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Preface: General Chair

Welcome to the 51st Annual Meeting of the Association for Computational Linguistics in Sofia, Bulgaria!
The first ACL meeting was held in Denver in 1963 under the name AMTCL. This makes ACL one of the
longest running conferences in computer science. This year we received a record total number of 1286
submissions, which is a testament to the continued and growing importance of computational linguistics
and natural language processing.

The success of an ACL conference is made possible by the dedication and hard work of many people. 1
thank all of them for volunteering their time and energy in service to our community.

Priscilla Rasmussen, the ACL Business Manager, and Graeme Hirst, the treasurer, did most of the
groundwork in selecting Sofia as the conference site, went through several iterations of planning and
shouldered a significant part of the organizational work for the conference. It was my first exposure to
the logistics of organizing a large event and I was surprised at how much expertise and experience is
necessary to make ACL a successful meeting.

Thanks to Svetla Koeva and her team for their work on local arrangements, including social activities
(Radka Vlahova, Tsvetana Dimitrova, Svetlozara Lesseva), local sponsorship (Stoyan Mihov, Rositsa
Dekova), conference handbook (Nikolay Genov, Hristina Kukova), web site (Tinko Tinchev, Emil
Stoyanov, Georgi lliev), local exhibits (Maria Todorova, Ekaterina Tarpomanova), internet, wifi and
equipment (Martin Yalamov, Angel Genov, Borislav Rizov) and student volunteer management (Kalina
Boncheva). Perhaps most importantly, Svetla was the liaison to the professional conference organizer
AIM Group, a relationship that is crucial for the success of the conference. Doing the local arrangements
is a fulltime job for an extended period of time. We are lucky that we have people in our community who
are willing to provide this service without compensation.

The program co-chairs Pascale Fung and Massimo Poesio selected a strong set of papers for the main
conference and invited three great keynote speakers, Harald Baayen, Chantal Prat and Lars Rasmussen.
Putting together the program of the top conference in our field is a difficult job and I thank Pascale and
Massimo for taking on this important responsibility.

Thanks are also due to the other key members of the ACL organizing committees: Aoife Cahill and
Qun Liu (workshop co-chairs); Johan Bos and Keith Hall (tutorial co-chairs); Miriam Butt and Sarmad
Hussain (demo co-chairs); Steven Bethard, Preslav Nakov and Feiyu Xu (faculty advisors to the student
research workshop); Anik Dey, Eva Vecchi, Sebastian Krause and Ivelina Nikolova (co-chairs of the
student research workshop); Leo Wanner (mentoring chair); and Anisava Miltenova, Ivan Derzhanski
and Anna Korhonen (publicity co-chairs).

I am particularly indebted to Roberto Navigli, Jing-Shin Chang and Stefano Faralli for producing the
proceedings of the conference, a bigger job than usual because of the large number of submissions and
the resulting large number of acceptances.

The ACL conference and the ACL organization benefit greatly from the financial support of our sponsors.
We thank the platinum level sponsor, Baidu; the three gold level sponsors; the three silver level sponsors;
and six bronze level sponsors. Three other sponsors took advantage of more creative options to assist us:
Facebook sponsored the Student Volunteers; IBM sponsored the Best Student Paper Award; and SDL
sponsored the conference bags. We are grateful for the financial support from these organizations.

Finally, I would like to express my appreciation to the area chairs, workshop organizers, tutorial
presenters and reviewers for their participation and contribution.

Of course, the ACL conference is primarily held for the people who attend the conference, including the



authors. I would like to thank all of you for your participation and wish you a productive and enjoyable
meeting in Sofia!

ACL 2013 General Chair
Hinrich Schuetze, University of Munich
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Preface: Programme Committee Co-Chairs

Welcome to the 2013 Conference of the Association for Computational Linguistics! Our community
continues to grow, and this year’s conference has set a new record for paper submissions. We received
1286 submissions, which is 12% more than the previous record; we are particularly pleased to see a
striking increase in the number of short papers submitted - 624, which is 21.8% higher than the previous
record set in 2011.

Another encouraging trend in recent years is the increasing number of aspects of language processing,
and forms of language, of interest to our community. In order to reflect this greater diversity, this year’s
conference has a much larger number of tracks than previous conferences, 26. Consequently, many more
area chairs and reviewers were recruited than in the past, thus involving an even greater subset of the
community in the selection of the program. We feel this, too, is a very positive development. We thank
the area chairs and reviewers for their hard work.

A key innovation introduced this year is the presentation at the conference of sixteen papers accepted by
the new ACL journal, Transactions of the Association for Computational Linguistics (TACL). We have
otherwise maintained most of the innovations introduced in recent years, including accepting papers
accompanied by supplemental materials such as corpora or software.

Another new practice this year is the presence of an industrial keynote speaker in addition to the two
traditional keynote speakers. We are delighted to have as invited speakers two scholars as distinguished as
Prof. Harald Baayen of Tuebingen and Alberta and Prof. Chantel Prat from the University of Wisconsin.
Prof. Baayen will talk about using eye-tracking to study the semantics of compounds, an issue of great
interest for work on distributional semantics. Prof. Prat will talk about research studying language in
bilinguals using methods from neuroscience. The industrial keynote speaker, Dr. Lars Rasmussen from
Facebook, will talk about the new graph search algorithm recently announced by the company. Last, but
not least, the recipient of this year’s ACL Lifetime Achievement Award will give a plenary lecture during
the final day of the conference.

The list of people to thank for their contribution to this year’s program is very long. First of all we
wish to thank the authors who submitted top quality work to the conference; we would not have such
a strong program without them, nor without the hard work of area chairs and reviewers, who enabled
us to make often very difficult choices and to provide valuable feedback to the authors. As usual, Rich
Gerber and the START team gave us crucial help with an amazing speed. The general conference chair
Hinrich Schuetze provided valuable guidance and kept the timetable ticking along. We thank the local
arrangements committee headed by Svetla Koeva, who played a key role in finalizing the program. We
also thank the publication chairs, Jing-Shin Chang and Roberto Navigli, and their collaborator Stefano
Faralli, who together produced this volume; and Priscilla Rasmussen, Drago Radev and Graeme Hirst,
who provided enormously useful guidance and support. Finally, we wish to thank previous program
chairs, and in particular John Carroll, Stephen Clark, and Jian Su, for their insight on the process.

We hope you will be as pleased as we are with the result and that you’ll enjoy the conference in Sofia
this Summer.

ACL 2013 Program Co-Chairs
Pascale Fung, Hong-Kong University of Science and Technology
Massimo Poesio, University of Essex
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Invited Talk

When parsing makes things worse: An eye-tracking study of English compounds
Harald Baayen
Seminar fiir Sprachwissenschaft, Eberhard Karls University, Tuebingen

Abstract

Compounds differ in the degree to which they are semantically compositional (compare, e.g., "carwash",
"handbag", "beefcake" and "humbug"). Since even relatively transparent compounds such as "carwash"
may leave the uninitiated reader with uncertainty about the intended meaning (soap for washing cars? a
place where you can get your car washed?), an efficient way of retrieving the meaning of a compound is
to use the compound’s form as an access key for its meaning.

However, in psychology, the view has become popular that at the earliest stage of lexical processing
in reading, a morpho-orthographic decomposition into morphemes would necessarily take place. Theo-
rists ascribing to obligatory decomposition appear to have some hash coding scheme in mind, with the
constituents providing entry points to a form of table look-up (e.g., Taft & Forster, 1976).

Leaving aside the question of whether such a hash coding scheme would be computationally efficient
as well as the question how the putative morpho-orthographic representations would be learned, my
presentation focuses on the details of lexical processing as revealed by an eye-tracking study of the
reading of English compounds in sentences.

A careful examination of the eye-tracking record with generalized additive modeling (Wood, 2006),
combined with computational modeling using naive discrimination learning (Baayen, Milin, Filipovic,
Hendrix, & Marelli, 2011) revealed that how far the eye moved into the compound is co-determined by
the compound’s lexical distributional properties, including the cosine similarity of the compound and its
head in document vector space (as measured with latent semantic analysis, Landauer & Dumais, 1997).
This indicates that compound processing is initiated already while the eye is fixating on the preceding
word, and that even before the eye has landed on the compound, processes discriminating the meaning
of the compound from the meaning of its head have already come into play.

Once the eye lands on the compound, two very different reading signatures emerge, which critically
depend on the letter trigrams spanning the morpheme boundary (e.g., "ndb" and "dba" in "handbag").
From a discrimination learning perspective, these boundary trigrams provide the crucial (and only) or-
thographic cues for the compound’s (idiosyncratic) meaning. If the boundary trigrams are sufficiently
strongly associated with the compound’s meaning, and if the eye lands early enough in the word, a single
fixation suffices. Within 240 ms (of which 80 ms involve planning the next saccade) the compound’s
meaning is discriminated well enough to proceed to the next word.

However, when the boundary trigrams are only weakly associated with the compound’s meaning, multi-
ple fixations become necessary. In this case, without the availability of the critical orthographic cues, the
eye-tracking record bears witness to the cognitive system engaging not only bottom-up processes from
form to meaning, but also top-down guessing processes that are informed by the a-priori probability of
the head and the cosine similarities of the compound and its constituents in semantic vector space.

These results challenge theories positing obligatory decomposition with hash coding, as hash coding

predicts insensitivity to semantic transparency, contrary to fact. Our results also challenge theories posit-

ing blind look-up based on compounds’ orthographic forms. Although this might be computationally

efficient, the eye can’t help seeing parts of the whole. In summary, reality is much more complex, with

deep pre-arrival parafoveal processing followed by either efficient discrimination driven by the boundary
XV



trigrams (within 140 ms), or by an inefficient decompositional process (requiring an additional 200 ms)
that seeks to make sense of the conjunction of head and modifier.
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Invited Talk

The Natural Language Interface of Graph Search
Lars Rasmussen
Facebook Inc

Abstract

The backbone of the Facebook social network service is an enormous graph representing hundreds of
types of nodes and thousands of types of edges. Among these nodes are over 1 billion users and 250
billion photos. The edges connecting these nodes have exceeded 1 trillion and continue to grow at an
incredible rate. Retrieving information from such a graph has been a formidable and exciting task. Now
it is possible for you to find, in an aggregated manner, restaurants in a city that your friends have visited,
or photos of people who have attended college with you, and explore many other nuanced connections
between the nodes and edges in our graph given that such information is visible to you.

Graph Search Beta, launched early this year, is a personalized semantic search engine that allows users
to express their intent in natural language. It seeks answers through the traversal of relevant graph edges
and ranks results by various signals extracted from our data. You can find “tv shows liked by people who
study linguistics* by issuing this query verbatim and, for the entertainment value, compare the results
with “tv shows liked by people who study computer science®. Our system is built to be robust to many
varied inputs, such as grammatically incorrect user queries or traditional keyword searches. Our query
suggestions are always constructed in natural language, expressing the precise intention interpreted by
our system. This means users would know in advance whether the system has correctly understood their
intent before selecting any suggestion. The system also assists users with auto-completions, demonstrat-
ing what kinds of queries it can understand.

The development of the natural language interface encountered an array of challenging problems. The
grammar structure needed to incorporate semantic information in order to translate an unstructured query
into a structured semantic function, and also use syntactic information to return grammatically meaning-
ful suggestions. The system required not only the recognition of entities in a query, but also the resolution
of entities to database entries based on proximity of the entity and user nodes. Semantic parsing aimed to
rank potential semantics including those that may match the immediate purpose of the query along with
other refinements of the original intent. The ambiguous nature of natural language led us to consider
how to interpret certain queries in the most sensible way. The need for speed demanded state-of-the-art
parsing algorithms tailored for our system. In this talk, I will introduce the audience to Graph Search
Beta, share our experience in developing the technical components of the natural language interface, and
bring up topics that may be of interesting research value to the NLP community.
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Invited Talk

Individual Differences in Language and Executive Processes: How the Brain Keeps Track of
Variables
Chantel S. Prat
University of Washington

Abstract

Language comprehension is a complex cognitive process which requires tracking and integrating multi-
ple variables. Thus, it is not surprising that language abilities (e.g., reading comprehension) vary widely
even in the college population, and that language and general cognitive abilities (e.g., working memory
capacity) co-vary. Although it has been widely accepted that improvements in general cognitive abili-
ties enable (or give rise to) increased linguistic skills, the fact that individuals who develop bilingually
outperform monolinguals in tests of executive functioning provides evidence of a situation in which a
particular language experience gives rise to improvements in general cognitive processes. In this talk, I
will describe two converging lines of research investigating individual differences in working memory
capacity and reading ability in monolinguals and improved executive functioning in bilinguals. Results
from these investigations suggest that the functioning of the fronto-striatal loops can explain the relation
between language and non-linguistic executive functioning in both populations. I then discuss evidence
suggesting that this system may function to track and route “variables” into prefrontal control structures.
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A Shift-Reduce Parsing Algorithm for Phrase-based String-to-Dependency Transla-
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Joint Event Extraction via Structured Prediction with Global Features
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Graph-based Local Coherence Modeling
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port Group Chatrooms
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(13:45 -15:00) LP 2b
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Adapting Discriminative Reranking to Grounded Language Learning
Joohyun Kim and Raymond Mooney

Universal Conceptual Cognitive Annotation (UCCA)
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David Bamman, Brendan O’Connor and Noah A. Smith

Scalable Decipherment for Machine Translation via Hash Sampling
Sujith Ravi
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Is a 204 cm Man Tall or Small ? Acquisition of Numerical Common Sense from the Web
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Extracting bilingual terminologies from comparable corpora
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Models of Semantic Representation with Visual Attributes
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Learning to lemmatise Polish noun phrases
Adam Radziszewski

LP - NLP for the Web and Social Media
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Shane Bergsma and Benjamin Van Durme
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Aobo Wang and Min-Yen Kan
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Dongdong Zhang, Shuangzhi Wu, Nan Yang and Mu Li

LP - Word Segmentation

Discriminative Learning with Natural Annotations: Word Segmentation as a Case Study
Wenbin Jiang, Meng Sun, Yajuan Lii, Yating Yang and Qun Liu

Graph-based Semi-Supervised Model for Joint Chinese Word Segmentation and Part-of-
Speech Tagging

Xiaodong Zeng, Derek F. Wong, Lidia S. Chao and Isabel Trancoso
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An Infinite Hierarchical Bayesian Model of Phrasal Translation
Trevor Cohn and Gholamreza Haffari

Additive Neural Networks for Statistical Machine Translation
lemao liu, Taro Watanabe, Eiichiro Sumita and Tiejun Zhao
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Conghui Zhu, Taro Watanabe, Eiichiro Sumita and Tiejun Zhao
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Part-of-Speech Induction in Dependency Trees for Statistical Machine Translation
Akihiro Tamura, Taro Watanabe, Eiichiro Sumita, Hiroya Takamura and Manabu Okumura
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Statistical Machine Translation Improves Question Retrieval in Community Question An-
swering via Matrix Factorization
Guangyou Zhou, Fang Liu, Yang Liu, Shizhu He and Jun Zhao

LP - Semantics

Improved Lexical Acquisition through DPP-based Verb Clustering
Roi Reichart and Anna Korhonen

Semantic Frames to Predict Stock Price Movement
Boyi Xie, Rebecca J. Passonneau, Leon Wu and Germén G. Creamer

Density Maximization in Context-Sense Metric Space for All-words WSD
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Karl Moritz Hermann and Phil Blunsom

Margin-based Decomposed Amortized Inference
Gourab Kundu, Vivek Srikumar and Dan Roth

Semi-Supervised Semantic Tagging of Conversational Understanding using Markov Topic
Regression
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Kevin Knight

Grounded Unsupervised Semantic Parsing
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Automatic detection of deception in child-produced speech using syntactic complexity fea-
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Maria Yancheva and Frank Rudzicz

Sentiment Relevance
Christian Scheible and Hinrich Schiitze

Predicting and Eliciting Addressee’s Emotion in Online Dialogue
Takayuki Hasegawa, Nobuhiro Kaji, Naoki Yoshinaga and Masashi Toyoda

Utterance-Level Multimodal Sentiment Analysis
Veronica Perez-Rosas, Rada Mihalcea and Louis-Philippe Morency

Probabilistic Sense Sentiment Similarity through Hidden Emotions
Mitra Mohtarami, Man Lan and Chew Lim Tan

LP - Statistical and Machine Learning Methods in NLP

A user-centric model of voting intention from Social Media
Vasileios Lampos, Daniel Preotiuc-Pietro and Trevor Cohn

LP - Summarization and Generation

Using Supervised Bigram-based ILP for Extractive Summarization
Chen Li, Xian Qian and Yang Liu

Summarization Through Submodularity and Dispersion
Anirban Dasgupta, Ravi Kumar and Sujith Ravi

Subtree Extractive Summarization via Submodular Maximization
Hajime Morita, Ryohei Sasano, Hiroya Takamura and Manabu Okumura
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LP - Syntax and Parsing

The effect of non-tightness on Bayesian estimation of PCFGs
Shay B. Cohen and Mark Johnson

Integrating Multiple Dependency Corpora for Inducing Wide-coverage Japanese CCG Re-
sources

Sumire Uematsu, Takuya Matsuzaki, Hiroki Hanaoka, Yusuke Miyao and Hideki Mima

Transition-based Dependency Parsing with Selectional Branching
Jinho D. Choi and Andrew McCallum

Bilingually-Guided Monolingual Dependency Grammar Induction
Kai Liu, Yajuan Lii, Wenbin Jiang and Qun Liu

LP - Tagging and Chunking

Joint Word Alignment and Bilingual Named Entity Recognition Using Dual Decomposition
Mengqiu Wang, Wanxiang Che and Christopher D. Manning

Resolving Entity Morphs in Censored Data
Hongzhao Huang, Zhen Wen, Dian Yu, Heng Ji, Yizhou Sun, Jiawei Han and He Li

LP - Text Mining and Information Extraction

Learning to Extract International Relations from Political Context
Brendan O’Connor, Brandon M. Stewart and Noah A. Smith
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11:00
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11:50

11:00

11:25

11:50

(7:30 - 17:00) Registration

(9:00) Industrial Lecture: Lars Rasmussen (Facebook)

(10:00) Best Paper Award

(10:30) Coffee Break

Oral Presentations

(11:00 -12:15) LP 5a

Graph Propagation for Paraphrasing Out-of-Vocabulary Words in Statistical Machine
Translation

Majid Razmara, Maryam Siahbani, Reza Haffari and Anoop Sarkar

Online Relative Margin Maximization for Statistical Machine Translation
Vladimir Eidelman, Yuval Marton and Philip Resnik

Handling Ambiguities of Bilingual Predicate-Argument Structures for Statistical Machine
Translation

Feifei Zhai, Jiajun Zhang, Yu Zhou and Chengqing Zong

(11:00 -12:15) LP 5b

Reconstructing an Indo-European Family Tree from Non-native English Texts
Ryo Nagata and Edward Whittaker

Word Association Profiles and their Use for Automated Scoring of Essays
Beata Beigman Klebanov and Michael Flor

Adaptive Parser-Centric Text Normalization
Congle Zhang, Tyler Baldwin, Howard Ho, Benny Kimelfeld and Yunyao Li

xlii



Tuesday August 6, 2013 (continued)
(11:00 -12:15) LP 5c¢

11:00 A Random Walk Approach to Selectional Preferences Based on Preference Ranking and
Propagation

Zhenhua Tian, Hengheng Xiang, Ziqi Liu and Qinghua Zheng

11:25 ImpAr: A Deterministic Algorithm for Implicit Semantic Role Labelling
Egoitz Laparra and German Rigau

11:50 Cross-lingual Transfer of Semantic Role Labeling Models
Mikhail Kozhevnikov and Ivan Titov

(11:00 -12:15) LP 5d

11:00 DErivBase: Inducing and Evaluating a Derivational Morphology Resource for German
Britta Zeller, Jan Snajder and Sebastian Pad6

11:25 Crowdsourcing Interaction Logs to Understand Text Reuse from the Web
Martin Potthast, Matthias Hagen, Michael Voélske and Benno Stein

11:50 SPred: Large-scale Harvesting of Semantic Predicates
Tiziano Flati and Roberto Navigli

(11:00 -12:15) LP 5e
11:00 Towards Robust Abstractive Multi-Document Summarization: A Caseframe Analysis of
Centrality and Domain

Jackie Chi Kit Cheung and Gerald Penn

11:25 HEADY: News headline abstraction through event pattern clustering
Enrique Alfonseca, Daniele Pighin and Guillermo Garrido

11:50 Conditional Random Fields for Responsive Surface Realisation using Global Features
Nina Dethlefs, Helen Hastie, Heriberto Cuayéhuitl and Oliver Lemon
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14:10

14:35

13:45

14:10

14:35

13:45

14:10

14:35

(12:15) Lunch break
(13:45 -15:00) LP 6a

Two-Neighbor Orientation Model with Cross-Boundary Global Contexts
Hendra Setiawan, Bowen Zhou, Bing Xiang and Libin Shen

Cut the noise: Mutually reinforcing reordering and alignments for improved machine
translation

Karthik Visweswariah, Mitesh M. Khapra and Ananthakrishnan Ramanathan

Vector Space Model for Adaptation in Statistical Machine Translation
Boxing Chen, Roland Kuhn and George Foster

(13:45 -15:00) LP 6b

From Natural Language Specifications to Program Input Parsers
Tao Lei, Fan Long, Regina Barzilay and Martin Rinard

Entity Linking for Tveets
Xiaohua Liu, Yitong Li, Haocheng Wu, Ming Zhou, Furu Wei and Yi Lu

Identification of Speakers in Novels
Hua He, Denilson Barbosa and Grzegorz Kondrak

(13:45 -15:00) LP 6¢

Language Acquisition and Probabilistic Models: keeping it simple
Aline Villavicencio, Marco Idiart, Robert Berwick and Igor Malioutov

A Two Level Model for Context Sensitive Inference Rules
Oren Melamud, Jonathan Berant, Ido Dagan, Jacob Goldberger and Idan Szpektor

Align, Disambiguate and Walk: A Unified Approach for Measuring Semantic Similarity
Mohammad Taher Pilehvar, David Jurgens and Roberto Navigli
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14:10

14:35

13:45

14:10

14:35

15:00

15:25

15:50

(13:45 -15:00) LP 6d

Linking and Extending an Open Multilingual Wordnet
Francis Bond and Ryan Foster

FrameNet on the Way to Babel: Creating a Bilingual FrameNet Using Wiktionary as In-
terlingual Connection
Silvana Hartmann and Iryna Gurevych

Dirt Cheap Web-Scale Parallel Text from the Common Crawl
Jason R. Smith, Herve Saint-Amand, Magdalena Plamada, Philipp Koehn, Chris Callison-
Burch and Adam Lopez

(13:45 -15:00) LP 6e
A Sentence Compression Based Framework to Query-Focused Multi-Document Summa-
rization

Lu Wang, Hema Raghavan, Vittorio Castelli, Radu Florian and Claire Cardie

Domain-Independent Abstract Generation for Focused Meeting Summarization
Lu Wang and Claire Cardie

A Statistical NLG Framework for Aggregated Planning and Realization
Ravi Kondadadi, Blake Howald and Frank Schilder

(15:00 -16:15) LP 7a

Models of Translation Competitions
Mark Hopkins and Jonathan May

Learning a Phrase-based Translation Model from Monolingual Data with Application to
Domain Adaptation
Jiajun Zhang and Chengqing Zong

SenseSpotting: Never let your parallel data tie you to an old domain

Marine Carpuat, Hal Daume III, Katharine Henry, Ann Irvine, Jagadeesh Jagarlamudi and
Rachel Rudinger
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15:25

15:50

15:00

15:25

15:50

15:00

15:25

15:50

(15:00 -16:15) LP 7b

BRAINSUP: Brainstorming Support for Creative Sentence Generation
Gozde Ozbal, Daniele Pighin and Carlo Strapparava

Grammatical Error Correction Using Integer Linear Programming
Yuanbin Wu and Hwee Tou Ng

Text-Driven Toponym Resolution using Indirect Supervision
Michael Speriosu and Jason Baldridge

(15:00 -16:15) LP 7c

Argument Inference from Relevant Event Mentions in Chinese Argument Extraction
Peifeng Li, Qiaoming Zhu and Guodong Zhou

Fine-grained Semantic Typing of Emerging Entities
Ndapandula Nakashole, Tomasz Tylenda and Gerhard Weikum

Embedding Semantic Similarity in Tree Kernels for Domain Adaptation of Relation Ex-
traction
Barbara Plank and Alessandro Moschitti

(15:00 -16:15) LP 7d

A joint model of word segmentation and phonological variation for English word-final
/t/-deletion

Benjamin Borschinger, Mark Johnson and Katherine Demuth

Compositional-ly Derived Representations of Morphologically Complex Words in Distri-
butional Semantics

Angeliki Lazaridou, Marco Marelli, Roberto Zamparelli and Marco Baroni

Unsupervised Consonant-Vowel Prediction over Hundreds of Languages
Young-Bum Kim and Benjamin Snyder
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(15:00 -16:15) LP 7e

15:00 Improving Text Simplification Language Modeling Using Unsimplified Text Data
David Kauchak
15:25 Combining Referring Expression Generation and Surface Realization: A Corpus-Based

Investigation of Architectures
Sina Zarrie3 and Jonas Kuhn

15:50 Named Entity Recognition using Cross-lingual Resources: Arabic as an Example
Kareem Darwish

(16:15) Coffee Break
(18:30) Banquet
Wednesday August 7, 2013
(9:30) Invited Talk 3: Chantal Prat
(10:30) Coffee Break
Oral Presentations
(11:00 -12:15) LP 9a

11:00 Beam Search for Solving Substitution Ciphers
Malte Nuhn, Julian Schamper and Hermann Ney

11:25 Social Text Normalization using Contextual Graph Random Walks
Hany Hassan and Arul Menezes

11:50 Integrating Phrase-based Reordering Features into a Chart-based Decoder for Machine

Translation
ThuyLinh Nguyen and Stephan Vogel
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11:00

11:25

11:50

11:00

11:25

11:50

11:00

11:25

11:50

(11:00 -12:15) LP 9b

Machine Translation Detection from Monolingual Web-Text
Yuki Arase and Ming Zhou

Paraphrase-Driven Learning for Open Question Answering
Anthony Fader, Luke Zettlemoyer and Oren Etzioni

Aid is Out There: Looking for Help from Tweets during a Large Scale Disaster
Istvan Varga, Motoki Sano, Kentaro Torisawa, Chikara Hashimoto, Kiyonori Ohtake,
Takao Kawai, Jong-Hoon Oh and Stijn De Saeger

(11:00 -12:15) LP 9c¢

A Bayesian Model for Joint Unsupervised Induction of Sentiment, Aspect and Discourse
Representations
Angeliki Lazaridou, Ivan Titov and Caroline Sporleder

Joint Inference for Fine-grained Opinion Extraction
Bishan Yang and Claire Cardie

Linguistic Models for Analyzing and Detecting Biased Language
Marta Recasens, Cristian Danescu-Niculescu-Mizil and Dan Jurafsky

(11:00 -12:15) LP 9d
Evaluating a City Exploration Dialogue System with Integrated Question-Answering and
Pedestrian Navigation
Srinivasan Janarthanam, Oliver Lemon, Phil Bartie, Tiphaine Dalmas, Anna Dickinson,

Xingkun Liu, William Mackaness and Bonnie Webber

Lightly Supervised Learning of Procedural Dialog Systems
Svitlana Volkova, Pallavi Choudhury, Chris Quirk, Bill Dolan and Luke Zettlemoyer

Public Dialogue: Analysis of Tolerance in Online Discussions
Arjun Mukherjee, Vivek Venkataraman, Bing Liu and Sharon Meraz
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15:00

15:25

15:50

15:00

15:25

15:50

(12:15) Lunch break

(13:30) ACL Business Meeting

(15:00 -16:15) LP 10a

Offspring from Reproduction Problems: What Replication Failure Teaches Us

Antske Fokkens, Marieke van Erp, Marten Postma, Ted Pedersen, Piek Vossen and Nuno

Freire

Evaluating Text Segmentation using Boundary Edit Distance
Chris Fournier

Crowd Prefers the Middle Path: A New IAA Metric for Crowdsourcing Reveals Turker
Biases in Query Segmentation
Rohan Ramanath, Monojit Choudhury, Kalika Bali and Rishiraj Saha Roy

(15:00 -16:15) LP 10b

Deceptive Answer Prediction with User Preference Graph
Fangtao Li, Yang Gao, Shuchang Zhou, Xiance Si and Decheng Dai

Why-Question Answering using Intra- and Inter-Sentential Causal Relations
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Abstract

We introduce a shift-reduce parsing
algorithm for phrase-based string-to-
dependency translation. As the algorithm
generates dependency trees for partial
translations left-to-right in decoding, it
allows for efficient integration of both
n-gram and dependency language mod-
els. To resolve conflicts in shift-reduce
parsing, we propose a maximum entropy
model trained on the derivation graph of
training data. As our approach combines
the merits of phrase-based and string-to-
dependency models, it achieves significant
improvements over the two baselines on
the NIST Chinese-English datasets.

1 Introduction

Modern statistical machine translation approaches
can be roughly divided into two broad categories:
phrase-based and syntax-based. Phrase-based ap-
proaches treat phrase, which is usually a sequence
of consecutive words, as the basic unit of trans-
lation (Koehn et al., 2003; Och and Ney, 2004).
As phrases are capable of memorizing local con-
text, phrase-based approaches excel at handling
local word selection and reordering. In addition,
it is straightforward to integrate n-gram language
models into phrase-based decoders in which trans-
lation always grows left-to-right. As a result,
phrase-based decoders only need to maintain the
boundary words on one end to calculate language
model probabilities. However, as phrase-based de-
coding usually casts translation as a string con-
catenation problem and permits arbitrary permuta-
tion, it proves to be NP-complete (Knight, 1999).

Syntax-based approaches, on the other hand,
model the hierarchical structure of natural lan-
guages (Wu, 1997; Yamada and Knight, 2001;
Chiang, 2005; Quirk et al., 2005; Galley et al.,

1

2006; Liu et al., 2006; Huang et al., 2006;
Shen et al., 2008; Mi and Huang, 2008; Zhang
et al,, 2008). As syntactic information can be
exploited to provide linguistically-motivated re-
ordering rules, predicting non-local permutation
is computationally tractable in syntax-based ap-
proaches.  Unfortunately, as syntax-based de-
coders often generate target-language words in a
bottom-up way using the CKY algorithm, inte-
grating n-gram language models becomes more
expensive because they have to maintain target
boundary words at both ends of a partial trans-
lation (Chiang, 2007; Huang and Chiang, 2007).
Moreover, syntax-based approaches often suffer
from the rule coverage problem since syntac-
tic constraints rule out a large portion of non-
syntactic phrase pairs, which might help decoders
generalize well to unseen data (Marcu et al.,
2006). Furthermore, the introduction of non-
terminals makes the grammar size significantly
bigger than phrase tables and leads to higher mem-
ory requirement (Chiang, 2007).

As a result, incremental decoding with hierar-
chical structures has attracted increasing attention
in recent years. While some authors try to inte-
grate syntax into phrase-based decoding (Galley
and Manning, 2008; Galley and Manning, 2009;
Feng et al., 2010), others develop incremental al-
gorithms for syntax-based models (Watanabe et
al., 2006; Huang and Mi, 2010; Dyer and Resnik,
2010; Feng et al., 2012). Despite these success-
ful efforts, challenges still remain for both direc-
tions. While parsing algorithms can be used to
parse partial translations in phrase-based decod-
ing, the search space is significantly enlarged since
there are exponentially many parse trees for expo-
nentially many translations. On the other hand, al-
though target words can be generated left-to-right
by altering the way of tree transversal in syntax-
based models, it is still difficult to reach full rule
coverage as compared with phrase table.
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zongtong  jiang

YU siyue lai

lundun fangwen

N, ==

The President will visit  London in April

source phrase target phrase dependency | category
r1 || fangwen visit {} fixed
ro || yu siyue in April {1—2} fixed
r3 || zongtong jiang The President will | {2 — 1} floating left
r4 || yu siyue lai lundun | London in April {2 — 3} floating right
r5 || zongtong jiang President will {} ill-formed

Figure 1: A training example consisting of a (romanized) Chinese sentence, an English dependency
tree, and the word alignment between them. Each translation rule is composed of a source phrase, a
target phrase with a set of dependency arcs. Following Shen et al. (2008), we distinguish between fixed,

floating, and ill-formed structures.

In this paper, we propose a shift-reduce parsing
algorithm for phrase-based string-to-dependency
translation. The basic unit of translation in our
model is string-to-dependency phrase pair, which
consists of a phrase on the source side and a depen-
dency structure on the target side. The algorithm
generates well-formed dependency structures for
partial translations left-to-right using string-to-
dependency phrase pairs. Therefore, our approach
is capable of combining the advantages of both
phrase-based and syntax-based approaches:

1. compact rule table: our rule table is a subset
of the original string-to-dependency gram-
mar (Shen et al., 2008; Shen et al., 2010) by
excluding rules with non-terminals.

2. full rule coverage: all phrase pairs, both
syntactic and non-syntactic, can be used in
our algorithm. This is the same with Moses
(Koehn et al., 2007).

3. efficient integration of n-gram language
model: as translation grows left-to-right in
our algorithm, integrating n-gram language
models is straightforward.

4. exploiting syntactic information: as the
shift-reduce parsing algorithm generates tar-
get language dependency trees in decoding,
dependency language models (Shen et al.,
2008; Shen et al., 2010) can be used to en-
courage linguistically-motivated reordering.

5. resolving local parsing ambiguity: as de-
pendency trees for phrases are memorized
in rules, our approach avoids resolving local
parsing ambiguity and explores in a smaller
search space than parsing word-by-word on
the fly in decoding (Galley and Manning,
2009).

We evaluate our method on the NIST Chinese-
English translation datasets. Experiments show
that our approach significantly outperforms both
phrase-based (Koehn et al., 2007) and string-to-
dependency approaches (Shen et al., 2008) in
terms of BLEU and TER.

2 Shift-Reduce Parsing for Phrase-based
String-to-Dependency Translation

Figure 1 shows a training example consisting of
a (romanized) Chinese sentence, an English de-
pendency tree, and the word alignment between
them. Following Shen et al. (2008), string-to-
dependency rules without non-terminals can be
extracted from the training example. As shown
in Figure 1, each rule is composed of a source
phrase and a target dependency structure. Shen et
al. (2008) divide dependency structures into two
broad categories:

1. well-formed

(a) fixed: the head is known or fixed;
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Figure 2: Shift-reduce parsing with string-to-dependency phrase pairs. For each state, the algorithm
maintains a stack to store items (i.e., well-formed dependency structures). At each step, it chooses one
action to extend a state: shift (.S), reduce left (R;), or reduce right (R,). The decoding process terminates
when all source words are covered and there is a complete dependency tree in the stack.

(b) floating: sibling nodes of a common
head, but the head itself is unspecified
or floating. Each of the siblings must be
a complete constituent.

2. ill-formed: neither fixed nor floating.

We further distinguish between left and right
floating structures according to the position of
head. For example, as “The President will” is the
left dependant of its head “visit”, itis a left floating
structure.

To integrate the advantages of phrase-based
and string-to-dependency models, we propose a
shift-reduce algorithm for phrase-based string-to-
dependency translation.

Figure 2 shows an example. We describe a state
(i.e., parser configuration) as a tuple (S, C) where
S is a stack that stores items and C is a cover-
age vector that indicates which source words have
been translated. Each item s € S is a well-formed
dependency structure. The algorithm starts with
an empty state. At each step, it chooses one of the
three actions (Huang et al., 2009) to extend a state:

1. shift (S): move a target dependency structure
onto the stack;

2. reduce left (R;): combine the two items on
the stack, s; and s;_1 (¢t > 2), with the root of
s¢ as the head and replace them with a com-
bined item;

3. reduce right (R,): combine the two items on
the stack, s; and s;_1 (t > 2), with the root
of s;_1 as the head and replace them with a
combined item.

The decoding process terminates when all source
words are covered and there is a complete depen-
dency tree in the stack.

Note that unlike monolingual shift-reduce
parsers (Nivre, 2004; Zhang and Clark, 2008;
Huang et al., 2009), our algorithm does not main-
tain a queue for remaining words of the input be-
cause the future dependency structure to be shifted
is unknown in advance in the translation scenario.
Instead, we use a coverage vector on the source
side to determine when to terminate the algorithm.

For an input sentence of J words, the number of
actions is 2K — 1, where K is the number of rules
used in decoding. ! There are always K shifts and

"Empirically, we find that the average number of stacks
for J words is about 1.5 x J on the Chinese-English data.
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Figure 3: Ambiguity in shift-reduce parsing.

St—1 St ‘ legal ‘ action(s) ‘
yes | S
h [yes | S
1 |yes | S
r | no
h h | yes S, Ry, R,
h 1 [yes | S
h r |yes | R,
1 h |yes | R;
1 1 |yes | S
1 r | no
r h | no
r 1 | no
r r | no

Table 1: Conflicts in shift-reduce parsing. s; and
s¢—1 are the top two items in the stack of a state.
We use “h” to denote fixed structure, “1” to de-
note left floating structure, and “r” to denote right
floating structure. It is clear that only “h+h” is am-
biguous.

K — 1 reductions.

It is easy to verify that the reduce left and re-
duce right actions are equivalent to the left adjoin-
ing and right adjoining operations defined by Shen
et al. (2008). They suffice to operate on well-
formed structures and produce projective depen-
dency parse trees.

Therefore, with dependency structures present
in the stacks, it is possible to use dependency lan-
guage models to encourage linguistically plausible
phrase reordering.

3 A Maximum Entropy Based
Shift-Reduce Parsing Model

Shift-reduce parsing is efficient but suffers from
parsing errors caused by syntactic ambiguity. Fig-
ure 3 shows two (partial) derivations for a depen-
dency tree. Consider the item on the top, the algo-
rithm can either apply a shift action to move a new
item or apply a reduce left action to obtain a big-
ger structure. This is often referred to as conflict
in the shift-reduce dependency parsing literature
(Huang et al., 2009). In this work, the shift-reduce
parser faces four types of conflicts:

1. shift vs. shift;

2. shift vs. reduce left;

3. shift vs. reduce right;

4. reduce left vs. reduce right.

Fortunately, if we distinguish between left and
right floating structures, it is possible to rule out
most conflicts. Table 1 shows the relationship
between conflicts, dependency structures and ac-
tions. We use s; and s;—; to denote the top two



VR

R

[The President will visit London][in April]

DT NNP MD VB NNP IN IN
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Unigram | c Wi (s¢) Wh(si—1)
ch(st) W’r‘c(stfl) Th(st)
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Wh(st) o Wh(si—1) 0 Tre(se—1)  Th(st) o Th(si—1) 0 Tic(st) Th(st) o Th(si—1) 0 Tre(st—1)

Figure 4: Feature templates for maximum entropy based shift-reduce parsing model. ¢ is a boolean
value that indicate whether all source words are covered (shift is prohibited if true), W3 (-) and T}(+)
are functions that get the root word and tag of an item, Wj.(-) and Tj.(-) returns the word and tag of
the left most child of the root, W,.(-) amd T;..(-) returns the word and tag of the right most child of the
root. Symbol o denotes feature conjunction. In this example, ¢ = true, Wj(s;) = in, Ty(s¢) = IN,

Wh(s¢—1) = visit, Wj.(s;—1) = London.

items in the stack. “h” stands for fixed struc-
ture, “I” for left floating structure, and “r” for right
floating structure. If the stack is empty, the only
applicable action is shift. If there is only one item
in the stack and the item is either fixed or left float-
ing, the only applicable action is shift. Note that it
is illegal to shift a right floating structure onto an
empty stack because it will never be reduced. If
the stack contains at least two items, only “h+h”
is ambiguous and the others are either unambigu-
ous or illegal. Therefore, we only need to focus on
how to resolve conflicts for the “h+h” case (i.e.,
the top two items in a stack are both fixed struc-
tures).

We propose a maximum entropy model to re-
solve the conflicts for “h+h”: 2

exp(0 - h(a,c,s¢,81-1))
P _ =
w(alc, s¢,50-1) S, exp(8 - h(a,c, st,5¢-1))

where a € {5, R;, R, } is an action, c is a boolean
value that indicates whether all source words are
covered (shift is prohibited if true), s; and s;_1
are the top two items on the stack, h(a, ¢, ¢, S¢—1)
is a vector of binary features and 6 is a vector of
feature weights.

Figure 4 shows the feature templates used in our
experiments. Wj(-) and Ty (-) are functions that
get the root word and tag of an item, Wj.(-) and
Ti(-) returns the word and tag of the left most
child of the root, W;.(-) and T,.(-) returns the

The shift-shift conflicts always exist because there are
usually multiple rules that can be shifted. This can be re-
volved using standard features in phrase-based models.

word and tag of the right most child of the root.
In this example, ¢ = true, Wy, (s:) = in, Tj,(s¢) =
IN, Wy, (s¢—1) = visit, Wi.(s;—1) = London.

To train the model, we need an “oracle” or gold-
standard action sequence for each training exam-
ple. Unfortunately, such oracle turns out to be
non-unique even for monolingual shift-reduce de-
pendency parsing (Huang et al., 2009). The situ-
ation for phrase-based shift-reduce parsing aggra-
vates because there are usually multiple ways of
segmenting sentence into phrases.

To alleviate this problem, we introduce a struc-
ture called derivation graph to compactly repre-
sent all derivations of a training example. Figure 3
shows a (partial) derivation graph, in which a node
corresponds to a state and an edge corresponds to
an action. The graph begins with an empty state
and ends with the given training example.

More formally, a derivation graph is a directed
acyclic graph G = (V, E) where V is a set of
nodes and F is a set of edges. Each node v cor-
responds to a state in the shift-reduce parsing pro-
cess. There are two distinguished nodes: vy, the
staring empty state, and vy, the ending com-
pleted state. Each edge e = (a, 1, j) transits node
v; to node v; via an action a € {S, R, R, }.

To build the derivation graph, our algorithm
starts with an empty state and iteratively extends
an unprocessed state until reaches the completed
state. During the process, states that violate the
training example are discarded. Even so, there are
still exponentially many states for a training exam-
ple, especially for long sentences. Fortunately, we



Algorithm 1 Beam-search shift-reduce parsing.

1: procedure PARSE(f)

2: V10

3: ADD(vg, V[0])

4: k<0

5. while V[k] # 0 do

6: for all v € V[k| do

7: forall a € {S,R;, R} do
8: EXTEND(f, v, a, V)
9: end for

10: end for

11: k—k+1

12: end while

13: end procedure

only need to focus on “h+h” states. In addition,
we follow Huang et al. (2009) to use the heuristic
of “shortest stack” to always prefer R; to .S.

4 Decoding

Our decoder is based on a linear model (Och,
2003) with the following features:

1. relative frequencies in two directions;
2. lexical weights in two directions;
3. phrase penalty;
4. distance-based reordering model;
5. lexicaized reordering model;
6. n-gram language model model;
7. word penalty;
8. ill-formed structure penalty;
9. dependency language model;
10. maximum entropy parsing model.

In practice, we extend deterministic shift-
reduce parsing with beam search (Zhang and
Clark, 2008; Huang et al., 2009). As shown in Al-
gorithm 1, the algorithm maintains a list of stacks
V and each stack groups states with the same num-
ber of accumulated actions (line 2). The stack list
V initializes with an empty state vy (line 3). Then,
the states in the stack are iteratively extended un-
til there are no incomplete states (lines 4-12). The
search space is constrained by discarding any state
that has a score worse than:

1. 8 multiplied with the best score in the stack,
or

2. the score of b-th best state in the stack.

As the stack of a state keeps changing during the
decoding process, the context information needed
to calculate dependency language model and max-
imum entropy model probabilities (e.g., root word,
leftmost child, etc.) changes dynamically as well.
As a result, the chance of risk-free hypothesis re-
combination (Koehn et al., 2003) significantly de-
creases because complicated contextual informa-
tion is much less likely to be identical.

Therefore, we use hypergraph reranking
(Huang and Chiang, 2007; Huang, 2008), which
proves to be effective for integrating non-local
features into dynamic programming, to alleviate
this problem. The decoding process is divided
into two passes. In the first pass, only standard
features (i.e., features 1-7 in the list in the
beginning of this section) are used to produce
a hypergraph. 3 In the second pass, we use the
hypergraph reranking algorithm (Huang, 2008) to
find promising translations using additional de-
pendency features (i.e., features 8-10 in the list).
As hypergraph is capable of storing exponentially
many derivations compactly, the negative effect of
propagating mistakes made in the first pass to the
second pass can be minimized.

To improve rule coverage, we follow Shen et
al. (2008) to use ill-formed structures in decoding.
If an ill-formed structure has a single root, it can
treated as a (pseudo) fixed structure; otherwise it is
transformed to one (pseudo) left floating structure
and one (pseudo) right floating structure. We use
a feature to count how many ill-formed structures
are used in decoding.

5 Experiments

We evaluated our phrase-based string-to-
dependency translation system on Chinese-
English translation. The training data consists
of 2.9M pairs of sentences with 76.0M Chinese
words and 82.2M English words. We used the
Stanford parser (Klein and Manning, 2003) to
get dependency trees for English sentences. We

used the SRILM toolkit (Stolcke, 2002) to train a

3Note that the first pass does not work like a phrase-based
decoder because it yields dependency trees on the target side.
A uniform model (i.e., each action has a fixed probability of
1/3) is used to resolve “h+h” conflicts.



MTO2 (tune) MTO3 MTO04 MTO5
VS BTEU JTER | BLEU | TER BLEU | TER BLEU | TER
phrase | 34.83 |57.00 |3382 |57.19 |3548 |56.48 | 3252 | 57.62
dependency | 35.23 [ 56.12 |34.20 |56.36  |36.01 |5555 | 33.06 | 56.94

| thiswork | 35.71** | 55.87** | 34.81*F | 55.94**F | 36.37* | 55.02"*" [ 33.53"* | 56.58"" |

Table 2: Comparison with Moses (Koehn et al., 2007) and a re-implementation of the bottom-up string-
to-dependency decoder (Shen et al., 2008) in terms of uncased BLEU and TER. We use randomiza-
tion test (Riezler and Maxwell, 2005) to calculate statistical significance. *: significantly better than
Moses (p < 0.05), **: significantly better than Moses (p < 0.01), +: significantly better than string-to-

dependency (p < 0.05), ++: significantly better than string-to-dependency (p < 0.01).

