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Abstract
Advancements in LLMs have largely over-
looked low-resource languages (LRLs), cre-
ating a gap in evaluation benchmarks. To
address this for Georgian, a Kartvelian lan-
guage, we introduce GeoLogicQA. This
novel, manually-curated benchmark as-
sesses LLMs’ logical and inferential rea-
soning through 100 questions. Questions
cover syllogistic deduction, inferential read-
ing comprehension, common-sense reason-
ing, and arithmetic, adapted from challeng-
ing sources (Kangaroo Mathematics Com-
petition) and validated by native Georgian
speakers for linguistic nuances. Initial eval-
uations of state-of-the-art LLMs (Gemini
2.5 Flash, DeepSeek-V3, Grok-3, GPT-4o)
show an average accuracy of 64% to 83%,
significantly exceeding the human baseline
of 47%. While demonstrating strong rea-
soning potential, error analysis reveals per-
sistent challenges in multi-step combina-
torial and highly constrained inferential
tasks. GeoLogicQA is a public resource
for tracking progress and diagnosing weak-
nesses in Georgian LLMs. We plan to ex-
pand the benchmark and establish a public
leader-board to foster continuous improve-
ment.

1 Introduction
The rapid evolution of Large Language Mod-
els (LLMs), like GPT-4 and Llama 3, has
revolutionized AI, excelling in natural lan-
guage generation and problem-solving. This
progress is largely due to vast computational
resources and datasets in high-resource lan-
guages (HRLs), primarily English (OpenAI
et al., 2024). Consequently, low-resource lan-
guages (LRLs) face a significant disparity in
LLM development and evaluation, lacking ap-
propriate benchmarks to assess their true ca-
pabilities.

Georgian, a Kartvelian agglutinative lan-
guage, exemplifies this resource gap in NLP.
Existing Georgian NLP resources are insuffi-
cient for evaluating the deeper cognitive abil-
ities of modern generative LLMs, failing to
test complex logical reasoning, inferential com-
prehension, or common-sense understanding.
The critical question for Georgian NLP has
evolved from “Can a model process Georgian
text?” to “Can a model think in Georgian?”,
requiring evaluation beyond just a pattern
recognition.

This work introduces GeoLogicQA, a novel,
manually-curated evaluation benchmark de-
signed to assess the logical and inferential rea-
soning abilities of LLMs in Georgian language.
It offers a diverse set of multiple-choice ques-
tions covering syllogistic deduction, inferential
reading comprehension, common-sense reason-
ing, and arithmetic problem-solving, aiming
to diagnose model weaknesses. Our primary
goal is to provide a rigorous, publicly acces-
sible resource for tracking progress and fos-
ter more robust Georgian LLMs. Initial eval-
uations of models like ChatGPT, DeepSeek,
Gemini, and Grok on our 100-question bench-
mark show an average performance below 70%
accuracy, highlighting significant challenges in
complex Georgian reasoning.

The paper is structured as follows: Section 2
reviews existing LLM evaluation benchmarks
and Georgian NLP resources. Section 3 de-
tails GeoLogicQA’s design principles, task cat-
egories, and data curation. Section 4 outlines
the experimental setup, presents baseline re-
sults from LLM evaluations on GeoLogicQA,
and analyzes performance and error patterns,
followed by section 5, were implications, limita-
tions, and future work is discussed. The work
is concluded by section 6, which summarizes
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the contributions and emphasizes the broader
impact of the resource.

2 Background and Related Work
The landscape of Natural Language Processing
has been significantly shaped by the develop-
ment of sophisticated evaluation benchmarks
that measure the capabilities of large language
models. These benchmarks serve as crucial
instruments for comparing models, identify-
ing their strengths, and diagnosing their lim-
itations (Wang et al., 2019). Our work on
GeoLogicQA is situated within this broader
context, while simultaneously addressing the
unique challenges presented by low-resource
languages.

