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Abstract

Egocentric sensing using wearable devices of-
fers a unique first-person perspective for driver
behavior analysis and monitoring, with the po-
tential to accurately capture rich multimodal
cues such as eye gaze, head motion, and hand
activity directly from the driver’s viewpoint. In
this paper, we introduce a multimodal driver be-
havior recognition framework utilizing Meta’s
Project Aria smart glasses, along with a novel,
synchronized egocentric driving dataset com-
prising high-resolution Red Green Blue (RGB)
video, gaze-tracking data, Inertial Measure-
ment Unit (IMU) signals, hand pose land-
marks, and YOLO-based semantic object de-
tections. All sensor data streams are tempo-
rally aligned and segmented into fixed-length
clips, each manually annotated with one of
six distinct driver behavior classes: Driving,
Left Mirror Check, Right Wing Mirror Check,
Rear-view Mirror Check, Mobile Phone Us-
age, and Idle. We design a Transformer-based
recognition framework in which each modal-
ity is processed by a specialized encoder and
then fused via Temporal Transformer layers
to capture cross-modal temporal dependencies.
To investigate the trade-off between accuracy
and efficiency for real-time deployment, we
introduce two model variants: EgoDriveMax,
optimized for maximum accuracy, and Ego-
DriveRT, designed for real-time performance.
These models achieve classification accuracies
of 98.6% and 97.4% respectively. Notably,
EgoDriveRT delivers strong performance de-
spite operating with only 104K parameters and
requiring just 2.65 ms per inference without
the use of a specialized graphical processing
unit—highlighting its potential for efficient,
real-time in-cabin driver monitoring.
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Figure 1: Project Aria Glasses. (Engel et al., 2023)

1 Introduction

Egocentric sensing offers powerful capabilities for
capturing and interpreting human behavior in com-
plex, real-world scenarios. In particular, the fu-
sion of diverse sensor modalities can provide a
rich, temporally aligned representation of user ac-
tions. However, integrating these heterogeneous
data streams in a unified framework while ensuring
real-time performance poses substantial technical
challenges. Driver behavior analysis and action
recognition provide a compelling and high-stakes
application domain to explore and evaluate such
systems.

In this work, we investigate the technical fea-
sibility of such an approach to driver behavior
recognition through a proof-of-concept system
using Meta’s Project Aria glasses (Engel et al.,
2023). Our approach integrates high-resolution
RGB video, eye gaze tracking, hand pose land-
marks, IMU data, and semantic object detections
to recognize six driver behaviors. We demonstrate

Proceedings of First International Workshop on Gaze Data and NLP associated with RANLP 2025,
pages 18-25, Varna, Bulgaria, Sep 12, 2025.

https://doi.org/10.26615/978-954-452-104-2-003



that effective multimodal fusion can be achieved
while maintaining real-time performance, introduc-
ing two Transformer-based architectures that ex-
plore the accuracy-efficiency trade-off: EgoDrive-
Max and EgoDriveRT.

Our contributions are threefold: (1) we demon-
strate the technical feasibility of real-time driver
behaviour recognition using multimodal egocentric
sensing, (2) we propose two efficient Transformer-
based architectures that achieve high accuracy un-
der strict latency and resource constraints, and (3)
we introduce a proof-of-concept style, egocentric
driving dataset comprising the aligned aforemen-
tioned data streams. Although our evaluation is
conducted in a controlled setting with a singular
participant and vehicle, the consistently strong per-
formance across diverse driver actions indicates
the potential for scalable deployment in real-world
driver monitoring systems.

2 Related Work

Egocentric Vision. A rapidly growing area within
computer vision, primarily driven by advances in
wearable and augmented reality technologies. Meta
are an established force in this domain, particularly
in the open-source ecosystem, due to major con-
tributions such as the Ego4D dataset (Grauman
et al., 2021), the Project Aria initiative itself (Engel
etal.,2023) and the HOT3D dataset (Banerjee et al.,
2024), among others. Interest has also begun to per-
meate through into the automotive research space
with implementations such as EgoFormer (Qazi
et al., 2024), EgoSpeed-Net (Ding et al., 2022) and
others paving the way for egocentric driver behav-
ior modeling and in-cabin understanding.