‘ features ‘ BLEU ‘ TER ‘ ‘ rules ‘ coverage ‘ BLEU ‘ TER ‘
| standard [ 34.79 [56.93 | | well-formed | 44.87 [34.42 [57.35 |
+ depLM 35.29* | 56.17** \ all | 100.00 [ 35.71** | 55.87*" |
+ maxent 35.40"* | 56.09**
+ depLM & maxent | 35.71% | 55.87* Table 4: Comparison of well-formed and ill-

Table 3: Contribution of maximum entropy shift-
reduce parsing model. “standard” denotes us-
ing standard features of phrase-based system.
Adding dependency language model (“depLM”)
and the maximum entropy shift-reduce parsing
model (“maxent”) significantly improves BLEU
and TER on the development set, both separately
and jointly.

4-gram language model on the Xinhua portion of
the GIGAWORD coprus, which contians 238M
English words. A 3-gram dependency language
model was trained on the English dependency
trees. We used the 2002 NIST MT Chinese-
English dataset as the development set and the
2003-2005 NIST datasets as the testsets. We
evaluated translation quality using uncased BLEU
(Papineni et al., 2002) and TER (Snover et al.,
2006). The features were optimized with respect
to BLEU using the minimum error rate training
algorithm (Och, 2003).

We chose the following two systems that are
closest to our work as baselines:

1. The Moses phrase-based decoder (Koehn et
al., 2007).

2. A re-implementation of bottom-up string-to-
dependency decoder (Shen et al., 2008).

All the three systems share with the same target-
side parsed, word-aligned training data. The his-
togram pruning parameter b is set to 100 and

formed structures. Using all rules significantly
outperforms using only well-formed structures.
BLEU and TER scores are calculated on the de-
velopment set.

phrase table limit is set to 20 for all the three sys-
tems. Moses shares the same feature set with our
system except for the dependency features. For the
bottom-up string-to-dependency system, we in-
cluded both well-formed and ill-formed structures
in chart parsing. To control the grammar size, we
only extracted “tight” initial phrase pairs (i.e., the
boundary words of a phrase must be aligned) as
suggested by (Chiang, 2007). For our system, we
used the Le Zhang’s maximum entropy modeling
toolkit to train the shift-reduce parsing model after
extracting 32.6M events from the training data. *
We set the iteration limit to 100. The accuracy on
the training data is 90.18%.

Table 2 gives the performance of Moses, the
bottom-up string-to-dependency system, and our
system in terms of uncased BLEU and TER
scores. From the same training data, Moses
extracted 103M bilingual phrases, the bottom-
up string-to-dependency system extracted 587M
string-to-dependency rules, and our system ex-
tracted 124M phrase-based dependency rules. We
find that our approach outperforms both baselines
systematically on all testsets. We use randomiza-
tion test (Riezler and Maxwell, 2005) to calculate
statistical significance. As our system can take full
advantage of lexicalized reordering and depen-

*http://homepages.inf.ed.ac.uk/Izhang 10/maxent.html
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Figure 5: Performance of Moses and our system
with various distortion limits.

dency language models without loss in rule cov-
erage, it achieves significantly better results than
Moses on all test sets. The gains in TER are much
larger than BLEU because dependency language
models do not model n-grams directly. Compared
with the bottom-up string-to-dependency system,
our system outperforms consistently but not sig-
nificantly in all cases. The average decoding time
for Moses is 3.67 seconds per sentence, bottom-
up string-to-dependency is 13.89 seconds, and our
system is 4.56 seconds.

Table 3 shows the effect of hypergraph rerank-
ing. In the first pass, our decoder uses standard
phrase-based features to build a hypergraph. The
BLEU score is slightly lower than Moses with the
same configuration. One possible reason is that
our decoder organizes stacks with respect to ac-
tions, whereas Moses groups partial translations
with the same number of covered source words in
stacks. In the second pass, our decoder reranks
the hypergraph with additional dependency fea-
tures. We find that adding dependency language
and maximum entropy shift-reduce models consis-
tently brings significant improvements, both sepa-
rately and jointly.

We analyzed translation rules extracted from the
training data. Among them, well-formed struc-
tures account for 43.58% (fixed 33.21%, float-
ing left 9.01%, and floating right 1.36%) and ill-
formed structures 56.42%. As shown in Table
4, using all rules clearly outperforms using only
well-formed structures.

Figure 5 shows the performance of Moses and
our system with various distortion limits on the
development set. Our system consistently outper-

forms Moses in all cases, suggesting that adding
dependency helps improve phrase reordering.

6 Related Work

The work of Galley and Manning (2009) is clos-
est in spirit to ours. They introduce maximum
spanning tree (MST) parsing (McDonald et al.,
2005) into phrase-based translation. The system
is phrase-based except that an MST parser runs to
parse partial translations at the same time. One
challenge is that MST parsing itself is not incre-
mental, making it expensive to identify loops dur-
ing hypothesis expansion. On the contrary, shift-
reduce parsing is naturally incremental and can
be seamlessly integrated into left-to-right phrase-
based decoding. More importantly, in our work
dependency trees are memorized for phrases rather
than being generated word by word on the fly in
decoding. This treatment might not only reduce
decoding complexity but also potentially revolve
local parsing ambiguity.

Our decoding algorithm is similar to Gimpel
and Smith (2011)’s lattice parsing algorithm as we
divide decoding into two steps: hypergraph gener-
ation and hypergraph rescoring. The major differ-
ence is that our hypergraph is not a phrasal lat-
tice because each phrase pair is associated with
a dependency structure on the target side. In
other words, our second pass is to find the Viterbi
derivation with addition features rather than pars-
ing the phrasal lattice. In addition, their algorithm
produces phrasal dependency parse trees while the
leaves of our dependency trees are words, making
dependency language models can be directly used.

Shift-reduce parsing has been successfully used
in phrase-based decoding but limited to adding
structural constraints. Galley and Manning (2008)
propose a shift-reduce algorithm to integrate a hi-
erarchical reordering model into phrase-based sys-
tems. Feng et al. (2010) use shift-reduce parsing
to impose ITG (Wu, 1997) constraints on phrase
permutation. Our work differs from theirs by go-
ing further to incorporate linguistic syntax into
phrase-based decoding.

Along another line, a number of authors have
developed incremental algorithms for syntax-
based models (Watanabe et al., 2006; Huang and
Mi, 2010; Dyer and Resnik, 2010; Feng et al.,
2012). Watanabe et al. (2006) introduce an Early-
style top-down parser based on binary-branching
Greibach Normal Form. Huang et al. (2010), Dyer



and Resnik (2010), and Feng et al. (2012) use dot-
ted rules to change the tree transversal to gener-
ate target words left-to-right, either top-down or
bottom-up.

7 Conclusion

We have presented a shift-reduce parsing al-
gorithm for phrase-based string-to-dependency
translation. =~ The algorithm generates depen-
dency structures incrementally using string-to-
dependency phrase pairs. Therefore, our ap-
proach is capable of combining the advantages of
both phrase-based and string-to-dependency mod-
els, it outperforms the two baselines on Chinese-
to-English translation.

In the future, we plan to include more con-
textual information (e.g., the uncovered source
phrases) in the maximum entropy model to re-
solve conflicts. Another direction is to adapt
the dynamic programming algorithm proposed by
Huang and Sagae (2010) to improve our string-to-
dependency decoder. It is also interesting to com-
pare with applying word-based shift-reduce pars-
ing to phrase-based decoding similar to (Galley
and Manning, 2009).
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Abstract

Since statistical machine translation (SMT)
and translation memory (TM) complement
each other in matched and unmatched regions,
integrated models are proposed in this paper to
incorporate TM information into phrase-based
SMT. Unlike previous multi-stage pipeline
approaches, which directly merge TM result
into the final output, the proposed models refer
to the corresponding TM information associat-
ed with each phrase at SMT decoding. On a
Chinese—English TM database, our experi-
ments show that the proposed integrated Mod-
el-11l1 is significantly better than either the
SMT or the TM systems when the fuzzy match
score is above 0.4. Furthermore, integrated
Model-I11 achieves overall 3.48 BLEU points
improvement and 2.62 TER points reduction
in comparison with the pure SMT system. Be-
sides, the proposed models also outperform
previous approaches significantly.

1 Introduction

Statistical machine translation (SMT), especially
the phrase-based model (Koehn et al., 2003), has
developed very fast in the last decade. For cer-
tain language pairs and special applications,
SMT output has reached an acceptable level, es-
pecially in the domains where abundant parallel
corpora are available (He et al., 2010). However,
SMT is rarely applied to professional translation
because its output quality is still far from satis-
factory. Especially, there is no guarantee that a
SMT system can produce translations in a con-
sistent manner (Ma et al., 2011).

In contrast, translation memory (TM), which
uses the most similar translation sentence (usual-
ly above a certain fuzzy match threshold) in the
database as the reference for post-editing, has
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been widely adopted in professional translation
field for many years (Lagoudaki, 2006). TM is
very useful for repetitive material such as updat-
ed product manuals, and can give high quality
and consistent translations when the similarity of
fuzzy match is high. Therefore, professional
translators trust TM much more than SMT.
However, high-similarity fuzzy matches are
available unless the material is very repetitive.

In general, for those matched segmentsl, ™
provides more reliable results than SMT does.
One reason is that the results of TM have been
revised by human according to the global context,
but SMT only utilizes local context. However,
for those unmatched segments, SMT is more re-
liable. Since TM and SMT complement each
other in those matched and unmatched segments,
the output quality is expected to be raised signif-
icantly if they can be combined to supplement
each other.

In recent years, some previous works have in-
corporated TM matched segments into SMT in a
pipelined manner (Koehn and Senellart, 2010;
Zhechev and van Genabith, 2010; He et al., 2011;
Ma et al., 2011). All these pipeline approaches
translate the sentence in two stages. They first
determine whether the extracted TM sentence
pair should be adopted or not. Most of them use
fuzzy match score as the threshold, but He et al.
(2011) and Ma et al. (2011) use a classifier to
make the judgment. Afterwards, they merge the
relevant translations of matched segments into
the source sentence, and then force the SMT sys-
tem to only translate those unmatched segments
at decoding.

There are three obvious drawbacks for the
above pipeline approaches. Firstly, all of them
determine whether those matched segments

1 We mean “sub-sentential segments” in this work.
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should be adopted or not at sentence level. That
is, they are either all adopted or all abandoned
regardless of their individual quality. Secondly,
as several TM target phrases might be available
for one given TM source phrase due to insertions,
the incorrect selection made in the merging stage
cannot be remedied in the following translation
stage. For example, there are six possible corre-
sponding TM target phrases for the given TM
source phrase “X ¥k, %95 *F %" (as shown in
Figure 1) such as “object, thats is, associateds”,
and “an, object, thats is, associateds withg”, etc.
And it is hard to tell which one should be adopt-
ed in the merging stage. Thirdly, the pipeline
approach does not utilize the SMT probabilistic
information in deciding whether a matched TM
phrase should be adopted or not, and which tar-
get phrase should be selected when we have mul-
tiple candidates. Therefore, the possible im-
provements resulted from those pipeline ap-
proaches are quite limited.

On the other hand, instead of directly merging
TM matched phrases into the source sentence,
some approaches (Bigci and Dymetman, 2008;
Simard and Isabelle, 2009) simply add the long-
est matched pairs into SMT phrase table, and
then associate them with a fixed large probability
value to favor the corresponding TM target
phrase at SMT decoding. However, since only
one aligned target phrase will be added for each
matched source phrase, they share most draw-
backs with the pipeline approaches mentioned
above and merely achieve similar performance.

To avoid the drawbacks of the pipeline ap-
proach (mainly due to making a hard decision
before decoding), we propose several integrated
models to completely make use of TM infor-
mation during decoding. For each TM source
phrase, we keep all its possible corresponding
target phrases (instead of keeping only one of
them). The integrated models then consider all
corresponding TM target phrases and SMT pref-
erence during decoding. Therefore, the proposed
integrated models combine SMT and TM at a
deep level (versus the surface level at which TM
result is directly plugged in under previous pipe-
line approaches).
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On a Chinese-English computer technical
documents TM database, our experiments have
shown that the proposed Model-I1l improves the
translation quality significantly over either the
pure phrase-based SMT or the TM systems when
the fuzzy match score is above 0.4. Compared
with the pure SMT system, the proposed inte-
grated Model-I11 achieves 3.48 BLEU points im-
provement and 2.62 TER points reduction over-
all. Furthermore, the proposed models signifi-
cantly outperform previous pipeline approaches.

2 Problem Formulation

Compared with the standard phrase-based ma-
chine translation model, the translation problem
is reformulated as follows (only based on the
best TM, however, it is similar for multiple TM
sentences):

t =arg max P(t|s, [tm_s,tm_t,tm_f.s_a,tm_a]) (1)

Where s is the given source sentence to be trans-
lated, ¢ is the corresponding target sentence and #
is the final translation; [tm_s,tm_t,tm_f,s_a,tm_a]
are the associated information of the best TM
sentence-pair; tm_s and tm_t denote the corre-
sponding TM sentence pair; ¢tm_f denotes its
associated fuzzy match score (from 0.0 to 1.0);
s_a is the editing operations between tm_s and s;
and ¢m_a denotes the word alignment between
tm_s and tm_t.

Let 3, and 7, denote the k-th associated
source phrase and target phrase, respectively.
Also, 541} and 7," denote the associated source
phrase sequence and the target phrase sequence,
respectively (total K phrases without insertion).
Then the above formula (1) can be decomposed
as below:

{=arg max P(t|s,tm_s,tm_t,tm_f,s_a,tm_a)

)

[sf=st =1]

_a(K

P(ff\’, sa(l)) s, tm_s,tm_t,tm_f, s_a,tm_a)

{
2)

Afterwards, for any given source phrase 3qx),
we can find its corresponding TM source phrase
tm_3,x) and all possible TM target phrases (each
of them is denoted by tm_%,()) with the help of
corresponding editing operations s_a and word
alignment tm_a. As mentioned above, we can
have six different possible TM target phrases for
the TM source phrase “%8% 4 49 5 %I % ¢”. This

= argmax

K _a(K
Py [saty)

£ argmax
x P(s1s)

max
[ =675 =]

Jtm_s,tm_t, tm_f, s_a,tm_a) }



is because there are insertions around the directly
aligned TM target phrase.

In the above Equation (2), we first segment the
given source sentence into various phrases, and
then translate the sentence based on those source

phrases. Also, ZEI is replaced by s{°, as they
are actually the same segmentation sequence.
Assume that the segmentation probability
P(5%s) is a uniform distribution, with the corre-
sponding TM source and target phrases obtained
above, this problem can be further simplified as
follows:

P(fszgﬁ),tm s, tm_t,tm_f, s_a,tm_a)
- Z P( tl tm fa(K) *Zgg)ﬂtm 5 El)),fm,t,z)
t'm,taéﬁ)
- 70U | a() o a()
~ t’iia?()) P(t1 tm_ty 1y |S41) » tMS 40 ,tm_t, z)
~ mas PO ME s L 2)
tm_t,
(D)
~ P(t; |52§f§)) X H max P(My|Ly, z)
ke 1f'm fa(k)
®)

Where M, is the corresponding TM phrase
matching status for #x, which is a vector consist-
ing of various indicators (e.g., Target Phrase
Content Matching Status, etc., to be defined lat-
er), and reflects the quality of the given candi-
date; Ly is the linking status vector of 35, (the
aligned source phrase of 7, within 55), and indi-
cates the matching and linking status in the
source side (which is closely related to the status
in the target side); also, =z indicates the corre-

sponding TM fuzzy match interval specified later.

In the second line of Equation (3), we convert
the fuzzy match score ¢m_f into its correspond-
ing interval z, and incorporate all possible com-
binations of TM target phrases. Afterwards, we
select the best one in the third line. Last, in the
fourth line, we introduce the source matching
status and the target linking status (detailed fea-
tures would be defined later). Since we might
have several possible TM target phrases tm_t, ),
the one with the maximum score will be adopted
during decoding.

The first factor P(t1 EN in the above for-

mula (3) is just the typlcal phrase-based SMT
model, and the second factor P(My|Ly, z) (to be
specified in the Section 3) is the information de-
rived from the TM sentence pair. Therefore, we
can still keep the original phrase-based SMT
model and only pay attention to how to extract

aK
i
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useful information from the best TM sentence
pair to guide SMT decoding.

3 Proposed Models

Three integrated models are proposed to incorpo-
rate different features as follows:

3.1 Model-I

In this simplest model, we only consider Target
Phrase Content Matching Status (TCM) for 4.
For Lk, we consider four different features at the
same time: Source Phrase Content Matching
Status (SCM), Number of Linking Neighbors
(NLN), Source Phrase Length (SPL), and Sen-
tence End Punctuation Indicator (SEP). Those
features will be defined below. P(Mg|Lg, z) is
then specified as:

PUWHL]{,Z) é P(TCMk‘SCJWk,NLJV/{,SPLK, SEPk,Z)

All features incorporated in this model are speci-
fied as follows:

TM Fuzzy Match Interval (z): The fuzzy match
score (FMS) between source sentence s and TM
source sentence ¢m_s indicates the reliability of
the given TM sentence, and is defined as (Sikes,
2007):

Levenshtein(s, tm_s)
FMS(s,tm_s) =1 —

max(|s|, [tm_s]|)
Where Levenshtein(s,tm_s) is the word-based
Levenshtein Distance (Levenshtein, 1966) be-
tween s and ¢m_s. We equally divide FMS into
ten fuzzy match intervals such as: [0.9, 1.0), [0.8,
0.9) etc., and the index = specifies the corre-
sponding interval. For example, since the fuzzy
match score between s and tm_s in Figure 1 is
0.667, then z = [0.6,0.7).

Target Phrase Content Matching Status
(TCM): It indicates the content matching status
between 7 and tm_t..), and reflects the quality
of #;. Because tm_t is nearly perfect when FMS
is high, if the similarity between 7, and tm_t,)
is high, it implies that the given % is possibly a
good candidate. It is a member of {Same, High,
Low, NA (Not-Applicable)}, and is specified as:
(1) If tm . is not null:
(a) if FW{SGR tm_t a(k )) = 1.0, TCMy, = Same;
(b) else if FMS(ty,tm o)) > 0.5, TCMy = High;
(c) else, TCM;, = Low;
(2) If tmja(k) isnull, TCM, = NA;
Here tm_t,x) is null means that either there is no

corresponding TM source phrase tm_s,x) or
there is no corresponding TM target phrase



tm T,k aligned with tm s, In the example of
Figure 1, assume that the given 5, is “XF% 5
#) ¢ X% ;7 and 7, is “object that is associated”.
If tm_t,u) is “object, that; is, associateds”,
TCM; = Same; if tm_,u) is “an; object, thats
is, associateds”, TCM, = High.

Source Phrase Content Matching Status
(SCM): Which indicates the content matching
status between 3,y and tm_3,), and it affects
the matching status of %, and tm_t,() greatly.
The more similar 3qx) is to tm_s,(), the more
similar 7 is to tm_t,). It is @ member of {Same,
High, Low, NA} and is defined as:

(1) If tm3,) is not null:
(@) if FMS(34k), tm Saw) = 1.0, SCM), = Same;
(b)else  if  FMSGaw) tms,m) >05
SCMy = High;
(c) else, SCMy, = Low;
(2) If tms,) is null, SCMy = N A;

Here tm_s,1) is null means that there is no corre-
sponding TM source phrase tm_s, ) for the giv-
en source phrase 3.(). Take the source phrase
Sa(k) “F Ik 5 89 ¢ 3F % ;7 in Figure 1 for an ex-
ample, since its corresponding tm s, ) is “XB% 4
#) 5 5t % ¢, then SCM;, = Same.

Number of Linking Neighbors (NLN): Usually,
the context of a source phrase would affect its
target translation. The more similar the context
are, the more likely that the translations are the
same. Therefore, this NLN feature reflects the
number of matched neighbors (words) and it is a
vector of <x, y>. Where “x” denotes the number
of matched source neighbors; and “y” denotes
how many those neighbors are also linked to tar-
get words (not null), which also affects the TM
target phrase selection. This feature is a member
of {<x, y>: <2, 2>, <2, 1>, <2, 0>, <1, 1>,<1, 0>,
<0, 0>}. For the source phrase “X B 5 49 ¢ *F %
77 in Figure 1, the corresponding TM source
phrase is “%F% , #9 5 I % ¢ . As only their
right neighbors “. ¢”and “. 7 are matched, and
“, 77 isaligned with “.;”, NLN will be <1, 1>.

Source Phrase Length (SPL): Usually the long-
er the source phrase is, the more reliable the TM
target phrase is. For example, the corresponding
tm_tq) for the source phrase with 5 words
would be more reliable than that with only one
word. This feature denotes the number of words
included in 3,(x), and is a member of {1, 2, 3, 4,
=5}. For the case “ 8% 5 # ¢ xF % -, SPL will
be 3.
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Sentence End Punctuation Indicator (SEP):
Which indicates whether the current phrase is a
punctuation at the end of the sentence, and is a
member of {Yes, No}. For example, the SEP for
“(XIk 5 89 5 X% 2 will be “No”. It is intro-
duced because the SCM and TCM for a sen-
tence-end-punctuation are always “Same” re-
gardless of other features. Therefore, it is used to
distinguish this special case from other cases.

3.2  Model-Il

As Model-1 ignores the relationship among vari-
ous possible TM target phrases, we add two fea-
tures TM Candidate Set Status (CSS) and Long-
est TM Candidate Indicator (LTC) to incorporate
this relationship among them. Since CSS is re-
dundant after LTC is known, we thus ignore it
for evaluating TCM probability in the following
derivation:

P(]\.[}JL]“ Z)
£ P(TCM,, LTCy|SCMy., NLN.,CSSy, SPLy, SEP;, 2)
{P(TCMHSC]W}C, ]\“YLN)C, LTCk, SPLk, SEPk, Z)}

x P(LTCy|CSSy, SCMy,, NLNy, SEP;, 2)

The two new features CSS and LTC adopted in
Model-11 are defined as follows:

TM Candidate Set Status (CSS): Which re-
stricts the possible status of tm_Z,), and is a
member of {Single, Left-Ext, Right-Ext, Both-Ext,
NA}. Where “Single” means that there is only
one tm..u) candidate for the given source
phrase tm_3,;); “Left-Ext” means that there are
multiple tm_t,() candidates, and all the candi-
dates are generated by extending only the left
boundary; “Right-Ext” means that there are mul-
tiple tm_t,(x) candidates, and all the candidates
are generated by only extending to the right;
“Both-Ext” means that there are multiple tm_t, )
candidates, and the candidates are generated by
extending to both sides; “NA” means that
tﬂlja(k-) is null.

For “% Bt , 49 5 T % ¢ in Figure 1, the
linked TM target phrase is “object, thats is, asso-
ciateds”, and there are 5 other candidates by ex-
tending to both sides. Therefore,
CSSy = Both-Ext.

Longest TM Candidate Indicator (LTC):
Which indicates whether the given tm_t, ) is the
longest candidate or not, and is a member of
{Original, Left-Longest, Right-Longest, Both-
Longest, Medium, NA}. Where “Original” means
that the given tm_t,x)is the one without exten-
sion; “Left-Longest” means that the given

~
~



tm T,y is only extended to the left and is the
longest one; “Right-Longest” means that the giv-
en tm 1, is only extended to the right and is
the longest one; “Both-Longest” means that the
given tm_t, ) is extended to both sides and is the
longest one; “Medium” means that the given
tm 1,y has been extended but not the longest
one; “NA” means that tm _t,) is null.

For tm_t,(x) “object, that; is, associateds” in
Figure 1, LTCy = Original; for tm_t,q,) “an, ob-
ject, that; is, associateds”, LT'Cy, = Left-Longest,;
for the longest tm_t,x) “an, object, that; is, as-
sociateds withg the;”, LTC\. = Both-Longest.

3.3  Model-Ill

The abovementioned integrated models ignore
the reordering information implied by TM.
Therefore, we add a new feature Target Phrase
Adjacent Candidate Relative Position
Matching Status (CPM) into Model-1l1 and
Model-Il1 is given as:

P(My|Ly, z)
£ P([TCM, LTC,CPM];|[SCM,NLN,CSS,SPL, SEP], z)
P(TCMy|SCMy, NLNy, LTCy,, SPLy, SEP;, 2)
{ x P(LTCy|CSSy, SCMy, NLNy,, SEPy, z) }
x P(CPMy,|TCMy, SCM,,, NLNg, z)
We assume that CPM is independent with SPL
and SEP, because the length of source phrase
would not affect reordering too much and SEP is

used to distinguish the sentence end punctuation
with other phrases.

The new feature CPM adopted in Model-111 is
defined as:

Target Phrase Adjacent Candidate Relative
Position Matching Status (CPM): Which indi-
cates the matching status between the relative
position of [tx_1,7x] and the relative position of
[tmja(k—l)vtmja(k)]- It checks if ﬁk_l,fk] are
positioned in the same order with
[tm_toe—1),tm T,m), and reflects the quality of
ordering the given target candidate #x. It is a
member of {Adjacent-Same, Adjacent-Substitute,
Linked-Interleaved, Linked-Cross, Linked-
Reversed, Skip-Forward, Skip-Cross, Skip-
Reversed, NA}. Recall that 7 is always right ad-
jacent to %1, then various cases are defined as
follows:

(1) If both tm_#,x—1)and tm L, are not null:
(@) If tm_t,u) is on the right of tm_t,4—1)
and they are also adjacent to each other:
i.If the right boundary words of 7;—1 and
tm_t,,—1) are the same, and the left
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boundary words of 7. and tm_t,) are
the same, CPM,, = Adjacent-Same;
ii.Otherwise, CPM,. = Adjacent-Substitute;
(b) If tm_t,u) is on the right of tm_,x—1)
but they are not adjacent to each other,
CPMj, = Linked-Interleaved,
(c) If tmit,&) is not on the right of
tmfa(k,l)i
i.If there are cross parts between tm _t, )
and tmja(k—l), CPMy, = Linked-Cross,
ii.Otherwise, CPM;, = Linked-Reversed,;

(2) If tm_t,p.—1)is null but tm ) is not null,
then find the first tm_t,(,—,,)(k > n)which is
not null (n starts from 2)*:
(@) If tm_t,u)is on the right of tm_Z,—n),
CPM;, = Skip-Forward,;
(b) If tmi,&) is not on the
tmja,(k,—n):
i. If there are cross parts between tm_t,x)
and tm_t,(x—n), CPMy = Skip-Cross;
Otherwise, CPM;, = Skip-Reversed.

right of

ii.
(3) If tm_tuyis null, CPM, = NA.

In Figure 1, assume that #—1, % and
tm_t,,—1) are “gets an”, “object that is associat-
ed with” and “gets, an,”, respectively. For
tm_tq1) “Object, thats is, associateds”, because
tm T,y i on the right of tm_7,.—1) and they are
adjacent pair, and both boundary words (“an”
and “an,”; “object” and “object,”) are matched,
CPMj, = Adjacent-Same; for tm_t,x) “an; object,
that; is, associateds”, because there are cross
parts “an;” between tm_t,u) and tm_t,u-1),
CPMy, = Linked-Cross. On the other hand, as-
sume that 1, 7x and tm_Z,(._1) are “gets”, “ob-
ject that is associated with” and “getsy”, respec-
tively. For tm_t, ) “an; object, that; is, associ-
ateds”, because tm_t,xy and tm_t,.—1) are adja-
cent pair, but the left boundary words of % and
tm_t,) (“object” and “an;”) are not matched,
CPM;, = Adjacent-Substitute; for tm T, “object,
thats is, associateds”, because tm_t,)is on the
right of tm_t,(,—1) but they are not adjacent pair,
therefore, CPM;, = Linked-Interleaved. One more
example, assume that x_1, 7y and tm_,x—1) are
“the annotation label”, “object that is associated
with” and “the; annotationg labely”, respectively.
For tm_t,() “an; object, thats is, associateds”,
because tm_t,x) is on the left of tm_7,4.—1), and
there are no cross parts, CPMj, = Linked-Reversed.

2 It can be identified by simply memorizing the index of
nearest non-null tm_Z4(x—») during search.



4
4.1

Experiments

Experimental Setup

Our TM database consists of computer domain
Chinese-English  translation  sentence-pairs,
which contains about 267k sentence-pairs. The
average length of Chinese sentences is 13.85
words and that of English sentences is 13.86
words. We randomly selected a development set
and a test set, and then the remaining sentence
pairs are for training set. The detailed corpus sta-
tistics are shown in Table 1. Furthermore, devel-
opment set and test set are divided into various
intervals according to their best fuzzy match
scores. Corpus statistics for each interval in the
test set are shown in Table 2.

For the phrase-based SMT system, we adopted
the Moses toolkit (Koehn et al., 2007). The sys-
tem configurations are as follows: GIZA++ (Och
and Ney, 2003) is used to obtain the bidirectional
word alignments. Afterwards, “intersection”
refinement (Koehn et al., 2003) is adopted to ex-
tract phrase-pairs. We use the SRI Language
Model toolkit (Stolcke, 2002) to train a 5-gram
model with modified Kneser-Ney smoothing
(Kneser and Ney, 1995; Chen and Goodman,

1998) on the target-side (English) training corpus.

All the feature weights and the weight for each
probability factor (3 factors for Model-111) are
tuned on the development set with minimum-
error-rate training (MERT) (Och, 2003). The
maximum phrase length is set to 7 in our exper-
iments.

In this work, the translation performance is
measured with case-insensitive BLEU-4 score
(Papineni et al., 2002) and TER score (Snover et
al., 2006). Statistical significance test is conduct-
ed with re-sampling (1,000 times) approach
(Koehn, 2004) in 95% confidence level.

4.2 Cross-Fold Translation

To estimate the probabilities of proposed models,
the corresponding phrase segmentations for bi-
lingual sentences are required. As we want to
check what actually happened during decoding in
the real situation, cross-fold translation is used to
obtain the corresponding phrase segmentations.
We first extract 95% of the bilingual sentences as
a new training corpus to train a SMT system.
Afterwards, we generate the corresponding
phrase segmentations for the remaining 5% bi-

8 «grow-diag-final” and “grow-diag-final-and” are also test-
ed. However, “intersection” is the best option in our exper-
iments, especially for those high fuzzy match intervals.
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Train Develop Test
#Sentences 261,906 2,569 2,576
#Chn. Words 3,623,516 38,585 38,648
#Chn. VOC. 43,112 3,287 3,460
#Eng. Words 3,627,028 38,329 38,510
#Eng. VOC. 44,221 3,993 4,046
Table 1: Corpus Statistics
Intervals #Sentences #Words W/S
[0.9,1.0) 269 4,468 16.6
[0.8,0.9) 362 5,004 13.8
[0.7,0.8) 290 4,046 14.0
[0.6,0.7) 379 4,998 13.2
[0.5, 0.6) 472 6,073 12.9
[0.4,0.5) 401 5,921 14.8
[0.3,0.4) 305 5,499 18.0
(0.0, 0.3) 98 2,639 26.9
(0.0,1.0) 2,576 38,648 15.0

Table 2: Corpus Statistics for Test-Set

lingual sentences with Forced Decoding (Li et
al., 2000; Zollmann et al., 2008; Auli et al., 2009;
Wisniewski et al., 2010), which searches the best
phrase segmentation for the specified output.
Having repeated the above steps 20 times®, we
obtain the corresponding phrase segmentations
for the SMT training data (which will then be
used to train the integrated models).

Due to OOV words and insertion words, not
all given source sentences can generate the de-
sired results through forced decoding. Fortunate-
ly, in our work, 71.7% of the training bilingual
sentences can generate the corresponding target
results. The remaining 28.3% of the sentence
pairs are thus not adopted for generating training
samples. Furthermore, more than 90% obtained
source phrases are observed to be less than 5
words, which explains why five different quanti-
zation levels are adopted for Source Phrase
Length (SPL) in section 3.1.

4.3

After obtaining all the training samples via cross-
fold translation, we use Factored Language
Model toolkit (Kirchhoff et al., 2007) to estimate
the probabilities of integrated models with Wit-
ten-Bell smoothing (Bell et al., 1990; Witten et
al., 1991) and Back-off method. Afterwards, we
incorporate the TM information P(My|Ly, z) for
each phrase at decoding. All experiments are

Translation Results

* This training process only took about 10 hours on our
Ubuntu server (Intel 4-core Xeon 3.47GHz, 132 GB of
RAM).



Intervals ™ SMT  Model-I Model-11 Model-I11 Koehn-10 Ma-11 | Ma-11-U
[09,1.0) | 81.31 8138 8544 * 86.47 *#  89.41 *# 82.79 77.72 82.78
[0.8,0.9) | 73.25 76.16 79.97 * 80.89 * 84.04 *# 79.74 * 73.00 77.66
[0.7,0.8) | 63.62 67.71 71.65 * 72.39 * 7473 *# 71.02 * 66.54 69.78
[0.6,0.7) | 4364 5456 5488 # 5588 *# 5753 *# 53.06 54.00 56.37
[05,0.6) | 27.37 46.32 47.32 *# A7.45 *4  A754 *# 39.31 46.06 47.73
[0.4,05) | 1543 3718 3725 # 3760 # 38.18 *# 28.99 36.23 37.93
[0.3,0.4) 8.24 2927 2952 # 2938 # 29.15 # 23.58 29.40 30.20
(0.0, 0.3) 413 2638 2561 # 2532 # 2557 # 18.56 26.30 26.92
(0.0,1.0) | 40.17 53.03 5457 *# 55.10 *# 56.51 *# 50.31 51.98 54.32

Table 3: Translation Results (BLEU%). Scores marked by “*” are significantly better (p < 0.05) than both TM
and SMT systems, and those marked by “#” are significantly better (p < 0.05) than Koehn-10.

Intervals ™ SMT  Model-I Model-11 Model-I11 Koehn-10 Ma-11 | Ma-11-U
[0.9,1.0) 9.79 13.01 922 # 852 *# 677 *# 13.01 18.80 11.90
[0.8,0.9) | 16.21 16.07 13.12 *# 12.74 *# 10.75 *# 15.27 20.60 14.74
[0.7,0.8) | 27.79 22.80 19.10 *# 18.58 *# 17.11 *# 21.85 25.33 21.11
[06,0.7) | 4640 33.38 32.63 # 3227 *# 29.96 *# 35.93 35.24 31.76
[05,0.6) | 6259 3956 38.24 *# 3877 *# 38.74 *# 47.37 40.24 38.01
[0.4,05) | 73.93 4719 47.03 # 46.34 *#  46.00 *# 56.84 48.74 46.10
[03,04) | 7986 5571 5538 # 5544 # 5587 # 64.55 55.93 54.15
(0.0,0.3) | 8531 61.76 6238 # 6366 # 6351 # 73.30 63.00 60.67
(0.0,1.0) | 50.51 35.88 34.34 *# 3418 *# 33.26 *# 40.75 38.10 34.49

Table 4: Translation Results (TER%). Scores marked by “*” are significantly better (p < 0.05) than both TM and
SMT systems, and those marked by “#” are significantly better (p < 0.05) than Koehn-10.

conducted using the Moses phrase-based decoder
(Koehn et al., 2007).

Table 3 and 4 give the translation results of
TM, SMT, and three integrated models in the test
set. In the tables, the best translation results (ei-
ther in BLEU or TER) at each interval have been
marked in bold. Scores marked by “*” are signif-
icantly better (p < 0.05) than both the TM and
the SMT systems.

It can be seen that TM significantly exceeds
SMT at the interval [0.9, 1.0) in TER score,
which illustrates why professional translators
prefer TM rather than SMT as their assistant tool.
Compared with TM and SMT, Model-I is signif-
icantly better than the SMT system in either
BLEU or TER when the fuzzy match score is
above 0.7; Model-1l significantly outperforms
both the TM and the SMT systems in either
BLEU or TER when the fuzzy match score is
above 0.5; Model-IlI significantly exceeds both
the TM and the SMT systems in either BLEU or
TER when the fuzzy match score is above 0.4.
All these improvements show that our integrated
models have combined the strength of both TM
and SMT.

However, the improvements from integrated
models get less when the fuzzy match score de-
creases. For example, Model-Ill outperforms
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SMT 8.03 BLEU points at interval [0.9, 1.0),
while the advantage is only 2.97 BLEU points at
interval [0.6, 0.7). This is because lower fuzzy
match score means that there are more un-
matched parts between s and ¢m_s; the output of
TM is thus less reliable.

Across all intervals (the last row in the table),
Model-111 not only achieves the best BLEU score
(56.51), but also gets the best TER score (33.26).
If intervals are evaluated separately, when the
fuzzy match score is above 0.4, Model-Ill out-
performs both Model-11 and Model-1 in either
BLEU or TER. Model-I1 also exceeds Model-I in
either BLEU or TER. The only exception is at
interval [0.5, 0.6), in which Model-1 achieves the
best TER score. This might be due to that the
optimization criterion for MERT is BLEU rather
than TER in our work.

4.4

In order to compare our proposed models with
previous work, we re-implement two XML-
Markup approaches: (Koehn and Senellart, 2010)
and (Ma et al, 2011), which are denoted as
Koehn-10 and Ma-11, respectively. They are
selected because they report superior perfor-
mances in the literature. A brief description of
them is as follows:

Comparison with Previous Work



o R BA s, R 5K E 4, 5 internets explorer; R g 444 o internet;y & 4% 14 )
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Source él] 13 %ﬁ 14 ﬁ‘)i$ 15> 16 [z]"l:b 17 Z: 18 /i\ 19 ;f}%ﬂ? 20 }ﬂ F 21 ’r’%% 22 o 23
ify you; disable, this; policy, settings ,¢ internet; explorerg doesq not;y checky; thej, internet;s
Reference fory, news versions;g of;; theyg browseryg ,o0 S0, d0€Sy, NOtys prompty, USersys t0,e instally;
themyg .59
T™ R A BB, b, R, X E 5, g internet; explorerg & o #4% 1o internety, & 4% 1, I
Source Bt WA, Bl g R0 R 0 R T AP nZ K. u
™ ify you; do, nots configure, thiss policys setting; ,g internety exploreryg does;; noty, check;s they,
internet;s foryg new,; versions;g ofig theyy browser,; 2, S0,3 d0es,s Notys promptys USersy; to,g
Target .
installyg themsg .31
™ 0-0 1-3 2-4 3-5 4-6 5-7 6-8 7-9 8-10 9-11 11-15 13-21 14-19 15-17 16-18 17-22 18-23 19-24
Alignment  21-26 22-27 23-29 24-31
if you disable this policy setting , internet explorer does not prompt users to install internet for
SMT new versions of the browser .  [Miss 7 target words: 9~12, 20~21, 28; Has one wrong permuta-
tion]
if you do you disable this policy setting , internet explorer does not check the internet for new
Koehn-10  versions of the browser , so does not prompt users to install them .  [Insert two spurious target
words]
if you disable this policy setting , internet explorer does not prompt users to install internet for
Ma-11 new versions of the browser .  [Miss 7 target words: 9~12, 20~21, 28; Has one wrong permuta-
tion]
if you disable this policy setting , internet explorer does not prompt users to install new ver-
Model-1 sions of the browser , so does not check the internet . [Miss 2 target words: 14, 28; Has one
wrong permutation]
if you disable this policy setting , internet explorer does not prompt users to install new ver-
Model-11 sions of the browser , so does not check the internet . [Miss 2 target words: 14, 28; Has one
wrong permutation]
Model-111 if you disable this policy setting , internet explorer does not check the internet for new versions

of the browser , so does not prompt users to install them .

[Exactly the same as the reference]

Figure 2: A Translation Example at Interval [0.9, 1.0] (with FMS=0.920)

Koehn et al. (2010) first find out the un-
matched parts between the given source sentence
and TM source sentence. Afterwards, for each
unmatched phrase in the TM source sentence,
they replace its corresponding translation in the
TM target sentence by the corresponding source
phrase in the input sentence, and then mark the
substitution part. After replacing the correspond-
ing translations of all unmatched source phrases
in the TM target sentence, an XML input sen-
tence (with mixed TM target phrases and marked
input source phrases) is thus obtained. The SMT
decoder then only translates the un-
matched/marked source phrases and gets the de-
sired results. Therefore, the inserted parts in the
TM target sentence are automatically included.
They use fuzzy match score to determine wheth-
er the current sentence should be marked or not;
and their experiments show that this method is
only effective when the fuzzy match score is
above 0.8.

Ma et al. (2011) think fuzzy match score is not
reliable and use a discriminative learning method
to decide whether the current sentence should be
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marked or not. Another difference between Ma-
11 and Koehn-10 is how the XML input is con-
structed. In constructing the XML input sentence,
Ma-11 replaces each matched source phrase in
the given source sentence with the corresponding
TM target phrase. Therefore, the inserted parts in
the TM target sentence are not included. In Ma’s
another paper (He et al., 2011), more linguistic
features for discriminative learning are also add-
ed. In our work, we only re-implement the XML-
Markup method used in (He et al., 2011; Ma et al,
2011), but do not implement the discriminative
learning method. This is because the features
adopted in their discriminative learning are com-
plicated and difficult to re-implement. However,
the proposed Model-Ill even outperforms the
upper bound of their methods, which will be dis-
cussed later.

Table 3 and 4 give the translation results of
Koehn-10 and Ma-11 (without the discriminator).
Scores marked by “#” are significantly better (p
< 0.05) than Koehn-10. Besides, the upper bound
of (Ma et al, 2011) is also given in the tables,
which is denoted as Ma-11-U. We calculate this



upper bound according to the method described
in (Ma et al., 2011). Since He et al., (2011) only
add more linguistic features to the discriminative
learning method, the upper bound of (He et al.,
2011) is still the same with (Ma et al., 2011);
therefore, Ma-11-U applies for both cases.

It is observed that Model-I1l significantly ex-
ceeds Koehn-10 at all intervals. More important-
ly, the proposed models achieve much better
TER score than the TM system does at interval
[0.9, 1.0), but Koehn-10 does not even exceed
the TM system at this interval. Furthermore,
Model-111 is much better than Ma-11-U at most
intervals. Therefore, it can be concluded that the
proposed models outperform the pipeline ap-
proaches significantly.

Figure 2 gives an example at interval [0.9, 1.0),
which shows the difference among different sys-
tem outputs. It can be seen that “you do” is re-
dundant for Koehn-10, because they are inser-
tions and thus are kept in the XML input. How-
ever, SMT system still inserts another “you”,
regardless of “you do” has already existed. This
problem does not occur at Ma-11, but it misses
some words and adopts one wrong permutation.
Besides, Model-I selects more right words than
SMT does but still puts them in wrong positions
due to ignoring TM reordering information. In
this example, Model-1l obtains the same results
with Model-I because it also lacks reordering
information. Last, since Model-I11 considers both
TM content and TM position information, it
gives a perfect translation.

5 Conclusion and Future Work

Unlike the previous pipeline approaches, which
directly merge TM phrases into the final transla-
tion result, we integrate TM information of each
source phrase into the phrase-based SMT at de-
coding. In addition, all possible TM target
phrases are kept and the proposed models select
the best one during decoding via referring SMT
information. Besides, the integrated model con-
siders the probability information of both SMT
and TM factors.

The experiments show that the proposed
Model-I11 outperforms both the TM and the SMT
systems significantly (p < 0.05) in either BLEU
or TER when fuzzy match score is above 0.4.
Compared with the pure SMT system, Model-I11
achieves overall 3.48 BLEU points improvement
and 2.62 TER points reduction on a Chinese—
English TM database. Furthermore, Model-I1l
significantly exceeds all previous pipeline ap-
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proaches. Similar improvements are also ob-
served on the Hansards parts of LDC2004T08
(not shown in this paper due to space limitation).
Since no language-dependent feature is adopted,
the proposed approaches can be easily adapted
for other language pairs.

Moreover, following the approaches of
Koehn-10 and Ma-11 (to give a fair comparison),
training data for SMT and TM are the same in
the current experiments. However, the TM s
expected to play an even more important role
when the SMT training-set differs from the TM
database, as additional phrase-pairs that are un-
seen in the SMT phrase table can be extracted
from TM (which can then be dynamically added
into the SMT phrase table at decoding time). Our
another study has shown that the integrated mod-
el would be even more effective when the TM
database and the SMT training data-set are from
different corpora in the same domain (not shown
in this paper). In addition, more source phrases
can be matched if a set of high-FMS sentences,
instead of only the sentence with the highest
FMS, can be extracted and referred at the same
time. And it could further raise the performance.

Last, some related approaches (Smith and
Clark, 2009; Phillips, 2011) combine SMT and
example-based machine translation (EBMT)
(Nagao, 1984). It would be also interesting to
compare our integrated approach with that of
theirs.
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Abstract

We derive variants of the fertility based
models IBM-3 and IBM-4 that, while
maintaining their zero and first order pa-
rameters, are nondeficient. Subsequently,
we proceed to derive a method to com-
pute a likely alignment and its neighbors
as well as give a solution of EM training.
The arising M-step energies are non-trivial
and handled via projected gradient ascent.

Our evaluation on gold alignments shows
substantial improvements (in weighted F-
measure) for the IBM-3. For the IBM-
4 there are no consistent improvements.
Training the nondeficient IBM-5 in the
regular way gives surprisingly good re-
sults.

Using the resulting alignments for phrase-
based translation systems offers no clear
insights w.r.t. BLEU scores.

1 Introduction

While most people think of the translation and
word alignment models IBM-3 and IBM-4 as in-
herently deficient models (i.e. models that assign
non-zero probability mass to impossible events),
in this paper we derive nondeficient variants main-
taining their zero order (IBM-3) and first order
(IBM-4) parameters. This is possible as IBM-3
and IBM-4 are very special cases of general log-
linear models: they are properly derived by the
chain rule of probabilities. Deficiency is only in-
troduced by ignoring a part of the history to be
conditioned on in the individual factors of the
chain rule factorization. While at first glance this
seems necessary to obtain zero and first order de-
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Figure 1: Plot of the negative log. likelihoods
(the quantity to be minimized) arising in training
deficient and nondeficient models (for Europarl
German | English, training scheme 1°H®3%4%).
1/3/4=IBM-1/3/4, H=HMM, T=Transfer iteration.
The curves are identical up to iteration 11.

Iteration 11 shows that merely 5.14% of the
(HMM) probability mass are covered by the
Viterbi alignment and its neighbors. With deficient
models (and deficient empty words) the final neg-
ative log likelihood is higher than the initial HMM
one, with nondeficient models it is lower than for
the HMM, as it should be for a better model.

pendencies, we show that with proper renormal-
ization all factors can be made nondeficient.

Having introduced the model variants, we pro-
ceed to derive a hillclimbing method to compute
a likely alignment (ideally the Viterbi alignment)
and its neighbors. As for the deficient models, this
plays an important role in the E-step of the sub-
sequently derived expectation maximization (EM)
training scheme. As usual, expectations in EM are
approximated, but we now also get non-trivial M-
step energies. We deal with these via projected
gradient ascent.

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 22-31,
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The downside of our method is its resource con-
sumption, but still we present results on corpora
with 100.000 sentence pairs. The source code of
this project is available in our word alignment soft-
ware RegAligner', version 1.2 and later.