2.1 Benchmark Creation for LRLs
Benchmark is a set of standardized tests that
assess LLM performance across various tasks.
Creating benchmarks for LRLs involves sev-
eral steps that ensure the evaluation is mean-
ingful, fair, and generalizable across models.
The challenges faced by Georgian NLP are not
unique, many low-resource languages world-
wide contend with similar limitations in terms
of data availability and evaluation infrastruc-
ture. Consequently, there has been a growing
global movement within the NLP community
to address this disparity by creating dedicated
benchmarks for LRLs. Efforts often involve:

• Typical strategies that translate high-
resource-language (HRL) benchmarks
into low-resource languages (LRLs)
often lose culturally-specific context or
meaning, limiting faithful assessment of
reasoning capabilities in the target LRL
(Ghafoor et al., 2021). Further, studies
such as (Alhanai et al., 2024) show that
direct translations of benchmarks (e.g.,
Winogrande, MMLU into low-resource
African languages) underperform until
cultural adjustments are incorporated—
highlighting that simple translation
fails to preserve the nuanced reasoning
demands of the original tasks.

• Collaborative efforts involving native
speakers and linguists are crucial for
curating high-quality, culturally relevant
datasets; empirical evidence shows that

native-written corpora enhance lexical di-
versity and cultural content (Cahyawi-
jaya et al., 2023), while participatory
and community-centric approaches ensure
linguistic authenticity and foster richer
dataset design (Ousidhoum et al., 2025).

• Developing benchmarks tailored to spe-
cific linguistic phenomena or reasoning
types that are particularly challenging for
a given LRL. This approach helps diag-
nose unique model weaknesses (Goyal and
Dan, 2025; Sánchez et al., 2024; Bean
et al., 2024).

By developing GeoLogicQA,1 a manually-
curated benchmark for Georgian logical rea-
soning, we contribute to the crucial effort of
creating equitable and culturally-relevant eval-
uations for LLMs in low-resource languages.

2.2 Evaluation Benchmarks in HRLs
In high-resource languages, particularly En-
glish, a rich ecosystem of evaluation bench-
marks exists, each targeting different facets of
language understanding and reasoning. Promi-
nent examples include:

GLUE (General Language Under-
standing Evaluation) and its successor,
SuperGLUE: A collection of diverse natu-
ral language understanding tasks, such as sen-
timent analysis, textual entailment, question
answering, and paraphrase detection (Wang
et al., 2019). They assess a model’s ability to
capture semantic and syntactic nuances across
various linguistic phenomena. While founda-
tional, GLUE and SuperGLUE primarily eval-
uate general language understanding rather
than complex, multi-step logical reasoning.

MMLU (Massive Multitask Language
Understanding): A significant advancement
in evaluating LLMs by testing knowledge and
reasoning across 57 diverse subjects, including
humanities, social sciences, STEM, and profes-
sional disciplines (Hendrycks et al., 2021). It
is designed to be challenging, often requiring
zero-shot or few-shot inference, and assesses
a model’s ability to apply pre-trained knowl-
edge to novel problems. MMLU’s focus on a
wide array of academic and professional sub-
jects makes it a strong indicator of a model’s

1https://github.com/irakli97/GeoLogicQA.

https://github.com/irakli97/GeoLogicQA
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general intelligence and reasoning capabilities
beyond simple pattern matching.

Big-Bench (Beyond the Imitation
Game Benchmark): Includes over 200 tasks,
many of which are specifically designed to
push the boundaries of LLM capabilities, en-
compassing logical reasoning, common-sense
reasoning, mathematical problem-solving, and
creative writing (Srivastava et al., 2023). Big-
Bench Hard (BBH), a subset of the most chal-
lenging Big-Bench tasks, explicitly targets rea-
soning abilities that are difficult for current
LLMs, often involving multi-hop deduction,
complex causal relationships, or counterfac-
tual reasoning. These benchmarks provide a
robust framework for assessing higher-order
cognitive functions in LLMs.

These HRL benchmarks have been instru-
mental in driving the rapid progress of LLMs
by providing standardized, rigorous, and pub-
licly accessible evaluation tools. They allow re-
searchers to track performance, pinpoint weak-
nesses, and develop more sophisticated mod-
els.

