50h:450h XTTS 31.88 10.82 40.42 10.52 28.92 6.15
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Appendix J Hausa Wav2Vec-BERT 2.0 ASR Detailed Results

Real-to-synthetic data ratios FLEURS NaijaVoices Common Voice
WER CER WER CER WER CER

500h constant training corpus size
100h:400h XTTS 28.58

(28.63 ±
0.86)

10.64
(10.04 ±

0.47)

24.57
(24.57 ±

0.33)

6.26
(6.26 ±

0.12)

17.95
(17.94 ±

0.67)

3.73
(3.73 ±

0.16)
100h:400h YourTTS 29.85

(29.88 ±
0.9)

11.57
(11.64 ±

0.7)

27.33
(27.33 ±

0.34)

7.11
(7.11 ±

0.12)

19.8
(19.8 ±

0.68)

4.16
(4.16 ±

0.17)
250h:250h XTTS 26.17

(26.23 ±
0.65)

9.01
(9.03 ±

0.42)

22.91
(22.92 ±

0.31)

5.84
(5.84 ±

0.17)

18.69
(18.68 ±

0.67)

3.67
(3.73 ±

0.16)
250h:250h YourTTS 27.02

(27.03 ±
0.87)

10.47
(10.5 ± 0.7)

23
(22.99 ±

0.3)

5.75
(5.75 ±

0.11)

18.73
(18.74 ±

0.69)

3.64
(3.64 ±

0.16)

Real data ablation
100h:0 30.23

(30.25 ±
0.81)

10.58
(10.6 ±

0.54)

24.06
(24.07 ±

0.34)

6.23
(6.24 ±

0.12)

19.53
(19.52 ±

0.67)

4.03
(4.03 ±

0.16)
250h:0 27.8

(27.79 ±
0.78)

10.21
(10.19 ±

0.57)

23.01
(23.0 ±

0.31)

5.75
(5.75 ±

0.17)

19.04
(19.04 ±

0.67)

3.76
(3.76 ±

0.15)
500h:0h 26.91

(26.9 ±
0.67)

9.64
(9.63 ±

0.47)

22.49
(22.5 ±

0.34)

5.71
(5.72 ±

0.11)

17.91
(17.9 ±

0.67)

3.60
(3.61 ±

0.15)

Full data
579h:450h XTTS 25.73

(25.75 ±
0.63)

8.96
(8.97 ±

0.44)

22.43
(22.42 ±

0.33)

5.74
(5.74 ±

0.11)

18.16
(18.17 ±

0.67)

3.44
(3.44 ±

0.15)
579h:993h YourTTS 28.42

(28.47 ±
0.98)

11.22
(11.27 ±

0.79)

22.06
(22.06 ±

0.3)

5.64
(5.64 ±

0.12)

17.45
(17.42 ±

0.66)

3.45
(3.45 ±

0.15)

Table J.1: WER and CER for Wav2Vec-Bert 2.0 Hausa models trained on different ratios of real and synthetic data.
In parentheses, we present bootstrapped mean and standard deviation WER and CER.
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Appendix K Dholuo Wav2Vec-BERT 2.0 ASR Detailed Results

Real-to-synthetic data ratios FLEURS CommonVoice
WER CER WER CER

19h:0h 26.92
(26.92 ± 0.91)

6.07
(6.06 ± 0.29)

30.65
(30.64 ± 0.51)

6.99
(6.99 ± 0.22)

19h:19h 27.15
(27.22 ± 0.83)

6.43
(6.45 ± 0.30)

28.75
(28.76 ± 0.46)

6.10
(6.09 ± 0.15)

19h:38h 29.4
(29.4 ± 0.86)

6.61
(6.59 ± 0.30)

29.25
(29.27 ± 0.49)

6.55
(6.56 ± 0.21)

19h:77h 28.28
(28.26 ± 0.73)

6.01
(6.00 ± 0.23)

30.18
(30.2 ± 0.50)

6.69
(6.69 ± 0.17)

Table K.1: WER and CER for Wav2Vec-Bert 2.0 Dholuo models trained on different ratios of real and synthetic
data. In parentheses, we present bootstrapped mean and standard deviation WER and CER.