Figure 1 gives a first demonstration of how
much the proposed variants differ from the stan-
dard models by visualizing the resulting negative
log likelihoods?, the quantity to be minimized in
EM-training. The nondeficient IBM-4 derives a
lower negative log likelihood than the HMM, the
regular deficient variant only a lower one than
the IBM-1. As an aside, the transfer iteration
from HMM to IBM3 (iteration 11) reveals that
only 5.14% of the probability mass® are preserved
when using the Viterbi alignment and its neighbors
instead of all alignments.

Indeed, it is widely recognized that — with
proper initialization — fertility based models out-
perform sequence based ones. In particular, se-
quence based models can simply ignore a part of
the sentence to be conditioned on, while fertility
based models explicitly factor in a probability of
words in this sentence to have no aligned words
(or any other number of aligned words, called the
fertility). Hence, it is encouraging to see that the
nondeficient IBM-4 indeed derives a higher likeli-
hood than the sequence based HMM.

Related Work Today’s most widely used mod-
els for word alignment are still the models IBM
1-5 of Brown et al. (1993) and the HMM of Vo-
gel et al. (1996), thoroughly evaluated in (Och
and Ney, 2003). While it is known that fertility-
based models outperform sequence-based ones,
the large bulk of word alignment literature follow-
ing these publications has mostly ignored fertility-
based models. This is different in the present paper
which deals exclusively with such models.

One reason for the lack of interest is surely that
computing expectations and Viterbi alignments for
these models is a hard problem (Udupa and Maji,
2006). Nevertheless, computing Viterbi align-

11'1ttps ://github.com/Thomasl1205/RegAligner,
for the reported results we used a slightly earlier version.

’Note that the figure slightly favors IBM-1 and HMM as
for them the length J of the foreign sequence is assumed to
be known whereas IBM-3 and IBM-4 explicitly predict it.

3This number regards the corpus probability as in (9) to
the power of 1/, i.e. the objective function in maximum
likelihood training. The number is not entirely fair as align-
ments where more than half the words align to the empty
word are assigned a probability of 0. Still, this is an issue
only for short sentences.
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ments for the IBM-3 has been shown to often
be practicable (Ravi and Knight, 2010; Schoen-
emann, 2010).

Much work has been spent on HMM-based
formulations, focusing on the computationally
tractable side (Toutanova et al., 2002; Sumita et
al., 2004; Deng and Byrne, 2005). In addition,
some rather complex models have been proposed
that usually aim to replace the fertility based mod-
els (Wang and Waibel, 1998; Fraser and Marcu,
2007a).

Another line of models (Melamed, 2000; Marcu
and Wong, 2002; Cromieres and Kurohashi, 2009)
focuses on joint probabilities to get around the
garbage collection effect (i.e. that for conditional
models, rare words in the given language align to
too many words in the predicted language). The
downside is that these models are computationally
harder to handle.

A more recent line of work introduces various
forms of regularity terms, often in the form of
symmetrization (Liang et al., 2006; Graca et al.,
2010; Bansal et al., 2011) and recently by using
Lo norms (Vaswani et al., 2012).

2 The models IBM-3, IBM-4 and IBM-5

We begin with a short review of fertility-based
models in general and IBM-3, IBM-4 and IBM-
5 specifically. All are due to (Brown et al., 1993)
who proposed to use the deficient models IBM-3
and IBM-4 to initialize the nondeficient IBM-5.
For a foreign sentence f = f{ = (f1,...,fs)
with J words and an English one e el
(e1,...,er) with I words, the (conditional) proba-
bility p(f{|el) of getting the foreign sentence as a
translation of the English one is modeled by intro-
ducing the word alignment a as a hidden variable:

p(filel) = p(f{,ale])

All IBM models restrict the space of alignments
to those where a foreign word can align to at most
one target word. The resulting alignment is then
written as a vector a{ , where each a; takes integral
values between 0 and I, with 0 indicating that f;
has no English correspondence.

The fertility-based models IBM-3, IBM-4
and IBM-5 factor the (conditional) probability
p(f{,ailel) of obtaining an alignment and a
translation given an English sentence according to
the following generative story:



1. Fori =1,2,...,1I, decide on the number ®;
of foreign words aligned to e;. This number
is called the fertility of e;. Choose with prob-
ability p(®;le], ®171) = p(®ile;).

. Choose the number ®( of unaligned words
in the (still unknown) foreign sequence.
Choose with probability p(®olel, ®1)
p(Po| Zi[:l ®,). Since each foreign word be-
longs to exactly one English position (includ-
ing 0), the foreign sequence is now known to
be of length J = 37 @;.

.Foreachi=1,2,...
decide on
(a) the identity f;, of the next foreign
word aligned to e¢;. Choose with probability
p(firlel, @5, d " din, ... digo1, fig)
p(fiklei), where d; comprises all d;, for
word % (see point b) below) and f; ;, com-
prises all foreign words known at that point.
(b) the position d;j of the just gener-
ated foreign word f;;, with probability
p(diglel, @0, d7 din, .. di 1, i, fik)
=p(digles, " i, dig—1, fige, J)-

. The remaining ®( open positions in the for-
eign sequence align to position 0. Decide
on the corresponding foreign words with
p(fdg 11€0), where e is an artificial “empty
word”.

,JI,and k = 1,...,9;

To model the probability for the number of un-
aligned words in step 2, each of the Zf:l d; prop-
erly aligned foreign words generates an unaligned
foreign word with probability pg, resulting in

1
pg%' (1 _po)(zi ®;i)—Po

o] ) -

%)

with a base probability pg and the combinato-

rial coefficients (Z) = ﬁlk), where n!

[, k denotes the factorial of n. The main dif-
ference between IBM-3, IBM-4 and IBM-5 is the
choice of probability model in step 3 b), called a
distortion model. The choices are now detailed.

2.1 1IBM-3

The IBM-3 implements a zero order distortion
model, resulting in

p(di,k‘i7 J)
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Since most of the context to be conditioned on is
ignored, this allows invalid configurations to occur
with non-zero probability: some foreign positions
can be chosen several times, while others remain
empty. One says that the model is deficient. On
the other hand, the model for p(P| Zi[:l ;) is
nondeficient, and in training this often results in
very high probabilities pg. To prevent this it is
common to make this model deficient as well (Och
and Ney, 2003), which improves performance im-
mensely and gives much better results than simply
fixing pg in the original model.

As for each i the d;j, can appear in any order
(i.e. need not be in ascending order), there are
HI,l ;! ways to generate the same alignment al
(where the ®; are the fertilities induced by af).
In total, the IBM-3 has the following probability
model:

J
p(fi]a |€1 = H[ f]|€a3 ]|a]> ):| (D

p(q)0| Z (I)i) ' H ;! p(Psle;) -
=1 i=1

Reducing the Number of Parameters While
using non-parametric models p(j|i,.J) is conve-
nient for closed-form M-steps in EM training,
these parameters are not very intuitive. Instead,
in this paper we use the parametric model

"y p(Jj]i
p(]|%J):7J( ‘) 2
Zj:l p(jli)
with the more intuitive parameters p(j|¢). The

arising M-step energy is addressed by projected
gradient ascent (see below).

These parameters are also used for the nondefi-
cient variants. Using the original non-parametric
ones can be handled in a very similar manner to
the methods set forth below.

2.2 IBM-4

The distortion model of the IBM-4 is a first order
one that generates the d; j, of each English position
1 in ascending order (i.e. for 1 < k < ®; we have
d;x > d;p—1). There is then a one-to-one cor-
respondence between alignments a‘{ and (valid)
distortion parameters (d;)i=1,..1 k=1,. &, and
therefore no longer a factor of Hle P!,

The IBM-4 has two sub-distortion models, one
for the first aligned word (k = 1) of an English po-
sition and one for all following words (k > 1, only



if ®; > 1). For position i, let [¢] =arg max{é'|1 <
i’ < i,®; > 0} denote* the closest preceding En-
glish word that has aligned foreign words. The
aligned foreign positions of [i] are combined into
a center position ), the rounded average of the
positions. Now, the distortion probability for the
first word (k = 1) is

p=1(di1|®p) A(fin), Blew), J)

where A gives the word class of a foreign word
and B3 the word class of an English word (there are
typically 50 classes per language, derived by ma-
chine learning techniques). The probability is fur-
ther reduced to a dependency on the difference of
the positions, i.e. p=1(d;1—®p [ A(fi1), Blep)).
For k£ > 1 the model is

p>1(dikldig—1, A(fik),J),

which is likewise reduced to psi(d;p
dik—1|A(fik)). Note that in both difference-
based formulations the dependence on J has to
be dropped to get closed-form solutions of the
M-step in EM training, and Brown et al. note
themselves that the IBM-4 can place words before
the start and after the end of the sentence.

Reducing Deficiency In this paper, we also in-
vestigate the effect of reducing the amount of
wasted probability mass by enforcing the depen-
dence on J by proper renormalization, i.e. using

p=1(4l7", A(fin), Blep), J) = 3)
p=1(j — J'|A(fi1), Blep))
iy p=1(" = 3 A(fi1), Bleg))
for the first aligned word and
p>10j15"s A(fik), J) = 4)

po1(G — 5 [ A(fir))
Shiy PG — 3| Alfin))

for all following words, again handling the M-step
in EM training via projected gradient ascent. With
this strategy words can no longer be placed out-
side the sentence, but a lot of probability mass is
still wasted on configurations where at least one
foreign (or predicted) position j aligns to two or
more positions 7,4’ in the English (or given) lan-
guage (and consequently there are more unaligned

“If the set is empty, instead a sentence start probability
is used. Note that we differ slightly in notation compared to
(Brown et al., 1993).

25

source words than the generated ®(). Therefore,
here, too, the probability for ®y has to be made
deficient to get good performance.

In summary, the base model for the IBM-4 is:

1
p(fafled) = p(@0l ) i) 5)
J 1 -
Jlpfilea;) - T p(@iles)
j=1 i=1

: H {p:1(di,1 — OplA(fi1), Blew))

i: ;>0
b,
T ps1(dis - d@k—l’A(fi,k))} ;
k=2

where empty products are understood to be 1.

2.3 IBM-5

We note in passing that the distortion model of the
IBM-5 is nondeficient and has parameters for fill-
ing the nth open gap in the foreign sequence given
that there are N positions to choose from — see
the next section for exactly what positions one can
choose from. There is also a dependence on word
classes for the foreign language.

This is neither a zero order nor a first order de-
pendence, and in (Och and Ney, 2003) the first or-
der model of the IBM-4, though deficient, outper-
formed the IBM-5. The IBM-5 is therefore rarely
used in practice. This motivated us to instead re-
formulate IBM-3 and IBM-4 as nondeficient mod-
els. In our results, however, the IBM-5 gave sur-
prisingly good results and was often superior to all
variants of the IBM-4.

3 Nondeficient Variants of IBM-3 and
IBM-4

From now on we always enforce that for each po-
sition ¢ the indices d; j are generated in ascending
order (d; > d; ,—1 for k > 1). A central con-
cept for the generation of d; ;, in step 3(b) is the
set of positions in the foreign sequence that are
still without alignment. We denote the set of these
positions by

\Z,k,] = {1a7‘]} - {dl,k/|1§k,<k}
—{diy |1 <7 <i,1 <K <Py}

where the dependence on the various d; j/ is not
made explicit in the following.

It is tempting to think that in a nondeficient
model all members of J;x ; can be chosen for



d; i, but this holds only ®; = 1. Otherwise, the
requirement of generating the d; j, in ascending or-
der prevents us from choosing the (®; —k) largest
entries in 7; 1. 7. For k > 1 we also have to remove
all positions smaller than d; ;1.

Let .7;1;; 7 denote the set where these positions
have been removed. With that, we can state the
nondeficient variants of IBM-3 and IBM-4.

3.1 Nondeficient IBM-3
For the IBM-3, we define the auxiliary quantity

. . ®;
jli) ifj € Ty,
0 else ,

Q(di,kz =] | ia\%%]) = {p(

where we use the zero order parameters p(j|i) we
also use for the standard (deficient) IBM-3, com-
pare (2). To get a nondeficient variant, it remains
to renormalize, resulting in

. D,
Q(j |Zv \71'7]{7(])
J Ny
Zj:l q(jli, \-7Z‘7k7j)
Further, note that the factors ®;! now have to
be removed from (1) as the d; ; are generated in
ascending order. Lastly, here we use the original

nondeficient empty word model p(®| Zfil D;),
resulting in a totally nondeficient model.

p(di = jli, TS5 ;) = . (6)

3.2 Nondeficient IBM-4

With the notation set up, it is rather straightfor-
ward to derive a nondeficient variant of the IBM-
4. Here, there are the two cases k=1 and k > 1.
We begin with the case £ = 1. Abbreviating
a = A(fi1) and 3 = B(e;), we define the auxil-
iary quantity

g=1(diy = j|O, @, B, T ;)

p=1(j — Oples B) ifj € T,
0 else ,

again using the - now first order - parameters
of the base model. The nondeficient distribution
p=1(din = j[@{i],a,ﬂ,jﬁﬂj) is again obtained
by renormalization.

For the case k > 1, we abbreviate o« = A(f; 1)
and introduce the auxiliary quantity

(7

g>1(dik = jldik-1, @, itIZ,J) = ®)
p>1(j — dip—1]o) ifj e %%,J
0 else ,
from which the nondeficient distribution

. O, N - . .
p>1(dip=7ldi k-1, v, sz) is again obtained by
renormalization.
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4 Training the New Variants

For the task of word alignment, we infer the pa-
rameters of the models using the maximum likeli-

hood criterion s

fs S
max [ potifes)

s=1

©))

on a set of training data (i.e. sentence pairs s =
1,...,5). Here, 6 comprises all base parameters
of the respective model (e.g. for the IBM-3 all
p(fle), all p(®, e) and all p(j|i) ) and py signifies
the dependence of the model on the parameters.
Note that (9) is truly a constrained optimization
problem as the parameters ¢ have to satisfy a num-
ber of probability normalization constraints.

When py(-) denotes a fertility based model the
resulting problem is a non-concave maximization
problem with many local minima and no (known)
closed-form solutions. Hence, it is handled by
computational methods, which typically apply the
logarithm to the above function.

Our method of choice to attack the maximum
likelihood problem is expectation maximization
(EM), the standard in the field, which we explain
below. Due to non-concaveness the starting point
for EM is of extreme importance. As is common,
we first train an IBM-1 and then an HMM before
proceeding to the IBM-3 and finally the IBM-4.

As in the training of the deficient IBM-3 and
IBM-4 models, we approximate the expectations
in the E-step by a set of likely alignments, ideally
centered around the Viterbi alignment, but already
for the regular deficient variants computing it is
NP-hard (Udupa and Maji, 2006). A first task is
therefore to compute such a set. This task is also
needed for the actual task of word alignment (an-
notating a given sentence pair with an alignment).

4.1 Alignment Computation

For computing alignments, we use the common
procedure of hillclimbing where we start with an
alignment, then iteratively compute the probabili-
ties of all alignments differing by a move or a swap
(Brown et al., 1993) and move to the best of these
if it beats the current alignment.

Since we cannot ignore parts of the history and
still get a nondeficient model, computing the prob-
abilities of the neighbors cannot be handled in-
crementally (or rather only partially, for the dic-
tionary and fertility models). While this does in-
crease running times, in practice the M-steps take
longer than the E-steps.



For self-containment, we recall here that for an
alignment af applying the move a{ [j — 7] results
in the alignment a{ defined by a;=1and aj =aj
for j' # j. Applying the swap a{[j; <> jo] results
in the alignment a{ defined by a;, =a;,, aj, =aj;,
and aj = aj; elsewhere. If ai is the alignment
produced by hillclimbing, the move matrix m €
IR7*1+1 is defined by m;,; being the probability of
ai[j — i) aslongas a; # i, otherwise 0. Likewise
the swap matrix s € IR'*7 is defined as s;, ;,
being the probability of af [j1 <> jo] for a;, #aj,.
0 otherwise. The move and swap matrices are used
to approximate expectations in EM training (see
below).

4.2 Parameter Update

Naive Scheme It is tempting to account for the
changes in the model in hillclimbing, but to oth-
erwise use the regular M-step procedures (closed
form solution when not conditioning on .J for the
IBM-4 and for the non-parametric IBM-3, other-
wise projected gradient ascent) for the deficient
models. However, we verified that this is not a
good idea: not only can the likelihood go down
in the process (even if we could compute expecta-
tions exactly), but these schemes also heavily in-
crease po in each iteration, i.e. the same problem
Och and Ney (2003) found for the deficient mod-
els. There is therefore the need to execute the M-
step properly, and when done the problem is in-
deed resolved.

Proper EM The expectation maximization
(EM) framework (Dempster et al., 1977; Neal and
Hinton, 1998) is a class of template procedures
(rather than a proper algorithm) that iteratively
requires solving the task

S

maXZZpek 1 (as|fs, es) log (pﬁk(fSaas|es))

s=1 as

(10)
by appropriate means. Here, 05, are the parame-
ters from the previous iteration, while 6, are those
derived in the current iteration. Of course, here
and in the following the normalization constraints
on 6 apply, as already in (9). On explicit request
of a reviewer we give a detailed account for our
setting here. Readers not interested in the details
can safely move on to the next section.

Details on EM For the corpora occurring in
practice, the function (10) has many more terms
than there are atoms in the universe. The trick is
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that py, (fs, as|es) is a product of factors, where
each factor depends on very few components of
O only. Taking the logarithm gives a sum of
logarithms, and in the end we are left with the
problem of computing the weights of each factor,
which turn out to be expectations. To apply this
to the (deficient) IBM-3 model with parametric
distortion we simplify pg, _ 1(a3|f8,e5) p(as)

and define the counts ns.(as) = Z 1607, 1)
0(ess.e) nae(as) = 3ity 0(ef, e)- 6(<I>Z(a8), )
and n;;(as) = d(aj,i). We also use short hand
notations for sets, e.g. {p(f|e)} is meant as the
set of all translation probabilities induced by the
given corpus. With this notation, after reordering
the terms problem (10) can be written as

11
{p(fle)}, {p( \ o

> [Z > nlay) ”f,e(as)}log (p(fle))

e,f s=1 as

+Z [Zzp a,) no.c(a,) [log (p(®,€)

s=1 as

D> [Zzp a) nji(a) |log (p(ili, J))

s=1 as

BRIV

Indeed, the weights in each line turn out to be
nothing else than expectations of the respective
factor under the distribution py, , (as|fs,es) and
will henceforth be written as w ., we . and w; ;. .
Therefore, executing an iteration of EM requires
first calculating all expectations (E-step) and then
solving the maximization problems (M-step). For
models such as IBM-1 and HMM the expectations
can be calculated efficiently, so the enormous sum
of terms in (10) is equivalently written as a man-
ageable one. In this case it can be shown® that
the new 6, must have a higher likelihood (9) than
011 (unless a stationary point is reached). In fact,
any 6 that has a higher value in the auxiliary func-
tion (11) than 0;_; must also have a higher like-
lihood. This is an important background for para-
metric models such as (2) where the M-step cannot
be solved exactly.

For IBM-3/4/5 computing exact expectations is
intractable (Udupa and Maji, 2006) and approx-
imations have to be used (in fact, even comput-
ing the likelihood for a given # is intractable). We

3See e.g. the author’s course notes (in German), currently

http://user.phil-fak.uni-duesseldorf.de/
“tosch/downloads/statmt/wordalign.pdf.



use the common procedure based on hillclimbing
and the move/swap matrices. The likelihood is not
guaranteed to increase but it (or rather its approx-
imation) always did in each of the five run itera-
tions. Nevertheless, the main advantage of EM is
preserved: problem (11) decomposes into several
smaller problems, one for each probability distri-
bution since the parameters are tied by the nor-
malization constraints. The result is one problem
for each e involving all p(f|e), one for each e in-
volving all p(®|e) and one for each ¢ involving all
p(jli).

The problems for the translation probabilities
and the fertility probabilities yield the known stan-
dard update rules. The most interesting case is the
problem for the (parametric) distortion models. In
the deficient setting, the problem for each i is

Zqu o (Z p(ili) )

1 p(5']7)
In the nondeficient setting, we now drop the sub-
scripts ¢, k, J and the superscript ® from the sets
defined in the previous sections, i.e. we write J
instead of J;I;C ;- The M-step problem is then

Z Z wjzjlog j)) )

J Jged

{p J|

max E;, = (jli,

{p(l9)}

where w;; 7 (with j € J) is the expectation for
aligning j to ¢ when one can choose among the po-
sitions in 7, and with p(j|é, J) as in (6). In princi-
ple there is an exponential number of expectations
wj; 7. However, since we approximate expecta-
tions from the move and swap matrices, and hence
by O((I + J) - J) alignments per sentence pair,
in the end we get a polynomial number of terms.
Currently we only consider alignments with (ap-
proximated) pg, , (as|fs,es) > 1075.

Importantly, the fact that we get separate M-step
problems for different ¢ allows us to reduce mem-
ory consumption by using refined data structures
when storing the expectations.

For both the deficient and the nondeficient vari-
ants, the M-step problems for the distortion pa-
rameters p(j|¢) are non-trivial, non-concave and
have no (known) closed form solutions. We ap-
proach them via the method of projected gradient
ascent (PGA), where the gradient for the nondefi-
cient problem is

=

Jged

0E;
Ip(jli)

Zj’ej wjr, g

Zj’ej p(4'[7)

Wy, T

p(ili)
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When running PGA we guarantee that the result-
ing {p(j|i)} has a higher function value E; than
the input ones (unless a stationary point is input).
We stop when a cutoff criterion indicates a local
maximum or 250 iterations are used up.

Projected Gradient Ascent This method is
used in a couple of recent papers, notably (Schoen-
emann, 2011; Vaswani et al., 2012) and is briefly
sketched here for self-containment (see those pa-
pers for more details). To solve a maximization
problem

Ei({p(il1)})

max

p(j1)>0,3; p(jli)=1

for some (differentiable) function F;(-), one iter-
atively starts at the current point {py(j|i)}, com-
putes the gradient VE; ({px(j]7)}) and goes to the
point

q(jl%)
for some step-length . This point is generally
not a probability distribution, so one computes the
nearest probability distribution

J

) ool a2
min qiJit) —qij| N
Q'(j|i)>0,ZjQ'(ji):1; (1) — a()

= pr(jli) + aVE;(pr(jli)) , j

a step known as projection which we solve with
the method of (Michelot, 1986). The new dis-
tribution {¢’(j|i)} is not guaranteed to have a
higher F;(+), but (since the constraint set is a con-
vex one) a suitable interpolation of {pg(j|7)} and
{¢'(j]%)} is guaranteed to have a higher value (un-
less {px(j|i)} is a local maximum or minimum
of E;(-)). Such a point is computed by back-
tracking line search and defines the next iterate

{Prt1(j12) }-

IBM-4 When moving from the IBM-3 to the
IBM-4, only the last line in (11) changes. In
the end one gets two new kinds of problems, for
p—1(-) and p~1(+). For p—;(-) we have one prob-
lem for each foreign class o and each English class
B, of the form

Z ]7] Ja,glog(p 1(]|j avﬁv ))

{p= 1(]|] ozﬁ)} I}

for reduced deficiency (with p—1(j|j’, a, 8, J) as
in (3)) and of the form

Z ]7] ja,ﬁlog(p 1(]|] aaﬁ) ))

{p= 1(]\] a,ﬁ)} T



Model Degree of Deficiency | De|En | En|De | Es|En | En|Es
HMM nondeficient (our) 73.8 77.6 77.4 76.1
IBM-3 full (GIZA++) 74.2 76.5 74.3 74.5
IBM-3 full (our) 75.6 79.2 75.2 73.7
IBM-3 nondeficient (our) 76.1 79.8 76.8 75.5
IBM-4, 1 x 1 word class full (GIZA++) 77.9 79.4 78.6 78.4
IBM-4, 1 x 1 word class full (our) 76.1 81.5 77.8 78.0
IBM-4, 1 x 1 word class reduced (our) 77.2 80.6 77.9 78.3
IBM-4, 1 x 1 word class nondeficient (our) 77.6 81.5 80.0 78.4
IBM-4, 50 x 50 word classes | full (GIZA++) 78.6 80.4 79.3 79.3
IBM-4, 50 x 50 word classes | full (our) 78.0 82.4 79.2 79.4
IBM-4, 50 x 50 word classes | reduced (our) 78.5 82.1 79.2 79.0
IBM-4, 50 x 50 word classes | nondeficient (our) 77.9 82.5 79.7 78.2
IBM-5, 50 word classes nondeficient (GIZA++) | 79.4 81.1 80.0 79.5
IBM-5, 50 word classes nondeficient (our) 79.2 82.7 79.7 79.5

Table 1: Alignment accuracy (weighted F-measure times 100, o = 0.1) on Europarl with 100.000
sentence pairs. Reduced deficiency means renormalization as in (3) and (4), so that words cannot be
placed before or after the sentence. For the IBM-3, the nondeficient variant is clearly best. For the
IBM-4 it is better in roughly half the cases, both with and without word classes.

for the nondeficient variant, with
p=1(j|j/a «, 57 j) based on (7)
For p~1(-) we have one problem per foreign

class «, of the form

> wigrialog (ps1(ilfh ;7))
44T

max
{p>1 (]‘]lva)}

for reduced deficiency, with p~1(j|j’, o, J) based
on (4), and for the nondeficient variant it has the
form

Z Wy 0T a IOg (p>1(j’j/7 «, \-7)) 5
33T

max
{p>1(l5%0)}

with p<1(j|7’, ., J) based on (8). Calculating the
gradients is analogous to the IBM-3.

S Experiments

We test the proposed methods on subsets of the
Europarl corpus for German and English as well
as Spanish and English, using lower-cased cor-
pora. We evaluate alignment accuracies on gold
alignments® in the form of weighted F-measures
with «=0.1, which performed well in (Fraser and
Marcu, 2007b). In addition we evaluate the effect
on phrase-based translation on one of the tasks.
We implement the proposed methods in our
own framework RegAligner rather than GIZA++,
Sfrom  (Lambert et al., 2005) and from

http://user.phil-fak.uni-duesseldorf.de/
“tosch/downloads.html.
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which is only rudimentally maintained. Therefore,
we compare to the deficient models in our own
software as well as to those in GIZA++.

We run 5 iterations of IBM-1, followed by 5
iterations of HMM, 5 of IBM-3 and finally 5 of
IBM-4. The first iteration of the IBM-3 collects
counts from the HMM, and likewise the first iter-
ation of the IBM-4 collects counts from the IBM-
3 (in both cases the move and swap matrices are
filled with probabilities of the former model, then
theses matrices are used as in a regular model iter-
ation). A nondeficient IBM-4 is always initialized
by a nondeficient IBM-3. We did not set a fertility
limit (except for GIZA++).

Experiments were run on a Core i5 with 2.5
GHz and 8 GB of memory. The latter was the
main reason why we did not use still larger cor-
pora’. The running times for the entire training
were half a day without word classes and a day
with word classes. With 50 instead of 250 PGA it-
erations in all M-steps we get only half these run-
ning times, but the resulting F-measures deterio-

rate, especially for the IBM-4 with classes.

The running times of our implementation of the
IBM-5 are much more favorable: the entire train-
ing then runs in little more than an hour.

"The main memory bottleneck is the IBM-4 (6 GB with-
out classes, 8 GB with). Using refined data structures should
reduce this bottleneck.



5.1 Alignment Accuracy

The alignment accuracies — weighted F-measures
with @ = 0.1 — for the tested corpora and model
variants are given in Table 1. Clearly, nondefi-
ciency greatly improves the accuracy of the IBM-
3, both compared to our deficient implementation
and that of GIZA++.

For the IBM-4 we get improvements for the
nondeficient variant in roughly half the cases, both
with and without word classes. We think this is
an issue of local minima, inexactly solved M-steps
and sensitiveness to initialization.

Interestingly, also the reduced deficient IBM-4
is not always better than the fully deficient variant.
Again, we think this is due to problems with the
non-concave nature of the models.

There is also quite some surprise regarding the
IBM-5: contrary to the findings of (Och and Ney,
2003) the IBM-5 in GIZA++ performs best in
three out of four cases - when competing with both
deficient and nondeficient variants of IBM-3 and
IBM-4. Our own implementation gives slightly
different results (as we do not use smoothing), but
it, too, performs very well.

5.2 Effect on Translation Performance

We also check the effect of the various align-
ments (all produced by RegAligner) on trans-
lation performance for phrase-based translation,
randomly choosing translation from German to
English. We use MOSES with a 5-gram lan-
guage model (trained on 500.000 sentence pairs)
and the standard setup in the MOSES Experi-
ment Management System: training is run in both
directions, the alignments are combined using
diag-grow-final-and (Och and Ney, 2003)
and the parameters of MOSES are optimized on
750 development sentences.

The resulting BLEU-scores are shown in Table
2. However, the table shows no clear trends and
even the IBM-3 is not clearly inferior to the IBM-
4. We think that one would need to handle larger
corpora (or run multiple instances of Minimum Er-
ror Rate Training with different random seeds) to
get more meaningful insights. Hence, at present
our paper is primarily of theoretical value.

6 Conclusion

We have shown that the word alignment models
IBM-3 and IBM-4 can be turned into nondeficient
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Model | #Classes | Deficiency BLEU
HMM | - nondeficient 29.72
IBM-3 | - deficient 29.63
IBM-3 | - nondeficient 29.73
IBM-4 | 1x1 fully deficient 2991
IBM-4 | 1x1 reduced deficient | 29.88
IBM-4 | 1x1 nondeficient 30.18
IBM-4 | 50x 50 | fully deficient 29.86
IBM-4 | 50 x 50 | reduced deficient | 30.14
IBM-4 | 50 x 50 | nondeficient 29.90
’ IBM-5 \ 50 nondeficient \ 29.84 ‘

Table 2: Evaluation of phrase-based translation
from German to English with the obtained align-
ments (for 100.000 sentence pairs). Training is run
in both directions and the resulting alignments are
combined via diag-grow—final-and. The
table shows no clear superiority of any method.
In fact, the IBM-4 is not superior to the IBM-3
and the HMM is about equal to the IBM-3. We
think that one needs to handle larger corpora to
get clearer insights.

variants, an important aim of probabilistic model-
ing for word alignment.

Here we have exploited that the models are
proper applications of the chain rule of probabili-
ties, where deficiency is only introduced by ignor-
ing parts of the history for the distortion factors in
the factorization. By proper renormalization the
desired nondeficient variants are obtained.

The arising models are trained via expectation
maximization. In the E-step we use hillclimb-
ing to get a likely alignment (ideally the Viterbi
alignment). While this cannot be handled fully
incrementally, it is still fast enough in practice.
The M-step energies are non-concave and have no
(known) closed-form solutions. They are handled
via projected gradient ascent.

For the IBM-3 nondeficiency clearly improves
alignment accuracy. For the IBM-4 we get im-
proved accuracies in roughly half the cases, both
with and without word classes. The IBM-5 per-
forms surprisingly well, it is often best and hence
much better than its reputation. An evaluation of
phrase based translation showed no clear insights.

Nevertheless, we think that nondeficiency in
fertility based models is an important issue, and
that at the very least our paper is of theoretical
value. The implementations are publicly available
in RegAligner 1.2.
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Abstract

Annotating linguistic data is often a com-
plex, time consuming and expensive en-
deavour. Even with strict annotation
guidelines, human subjects often deviate
in their analyses, each bringing different
biases, interpretations of the task and lev-
els of consistency. We present novel tech-
niques for learning from the outputs of
multiple annotators while accounting for
annotator specific behaviour. These tech-
niques use multi-task Gaussian Processes
to learn jointly a series of annotator and
metadata specific models, while explicitly
representing correlations between models
which can be learned directly from data.
Our experiments on two machine trans-
lation quality estimation datasets show
uniform significant accuracy gains from
multi-task learning, and consistently out-
perform strong baselines.

1 Introduction

Most empirical work in Natural Language Pro-
cessing (NLP) is based on supervised machine
learning techniques which rely on human anno-
tated data of some form or another. The annota-
tion process is often time consuming, expensive,
and prone to errors; moreover there is often con-
siderable disagreement amongst annotators.

In general, the predominant perspective to deal
with these data annotation issues in previous work
has been that there is a single underlying ground
truth, and that the annotations collected are noisy
and/or biased samples of this. The challenge is
then one of quality control, in order to process
the data by filtering, averaging or similar to dis-
til the truth. We posit that this perspective is
too limiting, especially with respect to linguis-
tic data, where each individual’s idiolect and lin-
guistic background can give rise to many different
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— and yet equally valid — truths. Particularly in
highly subjective annotation tasks, the differences
between annotators cannot be captured by simple
models such as scaling all instances of a certain
annotator by a factor. They can originate from
a number of nuanced aspects. This is the case,
for example, of annotations on the quality of sen-
tences generated using machine translation (MT)
systems, which are often used to build quality es-
timation models (Blatz et al., 2004; Specia et al.,
2009) — our application of interest.

In addition to annotators’ own perceptions and
expectations with respect to translation quality, a
number of factors can affect their judgements on
specific sentences. For example, certain anno-
tators may prefer translations produced by rule-
based systems as these tend to be more grammati-
cal, while others would prefer sentences produced
by statistical systems with more adequate lexical
choices. Likewise, some annotators can be biased
by the complexity of the source sentence: lengthy
sentences are often (subconsciously) assumed to
be of low quality by some annotators. An ex-
treme case is the judgement of quality through
post-editing time: annotators have different typing
speeds, as well as levels of expertise in the task
of post-editing, proficiency levels in the language
pair, and knowledge of the terminology used in
particular sentences. These variations result in
time measurements that are not comparable across
annotators. Thus far, the use of post-editing time
has been done on an per-annotator basis (Specia,
2011), or simply averaged across multiple transla-
tors (Plitt and Masselot, 2010), both strategies far
from ideal.

Overall, these myriad of factors affecting qual-
ity judgements make the modelling of multiple
annotators a very challenging problem. This
problem is exacerbated when annotations are
provided by non-professional annotators, e.g.,
through crowdsourcing — a common strategy used
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to make annotation cheaper and faster, however at
the cost of less reliable outcomes.

Most related work on quality assurance for data
annotation has been developed in the context of
crowdsourcing. Common practices include fil-
tering out annotators who substantially deviate
from a gold-standard set or present unexpected
behaviours (Raykar et al., 2010; Raykar and Yu,
2012), or who disagree with others using, e.g., ma-
jority or consensus labelling (Snow et al., 2008;
Sheng et al., 2008). Another relevant strand of
work aims to model legitimate, systematic biases
in annotators (including both non-experts and ex-
perts), such as the fact that some annotators tend
to be more negative than others, and that some
annotators use a wider or narrower range of val-
ues (Flach et al., 2010; Ipeirotis et al., 2010).
However, with a few exceptions in Computer Vi-
sion (e.g., Whitehill et al. (2009), Welinder et al.
(2010)), existing work disregard metadata and its
impact on labelling.

In this paper we model the task of predicting the
quality of sentence translations using datasets that
have been annotated by several judges with differ-
ent levels of expertise and reliability, containing
translations from a variety of MT systems and on
a range of different types of sentences. We ad-
dress this problem using multi-task learning in
which we learn individual models for each context
(the task, incorporating the annotator and other
metadata: translation system and the source sen-
tence) while also modelling correlations between
tasks such that related tasks can mutually inform
one another. Our use of multi-task learning allows
the modelling of a diversity of fruths, while also
recognising that they are rarely independent of one
another (annotators often agree) by explicitly ac-
counting for inter-annotator correlations.

Our approach is based on Gaussian Processes
(GPs) (Rasmussen and Williams, 2006), a ker-
nelised Bayesian non-parametric learning frame-
work. We develop multi-task learning models by
representing intra-task transfer simply and explic-
itly as part of a parameterised kernel function. GPs
are an extremely flexible probabilistic framework
and have been successfully adapted for multi-task
learning in a number of ways, e.g., by learning
multi-task correlations (Bonilla et al., 2008), mod-
elling per-task variance (Groot et al., 2011) or per-
annotator biases (Rogers et al., 2010). Our method
builds on the work of Bonilla et al. (2008) by
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explicitly modelling intra-task transfer, which is
learned automatically from the data, in order to ro-
bustly handle outlier tasks and task variances. We
show in our experiments on two translation qual-
ity datasets that these multi-task learning strate-
gies are far superior to training individual per-task
models or a single pooled model, and moreover
that our multi-task learning approach can achieve
similar performance to these baselines using only
a fraction of the training data.

In addition to showing empirical performance
gains on quality estimation applications, an im-
portant contribution of this paper is in introduc-
ing Gaussian Processes to the NLP community,'
a technique that has great potential to further per-
formance in a wider range of NLP applications.
Moreover, the algorithms proposed herein can be
adapted to improve future annotation efforts, and
subsequent use of noisy crowd-sourced data.

2 Quality Estimation

Quality estimation (QE) for MT aims at providing
an estimate on the quality of each translated seg-
ment — typically a sentence — without access to ref-
erence translations. Work in this area has become
increasingly popular in recent years as a conse-
quence of the widespread use of MT among real-
world users such as professional translators. Ex-
amples of applications of QE include improving
post-editing efficiency by filtering out low qual-
ity segments which would require more effort and
time to correct than translating from scratch (Spe-
cia et al., 2009), selecting high quality segments
to be published as they are, without post-editing
(Soricut and Echihabi, 2010), selecting a trans-
lation from either an MT system or a translation
memory for post-editing (He et al., 2010), select-
ing the best translation from multiple MT sys-
tems (Specia et al., 2010), and highlighting sub-
segments that need revision (Bach et al., 2011).

QE is generally addressed as a machine learn-
ing task using a variety of linear and kernel-based
regression or classification algorithms to induce
models from examples of translations described
through a number of features and annotated for
quality. For an overview of various algorithms and
features we refer the reader to the WMT12 shared
task on QE (Callison-Burch et al., 2012).

While initial work used annotations derived

"We are not strictly the first, Polajnar et al. (2011) used
GPs for text classification.



from automatic MT evaluation metrics (Blatz et
al., 2004) such as BLEU (Papineni et al., 2002)
at training time, it soon became clear that human
labels result in significantly better models (Quirk,
2004). Current work at sentence level is thus based
on some form of human supervision.

As typical of subjective annotation tasks, QE
datasets should contain multiple annotators to lead
to models that are representative. Therefore, work
in QE faces all common issues regarding variabil-
ity in annotators’ judgements. The following are a
few other features that make our datasets particu-
larly interesting:

e In order to minimise annotation costs, trans-
lation instances are often spread among anno-
tators, such that each instance is only labelled
by one or a few judges. In fact, for a sizeable
dataset (thousands of instances), the annota-
tion of a complete dataset by a single judge
may become infeasible.

It is often desirable to include alternative
translations of source sentences produced by
multiple MT systems, which requires multi-
ple annotators for unbiased judgements, par-
ticularly for labels such as post-editing time
(a translation seen a second time will require
less editing effort).

For crowd-sourced annotations it is often im-
possible to ensure that the same annotators
will label the same subset of cases.

These features — which are also typical of many
other linguistic annotation tasks — make the learn-
ing process extremely challenging. Learning mod-
els from datasets annotated by multiple annotators
remains an open challenge in QE, as we show in
Section 4. In what follows, we present our QE
datasets in more detail.

2.1 Datasets

We use two freely available QE datasets to experi-
ment with the techniques proposed in this paper:?

WMT12: This dataset was distributed as part of
the WMT 12 shared task on QE (Callison-Burch et
al., 2012). It contains 1,832 instances for train-
ing, and 422 for test. The English source sen-
tences are a subset of WMT(09-12 test sets. The
Spanish MT outputs were created using a standard
PBSMT Moses engine. Each instance was anno-
tated with post-editing effort scores from highest

2Both datasets can be downloaded from http: //www.
dcs.shef.ac.uk/~lucia/resources.html.
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effort (score 1) to lowest effort (score 5), where
each score identifies an estimated percentage of
the MT output that needs to be corrected. The
post-editing effort scores were produced indepen-
dently by three professional translators based on
a previously post-edited translation by a fourth
translator. In an attempt to accommodate for sys-
tematic biases among annotators, the final effort
score was computed as the weighted average be-
tween the three PE-effort scores, with more weight
given to the judges with higher standard deviation
from their own mean score. This resulted in scores
spread more evenly in the [1, 5] range.

WPTP12: This dataset was distributed by Ko-
ponen et al. (2012). It contains 299 English sen-
tences translated into Spanish using two or more
of eight MT systems randomly selected from all
system submissions for WMT11 (Callison-Burch
et al., 2011). These MT systems range from on-
line and customised SMT systems to commercial
rule-based systems. Translations were post-edited
by humans while time was recorded. The labels
are the number of seconds spent by a translator
editing a sentence normalised by source sentence
length. The post-editing was done by eight na-
tive speakers of Spanish, including five profes-
sional translators and three translation students.
Only 20 translations were edited by all eight an-
notators, with the remaining translations randomly
distributed amongst them. The resulting dataset
contains 1,624 instances, which were randomly
split into 1, 300 for training and 300 for test. Ac-
cording to the analysis in (Koponen et al., 2012),
while on average certain translators were found to
be faster than others, their speed in post-editing
individual sentences varies considerably, i.e., cer-
tain translators are faster at certain sentences. To
our knowledge, no previous work has managed to
successfully model the prediction of post-editing
time from datasets with multiple annotators.

3 Gaussian Process Regression

Machine learning models for quality estimation
typically treat the problem as regression, seeking
to model the relationship between features of the
text input and the human quality judgement as a
continuous response variable. Popular choices in-
clude Support Vector Machines (SVMs), which
have been shown to perform well for quality es-
timation (Callison-Burch et al., 2012) using non-
linear kernel functions such as radial basis func-



tions. In this paper we consider Gaussian Pro-
cesses (GP) (Rasmussen and Williams, 2006), a
probabilistic machine learning framework incor-
porating kernels and Bayesian non-parametrics,
widely considered state-of-the-art for regression.
Despite this GPs have not been used widely to date
in statistical NLP. GPs are particularly suitable for
modelling QE for a number of reasons: 1) they
explicitly model uncertainty, which is rife in QE
datasets; 2) they allow fitting of expressive kernels
to data, in order to modulate the effect of features
of varying usefulness; and 3) they can naturally
be extended to model correlated tasks using multi-
task kernels. We now give a brief overview of GPs,
following Rasmussen and Williams (2006).

In our regression task® the data consists of n
pairs D = {(x;,;)}, where x; € R is a F-
dimensional feature vector and y; € R is the re-
sponse variable. Each instance is a translation and
the feature vector encodes its linguistic features;
the response variable is a numerical quality judge-
ment: post editing time or likert score. As usual,
the modelling challenge is to automatically predict
the value of y based on the x for unseen test input.

GP regression assumes the presence of a la-
tent function, f : RY — R, which maps from
the input space of feature vectors x to a scalar.
Each response value is then generated from the
function evaluated at the corresponding data point,
yi = f(x;) +n, where n ~ N(0,02) is added
white-noise. Formally f is drawn from a GP prior,

f(x) ~GP (0,k(x,x)) ,

which is parameterised by a mean (here, 0) and
a covariance kernel function k(x,x’). The ker-
nel function represents the covariance (i.e., sim-
ilarities in the response) between pairs of data
points. Intuitively, points that are in close proxim-
ity should have high covariance compared to those
that are further apart, which constrains f to be a
smoothly varying function of its inputs. This intu-
ition is embodied in the squared exponential ker-
nel (a.k.a. radial basis function or Gaussian),

k(x,x') = JJ% exp (—;(x —xNTA Y (x - x'))
(D

where 0% is a scaling factor describing the overall
levels of variance, and A = diag(a) is a diagonal

2

30ur approach generalises to classification, ranking (ordi-
nal regression) or various other training objectives, including
mixtures of objectives. In this paper we use regression for
simplicity of exposition and implementation.
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matrix of length scales, encoding the smoothness
of functions f with respect to each feature. Non-
uniform length scales allow for different degrees
of smoothness of f in each dimension, such that
e.g., for unimportant features f is relatively flat
whereas for very important features f is jagged,
such that a small change in the feature value has
a large effect. When the values of a are learned
automatically from data, as we do herein, this is
referred to as the automatic relevance determina-
tion (ARD) kernel.

Given the generative process defined above, we
formulate prediction as Bayesian inference under
the posterior, namely

P(yal%0, D) = /f p(y.%0. F)p(|D)

where x, is a test input and y, is its response
value. The posterior p(f|D) reflects our updated
belief over possible functions after observing the
training set D, i.e., f should pass close to the re-
sponse values for each training instance (but need
not fit exactly due to additive noise). This is bal-
anced against the smoothness constraints that arise
from the GP prior. The predictive posterior can be
solved analytically, resulting in

yo ~ N (kI(K + 02Dy,
B, xe) — KT (K +021) 1K)

2

where k., = [k(X.,X1) k(X4, X2) - - - k(%X4, Xp)] T
are the kernel evaluations between the test point
and the training set, and {K;; = k(x;,x;)} is
the kernel (gram) matrix over the training points.
Note that the posterior in Eq. 2 includes not only
the expected response (the mean) but also the vari-
ance, encoding the model’s uncertainty, which is
important for integration into subsequent process-
ing, e.g., as part of a larger probabilistic model.
GP regression also permits an analytic for-
mulation of the marginal likelihood, p(y|X)
ff p(y| X, f)p(f), which can be used for model
training (X are the training inputs). Specifically,
we can derive the gradient of the (log) marginal
likelihood with respect to the model hyperparam-
eters (i.e., a, 0, 05 etc.) and thereby find the type
II maximum likelihood estimate using gradient as-
cent. Note that in general the marginal likelihood
is non-convex in the hyperparameter values, and
consequently the solutions may only be locally op-
timal. Here we bootstrap the learning of complex
models with many hyperparameters by initialising



with the (good) solutions found for simpler mod-
els, thereby avoiding poor local optima. We refer
the reader to Rasmussen and Williams (2006) for
further details.

At first glance GPs resemble SVMs, which also
admit kernels such as the popular squared expo-
nential kernel in Eq. 1. The key differences are
that GPs are probabilistic models and support ex-
act Bayesian inference in the case of regression
(approximate inference is required for classifica-
tion (Rasmussen and Williams, 2006)). Moreover
GPs provide greater flexibility in fitting the ker-
nel hyperparameters even for complex composite
kernels. In typical usage, the kernel hyperparam-
eters for an SVM are fit using held-out estima-
tion, which is inefficient and often involves ty-
ing together parameters to limit the search com-
plexity (e.g., using a single scale parameter in
the squared exponential). Multiple-kernel learning
(Gonen and Alpaydin, 2011) goes some way to ad-
dressing this problem within the SVM framework,
however this technique is limited to reweighting
linear combinations of kernels and has high com-
putational complexity.