Beyond Meta and the automotive sector, the aca-
demic egocentric vision landscape includes sev-
eral influential datasets and methodologies. Epic-
Kitchens-100 (Damen et al., 2020) provides fine-
grained action recognition in kitchen environments,
while EGTEA Gaze+ (Li et al., 2018) combines
egocentric video with gaze data for activity under-
standing. Recent advances in egocentric representa-
tion learning include EgoVLM (Vinod et al., 2025)
for vision-language understanding and EgoNCE
(Lin et al., 2022) for self-supervised learning from
temporal relationships.

Multimodal Learning. Effective multimodal
learning requires architectures capable of aligning
and fusing heterogeneous data streams with varying
sampling rates and representational characteristics.
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Recent work has explored various fusion strate-
gies, from early concatenation to attention-based
approaches. Meta also possess a strong foothold
in this research community, with implementations
such as ’Reading in the Wild’ (Yang et al., 2025)
demonstrating transformer-based multimodal fu-
sion using RGB, head pose, and eye-tracking data,
for the recognition of the reading action in a variety
of scenarios. Also created by Meta’s researchers,
Moon et al. (2023)’s IMU2CLIP work represents a
significant advance in aligning IMU sensor data
with textual representations through contrastive
learning, displaying how motion sensors can be
integrated into multimodal frameworks and provid-
ing a potential avenue for resource efficient human
action recognition via motion-to-text conversion.

Many of the recent advancements in this area
have been driven by either transformer-based archi-
tectures or contrastive learning focused approaches.
Contrastive Language-Image Pretraining (CLIP)
(Radford et al., 2021) and its variants demon-
strate effective cross-modal alignment through con-
trastive objectives, while works like VLMo (Bao
et al., 2022) explore *Mixture-of-Modality-Experts’
based approaches for vision-language tasks.

Automotive Action Recognition. Action
Recognition implementations for automotive appli-
cations in the academic world have traditionally re-
lied on exocentric cameras and/or single-modality
approaches. Martin et al. (2019)’s Drive&Act
dataset represents the most comprehensive effort in
this space, utilizing multiple cameras types along-
side pose estimation for robust driver behavior
recognition in numerous lighting conditions from
the third-person perspective. Furthermore, several
other works such as those from Lin et al. (2021)
and Li et al. (2024) explore alternative methodolo-
gies such ss RGB-D cameras and mmWave radars
for driver-centric behavior identification.

Hoskeri (2023)’s proof-of-concept work comes
closest to our approach, demonstrating the feasibil-
ity of using smart glasses with forward-facing cam-
eras and IMU sensors for basic driver monitoring.
Their controlled lab-based study achieved strong
performance (93-99% F1) on limited steering and
head movement patterns, establishing initial feasi-
bility but leaving open questions about multimodal
integration and real-world deployment.

However, the landscape of driver behavior recog-
nition also includes a wide range of non-academic
implementations. In the commercial sector, Tesla’s



cabin-facing camera system and Seeing Machines’
Driver Monitoring Systems (DMS) represent cur-
rent industry standards, typically achieving 95%+
accuracy for basic attention detection but with
limited behavioral granularity. Smart Eye’s Al-
powered systems demonstrate real-time gaze track-
ing capabilities, though primarily for attention mon-
itoring rather than detailed action recognition.

Finally, the challenge of achieving real-time per-
formance with such systems is an extremely per-
tinent one and has driven research into numerous
efficiency focused architectures, with those from
the commercial domain subject to much more strin-
gent regulations than those from academia.

3 EgoDrive Dataset

To investigate the technical feasibility of multi-
modal egocentric driver behavior recognition, we
developed a proof-of-concept style dataset. Our
dataset design prioritizes technical requirements
over scale and scope, with the resulting dataset
potentially serving as a template for future multi-
modal egocentric behavioral analysis studies cap-
tured using Project Aria (Engel et al., 2023).
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Figure 2: Dataset Creation Flowchart.

3.1 Data Gathering

As previously stated, all data was captured using
Meta’s Project Aria glasses as a single, integrated
sensing platform. A major advantage of this ap-
proach is its inherent temporal synchronization
across modalities, simplifying the reliable align-
ment of modality-specific timestamps by ensuring
all data is referenced to a common device-time. We
selected RGB camera (15fps), eye-tracking cam-
eras (30fps), Simultaneous Localization and Map-
ping (SLAM) cameras (15fps), and IMUs (800Hz
and 1KHz) based on their complementary roles
in behavioral analysis: visual context, attention
tracking, spatial awareness, and motion dynam-
ics respectively. All recording adhered to General
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Data Protection Regulations (GDPR) , including
informed consent where feasible, anonymization in
post-processing, and secure data handling (GDPR,
2016).