Appendix L Chichewa Wav2Vec-BERT 2.0 ASR Detailed Results

Real-to-synthetic data ratios FLEURS Zambezi Voice
WER CER WER CER

34h:0h 35.38
(35.39 ± 0.59)

7.67
(7.67 ± 0.40)

19.76
(19.76 ± 0.70)

4.51
(4.52 ± 0.40)

34h:34h 34.32
(34.33 ± 0.59)

7.56
(7.55 ± 0.39)

19.90
(19.86 ± 0.74)

4.57
(4.56 ± 0.39)

34h:68h 33.39
(33.4 ± 0.59)

7.15
(7.15 ± 0.36)

18.53
(18.54 ± 0.71)

4.38
(4.41 ± 0.38)

34h:102h 34.10
(34.1 ± 0.61)

7.42
(7.43 ± 0.41)

20.28
(20.3 ± 0.76)

4.74
(4.75 ± 0.40)

34h:136h 34.72
(34.71 ± 0.59)

7.65
(7.65 ± 0.40)

21.20
(21.21 ± 0.72)

4.96
(4.97 ± 0.39)

34h:307h 32.95
(32.95 ± 0.61)

7.27
(7.25 ± 0.38)

18.69
(18.71 ± 0.70)

4.46
(4.48 ± 0.38)

Table L.1: WER and CER for Wav2Vec-Bert 2.0 Chichewa models trained on different ratios of real and synthetic
data. In parentheses, we present bootstrapped mean and standard deviation WER and CER.
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Appendix M Hausa Wav2Vec-BERT 2.0 ASR Results by Gender

Real:Synth Ratio FLEURS NaijaVoices Common Voice
Male Female Male Female Male Female
(n=1) (n=620) (n=2845) (n=1679) (n=180) (n=34)

WER CER WER CER WER CER WER CER WER CER WER CER
500h:0 28.57 8.57 26.91 9.64 23.11 5.63 21.43 5.86 19.23 3.85 13.19 2.45
100h:400h XTTS 42.86 12.86 28.57 10.64 25.36 6.28 23.24 6.23 17.35 3.82 14.47 2.80
100h:400h YourTTS 42.86 15.71 29.84 11.57 28.47 7.15 25.41 7.03 19.58 4.20 21.70 4.29
250h:250h XTTS 35.71 14.29 26.16 9.00 23.35 5.71 22.16 6.05 18.47 3.68 17.87 3.68
250h:250h YourTTS 35.71 10.00 27.01 10.47 23.42 5.64 22.28 5.93 19.72 3.89 14.04 2.63
579h:450h XTTS 42.86 11.43 25.71 8.96 23.06 5.68 21.39 5.85 17.70 3.46 13.62 2.80
579h:993h YourTTS 35.71 10.00 28.41 11.22 22.54 5.51 21.26 5.85 17.77 3.60 17.45 3.06

Table M.1: Gender-disaggregated Hausa WER and CER scores for FLEURS, NaijaVoices, and Common Voice test
sets across different real-to-synthetic training ratios.
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Appendix N Human evaluation of ASR model errors

Table N.1: Human evaluation of ASR model errors in Hausa.

Evaluation transcript Model output Evaluator
assessment

Evaluator comments

sautin dala da wasan
haske na daya daga
cikin abubuwa masu
dadi a fanni kananan
yara

sautin dala da wasan
haske na ɗaya daga
cikin abubuwa masu
daɗi a fanni ƙananan
yara

No error The only difference is
the use of special Hausa
characters.

a wasu wurare minti
daya ya isa ruwa ya
tafasa amma a wasu
wuraren kuma yana
bukatar mintuna da
yawa

a wasu wurare minti
ɗaya ya isa ruwa ya
tafasa amma a wasu
wuraren kuma yana
buƙatar mintuna da
yawa

No error The only difference is
the use of special Hausa
characters.

a sauran biranen
kasar italiya da kuma
sauran kasashen duniya
musamman a poland
an kafa makamancin
ginuwar wanda ya
samu dubiyar jama’a
da dama

a sauran biranen
ƙasar italiya da kuma
sauran ƙasashen duniya
musamman a foland
an kafa makamancin
ginuwar wanda ya
samu dubiyar jama’a
da dama

No error The only difference is
the use of special Hausa
characters.