3.1 Multi-task Gaussian Process Models

Until now we have considered a standard regres-
sion scenario, where each training point is labelled
with a single output variable. In order to model
multiple different annotators jointly, i.e., multi-
task learning, we need to extend the model to han-
dle many tasks. Conceptually, we can consider
the multi-task model drawing a latent function for
each task, f,,,(x), where m € 1,..., M is the task
identifier. This function is then used to explain
the response values for all the instances for that
task (subject to noise). Importantly, for multi-task
learning to be of benefit, the prior over { f,,,} must
correlate the functions over different tasks, e.g., by
imposing similarity constraints between the values
for f,(x) and f,,/(x).

We can consider two alternative perspectives
for framing the multi-task learning problem: ei-
ther isofopic where we associate each input point
x with a vector of outputs, y € R, one for
each of the M tasks; or heterotopic where some
of the outputs are missing, i.e., tasks are not con-
strained to share the same data points (Alvarez et
al.,, 2011). Given the nature of our datasets, we
opted for the heterotopic approach, which can han-
dle both singly annotated and multiply annotated
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data. This can be implemented by augmenting
each input point with an additional task identity
feature, which is paired with a single y response,
and integrated into a GP model with the standard
training and inference algorithms.*

In moving to a task-augmented data representa-
tion, we need to revise our kernel function. We use
a separable multi-task kernel (Bonilla et al., 2008;
Alvarez et al., 2011) of the form

k ((x, d), (¥, d’)) = k" (x,x")Bgar, (3)

where k%%(x, x’) is a standard kernel over the in-
put points, typically a squared exponential (see
Eq. 1), and B € RP*P is a positive semi-definite
matrix encoding task covariances. We develop
a series of increasingly complex choices for B,
which we compare empirically in Section 4.2:

Independent The simplest case is where B = I,
i.e., all pairs of different tasks have zero covari-
ance. This corresponds to independent modelling
of each task, although all models share the same
data kernel, so this setting is not strictly equiva-
lent to independent training with independent per-
task data kernels (with different hyperparameters).
Similarly, we might choose to use a single noise
variance, 02, or an independent noise variance hy-
perparameter per task.

Pooled Another extreme is B = 1, which ig-
nores the task identity, corresponding to pooling
the multi-task data into one large set. Groot et
al. (2011) present a method for applying GPs for
modelling multi-annotator data using this pool-
ing kernel with independent per-task noise terms.
They show on synthetic data experiments that this
approach works well at extracting the signal from
noise-corrupted inputs.

Combined A simple approach for B is a
weighted combination of Independent and Pool,
i.e., B =1+ al, where the hyperparameter a > 0
controls the amount of inter-task transfer between
each task and the global ‘pooled’ task.’ For dis-
similar tasks, a high value of a allows each task to
be modelled independently, while for more simi-
lar tasks low a allows the use of a large pool of

“Note that the separable kernel (Eq. 3) gives rise to block
structured kernel matrices which permit various optimisa-
tions (Bonilla et al., 2008) to reduce the computational com-
plexity of inference, e.g., the matrix inversion in Eq. 2.

SNote that larger values of a need not affect the overall
magnitude of k, which can be down-scaled by the a? factor
in the data kernel (Eq. 1).



similar data. A scaled version of this kernel has
been shown to correspond to mean regularisation
in SVMs when combined with a linear data ker-
nel (Evgeniou et al., 2006). A similar multi-task
kernel was proposed by Daumé III (2007), using
a linear data kernel and a = 1, which has shown
to result in excellent performance across a range
of NLP problems. In contrast to these earlier ap-
proaches, we learn the hyperparameter a directly,
fitting the relative amounts of inter- versus intra-
task transfer to the dataset.

Combined+ We consider an extension to the
Combined kernel, B = 1 + diag(a), ag > 0
in which each task has a different hyperparameter
modulating its independence from the global pool.
This additional flexibility can be used, e.g., to al-
low individual outlier annotators to be modelled
independently of the others, by assigning a high
value to ag. In contrast, Combined ties together
the parameters for all tasks, i.e., all annotators are
assumed to have similar quality in that they devi-
ate from the mean to the same degree.

3.2 Integrating metadata

The approaches above assume that the data is split
into an unstructured set of M tasks, e.g., by anno-
tator. However, it is often the case that we have
additional information about each data instance in
the form of metadata. In our quality estimation
experiments we consider as metadata the MT sys-
tem which produced the translation, and the iden-
tity of the source sentence being translated. Many
other types of metadata, such as the level of expe-
rience of the annotator, could also be used. One
way of integrating such metadata would be to de-
fine a separate task for every observed combina-
tion of metadata values, in which case we treat the
metadata as a task descriptor. Doing so naively
would however incur a significant penalty, as each
task will have very few training instances result-
ing in inaccurate models, even with the inter-task
kernel approaches defined above.

We instead extend the task-level kernels to use
the task descriptors directly to represent task cor-
relations. Let B() be a square covariance matrix
for the " task descriptor of M, with a column and
row for each value (e.g., annotator identity, trans-
lation system, etc.). We redefine the task level ker-
nel using paired inputs (x, m), where m are the
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task descriptors,

M
k((x,m), (x',m")) = k**(x,x") H ijmi,mg :

i=1
This is equivalent to using a structured task-kernel
B =BWgB® . ..@ BM) where ® is the
Kronecker product. Using this formulation we can
consider any of the above choices for B applied
to each task descriptor. In our experiments we
consider the Combined and Combined+ kernels,
which allow the model to learn the relative impor-
tance of each descriptor in terms of independent
modelling versus pooling the data.

4 Multi-task Quality Estimation

4.1 Experimental Setup

Feature sets: In all experiments we use 17 shal-
low QE features that have been shown to perform
well in previous work. These were used by a
highly competitive baseline entry in the WMT12
shared task, and were extracted here using the sys-
tem provided by that shared task.® They include
simple counts, e.g., the tokens in sentences, as
well as source and target language model proba-
bilities. Each feature was scaled to have zero mean
and unit standard deviation on the training set.

Baselines: The baselines use the SVM regres-
sion algorithm with radial basis function kernel
and parameters -y, € and C optimised through grid-
search and 5-fold cross validation on the training
set. This is generally a very strong baseline: in
the WMT12 QE shared task, only five out of 19
submissions were able to significantly outperform
it, and only by including many complex additional
features, tree kernels, etc. We also present u, a
trivial baseline based on predicting for each test
instance the training mean (overall, and for spe-
cific tasks).

GP: All GP models were implemented using the
GPML Matlab toolbox.” Hyperparameter optimi-
sation was performed using conjugate gradient as-
cent of the log marginal likelihood function, with
up to 100 iterations. The simpler models were ini-
tialised with all hyperparameters set to one, while
more complex models were initialised using the

®The software used to extract these (and other) fea-
tures can be downloaded from http://www.quest.
dcs.shef.ac.uk/

"http://www.gaussianprocess.orqg/gpml/
code



Model MAE RMSE

uwo 0.8279  0.9899

SVM  0.6889 0.8201

Linear ARD 0.7063  0.8480

Squared exp. Isotropic  0.6813  0.8146
Squared exp. ARD  0.6680  0.8098
Rational quadratic ARD  0.6773  0.8238
Matern(5,2) 0.6772 0.8124

Neural network  0.6727  0.8103

Table 1: Single-task learning results on the
WMTI12 dataset, trained and evaluated against
the weighted averaged response variable. | is a
baseline which predicts the training mean, SVM
uses the same system as the WMT12 QF task, and
the remainder are GP regression models with dif-
ferent kernels (all include additive noise).

solution for a simpler model. For instance, mod-
els using ARD kernels were initialised from an
equivalent isotropic kernel (which ties all the hy-
perparameters together), and independent per-task
noise models were initialised from a single noise
model. This approach was more reliable than ran-
dom restarts in terms of accuracy and runtime ef-
ficiency.

Evaluation: We evaluate predictive accuracy

using two measures: mean absolute error,
N ~

MAE = £ 3>V | |y; — ;| and root mean square

error, RMSE = /& ZZIL (i — §i)°, where y;
are the gold standard response values and g; are
the model predictions.

4.2 Results

Our experiments aim to demonstrate the efficacy
of GP regression, both the single task and multi-
task settings, compared to competitive baselines.

WMT12: Single task We start by comparing
GP regression with alternative approaches using
the WMT12 dataset on the standard task of pre-
dicting a weighted mean quality rating (as it was
done in the WMT12 QE shared task). Table 1
shows the results for baseline approaches and the
GP models, using a variety of different kernels
(see Rasmussen and Williams (2006) for details of
the kernel functions). From this we can see that all
models do much better than the mean baseline and
that most of the GP models have lower error than
the state-of-the-art SVM. In terms of kernels, the
linear kernel performs comparatively worse than
non-linear kernels. Overall the squared exponen-
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Model MAE RMSE

pno 08541 1.0119

Independent SVMs  0.7967  0.9673
EasyAdapt SVM  0.7655 0.9105
Independent 0.7061 0.8534
Pooled 0.7252  0.8754

Pooled & {N}  0.7050 0.8497
Combined 0.6966 0.8448
Combined & {N} 0.6975 0.8476
Combined+ 0.6975 0.8463
Combined+ & {N} 0.7046  0.8595

Table 2: Results on the WMT12 dataset, trained
and evaluated over all three annotator’s judge-
ments. Shown above are the training mean base-
line i, single-task learning approaches, and multi-
task learning models, with the columns showing
macro average error rates over all three response
values. All systems use a squared exponential
ARD kernel in a product with the named task-
kernel, and with added noise (per-task noise is de-
noted {N}, otherwise has shared noise).

tial ARD kernel has the best performance under
both measures of error, and for this reason we use
this kernel in our subsequent experiments.

WMT12: Multi-task We now turn to the multi-
task setting, where we seek to model each of the
three annotators’ predictions. Table 2 presents
the results. Note that here error rates are mea-
sured over all of the three annotators’ judgements,
and consequently are higher than those measured
against their average response in Table 1. For com-
parison, taking the predictions of the best model,
Combined, in Table 2 and evaluating its averaged
prediction has a MAE of 0.6588 vs. the averaged
gold standard, significantly outperforming the best
model in Table 1.

There are a number of important findings in Ta-
ble 2. First, the independently trained models do
well, outperforming the pooled model with fixed
noise, indicating that naively pooling the data is
counter-productive and that there are annotator-
specific biases. Including per-annotator noise to
the pooled model provides a boost in performance,
however the best results are obtained using the
Combined kernel which brings the strengths of
both the independent and pooled settings. There
are only minor differences between the different
multi-task kernels, and in this case per-annotator
noise made little difference. An explanation for
the contradictory findings about the importance



of independent noise is that differences between
annotators can already be explained by the MTL
model using the multi-task kernel, and need not be
explained as noise.

The GP models significantly improve over
the baselines, including an SVM trained inde-
pendently and using the EasyAdapt method for
multi-task learning (Daumé III, 2007). While
EasyAdapt showed an improvement over the in-
dependent SVM, it was a long way short of the
GP models. A possible explanation is that in
EasyAdapt the multi-task sharing parameter is set
at a = 1, which may not be appropriate for the
task. In contrast the Combined GP model learned
a value of @ = 0.01, weighting the value of pool-
ing much more highly than independent training.

A remaining question is how these approaches
cope with smaller datasets, where issues of data
sparsity become more prevalent. To test this, we
trained single-task, pooled and multi-task models
on randomly sub-sampled training sets of differ-
ent sizes, and plot their error rates in Figure 1.
As expected, for very small datasets pooling out-
performs single task learning, however for modest
sized datasets of > 90 training instances pooling
was inferior. For all dataset sizes multi-task learn-
ing is superior to the other approaches, making
much better use of small and large training sets.
The MTL model trained on 500 samples had an
MAE of 0.7082 = 0.0042, close to the best results
from the full dataset in Table 2, despite using %
as much data: here we use % as many training
instances where each is singly (cf. triply) anno-
tated. The same experiments run with multiply-
annotated instances showed much weaker perfor-
mance, presumably due to the more limited sam-
ple of input points and poorer fit of the ARD ker-
nel hyperparameters. This finding suggests that
our multi-task learning approach could be used to
streamline annotation efforts by reducing the need
for extensive multiple annotations.

WPTP12 This dataset involves predicting the
post-editing time for eight annotators, where we
seek to test our model’s capability to use addi-
tional metadata. We model the logarithm of the
per-word post-editing time, in order to make the
response variable more comparable between an-
notators and across sentences, and generally more
Gaussian in shape. In Table 3 immediately we
can see that the baseline of predicting the train-
ing mean is very difficult to beat, and the trained
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150 15;0
Figure 1: Learning curve comparing MAE for dif-
ferent training methods on the WMTI12 dataset,
all using a squared exponential ARD data kernel
and tied noise parameter. The MTL model uses the
Combined task kernel. Each point is the average
of 5 runs, and the error bars show +1 s.d.

systems often do worse. Partitioning the data
by annotator (u4) gives the best baseline result,
while there is less information from the MT sys-
tem or sentence identity. Single-task learning per-
forms only a little better than these baselines, al-
though some approaches such as the naive pool-
ing perform terribly. This suggests that the tasks
are highly different to one another. Interestingly,
adding the per-task noise models to the pooling ap-
proach greatly improves its performance.

The multi-task learning methods performed best
when using the annotator identity as the task de-
scriptor, and less well for the MT system and sen-
tence pair, where they only slightly improved over
the baseline. However, making use of all these lay-
ers of metadata together gives substantial further
improvements, reaching the best result with Com-
bined 4 5 7. The effect of adding per-task noise to
these models was less marked than for the pooled
models, as in the WMT12 experiments. Inspecting
the learned hyperparameters, the combined mod-
els learned a large bias towards independent learn-
ing over pooling, in contrast to the WMT12 exper-
iments. This may explain the poor performance of
EasyAdapt on this dataset.

5 Conclusion

This paper presented a novel approach for learning
from human linguistic annotations by explicitly
training models of individual annotators (and pos-
sibly additional metadata) using multi-task learn-
ing. Our method using Gaussian Processes is flex-
ible, allowing easy learning of inter-dependences
between different annotators and other task meta-



Model MAE RMSE

n 0.5596  0.7053

ua 05184  0.6367

us  0.5888  0.7588

ur  0.6300 0.8270

Pooled SVM  0.5823  0.7472

Independent4 SVM  0.5058  0.6351

EasyAdapt SVM  0.7027 0.8816
SINGLE-TASK LEARNING

Independents  0.5091  0.6362

Independents  0.5980  0.7729

Pooled 0.5834 0.7494

Pooled & {N} 0.4932 0.6275

MULTI-TASK LEARNING: Annotator

Combineds 0.4815 0.6174
Combineds & {N} 0.4909 0.6268
Combined+4  0.4855 0.6203
Combined+4 & {N}  0.4833 0.6102

MULTI-TASK LEARNING: Translation system
0.5825 0.7482

Combineds

MULTI-TASK LEARNING: Sentence pair

Combinedr 0.5813 0.7410

MULTI-TASK LEARNING: Combinations
Combined4,s 0.4988  0.6490
Combineda,s & {Na,s} 0.4707 0.6003
Combined+4,5 0.4772  0.6094
Combineda,s,r 0.4588  0.5852
Combineda,s,;r & {Na,s} 04723 0.6023

Table 3: Results on the WPTPI2 dataset, using
the log of the post-editing time per word as the
response variable. Shown above are the training
mean and SVM baselines, single-task learning and
multi-task learning results (micro average). The
subscripts denote the task split: annotator (A), MT
system (S) and sentence identity (T).
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data. Our experiments showed how our approach
outperformed competitive baselines on two ma-
chine translation quality regression problems, in-
cluding the highly challenging problem of predict-
ing post-editing time.

In future work we plan to apply these techniques
to new datasets, particularly noisy crowd-sourced
data with much large numbers of annotators, as
well as a wider range of task types and mixtures
thereof (regression, ordinal regression, ranking,
classification). We also have preliminary positive
results for more advanced multi-task kernels, e.g.,
general dense matrices, which can induce clusters
of related tasks.

Our multi-task learning approach has much
wider application. Models of individual annota-
tors could be used to train machine translation
systems to optimise an annotator-specific quality
measure, or in active learning for corpus annota-
tion, where the model can suggest the most ap-
propriate instances for each annotator or the best
annotator for a given instance. Further, our ap-
proach contributes to work based on cheap and fast
crowdsourcing of linguistic annotation by min-
imising the need for careful data curation and
quality control.
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Abstract

We present an algorithm for re-estimating
parameters of backoff n-gram language
models so as to preserve given marginal
distributions, along the lines of well-
known Kneser-Ney (1995) smoothing.
Unlike Kneser-Ney, our approach is de-
signed to be applied to any given smoothed
backoff model, including models that have
already been heavily pruned. As a result,
the algorithm avoids issues observed when
pruning Kneser-Ney models (Siivola et al.,
2007; Chelba et al., 2010), while retain-
ing the benefits of such marginal distribu-
tion constraints. We present experimen-
tal results for heavily pruned backoff n-
gram models, and demonstrate perplexity
and word error rate reductions when used
with various baseline smoothing methods.
An open-source version of the algorithm
has been released as part of the OpenGrm
ngram library.!

1 Introduction

Smoothed n-gram language models are the de-
facto standard statistical models of language for
a wide range of natural language applications, in-
cluding speech recognition and machine transla-
tion. Such models are trained on large text cor-
pora, by counting the frequency of n-gram col-
locations, then normalizing and smoothing (reg-
ularizing) the resulting multinomial distributions.
Standard techniques store the observed n-grams
and derive probabilities of unobserved n-grams via
their longest observed suffix and “backoff” costs
associated with the prefix histories of the unob-
served suffixes. Hence the size of the model grows
with the number of observed n-grams, which is
very large for typical training corpora.
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Natural language applications, however, are
commonly used in scenarios requiring relatively
small footprint models. For example, applica-
tions running on mobile devices or in low latency
streaming scenarios may be required to limit the
complexity of models and algorithms to achieve
the desired operating profile. As a result, statisti-
cal language models — an important component of
many such applications — are often trained on very
large corpora, then modified to fit within some
pre-specified size bound. One method to achieve
significant space reduction is through random-
ized data structures, such as Bloom (Talbot and
Osborne, 2007) or Bloomier (Talbot and Brants,
2008) filters. These data structures permit effi-
cient querying for specific n-grams in a model
that has been stored in a fraction of the space
required to store the full, exact model, though
with some probability of false positives. Another
common approach — which we pursue in this pa-
per — is model pruning, whereby some number of
the n-grams are removed from explicit storage in
the model, so that their probability must be as-
signed via backoff smoothing. One simple prun-
ing method is count thresholding, i.e., discarding
n-grams that occur less than k times in the corpus.
Beyond count thresholding, the most widely used
pruning methods (Seymore and Rosenfeld, 1996;
Stolcke, 1998) employ greedy algorithms to re-
duce the number of stored n-grams by comparing
the stored probabilities to those that would be as-
signed via the backoff smoothing mechanism, and
removing those with the least impact according to
some criterion.

While these greedy pruning methods are highly
effective for models estimated with most com-
mon smoothing approaches, they have been shown
to be far less effective with Kneser-Ney trained
language models (Siivola et al., 2007; Chelba et
al., 2010), leading to severe degradation in model
quality relative to other standard smoothing meth-
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4-gram models Backoff Interpolated
Perplexity n-grams Perplexity n-grams
Smoothing method full pruned | (x1000) full pruned | (x1000)
Absolute Discounting (Ney et al., 1994) 1205 | 197.3 383.4 119.8 | 198.1 386.2
Witten-Bell (Witten and Bell, 1991) 118.8 | 196.3 380.4 121.6 | 202.3 396.4
Ristad (1995) 1264 | 203.6 395.6 — N/A—
Katz (1987) 119.8 | 198.1 386.2 —— N/A——-
Kneser-Ney (Kneser and Ney, 1995) 1145 | 285.1 388.2 115.8 | 2743 398.7
Mod. Kneser-Ney (Chen and Goodman, 1998) | 116.3 | 280.6 396.2 112.8 | 270.7 399.1

Table 1:

Reformatted version of Table 3 in Chelba et al. (2010), demonstrating perplexity degradation of Kneser-Ney

smoothed models in contrast to other common smoothing methods. Data: English Broadcast News, 128M words training;
692K words test; 143K word vocabulary. 4-gram language models, pruned using Stolcke (1998) relative entropy pruning to

approximately 1.3% of the original size of 31,095,260 n-grams.

ods. Thus, while Kneser-Ney may be the preferred
smoothing method for large, unpruned models
— where it can achieve real improvements over
other smoothing methods — when relatively sparse,
pruned models are required, it has severely dimin-
ished utility.

Table 1 presents a slightly reformatted version
of Table 3 from Chelba et al. (2010). In their
experiments (see Table 1 caption for specifics on
training/test setup), they trained 4-gram Broad-
cast News language models using a variety of
both backoff and interpolated smoothing methods
and measured perplexity before and after Stol-
cke (1998) relative entropy based pruning. With
this size training data, the perplexity of all of
the smoothing methods other than Kneser-Ney
degrades from around 120 with the full model
to around 200 with the heavily pruned model.
Kneser-Ney smoothed models have lower perplex-
ity with the full model than the other methods by
about 5 points, but degrade with pruning to far
higher perplexity, between 270-285.

The cause of this degradation is Kneser-Ney’s
unique method for estimating smoothed language
models, which will be presented in more detail in
Section 3. Briefly, the smoothing method reesti-
mates lower-order n-gram parameters in order to
avoid over-estimating the likelihood of n-grams
that already have ample probability mass allocated
as part of higher-order n-grams. This is done via
a marginal distribution constraint which requires
the expected frequency of the lower-order n-grams
to match their observed frequency in the training
data, much as is commonly done for maximum
entropy model training. Goodman (2001) proved
that, under certain assumptions, such constraints
can only improve language models. Lower-order
n-gram parameters resulting from Kneser-Ney are
not relative frequency estimates, as with other
smoothing methods; rather they are parameters
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estimated specifically for use within the larger
smoothed model.

There are (at least) a couple of reasons why such
parameters do not play well with model pruning.
First, the pruning methods commonly use lower
order n-gram probabilities to derive an estimate
of state marginals, and, since these parameters are
no longer smoothed relative frequency estimates,
they do not serve that purpose well. For this rea-
son, the widely-used SRILM toolkit recently pro-
vided switches to modify their pruning algorithm
to use another model for state marginal estimates
(Stolcke et al., 2011). Second, and perhaps more
importantly, the marginal constraints that were ap-
plied prior to smoothing will not in general be con-
sistent with the much smaller pruned model. For
example, if a bigram parameter is modified due
to the presence of some set of trigrams, and then
some or all of those trigrams are pruned from the
model, the bigram associated with the modified
parameter will be unlikely to have an overall ex-
pected frequency equal to its observed frequency
anymore. As aresult, the resulting model degrades
dramatically with pruning.

In this paper, we present an algorithm that
imposes marginal distribution constraints of the
sort used in Kneser-Ney modeling on arbitrary
smoothed backoff n-gram language models. Our
approach makes use of the same sort of deriva-
tion as the original Kneser-Ney modeling, but,
among other differences, relies on smoothed es-
timates of the empirical relative frequency rather
than the unsmoothed observed frequency. The al-
gorithm can be applied after the smoothed model
has been pruned, hence avoiding the pitfalls asso-
ciated with Kneser-Ney modeling. Furthermore,
while Kneser-Ney is conventionally defined as a
variant of absolute discounting, our method can
be applied to models smoothed with any backoff
smoothing, including mixtures of models, widely



used for domain adaptation.

We next establish formal preliminaries and
our smoothed marginal distribution constraints
method.

2 Preliminaries

N-gram language models are typically presented
mathematically in terms of words w, the strings
(histories) h that precede them, and the suffixes
of the histories (backoffs) 4’ that are used in the
smoothing recursion. Let V' be a vocabulary (al-
phabet), and V* a string of zero or more symbols
drawn from V. Let V¥ denote the set of strings
w € V* of length k, i.e., |[w| = k. We will use
variables u, v, w, x,y, z € V to denote single sym-
bols from the vocabulary; h, g € V* to denote his-
tory sequences preceding the specific word; and
h',g' € V* the respective backoff histories of h
and g as typically defined (see below). For a string
W = Wi ... W]y We can calculate the smoothed
conditional probability of each word w; in the se-
quence given the k words that preceded it, de-
pending on the order of the Markov model. Let
hf = w;_k ... w;—1 be the previous k words in
the sequence. Then the smoothed model is defined
recursively as follows:

ey [ Pwi | BY) if c(hfw;) >0
P(wz ‘ hl) - { a(hf) P(w2 | hffl) otherwise

where c(hfwi) is the count of the n-gram sequence

W;_p . .. w; in the training corpus; P is a regular-
ized probability estimate that provides some prob-
ability mass for unobserved n-grams; and a(hY)
is a factor that ensures normalization. Note that
for h = hf, the typically defined backoff history
h = hf‘l, i.e., the longest suffix of A that is not h
itself. When we use b’ and ¢’ (for notational con-
venience) in future equations, it is this definition
that we are using.

There are many ways to estimate P, includ-
ing absolute discounting (Ney et al., 1994), Katz
(1987) and Witten and Bell (1991). Interpolated
models are special cases of this form, where the P
is determined using model mixing, and the « pa-
rameter is exactly the mixing factor value for the
lower order model.

N-gram language models allow for a sparse rep-
resentation, so that only a subset of the possible n-
grams must be explicitly stored. Probabilities for
the rest of the n-grams are calculated through the
“otherwise” semantics in the equation above. For

%yyz,yz}

an n-gram language model GG, we will say that an
n-gram hw € G if it is explicitly represented in
the model; otherwise hw ¢ G. In the standard n-
gram formulation above, the assumption is that if
c(hfwi) > 0 then the n-gram has a parameter; yet
with pruning, we remove many observed n-grams
from the model, hence this is no longer the ap-
propriate criterion. We reformulate the standard
equation as follows:

P(wi|h¥) = {ﬁ(hfwi) if hfw; € G

O‘(hf,hf_l) P(wi\hf_l) otherwise @)

where B(hFw;) is the parameter associated with
the n-gram h¥w; and a(hf, hf‘l) is the backoff
cost associated with going from state hf to state
h*=1. We assume that, if hw € G then all prefixes
and suffixes of hw are also in G.

Figure 1 presents a schema of an automaton rep-
resentation of an n-gram model, of the sort used in
the OpenGrm library (Roark et al., 2012). States
represent histories h, and the words w, whose
probabilities are conditioned on h, label the arcs,
leading to the history state for the subsequent
word. State labels are provided in Figure 1 as
a convenience, to show the (implicit) history en-
coded by the state, e.g., ‘xyz’ indicates that the
state represents a history with the previous three
symbols being x, y and z. Failure arcs, labeled
with a ¢ in Figure 1, encode an “otherwise” se-
mantics and have as destination the origin state’s
backoff history. Many higher order states will
back off to the same lower order state, specifically
those that share the same suffix.

Note that, in general, the recursive definition of
backoff may require the traversal of several back-

u/B(xyzu)

9/a(xyz,yz)

w/B(zw)
\\ 2(2)
ola(yz,2) @‘/\

Figure 1: N-gram weighted automaton schema. State labels
are presented for convenience, to specify the history implic-
itly encoded by the state.



off arcs before emitting a word, e.g., the highest
order states in Figure 1 needing to traverse a cou-
ple of ¢ arcs to reach state ‘z’. We can define
the backoff cost between a state hf and any of its
suffix states as follows. Let a(h,h) = 1 and for
m > 1,

m
a(hf.nim™) = JLamin).
j=1
If h*w ¢ G then the probability of that n-gram
will be defined in terms of backoff to its longest
suffix h¥""w € G. Let h*“ denote the longest
suffix of A such that 2w € G. Note that this
is not necessarily a proper suffix, since A" could

be h itself or it could be €. Then

P(w|h) = ah h“%)BH"“w) (2)

which is equivalent to equation 1.

3 Marginal distribution constraints

Marginal distribution constraints attempt to match
the expected frequency of an n-gram with its ob-
served frequency. In other words, if we use the
model to randomly generate a very large corpus,
the n-grams should occur with the same rela-
tive frequency in both the generated and original
(training) corpus. Standard smoothing methods
overgenerate lower-order n-grams. Using standard
n-gram notation (where ¢’ is the backoff history
for g), this constraint is stated in Kneser and Ney
(1995) as

Pw|h) =Y Puw|h) 3

g:g'=n

where P is the empirical relative frequency esti-
mate. Taking this approach, certain base smooth-
ing methods end up with very nice, easy to cal-
culate solutions based on counts. Absolute dis-
counting (Ney et al., 1994) in particular, using the
above approach, leads to the well-known Kneser-
Ney smoothing approach (Kneser and Ney, 1995;
Chen and Goodman, 1998). We will follow this
same approach, with a couple of changes. First,
we will make use of regularized estimates of rela-
tive frequency P rather than raw relative frequency
P. Second, rather than just looking at observed
histories h that back off to A/, we will look at
all histories (observed or not) of the length of
the longest history in the model. For notational
simplicity, suppose we have an n+1-gram model,

hence the longest history in the model is of length
n. Assume the length of the particular backoff his-
tory |h/| = k. Let V" *1/ be the set of strings
h € V™ with h' as a suffix. Then we can restate
the marginal distribution constraint in equation 3
as

Pw|h) = > P(hyw|h') 4)

hevn—kp/

Next we solve for S(h'w) parameters used in
equation 1. Note that /' is a suffix of any h €
V™=k1/| so conditioning probabilities on h and A’
is the same as conditioning on just h. Each of
the following derivation steps simply relies on the
chain rule or definition of conditional probability,
as well as pulling terms out of the summation.

Pwl|r) = >

hevn—kp!

> P |hh)P(h|R)

hevn—kp’

Pw|h) ———"——
he\/"z—kh’ Z

gEV"*kh’

:72 b > Pw]|h)P(h) (5)

geEVn—kp/

P(h,w | )

Then, multiplying both sides by the normaliz-
ing denominator on the right-hand side and using
equation 2 to substitute a(h, h*%) B(h*Cw) for
P(w | h):

Pw|l) Y Plg) = D> Pw|h)P(h)

gevn—kn/ hevn—kp/
= > a(hh"?) B(h"“w) P(h) (6)
hevn—kp/

Note that we are only interested in h'w € G,
hence there are two disjoint subsets of histories
h € V™ *}/ that are being summed over: those
such that A = R’ and those such that [h*C| >
|h/|. We next separate these sums in the next step
of the derivation:

Pw|h) Y Plg)=

geEVn—kp/

> a(h,h?) B(hCw) P(h) +

heVn—Fkn/:|hwG|>|n/|

> a(h, ') B(h'w) P(h) @)
heVn—kp/:pwG=p'

Finally, we solve for S(h'w) in the second sum
on the right-hand side of equation 7, yielding the
formula in equation 8. Note that this equation is
the correlate of equation (6) in Kneser and Ney



> Plg) -

gEV"ikh’

a(h, k) B(h*“w) P(h)

>

hevVn—Fkp/ |hwG|>|n/|

>

, ®)
al(h, ') P(h)

hevn—kp/:pwG=p'

(1995), modulo the two differences noted earlier:
use of smoothed probability P rather than raw rel-
ative frequency; and summing over all history sub-
strings in V"~ *A’ rather than just those with count
greater than zero, which is also a change due to
smoothing. Keep in mind, P is the target expected
frequency from a given smoothed model. Kneser-
Ney models are not useful input models, since
their P n-gram parameters are not relative fre-
quency estimates. This means that we cannot sim-
ply ‘repair’ pruned Kneser-Ney models, but must
use other smoothing methods where the smoothed
values are based on relative frequency estimation.

There are, in addition, two other important dif-
ferences in our approach from that in Kneser and
Ney (1995), which would remain as differences
even if our target expected frequency were the
unsmoothed relative frequency P instead of the
smoothed estimate P. First, the sum in the nu-
merator is over histories of length n, the highest
order in the n-gram model, whereas in the Kneser-
Ney approach the sum is over histories that imme-
diately back off to A/, i.e., from the next highest
order in the n-gram model. Thus the unigram dis-
tribution is with respect to the bigram model, the
bigram model is with respect to the trigram model,
and so forth. In our optimization, we sum in-
stead over all possible history sequences of length
n. Second, an early assumption made in Kneser
and Ney (1995) is that the denominator term in
their equation (6) (our Eq. 8) is constant across all
words for a given history, which is clearly false.
We do not make this assumption. Of course, the
probabilities must be normalized, hence the final
values of S(h'w) will be proportional to the val-
ues in Eq. 8.

We briefly note that, like Kneser-Ney, if the
baseline smoothing method is consistent, then the
amount of smoothing in the limit will go to zero
and our resulting model will also be consistent.

The smoothed relative frequency estimate P and
higher order 3 values on the right-hand side of Eq.
8 are given values (from the input smoothed model
and previous stages in the algorithm, respectively),
implying an algorithm that estimates highest or-
ders of the model first. In addition, steady state
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history probabilities P(h) must be calculated. We
turn to the estimation algorithm next.

4 Model constraint algorithm

Our algorithm takes a smoothed backoff n-gram
language model in an automaton format (see Fig-
ure 1) and returns a smoothed backoff n-gram lan-
guage model with the same topology. For all n-
grams in the model that are suffixes of other n-
grams in the model — i.e., that are backed-off to
— we calculate the weight provided by equation 8
and assign it (after normalization) to the appropri-
ate n-gram arc in the automaton. There are several
important considerations for this algorithm, which
we address in this section. First, we must provide
a probability for every state in the model. Second,
we must memoize summed values that are used
repeatedly. Finally, we must iterate the calcula-
tion of certain values that depend on the n-gram
weights being re-estimated.

4.1 Steady state probability calculation

The steady state probability P(h) is taken to be the
probability of observing h after a long word se-
quence, i.e., the state’s relative frequency in a long
sequence of randomly-generated sentences from
the model:

P(h) = lim P(w; ... wnh)

W1 ... W,

€)

where P is the corpus probability derived as fol-
lows: The smoothed n-gram probability model
P(w | h) is naturally extended to a sentence
s =wp...w;, where wy = <s> and w; = </s>
are the sentence initial and final words, by P(s) =
Hﬁzl P(wj | hl"). The corpus probability s; ... s,
is taken as:

P(81 ..

T
) =(1=NN"]][P(si)  (10)
i=1
where A parameterizes the corpus length distri-
bution.> Assuming the n-gram language model
automaton G has a single final state </s> into

2P models words in a corpus rather than a single sen-
tence since Equation 9 tends to zero as m — oo otherwise.
In Markov chain terms, the corpus distribution is made irre-
ducible to allow a non-trivial stationary distribution.



which all </s> arcs enter, adding a A\ weighted
e arc from the </s> state to the initial state and
having a final weight 1 — A in order to leave the
automaton at the </s> state will model this cor-
pus distribution. According to Eq. 9, P(h) is then
the stationary distribution of the finite irreducible
Markov Chain defined by this altered automaton.
There are many methods for computing such a sta-
tionary distribution; we use the well-known power
method (Stewart, 1999).

One difficulty remains to be resolved. The
backoff arcs have a special interpretation in the
automaton: they are traversed only if a word fails
to match at the higher order. These failure arcs
must be properly handled before applying stan-
dard stationary distribution calculations. A simple
approach would be for each word w’ and state h
such that hw' ¢ G, but Mw' € G, add a w' arc
from state h to h'w’ with weight «(h, h")3(h'w’)
and then remove all failure arcs (see Figure 2a).
This however results in an automaton with |V| arcs
leaving every state, which is unwieldy with larger
vocabularies and n-gram orders. Instead, for each
word w and state h such that hw € G, add a w arc
from state h to h'w with weight —a(h, h')B(h'w)
and then replace all failure labels with € labels (see
Figure 2b). In this case, the added negatively-
weighted arcs compensate for the excess probabil-
ity mass allowed by the epsilon arcs®. The number
of added arcs is no more than found in the original
model.

4.2 Accumulation of higher order values

We are summing over all possible histories of
length n in equation 8, and the steady state prob-
ability calculation outlined in the previous section
includes the probability mass for histories h & G.
The probability mass of states not in G ends up be-
ing allocated to the state representing their longest
suffix that is explicitly in GG. That is the state that
would be active when these histories are encoun-
tered. Hence, once we have calculated the steady
state probabilities for each state in the smoothed
model, we only need to sum over states explicitly
in the model.

As stated earlier, the use of S(h"*“w) in the
numerator of equation 8 for h** that are larger
than h’ implies that the longer n-grams must be

3Since each negatively-weighted arc leaving a state
exactly cancels an epsilon arc followed by a matching
positively-weighted arc in each iteration of the power
method, convergence is assured.
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(b)

w/B(hw)

w'/a(h,h') B(h'w )@ w/-a(h,h') B(h'w) @
.,..‘a__(P/(X(hah') w/B(h'w") w w/B(h'w)

Figure 2: Schemata showing failure arc handling: (a) ¢
removal: add w’ arc (red), delete ¢ arc; (b) ¢ replacement:
add w arc (red), replace ¢ by € (red)

e N

re-estimated first. Thus we process each history
length in descending order, finishing with the un-
igram state. Since we assume that, for every n-
gram hw € G, every prefix and suffix is also
in G, we know that if Ww ¢ G then there is
no history h such that i’ is a suffix of h and
hw € @G. This allows us to recursively accumu-
late the a(h, h') P(h) in the denominator of Eq. 8.

For every n-gram, we can accumulate values re-
quired to calculate the three terms in equation 8,
and pass them along to calculate lower order n-
gram values. Note, however, that a naive imple-
mentation of an algorithm to assign these values is
O(|V|™). This is due to the fact that the denom-
inator factor must be accumulated for all higher
order states that do not have the given n-gram.
Hence, for every state h directly backing off to
h' (order |V|), and for every n-gram arc leaving
state 1’ (order |V]), some value must be accumu-
lated. This can be particularly clearly seen at the
unigram state, which has an arc for every unigram
(the size of the vocabulary): for every bigram state
(also order of the vocabulary), in the naive algo-
rithm we must look for every possible arc. Since
there are O(|V'|"~2) lower order histories in the
model in the worst case, we have overall complex-
ity O(|V|™). However, we know that the number
of stored n-grams is very sparse relative to the pos-
sible number of n-grams, so the typical case com-
plexity is far lower. Importantly, the denominator
is calculated by first assuming that all higher order
states back off to the current n-gram, then subtract
out the mass associated with those that are already
observed at the higher order. In such a way, we
need only perform work for higher order n-grams
hw that are explicitly in the model. This opti-
mization achieves orders-of-magnitude speedups,
so that models take seconds to process.

Because smoothing is not necessarily con-



strained across n-gram orders, it is possible that
higher-order n-grams could be smoothed less than
lower order n-grams, so that the numerator of
equation 8 can be less than zero, which is not valid.
A value less than zero means that the higher or-
der n-grams will already produce the n-gram more
frequently than its smoothed expected frequency.
We set a minimum value ¢ for the numerator, and
any n-gram numerator value less than e is replaced
with e (for the current study, ¢ = 0.001). We
find this to be relatively infrequent, about 1% of
n-grams for most models.

4.3 Iteration

Recall that P and /3 terms on the right-hand side of
equation 8 are given and do not change. But there
are two other terms in the equation that change as
we update the n-gram parameters. The a(h,h')
backoff weights in the denominator ensure nor-
malization at the higher order states, and change
as the n-gram parameters at the current state are
modified. Further, the steady state probabilities
will change as the model changes. Hence, at each
state, we must iterate the calculation of the denom-
inator term: first adjust n-gram weights and nor-
malize; then recalculate backoff weights at higher
order states and iterate. Since this only involves
the denominator term, each n-gram weight can be
updated by multiplying by the ratio of the old term
and the new term.

After the entire model has been re-estimated,
the steady state probability calculation presented
in Section 4.1 is run again and model estimation
happens again. As we shall see in the experimen-
tal results, this typically converges after just a few
iterations. At this time, we have no convergence
proofs for either of these iterative components to
the algorithm, but expect that something can be
said about this, which will be a priority in future
work.

5 Experimental results

All results presented here are for English Broad-
cast News. We received scripts for replicating the
Chelba et al. (2010) results from the authors, and
we report statistics on our replication of their pa-
per’s results in Table 2. The scripts are distributed
in such a way that the user supplies the data from
LDC98T31 (1996 CSR HUB4 Language Model
corpus) and the script breaks the collection into
training and testing sets, normalizes the text, and
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Smoothing Perplexity n-grams (x 1000)
method full | pruned | model diff
Abs.Disc. 1204 | 197.1 | 3823 -1.1
Witten-Bell 118.7 | 196.1 | 379.3 -1.1
Ristad 126.2 | 2034 | 394.6 -1.1
Katz 119.7 | 1979 | 385.1 -1.1
Kneser-NeyT 1144 | 234.1 375.4 -12.7

Table 2: Replication of Chelba et al. (2010) using provided
script. Using the script, the size of the unpruned model is
31,091,219 ngrams, 4,041 fewer than Chelba et al. (2010).
t Kneser-Ney model pruned using ~prune-history-1m
switch in SRILM.

trains and prunes the language models using the
SRILM toolkit (Stolcke et al., 2011). Presumably
due to minor differences in text normalization, re-
sulting in very slightly fewer n-grams in all con-
ditions, we achieve negligibly lower perplexities
(one or two tenths of a point) in all conditions, as
can be seen when comparing with Table 1. All
of the same trends result, thus that paper’s result
is successfully replicated here. Note that we ran
our Kneser-Ney pruning (noted with a T in the ta-
ble), using the new -prune-history-1m switch in
SRILM - created in response to the Chelba et al.
(2010) paper — which allows the use of another
model to calculate the state marginals for pruning.
This fixes part of the problem — perplexity does not
degrade as much as the Kneser-Ney pruned model
in Table 1 —but, as argued earlier in this paper, this
is not the sole reason for the degradation and the
perplexity remains extremely inflated.

We follow Chelba et al. (2010) in training and
test set definition, vocabulary size, and parame-
ters for reporting perplexity. Note that unigrams
in the models are never pruned, hence all models
assign probabilities over an identical vocabulary
and perplexity is comparable across models. For
all results reported here, we use the SRILM toolkit
for baseline model training and pruning, then con-
vert from the resulting ARPA format model to
an OpenFst format (Allauzen et al., 2007), as
used in the OpenGrm n-gram library (Roark et al.,
2012). We then apply the marginal distribution
constraints, and convert the result back to ARPA
format for perplexity evaluation with the SRILM
toolkit. All models are subjected to full normaliza-
tion sanity checks, as with typical model functions
in the OpenGrm library.

Recall that our algorithm assumes that, for ev-
ery n-gram in the model, all prefix and suffix n-
grams are also in the model. For pruned mod-
els, the SRILM toolkit does not impose such a
requirement, hence explicit arcs are added to the



Perplexity n-grams

Smoothing Pruned | Pruned (x1000)

Method Model | +MDC A in WEST
Abs.Disc. 197.1 187.4 9.7 389.2
Witten-Bell 196.1 185.7 10.4 385.0
Ristad 203.4 190.3 13.1 395.9
Katz 197.9 187.5 10.4 390.8

AD,WB,Katz

Mixture 196.6 186.3 10.3 388.7

Table 3: Perplexity reductions achieved with marginal dis-
tribution constraints (MDC) on the heavily pruned models
from Chelba et al. (2010), and a mixture model. WFST n-
gram counts are slightly higher than ARPA format in Table 2
due to adding prefix and suffix n-grams.

model during conversion, with probability equal to
what they would receive in the the original model.
The resulting model is equivalent, but with a small
number of additional arcs in the explicit repre-
sentation (around 1% for the most heavily pruned
models).

Table 3 presents perplexity results for models
that result from applying our marginal distribution
constraints to the four heavily pruned models from
Table 2. In all four cases, we get perplexity reduc-
tions of around 10 points. We present the num-
ber of n-grams represented explicitly in the WEST,
which is a slight increase from those presented in
Table 2 due to the reintroduction of prefix and suf-
fix n-grams.

In addition to the four models reported in
Chelba et al. (2010), we produced a mixture model
by interpolating (with equal weight) smoothed n-
gram probabilities from the full (unpruned) ab-
solute discounting, Witten-Bell and Katz models,
which share the same set of n-grams. After renor-
malizing and pruning to approximately the same
size as the other models, we get commensurate
gains using this model as with the other models.

Figure 3 demonstrates the importance of iterat-
ing the steady state history calculation. All of the
methods achieve perplexity reductions with sub-
sequent iterations. Katz and absolute discounting
achieve very little reduction in the first iteration,
but catch back up in the second iteration.

The other iterative part of the algorithm, dis-
cussed in Section 4.3, is the denominator of equa-
tion 8, which changes due to adjustments in the
backoff weights required by the revised n-gram
probabilities. If we do not iteratively update the
backoff weights when reestimating the weights,
the ‘Pruned+MDC’ perplexities in Table 3 in-
crease by between 0.2-0.4 points. Hence, iterat-
ing the steady state probability calculation is quite
important, as illustrated by Figure 3; iterating the
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Figure 3: Models resulting from different numbers of pa-
rameter re-estimation iterations. Iteration O is the baseline
pruned model.

denominator calculation much less so, at least for
these models. We noted in Section 3 that a key dif-
ference between our approach and Kneser and Ney
(1995) is that their approach treated the denomina-
tor as a constant. If we do this, the ‘Pruned+MDC’
perplexities increase by between 4.5-5.6 points,
i.e., about half of the perplexity reduction is lost
for each method. Thus, while iteration of denomi-
nator calculation may not be critical, it should not
be treated as a constant.

We now look at the impacts on system perfor-
mance we can achieve with these new models®,
and whether the perplexity differences that we ob-
serve translate to real error rate reductions.

For automatic speech recognition experiments,
we used as test set the 1997 Hub4 evaluation set
consisting of 32,689 words. The acoustic model
is a tied-state triphone GMM-based HMM whose
input features are 9-frame stacked 13-dimensional
PLP-cepstral coefficients projected down to 39 di-
mensions using LDA. The model was trained on
the 1996 and 1997 Hub4 acoustic model train-
ing sets (about 150 hours of data) using semi-tied
covariance modeling and CMLLR-based speaker
adaptive training and 4 iterations of boosted MML.

We used a multi-pass decoding strategy: two
quick passes for adaptation supervision, CMLLR
and MLLR estimation; then a slower full decoding
pass running about 3 times slower than real time.

Table 4 presents recognition results for the
heavily pruned models that we have been con-
sidering, both for first pass decoding and rescor-
ing of the resulting lattices using failure transi-
tions rather than epsilon backoff approximations.

“For space purposes, we exclude the Ristad method from
this point forward since it is not competitive with the others.



