Jing Sha


2025

pdf bib
Enhancing Chain-of-Thought Reasoning via Neuron Activation Differential Analysis
Yiru Tang | Kun Zhou | Yingqian Min | Xin Zhao | Jing Sha | Zhichao Sheng | Shijin Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Despite the impressive chain-of-thought(CoT) reasoning ability of large language models (LLMs), its underlying mechanisms remains unclear. In this paper, we explore the inner workings of LLM’s CoT ability via the lens of neurons in the feed-forward layers. We propose an efficient method to identify reasoning-critical neurons by analyzing their activation patterns under reasoning chains of varying quality. Based on it, we devise a rather simple intervention method that directly stimulates these reasoning-critical neurons, to guide the generation of high-quality reasoning chains. Extended experiments validate the effectiveness of our method and demonstrate the critical role these identified neurons play in CoT reasoning.

pdf bib
MMATH: A Multilingual Benchmark for Mathematical Reasoning
Wenyang Luo | Xin Zhao | Jing Sha | Shijin Wang | Ji-Rong Wen
Findings of the Association for Computational Linguistics: EMNLP 2025

2022

pdf bib
Continual Pre-training of Language Models for Math Problem Understanding with Syntax-Aware Memory Network
Zheng Gong | Kun Zhou | Xin Zhao | Jing Sha | Shijin Wang | Ji-Rong Wen
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we study how to continually pre-train language models for improving the understanding of math problems. Specifically, we focus on solving a fundamental challenge in modeling math problems, how to fuse the semantics of textual description and formulas, which are highly different in essence. To address this issue, we propose a new approach called COMUS to continually pre-train language models for math problem understanding with syntax-aware memory network. In this approach, we first construct the math syntax graph to model the structural semantic information, by combining the parsing trees of the text and formulas, and then design the syntax-aware memory networks to deeply fuse the features from the graph and text. With the help of syntax relations, we can model the interaction between the token from the text and its semantic-related nodes within the formulas, which is helpful to capture fine-grained semantic correlations between texts and formulas. Besides, we devise three continual pre-training tasks to further align and fuse the representations of the text and math syntax graph. Experimental results on four tasks in the math domain demonstrate the effectiveness of our approach. Our code and data are publicly available at the link: bluehttps://github.com/RUCAIBox/COMUS.