2.3 NLP Resources for Georgian
Despite the global advancements in NLP, the
Georgian language faces significant challenges
due to its low-resource status (Pakray et al.,
2025). The availability of high-quality train-
ing data and advanced NLP tools for Georgian
is notably limited compared to HRLs. Exist-
ing resources primarily include several initia-
tives focused on compiling Georgian text cor-
pora from various sources, such as Wikipedia,
news articles, and literary works. These cor-
pora are valuable for foundational tasks like
language modeling and morphological analysis
(Doborjginidze and Lobzhanidze, 2016). Lim-
ited parallel corpora exist for machine trans-
lation between Georgian and other languages,
supporting cross-lingual transfer. Also, the
tools for Part-of-Speech tagging, lemmatiza-
tion, and dependency parsing have been de-
veloped, aiding in basic linguistic analysis
(Giorkhelidze, 2017). However, these existing
resources predominantly cater to traditional
NLP tasks and surface-level linguistic analy-
sis. They largely fall short in providing the
challenging, reasoning-focused datasets neces-
sary to evaluate the deep language understand-
ing and inferential capabilities of modern gen-

erative LLMs. The scarcity of structured,
annotated data designed for complex logical
inference means that current Georgian NLP
lacks the benchmarks required to gauge how
well LLMs can process and reason with Geor-
gian text beyond simple recognition or trans-
lation. There is a marked absence of stan-
dardized datasets that demand multi-step rea-
soning, logical deduction, or nuanced common-
sense inference in Georgian, creating a signif-
icant gap in the evaluation framework for ad-
vanced Georgian LLMs.

3 The GeoLogicQA Benchmark:
Design and Curation

The GeoLogicQA benchmark is meticulously
designed to provide a robust evaluation of
Large Language Models’ (LLMs) logical and
inferential reasoning capabilities specifically
within the Georgian language. This section
details the core design principles, the diverse
task categories included, and the rigorous data
collection and validation processes employed
to ensure the benchmark’s quality and validity.
Because of the unique linguistic characteristics
of the Georgian language, including its agglu-
tinative nature and prevalent polysemy (Ma
et al., 2020), we had to apply careful curation
when designing the GeoLogicQA benchmark
to overcome these challenges.

3.1 Design Principles
GeoLogicQA’s design is underpinned by sev-
eral core principles aimed at comprehensively
assessing LLMs’ reasoning in a low-resource
language context.

3.1.1 Focus on Logic and Inference
GeoLogicQA explicitly prioritizes tasks that
demand genuine logical and inferential reason-
ing, moving beyond simple keyword matching,
surface-level pattern recognition, or statistical
correlations. The fundamental aim is to as-
certain whether an LLM can truly “think in
Georgian,” grasping complex relationships and
deriving non-explicit conclusions, rather than
merely processing and reproducing text. This
necessitates questions that require multi-step
reasoning, an understanding of causality, and
the ability to synthesize information from var-
ious premises.



124

3.1.2 Linguistic and Cultural Nuance
GeoLogicQA deeply integrates Georgian lin-
guistic and cultural nuances. Questions
weren’t just translated; they were crafted to
be natural, culturally relevant, and contex-
tually appropriate for native Georgian speak-
ers. This means scenarios, idioms, and com-
mon knowledge referenced in the questions
genuinely resonate within the Georgian con-
text, avoiding awkward translations that could
distort meaning or reasoning challenges.

Crucially, the design process addressed pol-
ysemy in Georgian, where words and phrases
can have multiple meanings. For example,
“მანძილის დაფარვა” can mean “to cover dis-
tance” or “to cover something with a lid.” To
prevent misinterpretations by LLMs due to lin-
guistic misunderstanding rather than a lack
of reasoning, question designers carefully con-
structed sentences and scenarios. They pro-
vided unambiguous contextual cues, ensuring
only the intended meaning was conveyed. This
precise phrasing was paramount to isolating
and testing true reasoning rather than surface-
level recognition.

3.1.3 Task Diversity
GeoLogicQA incorporates a diverse range of
reasoning task categories to provide a compre-
hensive assessment of LLMs’ cognitive abili-
ties. These categories include syllogistic and
deductive reasoning, reading comprehension
with inference, common-sense reasoning, and
arithmetic reasoning. This diversity ensures
that the benchmark evaluates a broad spec-
trum of reasoning skills, preventing LLMs
from excelling based on proficiency in only one
type of task.