Word error rate (WER)
First pass Rescoring
Smoothing Pruned | Pruned | Pruned | Pruned
Method Model | +MDC | Model | +MDC
Abs.Disc. 20.5 19.7 20.2 19.6
Witten-Bell 20.5 19.9 20.1 19.6
Katz 20.5 19.7 20.2 19.7
Mixture 20.5 19.6 20.2 19.6
Kneser-Ney“ 22.1 222
Kneser-Ney® 20.5 20.6

Table 4: WER reductions achieved with marginal dis-
tribution constraints (MDC) on the heavily pruned models
from Chelba et al. (2010), and a mixture model. Kneser-
Ney results are shown for: a) original pruning; and b) with
—-prune-history-1m switch.

The perplexity reductions that were achieved for
these models do translate to real word error rate
reductions at both stages of between 0.5 and 0.9
percent absolute. All of these gains are sta-
tistically significant at p < 0.0001 using the
stratified shuffling test (Yeh, 2000). For pruned
Kneser-Ney models, fixing the state marginals
with the -prune-history-1m switch reduces the
WER versus the original pruned model, but no re-
ductions were achieved vs. baseline methods.

Table 5 presents perplexity and WER results
for less heavily pruned models, where the prun-
ing thresholds were set to yield approximately
1.5 million n-grams (4 times more than the pre-
vious models); and another set at around 5 mil-
lion n-grams, as well as the full, unpruned mod-
els. While the robust gains we’ve observed up to
now persist with the 1.5M n-gram models (WER
reductions significant, Witten-Bell at p < 0.02,
others at p < 0.0001), the larger models yield
diminishing gains, with no real WER improve-
ments. Performance of Witten-Bell models with
the marginal distribution constraints degrade badly
for the larger models, indicating that this method
of regularization, unmodified by aggressive prun-
ing, does not provide a well suited distribution for

this sort of optimization. We speculate that this
is due to underregularization, having noted some
floating point precision issues when allowing the
backoff recalculation to run indefinitely.

6 Summary and Future Directions

The presented method reestimates lower order
n-gram model parameters for a given smoothed
backoff model, achieving perplexity and WER re-
ductions for many smoothed models. There re-
main a number of open questions to investigate
in the future. Recall that the numerator in Eq.
8 can be less than zero, meaning that no param-
eterization would lead to a model with the target
frequency of the lower order n-gram, presumably
due to over- or under-regularization. We antic-
ipate a pre-constraint on the baseline smoothing
method, that would recognize this problem and ad-
just the smoothing to ensure that a solution does
exist. Additionally, it is clear that different reg-
ularization methods yield different behaviors, no-
tably that large, relatively lightly pruned Witten-
Bell models yield poor results. We will look to
identify the issues with such models and provide
general guidelines for prepping models prior to
processing. Finally, we would like to perform ex-
tensive controlled experimentation to examine the
relative contribution of the various aspects of our
approach.

Acknowledgments

Thanks to Ciprian Chelba and colleagues for the
scripts to replicate their results. This work was
supported in part by a Google Faculty Research
Award and NSF grant #11S-0964102. Any opin-
ions, findings, conclusions or recommendations
expressed in this publication are those of the au-
thors and do not necessarily reflect the views of
the NSF.

M Less heavily pruned model Moderately pruned model Full model

Smoothing| D | ngrams WER ngrams WER ngrams WER
Method | C | (x10%) | PPL | FP | RS || (x10% | PPL | FP | RS || (x10% | PPL | FP | RS
Abs. N 1.53 146.6 | 18.1 | 17.9 5.19 129.1 | 17.0 | 16.6 31.1 1204 | 16.2 | 16.1
Disc. Y 1412 | 172 | 172 126.3 | 16.6 | 16.6 31.1 117.0 | 16.0 | 16.0
Witten- | N 1.54 145.8 | 18.1 | 17.6 5.08 1294 | 173 | 16.8 31.1 118.7 | 163 | 16.1
Bell Y 139.7 | 179 | 174 1264 | 184 | 17.3 31.1 1184 | 18.1 | 17.6
Katz N 1.57 146.6 | 17.8 | 17.7 5.10 1289 | 16.8 | 16.6 31.1 119.7 | 162 | 16.1
Y 1411 | 173 | 17.3 125.7 | 16.6 | 16.6 31.1 114.7 | 16.2 | 16.1
Mixture | N 1.55 1455 | 18.1 | 17.7 5.11 1282 | 169 | 16.6 31.1 118.5 | 16.3 | 16.1
Y 1392 | 173 | 172 123.6 | 16.6 | 16.4 31.1 1146 | 173 | 164
Kneser-Ney backoff model, unpruned: 31.1 114.4 | 158 | 159

Table 5: Perplexity (PPL) and both first pass (FP) and rescoring (RS) WER reductions for less heavily pruned models using

marginal distribution constraints (MDC).
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Abstract

We present a method that learns repre-
sentations for word meanings from short
video clips paired with sentences. Un-
like prior work on learning language from
symbolic input, our input consists of video
of people interacting with multiple com-
plex objects in outdoor environments. Un-
like prior computer-vision approaches that
learn from videos with verb labels or im-
ages with noun labels, our labels are sen-
tences containing nouns, verbs, preposi-
tions, adjectives, and adverbs. The cor-
respondence between words and concepts
in the video is learned in an unsupervised
fashion, even when the video depicts si-
multaneous events described by multiple
sentences or when different aspects of a
single event are described with multiple
sentences. The learned word meanings
can be subsequently used to automatically
generate description of new video.

1 Introduction

People learn language through exposure to a rich
perceptual context. Language is grounded by
mapping words, phrases, and sentences to mean-
ing representations referring to the world. Siskind
(1996) has shown that even with referential un-
certainty and noise, a system based on cross-
situational learning can robustly acquire a lexicon,
mapping words to word-level meanings from sen-
tences paired with sentence-level meanings. How-
ever, it did so only for symbolic representations of
word- and sentence-level meanings that were not
perceptually grounded. An ideal system would not
require detailed word-level labelings to acquire
word meanings from video but rather could learn
language in a largely unsupervised fashion, just as
a child does, from video paired with sentences.
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There has been recent research on grounded lan-
guage learning. Roy (2002) pairs training sen-
tences with vectors of real-valued features ex-
tracted from synthesized images which depict 2D
blocks-world scenes, to learn a specific set of fea-
tures for adjectives, nouns, and adjuncts. Yu and
Ballard (2004) paired training images containing
multiple objects with spoken name candidates for
the objects to find the correspondence between
lexical items and visual features. Dominey and
Boucher (2005) paired narrated sentences with
symbolic representations of their meanings, au-
tomatically extracted from video, to learn object
names, spatial-relation terms, and event names as
a mapping from the grammatical structure of a
sentence to the semantic structure of the associated
meaning representation. Chen and Mooney (2008)
learned the language of sportscasting by deter-
mining the mapping between game commentaries
and the meaning representations output by a rule-
based simulation of the game. Kwiatkowski et al.
(2012) present an approach that learns Montague-
grammar representations of word meanings to-
gether with a combinatory categorial grammar
(CCG) from child-directed sentences paired with
first-order formulas that represent their meaning.

Although most of these methods succeed in
learning word meanings from sentential descrip-
tions they do so only for symbolic or simple vi-
sual input (often synthesized); they fail to bridge
the gap between language and computer vision,
i.e., they do not attempt to extract meaning rep-
resentations from complex visual scenes. On the
other hand, there has been research on training
object and event models from large corpora of
complex images and video in the computer-vision
community (Kuznetsova et al., 2012; Sadanand
and Corso, 2012; Kulkarni et al., 2011; Ordonez
et al.,, 2011; Yao et al.,, 2010). However, most
such work requires training data that labels indi-
vidual concepts with individual words (i.e., ob-
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jects delineated via bounding boxes in images as
nouns and events that occur in short video clips
as verbs). There is no attempt to model phrasal
or sentential meaning, let alone acquire the ob-
ject or event models from training data labeled
with phrasal or sentential annotations. Moreover,
such work uses distinct representations for differ-
ent parts of speech; i.e., object and event recogniz-
ers use different representations.

In this paper, we present a method that learns
representations for word meanings from short
video clips paired with sentences. Our work dif-
fers from prior work in three ways. First, our input
consists of realistic video filmed in an outdoor en-
vironment. Second, we learn the entire lexicon,
including nouns, verbs, prepositions, adjectives,
and adverbs, simultaneously from video described
with whole sentences. Third we adopt a uniform
representation for the meanings of words in all
parts of speech, namely Hidden Markov Models
(HMMs) whose states and distributions allow for
multiple possible interpretations of a word or a
sentence in an ambiguous perceptual context.

We employ the following representation to
ground the meanings of words, phrases, and sen-
tences in video clips. We first run an object de-
tector on each video frame to yield a set of de-
tections, each a subregion of the frame. In prin-
ciple, the object detector need just detect the ob-
jects rather than classify them. In practice, we
employ a collection of class-, shape-, pose-, and
viewpoint-specific detectors and pool the detec-
tions to account for objects whose shape, pose,
and viewpoint may vary over time. Our methods
can learn to associate a single noun with detections
produced by multiple detectors. We then string to-
gether detections from individual frames to yield
tracks for objects that temporally span the video
clip. We associate a feature vector with each frame
(detection) of each such track. This feature vector
can encode image features (including the identity
of the particular detector that produced that detec-
tion) that correlate with object class; region color,
shape, and size features that correlate with object
properties; and motion features, such as linear and
angular object position, velocity, and acceleration,
that correlate with event properties. We also com-
pute features between pairs of tracks to encode the
relative position and motion of the pairs of objects
that participate in events that involve two partici-
pants. In principle, we can also compute features
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between tuples of any number of tracks.

Following Yamoto et al. (1992), Siskind and
Morris (1996), and Starner et al. (1998), we repre-
sent the meaning of an intransitive verb, like jump,
as a two-state HMM over the velocity-direction
feature, modeling the requirement that the par-
ticipant move upward then downward. We rep-
resent the meaning of a transitive verb, like pick
up, as a two-state HMM over both single-object
and object-pair features: the agent moving to-
ward the patient while the patient is as rest, fol-
lowed by the agent moving together with the pa-
tient. We extend this general approach to other
parts of speech. Nouns, like person, can be rep-
resented as one-state HMMs over image features
that correlate with the object classes denoted by
those nouns. Adjectives, like red, round, and big,
can be represented as one-state HMMs over region
color, shape, and size features that correlate with
object properties denoted by such adjectives. Ad-
verbs, like quickly, can be represented as one-state
HMMs over object-velocity features. Intransitive
prepositions, like leftward, can be represented as
one-state HMMs over velocity-direction features.
Static transitive prepositions, like o the left of, can
be represented as one-state HMMs over the rela-
tive position of a pair of objects. Dynamic transi-
tive prepositions, like fowards, can be represented
as HMMs over the changing distance between a
pair of objects. Note that with this formulation,
the representation of a verb, like approach, might
be the same as a dynamic transitive preposition,
like fowards. While it might seem like overkill
to represent the meanings of words as one-state-
HMMs, in practice, we often instead encode such
concepts with multiple states to allow for temporal
variation in the associated features due to chang-
ing pose and viewpoint as well as deal with noise
and occlusion. Moreover, the general framework
of modeling word meanings as temporally variant
time series via multi-state HMMs allows one to
model denominalized verbs, i.e., nouns that denote
events, as in The jump was fast.

Our HMMs are parameterized with vary-

ing arity.  Some, like jump(«), person(a),
red(c), round(a), big(a), quickly(c), and
leftward(a!) have one argument, while oth-

ers, like pick-up(a, 3), to-the-left-of(a, [3), and
towards(a, (), have two arguments (In principle,
any arity can be supported.). HMMs are instanti-
ated by mapping their arguments to tracks. This



involves computing the associated feature vector
for that HMM over the detections in the tracks
chosen to fill its arguments. This is done with
a two-step process to support compositional se-
mantics. The meaning of a multi-word phrase
or sentence is represented as a joint likelihood
of the HMMs for the words in that phrase or
sentence. Compositionality is handled by link-
ing or coindexing the arguments of the conjoined
HMMs. Thus a sentence like The person to
the left of the backpack approached the trash-
can would be represented as a conjunction of
person(py), to-the-left-of(po,p1), backback(pi),
approached(po, p2), and trash-can(py) over the
three participants pg, p1, and p2. This whole
sentence is then grounded in a particular video
by mapping these participants to particular tracks
and instantiating the associated HMMs over those
tracks, by computing the feature vectors for each
HMM from the tracks chosen to fill its arguments.

Our algorithm makes six assumptions. First,
we assume that we know the part of speech C,
associated with each lexical entry m, along with
the part-of-speech dependent number of states 1.
in the HMMs used to represent word meanings
in that part of speech, the part-of-speech depen-
dent number of features N, in the feature vec-
tors used by HMMs to represent word meanings in
that part of speech, and the part-of-speech depen-
dent feature-vector computation ®. used to com-
pute the features used by HMMs to represent word
meanings in that part of speech. Second, we pair
individual sentences each with a short video clip
that depicts that sentence. The algorithm is not
able to determine the alignment between multi-
ple sentences and longer video segments. Note
that there is no requirement that the video depict
only that sentence. Other objects may be present
and other events may occur. In fact, nothing pre-
cludes a training corpus with multiple copies of
the same video, each paired with a different sen-
tence describing a different aspect of that video.
Moreover, our algorithm potentially can handle
a small amount of noise, where a video clip is
paired with an incorrect sentence that the video
does not depict. Third, we assume that we already
have (pre-trained) low-level object detectors capa-
ble of detecting instances of our target event par-
ticipants in individual frames of the video. We al-
low such detections to be unreliable; our method
can handle a moderate amount of false positives
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and false negatives. We do not need to know
the mapping from these object-detection classes
to words; our algorithm determines that. Fourth,
we assume that we know the arity of each word
in the corpus, i.e., the number of arguments that
that word takes. For example, we assume that
we know that the word person(a) takes one ar-
gument and the word approached(a, ) takes two
arguments. Fifth, we assume that we know the to-
tal number of distinct participants that collectively
fill all of the arguments for all of the words in
each training sentence. For example, for the sen-
tence The person to the left of the backpack ap-
proached the trash-can, we assume that we know
that there are three distinct objects that partic-
ipate in the event denoted. Sixth, we assume
that we know the argument-to-participant map-
ping for each training sentence. Thus, for ex-
ample, for the above sentence we would know
person(py), to-the-left-of(po,p1), backback(py),
approached(po, p2), and trash-can(p2). The lat-
ter two items can be determined by parsing the
sentence, which is what we do. One can imagine
learning the ability to automatically perform the
latter two items, and even the fourth item above,
by learning the grammar and the part of speech
of each word, such as done by Kwiatkowski et al.
(2012). We leave such for future work.

Figure 1 illustrates a single frame from a po-
tential training sample provided as input to our
learner. It consists of a video clip paired with
a sentence, where the arguments of the words in
the sentence are mapped to participants. From
a sequence of such training samples, our learner
determines the objects tracks and the mapping
from participants to those tracks, together with the
meanings of the words.

The remainder of the paper is organized as fol-
lows. Section 2 generally describes our problem
of lexical acquisition from video. Section 3 intro-
duces our work on the sentence tracker, a method
for jointly tracking the motion of multiple ob-
jects in a video that participate in a sententially-
specified event. Section 4 elaborates on the de-
tails of our problem formulation in the context of
this sentence tracker. Section 5 describes how to
generalize and extend the sentence tracker so that
it can be used to support lexical acquisition. We
demonstrate this lexical acquisition algorithm on a
small example in Section 6. Finally, we conclude
with a discussion in Section 7.



The person to the left of the backpack carried the trash-can towards the chair.
« o s « a f « a B «
m » [ P m

Figure 1: An illustration of our problem. Each
word in the sentence has one or more arguments
(o and possibly 3), each argument of each word is
assigned to a participant (pg, . .., ps3) in the event
described by the sentence, and each participant
can be assigned to any object track in the video.
This figure shows a possible (but erroneous) in-
terpretation of the sentence where the mapping is:
po — Track 3, p; — Track 0, po — Track 1,
and p3 — Track 2, which might (incorrectly) lead
the learner to conclude that the word person maps
to the backpack, the word backpack maps to the
chair, the word trash-can maps to the trash-can,
and the word chair maps to the person.

2 General Problem Formulation

Throughout this paper, lowercase letters are used
for variables or hidden quantities while uppercase
ones are used for constants or observed quantities.

We are given a lexicon {1,..., M}, letting m
denote a lexical entry. We are given a sequence
D = (Di,...,Dg) of video clips D,, each
paired with a sentence S, from a sequence S =
(S1,...,SR) of sentences. We refer to D, paired
with S, as a training sample. Each sentence S, is
asequence (Sy.1,...,Sy,) of words S, each an
entry from the lexicon. A given entry may poten-
tially appear in multiple sentences and even mul-
tiple times in a given sentence. For example, the
third word in the first sentence might be the same
entry as the second word in the fourth sentence,
in which case S13 = S42. This is what allows
cross-situational learning in our algorithm.

Let us assume, for a moment, that we can
process each video clip D, to yield a sequence
(Tr1s.-.,7ru,) of object tracks 7,.,. Let us
also assume that D, is paired with a sen-
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tence S, = The person approached the chair,
specified to have two participants, p,o and p; 1,
with the mapping person(p;.), chair(py1), and
approached(pr.o, pr,1). Let us further assume, for
a moment, that we are given a mapping from
participants to object tracks, say p,o = 739
and p.1 + T7.51. This would allow us to
instantiate the HMMs with object tracks for a
given video clip: person(7;,39), chair(t,51), and
approached(7, 39, T 51). Let us further assume
that we can score each such instantiated HMM and
aggregate the scores for all of the words in a sen-
tence to yield a sentence score and further aggre-
gate the scores for all of the sentences in the cor-
pus to yield a corpus score. However, we don’t
know the parameters of the HMMs. These con-
stitute the unknown meanings of the words in our
corpus which we wish to learn. The problem is
to simultaneously determine (a) those parameters
along with (b) the object tracks and (c) the map-
ping from participants to object tracks. We do this
by finding (a)—(c) that maximizes the corpus score.

3 The Sentence Tracker

Barbu et al. (2012a) presented a method that first
determines object tracks from a single video clip
and then uses these fixed tracks with HMMs to
recognize actions corresponding to verbs and con-
struct sentential descriptions with templates. Later
Barbu et al. (2012b) addressed the problem of
solving (b) and (c), for a single object track con-
strained by a single intransitive verb, without solv-
ing (a), in the context of a single video clip. Our
group has generalized this work to yield an algo-
rithm called the sentence tracker which operates
by way of a factorial HMM framework. We intro-
duce that here as the foundation of our extension.
Each video clip D, contains T, frames. We
run an object detector on each frame to yield a
set D of detections. Since our object detector
is unreliable, we bias it to have high recall but
low precision, yielding multiple detections in each
frame. We form an object track by selecting a sin-
gle detection for that track for each frame. For a
moment, let us consider a single video clip with
length T', with detections Dt in frame t. Further,
let us assume that we seek a single object track
in that video clip. Let j* denote the index of the
detection from D! in frame ¢ that is selected to
form the track. The object detector scores each
detection. Let F'(D?, j*) denote that score. More-



over, we wish the track to be temporally coherent;
we want the objects in a track to move smoothly
over time and not jump around the field of view.
Let G(D'1, j7=1 D!, j*) denote some measure
of coherence between two detections in adjacent
frames. (One possible such measure is consistency
of the displacement of D' relative to D'~! with the
velocity of D'~! computed from the image by op-
tical flow.) One can select the detections to yield a
track that maximizes both the aggregate detection
score and the aggregate temporal coherence score.

)

T
+Y G D g

This can be determined with the Viterbi (1967) al-
gorithm and is known as detection-based tracking
(Viterbi, 1971).

Recall that we model the meaning of an in-
transitive verb as an HMM over a time series
of features extracted for its participant in each
frame. Let A denote the parameters of this HMM,
(¢',...,q") denote the sequence of states ¢* that
leads to an observed track, B(D?, jt ¢',\) de-
note the conditional log probability of observ-
ing the feature vector associated with the detec-
tion selected by j¢ among the detections D! in
frame ¢, given that the HMM is in state q*, and
A(q'71, 4%, \) denote the log transition probabil-
ity of the HMM. For a given track (j,...,57),
the state sequence that yields the maximal likeli-
hood is given by:

D' it q", \)
(2)

g\

which can also be found by the Viterbi algorithm.

A given video clip may depict multiple objects,
each moving along its own trajectory. There may
be both a person jumping and a ball rolling. How
are we to select one track over the other? The key
insight of the sentence tracker is to bias the selec-
tion of a track so that it matches an HMM. This is
done by combining the cost function of Eq. 1 with
the cost function of Eq. 2 to yield Eq. 3, which can
also be determined using the Viterbi algorithm.
This is done by forming the cross product of the
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two lattices. This jointly selects the optimal detec-
tions to form the track, together with the optimal
state sequence, and scores that combination.

ZFDt'

t=1 + B(D!, 5, ¢*, \)

max ’ 3)
]1""7jT
dha |+ Y G(DI G DYt

=2 + A(q" ", ¢" )

While we formulated the above around a sin-
gle track and a word that contains a single partic-
ipant, it is straightforward to extend this so that it
supports multiple tracks and words of higher ar-
ity by forming a larger cross product. When doing
so, we generalize j' to denote a sequence of de-
tections from D?, one for each of the tracks. We
further need to generalize F' so that it computes
the joint score of a sequence of detections, one for
each track, (G so that it computes the joint mea-
sure of coherence between a sequence of pairs of
detections in two adjacent frames, and B so that
it computes the joint conditional log probability
of observing the feature vectors associated with
the sequence of detections selected by j*. When
doing this, note that Egs. 1 and 3 maximize over
4%, ..., 57 which denotes T sequences of detec-
tion indices, rather than 7" individual indices.

It is further straightforward to extend the above
to support a sequence (S, ...,Sr) of words S;
denoting a sentence, each of which applies to dif-
ferent subsets of the multiple tracks, again by
forming a larger cross product. When doing so, we
generalize ¢' to denote a sequence (¢!, ..., ¢%) of
states qf, one for each word [ in the sentence, and
use ¢ to denote the sequence (g}, ...,q! ) and g
to denote the sequence (qi,...,qr). We further
need to generalize B so that it computes the joint
conditional log probability of observing the fea-
ture vectors for the detections in the tracks that are
assigned to the arguments of the HMM for each
word in the sentence and A so that it computes the
joint log transition probability for the HMMs for
all words in the sentence. This allows selection
of an optimal sequence of tracks that yields the
highest score for the sentential meaning of a se-
quence of words. Modeling the meaning of a sen-
tence through a sequence of words whose mean-
ings are modeled by HMMs, defines a factorial
HMM for that sentence, since the overall Markov
process for that sentence can be factored into inde-



pendent component processes (Brand et al., 1997,
Zhong and Ghosh, 2001) for the individual words.
In this view, ¢ denotes the state sequence for the
combined factorial HMM and ¢; denotes the factor
of that state sequence for word /. The remainder
of this paper wraps this sentence tracker in Baum
Welch (Baum et al., 1970; Baum, 1972).

4 Detailed Problem Formulation

We adapt the sentence tracker to training a cor-
pus of R video clips, each paired with a sentence.
Thus we augment our notation, generalizing ;'
to j; and gj to g} ;. Below, we use j, to denote

(jrs ..., dir), j to denote (ji,...,JRr), gry to de-
note (¢, ;- -, qTTj), qr to denote (g1, ..,qrL.),
and ¢ to denote (q1, ..., qR).

We use discrete features, namely natural num-
bers, in our feature vectors, quantized by a binning
process. We assume the part of speech of entry m
is known as C),. The length of the feature vector
may vary across parts of speech. Let N, denote the
length of the feature vector for part of speech c,
x,, denote the time-series (z,, ... ,xfj) of fea-
ture vectors xr ;» associated with S,.; (which re-
call is some entry m), and z, denote the sequence
(xr1,-..,@rL,). We assume that we are given
a function (D!, jL) that computes the feature
vector a: ; for the word S,.; whose part of speech
is C’gm = c. Note that we allow ® to be depen-
dent on c allowing different features to be com-
puted for different parts of speech, since we can
determine m and thus C),, from S,. ;. We choose to
have N, and ®. depend on the part of speech c and
not on the entry m since doing so would be tanta-
mount to encoding the to-be-learned word mean-
ing in the provided feature-vector computation.

The goal of training is to find a sequence A =
(A1, ..., Ay) of parameters A, that best explains
the R training samples. The parameters A, con-
stitute the meaning of the entry m in the lexicon.
Collectively, these are the initial state probabili-
ties agj’,, for 1 < k < I¢,,, the transition prob-
abilities a™, for 1 < i,k < I¢,,, and the out-
put probabilities bl (z), for 1 < i < I¢,, and
1 <n < Ng,,, where I, denotes the number of
states in the HMM for entry m. Like before, we
could have a distinct I,,, for each entry m but in-
stead have I¢,, depend only on the part of speech
of entry m, and assume that we know the fixed 1
for each part of speech. In our case, b;", is a dis-
crete distribution because the features are binned.

58

S The Learning Algorithm

Instantiating the above approach requires a defini-
tion for what it means to best explain the R train-
ing samples. Towards this end, we define the score
of a video clip D,. paired with sentence S, given
the parameter set A to characterize how well this
training sample is explained. While the cost func-
tion in Eq. 3 may qualify as a score, it is easier to
fit a likelihood calculation into the Baum-Welch
framework than a MAP estimate. Thus we replace
the max in Eq. 3 with a ) and redefine our scor-
ing function as follows:

ZP jr|Dr) P

The score in Eq. 4 can be interpreted as an ex-
pectation of the HMM likelihood over all possible
mappings from participants to all possible tracks.

By definition, P(j.|D,) = %, where

the numerator is the score of a pamcular track se-
quence j, while the denominator sums the scores
over all possible track sequences. The log of the
numerator V' (D,, j,) is simply Eq. 1 without the
max. The log of the denominator can be com-
puted efficiently by the forward algorithm (Baum
and Petrie, 1966). The likelihood for a factorial
HMM can be computed as:

ZHPle7qu’S’I‘lv ) (5)

i.e., summing the likelihoods for all possible state

sequences. Each summand is simply the joint like-

lihood for all the words in the sentence condi-

tioned on a state sequence ¢,.. For HMMs we have
t—1 ¢

P($r,l>QT,l|S7‘,la)\) = Ha S

7,1 t
Hb ‘rr,l,n

Finally, for a training corpus of R samples, we
seek to maximize the joint score:

=[] LD 5N

DT‘7S7"7)\ xT‘S’IW)\) (4)

P(z,|Sr,\) =

Sr !

(6)

L(D; S, \) (7
A local maximum can be found by employing
the Baum-Welch algorithm (Baum et al., 1970;
Baum, 1972). By constructing an auxiliary func-
tion (Bilmes, 1997), one can derive the reestima-
tion formulas in Eq. 8, where a:f,,lm = h denotes

the selection of all possible j! such that the nth
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feature computed by ®¢, (DY, jt) is h. The coef- NISD : gl;v[llzp]
ficients ¢;" and ¢;"}, are for normalization. D — the
The reestimation formulas involve occurrence N — person | backpack | trash-can | chair
counting. However, since we use a factorial HMM Pllz : folj}i left of | 10 the right of
that involves a cross-product lattice and use a scor- VP — V NP [ADV] [PPM]
ing function derived from Eq. 3 that incorporates ADx : Z;Ci’zzly’jps} (f’vgltyd"w” | carried | approached
both tracking (Eq. 1) and word models (Eq. 2), PPM —s PM NP
we need to count the frequency of transitions in PM — towards | away from

the whole cross-product lattice. As an example
of such cross-product occurrence counting, when
counting the transitions from state ¢ to k& for the
Ith word from frame ¢ — 1 to ¢, i.e., £(r, 1,1, k, t),
we need to count all the possible paths through
the adjacent factorial states (j2~1, qfil, el qiler)
and (j;,qlq, - .,q?LT) such that qf:ll
qf,l k. Similarly, when counting the fre-
qliency of being at state ¢ while observing h as
the nth feature in frame ¢ for the /th word of
entry m, i.e., y(r,l,n,i, h,t), we need to count
all the possible paths through the factorial state
(Jr+ @15 -+ -4y, 1,) such that ¢/, = 4 and the nth

1 and

feature computed by ®¢, (DL, jt) is h.

The reestimation of a single component HMM
can depend on the previous estimate for other
component HMMs. This dependence happens
because of the argument-to-participant mapping
which coindexes arguments of different compo-
nent HMMs to the same track. It is precisely
this dependence that leads to cross-situational
learning of two kinds: both inter-sentential and
intra-sentential. Acquisition of a word meaning
is driven across sentences by entries that appear
in more than one training sample and within sen-
tences by the requirement that the meanings of all
of the individual words in a sentence be consistent
with the collective sentential meaning.

6 Experiment

We filmed 61 video clips (each 3-5 seconds at
640480 resolution and 40 fps) that depict a va-
riety of different compound events. Each clip de-
picts multiple simultaneous events between some
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Table 1: The grammar used for our annotation and
generation. Our lexicon contains 1 determiner,
4 nouns, 2 spatial relation prepositions, 4 verbs,
2 adverbs, and 2 motion prepositions for a total of
15 lexical entries over 6 parts of speech.

subset of four objects: a person, a backpack, a
chair, and a trash-can. These clips were filmed
in three different outdoor environments which we
use for cross validation. We manually annotated
each video with several sentences that describe
what occurs in that video. The sentences were
constrained to conform to the grammar in Table 1.
Our corpus of 159 training samples pairs some
videos with more than one sentence and some sen-
tences with more than one video, with an average
of 2.6 sentences per video !.

We model and learn the semantics of all words
except determiners. Table 2 specifies the arity, the
state number I, and the features computed by ®.
for the semantic models for words of each part of
speech c. While we specify a different subset of
features for each part of speech, we presume that,
in principle, with enough training data, we could
include all features in all parts of speech and auto-
matically learn which ones are noninformative and
lead to uniform distributions.

We use an off-the-shelf object detector (Felzen-
szwalb et al., 2010a; Felzenszwalb et al., 2010b)
which outputs detections in the form of scored
axis-aligned rectangles. We trained four object de-
tectors, one for each of the four object classes in

'Our code, videos, and sentential annotations are
available at http://haonanyu.com/research/
acl2013/.



P
« detector index

a VEL MAG

a VEL ORIENT
B VEL MAG

8 VEL ORIENT
a-B DIST

«-f3 size ratio

«-3 x-position
a VEL MAG

o VEL MAG
-3 DIST

ADV

PM

Table 2: Arguments and model configurations for
different parts of speech c. VEL stands for veloc-
ity, MAG for magnitude, ORIENT for orientation,
and DIST for distance.

our corpus: person, backpack, chair, and trash-
can. For each frame, we pick the two highest-
scoring detections produced by each object detec-
tor and pool the results yielding eight detections
per frame. Having a larger pool of detections per
frame can better compensate for false negatives in
the object detection and potentially yield smoother
tracks but it increases the size of the lattice and the
concomitant running time and does not lead to ap-
preciably better performance on our corpus.

We compute continuous features, such as veloc-
ity, distance, size ratio, and x-position solely from
the detection rectangles and quantize the features
into bins as follows:

velocity To reduce noise, we compute the veloc-
ity of a participant by averaging the optical flow
in the detection rectangle. The velocity magni-
tude is quantized into 5 levels: absolutely station-
ary, stationary, moving, fast moving, and quickly.
The velocity orientation is quantized into 4 direc-
tions: left, up, right, and down.

distance We compute the Euclidean distance be-
tween the detection centers of two participants,
which is quantized into 3 levels: near, normal,
and far away.

size ratio We compute the ratio of detection area
of the first participant to the detection area of the
second participant, quantized into 2 possibilities:
larger/smaller than.

x-position We compute the difference between
the x-coordinates of the participants, quantized
into 2 possibilities: to the left/right of.

The binning process was determined by a prepro-

cessing step that clustered a subset of the training

data. We also incorporate the index of the detector

that produced the detection as a feature. The par-
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ticular features computed for each part of speech
are given in Table 2.

Note that while we use English phrases, like to
the left of, to refer to particular bins of particular
features, and we have object detectors which we
train on samples of a particular object class such
as backpack, such phrases are only mnemonic of
the clustering and object-detector training process.
We do not have a fixed correspondence between
the lexical entries and any particular feature value.
Moreover, that correspondence need not be one-
to-one: a given lexical entry may correspond to a
(time variant) constellation of feature values and
any given feature value may participate in the
meaning of multiple lexical entries.

We perform a three-fold cross validation, taking
the test data for each fold to be the videos filmed in
a given outdoor environment and the training data
for that fold to be all training samples that contain
other videos. For testing, we hand selected 24 sen-
tences generated by the grammar in Table 1, where
each sentence is true for at least one test video.
Half of these sentences (designated NV) contain
only nouns and verbs while the other half (des-
ignated ALL) contain other parts of speech. The
latter are longer and more complicated than the
former. We score each testing video paired with
every sentence in both NV and ALL. To evaluate
our results, we manually annotated the correctness
of each such pair.

Video-sentence pairs could be scored with
Eq. 4. However, the score depends on the sentence
length, the collective numbers of states and fea-
tures in the HMMs for words in that sentence, and
the length of the video clip. To render the scores
comparable across such variation we incorporate a
sentence prior to the per-frame score:

L(D,, S5 A) = [L(Dy; Sy, V] 7(S,) (9)
where
w(Sy) =
L E(ICshl)
) R 1
=1 + Z E(ZCSTZJL)
n=1

In the above, Z¢, o is the number of bins for
the nth feature of Sr,l of part of speech CSTJ and
E(Y) 3::1 % log % = log Y is the entropy
of a uniform distribution over Y bins. This prior
prefers longer sentences which describe more in-

formation in the video.



CHANCE BLIND OUR HAND
NV 0.155 0.265 0.545 0.748
ALL 0.099 0.198 0.639 0.786

Table 3: F1 scores of different methods.
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Figure 2: ROC curves of trained models and hand-
written models.

The scores are thresholded to decide hits, which
together with the manual annotations, can gener-
ate TP, TN, FP, and FN counts. We select the
threshold that leads to the maximal F1 score on
the training set, use this threshold to compute F1
scores on the test set in each fold, and average F1
scores across the folds.

The F1 scores are listed in the column labeled
Our in Table 3. For comparison, we also report
F1 scores for three baselines: Chance, Blind, and
Hand. The Chance baseline randomly classifies
a video-sentence pair as a hit with probability 0.5.
The Blind baseline determines hits by potentially
looking at the sentence but never looking at the
video. We can find an upper bound on the F1 score
that any blind method could have on each of our
test sets by solving a 0-1 fractional programming
problem (Dinkelbach, 1967) (see Appendix A for
details). The Hand baseline determines hits with
hand-coded HMMs, carefully designed to yield
what we believe is near-optimal performance. As
can be seen from Table 3, our trained models
perform substantially better than the Chance and
Blind baselines and approach the performance of
the ideal Hand baseline. One can further see from
the ROC curves in Figure 2, comparing the trained
and hand-written models on both NV and ALL, that
the trained models are close to optimal. Note that
performance on ALL exceeds that on NV with the
trained models. This is because longer sentences
with varied parts of speech incorporate more in-
formation into the scoring process.
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7 Conclusion

We presented a method that learns word mean-
ings from video paired with sentences. Unlike
prior work, our method deals with realistic video
scenes labeled with whole sentences, not indi-
vidual words labeling hand delineated objects or
events. The experiment shows that it can cor-
rectly learn the meaning representations in terms
of HMM parameters for our lexical entries, from
highly ambiguous training data. Our maximum-
likelihood method makes use of only positive sen-
tential labels. As such, it might require more train-
ing data for convergence than a method that also
makes use of negative training sentences that are
not true of a given video. Such can be handled
with discriminative training, a topic we plan to ad-
dress in the future. We believe that this will allow
learning larger lexicons from more complex video
without excessive amounts of training data.
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A An Upper Bound on the F1 Score of
any Blind Method

A Blind algorithm makes identical decisions on
the same sentence paired with different video
clips. An optimal algorithm will try to find a de-
cision s; for each test sentence ¢ that maximizes
the F1 score. Suppose, the ground-truth yields FP;
false positives and TP; true positives on the test
set when s; = 1. Also suppose that setting s; = 0
yields FN; false negatives. Then the F1 score is

1
Zi SZ'FPZ‘ + (1 — Sz‘)FNi
Zi 2SiTPi
A

F1=
1+

Thus we want to minimize the term A. This is an
instance of a 0-1 fractional programming problem
which can be solved by binary search or Dinkel-
bach’s algorithm (Dinkelbach, 1967).
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Abstract

Recent work on statistical quantifier scope
disambiguation (QSD) has improved upon
earlier work by scoping an arbitrary num-
ber and type of noun phrases. No corpus-
based method, however, has yet addressed
QSD when incorporating the implicit uni-
versal of plurals and/or operators such as
negation. In this paper we report early,
though promising, results for automatic
QSD when handling both phenomena. We
also present a general model for learning
to build partial orders from a set of pair-
wise preferences. We give an n log n algo-
rithm for finding a guaranteed approxima-
tion of the optimal solution, which works
very well in practice. Finally, we signifi-
cantly improve the performance of the pre-
vious model using a rich set of automati-
cally generated features.

1 Introduction

The sentence there is one faculty member in ev-
ery graduate committee is ambiguous with respect
to quantifier scoping, since there are at least two
possible readings: If one has wide scope, there is
a unique faculty member on every committee. If
every has wide scope, there can be different fac-
ulty members on each committee. Over the past
decade there has been some work on statistical
quantifier scope disambiguation (QSD) (Higgins
and Sadock, 2003; Galen and MacCartney, 2004;
Manshadi and Allen, 2011a). However, the extent
of the work has been quite limited for several rea-
sons. First, in the past two decades, the main focus
of the NLP community has been on shallow text
processing. As a deep processing task, QSD is not
essential for many NLP applications that do not re-
quire deep understanding. Second, there has been
a lack of comprehensive scope-disambiguated cor-
pora, resulting in the lack of work on extensive
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statistical QSD. Third, QSD has often been con-
sidered only in the context of explicit quantifica-
tion such as each and every versus some and a/an.
These co-occurrences do not happen very often in
real-life data. For example, Higgins and Sadock
(2003) find fewer than 1000 sentences with two or
more explicit quantifiers in the Wall Street journal
section of Penn Treebank. Furthermore, for more
than 60% of those sentences, the order of the quan-
tifiers does not matter, either as a result of the logi-
cal equivalence (as in two existentials), or because
they do not have any scope interaction.

Having said that, with deep language processing
receiving more attention in recent years, QSD is
becoming a real-life issue.! At the same time, new
scope-disambiguated corpora have become avail-
able (Manshadi et al., 2011b). In this paper, we
aim at tackling the third issue mentioned above.
We push statistical QSD beyond explicit quantifi-
cation, and address an interesting, yet practically
important, problem in QSD: plurality and quan-
tification. In spite of an extensive literature in
theoretical semantics (Hamm and Hinrichs, 2010;
Landmann, 2000), this topic has not been well in-
vestigated in computational linguistics. To illus-
trate the phenomenon, consider (1):

1. Three words start with a capital letter.

A deep understanding of this sentence, requires
deciding whether each word in the set, referred
to by Three words, starts with a potentially dis-
tinct capital letter (as in Apple, Orange, Banana)
or there is a unique capital letter which each word
starts with (as in Apple, Adam, Athens). By treat-
ing the NP Three words as a single atomic entity,
earlier work on automatic QSD has overlooked
this problem. In general, every plural NP poten-
tially introduces an implicit universal, ranging

"For example, Liang et al. (2011) in their state-of-the-art
statistical semantic parser within the domain of natural lan-

guage queries to databases, explicitly devise quantifier scop-
ing in the semantic model.

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 64-72,
Sofia, Bulgaria, August 4-9 2013. (©2013 Association for Computational Linguistics



over the collection of entities introduced by the
plural.> Scoping this implicit universal is just as
important. While explicit universals may not oc-
cur very often in natural language, the usage of
plurals is very common. Plurals form 18% of the
NPs in our corpus and 20% of the nouns in Penn
Treebank. Explicit universals, on the other hand,
form less than 1% of the determiners in Penn Tree-
bank. Quantifiers are also affected by negation.
Previous work (e.g., Morante and Blanco, 2012)
has investigated automatically detecting the scope
and focus of negation. However, the scope of
negation with respect to quantifiers is a different
phenomenon. Consider the following sentence.

2. The word does not start with a capital letter.

Transforming this sentence into a meaning repre-
sentation language, for almost any practical pur-
poses, requires deciding whether the NP a capital
letter lies in the scope of the negation or outside
of it. The former describes the preferred reading
where The word starts with a lowercase letter as
in apple, orange, banana, but the latter gives the
unlikely reading, according to which there exists a
particular capital letter, say A, that The word starts
with, as in apple, Orange, Banana. By not in-
volving negation in quantifier scoping, a semantic
parser may produce an unintended interpretation.
Previous work on statistical QSD has been quite
restricted. Higgins and Sadock (2003), which
we refer to as HS03, developed the first statisti-
cal QSD system for English. Their system dis-
ambiguates the scope of exactly two explicitly
quantified NPs in a sentence, ignoring indefinite
a/an, definites and bare NPs. Manshadi and Allen
(2011a), hence MA11, go beyond those limita-
tions and scope an arbitrary number of NPs in a
sentence with no restriction on the type of quantifi-
cation. However, although their corpus annotates
the scope of negations and the implicit universal of
plurals, their QSD system does not handle those.
As a step towards comprehensive automatic
QSD, in this paper we present our work on auto-
matic scoping of the implicit universal of plurals
and negations. For data, we use a new revision
of MA11’s corpus, first introduced in Manshadi et
al. (2011b). The new revision, called QuanText,
carries a more detailed, fine-grained scope annota-
tion (Manshadi et al., 2012). The performance of
2Although plurals carry different types of quantification
(Herbelot and Copestake, 2010), almost always there exists

an implicit universal. The importance of scoping this univer-
sal, however, may vary based on the type of quantification.
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our model defines a baseline for future efforts on
(comprehensive) QSD over QuanText. In addition
to addressing plurality and negation, this work im-
proves upon MA11’s in two directions.

e We theoretically justify MA11’s ternary-
classification approach, formulating it as a
general framework for learning to build par-
tial orders. An n log n algorithm is then given
to find a guaranteed approximation within a
fixed ratio of the optimal solution from a set
of pairwise preferences (Sect. 3.1).

We replace MA11’s hand-annotated features
with a set of automatically generated linguis-
tic features. Our rich set of features signifi-
cantly improves the performance of the QSD
model, even though we give up the gold-
standard dependency features (Sect. 3.3).

2 Task definition

In QuanText, scope-bearing elements (or, as we
call them, scopal terms) of each sentence have
been identified using labeled chunks, as in (3).

3. Replace [1/ every line] in [2/ the file] ending
in [3/ punctuation] with [4/ a blank line] .

NP chunks follow the definition of baseNP
(Ramshaw and Marcus, 1995) and hence are flat.
Outscoping relations are used to specify the rel-
ative scope of scopal terms. The relation ¢ > j
means that chunk ¢ outscopes (or has wide scope
over) chunk j. Equivalently, chunk j is said to
have narrow scope with respect to 7. Each sen-
tence is annotated with its most preferred scoping
(according to the annotators’ judgement), repre-
sented as a partial order:

4. S1:(2>1>4;1>3)

If neither ¢ > j nor j > ¢ is entailed from the
scoping, ¢ and j are incomparable. This happens
if both orders are equivalent (as in two existentials)
or when the two chunks have no scope interaction.

Since a partial order can be represented by a Di-
rected Acyclic Graph (DAG), we use DAGs to
represent scopings. For example, G in Figure 1
represents the scoping in (4).

2.1 Evaluation metrics

Given the gold standard DAG G, = (V, E,) and
the predicted DAG G, = (V,E,), a similarity
measure may be defined based on the ratio of the
number of pairs (of nodes) labeled correctly to the
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Figure 1: Scoping as DAG

total number of pairs. In order to take the transi-
tivity of outscoping relations into account, we use
the transitive closure (TC) of DAGs. Let GT =
(V, EY) represent the TC of a DAG G = (V, E).3
G1 and G in Figure 1 illustrate this concept. We
now define the similiarty metric ST as follows:

|EfNEf|lU |Ef NES|
VI(V]-1)/2

+:

)

in which G = (V, E) is the complement of the
underlying undirected version of G.

HSO03 and others have used such a similarity
measure for evaluation purposes. A disadvantage
of this metric is that it gives the same weight to
outscoping and incomparability relations. In prac-
tice, if two scopal terms with equivalent ordering
(and hence, no outscoping relation) are incorrectly
labeled with an outscoping, the logical form still
remains valid. But if an outscoping relation is mis-
labeled, it will change the interpretation of the sen-
tence. Therefore, in MA11, we suggest defining a
precision/recall based on the number of outscop-
ing relations recovered correctly: 4

|Ef NES|
7|

|Ef NES|
|Ef |

Pt = + _ (2)

P (u,v) € Gt = ((u,v)€G V
Jwi ... wn €V, (u,w1) ... (wn,v) € E)

*MAI11 argues that TC-based metrics tend to produce
higher numbers. For example if G'3 in Figure 1 is a gold-
standard DAG and (G is a candidate DAG, TC-based metrics
count 2 > 3 as another match, even though it is entailed from
2> 1and 1 > 3. They give an alternative metric based on
transitive reduction (TR), obtained by removing all the re-
dundant edges of a DAG. TR-based metrics, however, have
their own disadvantage. For example, if G5 is another candi-
date for G'3, TR-based metrics produce the same numbers for
both G; and G2, even though G is clearly closer to G'3 than
G. Therefore, in this paper we stick to TC-based metrics.
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3  Our framework

3.1 Learning to do QSD

Since we defined QSD as a partial ordering, auto-
matic QSD would become the problem of learn-
ing to build partial orders. The machine learning
community has studied the problem of learning to-
tal orders (ranking) in depth (Cohen et al., 1999;
Furnkranz and Hullermeier, 2003; Hullermeier et
al., 2008). Many ranking systems create partial
orders as output when the confidence level for the
relative order of two objects is below some thresh-
old. However, the target being a partial order is
a fundamentally different problem. While the lack
of order between two elements is interpreted as the
lack of confidence in the former, it should be inter-
preted as incomparability in the latter. Learning
to build partial orders has not attracted much atten-
tion in the learning community, although as seen
shortly, the techniques developed for ranking can
be adopted for learning to build partial orders.

As mentioned before, a partial order P can be
represented by a DAG G, with a preceding b in P
if and only if @ reaches b in GG by a directed path.
Although there could be many DAGs representing
a partial order P, only one of those is a transitive
DAG.’ Therefore, in order to have a one-to-one re-
lationship between QSDs and DAGs, we only con-
sider the class of transitive DAGs, or TDAG. Ev-
ery non-transitive DAG will be converted into its
transitive counterpart by taking its transitive clo-
sure (as shown in Figure 1).