aukuwar tsananin
yanayin yanki da na
lokacin sun hada da
guguwar iska hadari
mai dusar kankara
guguwar kankara da
guguwar ƙura

aukuwar tsananin
yanayin yanki da na
lokacin sun haɗa da
guguwar iska hadari
mai dusar ƙanƙara
guguwar ƙanƙara da
guguwar kura

No error The only difference is
the use of special Hausa
characters.

garken zaki sun kunshi
maza manya daya zuwa
uku masu dangantaka
tare da mata da dama
har zuwa talatin tare da
’ya’ya

garken zaki sun ƙunshi
maza manya ɗaya zuwa
uku masu dangantaka
tare da mata da dama
har zuwa talatin tare da
yaya

No error The only difference is
the use of special Hausa
characters.

dong ɗan kasar koriya
ne

dung ɗan ƙasar koriya
ne

No error The only difference is
the use of special Hausa
characters.

Continued on next page
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Table N.1: (continued) Human evaluation of ASR model errors in Hausa.

Evaluation
Transcription

Model output Evaluator
assessment

Evaluator comment

manyan jami’ai ne
kawai suka samu
damar shiga wurin
shugaban kasar

manyan jami’ai ne
kawai suka samu
damar shiga wurin
shugaban ƙasar

No error The only difference is
the use of special Hausa
characters.

dalibai sun yi wasan
kwallo

ɗalibai sun yi wasan
ƙwallo

No error The only difference is
the use of special Hausa
characters.

dalibai sun kai ziyara
gidan masu tabin
hankali

ɗalibai sun kai ziyara
gidan masu taɓin
hankali

No error The only difference is
the use of special Hausa
characters.

dakin karatun yana
dauke da dalibai kusan
dubu daya

ɗakin karatun yana
ɗauke da ɗalibai kusan
dubu ɗaya

No error The only difference is
the use of special Hausa
characters.

sai karfe tara na
dare za’a sanar da
sakamakon zaɓen

sai ƙarfe tara na dare za
a sanar da sakamakon
zaɓen

No error The only difference is
the use of special Hausa
characters.

za’a yi mata aiki a
ƙwaƙwalwa

za a yi mata aiki a
ƙwaƙwalwa

Error in
evaluation
transcript

Grammatically, the correct
form is ‘za a’, not ‘za’a’.
However, many people are
using ‘za’a’.

ana shan magani idan
ba’a da lafiya

ana shan magani idan
ba a da lafiya

Error in
evaluation
transcript

Grammatically, the correct
form is ‘ba a’, not ‘a’ba’.
However, many people are
using ‘ba’a’.

abuja na cikin nijeria abuja na cikin najeriya No error Both ‘Nijeriya’ and
‘Naijeriya’ are used, so it
depends on the newspaper
or individual.

oguta karamin jiha ce a
cikin nijeria

oguta ƙaramin jiha ce a
cikin najeriya

No error The only difference is
the use of special Hausa
characters.

sitika ɗin ƴana ɗa ƙyau sitika ɗin yana da kyau Error in
evaluation
transcript

The only difference is
the use of special Hausa
characters. And there are
wrong use of the special
characters e.g ƴana The
correct version is yana.

ƴan shi’a sun yi tattaki
jiya

yan shi’a sun yi tattaki
jiya

No error The only difference is
the use of special Hausa
characters.

Continued on next page
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Table N.1: (continued) Human evaluation of ASR model errors in Hausa.

Evaluation
Transcription

Model output Evaluator
assessment

Evaluator comment

macaroni abincin ƴan
italiya ne

makaroni abincin yan
italiya ne

No error The only difference is
the use of special Hausa
characters.

kula da alaƙa mai ƙarfi
da ƴan uwa

kula da alaƙa mai ƙarfi
da yan’uwa

No error The only difference is
the use of special Hausa
characters.

mallam aminu dan
kasuwa ne à kasuwan
kure

malam aminu ɗan
kasuwa ne a kasuwan
kure

Error in
evaluation
transcript

Error in the evaluation
transcript. There is no à in
Hausa wrting sytle that we
physically see and read.
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Table N.2: Human evaluation of ASR model errors in Dholuo.

