2025
pdf
bib
abs
Évaluation de la description automatique de scènes audio par la tâche d’Audio Question Answering
Marcel Gibier
|
Raphaël Duroselle
|
Pierre Serrano
|
Olivier Boëffard
|
Jean-François Bonastre
Actes de l'atelier Évaluation des modèles génératifs (LLM) et challenge 2025 (EvalLLM)
Nous explorons l’évaluation de la tâche de description automatique de scènes audio à travers une approche indirecte basée sur la réponse aux questions sur des documents audio. En l’absence de métriques d’évaluation robustes et automatiques pour la tâche de description automatique de scènes audio, nous nous appuyons sur le benchmark MMAU, un jeu de questions à choix multiple sur des extraits audio variés. Nous introduisons une architecture en cascade qui dépasse les performances de certains modèles de référence de taille comparable. Toutefois, nos résultats mettent en évidence des limitations du benchmark MMAU, notamment un biais textuel et une capacité limitée à évaluer l’intégration conjointe des informations relatives à la parole et aux événements sonores. Nous suggérons des pistes d’amélioration pour rendre les évaluations futures plus fidèles aux enjeux de la tâche de description automatique de scènes audio.
2020
pdf
bib
abs
Adaptation de domaine non supervisée pour la reconnaissance de la langue par régularisation d’un réseau de neurones (Unsupervised domain adaptation for language identification by regularization of a neural network)
Raphaël Duroselle
|
Denis Jouvet
|
Irina Illina
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 1 : Journées d'Études sur la Parole
Les systèmes automatiques d’identification de la langue subissent une dégradation importante de leurs performances quand les caractéristiques acoustiques des signaux de test diffèrent fortement des caractéristiques des données d’entraînement. Dans cet article, nous étudions l’adaptation de domaine non supervisée d’un système entraîné sur des conversations téléphoniques à des transmissions radio. Nous présentons une méthode de régularisation d’un réseau de neurones consistant à ajouter à la fonction de coût un terme mesurant la divergence entre les deux domaines. Des expériences sur le corpus OpenSAD15 nous permettent de sélectionner la Maximum Mean Discrepancy pour réaliser cette mesure. Cette approche est ensuite appliquée à un système moderne d’identification de la langue reposant sur des x-vectors. Sur le corpus RATS, pour sept des huit canaux radio étudiés, l’approche permet, sans utiliser de données annotées du domaine cible, de surpasser la performance d’un système entraîné de façon supervisée avec des données annotées de ce domaine.