Consider V, a set of nodes and a TDAG G =
(V,E). 1t would help to think of disconnected
nodes u, v of GG, as connected with a null edge e.
We define the labeling function 6 : V x V —
{+, —, €} assigning one of the three labels to each
pair of nodes in G:

+

(u,v) € G
(v,u) € G
otherwise

3)

(5G<U, ’U) =
€

Given the true TDAG G = (V, E), and a candidate
TDAG G, we define the Loss function to be the
total number of incorrect edges:
L(G,G) = > I(6c(u,v) # da(u,v)) 4
u=<veV
in which < is an arbitrary total order over the
nodes in V%, and I(-) is the indicator function. We
3@ is transitive iff (u,v), (v,w) € G = (u,w) € G.

®E.g., the left-to-right order of the corresponding chunks
in the sentence.



adopt a minimum Bayes risk (MBR) approach,
with the goal of finding the graph with the lowest
expected loss against the (unknown) target graph:
Leol

¥ .
G" = argmin E,
GETDAG
Substituting in the definition of the loss function
and exchanging the order of the expectation and
summation, we get:

G* = argmin Z Eg, (5@(u v) # 6a(u, )]
GETDAG, =,

= argmin Z (0g(u,v) # da(u,v)) (6)
GETDAGU<U€V

This means that in order to solve Eq. (5), we need
only the probabilities of each of the three labels for
each of the C(n, 2) = n(n — 1)/2 pairs of nodes’
in the graph, rather than a probability for each
of the superexponentially many possible graphs.
We train a classifier to estimate these probabili-
ties directly for a given pair. Therefore, we have
reduced the problem of predicting a partial order
to pairwise comparison, analogous to ranking by
pairwise comparison or RPC (Hullermeier et al.,
2008; Furnkranz and Hullermeier, 2003), a popu-
lar technique in learning total orders. The differ-
ence though is that in RPC, the comparison is a
(soft) binary classification, while for partial orders
we have the case of incomparability (the label ¢),
hence a (soft) ternary classification.

A soft ternary classifier generates three proba-
bilities, py, v (+), Pu,v(—), and p, . (€) for each pair
(u,v), corresponding to the three labels. Hence,
equation Eq. (6) can be rearranged as follows:

G* = argmax Z Puv (G (u,v))
GETDPAG [, “=,

(7
Let I', be a graph like the one in Figure 2, contain-
ing exactly three edges between every two nodes,
weighted by the probabilities from the n(n —1)/2
classifiers. We call I';, the preference graph. In-
tuitively speaking, the solution to Eq. (7) is the
transitive directed acyclic subgraph of I';, that has
the maximum sum of weights. Unfortunately find-
ing this subgraph is an NP-hard problem.’

"Throughout this subsection, unless otherwise specified,
by a pair of nodes we mean a pair (u,v) with u <v.

8Dy u for u < is defined in the obvious way: py .. (+) =
Pu,v(—), Po,u(—) = Puw(+), and pu,u(€) = pu,v(e).

° The proof is beyond the scope of this paper, but the idea
is similar to that of Cohen et al. (1999), on finding total or-
ders. Although they don’t use an RPC technique, Cohen et
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Figure 2: A preference graph over three nodes.

1. Let I') be the preference graph and
set G to 0.

YueV, let m(u)=>", Puw(+)—>, Pun(—).

Let u* = argmax, m(u),

57 = YieaPuw (=) & 5% = 3 copuur(e).

4. Remove u*
from I'p.

2.

3.

and all its incident edges

5. Add v* to G; also if S& > S¢, for
every v € G—u", add (v,u”) to G.
6. If 'y is empty, output G, otherwise

repeat steps 2-5.

Figure 3: An approximation algorithm for Eq. (7)

Since it is very unlikely to find an efficient al-
gorithm to solve Eq. (7), instead, we propose the
algorithm in Figure 3 which finds an approximate
solution. The idea of the algorithm is simple. By
finding v* with the highest 7(u) in step 3, we form
a topological order for the nodes in GG in a greedy
way (see Footnote 9). We then add u* to G. A
directed edge is added either from every node in
G —u* to u* or from no node, depending on which
case makes the sum of the weights in G higher.

Theorem 1 The algorithm in Figure 3 is a 1/3-
OPT approximation algorithm for Eq. (7).

Proof idea. First of all, note that G is a TDAG,
because edges are only added to the most recently
created node in step 5. Let OPT be the optimum
value of the right hand side of Eq. (7). The sum of
all the weights in I, is an upper bound for OPT":

S>> pun)

u=<veV Ae{+,—e}

> OPT

Step 5 of the algorithm guarantees that the labels
0¢(u,v) satisfy:

Z Puw(0c(u,v)) >

u<veV

> pun(N)

u<veV

(®)

al. (1999) encounter a similar optimization problem. They
propose an approximation algorithm which finds the solution
(a total order) in a greedy way. Here we use the same greedy
technique to find a total order, but take it only as the topolog-
ical order of the solution (Figure 3).



for any A € {+, —, ¢}. Hence:

Z Puw(dc(u,v))

u<veV

1
> -OPT
-3

In practice, we improve the algorithm in Figure 3,
while maintaining the approximation guarantee, as
follows. When adding a node u* to graph G, we
do not make a binary decision as to whether con-
nect every node in G to u* or none, but we use
some heuristics to choose a subset of nodes (pos-
sibly empty) in G that if connected to u* results
in a TDAG whose sum of weights is at least as
big as the binary none-vs-all case. As described in
Sec. 4, the algorithm works very well in our QSD
system, finding the optimum solution in virtually
all cases we examined.

3.2 Dealing with plurality and negation

Consider the following sentence with the plural
NP chunk the lines.

5. Merge [1Ip/ the lines], ending in [2/ a punctu-

ation], with [3/ the next non-blank line].

6. SI:(le>1d>2; 1d > 3)1°
In QuanText, plural chunks are indexed with a
number followed by the lowercase letter “p”. As
seen in (6), the scoping looks different from before
in that the terms 1d and 1c are not the label of any
chunk. These two terms refer to the two quantified
terms introduced by the plural chunk 1p: 1c (for
collection) represents the set (or in better words
collection) of entities, defined by the plural, and 1d
(for distribution) refers to the implicit universal,
introduced by the plural. In other words, for a plu-
ral chunk 4p, ¢d represents the universally quanti-
fied entity over the collection ic. The outscoping
relation 1d > 2 in (6) states that every line in the
collection, denoted by 1c, starts with its own punc-
tuation character. Similarly, 1d > 3 indicates that
every line has its own next non-blank line. Fig-
ure 4(a) shows a DAG for the scoping in (6).

In (7) we have a sentence containing a negation.
In QuanText, negation chunks are labeled with an
uppercase “N” followed by a number.

19This scoping corresponds to the logical formula:

Dz, Collection(x1c) AVx14, In(x1d, T1c) =
(Line(x1a)A\(3z2, Punctuation(z2) AEndIn(xi4, z2))A

(Dx3, —blank(xzs) A next(xi4, x3) A merge(xid, 3)))
It is straightforward to write a formula for, say, 1¢ > 2 > 1d.
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(a

)
(b)

Figure 4: DAGs for scopings in (6) and (8)

7. Extract [1/ every word] in [2/ file “I.txt”],
which starts with [3/ a capital letter], but
does [N1/ not] end with [4/ a capital letter].

8.51:(2>1>3;1>N1>4)

As seen here, a negation simply introduces a
chunk, which participates in outscoping relations
like an NP chunk. Figure 4(b) represents the scop-
ing in (8) as a DAG.

From these examples, as long as we create two
nodes in the DAG corresponding to each plu-
ral chunk, and one node corresponding to each
negation, there is no need to modify the under-
lying model (defined in the previous section).
However, when u (or v) is a negation (/Ni) or
an implicit universal (id) node, the probabilities
Pa (XA € {+,—,€}) may come from a different
source, e.g. a different classification model or the
same model with a different set of features, as de-
scribed in the following section.

3.3 Feature selection

Previous work has shown that the lexical item
of quantifiers and syntactic clues (often extracted
from phrase structure trees) are good at predicting
quantifier scoping. Srinivasan and Yates (2009)
use the semantics of the head noun in a quantified
NP to predict the scoping. MA11 also find the lex-
ical item of the head noun to be a good predictor.
In this paper, we introduce a new set of syntac-
tic features which we found very informative: the
“type” dependency features of de Marneffe et al.
(2006). Adopting this new set of features, we out-
perform MA11’s system by a large margin. An-
other point to mention here is that the features that
are predictive of the relative scope of quantifiers
are not necessarily as helpful when determining
the scope of negation and vice versa. Therefore we
do not use exactly the same set of features when



one of the scopal terms in the pair'! is a negation,
although most of the features are quite similar.

3.3.1 NP chunks

We first describe the set of features we have
adopted when both scopal terms in a pair are NP-
chunks. We have organized the features into dif-
ferent categories listed below.

Individual NP-chunk features

Following features are extracted for both NP
chunks in a pair.

The part-of-speech (POS) tag of the head of chunk
The lexical item of the head noun

The lexical item of the determiner/quantifier

The lexical item of the pre-determiner

Does the chunk contain a constant (e.g. “do”, ’x’)?
Is the NP-chunk a plural?

Implicit universal of a plural

Remember that every plural chunk ¢ introduces
two nodes in the DAG, ic and i¢d. Both nodes
are introduced by the same chunk ¢, therefore they
use the same set of features. The only exception
is a single additional binary feature for plural NP
chunks, which determines whether the given node
refers to the implicit universal of the plural (i.e. ¢d)
or to the collection itself (i.e. ic).

e Does this node refer to an implicit universal?

Syntactic features — phrase structure tree

As mentioned above, we have used two sets
of syntactic features. The first is motivated by
HS03’s work and is based on the constituency (i.e.
phrase structure) tree 1" of the sentence. Since
our model is based on pairwise comparison, the
following features are defined for each pair of
chunks. In the following, by chunk we mean the
deepest phrase-level node in 7' dominating all the
words in the chunk. If the constituency tree is cor-
rect, this node is usually an NP node. Also, P
refers to the undirected path in 7" connecting the
two chunks.

e Syntactic category of the deepest common ancestor
e Does 1st/2nd chunk C-command 2nd/1st one?

e Length of the path P

e Syntactic categories of nodes on P

e s there a conjoined node on P?

e List of punctuation marks dominated by nodes on P

Syntactic features — dependency tree

Although regular “untyped” dependency relations
do not seem to help our QSD system in the pres-
ence of phrase-structure trees, we found the col-

Since our model is based on pairwise comparison, every
sample is in fact a pair of nodes (u, v) of the DAG.
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lapsed typed dependencies (de Marneffe and Man-
ning, 2008) very helpful, even when used on top of
the phrase-structure features. Below is the list of
features we extract from the collapsed typed de-
pendency tree Ty of each sentence. In the follow-
ing, by noun we mean the node in 7y which corre-
sponds to the head of the chunk. The choice of the
word noun, however, may be sloppy, as the head
of an NP chunk may not be a noun.

Does 1st/2nd noun dominate 2nd/1st noun?

Does 1st/2nd noun immediately dominate 2nd/1st?
Type of incoming dependency relation of each noun
Syntactic category of the deepest common ancestor
Lexical item of the deepest common ancestor
Length of the undirected path between the two

3.3.2 Negations

There are no sentences in our corpus with more
than one negation. Therefore, for every pair of
nodes with one negation, the other node must re-
fer to an NP chunk. We use the following word-
level, phrase-structure, and dependency features
for these pairs.

Lexical item of the determiner for the NP chunk
Does the NP chunk contain a constant?

Is the NP chunk a plural?

If so, does this node refer to its implicit universal?
Does the negation C-command the NP chunk in 7'?
Does the NP chunk C-command the negation in 7'?
What is the POS of the parent p of negation in 75 ?
Does p dominate the noun in 7?

Does the noun dominate p in 7?

Does p immediately dominate the noun in 74?

If so, what is the type of the dependency?

Does the noun immediately dominate p in T4?

If so, what is the type of the dependency?

Length of the undirected path between the two in T

4 Experiments

QuanText contains 500 sentences with a total of
1750 chunks, that is 3.5 chunks/sentence on av-
erage. Of those, 1700 chunks are NP chunks.
The rest are scopal operators, mainly negation. Of
all the NP chunks, 320 (more than 18%) are plu-
ral, each introducing an implicit universal, that is,
an additional node in the DAG. Since we feed
each pair of elements to the classifiers indepen-
dently, each (unordered) pair introduces one sam-
ple. Therefore, a sentence with n scopal elements
creates C'(n,2) = n(n — 1)/2 samples for classi-
fication. When all the elements are taken into ac-
count,'? the total number of samples in the corpus
will be:

2Here by all elements we mean explicit chunks and the
implicit universals. QuanText labels some other (implicit) el-

ements, which we have not been handled in this work. In
particular, some nouns introduce two entities: a type and a



> C(ni,2) = 4500 9)
7

Where n; is the number of scopal terms introduced
by sentence 7. Out of the 4500 samples, around
1800 involve at least one implicit universal (i.e.,
id), but only 120 samples contain a negation. We
evaluate the performance of the system for implicit
universals and negation both separately and in the
context of full scope disambiguation. We split the
corpus at random into three sets of 50, 100, and
350 sentences, as development, test, and train sets
respectively.!3

To extract part-of-speech tags, phrase structure
trees, and typed dependencies, we use the Stan-
ford parser (Klein and Manning, 2003; de Marn-
effe et al., 2006) on both train and test sets. Since
we are using SVM, we have passed the confidence
levels through a softmax function to convert them
into probabilities PUA,U before applying the algo-
rithm of Section 3. We take MA11’s system as the
baseline. However, in order to have a fair com-
parison, we have used the output of the Stanford
parser to automatically generate the same features
that MA11 have hand-annotated.'* In order to run
the baseline system on implicit universals, we take
the feature vector of a plural NP and add a fea-
ture to indicate that this feature vector represents
the implicit universal of the corresponding chunk.
Similarly, for negation we add a feature to show
that the chunk represents a negation. As shown in
Section 3.3.2, we have used a more compact set
of features for negations. Once again, in order to
have a fair comparison, we apply a similar modifi-
cation to the baseline system. We also use the ex-
act same classifier as used in MA11."> Figure 5(a)
compares the performance of our model, which we
refer to as RPC-SVM-13, with the baseline sys-
tem, but only on explicit NP chunks.'® The goal
for running this experiment has been to compare
the performance of our model to the baseline sys-
token, as described by Manshadi et al. (2012). In this work,
we have only considered the token entity introduced by those
nouns and have ignored the type entity.

BSince the percentage of sentences with negation is small,
we made sure that those sentences are distributed uniformly
between three sets.

“MA11’s features are similar to part-of-speech tags and
untyped dependency relations.

158V ppMulticlass from SYM-light (Joachims, 1999).

'5In all experiments, we ignore NP conjunctions. Previous
work treats a conjunction of NPs as separate NPs. However,
similar to plurals, NP conjunctions (disjunctions) introduce
an extra scopal element: a universal (existential). We are

working on an annotation scheme for NP conjunctions, so
we have left this for after the annotations become available.
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NP-Chunks only (no id or . . . .

negation) o P R F AR | A

Baseline (MA11) 0.762| 0.638 | 0.484 |0.550(0.590.47

Our model (RPC-SVM-13) 0.827| 0.743| 0.677(0.709| 0.68| 0.55
(a) Scoping explicit NP chunks

Overall system (including

negation and implicit universals) o p* R* F* | AR | A

Baseline (MA11) 0.787| 0.688| 0.469(0.557|0.59(0.47

Our model (RPC-SVM-13) 0.863 | 0.784 | 0.720 |0.751|0.69| 0.55

(b) Scoping all elements (including ¢d and N+)

Figure 5: Performance on QuanText data

tem on the task that it was actually defined to per-
form (that is scoping only explicit NP chunks).

As seen in this table, by incorporating a richer
set of features and a better learning algorithm, our
model outperforms the baseline by almost 15%.
The measure A in these figures shows sentence-
based accuracy. A sentence counts as correct iff
every pair of scopal elements has been labeled
correctly. Therefore A is a tough measure. Fur-
thermore, it is sensitive to the length of the sen-
tence. Following MA11, we have computed an-
other sentence-based accuracy measure, AR. In
computing AR, a sentence counts as correct iff all
the outscoping relations have been recovered cor-
rectly — in other words, iff R = 100%, regardless
of the value of P. AR may be more practically
meaningful, because if in the correct scoping of
the sentence there is no outscoping between two
elements, inserting one does not affect the inter-
pretation of the sentence. In other words, precision
is less important for QSD in practice.

Figure 5(b) gives the performance of the over-
all model when all the elements including the im-
plicit universals and the negations are taken into
account. That the F-score of our model for the
second experiment is 0.042 higher than F-score for
the first indicates that scoping implicit universals
and/or negations must be easier than scoping ex-
plicit NP chunks. In order to find how much one or
both of the two elements contribute to this gain, we
have run two more experiments, scoping only the
pairs with at least one implicit universal and pairs
with one negation, respectively. Figure 6 reports
the results. As seen, the contribution in boosting
the overall performance comes from the implicit
universals while negations, in fact, lower the per-
formance. The performance for pairs with implicit
universal is higher because universals, in general,



Implicit universals only (pairs

X N p R* F*
with at least one id)
Baseline (MA11) 0.776| 0.458| 0.576
Our model (RPC-SVM-13) 0.836| 0.734| 0.782

(a) Pairs with at least one implicit universal

Negation only (pairs with one p+ R -
negation)

Baseline (MA11) 0.502| 0.571| 0.534
Our model (RPC-SVM-13) 0.733] 0.55] 0.629

(b) Pairs with at least one negation

Figure 6: Implicit universals and negations

are easier to scope, even for the human annota-
tors.!” There are several reasons for poor perfor-
mance with negations as well. First, the number
of negations in the corpus is small, therefore the
data is very sparse. Second, the RPC model does
not work well for negations. Scoping a negation
relative to an NP chunk, with which it has a long
distance dependency, often depends on the scope
of the elements in between. Third, scoping nega-
tion usually requires a deep semantic analysis.

In order to see how well our approximation al-
gorithm is working, similar to the approach of
Chambers and Jurafsky (2008), we tried an ILP
solver!® for DAGs with at most 8 nodes to find the
optimum solution, but we found the difference in-
significant. In fact, the approximation algorithm
finds the optimum solution in all but one case.!®

5 Related work

Since automatic QSD is in general challenging,
traditionally quantifier scoping is left underspec-
ified in deep linguistic processing systems (Al-
shawi and Crouch, 1992; Bos, 1996; Copestake et
al., 2001). Some efforts have been made to move
underspecification frameworks towards weighted
constraint-based graphs in order to produce the
most preferred reading (Koller et al., 2008), but
the source of these types of constraint are often
discourse, pragmatics, world knowledge, etc., and
hence, they are hard to obtain automatically. In or-

"Trivially, we have taken the relation outscoping ic > id
for granted and not counted it towards higher performance.

181psolve: http://sourceforge.net/projects/Ipsolve

To find the gain that can be obtained with gold-standard
parses, we used MA11’s system with their hand-annotated
and the equivalent automatically generated features. The
former boost the performance by 0.04. Incidentally, HS03
lose almost 0.04 when switching to automatically generated
parses.
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der to evade scope disambiguation, yet be able to
perform entailment, Koller and Thater (2010) pro-
pose an algorithm to calculate the weakest read-
ings? from a scope-underspecified representation.

Early efforts on automatic QSD (Moran, 1988;
Hurum, 1988) were based on heuristics, manually
formed into rules with manually assigned weights
for resolving conflicts. To the best of our knowl-
edge, there have been four major efforts on statisti-
cal QSD for English: Higgins and Sadock (2003),
Galen and MacCartney (2004), Srinivasan and
Yates (2009), and Manshadi and Allen (2011a).
The first three only scope two scopal terms in a
sentence, where the scopal term is an NP with an
explicit quantification. MA11 is the first to scope
any number of NPs in a sentence with no restric-
tion on the type of quantification. Besides ignor-
ing negation and implicit universals, their system
has some other limitations too. First, the learning
model is not theoretically justified. Second, hand-
annotated features (e.g. dependency relations) are
used on both the train and the test data.

6 Summary and future work

We develop the first statistical QSD model ad-
dressing the interaction of quantifiers with nega-
tion and the implicit universal of plurals, defining
a baseline for this task on QuanText data (Man-
shadi et al., 2012). In addition, our work improves
upon Manshadi and Allen (2011a)’s work by (ap-
proximately) optimizing a well justified criterion,
by using automatically generated features instead
of hand-annotated dependencies, and by boosting
the performance by a large margin with the help of
a rich feature vector.

This work can be improved in many directions,
among which are scoping more elements such as
other scopal operators and implicit entities, de-
ploying more complex learning models, and de-
veloping models which require less supervision.
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Abstract

Traditional approaches to the task of ACE
event extraction usually rely on sequential
pipelines with multiple stages, which suf-
fer from error propagation since event trig-
gers and arguments are predicted in isola-
tion by independent local classifiers. By
contrast, we propose a joint framework
based on structured prediction which ex-
tracts triggers and arguments together so
that the local predictions can be mutu-
ally improved. In addition, we propose
to incorporate global features which ex-
plicitly capture the dependencies of multi-
ple triggers and arguments. Experimental
results show that our joint approach with
local features outperforms the pipelined
baseline, and adding global features fur-
ther improves the performance signifi-
cantly. Our approach advances state-of-
the-art sentence-level event extraction, and
even outperforms previous argument la-
beling methods which use external knowl-
edge from other sentences and documents.

1 Introduction

Event extraction is an important and challeng-
ing task in Information Extraction (IE), which
aims to discover event triggers with specific types
and their arguments. Most state-of-the-art ap-
proaches (Ji and Grishman, 2008; Liao and Gr-
ishman, 2010; Hong et al., 2011) use sequential
pipelines as building blocks, which break down
the whole task into separate subtasks, such as
trigger identification/classification and argument
identification/classification. As a common draw-
back of the staged architecture, errors in upstream
component are often compounded and propagated
to the downstream classifiers. The downstream
components, however, cannot impact earlier deci-
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sions. For example, consider the following sen-
tences with an ambiguous word “fired”:

(1) In Baghdad, a cameraman died when an
American tank fired on the Palestine Hotel.

(2) He has fired his air defense chief.

In sentence (1), “fired” is a trigger of type Attack.
Because of the ambiguity, a local classifier may
miss it or mislabel it as a trigger of End-Position.
However, knowing that “tank” is very likely to be
an Instrument argument of Aftack events, the cor-
rect event subtype assignment of “fired” is obvi-
ously Arrack. Likewise, in sentence (2), “air de-
fense chief” is a job title, hence the argument clas-
sifier is likely to label it as an Entity argument for
End-Position trigger.

In addition, the local classifiers are incapable
of capturing inter-dependencies among multiple
event triggers and arguments. Consider sentence
(1) again. Figure 1 depicts the corresponding
event triggers and arguments. The dependency be-
tween “fired” and “died” cannot be captured by the
local classifiers, which may fail to attach “camera-
man” to “fired” as a Target argument. By using
global features, we can propagate the Victim ar-
gument of the Die event to the Target argument
of the Artack event. As another example, know-
ing that an Attack event usually only has one At-
tacker argument, we could penalize assignments
in which one trigger has more than one Aftacker.
Such global features cannot be easily exploited by
a local classifier.

Therefore, we take a fresh look at this prob-
lem and formulate it, for the first time, as a struc-
tured learning problem. We propose a novel joint
event extraction algorithm to predict the triggers
and arguments simultaneously, and use the struc-
tured perceptron (Collins, 2002) to train the joint
model. This way we can capture the dependencies
between triggers and argument as well as explore

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 73-82,
Sofia, Bulgaria, August 4-9 2013. (©2013 Association for Computational Linguistics
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In Baghdad, a cameraman died when an American tank fired on the Palestine Hotel.
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Figure 1: Event mentions of example (1). There are two event mentions that share three arguments,
namely the Die event mention triggered by “died”, and the Aftack event mention triggered by “fired”.

arbitrary global features over multiple local pre-
dictions. However, different from easier tasks such
as part-of-speech tagging or noun phrase chunking
where efficient dynamic programming decoding is
feasible, here exact joint inference is intractable.
Therefore we employ beam search in decoding,
and train the model using the early-update percep-
tron variant tailored for beam search (Collins and
Roark, 2004; Huang et al., 2012).
We make the following contributions:

1. Different from traditional pipeline approach,
we present a novel framework for sentence-
level event extraction, which predicts triggers
and their arguments jointly (Section 3).

We develop a rich set of features for event
extraction which yield promising perfor-
mance even with the traditional pipeline
(Section 3.4.1). In this paper we refer to them
as local features.

. We introduce various global features to ex-
ploit dependencies among multiple triggers
and arguments (Section 3.4.2).  Experi-
ments show that our approach outperforms
the pipelined approach with the same set of
local features, and significantly advances the
state-of-the-art with the addition of global
features which brings a notable further im-
provement (Section 4).

2 Event Extraction Task

In this paper we focus on the event extraction task
defined in Automatic Content Extraction (ACE)
evaluation.! The task defines 8 event types and
33 subtypes such as Attack, End-Position etc. We
introduce the terminology of the ACE event ex-
traction that we used in this paper:

"http://projects.ldc.upenn.edu/ace/
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e Event mention: an occurrence of an event
with a particular type and subtype.

Event trigger: the word most clearly ex-
presses the event mention.

Event argument: an entity mention, tempo-
ral expression or value (e.g. Job-Title) that
serves as a participant or attribute with a spe-
cific role in an event mention.

Event mention: an instance that includes one
event trigger and some arguments that appear
within the same sentence.

Given an English text document, an event ex-
traction system should predict event triggers with
specific subtypes and their arguments from each
sentence. Figure 1 depicts the event triggers and
their arguments of sentence (1) in Section 1. The
outcome of the entire sentence can be considered a
graph in which each argument role is represented
as a typed edge from a trigger to its argument.

In this work, we assume that argument candi-
dates such as entities are part of the input to the
event extraction, and can be from either gold stan-
dard or IE system output.

3 Joint Framework for Event Extraction

Based on the hypothesis that facts are inter-
dependent, we propose to use structured percep-
tron with inexact search to jointly extract triggers
and arguments that co-occur in the same sentence.
In this section, we will describe the training and
decoding algorithms for this model.

3.1 Structured perceptron with beam search

Structured perceptron is an extension to the stan-
dard linear perceptron for structured prediction,
which was proposed in (Collins, 2002). Given a
sentence instance x € X, which in our case is a
sentence with argument candidates, the structured
perceptron involves the following decoding prob-



lem which finds the best configuration z € ) ac-
cording to the current model w:

(1

z =argmax w-f(z,y)
y'eV(z)
where f(z,y') represents the feature vector for in-
stance x along with configuration 3’

The perceptron learns the model w in an on-
line fashion. Let D = {(z),y())}"_, be the set
of training instances (with j indexing the current
training instance). In each iteration, the algorithm
finds the best configuration 2 for x under the cur-
rent model (Eq. 1). If z is incorrect, the weights
are updated as follows:

The key step of the training and test is the de-
coding procedure, which aims to search for the
best configuration under the current parameters. In
simpler tasks such as part-of-speech tagging and
noun phrase chunking, efficient dynamic program-
ming algorithms can be employed to perform ex-
act inference. Unfortunately, it is intractable to
perform the exact search in our framework be-
cause: (1) by jointly modeling the trigger labeling
and argument labeling, the search space becomes
much more complex. (2) we propose to make use
of arbitrary global features, which makes it infea-
sible to perform exact inference efficiently.

To address this problem, we apply beam-search
along with early-update strategy to perform inex-
act decoding. Collins and Roark (2004) proposed
the early-update idea, and Huang et al. (2012) later
proved its convergence and formalized a general
framework which includes it as a special case. Fig-
ure 2 describes the skeleton of perceptron train-
ing algorithm with beam search. In each step of
the beam search, if the prefix of oracle assign-
ment y falls out from the beam, then the top re-
sult in the beam is returned for early update. One
could also use the standard-update for inference,
however, with highly inexact search the standard-
update generally does not work very well because
of “invalid updates”, i.e., updates that do not fix a
violation (Huang et al., 2012). In Section 4.5 we
will show that the standard perceptron introduces
many invalid updates especially with smaller beam
sizes, also observed by Huang et al. (2012).

To reduce overfitting, we used averaged param-
eters after training to decode test instances in our
experiments. The resulting model is called aver-
aged perceptron (Collins, 2002).
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Input: Training set D = {(z1),yW)}n
maximum iteration number 1°
Output: Model parameters w
Initialization: Set w = 0;
fort < 1.. T do
foreach (z,y) € D do
z < beamSearch (z,y, W)
if z # y then
w W+ £(2, Y1) — £(z,2)

A Ui A W N =

Figure 2: Perceptron training with beam-
search (Huang et al., 2012). Here y|;.; de-
notes the prefix of y that has length 7, e.g.,

Y3 = (Y1,Y2,93).

3.2 Label sets

Here we introduce the label sets for trigger and ar-
gument in the model. We use £ U { L} to denote
the trigger label alphabet, where £ represents the
33 event subtypes, and L indicates that the token
is not a trigger. Similarly, R U { L} denotes the
argument label sets, where R is the set of possible
argument roles, and | means that the argument
candidate is not an argument for the current trig-
ger. It is worth to note that the set R of each par-
ticular event subtype is subject to the entity type
constraints defined in the official ACE annotation
guideline?. For example, the Attacker argument
for an Aftack event can only be one of PER, ORG
and GPE (Geo-political Entity).

3.3 Decoding

Let ¢ = ((x1,x2,...,%5),E) denote the sentence
instance, where x; represents the ¢-th token in the
sentence and £ = {e;}}, is the set of argument
candidates. We use

Yy = (th A11y-+-,ALmy -+ -, tsu As1y--- 7as,m)

to denote the corresponding gold standard struc-
ture, where ¢; represents the trigger assignment for
the token x;, and a; . represents the argument role
label for the edge between x; and argument candi-
date ey,.

Zhttp://projects.ldc.upenn.edu/ace/docs/English-Events-
Guidelines_v5.4.3.pdf



9(1) 9(2) h(2,1) h(3,2)
b !

y=(t1, a1, a1, ta, G271, G292, t3, a31, A32)
———

arguments for zo

Figure 3: Example notation with s = 3, m = 2.

For simplicity, throughout this paper we use
Yg(i) and Yp(; k) to represent ¢; and a;x, respec-
tively. Figure 3 demonstrates the notation with
s = 3 and m = 2. The variables for the toy sen-
tence “Jobs founded Apple” are as follows:

&

2

x = ((Jobs, founded, Apple),{Jobseex, Appleps})

y=(Ll,L,1,Start Org, Agent, Org , L 1 1)
—_—— ———

t2 args for founded

Figure 4 describes the beam-search procedure
with early-update for event extraction. During
each step with token ¢, there are two sub-steps:

e Trigger labeling We enumerate all possible
trigger labels for the current token. The linear
model defined in Eq. (1) is used to score each
partial configuration. Then the K-best par-
tial configurations are selected to the beam,
assuming the beam size is K.

e Argument labeling After the trigger label-
ing step, we traverse all configurations in the
beam. Once a trigger label for x; is found in
the beam, the decoder searches through the
argument candidates £ to label the edges be-
tween each argument candidate and the trig-
ger. After labeling each argument candidate,
we again score each partial assignment and
select the K -best results to the beam.

After the second step, the rank of different trigger
assignments can be changed because of the argu-
ment edges. Likewise, the decision on later argu-
ment candidates may be affected by earlier argu-
ment assignments.

The overall time complexity for decoding is
O(K -s-m).

3.4 Features

In this framework, we define two types of fea-
tures, namely local features and global features.
We first introduce the definition of local and global
features in this paper, and then describe the im-
plementation details later. Recall that in the lin-
ear model defined in Eq. (1), f(x,y) denotes the
features extracted from the input instance x along
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Input: Instance x = ((z1, x2, ..., z5), E) and
the oracle output y if for training.
K: Beam size.
L U {L}: trigger label alphabet.
R U {L}: argument label alphabet.
Output: 1-best prediction z for x
1 Setbeam B < [¢] /*empty configuration*/
2 fori <+ 1...sdo
buf < {Z'ol |2 e B,le LU{Ll}}
B +K-best(buf)

4 if Y[1:9(3)] ¢ B then

5 return B[0]  /*for early-update*/

6 fore, € £do /*search for arguments®/
7 buf < 0

8 for 2’ € Bdo

9 buf < buf U{z'o L}

10 if z; 0 # | then /*x;is a trigger*/
11 buf < buf U{z'or |r e R}

12 B +K-best(buf)

13 if Y[1:h(i,k)] ¢ B then

14 return B[0]  /*for early-update*/
15 return BJ[0]

Figure 4: Decoding algorithm for event extrac-
tion. zo!l means appending label [ to the end of
z. During test, lines 4-5 & 13-14 are omitted.

with configuration y. In general, each feature in-
stance f in f is a function f : X x Y — R, which
maps z and y to a feature value. Local features are
only related to predictions on individual trigger or
argument. In the case of unigram tagging for trig-
ger labeling, each local feature takes the form of
f(x,1,4(;)), where i denotes the index of the cur-
rent token, and y, ;) is its trigger label. In practice,
it is convenient to define the local feature function
as an indicator function, for example:

1 ifyyu) = Attack and ; = “fire”

fl(x7i7yg(i)) = {O

The global features, by contrast, involve longer
range of the output structure. Formally,
each global feature function takes the form of
f(x,i,k,y), where i and k denote the indices
of the current token and argument candidate in
decoding, respectively. The following indicator
function is a simple example of global features:

otherwise

1 if ygq) = Attack and
fro1(z, i, k,y) =

y has only one “Attacker”

0 otherwise



[ Category |  Type [ Feature Description

2.
window of size 2
3.

Lexical

Trigger

each token.

1. unigrams/bigrams of the current and context words within the window of size 2
unigrams/bigrams of part-of-speech tags of the current and context words within the

lemma and synonyms of the current token

4. base form of the current token extracted from Nomlex (Macleod et al., 1998)

5. Brown clusters that are learned from ACE English corpus (Brown et al., 1992; Miller et
al., 2004; Sun et al., 2011). We used the clusters with prefixes of length 13, 16 and 20 for

Syntactic

6. dependent and governor words of the current token

7. dependency types associated the current token

8. whether the current token is a modifier of job title

9. whether the current token is a non-referential pronoun

Entity
Information

10. unigrams/bigrams normalized by entity types
11. dependency features normalized by entity types
12. nearest entity type and string in the sentence/clause

trigger word and subtype

Basic

S N

Argument

context words of the entity mention

entity type, subtype and entity role if it is a geo-political entity mention
entity mention head, and head of any other name mention from co-reference chain
lexical distance between the argument candidate and the trigger

the relative position between the argument candidate and the trigger: {before, after,
overlap, or separated by punctuation}
7. whether it is the nearest argument candidate with the same type
8. whether it is the only mention of the same entity type in the sentence

Syntactic

9. dependency path between the argument candidate and the trigger

10. path from the argument candidate and the trigger in constituent parse tree

11. length of the path between the argument candidate and the trigger in dependency graph
12. common root node and its depth of the argument candidate and parse tree

13. whether the argument candidate and the trigger appear in the same clause

Table 1: Local features.

3.4.1 Local features

In general there are two kinds of local features:

Trigger features The local feature func-
tion for trigger labeling can be factorized as
f(l', i, yg(z)) - p('r7 Z) © q<yg(i))’ where p(l’, Z) is
a predicate about the input, which we call text fea-
ture, and q(y,(;)) is a predicate on the trigger label.
In practice, we define two versions of q(y, ;)

qO(yg(i)) = Yg(i) (event subtype)
QI(yg(i)) = event type of Yg(i)

q1(Yg(i)) is a backoff version of the standard un-
igram feature. Some text features for the same
event type may share a certain distributional sim-
ilarity regardless of the subtypes. For example,
if the nearest entity mention is “Company”, the
current token is likely to be Personnel no matter
whether it is End-Postion or Start-Position.

Argument features Similarly, the local fea-
ture function for argument labeling can be rep-
resented as f(z,4, k, Yg(i), Yn(ik)) = p(x,4,k) o
q(Yg(i)> Yn(ik))» Where yp( 1) denotes the argu-
ment assignment for the edge between trigger
word ¢ and argument candidate e;. We define two
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versions of q(Yy (i), Yn(ik)):
Yh(i,k) if Yp(s,x) is Place,
20 (Yg(i): Yn(ik) = Time or None
Yg(i) © Yn(ik) Otherwise
1

0

if Yn(i,k) #None
1 (Yg(i) Yn(ik)) =

otherwise

It is notable that Place and Time arguments are
applicable and behave similarly to all event sub-
types. Therefore features for these arguments are
not conjuncted with trigger labels. g1 (yp(; 1)) can
be considered as a backoft version of QO(yh(i,k))’
which does not discriminate different argument
roles but only focuses on argument identification.
Table 1 summarizes the text features about the in-
put for trigger and argument labeling. In our ex-
periments, we used the Stanford parser (De Marn-
effe et al., 2006) to create dependency parses.

3.4.2 Global features

Table 2 summarizes the 8 types of global features
we developed in this work. They can be roughly
divided into the following two categories:



[ Category | Feature Description

1. bigram of trigger types occur in the same sentence or the same clause

Trigger 2. binary feature indicating whether synonyms in the same sentence have the same trigger label
3. context and dependency paths between two triggers conjuncted with their types
4. context and dependency features about two argument candidates which share the same role within the
same event mention
Argument | 5. features about one argument candidate which plays as arguments in two event mentions in the same

sentence

6. features about two arguments of an event mention which are overlapping

7. the number of arguments with each role type of an event mention conjuncted with the event subtype
8. the pairs of time arguments within an event mention conjuncted with the event subtype

Table 2: Global features.
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Figure 5: Illustration of global features (4-6) in Table 2.

Event Probability
Attack 0.34
Die 0.14
Transport 0.08
Injure 0.04
Meet 0.02

Table 3: Top 5 event subtypes that co-occur with
Attack event in the same sentence.

Trigger global feature This type of feature
captures the dependencies between two triggers
within the same sentence. For instance: feature (1)
captures the co-occurrence of trigger types. This
kind of feature is motivated by the fact that two
event mentions in the same sentence tend to be se-
mantically coherent. As an example, from Table 3
we can see that Artack event often co-occur with
Die event in the same sentence, but rarely co-occur
with Start-Position event. Feature (2) encourages
synonyms or identical tokens to have the same la-
bel. Feature (3) exploits the lexical and syntactic
relation between two triggers. A simple example
is whether an Artack trigger and a Die trigger are
linked by the dependency relation conj_and.

Argument global feature This type of feature
is defined over multiple arguments for the same
or different triggers. Consider the following sen-
tence:

(3) Trains running to southern Sudan were used
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to transport abducted women and children.

The Transport event mention “transport” has
two Artifact arguments, “women” and “chil-
dren”.  The dependency edge conj.and be-
tween “women” and “children” indicates that
they should play the same role in the event men-
tion. The triangle structure in Figure 5(a) is an ex-
ample of feature (4) for the above example. This
feature encourages entities that are linked by de-
pendency relation conj_and to play the same role
Artifact in any Transport event.

Similarly, Figure 5(b) depicts an example of
feature (5) for sentence (1) in Section 1. In this ex-
ample, an entity mention is Victim argument to Die
event and Target argument to Attack event, and the
two event triggers are connected by the typed de-
pendency advcl. Here advcl means that the word
“fired” is an adverbial clause modier of “died”.

Figure 5(c) shows an example of feature (6) for
the following sentence:

(4) Barry Diller resigned as co-chief executive of
Vivendi Universal Entertainment.

The job title “co-chief executive of Vivendi Uni-
versal Entertainment” overlaps with the Orga-
nization mention “Vivendi Universal Entertain-
ment”. The feature in the triangle shape can be
considered as a soft constraint such that if a Job-
Title mention is a Position argument to an End-
Position trigger, then the Organization mention



which appears at the end of it should be labeled
as Entity argument for the same trigger.

Feature (7-8) are based on the statistics about
different arguments for the same trigger. For in-
stance, in many cases, a trigger can only have one
Place argument. If a partial configuration mis-
takenly classifies more than one entity mention as
Place arguments for the same trigger, then it will
be penalized.

4 Experiments

4.1 Data set and evaluation metric

We utilized the ACE 2005 corpus as our testbed.
For comparison, we used the same test set with 40
newswire articles (672 sentences) as in (Ji and Gr-
ishman, 2008; Liao and Grishman, 2010) for the
experiments, and randomly selected 30 other doc-
uments (863 sentences) from different genres as
the development set. The rest 529 documents (14,
840 sentences) are used for training.

Following previous work (Ji and Grishman,
2008; Liao and Grishman, 2010; Hong et al.,
2011), we use the following criteria to determine
the correctness of an predicted event mention:

e A trigger is correct if its event subtype and
offsets match those of a reference trigger.

An argument is correctly identified if its event
subtype and offsets match those of any of the
reference argument mentions.

An argument is correctly identified and clas-
sified if its event subtype, offsets and argu-
ment role match those of any of the reference
argument mentions.

Finally we use Precision (P), Recall (R) and F-
measure (F1) to evaluate the overall performance.

4.2 Baseline system

Chen and Ng (2012) have proven that perform-
ing identification and classification in one step is
better than two steps. To compare our proposed
method with the previous pipelined approaches,
we implemented two Maximum Entropy (Max-
Ent) classifiers for trigger labeling and argument
labeling respectively. To make a fair comparison,
the feature sets in the baseline are identical to the
local text features we developed in our framework
(see Figure 1).
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4.3 Training curves

We use the harmonic mean of the trigger’s I}
measure and argument’s F7 measure to measure
the performance on the development set.

Harmonic mean
o
w
I

— local+globall |
= local

0.44.

123456 7 8 9101112131415161718192021
# of training iteration

Figure 6: Training curves on dev set.

Figure 6 shows the training curves of the aver-
aged perceptron with respect to the performance
on the development set when the beam size is 4.
As we can see both curves converge around itera-
tion 20 and the global features improve the over-
all performance, compared to its counterpart with
only local features. Therefore we set the number
of iterations as 20 in the remaining experiments.

4.4 Impact of beam size

The beam size is an important hyper parameter in
both training and test. Larger beam size will in-
crease the computational cost while smaller beam
size may reduce the performance. Table 4 shows
the performance on the development set with sev-
eral different beam sizes. When beam size = 4, the
algorithm achieved the highest performance on the
development set with trigger F; = 67.9, argument
F; = 51.5, and harmonic mean = 58.6. When
the size is increased to 32, the accuracy was not
improved. Based on this observation, we chose
beam size as 4 for the remaining experiments.

4.5 Early-update vs. standard-update

Huang et al. (2012) define “invalid update” to be
an update that does not fix a violation (and instead
reinforces the error), and show that it strongly
(anti-)correlates with search quality and learning
quality. Figure 7 depicts the percentage of in-
valid updates in standard-update with and with-
out global features, respectively. With global fea-
tures, there are numerous invalid updates when the



Beam size ‘ 1 2 4 8 16 32
Training time (sec) | 993 2,034 3982 8,036 15,878 33,026
Harmonic mean 57.6 57.7 58.6 58.0 57.8 57.8

Table 4: Comparison of training time and accuracy on the dev set.

0.45
0.40f

§035

S 0.30

£l

2 0.25

T 0.20

£

% 0.15

R 0.10
0.05
0.00

+—— local+global
— local

4 8
beam size

16 32

Figure 7: Percentage of the so-called “invalid up-
dates” (Huang et al., 2012) in standard perceptron.

Strategy F; on Dev F; on Test
Trigger Arg | Trigger Arg
Standard (b = 1) 683 474 | 644 498
Early (b = 1) 689 495 | 652 521
Standard (b = 4) 684 505 67.1 514
Early (b = 4) 679 515 | 675 527

Table 5: Comparison between the performance
(%) of standard-update and early-update with
global features. Here b stands for beam size.

beam size is small. The ratio decreases mono-
tonically as beam size increases. The model with
only local features made much smaller numbers
of invalid updates, which suggests that the use of
global features makes the search problem much
harder. This observation justify the application of
early-update in this work. To further investigate
the difference between early-update and standard-
update, we tested the performance of both strate-
gies, which is summarized in Table 5. As we can
see the performance of standard-update is gener-
ally worse than early-update. When the beam size
is increased (b = 4), the gap becomes smaller as
the ratio of invalid updates is reduced.

4.6 Overall performance

Table 6 shows the overall performance on the blind
test set. In addition to our baseline, we compare
against the sentence-level system reported in Hong
et al. (2011), which, to the best of our knowledge,
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is the best-reported system in the literature based
on gold standard argument candidates. The pro-
posed joint framework with local features achieves
comparable performance for triggers and outper-
forms the staged baseline especially on arguments.
By adding global features, the overall performance
is further improved significantly. Compared to
the staged baseline, it gains 1.6% improvement
on trigger’s F-measure and 8.8% improvement on
argument’s F-measure. Remarkably, compared to
the cross-entity approach reported in (Hong et al.,
2011), which attained 68.3% F; for triggers and
48.3% for arguments, our approach with global
features achieves even better performance on ar-
gument labeling although we only used sentence-
level information.

We also tested the performance with argument
candidates automatically extracted by a high-
performing name tagger (Li et al., 2012b) and an
IE system (Grishman et al., 2005). The results
are summarized in Table 7. The joint approach
with global features significantly outperforms the
baseline and the model with only local features.
We also show that it outperforms the sentence-
level baseline reported in (Ji and Grishman, 2008;
Liao and Grishman, 2010), both of which at-
tained 59.7% F for triggers and 36.6% for argu-
ments. Our approach aims to tackle the problem of
sentence-level event extraction, thereby only used
intra-sentential evidence. Nevertheless, the perfor-
mance of our approach is still comparable with the
best-reported methods based on cross-document
and cross-event inference (Ji and Grishman, 2008;
Liao and Grishman, 2010).

5 Related Work

Most recent studies about ACE event extraction
rely on staged pipeline which consists of separate
local classifiers for trigger labeling and argument
labeling (Grishman et al., 2005; Ahn, 2006; Ji and
Grishman, 2008; Chen and Ji, 2009; Liao and Gr-
ishman, 2010; Hong et al., 2011; Li et al., 2012a;
Chen and Ng, 2012). To the best of our knowl-
edge, our work is the first attempt to jointly model
these two ACE event subtasks.