A controlled, single-participant approach allows
for the isolation of technical challenges in mul-
timodal processing for a proof-of-concept based
study, without confounding factors from inter-
participant variability. Following the culmination
of the data capture process, hand tracking and gaze
estimates were obtained through Meta’s Machine
Perception Services (MPS).

3.2 Dataset Creation

Creating a temporally aligned multimodal dataset
from asynchronous sensor streams poses several
technical challenges, which our methodology had
to overcome.

RGB timestamps are designated as the primary
temporal reference. IMU data—comprising 6D
input from both the accelerometer(3D) and gyro-
scope(3D) —is linearly interpolated to match the
RGB frame rate, resulting in a standardized sample
shape of (Sequence Length, IMU Hz/RGB FPS, 6).
Gaze data, sampled at twice the RGB rate, is tem-
porally aligned using a simplified, mean nearest-
neighbor matching strategy. This produces a single
(X, y) pixel-coordinate gaze point per RGB frame
and results in a sample shape of (Sequence Length,
2). Hand landmark data, returned by Meta’s Ma-
chine Perception Services (MPS), at the same sam-
pling rate as the RGB stream, required no resam-
pling. Each sample is thus represented with a shape
of (Sequence Length, 8), where each §-dimensional
vector corresponds to the x-y positions of the left
and right wrists and palms.

This alignment pipeline maintains temporal co-
herence across modalities, while preserving each
sensor’s native sampling behavior. In addition, se-
mantic context was incorporated through object de-
tections generated by a custom-trained YOLOv11
model tailored for in-cabin environments (see Sec-
tion 4 for training details). Each frame’s detections
are encoded as a fixed-length feature vector, with
details limited to four key objects. Each of the four
objects was represented using five dimensions: a
binary presence indicator (0 or 1), the x and y coor-
dinates of the top-left corner of the bounding box,
followed by the bounding box’s height and width.



Figure 3: Annotated Dataset Samples

Following on from the dataset’s compilation,
manual frame-by-frame annotation mapped frame
indices to six behaviorally relevant classes: Driv-
ing, Left Wing Mirror Check, Right Wing Mirror
Check, Rear-view Mirror Check, Mobile Phone
Usage, and Idle. These classes were selected to
represent distinct attention patterns and physical
actions that create differentiable multimodal sig-
natures. Each training sample spans 32 frames
(2.13s), with longer actions segmented into multi-
ple samples and shorter actions padded to maintain
consistent temporal context. The final dataset, pro-
cessed for training, consisted of 2,448 samples,
with a real-world consistent bias towards the 'Driv-
ing’ action, with the exact class distribution visible
in Figure 4.

Driving (1464)

Idle (206)
Phone (164)

Rearview (260)

Right Wing (164)

Figure 4: Dataset Class Distribution

4 Methodology

To address the challenge of fusing asynchronous
and heterogeneous sensor streams, we adopt a mod-
ular processing pipeline centred around modality-
specific encoders and transformer blocks. Full
training methodologies for both the final models

21

as well as the in-cabin object detection model are
detailed below.

4.1 Object Detection Model

As previously stated, object detections for this im-
plementation resulted from the training of a cus-
tom object detection model. Training frames were
randomly sampled from the RGB streams of the
main dataset and manually annotated with eight
object classes: Right Wing Mirror, Left Wing Mir-
ror, Rearview Mirror, Gear Stick, Infotainment
Unit, Speedometer, Steering Wheel, and Mobile
Phone. This process resulted in a dataset of over
4,000 annotated images. Once annotation was com-
plete, the dataset was divided into an 80/10/10
train/validation/test split. A YOLOv11 backbone
for fine-tuning was selected for its balance of effi-
ciency and performance, achieving a precision of
96.5% and a mAP50-95 of 88.1% after training.

4.2 Model Architectures

We designed a Transformer-based architecture to
address the core technical challenge of fusing het-
erogeneous sensor streams with different sampling
rates and representational characteristics. Our ap-
proach processes each modality through special-
ized, unimodal encoders that extract meaningful
features, which are then projected into a shared
embedding space and passed through Temporal
Transformer blocks for cross-modal reasoning.