Evaluation transcript Model output Evaluator as-
sessment

Evaluator comments

e piny kenya mano en
ketho maduong’ ahinya

e piny kenya mano en
ketho maduong’ ahinya

No error Written Luo uses apostrophe at
the final syllable as in the word
maduong’ but this does not re-
sult in a difference in meaning.

tuwo mar sukari ema ne
onego owadawano

tuo mar sukari ema ne
onego owadwano

No error Excellent, in Luo we either say
‘tuo’ or ‘tuwo’.

e wi mano tuwo mar
corona ne oketho chenro
mag somo e pinje

e wi mano tuo mar corona
ne oketho chenro mag
somo e pinje

No error

otho sa adek okinyi otho saa adek okinyi No error No error, we either use ‘sa’ or
‘saa’.

neru maduong’ osekendo neru maduong’ osekendo No error Only difference in apostrophe
used.

seche moko ginyalo bedo
jii ariyo ma penjo penjo

seche moko ginyalo bedo
ji ariyo ma penjo penjo

No error No error, it’s either ‘ji’ or ‘jii’.
This a feature in Luo for mono-
syllabics.

dhii uywe kund dhok dhi uywe kund dhok No error See comments above.

welo dhii e kanisa
kawuono

welo dhi e kanisa
kawuono

No error See comments above.

ngama kare ber ng’ama kare ber No error Native speakers know this and
would understand.

unega kayiem nang’o unega kayiem nang’o No error

pesa jadoung ile pesa jadoung’ ile No error Again optional final apostrophe.

ng’ama nigi jadoung
machiegni

ng’ama nigi jadoung’
machiegni

No error

en chieng’ maduong en chieng’ maduong’ No error

antie gi othinyo mangeny antie gi othinyo mang’eny No error

we bedo gi gombo
mangeny

we bedo gi gombo
mang’eny

No error

mol mar trafik en timo
nonro kata puonjruok
kuom timbe mag joriembo
kod mtokni e seche ma
gisudo e kind kuonde
ariyo to kod tudruoge
magitimo e kindgi giwegi

mol mar trafik en timo
nonro kata puonjruok
kuom timbe mag joriembo
kod mtokni e seche mag-
isudo e kind kuonde ariyo
to kod tudruoge magitimo
e kindgi giwegi

No error No error, ‘u’ is an alternative for
‘wu’.

Continued on next page
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Table N.2: (continued) Human evaluation of ASR model errors in Dholuo.

Evaluation transcript Model output Evaluator as-
sessment

Evaluator comment

onge wach achiel e piny
duto ma lero tiend kaka
mwandu molosi ichako
luongi ni gima nyachon
kembe moko mag solo os-
uru lero kuom mwandu
mosteetieko higni maloyo
100 kaka gigo ma nyachon

onge wach achiel e piny
duto malero tiend kaka
mwandu molosi ichako
luongi ni gima nyachon
kembe moko mag solo os-
uru lero kuom mwandu
mosteetieko higni maloyo
100 kaka gigo ma nyachon

No error

jarieko manyinge aristolet
nowacho ni gik moko olos
kod riwo achiel ariyo kata
ang’wen mag gigi piny pii
muya kod mach

jarieko manyinge aristotle
nowacho ni gik moko olos
kod riwo achiel ariyo kata
ang’wen mag gigi piny pii
muya kod mach

No error See my comment on monosyl-
labics.

atom moko nitiere kod
nyukila ma ok ochung’
motegno ma tiende ni
gibarore ga ka otwomgi
matin kata ka ok otwomgi
chutho

atom moko ni tiyoore kod
nyukila ma ok ochung’
motegno matiende ni
gibarore ga ka otwomgi
matin kata ka ok otwomgi
chutho

No error

Table N.3: Human evaluation of ASR model errors in Chichewa.