3.1.4 Quality Assurance
The creation and validation of questions for
GeoLogicQA followed a rigorous, multi-stage
quality assurance process. Each question was
meticulously reviewed to ensure it was unam-
biguous, logically sound, and genuinely tested
complex reasoning rather than simple recall or
pattern matching. This iterative process in-
volved expert review and refinement to elimi-
nate any potential for misinterpretation or an
unintended correct answer, guaranteeing the
integrity of the evaluation.

3.2 Task Categories and Examples
GeoLogicQA comprises four distinct task cate-
gories, each designed to probe specific facets of
logical and inferential reasoning. The follow-
ing examples illustrate the type of questions
included in each category:

3.2.1 Category 1: Syllogistic &
Deductive Reasoning

Description: Tasks requiring deriving a logi-
cally sound conclusion from a set of premises.
These questions often test a model’s ability to
follow chains of inference and identify valid de-
ductions.

Example: Georgian: “ყოველ მონეტას აქვს
ორი მხარე, 'გერბი' და 'საფასური'. მაგიდაზე
ძევს ხუთი მონეტა, ხუთივე ზემოთ იყურება
'გერბით'. ყოველ ბიჯზე უნდა ამოვატრიალოთ
ზუსტად სამი მონეტა. იპოვეთ ბიჯების ის
უმცირესი რაოდენობა, რომლის შემდეგაც
ხუთივე მონეტა ზემოთ იქნება 'საფასურით'.”
English: “Five coins are lying on a table with
the ”heads” side up. At each step you must
turn over exactly three of the coins. What is
the least number of steps required to have all
the coins lying with the “tails” side up?”

3.2.2 Category 2: Reading
Comprehension with Inference

Description: Presenting a short paragraph
or scenario and asking a question where the
answer is not explicitly stated but must be in-
ferred from the provided text, requiring deeper
understanding and synthesis of information.

Example: Georgian: “კინოთეატრში ერთ
რიგში ზის 23 ცხოველი. თითოეული ცხოველი
არის ან თახვი ან კენგურუ. თითოეულ
ცხოველს ჰყავს სულ მცირე ერთი მეზობელი,
რომელიც კენგურუა. ყველაზე მეტი რამდენი
თახვი შეიძლება იყოსრიგში?” English: “There
are 23 animals sitting in a row at the cinema.
Each animal is either a beaver or a kangaroo.
Everyone has at least one neighbour who is a
kangaroo. What is the largest possible num-
ber of beavers in the row?”

3.2.3 Category 3: Common-Sense
Reasoning

Description: Questions relying on implicit,
everyday knowledge about the world and prac-
tical understanding of cause-and-effect rela-
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tionships, adapted for a Georgian cultural con-
text.

Example: Georgian: “აისბერგს კუბის
ფორმა აქვს. მისი მოცულობის 90% არის
წყლის ზედაპირის ქვემოთ. წყლის ზედაპირის
ზემოთ ჩანს კუბის მხოლოდ სამი წიბოს ნაწილი.
ამ ნაწილების სიგრძეებია: 24 მ, 25 მ და 27 მ.
იპოვეთ კუბის წიბოს სიგრძე.” English: “An
iceberg has the shape of a cube. Exactly 90%
of its volume is hidden below the surface of
the water. Three edges of the cube are par-
tially visible over the water. The visible parts
of these edges are 24m, 25m and 27m. How
long is an edge of the cube?”

3.2.4 Category 4: Arithmetic
Reasoning

Description: Word problems that require ex-
tracting numerical quantities, understanding
relationships, and performing basic to moder-
ately complex calculations within a narrative
context.

Example: Georgian: “იპოვეთ 1 ·2 ·3 ·4 ·5 ·4 ·
3·2·1 ნამრავლის ბოლოორი ციფრის ჯამი.” En-
glish: “What is the sum of the last two digits
of the product 1 · 2 · 3 · 4 · 5 · 4 · 3 · 2 · 1?”

3.3 Data Collection and Validation
The quality and challenge of GeoLogicQA are
rooted in its careful data collection and rigor-
ous validation processes.