Trigger

Trigger Identification

Argument

Methods Identification (%) | + classification (%) Identification (%) Argument Role (%)
P R F; P R Fi P R Fi P R Fi
Sentence-level in Hong et al. (2011) N/A 67.6 535 59.7 46.5 37.15 413 | 41.0 328 36.5
Staged MaxEnt classifiers 762 60.5 674|745 59.1 65.9 74.1 374 49.7 | 654 33.1 439
Joint w/ local features 774 623 690|737 593 657 |69.7 396 505|641 365 465
Joint w/ local + global features 76.9 650 704 | 737 62.3 67.5 | 69.8 479 568|647 444 527
| Cross-entity in Hong et al. 2011)" | N/A [729 643 683 [534 529 531[516 455 483 |

Table 6: Overall performance with gold-standard entities, timex, and values. Tbeyond sentence level.

] Methods ‘ Trigger Fy ‘ Arg Fy ‘
Ji and Grishman (2008) 67.3 42.6
cross-doc Inference
Ji and Grishman (2008) 59.7 36.6
sentence-level
MaxEnt classifiers 64.7 (}1.2) | 33.7 (110.2)
Joint w/ local 63.7 (12.0) | 35.8 (110.7)
Joint w/ local + global 65.6 (11.9) | 41.8 (110.9)

Table 7: Overall performance (%) with predicted
entities, timex, and values. | indicates the perfor-
mance drop from experiments with gold-standard
argument candidates (see Table 6).

For the Message Understanding Conference
(MUC) and FAS Program for Monitoring Emerg-
ing Diseases (ProMED) event extraction tasks,
Patwardhan and Riloff (2009) proposed a proba-
bilistic framework to extract event role fillers con-
ditioned on the sentential event occurrence. Be-
sides having different task definitions, the key
difference from our approach is that their role
filler recognizer and sentential event recognizer
are trained independently but combined in the test
stage. Our experiments, however, have demon-
strated that it is more advantageous to do both
training and testing with joint inference.

There has been some previous work on joint
modeling for biomedical events (Riedel and Mc-
Callum, 2011a; Riedel et al., 2009; McClosky et
al., 2011; Riedel and McCallum, 2011b). (Mc-
Closky et al., 2011) is most closely related to our
approach. They casted the problem of biomedi-
cal event extraction as a dependency parsing prob-
lem. The key assumption that event structure can
be considered as trees is incompatible with ACE
event extraction. In addition, they used a separate
classifier to predict the event triggers before ap-
plying the parser, while we extract the triggers and
argument jointly. Finally, the features in the parser
are edge-factorized. To exploit global features,

they applied a MaxEnt-based global re-ranker. In
comparison, our approach is a unified framework
based on beam search, which allows us to exploit
arbitrary global features efficiently.

6 Conclusions and Future Work

We presented a joint framework for ACE event ex-
traction based on structured perceptron with inex-
act search. As opposed to traditional pipelined
approaches, we re-defined the task as a struc-
tured prediction problem. The experiments proved
that the perceptron with local features outperforms
the staged baseline and the global features further
improve the performance significantly, surpassing
the current state-of-the-art by a large margin.

As shown in Table 7, the overall performance
drops substantially when using predicted argu-
ment candidates. To improve the accuracy of end-
to-end IE system, we plan to develop a complete
joint framework to recognize entities together with
event mentions for future work. Also we are inter-
ested in applying this framework to other IE tasks
such as relation extraction.
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Abstract

Temporal resolution systems are tradition-
ally tuned to a particular language, re-
quiring significant human effort to trans-
late them to new languages. We present
a language independent semantic parser
for learning the interpretation of tempo-
ral phrases given only a corpus of utter-
ances and the times they reference. We
make use of a latent parse that encodes
a language-flexible representation of time,
and extract rich features over both the
parse and associated temporal semantics.
The parameters of the model are learned
using a weakly supervised bootstrapping
approach, without the need for manually
tuned parameters or any other language
expertise. We achieve state-of-the-art ac-
curacy on all languages in the TempEval-
2 temporal normalization task, reporting
a 4% improvement in both English and
Spanish accuracy, and to our knowledge
the first results for four other languages.

1 Introduction

Temporal resolution is the task of mapping from
a textual phrase describing a potentially complex
time, date, or duration to a normalized (grounded)
temporal representation. For example, possibly
complex phrases such as the week before last' are
often more useful in their grounded form — e.g.,
August 4 - August 11.

Many approaches to this problem make
use of rule-based methods, combining regular-
expression matching and hand-written interpreta-
tion functions. In contrast, we would like to learn
the interpretation of a temporal expression proba-
bilistically. This allows propagation of uncertainty
to higher-level components, and the potential to

1Spoken on, for instance, August 20.
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dynamically back off to a rule-based system in the
case of low confidence parses. In addition, we
would like to use a representation of time which is
broadly applicable to multiple languages, without
the need for language-specific rules or manually
tuned parameters.

Our system requires annotated data consist-
ing only of an input phrase and an associ-
ated grounded time, relative to some reference
time; the language-flexible parse is entirely latent.
Training data of this weakly-supervised form is
generally easier to collect than the alternative of
manually creating and tuning potentially complex
interpretation rules.

A large number of languages conceptualize time
as lying on a one dimensional line. Although
the surface forms of temporal expressions differ,
the basic operations many languages use can be
mapped to operations on this time line (see Sec-
tion 3). Furthermore, many common languages
share temporal units (hours, weekdays, etc.). By
structuring a latent parse to reflect these seman-
tics, we can define a single model which performs
well on multiple languages.

A discriminative parsing model allows us to de-
fine sparse features over not only lexical cues but
also the temporal value of our prediction. For ex-
ample, it allows us to learn that we are much more
likely to express March 1 4™ than 2pm in March —
despite the fact that both interpretations are com-
posed of similar types of components. Further-
more, it allows us to define both sparse n-gram and
denser but less informative bag-of-words features
over multi-word phrases, and allows us to handle
numbers in a flexible way.

We briefly describe our temporal representation
and grammar, followed by a description of the
learning algorithm; we conclude with experimen-
tal results on the six languages of the TempEval-2
A task.
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2 Related Work

Our approach follows the work of Angeli et al.
(2012), both in the bootstrapping training method-
ology and the temporal grammar. Our foremost
contributions over this prior work are: (i) the uti-
lization of a discriminative parser trained with rich
features; (ii) simplifications to the temporal gram-
mar which nonetheless maintain high accuracy;
and (iii) experimental results on 6 different lan-
guages, with state-of-the-art performance on both
datasets on which we know of prior work.

As in this previous work, our approach draws
inspiration from work on semantic parsing. The
latent parse parallels the formal semantics in pre-
vious work. Supervised approaches to semantic
parsing prominently include Zelle and Mooney
(1996), Zettlemoyer and Collins (2005), Kate et
al. (2005), Zettlemoyer and Collins (2007), inter
alia. For example, Zettlemoyer and Collins (2007)
learn a mapping from textual queries to a logical
form. Importantly, the logical form of these parses
contain all of the predicates and entities used in
the parse — unlike the label provided in our case,
where a grounded time can correspond to any of
a number of latent parses. Along this line, re-
cent work by Clarke et al. (2010) and Liang et al.
(2011) relax supervision to require only annotated
answers rather than full logical forms.

Related work on interpreting temporal expres-
sions has focused on constructing hand-crafted in-
terpretation rules (Mani and Wilson, 2000; Sa-
quete et al., 2003; Puscasu, 2004; Grover et al.,
2010). Of these, HeidelTime (Strétgen and Gertz,
2010) and SUTime (Chang and Manning, 2012)
provide a strong comparison in English.

Recent probabilistic approaches to temporal
resolution include UzZaman and Allen (2010),
who employ a parser to produce deep logical
forms, in conjunction with a CRF classifier. In a
similar vein, Kolomiyets and Moens (2010) em-
ploy a maximum entropy classifier to detect the
location and temporal type of expressions; the
grounding is then done via deterministic rules.

In addition, there has been work on pars-
ing Spanish expressions; UC3M (Vicente-Diez et
al., 2010) produce the strongest results on the
TempEval-2 corpus. Of the systems entered in the
original task, TIPSem (Llorens et al., 2010) was
the only system to perform bilingual interpreta-
tion for English and Spanish. Both of the above
systems rely primarily on hand-built rules.
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3 Temporal Representation

We define a compositional representation of time,
similar to Angeli et al. (2012), but with a greater
focus on efficiency and simplicity. The represen-
tation makes use of a notion of temporal types
and their associated semantic values; a grammar
is constructed over these types, and is grounded
by appealing to the associated values.

A summary of the temporal type system is pro-
vided in Section 3.1; the grammar is described in
Section 3.2; key modifications from previous work
are highlighted in Section 3.3.

3.1 Temporal Types

Temporal expressions are represented either as a
Range, Sequence, or Duration. The root of a parse
tree should be one of these types. In addition,
phrases can be tagged as a Function; or, as a spe-
cial Nil type corresponding to segments without a
direct temporal interpretation. Lastly, a type is al-
located for numbers. We describe each of these
briefly below.

Range [and Instant] A period between two
dates (or times), as per an interval-based theory
of time (Allen, 1981). This includes entities such
as Today, 1987, or Now.

Sequence A sequence of Ranges, occurring at
regular but not necessarily constant intervals. This
includes entities such as Friday, November
27%8 or last Friday. A Sequence is de-
fined in terms of a partial completion of calendar
fields. For example, November 27" would de-
fine a Sequence whose year is unspecified, month
is November, and day is the 27th, spanning the en-
tire range of the lower order fields (in this case, a
day). This example is illustrated in Figure 1. Note
that a Sequence implicitly selects a possibly infi-
nite number of possible Ranges.

To select a particular grounded time for a Se-
quence, we appeal to a notion of a reference time
(Reichenbach, 1947). For the TempEval-2 corpus,
we approximate this as the publication time of the
article. While this is conflating Reichenbach’s ref-
erence time with speech time, and comes at the
expense of certain mistakes (see Section 5.3), it is
nonetheless useful in practice.

To a first approximation, grounding a sequence
given a reference time corresponds to filling in the
unspecified fields of the sequence with the fully-
specified fields of the reference time. This pro-
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Figure 1: An illustration of grounding a Sequence. When grounding the Sequence November 278
with a reference time 2013-08-06 03:25:00, we complete the missing fields in the Sequence (the
year) with the corresponding field in the reference time (2013).

cess has a number of special cases not enumerated
here,” but the complexity remains constant time.

Duration A period of time. This includes enti-
ties like Week, Month, and 7 days. A special
case of the Duration type is defined to represent ap-
proximate durations, such as a few years or some
days.

Function A function of arity less than or equal
to two representing some general modification to
one of the above types. This captures semantic
entities such as those implied in last x, the third =
[of y], or x days ago. The particular functions are
enumerated in Table 2.

Nil A special Nil type denotes terms which are
not directly contributing to the semantic meaning
of the expression. This is intended for words such
as a or the, which serve as cues without bearing
temporal content themselves.

Number Lastly, a special Number type is defined
for tagging numeric expressions.

3.2 Temporal Grammar

Our approach assumes that natural language de-
scriptions of time are compositional in nature; that
is, each word attached to a temporal phrase is com-
positionally modifying the meaning of the phrase.
We define a grammar jointly over temporal types
and values. The types serve to constrain the parse
and allow for coarse features; the values encode
specific semantics, and allow for finer features.
At the root of a parse tree, we recursively apply

2Some of these special cases are caused by variable days
of the month, daylight savings time, etc. Another class arises
from pragmatically peculiar utterances; e.g., the next Monday
in August uttered in the last week of August should ground to
August of next year (rather than the reference time’s year).
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the functions in the tree to obtain a final temporal
value.

This approach can be presented as a rule-to-rule
translation (Bach, 1976; Allen, 1995, p. 263), or
a constrained Synchronous PCFG (Yamada and
Knight, 2001).

Formally, we define our grammar as
G=(%,5V,T,R). The alphabet ¥ and start
symbol S retain their usual interpretations. We
define a set V to be the set of types, as described in
Section 3.1. For each v € V we define an (infinite)
set T}, corresponding to the possible instances of
type v. Each node in the tree defines a pair (v, 7)
such that 7 € T,. A rule R € R is defined as
a pair R = (v; > vju, f: (T, To,) = To,).
This definition is trivially adapted for the case of
unary rules.

The form of our rules reveals the synchronous
aspect of our grammar. The structure of the tree is
bound by the first part over types v — these types
are used to populate the chart, and allow for effi-
cient inference. The second part is used to eval-
uate the semantics of the parse, 7 € T;,, and al-
lows partial derivations to be discriminated based
on richer information than the coarse types.

We adopt the preterminals of Angeli et al.
(2012). Each preterminal consists of a type
and a value; neither which are lexically in-
formed. That is, the word week and preterminal
(Week, Duration) are not tied in any way. A total
of 62 preterminals are defined corresponding to in-
stances of Ranges, Sequences, and Durations; these
are summarized in Table 1.

In addition, 10 functions are defined for manip-
ulating temporal expressions (see Table 2). The
majority of these mirror generic operations on in-
tervals on a timeline, or manipulations of a se-
quence. Notably, like intervals, times can be



Type Example Instances

Range Past, Future, Yesterday,
Tomorrow, Today, Reference,

Year (n),Century (n)

Sequence | Friday, January,...
DayOfMonth, DayOfWeek, ...

EveryDay, EveryWeek, ...

Second, Minute, Hour,
Day, Week, Month, Quarter,
Year, Decade, Century

Duration

Table 1: The content-bearing preterminals of the
grammar, arranged by their types. Note that the
Sequence type contains more elements than enu-
merated here; however, only a few of each charac-
teristic type are shown here for brevity.

Function Description

shiftLeft Shift a Range left by a Duration
shiftRight Shift a Range right by a Duration
shrinkBegin | Take the first Duration of a Range
shrinkEnd Take the last Duration of a Range
catLeft Take the Duration after a Range
catRight Take the Duration before a Range
moveLeftl Shift a Sequence left by 1
moveRight]l | Shift a Sequence right by 1
'z of y Take the n’” element in y
approximate | Make a Duration approximate

Table 2: The functional preterminals of the gram-
mar. The name and a brief description of the func-
tion are given; the functions are most easily in-
terpreted as operations on either an interval or se-
quence. All operations on Ranges can equivalently
be applied to Sequences.

moved (3 weeks ago) or their size changed (the
first two days of the month), or a new interval can
be started from one of the endpoints (the last 2
days). Additionally, a sequence can be modified
by shifting its origin (last Friday), or taking the
n' element of the sequence within some bound
(fourth Sunday in November).

Combination rules in the grammar mirror type-
checked curried function application. For in-
stance, the function moveLeft 1 applied to week
(as in last week) yields a grammar rule:

( moveLeftl, Seq.—Seq. ) ( i EveryWeek , Seq. )
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In more generality, we create grammar rules for
applying a function on either the left or the right,
for all possible type signatures of f: f(z,y) ©
orx ® f(z,y).

Additionally, a grammar rule is created for in-
tersecting two Ranges or Sequences, for multiply-
ing a duration by a number, and for absorbing a Nil
span. Each of these can be though of as an implicit
function application (in the last case, the identity
function).

3.3 Differences From Previous Work

While the grammar formalism is strongly inspired
by Angeli et al. (2012), a number of key differ-
ences are implemented to both simplify the frame-
work, and make inference more efficient.

Sequence  Grounding The most time-
consuming and conceptually nuanced aspect
of temporal inference in Angeli et al. (2012)
is intersecting Sequences. In particular, there
are two modes of expressing dates which resist
intersection: a day-of-month-based mode and a
week-based mode. Properly grounding a sequence
which defines both a day of the month and a day
of the week (or week of the year) requires backing
off to an expensive search problem.

To illustrate, consider the example: Friday the
13" Although both a Friday and a 13 of the
month are easily found, the intersection of the two
requires iterating through elements of one until it
overlaps with an element of the other. At train-
ing time, a number of candidate parses are gen-
erated for each phrase. When considering that
these parses can become both complex and prag-
matically unreasonable, this can result in a notice-
able efficiency hit; e.g., during training a sentence
could have a [likely incorrect] candidate interpre-
tation of: nineteen ninety-six Friday the 1 3t from
now.

In our Sequence representation, such intersec-
tions are disallowed, in the same fashion as Febru-
ary 30" would be.

Sequence Pragmatics For the sake of simplicity
the pragmatic distribution over possible ground-
ings of a sequence is replaced with the single most
likely offset, as learned empirically from the En-
glish TempEval-2 corpus by Angeli et al. (2012).

No Tag Splitting The Number and Nil types
are no longer split according to their ordinal-
ity/magnitude and subsumed phrase, respectively.



More precisely, there is a single nonterminal (Nil),
rather than a nonterminal symbol characterizing
the phrase it is subsuming (Nil-the, Nil-a, etc.). This
information is encoded more elegantly as features.

4 Learning

The system is trained using a discriminative k-
best parser, which is able to incorporate arbi-
trary features over partial derivations. We describe
the parser below, followed by the features imple-
mented.

4.1 Parser

Inference A discriminative k-best parser was
used to allow for arbitrary features in the parse
tree. In the first stage, spans of the input sentence
are tagged as either text or numbers. A rule-based
number recognizer was used for each language
to recognize and ground numeric expressions, in-
cluding information on whether the number was
an ordinal (e.g., two versus second). Note that un-
like conventional parsing, a tag can span multiple
words. Numeric expressions are treated as if the
numeric value replaced the expression.

Each rule of the parse derivation was assigned
a score according to a log-linear factor. Specifi-
cally, each rule R = (v; — v;vy, f) with features
over the rule and derivation so far ¢(R), subject to
parameters 6, is given a probability:

)

Naively, this parsing algorithm gives us a com-
plexity of O(n3k?), where n is the length of the
sentence, and k is the size of the beam. However,
we can approximate the algorithm in O(n®k log k)
time with cube pruning (Chiang, 2007). With
features which are not context-free, we are not
guaranteed an optimal beam with this approach;
however, empirically the approximation yields a
significant efficiency improvement without notice-
able loss in performance.

P(v; | vj, v, f;6) T A(R)

Training We adopt an EM-style bootstrapping
approach similar to Angeli et al. (2012), in order to
handle the task of parsing the temporal expression
without annotations for the latent parses. Each
training instance is a tuple consisting of the words
in the temporal phrase, the annotated grounded
time 7*, and the reference time.

Given an input sentence, our parser will out-
put k possible parses; when grounded to the
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reference time these correspond to k candidate
times: 7y ... Tk, each with a normalized probabil-
ity P(7;). This corresponds to an approximate E
step in the EM algorithm, where the distribution
over latent parses is approximated by a beam of
size k. Although for long sentences the number
of parses is far greater than the beam size, as the
parameters improve, increasingly longer sentences
will have correct derivations in the beam. In this
way, a progressively larger percentage of the data
is available to be learned from at each iteration.

To approximate the M step, we define a multi-
class hinge loss [(#) over the beam, and optimize
using Stochastic Gradient Descent with AdaGrad
(Duchi et al., 2010):

l((g) = max H[Ti #+ T*] +P9(Ti) — PQ(T*) 2)

0<i<k

We proceed to describe our features.

4.2 Features

Our framework allows us to define arbitrary fea-
tures over partial derivations. Importantly, this al-
lows us to condition not only on the PCFG proba-
bilities over types but also the partial semantics of
the derivation. We describe the features used be-
low; a summary of these features for a short phrase
is illustrated in Figure 2.

Bracketing Features A feature is defined over
every nonterminal combination, consisting of
the pair of children being combined in that
rule. In particular, let us consider a rule
R = (v; = vjvy, f) corresponding to a CFG rule
v; — vjvy over types, and a function f over the
semantic values corresponding to v; and vg: T;
and 7. Two classes of bracketing features are
extracted: features are extracted over the types
of nonterminals being combined (v; and vy), and
over the top-level semantic derivation of the non-
terminals (f, 7;, and 7).

Unlike syntactic parsing, child types of a parse
tree uniquely define the parent type of the rule; this
is a direct consequence of our combination rules
being functions with domains defined in terms
of the temporal types, and therefore necessarily
projecting their inputs into a single output type.
Therefore, the first class of bracketing features —
over types — reduce to have the exact same expres-
sive power as the nonterminal CFG rules of Angeli
etal. (2012). Examples of features in this class are
features 13 and 15 in Figure 2 (b).



Input (w,t) ( Friday of this week , August 6 2013 )

N/

7 FRI N 7 EveryWeek

O/\
Latent PRI 7 Everylleek
arse } >
p Friday — Nil [ Eyeryieek
' |
of this week
Output 7* August 9 2013

(a)

7 FRI

joad FRI

| 1. < ® PRI, Friday >
Friday
) 2. < NI, of >
N;' 3. < NIL , this >
of this 4. < NIL , of this >
5. < NIL_BIAS >
= EveryWeek
| 6. <& EveryWeek , week >
week
7. < NIL_of , [% EveryWeek >
8. < NiL_ this | [7 Everyieek >
% Everylieek 9. < NIL_ of this , [7 EveryWeek >
10. < NiL_of , SEQUENCE >
‘/\ . ’
Nil % EveryWeek 11. < NIL_ this , SEQUENCE >
12. < NiL_ of this , SEQUENCE >
13. < NiL , SEQUENCE >
14. < Ni ) = EveryWeek >
FRIN EveryWeek ]5. < SEQUENCE , SEQUENCE >

< INTERSECT , [= FRI , = EveryWeek >

7 EverylWeek 7. < ROOT_VALID >

(b)

Figure 2: An example parse of Friday of this week, along with the features extracted from the parse.
A summary of the input, latent parse, and output for a particular example is given in (a). The features
extracted for each fragment of the parse are given in (b), and described in detail in Section 4.2.

We now also have the flexibility to extract a sec-
ond class of features from the semantics of the
derivation. We define a feature bracketing the
most recent semantic function applied to each of
the two child derivations; along with the function
being applied in the rule application. If the child
is a preterminal, the semantics of the pretermi-
nal are used; otherwise, the outermost (most re-
cent) function to be applied to the derivation is
used. To illustrate, a tree fragment combining
August and 2013 into August 2013 would
yield the feature <INTERSECT, AUGUST, 2013>.
This can be read as a feature for the rule apply-
ing the intersect function to August and 2013.
Furthermore, intersecting August 2013 with
the 12" of the month would yield a feature
<INTERSECT, INTERSECT, 12/">. This can be
read as applying the intersect function to a subtree
which is the intersection of two terms, and to the
12" of the month. Features 14 and 16 in Figure 2
(b) are examples of such features.

Lexical Features The second large class of fea-
tures extracted are lexicalized features. These are
primarily used for tagging phrases with pretermi-
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nals; however, they are also relevant in incorporat-
ing cues from the yield of Nil spans. To illustrate, a
week and the week have very different meanings,
despite differing by only their Nil tagged tokens.

In the first case, a feature is extracted over the
value of the preterminal being extracted, and the
phrase it is subsuming (e.g., features 1-4 and 6 in
Figure 2 (b)). As the type of the preterminal is
deterministic from the value, encoding a feature
on the type of the preterminal would be a coarser
encoding of the same information, and is empir-
ically not useful in this case. Since a multi-word
expression can parse to a single nonterminal, a fea-
ture is extracted for the entire n-gram in addition
to features for each of the individual words. For
example, the phrase of this — of type Nil — would
have features extracted: <NiL, of >, <NiL, this>,
and <NiL, of this>.

In the second case — absorbing Nil-tagged spans
— we extract features over the words under the Nil
span joined with the type and value of the other
derivation (e.g., features 7-12 in Figure 2 (b)).
As above, features are extracted for both n-grams
and for each word in the phrase. For example,
combining of this and week would yield features



Train Test
System Type | Value | Type | Value
GUTime 0.72 | 046 | 0.80 | 0.42
SUTime 0.85 | 0.69 | 094 | 0.71
HeidelTime | 0.80 | 0.67 | 0.85 | 0.71
ParsingTime | 0.90 | 0.72 | 0.88 | 0.72
OurSystem | 0.94 | 0.81 | 0.91 | 0.76

Table 3: English results for TempEval-2 attribute
scores for our system and four previous systems.
The scores are calculated using gold extents, forc-
ing an interpretation for each parse.

Train Test
System Type | Value | Type | Value
uc3M — — 0.79 | 0.72
OurSystem | 0.90 | 0.84 | 0.92 | 0.76

Table 4: Spanish results for TempEval-2 attribute
scores for our system and the best known previ-
ous system. The scores are calculated using gold
extents, forcing an interpretation for each parse.

<of, EVERYWEEK>, <this, EVERYWEEK >,
and <of this, EVERYWEEK>.

In both cases, numbers are featurized according
to their order of magnitude, and whether they are
ordinal. Thus, the number tagged from thirty-first
would be featurized as an ordinal number of mag-
nitude 2.

Semantic Validity Although some constraints
can be imposed to help ensure that a top-level
parse will be valid, absolute guarantees are diffi-
cult. For instance, February 30 is never a valid
date; but, it would be difficult to disallow any local
rule in its derivation. To mediate this, an indicator
feature is extracted denoting whether the grounded
semantics of the derivation is valid. This is illus-
trated in Figure 2 (b) by feature 17.

Nil Bias Lastly, an indicator feature is extracted
for each Nil span tagged (feature 5 in Figure 2
(b)). In part, this discourages over-generation of
the type; in another part, it encourages Nil spans to
absorb as many adjacent words as possible.

We proceed to describe our experimental setup
and results.

5 Evaluation

We evaluate our model on all six languages in
the TempEval-2 Task A dataset (Verhagen et al.,
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2010), comparing against state-of-the-art systems
for English and Spanish. New results are reported
on smaller datasets from the four other languages.
To our knowledge, there has not been any prior
work on these corpora.

We describe the TempEval-2 datasets in Sec-
tion 5.1, present experimental results in Sec-
tion 5.2, and discuss system errors in Section 5.3.

5.1 TempEval-2 Datasets

TempEval-2, from SemEval 2010, focused on re-
trieving and reasoning about temporal information
from newswire. Our system evaluates against Task
A — detecting and resolving temporal expressions.
Since we perform only the second of these, we
evaluate our system assuming gold detection.

The dataset annotates six languages: English,
Spanish, Italian, French, Chinese, and Korean; of
these, English and Spanish are the most mature.
We describe each of these languages, along with
relevant quirks, below:

English The English dataset consists of 1052
training examples, and 156 test examples. Evalu-
ation was done using the official evaluation script,
which checks for exact match between TIMEX3
tags. Note that this is stricter than our training ob-
jective; for instance, 24 hours and a day have the
same interpretation, but have different TIMEX3
strings. System output was heuristically converted
to the TIMEX3 format; where ambiguities arose,
the convention which maximized training accu-
racy was chosen.

Spanish The Spanish dataset consists of 1092
training examples, and 198 test examples. Evalua-
tion was identical to the English, with the heuristic
TIMEX3 conversion adapted somewhat.

Italian The Italian dataset consists of 523 train-
ing examples, and 126 test examples. Evaluation
was identical to English and Spanish.

Chinese The Chinese dataset consists of 744
training examples, and 190 test examples. Of
these, only 659 training and 143 test examples had
a temporal value marked; the remaining examples
had a type but no value, and are therefore impossi-
ble to predict. Results are also reported on a clean
corpus with these impossible examples omitted.
The Chinese, Korean, and French corpora had
noticeable inconsistencies in the TIMEX3 anno-
tation. Thus, evaluations are reported according



Train Test
Language # examples | Type | Value | # examples | Type | Value
English 1052 0.94 | 0.81 156 091 | 0.76
Spanish 1092 0.90 | 0.84 198 0.92 | 0.76
Italian 523 0.89 | 0.85 126 0.84 | 0.38
Chinese' 744 0.95 | 0.65 190 0.87 | 0.48
Chinese (clean)' 659 097 | 0.73 143 097 | 0.60
Korean' 247 0.83 | 0.67 91 0.82 | 0.42
French' 206 0.78 | 0.76 83 0.78 | 0.35

Table 5: Our system’s accuracy on all 6 languages of the TempEval-2 corpus. Chinese is divided into two
results: one for the entire corpus, and one which considers only examples for which a temporal value
is annotated. Languages with a dagger (7) were evaluated based on semantic rather than string-match

correctness.

to the training objective: if two TIMEX3 values
ground to the same grounded time, they are con-
sidered equal. For example, in the example above,
24 hours and a day would be marked identical de-
spite having different TIMEX3 strings.

Most TIMEX3 values convert naturally to
a grounded representation; values with wild-
cards representing Sequences (e.g., 1998-0X or
1998-XX-12) ground to the same value as the
Sequence encoding that value would. For instance,
1998-0X is parsed as every quarter in 1998.

Korean The Korean dataset consists of 287
training examples, and 91 test examples. 40 of
the training examples encoded dates as a long in-
teger For example: 003000000200001131951006
grounds to January 13, 2000 at the time 19:51.
These were removed from the training set, yield-
ing 247 examples; however, all three such exam-
ples were left in the test set. Evaluation was done
identically to the Chinese data.

French Lastly, a dataset for French temporal
expressions was compiled from the TempEval-2
data. Unlike the other 5 languages, the French
data included only the raw TIMEX3 annotated
newswire documents, encoded as XML. These
documents were scraped to recover 206 training
examples and 83 test examples. Evaluation was
done identically to the Chinese and Korean data.

We proceed to describe our experimental results
on these datasets.

5.2 Results

We compare our system with state-of-the-art sys-
tems for both English and Spanish. To the best of
our knowledge, no prior work exists for the other
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four languages.

We evaluate in the same framework as Angeli et
al. (2012). We compare to previous system scores
when constrained to make a prediction on every
example; if no guess is made, the output is consid-
ered incorrect. This in general yields lower results
for those systems, as the system is not allowed to
abstain on expressions it does not recognize.

The systems compared against are:

o GUTime (Mani and Wilson, 2000), a widely
used, older rule-based system.

e HeidelTime (Strotgen and Gertz, 2010), the
top system at the TempEval-2 task for En-
glish.

e SUTime (Chang and Manning, 2012), a more
recent rule-based system for English.

e ParsingTime (Angeli et al., 2012), a seman-
tic parser for temporal expressions, similar to
this system (see Section 2).

e UC3M (Vicente-Diez et al., 2010), a rule-
based system for Spanish.

Results for the English corpus are shown in Ta-
ble 3. Results for Spanish are shown in Table 4.
Lastly, a summary of results in all six languages is
shown in Table 5.

A salient trend emerges from the results — while
training accuracy is consistently high, test accu-
racy drops sharply for the data-impoverished lan-
guages. This is consistent with what would be
expected from a discriminatively trained model
in data-impoverished settings; however, the con-
sistent training accuracy suggests that the model
nonetheless captures the phenomena it sees in



Error Class English | Spanish
Pragmatics 29% 23%
Type error 16% 5%
Incorrect number 10% 5%
Relative Range 7% 2%
Incorrect parse 19% 36%
Missing context 16% 23%
Bad reference time 3% 6%

Table 6: A summary of errors of our system,
by percentage of incorrect examples for the En-
glish and Spanish datasets. The top section de-
scribes errors which could be handled in our
framework, while the bottom section describes ex-
amples which are either ambiguous (missing con-
text), or are annotated inconsistently relative the
reference time.

training. This suggests the possibility for improv-
ing accuracy further by making use of more data
during training.

5.3 Discussion

We characterize the examples our system parses
incorrectly on the English and Spanish datasets in
Table 6, expanding on each class of error below.

Pragmatics This class of errors is a result of
pragmatic ambiguity over possible groundings of
a sequence — for instance, it is often ambiguous
whether next weekend refers to the coming or sub-
sequent weekend. These errors manifest in either
dropping a function (next, last), or imagining one
that is not supported by the text (e.g., this week
parsed as next week).

Type error Another large class of errors — par-
ticularly in the English dataset — arise from not
matching the annotation’s type, but otherwise pro-
ducing a reasonable response. For instance, the
system may mistake a day on the calendar (a
Range), with a day, the period of time.

Incorrect number A class of mistakes arises
from either omitting numbers from the parse, or
incorrectly parsing numbers — the second case is
particularly prevalent for written years, such as
seventeen seventy-six.

Relative Range These errors arise from attempt-
ing to parse a grounded Range by applying func-
tions to the reference time. For example, from
a reference time of August 8™ it is possible to
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“correctly” parse the phrase August 1 as a week
ago; but, naturally, this parse does not general-
ize well. This class of errors, although relatively
small, merits special designation as it suggests a
class of correct responses which are correct for the
wrong reasons. Future work could explore miti-
gating these errors for domains where the text is
further removed from the events it is describing
than most news stories are.

Incorrect parse Errors in this class are a result
of failing to find the correct parse, for a number of
reasons not individually identified. A small sub-
set of these errors (notably, 6% on the Spanish
dataset) are a result of the grammar being insuf-
ficiently expressive with the preterminals we de-
fined. For instance, we cannot capture fractional
units, such as in half an hour.

Missing context A fairly large percentage of our
errors arise from failing to classify inputs which
express ambiguous or poorly defined times. For
example, from time to time (annotated as the fu-
ture), or that time (annotated as 5 years). Many
of these require either some sort of inference or a
broader understanding of the context in which the
temporal phrase is uttered, which our system does
not attempt to capture.

Bad reference time The last class of errors
cover cases where the temporal phrase is clear,
but annotation differs from our judgment of what
would be reasonable. These are a result of assum-
ing that the reference time of an utterance is the
publication time of the article.

6 Conclusion

We have presented a discriminative, multilingual
approach to resolving temporal expressions, using
a language-flexible latent parse and rich features
on both the fypes and values of partial derivations
in the parse. We showed state-of-the-art results
on both languages in TempEval-2 with prior work,
and presented results on four additional languages.
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Abstract The entity grid is a two dimensional array where
the rows represent sentences and the columns dis-
course entities. From this grid Barzilay and La-
pata (2008) derive probabilities of transitions be-
tween adjacent sentences which are used as fea-
tures for machine learning algorithms. They eval-
uate this approach successfully on sentence order-
ing, summary coherence rating, and readability as-
sessment. However, their approach has some dis-
advantages which they point out themselves: data
_ sparsity, domain dependence and computational
1 Introduction complexity, especially in terms of feature space is-

Many NLP applications which process or gener-SUes while building their model (Barzilay and La-
ate texts rely on information about local coher-Pata (2008, p.8, p.10, p.30), Elsner and Charniak
ence, i.e. information about which entities occur(2011, p.126, p.127)).

in which sentence and how the entities are dis- In order to overcome these problems we pro-
tributed in the text. This led to the developmentpose to represent entities in a graph and then
of many theories and models accounting for lo-model local coherence by applying centrality mea-
cal coherence. One popular model, the centersures to the nodes in the graph (Section 3). We
ing model (Grosz et al., 1995), uses a ranking otlaim that a graph is a more powerful representa-
discourse entities realized in particular sentenceson for local coherence than the entity grid (Barzi-
and computes transitions between adjacent setay and Lapata, 2008) which is restricted to transi-
tences to provide insight in the felicity of texts. tions between adjacent sentences. The graph can
Centering models local coherence rather generallgasily span the entire text without leading to com-
and has been applied to the generation of refemputational complexity and data sparsity problems.
ring expressions (Kibble and Power, 2004), to re-Similar to the application of graph-based methods
solve pronouns (Brennan et al., 1987, inter alia)jn other areas of NLP (e.g. work on word sense
to score essays (Miltsakaki and Kukich, 2004), todisambiguation by Navigli and Lapata (2010); for
arrange sentences in the correct order (Karamanan overview over graph-based methods in NLP
et al., 2009), and to many other tasks. Poesio etee Mihalcea and Radev (2011)) we model local
al. (2004) observe that it is not clear how to setcoherence by relying only on centrality measures
parameters in the centering model so that optimahpplied to the nodes in the graph. We apply our
performance in different tasks and languages cagraph-based model to the three tasks handled by
be achieved. Barzilay and Lapata (2008) criticizeBarzilay and Lapata (2008) to show that it pro-
research on centering to be too dependent on manides the same flexibility over disparate tasks as
ually annotated input. This led them to propose d@he entity grid model: sentence ordering (Section
local coherence model relying on a more parsimo4.1), summary coherence ranking (Section 4.2),
nious representation, the entity grid model. and readability assessment (Section 4.3). In the

We propose a computationally efficient
graph-based approach for local coherence
modeling. We evaluate our system on
three tasks: sentence ordering, summary
coherence rating and readability assess-
ment. The performance is comparable to
entity grid based approaches though these
rely on a computationally expensive train-
ing phase and face data sparsity problems.
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The Turkish government fell after mob-tie allegations. E - %
Turkey’s constitution mandates a secular republic despite its "'EJ o '5 x O > E n
Muslim majority. i EsoEZ2 W N
. jorty _ _ n:éﬁn—in‘n'n:%ﬁgﬁm>_‘£'-“
Military and secular leaders pressured President Demirel to LI>J o X % D2O20FEQW® S E = > Z
keep the Islamic-oriented Virtue Party on the fringe. 5158 L2graxcszz s
Business leaders feared Virtue would alienate the EU. OC<FOwx==Jnn>abal
S1 S X - = = - - - — — — — — - — -
Table 1: Excerpt of a manual summary M froms,| - — X S X O X — — — — — — — — —
DUC2003 s3] — — — =X = =XS XS X0X - —
Sa4| — — — — — = — — S --§8--X0

experiments s_eqtlons, we discuss the impact 0{'able 2: Entity Grid representation of summary M
genre and stylistic properties of documents on the

local coherence computation. We also show that,

though we do not need a computationally expentocal entity transitions of the entities present or ab-
sive learning phase, our model achieves state-okent in the sentence. To make this representation
the-art performance. From this we conclude that ccessible to machine learning algorithms, Barzi-
graph is an alternative to the entity grid model: it iS|ay and Lapata (2008) compute for each document
computationally more tractable for modeling localthe probability of each transition and generate fea-
coherence and does not suffer from data sparsityre vectors representing the sentences. Coherence
problems (Section 5). assessment is then formulated as a ranking learn-
2 TheEntity Grid Mode :Icigt]hp;(z?'\l/(lalgh\:v?\]%raectgﬁn rsejnzlgr(;g)f.unctlon is learned

Barzilay and Lapata (2005; 2008) introduced the The entity grid approach has already been ap-
entity grid, a method for local coherence modelingplied to many applications relying on local co-
that captures the distribution of discourse entitiesierence estimation: summary rating (Barzilay
across sentences in a text. and Lapata, 2005), essay scoring (Burstein et al.,
An entity grid is a two dimensional array, where 2010) or story generation (McIntyre and Lapata,
rows correspond to sentences and columns to di2010). It was also used successfully in com-
course entities. For each discourse entifyand  bination with other systems or features. Sori-
each sentence in the text, the corresponding grid cut and Marcu (2006) show that the entity grid
cell ¢;; contains information about the presence omodel is a critical component in their sentence or-
absence of the entity in the sentence. If the entitglering model for discourse generation. Barzilay
does not appear in the sentence, the correspondnd Lapata (2008) combine the entity grid with
ing grid cell contains an absence marker”* If ~ readability-related features to discriminate docu-
the entity is present in the sentence, the cell conments between easy- and difficult-to-read cate-
tains a representation of the entity’s syntactic rolegories. Lin et al. (2011) use discourse relations to
“S” if the entity is a subject, “O” if it is an object transform the entity grid representation into a dis-
and “X” for all other syntactic roles (cf. Table 2). course role matrix that is used to generate feature
When a noun is attested more than once with &ectors for machine learning algorithms similarly
different grammatical role in the same sentenceto Barzilay and Lapata (2008).
the role with the highest grammatical ranking is  Several studies propose to extend the entity grid
chosen to represent the entity (a subject is rankeghodel using different strategies for entity selec-
higher than an object, which is ranked higher tharjon. Filippova and Strube (2007) aim to improve
other syntactic roles). the entity grid model performance by grouping en-
Barzilay and Lapata (2008) capture local cohertities by means of semantic relatedness. In their
ence by means of local entity transitions, i.e. sestudies, Elsner and Charniak extend the number
quences of grid cell§y; . .. c;; . .. cnj) represent-  and type of entities selected and consider that each
ing the syntactic function or absence of an entity inentity has to be dealt with accordingly with its in-
adjacent sentencesThe coherence of a sentenceformation status (Elsner et al., 2007) or its named-
in relation to its local context is determined by theentity category (Elsner and Charniak, 2011). Fi-

'For complexity reasons, Barzilay and Lapata considelr?a”y' they include a h_eu“St'C C_Oreference resolu-
only transitions between at most three sentences. tion component by linking mentions which share a
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(a) Bipartite Graph (b) Unweighted One-mode (c) Weighted One-mode
Projection Projection
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(d) Incidence Matrix (e) Unweighted Adjacency (f) Weighted Adjacency
Matrix Matrix

Figure 1: Bipartite graph for summary M from Table 1, one-mode projecamisassociated incidence
and adjacency matrices. Weights in Figure 1(a) are assigned as foll@\s: 3, “O” = 2, “X" = 1,
“—"=0 (no edge).

head noun. These extensions led to the best resultsBy modeling entity transitions, Barzilay and
reported so far for the sentence ordering task.  Lapata rely on links that exist between sentences
to model local coherence. In the same spirit, we
3 Method apply different kinds of one-mode projections to
the sentence node s&{ of the bipartite graph to

Our model is based on the insight that the en h X h it b
tity grid (Barzilay and Lapata, 2008) Correspondsrepresentt e connections that exist between — po-

to the incidence matrix of a bipartite graph rep-Eﬁ?“a”y non gdjacent _I ;entencEs mhthe graé)h.
resenting the text (see Newman (2010) for more ese projections result in graphs where nodes

details on graph representation). A fundamenta?OrreSpond todsen_tfenhces. An edgz_ls created be-
assumption underlying our model is that this pi-tween two nodes If the corresponding sentences

partite graph contains the entity transition im‘or-have aleast one entity in common. Contrary to the

mation needed for local coherence computation?”o"’Irtlte graph, one-mode projections are directed

rendering feature vectors and learning phase urf® they follow the text order_. Therefore, in projec-

necessary. The bipartite graph= (V, V,, L, w) tion graphs an edge can exist between the first and
. - Sy Vey . . .

is defined by two independent sets of nodes — theffte Second sentence while the inverse is not pos-

correspond to the set of sentenéésnd the set of _sibl_e. In our model, we define three kind_s of pro-
entitiesV, of the text —and a set of edgésassoci- jection graphsPy, Py and Pacc, depending on

ated with weightss. An edge between a Sentencethe weight_ing schem_e associated with their edges.
nodes; and an entity node; is created in the bi- In Py, weights are binary and (_aqthwhen wo
partite graph if the corresponding cell; in the sentences have a least one ennty in common (Fig-
entity grid is not equal to~”. Each edge is asso- ure 1(b)). InP, et_jges :’;1re We'ghted according to
ciated with a weightu(e;, ;) that depends on the the number of entities “shared” by two sentences

grammatical role of the entity; in the sentence (Figure 1(c)). InPac. syntactic information is ac-
2 ‘ counted for by integrating the edge weights in the

s;“. In contrast to Barzilay and Lapata’s entity bi ) h hi ioh |
grid that contains information about absent enti- Ipartite graph. In this case, weights are equal to

ties, our graph-based representation only contains Wi = Z wle, s;) - wle, si)
“positive” information. Figure 1(a) shows an ex- cCEy
ample of the bipartite graph that corresponds to the

grid in Table 2. The incidence matrix of this graph?heéfsgﬁ éz tbl?vjsér?fsg::g:les ;E?jrsedcgﬁ 2?5(1
(Figure 1(d)) is very similar to the entity grid. k: % F

be integrated in the weight of one-mode projec-
The assignment of weights is described in Section 4.  tions to decrease the importance of links that ex-
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ists between non adjacent sentences. In this case,Grammatical information associated with each
the weights of the projection graphs are divided byentity is extracted automatically thanks to the
k—1. Stanford parser using dependency conversion (de
From this graph-based representation, the locdlarneffe et al., 2006). Syntactic weights in the
coherence of a text can be measured by comput- bipartite graph are defined following the linguistic
ing the average outdegree of a projection gr&ph intuition that subjects are more important than ob-
This centrality measure was chosen for two mairjects, which are themselves more important than
reasons. First, it allows us to evaluate to which exother syntactic roles. Preliminary experiments
tent a sentence is connected, in terms of discoursshow that as long as weight assignment follows
entities, with the other sentences of the text. Secthe scheme S O > X, then more coherent docu-
ond, compared to other centrality measures, thenents are associated with a higher local coherence
computational complexity of the average outde-value than less coherent document in 90% of cases
gree is low @(W) for a document com- (while this value equals 49% when no restric-
posed byN sentences), keeping the local coher-ion is given on syntactic weights order). More-
ence estimation feasible on large documents an@ver, as the local coherence computation is a lin-
on large corpora. Formally, the local coherence ofar combination of the syntactic weights, the func-

atextT is equal to tion is smooth and no large variations of the local
coherence values are observed for small changes
Local Coherence(7") = AvgOutDegree(P) of weights’ values. For these reasons, weights

1 w(e, s;) are set as follows: 3 ¥ is subject ins;, 2
=N Z OutDegree(s:) . if ¢ is an object and 1 otherwise.
=1N We evaluate the ability of our graph-based

whereOutDegree(s;) is the sum of the weights as- model to estimate the local coherence of a tex-
sociated to edges that leavgand N is the num- tual document with three different experiments.
ber of sentences in the text. This value can also bE'"St: We perfom a sentence ordering task (Sec-
seen as the sum of the values of the adjacency m&9n 4.1) as proposed in Barzilay and Lapata

trix of the projection graph (Figures 1(e) and 1(f)) (2008). Then, as the first task uses “artificial” dqc-
divided by the number of sentences. uments, we also work on two other tasks that in-

volve “real” documents: summary coherence rat-
4 Experiments ing (Section 4.2), and readability assessment (Sec-

tion 4.3). In these experiments, distance compu-
We compare our model with the entity grid ap-tation and syntactic weights are the same for all
proach and evaluate the influence of the differentasks and all corpora. However, the model is also
weighting schemes used in the projection graphsjexible and can be adaptated to the different tasks

either Py or P4.., where weights are potentially py optimizing the parameters on a development
decreased by distance informatidmst. Our data set, which may give better results.

baseline corresponds to local coherence computa-
tion based on the unweighted projection grdph 4.1 Sentence Ordering

For graph construction, all nouns in a documentrhe first experiment consists in ranking alternative
are considered as discourse entitieS, even tho%%ntence Orderings of a document’ as proposed by

which do not head NPs as this is beneficial fOfBarZuay and Lapata (2008) and Elsner and Char-
the entity grid model as described in Elsner anchjak (2011).