Evaluation transcript Model output Evaluator as-
sessment

Evaluator comments

pa maulendo ena makam-
pani ena akuluakulu ali
ndi ndege zao koma pa
maulendo ena makampani
ang’onoang’ono amakhala
ndi vuto

pamaulendo ena makam-
pani ena akuluakulu ali
ndi ndege zawo koma pa-
maulendo ena makampani
ang’onoang’ono amakhala
ndi vuto

Error Model Output: grammar rules
requires that pamaulendo writ-
ten disjunctively as it is not
a locative partical. Tran-
script: zao is gramatically
wrong, should be written as
zawo

ana okulira kwaokha
osakumana ndi anthu
akhoza kutheka kuchi-
tilidwa nkhanzza kapena
kuzunzidwa asanasiyei-
dwe kapena kuthawa

ana okulira kwaokha
osakumana ndi anthu
akhoza kutheka kuchi-
tilidwa nkhanzza kapena
kuzuzidwa asanasiyeidwe
kapena kuthawa

Error Model Output: kuzuzidwa is
a spelling error, it should be
kuzunzidwa.

Continued on next page
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Table N.3: (continued) Human evaluation of ASR model errors in Chichewa.

Evaluation transcript Model output Evaluator as-
sessment

Evaluator comment

ma blog amathanidzaniso
ana asukulu kuphunzila
kulemba ngakhalke kuti
poyamba ophunzila
amayamba ndi kulakwista
galamala ndi zilembo
za mawu kupeza kwa
anthu omweolega ku-
mathandizila kusintha
izi

ma blogamothandizaso
ana asukulu kuphunzila
kulemba ngakhalke kuti
poyamba ophunzila
amayamba ndi kulakwitsa
galamala ndi zilembo
zamawu kupeza kwa
anthu owenerenga ku-
mathandizila kusintha
izi

Error Model Output: blog-
amothandizaso is unknown
word made from combination
of two or three words. This
would confuse the reader.
Amayambamba is a wrong
spelling, it should be as in
Transcription: amayamba.

ngoziyi inachitikira
mwamba m’mapiri atali
ndipo akukhulupilira kuti
zinachitika chifukwa cha
adani achiwembu

ngoziyi inachitikira
m’mwamba m’mapiri
atali ndipo akukhulupilira
kuti zinachitika chifukwa
cha adani achiwembu

Error Transcription: atali should be
aatali as in model output. a chib-
wembu is normally written con-
junctively and should be achib-
wembu as in Model Output.

ku barcelona chiyankhulo
chovomelezeka ndi cata-
lan ndikli sipanishi theka
la anthu akudziwa cata-
lan ambiri amachimvetsa
ndiipo pafupifupi onse
amamva ndikudziwsa chi
sipanishi

ku barcelona chiyankhulo
chovomelezeka ndi cata-
lan ndi chi sipanishi theka
la anthu akudziwa cata-
lan ambiri amachimvetsa
ndiipo pafupifupi onse
amamva ndikudziwsa chi
sipanishi

Error Transcription: chi should not
be combined with chi but rather
goes together with the name
of the language to read: chis-
apnishi. Chi and sipanishi
should be written conjunctively.
Model Output: Chi and sipan-
ishi should be written conjunc-
tively.

zolegeza zathawi zonse
mu metro zimapangidwa
muchilankhulo chachi
kalatani basi koma
zosiyanasiyana zimasulu-
tidwa kudzera makina a
kompyuta mu zilankhulo
zosiyanasiyanansiya
kuphatikizikachisapanishi
chingerezi falansa arabic
ndi japanese

zolegeza za nthawi
zonse mu metro zima-
pangidwa muchilankhulo
chachi kalatani basi
koma zosiyanasiyana
zimasulutidwa kudzera
makina a kompyuta mu
zilankhulo zosiyanasiyana
kuphatikizika chisipanishi
chingerezi falansa arabic
ndi japanese

Error Transcription: chi should not
be combined with chi but rather
goes together with the name
of the language to read: chis-
apnishi. Kompyuta should
be kompyuta. chisipanishi
chingerezi falansa arabic ndi
japanese should have commas
in between.

owona zangozi zokugwa
madziidzi ku mpoto kwa
mariana ati palibe zomve
zidanowoneka pomwe
analengezera a nation

owona zangozi zokugwa
mwaziizizi kumpoto kwa
mariana ati palibe zomve
zidanowoneka pomwe
analengezera a nation

Error Transcription: madziidzi is an
incomplete word which should
read mwadziidzi. Model Out-
put: Mwazizizi is gramatically
incorrect.

Continued on next page
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Table N.3: (continued) Human evaluation of ASR model errors in Chichewa.