3.3.1 Source
The questions used in GeoLogicQA were
adapted from the annual Kangaroo Mathe-
matics Competitions, organized by the “As-
sociation Kangourou sans Frontières (AKSF)”
(https://www.aksf.org) and officially translated
into Georgian by its representatives in Geor-
gia. We primarily selected problems from the
9th to 12th-grade levels to ensure a high level
of cognitive demand and complexity, making
them suitable for evaluating advanced reason-
ing capabilities in LLMs.

Crucial modifications were made to ensure
AI interpretability without altering the core
reasoning challenge. This involved standard-
izing mathematical notations (e.g., usingˆ for
powers), adding parentheses for clarity, and
converting essential visual information from
image-based questions into descriptive text.
This last step was only done when the un-

derlying logical reasoning could be fully pre-
served without the visual component, avoiding
the need for computer vision. We obtained ex-
plicit permission from AKSF for ethical data
sourcing.

3.3.2 Validation Process
A rigorous multi-step verification process was
implemented to ensure the quality, clarity, and
correctness of each question and its intended
answer:

• Initial Drafting and Adaptation: The
core research team was responsible for the
initial drafting and adaptation of ques-
tions from the source materials, ensuring
adherence to the design principles.

• Expert Review by Native Speakers:
Each adapted question underwent rigor-
ous review by a panel of at least two inde-
pendent native Georgian speakers. This
panel critically evaluated each question
for linguistic clarity, potential ambigu-
ities (particularly addressing polysemy),
naturalness of expression, and the un-
equivocal correctness of the designated an-
swer. This step was paramount in re-
fining the questions for precision and en-
suring they truly assessed reasoning in
Georgian, eliminating any linguistic pit-
falls that might mislead an LLM.

• Pilot Testing on Human Subjects: A
subset of the questions was pilot tested on
human subjects to establish a human per-
formance baseline. These selected ques-
tions are notoriously challenging for hu-
man students, as evidenced by the pub-
lished average of 47% correct answers by
students on the Kangaroo Mathematics
Competition questions.2 It is important
to note that this relatively high percent-
age reflects the fact that participants in
the upper grades of the competition are
typically students with a strong interest
and background in mathematics. This hu-
man baseline provides a vital context for
evaluating LLM performance, highlight-
ing the benchmark’s inherent difficulty
even for human solvers.

2Source: https://kenguru.ge/olympiad.

https://www.aksf.org
https://kenguru.ge/olympiad
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3.3.3 Statistics
The benchmark comprises of 100 questions.

4 Experimental Setup and Baseline
Results

This section details the experimental method-
ology employed to evaluate large language
models (LLMs) on the GeoLogicQA bench-
mark and presents the baseline results. We
describe the specific models chosen, the evalua-
tion protocol, and an in-depth analysis of their
performance, including an error breakdown to
highlight common challenges.

4.1 LLM Models
For the evaluation of logical and inferential rea-
soning capabilities in Georgian, a selection of
advanced large language models was chosen.
The models evaluated were GPT-4o, Gem-
ini 2.5 Flash, DeepSeek-V3, and Grok-3.
These models represent a diverse set of cur-
rent state-of-the-art LLMs, offering a robust
comparison of their performance on complex
reasoning tasks in a low-resource language.

4.2 Evaluation Protocol
To ensure a consistent and fair assessment of
each model’s inherent reasoning abilities, a
standardized evaluation protocol was strictly
adhered to.

4.2.1 Prompting Strategy
For all evaluations, a zero-shot prompt-
ing strategy was employed. The full ques-
tion text in Georgian, as presented in the
GeoLogicQA benchmark, was directly submit-
ted to each model without any additional in-
structions, examples, or specific formatting
cues. This approach was chosen to assess
the models’ inherent reasoning capabilities in
Georgian without external scaffolding. This
method provides a direct measure of how well
models understand and respond to novel, com-
plex questions solely based on their pre-trained
knowledge and reasoning faculties.

4.2.2 Metric
The performance of each LLM was quantified
by its accuracy, defined as the percentage of
correctly answered questions out of the total
100 questions in the GeoLogicQA benchmark.
A correct answer was determined by an exact

match with the ground truth solution. This bi-
nary metric provides a clear and unambiguous
measure of successful reasoning.