Each sensor stream requires tailored processing
to handle its unique characteristics. The RGB en-
coder processes visual sequences (B, T, C, H, W) us-
ing a pretrained Swin-Tiny Video Transformer (Liu
et al., 2021) for spatial features, complemented by
a ResNet-18 (He et al., 2015) motion stream com-
puting frame differences. Both streams are fused
through projection networks and temporal 1D con-
volutions.

The gaze encoder projects normalized (0-1) x,y
coordinates through linear layers, also followed by
1D convolutions, while the hand landmark encoder
handles missing landmarks through learnable re-
placement vectors and validity masks, processing
three parallel streams (coordinates, masks, missing-
ness patterns) through feedforward networks and
temporal attention.

Finally, object detection features undergo lin-
ear projection and 1D convolution for temporal
modeling, while the IMU encoder processes sig-
nal through stacked 1D Convolutional Neural Net-
works (CNN) with pooling, followed by Gated Re-
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Figure 5: EgoDriveMax Architecture

current Unit (GRU) (Chung et al., 2014) layers for
long-term modeling.

Projected features from all available modalities
are concatenated and processed through one or
more (stacked) Temporal Transformer blocks with
multi-head attention, enabling the model to learn
complex dependencies between behavioral cues
across different sensor streams. A subsequent Lay-
erNorm module is used to stabilize outputs.

4.3 Architectural Variants

To explore the accuracy-efficiency trade-off criti-
cal for real-time deployment, we developed two
architectural variants that demonstrate different ap-
proaches to multimodal processing:

As shown in Table 1, the EgoDriveMax variant
prioritizes absolute accuracy with 2 Transformer
blocks, 4 attention heads, 256-dimensional features,
and full RGB processing, totaling 42M parameters,
while EgoDriveRT instead targets real-time per-
formance with 1 block, 2 heads, 32-dimensional
features, and RGB encoder removal, resulting in
just 104K parameters - a 400x parameter reduction.
Dropout was standardized across both models at a
value of 0.1.

Model Blocks Heads Feature Dim. RGB

Max 2 4 256 v
RT 1 2 32 X

Table 1: Configuration details for the Max and RT model
variants.

4.4 Training

All models were trained using a 60/20/20
train/validation/test split for a maximum of 20
epochs, with early stopping (patience = 5) to pre-
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vent overfitting. Optimization was performed using
the Adam optimizer (Kingma and Ba, 2017) with
a learning rate of 1 x 104, Categorical Cross-
Entropy loss was applied due to the multi-class
nature of the task. To address class imbalance,
loss weighting was used to increase the penalty for
misclassifying underrepresented classes.

EgoDriveMax was trained on a single NVIDIA
A100 GPU using Google Colab, while EgoDriveRT
was trained locally on an Apple M4 chip. All train-
ing metrics and experiment logs were tracked using
Weights & Biases (W&B).

Figure 6 shows the validation accuracy curve for
EgoDriveRT, illustrating stable and smooth conver-
gence. The EgoDriveMax model exhibited compa-
rable convergence behavior during training.

Validation Loss vs. Training Step

1.4 —e— Validation Loss
1.2
1.04
0.8

0.6

Validation Loss

0.4 1

0.2

300 400 500

Step

100 200

Figure 6: EgoDriveRT Validation Curve

5 Results

5.1 Proof-of-Concept Validation

We evaluate our approach to assess the technical
feasibility of real-time multimodal driver behavior
recognition. Our results demonstrate that effective
multimodal fusion can achieve strong performance
while maintaining practical inference constraints.
Table 2 shows our primary finding: the
lightweight EgoDriveRT model achieves 97.4%



accuracy with just 2.65ms inference time on Ap-
ple’s M4 chip using the Metal Performance Shaders
framework, compared to EgoDriveMax’s 98.6% ac-
curacy at 1595ms.

F1 Params Inf Time
42M  1595ms
104K 2.65ms

Model Acc
EgoDriveMax 98.6 % 98.0%
EgoDriveRT 97.4% 96.6%

Table 2: Model variant test results.

This 400x parameter reduction (104K vs 42M)
with minimal accuracy loss demonstrates that effi-
cient multimodal architectures can capture essential
behavioral patterns without requiring computation-
ally expensive visual processing. Inference results
displayed via annotated results from the EgoDrive-
Max model can be viewed below in Figure 7.