Evaluation transcript Model output Evaluator as-
sessment

Evaluator comment

apia ndi likulu la
samoa tauinyi ili
pachilumba cha upolu
ndipo pali chilengedwe
chachilengedwe cha anthu
ochepera pa 40000

apia ndi likulu la
samoa tauinyi ili
pachilumba cha upolu
ndipo pali chilengedwe
chachilengedwe cha anthu
ochepera pa 4000

Error Model Output: City of a pia
should be Apia and the a should
not be separated from pia.

safari ndi mawu
amene amatchulidwa
kawirikawiri ndiipo
amatanthauza ulendo
wopamtunda wokaona
nyama zokongola za-
kutchire za ku africa
kawirikawiri ku savanna

safari ndi mawu
amene amatchulidwa
kawirikawiri ndiipo
amatanthauza ulendo
wopamtunda wokaona
nyama zokongola za-
kutchire zaku africa
kawirikawiri ku savanna

Error Model Output: zaku should be
written separately as za ku.

kutenga sitima za
m’madzi kunyamulira
katundu ndi njira yoyenera
zedi yonyamulira anthu
wochuluka komanso
katundu kuwoloka pa
nyanja

kutenga sitima za
m’madzi kunyamulira
katundu ndi njira yoyen-
era zedi yonyamulira
anthu ochuluka komanso
katundu kooloka panyanja

Error Model Output: kooloka is
wrong spelling of kuwoloka

mkulu wophunzitsa pa
sukulu ya ukachenjede
ya dundee university a
pulofesa pamela fergu-
son adati atolankhani
akuoneka kuti akuyenda
mu chiwopsezo aka-
masindikiza zithunzi
ndi zina zotero za oga-
nizilidwa kupalamula
milandu

mgalu wophunzitsa pa-
sukulu yaukachenjede ya
dud university a pulofesa
pamella fegason adati
atolankhani akuoneka kuti
akuyenda mu chiopsezo
akamasindikiza zithuzi
ndi zina zotero za oga-
nizilidwa kupalamula
milandu

Error Model Output: mgulu is wrong
spelling of mkulu. Yaukachen-
jede should be written as ya
ukachenjede

thandizo loiyikidwa
m’maphunziro apa
kompyuta ndipo akuyen-
era kufunsa kupanga
zina zakefotokozera
ndondomeko zomwe
zikanakhala zovuta kwa
ophunzira

thandizo loiyikidwa
m’maphunziro
apakompyuta ndipo
akuyenera kufunsa
kupanga zina zake ndiku-
fotokozera ndunudmiko
zomwe zikanakhala
zovuta kwa ophunzira

Error Model Output: ndunudmiko
is wrong spelling of ndon-
domeko and kompyuta should
read kompyuta.

Continued on next page
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Table N.3: (continued) Human evaluation of ASR model errors in Chichewa.

Evaluation transcript Model output Evaluator as-
sessment

Evaluator comment

bomba la fission limag-
wira ntchito pamene li-
mafuna mphamvu kuti
liyike pamodzi ma nucleus
wochulukana ndi ma pro-
ton ambiri ndi ma neutron

bomba la fission limag-
wira ntchito pamene li-
mafuna mphamvu kuti
liyike pamodzi ma nucleus
wochulukana ndi ma pro-
ton ambiri ndi ma neutron

No error

ma ion ndima proton
a hydrogen amathot-
holedwa popeza hydrogen
amakhala ndi proton
imodzi ndi electron
imodzi

ma ion ndi ma proton
a hydrogen amathot-
holedwa popeza hydrogen
amakhala ndi proton
imodzi ndi electron
imodzi

Error Model Output: amatho-
toleledwa is wrong spelling of
amathotholedwa

wakhalapo akulepher-
era kumwa mankhwala
ofunikira pochiza ululu
omwe akumva chifukwa
cha matenda alowedwa pa
masewera

wakhalapo akulepherera
kumwa mankhwala ofu-
nikira pochiza ululu omwe
akumva chifukwa cha ma-
tenda olestedwa pamasew-
era

No error Transcription: Woyima should
be oyima. Model Output:
Kuwumikizana is wrong
spelling of kulumikizana. Maro
is wrong spelling of Malo.