4.3 Results
The baseline performance of the evaluated
LLMs on the GeoLogicQA benchmark is pre-
sented in Table 1. For comparison, we in-
clude a human baseline derived from the per-
formance of 9th to 12th-grade students on the
adapted questions from the annual Kangaroo
Mathematics Competition in Georgia.3

Model Accuracy (%)
Gemini 2.5 Flash 83.00
DeepSeek-V3 74.00
Grok-3 67.00
GPT-4o 64.00
Human Baseline 47.0

Table 1: Baseline performance of evaluated LLMs
and human subjects on the GeoLogicQA bench-
mark.

4.4 Analysis and Error Breakdown
The results demonstrate a clear hierarchy in
performance among the evaluated LLMs, with
Gemini 2.5 Flash emerging as the top-
performing model, achieving an accuracy of
83.00%. Following closely were DeepSeek-
V3 (74.00%), Grok-3 (67.00%), and GPT-
4o (64.00%). A significant observation is
that all evaluated LLMs substantially sur-
passed the human baseline performance
of 47.0%. This indicates that current ad-
vanced LLMs possess a considerable advantage
over human subjects on these specific types of
logical and inferential reasoning tasks in Geor-
gian, despite the benchmark’s design to chal-
lenge models in a low-resource linguistic con-
text.

While all models performed well above the
human baseline, an analysis of specific errors
reveals common challenging categories and
unique failure modes. Syllogistic and Deduc-
tive Reasoning questions, as well as complex
Arithmetic Reasoning tasks, often proved to
be the most difficult for the models, aligning

3Data adapted from the official Geor-
gian Kangaroo Competition statistics, avail-
able at https://www.kenguru.ge/posts/
7700b50e-a89e-41c2-a6c8-24cab065b424.

https://www.kenguru.ge/posts/7700b50e-a89e-41c2-a6c8-24cab065b424
https://www.kenguru.ge/posts/7700b50e-a89e-41c2-a6c8-24cab065b424
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with the inherent complexity of these problem
types.

To illustrate, consider the following exam-
ples of observed errors:

• In a Syllogistic & Deductive Rea-
soning question about flipping five coins,
where “Five coins are lying on a table with
the ”heads” side up. At each step you
must turn over exactly three of the coins.
What is the least number of steps required
to have all the coins lying with the “tails”
side up?” all evaluated models failed
to provide the correct minimum number
of steps. This suggests a fundamental
challenge in multi-step combinatorial rea-
soning.

• For an Arithmetic Reasoning question
that asked to “What is the sum of the last
two digits of the product 1·2·3·4·5·4·3·2·
1?” Gemini 2.5 Flash and DeepSeek-
V3 correctly identified the answer,
while GPT-4o and Grok-3 were incor-
rect. This highlights varying levels of nu-
merical reasoning and attention to detail
among the models for specific arithmetic
properties.

• A Reading Comprehension with In-
ference question posed a scenario: “In
a cinema row, there are 23 animals sit-
ting. Each animal is either a beaver or
a kangaroo. Every animal has at least
one neighbor who is a kangaroo. What
is the maximum number of beavers there
can be in the row?” Interestingly, Grok-
3 was the only model to correctly
answer this question, whereas Gemini
2.5 Flash, GPT-4o, and DeepSeek-V3 all
failed. This particular instance points
to Grok-3’s potentially stronger ability
to handle complex conditional constraints
and infer maximum possibilities in a con-
strained environment.

• Another commonly challenging problem
involved determining a specific digit in
a product of “six consecutive numbers”
forming a 12-digit number of the form
’abb cdd cdd abb’. In this Arithmetic
Reasoning task, Gemini 2.5 Flash

and DeepSeek-V3 provided the cor-
rect answer, while GPT-4o and Grok-
3 did not. This error pattern indi-
cates that some models struggle more
with reverse engineering numerical prop-
erties or identifying specific digit values
within large products based on structural
constraints.

These examples underscore that while LLMs
show robust performance on average, specific
types of logical puzzles and intricate numerical
challenges continue to pose significant hurdles,
revealing areas for future model improvement
in handling complex reasoning in Georgian.