Figure 7: Example Action Detections

5.2 Per-Action Analysis

Table 3 displays the individual per-action results us-
ing both model variants, illustrating some interest-
ing findings. The RT model’s superior performance
on Left Mirror Check (100% vs 96.9%) suggests
that for certain actions, the simplified architecture
may avoid overfitting to visual features while better
leveraging complementary modalities like gaze and
head motion.

The consistently strong performance across all
actions using both models supports the effective-
ness of the core technical approach for distinguish-
ing behaviorally relevant driver actions. However,
this performance may also be partially influenced
by the controlled scope of the study; in broader,
more diverse scenarios, a decline in performance
would be a reasonable expectation.

Action Acc Prec Rec Model
Left Wing Mirror  96.9% 100% 96.9% Max
Left Wing Mirror 100% 100% 100% RT

Right Wing Mirror97.4% 100% 97.44% Max

Right Wing Mirror 94.9% 100% 94.9% RT
Rearview Mirror 97.9% 97.9% 97.9% Max
Rearview Mirror  91.2% 100% 91.2% RT
Mobile Phone 94.1% 94.1% 94.1% Max
Mobile Phone 96.3% 89.7% 96.3% RT
Driving 99.3% 98.7% 99.3% Max
Driving 98.7% 97.3% 98.7% RT
Idle 100% 100% 100% Max
Idle 97.1% 97.1% 97.1% RT

Table 3: Model variant test results.

5.3 Ablation Study

To evaluate the contribution of each modality to
overall performance, we conducted five additional
training runs of the EgoDriveMax model, each time
removing a singular modality. Due the complexity
and robustness introduced by the multimodal setup,
the model maintained strong performance across all
ablations. Nonetheless, several meaningful trends
emerged.

Modalities Acc Prec Rec F1
All 98.6% 98.5% 97.6% 98.02%
w/o Obj Dets 97.6% 97.4% 96.5% 96.9%

w/o Gaze 98.0% 97.6% 97.2% 97.4%
w/o RGB 97.4% 96.6% 97.3% 96.9%
w/o Hands  98.2% 98.0% 97.2% 97.6%
w/o IMU 97.4% 96.3% 97.3% 96.7%

Table 4: Ablation test results across different modality
combinations.

As expected, the configuration using all available
modalities achieved the highest scores across all
evaluation metrics. Analyzing the F1 scores from
the ablation runs, the IMU stream was found to be
the most influential, providing the most discrimi-
native features to the model. This was followed
by object detections and RGB video frames, both
of which contributed significantly. In contrast, the
removal of gaze features and hand landmarks led
to only minor drops in performance. This suggests
that these modalities may be partially redundant,
with their information content potentially approxi-
mated by other inputs—e.g., gaze direction could
be inferred from a combination of object detection



bounding box locations and IMU-based motion
patterns, reducing the utility of explicit gaze data.

6 Conclusions and Limitations

This work demonstrates the technical feasibility
of real-time multimodal egocentric driver behavior
recognition using wearable sensors. The most sig-
nificant finding is that our lightweight EgoDriveRT
model achieves near-optimal performance (97.4%
accuracy) with 400x fewer parameters than the
EgoDriveMax model and sub-3ms inference times.
This efficiency suggests that the rich behavioral
information captured through gaze tracking, hand
pose, IMU data, and semantic object detection may
be sufficient for accurate driver action recognition
without computationally expensive visual process-
ing.

Our single-participant controlled study validates
the core technical approach, though inherently lim-
its the generalizability of findings to broader pop-
ulations and while the results certainly establish
technical feasibility, real-world deployment would
require validation across diverse drivers, vehicles,
and environmental conditions, as well as an ex-
panded action set, to ensure robust performance.

7 Future Work

Future research should prioritize multi-participant
validation to capture inter-individual variability and
explore on-device deployment strategies to pre-
serve user privacy. The modular design also opens
opportunities for personalization and continuous
learning in long-term deployments. Furthermore,
should future generations of the Project Aria de-
vice include onboard compute, this work presents
the foundations for the development of a fully self-
contained driver monitoring system. Finally, the
architectural insights and dataset methodology pre-
sented here offer a strong foundation for building
scalable, efficient, and context-aware egocentric
driver monitoring systems.
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