zilumba zambiri
zing’onoang’ono ndi
mayiko woyima powapita
kulumikizana ndi dziko la
france ndi ziko la arabic
ndi japanese

zilumba zambiri
zing’onoang’ono ndi
mayiko woyima powapita
kulumikizana ndi dziko la
france ndi ziko la arabic
ndi japanese

Error Transcription: Woyima should
be oyima. Model Output:
Kuwumikizana is wrong
spelling of kulumikizana. Maro
is wrong spelling of Malo.

kuwonetsera kwa nyumba
zomwe zimapangidwa ma-
wonedweko a hong kong
skyline akutchulidwa
victoria harpur bar
tatchi yowala kwambiri
m’madera oyandikira
doko chikwangwanzi
akamapereka zikwang-
wanzi m’dera lozungulira
zonyamula anthu omwe
amafika mochuluka

kuwonetsera kwa nyumba
zomwe zimapangidwa ma-
wonedweko a hongkong
skyline akutchulidwa
victoria harpur bar
tatchi yowala kwambiri
m’madera oyandikira
doko chikwangwanzi
akamapereka zikwang-
wanzi mdera lozungulira
zonyamula anthu omwe
amafika mochuluka

Error Model Output: victoria harpur
is misspelling of victoria har-
bour.

Continued on next page
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Table N.3: (continued) Human evaluation of ASR model errors in Chichewa.

Evaluation transcript Model output Evaluator as-
sessment

Evaluator comment

kujambula makamera ama-
chita kusiyana atakhala
pa kompyuta pakuma-
sulira kwa mwachangu
amene ang’ono chinthu
chinasache kupeza kwa
linako kapena wotsek-
ereza monga ndondomeko
yomwe ingathe ku-
pangidwa ndi anthu
ochepa

kujambula makamera ama-
chita kusiyana atakhala
pa kompyuta pakuma-
sulira kwa mwachangu
amene ang’ono chinthu
chinasache kupeza kwa
linako kapena wotsek-
ereza monga ndondomeko
yomwe ingathe ku-
pangidwa ndi anthu
ochepa

Error Transcription: Milisecond
should be transliterated to
Milisekondi. Model Output:
miliceand is a wrong spelling of
millisecond which is normally
transliterated as milisecond.

pamene mafumu ndi aku-
luakulu mabanja ndi zo-
chitika mufunikanso kuti
mufikeko nsanga ngati
kuli msanga apafupi ndi
nyumba

pamene mafumu ndi aku-
luakulu mabanja ndi zo-
chitika mufunikanso kuti
mufikeko nsanga ngati
kuli msanga apafupi ndi
nyumba

Error Model Output: mufikeko is
wrong spelling of mufikeko.

pakuti mu nthawi yao
kuonjeza kuwala kwa siku-
nali wuto monga anali pa
makolo m’pang’ono ama-
funika kuwala koopsa ku-
fikila kusiyana ndi omwe
amaganidwa makono ano

pakuti mu nthawi yao
kuonjeza kuwala kwa siku-
nali wuto monga anali pa
makolo m’pang’ono ama-
funika kuwala koopsa ku-
fikila kusiyana ndi omwe
amaganidwa makono ano

Error Model Output: panu is wrong
spelling of pano. Campus
should be transliterated to kam-
pasi or just describe what a cam-
pus is.
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Appendix O Wav2Vec-BERT 2.0 Hyperparameters

Hyperparameter Value
Learning rate 3e-05
Warmup ratio 0.1
Evaluation steps 1000
Early stopping patience 5
Add adapter True
Mask time probability 0
Attention dropout 0.05
Feature projection dropout 0.05
Hidden layer dropout 0.05
CTC zero infinity True

Table O.1: Common Wav2Vec-BERT 2.0 hyperparameters.

Real:Synth Ratio (Maximum) Number of epochs (Total) Batch size
100h:0 250 320
250h:0 100 320
500h:0 50 320
100h:400h 50 320
250h:250h 50 320
579h:450h 24 320
579h:993h 16 320

Table O.2: Hausa Wav2Vec-BERT 2.0 Hyperparameters. We keep epoch-hours constant, that is the number of
epochs multiplied by the total duration of the training dataset in hours.

(Maximum) Number of steps (Total) Batch size
100000 64

Table O.3: Dholuo and Chichewa Wav2Vec-BERT 2.0 hyperparameters.