5 Discussion
5.1 Key Takeaways
State-of-the-art Large Language Models
(LLMs) consistently outperformed the human
baseline of 47.0% on GeoLogicQA, a bench-
mark for logical and inferential reasoning in
Georgian. Gemini 2.5 Flash led with 83.00%
accuracy, followed by DeepSeek-V3 (74.00%),
Grok-3 (67.00%), and GPT-4o (64.00%).
This demonstrates a significant advantage for
LLMs in structured logical and arithmetic
problems, even in a low-resource language like
Georgian. This performance gap underscores
the rapid advancements in LLM reasoning.
While LLMs excel at precise, multi-step
deduction, they still struggle with complex
multi-step combinatorial problems and nu-
anced inferential reading comprehension
requiring the synthesis of multiple constraints.
The varied performance across problem types
highlights that no single model is universally
superior, emphasizing the need for continued
refinement in intricate logical deductions
within low-resource language contexts.

5.2 Future Work
Building upon GeoLogicQA’s initial release,
our future work will focus on several key di-
rections to expand its utility and impact:

• Benchmark Expansion: We plan to
significantly expand the GeoLogicQA
dataset by curating hundreds of addi-
tional questions. This expansion will not
only increase statistical robustness but
also allow for the inclusion of new task
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categories. Potential additions include
questions testing understanding of figura-
tive language, detection of logical falla-
cies in natural arguments, and more com-
plex causal reasoning scenarios that re-
quire deeper narrative comprehension.

• Public Leaderboard and Commu-
nity Contributions: To foster contin-
uous progress and facilitate comparative
research, we intend to establish a publicly
accessible leaderboard. This platform will
allow researchers to submit their mod-
els’ performance on GeoLogicQA, track-
ing advancements in Georgian LLM rea-
soning over time. Furthermore, we will
actively encourage community contribu-
tions to the benchmark, inviting native
Georgian speakers, linguists, and AI re-
searchers to propose new questions and
reasoning challenges. This collaborative
approach will ensure the benchmark re-
mains dynamic, comprehensive, and re-
flective of the evolving needs of the Geor-
gian NLP community.

6 Conclusion
This paper introduces GeoLogicQA, the first
dedicated benchmark for evaluating logical
and inferential reasoning capabilities of Large
Language Models in the Georgian language.
Through meticulous manual curation and rig-
orous validation, GeoLogicQA provides a chal-
lenging set of 100 questions spanning syllo-
gistic deduction, inferential reading compre-
hension, common-sense reasoning, and arith-
metic problem-solving. Our baseline evalua-
tions demonstrate that contemporary LLMs,
notably Gemini 2.5 Flash, DeepSeek-V3, Grok-
3, and GPT-4o, significantly outperform hu-
man subjects on these complex Georgian rea-
soning tasks, highlighting the advanced logi-
cal capabilities of current models even in low-
resource linguistic contexts.

The creation and public release of
GeoLogicQA address a critical gap in
the evaluation infrastructure for Georgian
Natural Language Processing, moving beyond
superficial linguistic analysis to probe deeper
cognitive abilities. This benchmark will serve
as a vital resource for the research community,
enabling systematic tracking of progress, iden-

tifying specific areas for model improvement,
and fostering the development of more robust
and intelligent LLMs for Georgian. As we
continue to expand and refine GeoLogicQA,
we emphasize the urgent and ongoing need
for community-driven resource creation to
ensure equitable and comprehensive AI devel-
opment across the world’s diverse linguistic
landscape, ultimately paving the way for
truly multilingual and reasoning-capable AI
systems.

Limitations of GeoLogicQA
While a valuable step, GeoLogicQA has limita-
tions. Firstly, its modest size of 100 questions
limits statistical confidence compared to larger
benchmarks, hindering comprehensive analy-
sis across diverse logical challenges. Secondly,
GeoLogicQA primarily focuses on structured
logical, inferential, and arithmetic reasoning,
lacking coverage of broader human-like reason-
ing. It currently omits common-sense reason-
ing (e.g., social understanding, ethical dilem-
mas, logical fallacy detection) and deep un-
derstanding of Georgian cultural nuances like
idioms or proverbs. Finally, its reliance on
adapted Math competition questions, though
ensuring high cognitive demand, constrains
the scope to formalized problems with single
correct answers. This may not fully capture
the breadth of real-world, open-ended, am-
biguous, or creative reasoning challenges.
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