Charniak (2011). We also propose to use a coref-

erence resolution system and consider coreferedtl.1 Experimental Settings

entities to be the same discourse entity. To do sdlhe sentence ordering task can be performed in
we use one of the top performing systems from thewo ways: discrimination and insertion. Discrimi-
CoNLL 2012 shared task (Martschat et al., 2012)nation consists in comparing a document to a ran-
As the coreference resolution system is trained odom permutation of its sentences. For this, our
well-formed textual documents and expects a corsystem associates local coherence values with the
rect sentence ordering, we use in all our experioriginal document and its permutation, the output
ments only features that do not rely on sentencef our system being considered as correct if the
order (e.g. alias relations, string matching, etc.). score for the original document is higher than the
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score of its permutation. In the insertion task, pro- Acc F Acc F
posed by Elsner and Charniak (2011), we evaluate Random | 0.496 0.496

the ability of our system to retrieve the original B&L 0.877 0.877
position of a sentence previously removed froma E&C 0.915 0.915
document. For this, each sentence is removed in wo coref w coref

turn and a local coherence score is computed for Py, Dist 0.830 0.830 0.833 0.833
every possible reinsertion position. The system Py, Dist | 0.871 0.871 0.849 0.849
output is considered as correct if the document as- Pa.., Dist | 0.889 0.889 0.852 0.852

sociated with the highest local coherence score is o )
the one in which the sentence is reinserted in thdaPle 3: Discrimination, reproduced baselines

correct position. (B&L: Barz_ilay and Lapata (2008); E&C Elsner
These two tasks were performed on docu-anoI Charniak (2011)) vs. graph-based
ments extracted from the English test part of the
CoNLL 2012 shared task (Pradhan et al., 2012)in a test can also increase the likelihood of wit-
This corpus, composed by documents of multiplenessing a rare event, and therefore, the chance to
news sources — spoken or written — was preferregeject the null hypothesis when it is true, we use
to the ACCIDENTS and EARTHQUAKES corpora the Bonferroni correction to adjust the increased
used by Barzilay and Lapata (2008) for two rea-random likelihood of apparent significance.
sons. First, as mentioned by Elsner and Charniak Table 3 presents the values obtained by three
(2008), these corpora use a very constrained styleaseline systems when applied to our corpus. Re-
and are not typical of normal informative docu- sults for the entity grid models described by Barzi-
ments. Second, we want to evaluate the influencday and Lapata (2008) and Elsner and Charniak
of automatically performed coreference resolution2011) are obtained by using Micha Elsner’s reim-
in a controlled fashion. The coreference resolutiorplementation in the Brown Coherence Todtkit
system used performs well on the CoNLL 2012The system was trained on the English training
data. In this dataset, documents composed by theart of the CoNLL 2012 shared task filtered in the
concatenation of differents news articles or toosame way as the test part.
short to have at least 20 permutations were dis- Table 3 also displays the results for our model.
carded from the corpus. This filtering results in 61These values show that our system performs com-
documents composed of 36.1 sentences or 206darable to the state-of-the-art. Indeed, the differ-
word tokens on average. In both discriminationence between our best results and those of Elsner
and insertion, we compare our system against and Charniak are not statistically significant.
random baseline where random values are associ- In this experiment, distance information is criti-
ated with the different orderings. cal. Without it, it is not possible to distinguish be-
tween an original document and one of its permu-
tation as both contain the same number and kind
Accuracy is used to evaluate the ability of our sys-of entities. Distance however can detect changes
tem to discriminate a document from 20 differ- in the distribution of entities within the document
ent permutations. It equals the number of timesis space between entities is significantly modi-
our system gives the highest score to the originafied when sentence order is permuted. When the
document, divided by the number of comparisonsnumber of entities “shared” by two sentences is
Since the model can give the same score for a petaken into account®yy), the accuracy of our sys-
mutation and the original document, we also comtem grows (from 0.830 to 0.871). Table 3 finally
pute F-measure where recallgsrrect/total and  shows that syntactic information improves the per-
precision equalgorrect/decisions. We test sig- formance of our system (yet not significantly) and
nificance using the Student's t-test that can detegjives the best result$(...).
significant differences between paired samples. We also evaluated the influence of coreference
Moreover, as increasing the number of hypothesegesolution on the performance of our system. Us-

4.1.2 Discrimination

30ur graph-based model obtains for the discrimination “htt ps:// bi t bucket . or g/ el sner/
task an accuracy of 0.846 and 0.635 on Al IDENTSand  br owncoherence; B&L is Elsner’s “baseline entity
EARTHQUAKESdatasets, respectively, compared to 0.904 andyrid” (command line option ’-n’), E&C is Elsner’s “extended
0.872 as reported by Barzilay and Lapata (2008). entity grid” ('-f)
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Acc. Ins. | Acc. Ins. When the coreference resolution system is used,

Random | 0.028 0.071 the best accuracy value decreases while the inser-
E&C 0.068 0.167 tion score increases from 0.114 to 0.138 (Table 4).
wo coref w coref Therefore, coreference resolution tends to asso-

Py,Dist | 0.062 0.101] 0.068 0.120 ciate positions that are closer to the original ones.
Py, Digt | 0.075 0.114] 0.070 0.138
Pace, Dist | 0.071 0.102| 0.067 0.097 4.2 Summary Coherence Rating

Table 4: Insertion, reproduced baselines vs. graphlo reconfirm the hypothesis that our model can es-
based timate the local coherence of a textual document,
we perform a second experiment, summary co-
herence rating. To this end, we apply our model

ing coreference resolution improves the perfor-on the corpus used and proposed by Barzilay and

mance of the system when distance information iiapata (2008). As the objective of our model is
gsed alone in.the system _(Table_3)._ However, thi% estimate theoherence of a summary, we pre-
improvement is not statistically significant. fer this dataset to other summarization evaluation
task corpora, as these account for other dimen-

, L - ._sions of the summaries: content selection, fluency,
Sentence insertion is much more difficult than dis- . . . . .

S : - . etc. Starting with a pair of summaries, one slightly
crimination for two reasons. First, in insertion,

. . ore coherent than the other, the objective of the
permutations only differ by one sentence. Secon ask is to order the two summaries according to
a document is compared to many more permutal-Ocal coherence.
tions in insertion task than in discrimination.

In complement to accuracy, we use the insertiony 2 1 Experimental Settings

score introduced by Elsner and Charniak (2011 h h . .
for evaluation. This score — the higher, the bette or the summary coherence rating experiment,

— computes the proximity between the initial angPalrs to be ordered are composed of summaries
tracted from the Document Understanding Con-

413 Insertion

the proposed position of a sentence, averaged b : : .
the number of sentences. erence (DUC 2003). Summaries, provided either

Table 4 shows that, as expected, results for thi%y humans or by automatic systems, were Judge_d
task are much lower than those obtained for disP/ SEVeN humans annotators and associated with

S . a coherence score (for more details on this score
crimination. However they are still comparable (

with the results of Elsner and Charniak (2011) see Barzilay and Lapata (2008)). 80 pairs were

. ._then created, each of these being composed by two
As previously and for the same reasons, dis- )

i ST . summaries of a same document where the score
tance information is critical for this task. The best

of one of the summaries is significantly higher

results, that present a statistically significant im-
b y sl than the score of the second one. Even though all

provement when compared to the random base- . .
ummaries are of approximately the same length

line, are obtained when distance information an :
e y 114.2 words on average), their sentence length
the number of entities “shared” by two sentence

. can vary considerably. Indeed, more coherent
are taken into accouni(y’). We can see that the Y Y ’
. . L summaries tend to have more sentences and con-
accuracy value obtained with our system is hlghe{ . .
ain less entities.

than the one provided with the entity grid model. . uat h "
However, the entity grid model reaches a signifi- or evaluation purposes, the accuracy _St' cor
responds to the number of correct ratings di-

cantly higher insertion score. This means that, if it ded by th ber of : hile the F
makes more mistakes than our system, the positio\ﬁI ed by enu-m ero comparlson.s,_w e the =
chosen by the entity grid model is usually closerneasure combines recall and precision measures.

to the correct position. Finally, contrary to the As before, significance is tested with the Student’s

discrimination task, syntactic informatiotP{..) t-test accounting for the Bonferroni correction.

does not improve the performance of our system.4.2.2 Results

®Their results are slightly lower than those presented inTgple 5 compares the results reported by Barzilay
their paper, probably because our corpus is composed by doc- .
uments that can be longer than the ones used in their exper@nd Lapata (2008) on the exact same corpus with
ments (Wall Street Journal articles). the results obtained with our system. It shows that
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Acc. F Acc. F obtained by the baselineg’(), and experiments

B&L 0.833 show that adding information about distance or

wo coref w coref syntax does not help in this context. It seems
Py 0.800 0.815] 0.700 0.718 therefore necessary to integrate information that is
Py 0.613 0.613] 0.538 0.548 more appropriate to summaries. Although making
Pace 0.700 0.704| 0.638 0.638 the model more appropriate for a specific task is

Py,Dist | 0.650 0.658 0.550 0.557 out of the scope of this paper, our model is flex-
Py, Dist | 0.525 0.525/ 0.513 0.513 ible and accounting for information about genre
Pace, Dist | 0.700 0.700 0.588 0.588 differences or sentence length, by adding weights

in the graph-based representation of the document,

Table 5: Summgry Coherence Rating, reported 'S5 feasible without any modification of the model.
sults from Barzilay and Lapata (2008) vs. graph-

based

4.3 Readability Assessment

our system gives results comparable to those olarzilay and Lapata (2008) argue that grid models
tained by Barzilay and Lapata (2008). are domain and style dependent. Therefore they

This table also shows that, contrary to sentenceroposed a readability assessment task to test if the
ordering task, accounting for the distance betweeentity grid model can be used for style classifica-
two sentencedist) tends to decrease the results.tion. They combined their model with Schwarm
This difference is explained by the fact that a man-and Ostendorf’s (2005) readability features and
ual summary, usually considered as more cohefsse Support Vector Machines to classify docu-
ent by humans annotators, tends to contain morments in two categories. With the same intention,
(and shorter) sentences than an automatic one. Age evaluate the ability of our model to differenti-
adding distance information decreases the value cfte “easy to read” documents from difficult ones.
our local coherence score, our graph-based model
gives better results without it.

Moreover, in contrast to the first experiment,
when accounting for the number of entitiesThe objective of the readability assessment task
“shared” by two sentences’(y), values of accu- s to evaluate how difficult to read a document is.
racy and F-measure are lower. We explain thisye perform this task on the data used by Barzilay
behaviour by the number of sentences containegnd Lapata (2008), a corpus collected originally
in the less coherent documents. Indeed, they angy Barzilay and Elhadad (2003) from thncy-
composed by a smaller number of sentences biopedia Britannica and its version for children,
contain more entities on average. This means thathe Britannica Elementary. Both versions contain
in these documents, two sentences tend to shang7 articles. InEncyclopedia Britannica, docu-

a larger number of entities and therefore have gnents are composed by an average of 83.1 sen-
higher local coherence score when g projec-  tences while they contain 36.6 sentence®ii
tion graph is used. tannica Elementary. Although these texts are not

When combined with distance information, explicitly annotated with grade levels, they repre-
syntactic information still improves the results sent two broad readability categories.

(Pacc), though not significantly, but does notlead | order to estimate the complexity of a doc-
to the best results for this task. ument, our model computes the local coherence

Finally, Table 5 also shows that using a coref-score for each article in the two categories. The
erence resolution system for document represengrticle associated with the higher score is consid-
tation does not improve the performance of ourered to be the more readable as it is more coherent,
system. We believe that, as mentioned by Barzineeding less interpretation from the reader than a
lay and Lapata (2008), this degradation is relatedocument associated with a lower local coherence
to the fact that automatic summarization systemscore. Values presented in the following section
do not use anaphoric expressions which makes théorrespond to accuracy, where the system is cor-
coreference resolution system useless in this casgact if it assigns the higher local coherence score to

With our graph-based model, the best results arthe most “easy to read” document, and F-measure.

4.3.1 Experimental Settings

99



Acc. F Acc. F tance between two occurrences of one entity de-
S&O 0.786 creases in a more significant manner. For these
B&L 0.509 reasons, the coherence scores associated with “dif-
B&L + S&O | 0.888 ficult to read” documents tend to be higher when

wo coref w coref coreference resolution is performed on our data,

Py 0.589 0.589 0.374 0.374  which reduces the performance of our system. As
Py 0.579 0.579 0.383 0.383  before, syntactic information leads to the best re-
Pace 0.645 0.645] 0.421 0.421  sults, but does not allow the accuracy to be higher
Py, Dist 0.589 0.589 0.280 0.280 than random anymore.
Py, Dist 0.570 0.570 0.290 0.290 Compared to the results provided by Barzi-
Pace, Dist | 0.766  0.766] 0.308 0.308  |ay and Lapata (2008) with the entity grid model

Table 6: Readability, reported results from Barzi-alone’ our representation outperforms their model

lay and Lapata (2008) vs. graph-based (S&Osignificantly. We believe that this difference is
Schwarm and Ostendorf (2605» caused by how syntactic information is introduced

in the document representation and by the fact
that our system can deal with entities that appear
4.3.2 Results throughout the whole document while the entity

In order to compare our results with those reporteéJrICI model o_nlé/ looks at entltlc;esl W':_“E a three
by Barzilay and Lapata (2008), entities used forS€"tences windows. Our model which captures

the graph-based representation are discourse enfjxClusively local coherence is almost on par W't,h
ties that head NPs. the results reported for Schwarm & Ostendorf’s

Table 6 shows that, for this task, syntactic in__(2005) system which relies on a wide range of lex-

formation plays a dominant rolePl..). A sta- ical, syntactic and semantic features. Only when

. S . ) . Barzilay and Lapata (2008) combine the entity
tistically significant improvement is provided by ~ "~ " ,

: . I , , grid with Schwarm & Ostendorf’s features they
including syntactic information. It gives more

weight to subject entities that are more numerouéeach performance considerably better than ours.

in the Britannica Elementary documents which !N addition to the experiments proposed by
are composed by simpler and shorter sentence8arzilay and Lapata (2008), we used a third read-
Finally, when distance is accounted for togethe@Pility category, theBritannica Sudent, that con-
with syntactic information, the accuracy is signif- tins articles targeted for youths (from 11 to 14
icantly improved (p< 0.01) with regard to the re- Y&ars old). These documents, which are quite sim-
sults obtained with syntactic information only. ilar to theEncyclopedia Britannica ones, are com-
Table 6 also shows that when the number of enP0S€d Dy an average of 44.1 sentences. As we
tities “shared” by two sentences is accounted forVere only able to find 99 articles out of the 107
(Pw), the results are lower. IndeeBncyclope- original ones in this category, sub corpora of the

dia Britannica documents are composed by Iongerthree categories were used for the comparison with

sentences, that contain a higher number of entit"®Britannica Sudent articles.

ties. This increases the local coherence value of Table 7 shows the results obtained for the com-
difficult documents more than the value of “easyparisons between the two first categories and the
to read” documents, that contain less entities. ~ Britannica Sudent articles. As previously, coref-
When our graph-based representation used tHyence resolution tends to lower the results, there-
coreference resolution system, unlike the observadore only values obtained without coreference res-
tion of Barzilay and Lapata (2008), the results ofolution are reported in the table.
our model decrease significantly. The poor perfor- When articles fronBritannica Sudent are com-
mance of our system in this case can be explainepared to articles extracted froEncyclopedia Bri-
by the fact that the coreference resolution systenannica, Table 7 shows that the different param-
regroups more entities \Bncyclopedia Britannica  eters have the same influence as for comparing
documents than iBritannica Elementary ones. betweenEncyclopedia Britannica and Britannica
Therefore, the number of entities that are “sharedElementary: statistically significant improvement
by two sentences increases more importantly inwith syntactic information, higher values when
theEncyclopedia Britannica corpus, while the dis- distance is taken into account, etc. However, it
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Brit. vs. Sud. | Sud. vs. Elem. ence model. Experiments show that our model is

Acc. F Acc. F robust among tasks and domains, and reaches rea-
Py 0.444 0.444| 0.667 0.667 sonable results for three tasks with the same pa-
Pw 0.434 0.434]| 0.636 0.636 rameter values and settings (i.e. accuracy values
Pice 0.465 0.465| 0.707 0.707 of 0.889, 0.70 and 0.766 for sentence ordering,

Py,Dist | 0.475 0.475/ 0.646 0.646 summary coherence rating and readability assess-
Py, Dist | 0.485 0.485/ 0.616 0.616 ment tasks respectively?(.., Dist)). Moreover,
Py..,Dist | 0.556 0.556| 0.657 0.657 our model can be optimized and obtains results
comparable with entity grid based methods when
proper settings are used for each task.

Our model has two main advantages over the
entity grid model. First, as the graph used for doc-
ument representation contains information about
can also be seen that accuracy and F-measure astity transitions, our model does not need a learn-
lower for comparing these two corpora. This ising phase. Second, as it relies only on graph cen-
probably due to the stylistic difference betweentrality, our model does not suffer from the com-
these two kinds of articles, which is less signifi- putational complexity and data sparsity problems
cant than the difference between articles flBm  mentioned by Barzilay and Lapata (2008).
cyclopedia Britannica andBritannica Elementary. Our current model leaves space for improve-

Concerning the comparison betwegnitannica  ment. Future work should first investigate the inte-
Sudent and Britannica Elementary articles, Ta- gration of information about entities. Indeed, our
ble 7 shows that integrating distance informationmodel only uses entities as indications of sentence
gives slightly different results and tends to de-connection although it has been shown that distin-
crease the values of accuracy and F-measure. Thiglishing important from unimportant entities, ac-
is explained by the fact th8ritannica Elementary  cording to their named-entity category, has a pos-
documents contain fewer entities thBritannica  itive impact on local coherence computation (El-
Sudent articles. As the length of the two kinds of sner and Charniak, 2011). Moreover, future work
articles is similar, distance between entitie®i+  should also examine the use of discourse relation
tannica Elementary documents is more important. information, as proposed in (Lin etal., 2011). This
As a result, accounting for distance informationcan be easily done by adding edges in the projec-
lowers the local coherence values for the more cotion graphs when sentences contain entities related
herent document, which reduces the performanctsom a discourse point of view while Lin et al.’s
of our model. As previously, syntactic information approach suffers from complexity and data spar-
improves the results and, for this comparison, theity problems similar to the entity grid model.
best result is obtained when syntactic information Finally, these promising results on local coher-
alone is accounted for. This leads to an accuracgnce modeling make us believe that our graph-
which is almost equal to the one when comparingoased representation can be used without much
Encyclopedia Britannica and Britannica Elemen-  modification for other tasks, e.g. extractive sum-
tary (0.707 against 0.766). marization or topic segmentation. This could be

These two additional experiments show that ouachieved with link analysis algorithms such as
model is style dependent. It obtains better result®ageRank, that decide on the importance of a (sen-
when it has to distinguish betwedncyclopedia  tence) node within a graph based on global infor-
Britannica and Britannica Elementary or Britan- ~ mation recursively drawn from the entire graph.
nica Sudent and Britannica Elementary articles
which present a more important difference from
a stylictic point of view than articles fror&ncy-
clopedia Britannica andBritannica Elementary.

Table 7: Readability, comparison betweency-
clopedia Britannica, Britannica Elementary and
Britannica Sudent
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Abstract

Automated annotation of social behavior
in conversation is necessary for large-scale
analysis of real-world conversational data.
Important behavioral categories, though,
are often sparse and often appear only
in specific subsections of a conversation.
This makes supervised machine learning
difficult, through a combination of noisy
features and unbalanced class distribu-
tions. We propose within-instance con-
tent selection, using cue features to selec-
tively suppress sections of text and bias-
ing the remaining representation towards
minority classes. We show the effective-
ness of this technique in automated anno-
tation of empowerment language in online
support group chatrooms. Our technique
is significantly more accurate than multi-
ple baselines, especially when prioritizing
high precision.

1 Introduction

Quantitative social science research has experi-
enced a recent expansion, out of controlled set-
tings and into natural environments. With this
influx of interest comes new methodology, and
the inevitable question arises of how to move
towards testable hypotheses, using these uncon-
trolled sources of data as scientific lenses into the
real world.

The study of conversational transcripts is a key
domain in this new frontier. There are certain
social and behavioral phenomena in conversation
that cannot be easily identified through question-
naire data, self-reported surveys, or easily ex-
tracted user metadata. Examples of these social
phenomena in conversation include overt displays
of power (Prabhakaran et al., 2012) or indicators
of rapport and relationship building (Wang et al.,
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2012). Manually annotating these social phenom-
ena cannot scale to large data, so researchers turn
to automated annotation of transcripts (Rosé et al.,
2008). While machine learning is highly effec-
tive for annotation tasks with relatively balanced
labels, such as sentiment analysis (Pang and Lee,
2004), more complex social functions are often
rarer. This leads to unbalanced class label distri-
butions and a much more difficult machine learn-
ing task. Moreover, features indicative of rare so-
cial annotations tend to be drowned out in favor of
features biased towards the majority class. The net
effect is that classification algorithms tend to bias
towards the majority class, giving low accuracy for
rare class detection.

Automated annotation of social phenomena also
brings opportunities for real-world applications.
For example, real-time annotation of conversation
can power adaptive intervention in collaborative
learning settings (Rummel et al., 2008; Adamson
and Rosé, 2012). However, with the considerable
power of automation comes great responsibility. It
is critical to avoid intervening in the case of er-
roneous annotations, as providing unnecessary or
inappropriate support in such a setting has been
shown to be harmful to group performance and so-
cial cohesion (Dillenbourg, 2002; Stahl, 2012).

We propose adaptations to existing machine
learning algorithms which improve recognition of
rare annotations in conversational text data. Our
primary contribution comes in the form of within-
instance content selection. We develop a novel al-
gorithm based on textual cues, suppressing infor-
mation which is likely to be irrelevant to an in-
stance’s class label. This allows features which
predict minority classes to gain prominence, help-
ing to sidestep the frequency of common features
pointing to a majority class label.

Additionally, we propose modifications to ex-
isting algorithms. First, we identify a new appli-
cation of logistic model trees to text data. Next,

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 104—113,
Sofia, Bulgaria, August 4-9 2013. (©2013 Association for Computational Linguistics



we define a modification of confidence-based en-
semble voting which encourages minority class la-
beling. Using these techniques, we demonstrate a
significant improvement in classifier performance
when recognizing the language of empowerment
in support group chatrooms, a critical application
area for researchers studying conversational inter-
actions in healthcare (Uden-Kraan et al., 2009).

The remainder of this paper is structured as fol-
lows. We introduce the domain of empowerment
in support contexts, along with previous studies on
the challenges that these annotations (and similar
others) bring to machine learning. We introduce
our new technique for improving the ability to au-
tomate this annotation, along with other optimiza-
tions to the machine learning workflow which are
tailored to this skewed class balance. We present
experimental results showing that our method is
effective, and provide a detailed analysis of the be-
havior of our model and the features it uses most.
We conclude with a discussion of particularly use-
ful applications of this work.

2 Background

We ground this paper’s discussion of machine
learning with a real problem, turning to the an-
notation of empowerment language in chat!. The
concept of empowerment, while a prolific area
of research, lacks a broad definition across pro-
fessionals, but broadly relates to “the power to
act efficaciously to bring about desired results”
(Boehm and Staples, 2002) and “experiencing per-
sonal growth as a result of developing skills and
abilities along with a more positive self-definition”
(Staples, 1990). Participants in online support
groups feel increased empowerment (Uden-Kraan
et al.,, 2009; Barak et al., 2008). Quantita-
tive studies have shown the effect of empower-
ment through statistical methods such as structural
equation modeling (Vauth et al., 2007), as have
qualitative methods such as deductive transcript
analysis (Owen et al., 2008) and interview studies
(Wahlin et al., 2006).

The transition between these styles of research
has been gradual. Pioneering work has demon-
strated the ability to distinguish empowerment lan-
guage in written texts, including prompted writ-
ing samples (Pennebaker and Seagal, 1999), nar-

"Definitions of empowerment are closely related to the
notion of self-efficacy (Bandura, 1997). For simplicity, we
use the former term exclusively in this paper.
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Table 1: Empowerment label distribution in our

corpus.
Annotation Label # %
Self-Empowerment NA | 1522 | 793
POS | 202 | 10.5
NEG | 196 | 10.2
Other-Empowerment NA | 1560 | 81.3
POS | 217 | 113
NEG | 143 | 74

ratives in online forums (Hoybye et al., 2005), and
some preliminary analysis of synchronous discus-
sion (Ogura et al., 2008; Mayfield et al., 2012b).
These transitional works have used limited analy-
sis methodology; in the absence of sophisticated
natural language processing, their conclusions of-
ten rely on coarse measures, such as word counts
and proportions of annotations in a text.

Users, of course, do not express empowerment
in every thread in which they participate, which
leads to a challenge for machine learning. Threads
often focus on a single user’s experiences, in
which most participants in a chat are merely com-
mentators, if they participate at all, matching pre-
vious research on shifts in speaker salience over
time (Hassan et al., 2008). This leads to many
user threads which are annotated as not applicable
(N/A). We move to our proposed approach with
these skewed distributions in mind.

3 Data

Our data consists of a set of chatroom conversa-
tion transcripts from the Cancer Support Commu-
nity?. Each 90-minute conversation took place in
the context of a weekly meeting in a real-time chat,
with up to 6 participants in addition to a profes-
sional therapist facilitating the discussion. In to-
tal, 2,206 conversations were collected from 2007-
2011. This data offers potentially rich insight into
coping and social support; however, annotating
such a dataset by hand would be prohibitively ex-
pensive, even when it is already transcribed.
Twenty-one of these conversations have been
annotated, as originally described and analyzed
in (Mayfield et al., 2012b)>. This data was dis-
entangled into threads based on common themes
or topics, as in prior work (Elsner and Charniak,

2www.cancersupportcommunity.org

3 All annotations were found to be adequately reliable be-
tween humans, with thread disentanglement f = 0.75 and
empowerment annotation x > 0.7.



User Line Text

1 I'will say that [V]'s stress number is a whopping 8

wow!

i am very nervous about my pet scan tomorrow

more than i am the chemo.

is that to see if they got everything from the surgery

Apet scan isn't so bad.

Or, are you more nervous about the results than the scan itself?

yes. the results make me nervous.

That is nervewracking, but if they didn't get it all, that's what chemo is for.
That will hopefully take care of anything that might have been left.

we cal it the waiting game and there is nothing more frustrating then that
That seems to be the biggest issue with most of us, the wait

one thing we have all learned over the years is to be pushy with the Dr.
Don't wait for them to call you, get on the phone Friday
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S 1 Iwill say that [V]'s stress number is a whopping 8 N/A
J 2 wow N/A
V'3 |iam very nervous about my pet scan tomorrow NEG
4 | more than i am the chemo.
8 |vyes. the results make me nervous.
T 5 s that to see if they got everything from the surgery N/A

11 we cal it the waiting game and there is nothing more frustrating then that

A pet scan isn't so bad. N/A

Or, are you more nervous about the results than the scan itself?

6

7

9 That is nervewracking, but if they didn't get it all, that's what chemo is for.
0 That will hopefully take care of anything that might have been left.

That seems to be the biggest issue with most of us, the wait POS
13 |one thing we have all learned over the years is to be pushy with the Dr.
14 | Don't wait for them to call you, get on the phone Friday

Figure 1: An example mapping from a single thread’s chat lines (left) to the per-user, per-thread instances
used for classification in this paper (right), with example annotations for self-empowerment indicated.

2010; Adams and Martel, 2010). A novel per-
user, per-thread annotation was then employed
for empowerment annotation, following a coding
manual based on definitions like those in Section
2. Each user was assigned a label of positive
or negative empowerment if they exhibited such
emotions, or was left blank if they did not do so
within the context of that thread. This annotation
was performed both for their self-empowerment
as well as their attitude towards others’ situations
(other-empowerment). An example of this annota-
tion for self-empowerment is presented in Figure
1 and the distribution of labels is given in Table 1.

Most previous annotation tasks attempt to an-
notate on a per-utterance basis, such as dialogue
act tagging (Popescu-Belis, 2008), or on arbitrary
spans of text, such as in the MPQA subjectivity
corpus (Wiebe et al., 2005). However, for our task,
a per-user, per-thread annotation is more appropri-
ate, because empowerment is often indicated best
through narrative (Hoybye et al., 2005). Human
annotators are instructed to take this context into
account when annotating (Mayfield et al., 2012b).
It would therefore be nonsensical to annotate indi-
vidual lines as “embodying” empowerment. Simi-
lar arguments have been made for sentiment, espe-
cially as the field moves towards aspect-oriented
sentiment (Breck et al., 2007). Assigning labels
based on thread boundaries allows for context to
be meaningfully taken into account, without cross-
ing topic boundaries.

However, this granularity comes with a price:
the distribution of class values in these instances
is highly skewed. In our data, the vast majority of
users’ threads are marked as not applicable to em-
powerment. Perhaps more inconveniently, while
taking context into account is important for reli-
able annotation, it leads to extraneous information
in many cases. Many threads can have multiple
lines of contributions that are topically related to
an expression of empowerment (and thus belong
in the same thread), but which do not indicate any
empowerment themselves. This exacerbates the
likelihood of instances being classified as N/A.

We choose to take advantage of these attributes
of threads. We know from research in discourse
analysis that many sections of conversations are
formulaic and rote, like introductions and greet-
ings (Schegloff, 1968). We additionally know that
polarity often shifts in dialogue through the use
of discourse connectives such as conjunctions and
transitional phrases. These issues have been ad-
dressed in work in the language technologies com-
munity, most notably through the Penn Discourse
Treebank (Prasad et al., 2008); however, their ap-
plications to noisier synchronous conversation has
beenrare in computational linguistics.

With these linguistic insights in mind, we ex-
amine how we can make best use of them for
machine learning performance. While techniques
for predicting rare events (Weiss and Hirsh, 1998)
and compensating for class imbalance (Frank and
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Bouckaert, 2006), these approaches generally fo-
cus on statistical properties of large class sets with-
out taking the nature of their datasets into account.
In the next section, we propose a new algorithm
which takes advantage specifically of the linguis-
tic phenomena in the conversation-based data that
we study for empowerment detection. As such,
our algorithm is highly suited to this data and task,
with the necessary tradeoff in uncertain generality
to new domains with unrelated data.

4 Cue Discovery for Content Selection

Our algorithm performs content selection by
learning a set of cue features. Each of these fea-
tures indicates some linguistic function within the
discourse which should downplay the importance
of features either before or after that discourse
marker. Our algorithm allows us to evaluate the
impact of rules against a baseline, and to itera-
tively judge each rule atop the changes made by
previous rules.

This algorithm fits into existing language tech-
nologies research which has attempted to partition
documents into sections which are more or less
relevant for classification. Many researchers have
attempted to make use of cue phrases (Hirschberg
and Litman, 1993), especially for segmentation
both in prose (Hearst, 1997) and conversation
(Galley et al., 2003). The approach of content se-
lection, meanwhile, has been explored for senti-
ment analysis (Pang and Lee, 2004), where indi-
vidual sentences may be less subjective and there-
fore less relevant to the sentiment classification
task. It is also similar conceptually to content
selection algorithms that have been used for text
summarization (Teufel and Moens, 2002) and text
generation (Sauper and Barzilay, 2009), both of
which rely on finding highly-relevant passages
within source texts.

Our work is distinct from these approaches.
While we have coarse-grained annotations of em-
powerment, there is no direct annotation of what
makes a good cue for content selection. With
our cues, we hope to take advantage of shallow
discourse structure in conversation, such as con-
trastive markers, making use of implicit structure
in the conversational domain.

4.1 Notation

Before describing extensions to the baseline lo-
gistic regression model, we define notation. Our

107

data is arranged hierarchically. We assume that
we have a collection of d training documents Tr =
{D; ...Dg}, each of which contains many train-
ing instances (in our task, an instance consists of
all lines of chat from one user in one thread). Our
total set of n instances I thus consists of instances
{l, Is,...I,}. Each document contains lines of
chat L and each instance [; is comprised of some
subset of those lines, L; C L.

Our feature space X = {x1,x9,... Ty} con-
sists of m unigram features representing the ob-
served vocabulary used in our corpus. Each in-
stance is associated with a feature vector Z con-
taining values for each z € X, and each feature
x that is present in the i-th instance maintains a
“memory” of the lines in which it appeared in that
instance, L;,, where L;, C L;. Our potential out-
put labels consist of Y = {NA, NEG, POS},
though this generalizes to any nominal classifica-
tion task. Each instance [ is associated with ex-
actly one y € Y for self-empowerment and one
for other-empowerment; these two labels do not
interact and our tasks are treated as independent
in this paper*. We define classifiers as functions
f(z — y € Y); in practice, we use logistic regres-
sion via LibLINEAR (Fan et al., 2008).

We define a content selection rule as a pairing
r = (c,t) between a cue feature ¢ € X and a se-
lection function ¢ € T'. We created a list of possi-
ble selection functions, given a cue ¢, maximizing
for generality while being expressive. These are
illustrated in Figure 2 and described below:

o Ignore Local Future (A): Ignore all features
from the two lines after each occurrence of c.

e Ignore All Future (B): Ignore all features
occurring after the first occurrence of c.

e Ignore Local History (C): Ignore all features
in the two lines preceding each occurrence of
C.

e Ignore All History (D): Ignore all features
occurring only before the last occurrence of
c.

We define an ensemble member £ = (R, fR) -
the ordered list of learned content selection rules
R = [ry,72,...] and a classifier f¢ trained on in-
stances transformed by those rules. Our final out-

“Future work may examine the interaction of jointly an-
notating multiple sparse social phenomena.
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Figure 2: Effects of content selection rules, based
on a cue feature (ovals) observed at lines m and n.

put of a trained model is a set of ensemble mem-
bers {Eq, ..., E}.

4.2 Algorithm

Our ensemble learning follows the paradigm
of cross-validated committees (Parmanto et al.,
1996), where k ensemble members are trained by
subdividing our training data into &k subfolds. For
each ensemble classifier, cue rules R are generated
on k — 1 subfolds (Try) and evaluated on the re-
maining subfold (Tey). In practice, with 21 train-
ing documents, 7-fold cross-validation, and k = 3
ensemble members, each generation set consists
of 12 documents’ instances, while each evaluation
set contains instances from 6 documents.

Our full algorithm is presented in Algorithm
1, and is broken into component parts for clar-
ity. Algorithm 2 begins by measuring the base-
line classifier’s ability to recognize minority-class
labels. After training on Try, we measure the
average probability assigned to the correct label
of instances in Tey, but only for instances whose
correct labels are minority classes (remember, be-
cause both Tr; and Te; are drawn from the over-
all Tr, we have access to true class labels). We
choose this subset of only minority instances, as
we are not interested in optimizing to the majority
class.

We next enumerate all rules that we wish to
judge. To keep this problem tractable, we ignore
features which do not occur in at least 5% of train-
ing instances. For the remaining features, we cre-
ate a candidate rule for each possible pairing of
features and selection functions. For each of these
candidates, we test its utility by selecting content
as if it were an actual rule, then building a new
classifier (trained on the generation set) using in-
stances that have been altered in that way. In the
evaluation set, we measure the difference in prob-
ability of minority class labels being assigned cor-
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rectly between the baseline and this altered space.
This measure of an individual rule’s impact is de-
scribed in Algorithm 3.

Once we have evaluated every possible rule
once, we select the top-ranked rule and ap-
ply it to the feature set. We then iteratively
progress through our now-ranked list of candi-
dates, each time treating the newly filtered dataset
as our new baseline. We search only top can-
didates for efficiency, following the fixed-width
search methodology for feature selection in very
high-dimensionality feature spaces (Giitlein et al.,
2009). Each ensemble classifier is finally retrained
on all training data, after applying the correspond-
ing content selection rules to that data.

5 Prediction

Our prediction algorithm begins with a stan-
dard implementation of cross-validated commit-
tees (Parmanto et al., 1996), whose results are
aggregated with a confidence voting method in-
tended to favor rare labels (Erp et al., 2002).
Cross-validated committees are an ensemble tech-
nique used to subsample training data to produce
multiple hypotheses for classification. Each clas-
sifier produced by our cue-based transformation
is trained on a subset of our training data. Each
makes predictions on all test set instances, pro-
ducing a distribution of confidence across possi-
ble labels. These values serve as inputs to a voting
method to produce a final label for each instance.

Compared to other ensemble methods, cross-
validated committees as described above are a
good fit for our task, because of its unique unit of
analysis. As thread-level analysis is the set of in-
dividual participants’ turns in a conversation, we
risk overfitting if we sample from the same con-
versations for the training and testing sets. In con-
trast to standard bagging, hard sampling bound-
aries never train and test on instances drawn from
the same conversation.

To aggregate the votes from members of this en-
semble into a final prediction, we employ a variant
on Selfridge’s Pandemonium (Selfridge, 1958).
If a minority label is selected as the highest-
confidence value in any classifier in our ensem-
ble, it is selected. The majority label, by contrast,
is only selected if it is the most likely prediction
by all classifiers in our ensemble. Thus consen-
sus is required to elect the majority class, and the
strongest minority candidate is elected otherwise.



In : generation set Try, evaluation set Tey
Out: ensemble committee {E; ... Ey}
fori:=1to k do
Rfinal < H,
Xtreqg < {2 € X | freq(z) € Try, >
5%};
R+ X freq X T,
R* «+ R;
repeat
Pyyse — EvaluateClassifier(Try, Teg);
EvaluateRules(Ppgse, Try, Teg, R*);
Try, Te, < ApplyRule(R*[0]);
R+ R — R*[0];
A + score(R*[0]);
Rfinal — Rfinal + R* [0]’
R* «+ R[0...50];
until A < threshold,
Trfinar < Try U Tey;
foreach r € Ry;y,q do

‘ Trfinal — ApplyRUIe(Trfmal, T);
end
Train f(Z — y) on Trpipna;

end
Algorithm 1: LearnSelectionCues()

This approach is designed to bias the prediction
of our machine learning algorithms in favor of mi-
nority classes in a coherent manner. If there is a
plausible model that has been trained which rec-
ognizes the possibility of a rare label, it is used;
the prediction only reverts to the majority class
when no plausible minority label could be chosen.
As validation of this technique, we compare our
“minority pandemonium” approach against both
typical pandemonium and standard sum-rule con-
fidence voting (Erp et al., 2002).

5.1 Logistic Model Stumps

One characteristic of highly skewed data is that,
while minority labels may be expressed in a num-
ber of different surface forms, there are many ob-
vious cases in which they do not apply. These
cases can actually be harmful to classification of
borderline cases. Features that could be given high
weight in marginal cases may be undervalued in
“low-hanging fruit” easy cases. To remove those
obvious instances, a very simple screening heuris-
tic is often enough to eliminate frequent pheno-
types of instances where the rare annotation is
not present. Prior work has sometimes screened
training data through obvious heuristic rules, espe-
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In : generation set Try, evaluation set Tey,
Out: minority class probability average Py,
Train f(z — y) on Try;
Te;"'" « {Instance I € Tey, | y; # “NA”}
Pyase <05 '
foreach Instance I € Te]"" do

‘ Pyose < Ppase +P(f(f1) = yf)
end A
Pyase = Pbase/Size(TeZun)

Algorithm 2: EvaluateClassifier()

In : Trg, Tey, rules R, base probability Py
Out: R sorted on each rule’s improvement
score

foreach Rule r € R do
Tr),, Tej, < ApplyRule(Try, Tey, r);
Paiter < EvaluateClassifier(Tr), Tej,);
score(r) <= Puiter — Phases

end

Sort R on score(r) from high to low;

Algorithm 3: EvaluateRules()

cially in speech recognition; for instance, training
speech recognition for words followed by a pause
separately from words followed by another word
(Franco et al., 2010), or training separate models
based on gender (Jiang et al., 1999).

We achieve this instance screening by learn-
ing logistic model tree stumps (Landwehr et al.,
2005), which allow us to quickly partition data if
there is a particularly easy heuristic that can be
learned to eliminate a large number of majority-
class labels. One challenge of this approach is
our underlying unigram feature space - tree-based
algorithms are generally poor classifiers for the
high-dimensionality, low-information features in a
lexical feature space (Han et al., 2001). To com-
pensate, we employ a smaller, denser set of binary
features for tree stump screening: instance length
thresholds and LIWC category membership.

First, we define a set of features that split based
on the number of lines an instance contains, from
1 to 10 (only a tiny fraction of instances are more
than 10 lines long). For example, a feature split-
ting on instances with lines < 2 would be true
for one- and two-line instances, and false for all
others. Second, we define a feature for each cate-
gory in the Linguistic Inquiry and Word Count dic-
tionary (Tausczik and Pennebaker, 2010) - these
broad classes of words allow for more balanced



100%
80%
60%

40% |

Precision

20%

0%
0%

10%

20% 30%
Recall

40% 50%

Content Selection
Bagging

—Baseline
——Learned Stumps

——Stumps + Selection
Boosting

Figure 3: Precision/recall curves for algorithms.
After 50% recall all models converge and there are
no significant differences in performance.

splits than would unigrams alone. Each category’s
feature is true if any word in that category was
used at least once in that instance.

We exhaustively sweep this feature space, and
report the most successful stump rules for each an-
notation task. In our other experiments, we report
results with and without the best rule for this pre-
processing step; we also measure its impact alone.

6 Experimental Results

All experiments were performed using LightSIDE
(Mayfield and Rosé, 2013). We use a binary uni-
gram feature space, and we perform 7-fold cross-
validation. Instances from the same chat transcript
never occur in both train and testing folds. Fur-
thermore, we assume that threads have been dis-
entangled already, and our experiments use gold
standard thread structure. While this is not a triv-
ial assumption, prior work has shown thread dis-
entanglement to be manageable (Mayfield et al.,
2012a); we consider it an acceptable simplify-
ing assumption for our experiments. We compare
our methods against baselines including a majority
baseline, a baseline logistic regression classifier
with L2 regularized features, and two common en-
semble methods, AdaBoost (Freund and Schapire,
1996) and bagging (Breiman, 1996) with logistic
regression base classifiers’.

Table 2 presents the best-performing result
from each classification method.  For self-
empowerment recognition, all methods that we
introduce are significant improvements in s, the

SThese methods usually use weak, unstable base classi-
fiers; however, in our experiments, those performed poorly.
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Table 2: Performance for baselines, common en-
semble algorithms, and proposed methods. Statis-
tically significant improvements over baseline are
marked (p < .01, {; p < .05, *; p < 0.1, 4).

Self Other
Method % K % K
Majority 79.3 .000 | 81.3 .000
LR Baseline 81.0 .367 | 81.0 .270
LR + Boosting 78.1 325 | 785 275
LR + Bagging 81.2 352 | 81.9 .265
LR + Committee | 81.0 .367 | 81.0 .270
Learned Stumps 81.8* 3857 | 81.7 .293+
Content Selection | 80.9  .389f | 80.7 .282
Stumps+Selection | 81.3  .4061 | 79.4 .254
Table 3:  Performance of content-selection

wrapped learners, for minority voting and two
baseline voting methods.

Self Other
Method % K % K
Pandemonium | 80.3  .283 | 81.4 .239
Averaged 80.6 304 | 81.6 .251
Minority Voting | 80.97 .389t | 80.7 .282

measurement of agreement over chance, compared
to all baselines. While accuracy remains stable,
this is due to predictions shifting away from the
majority class and towards minority classes. Our
combined model using both logistic model tree
stumps and content selection is significantly better
than either alone (p < .01). To compare the mi-
nority pandemonium voting method against base-
lines of simple pandemonium and summed confi-
dence voting, Table 3 presents the results of con-
tent selection wrappers with each voting method.
Minority voting is more effective compared to
standard confidence voting, improving « while
modestly reducing accuracy; this is typical of a
shift towards minority class predictions.

7 Discussion

These results show promise for our techniques,
which are able to distinguish features of rare la-
bels, previously awash in a sea of irrelevance. Fig-
ure 3 shows the impact of our rules as we tune
to different levels of recall, with a large boost in
precision when recall is not important; our model
converges with the baseline for high-recall, low-
precision tuning. This suggests that our method is
particularly suitable for tasks where confident la-



Table 4: Cue rules commonly selected by the algo-
rithm. Average improvement over the LR baseline

is also shown.
Self-Empowerment

Table 5: Best decision rules for logistic model
stumps. Significant improvement (p < 0.05) in-

dicated with *.
Self-Empowerment

Cue | Transformation A% Split Rule K Ak % A%
and,but | Ignore Local Future +5.0 Split < 1 *10385 +.018 | 81.8 +0.8
have | Ignore All History +4.3 LIWC-Article 0.379 +.012 | 81.6 +0.6
! Ignore All History +4.2 LIWC-Swear * | 0376 +.009 | 814 +0.4
me,my | Ignore All History +3.4 LIWC-Self *10.376  +.009 | 81.5 +0.5
Other-Empowerment Other-Empowerment
Cue | Transformation A% Split Rule K Ak % A%
and,but | Ignore Local Future +5.5 LIWC-You 0.293 +.023 | 81.7 +0.7
you Ignore Local History +5.2 LIWC-Eating * | 0.283 +.013 | 81.6 +0.6
s Ignore Local History +4.1 LIWC-Negate * | 0.282 +.012 | 82.3 +1.3
that Ignore Local History +3.9 LIWC-Present 0.281 +.011 | 81.6 +0.6

beling of a few instances is more important than
labeling as many instances as possible. This is
common when tasks have a high cost or carry high
risk (for instance, providing real-time conversa-
tional supports with an agent, where inappropriate
intervention could be disruptive). Other low-recall
applications include exploration large corpora for
exemplar instances, where the most confident pre-
dictions for a given label should be presented first
for analyst use. In the rest of this section, we
examine notable within-instance and per-instance
rules selected by our methods. These rules are
summarized in Tables 4 and 5.

For both self- and other-empowerment, we find
pronoun rules that match the task (first-person and
second-person pronouns for self-Empowerment
and other-Empowerment respectively). In both
tasks, we find cue rules that suppress the context
preceding personal pronouns. These, as well as
the possessive suffix ’s, echo the per-instance ef-
fect of the Self and You splits, anticipating that
what follows such a personal reference is likely to
bear an evaluation of empowerment. Exclamation
marks may indicate strong emotion - we find many
instances where what precedes a line with an ex-
clamation is more objective, and what follows in-
cludes an assessment. Conjunctions but and and
are selected as cue rules suppressing the two lines
that follow the occurrence - suggesting, as sus-
pected, that connective discourse markers play a
role in indicating empowerment (Fraser, 1999).

The best-performing stump splits for the Self-

Empowerment annotation are Line Length < 1
and the LIWC word-categories Article, Swear, and
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Self. The split on line length corresponds to the
observation that longer instances provide greater
opportunity for personal narrative self-assessment
to occur (95% of single-line instances are labeled
NA). The Article category may serve as a proxy for
content length - article-less instances in our corpus
include one-line social greetings and exchanges
of contact information. Swear words may be a
cue for awareness of self-empowerment - a recent
study of women coping with illness reported that
swearing in the presence of others, but not alone,
was related to potentially harmful outcomes (Rob-
bins et al., 2011). Among other- oriented split
rules, Eating stands out as non-obvious, although
medical literature has suggested a link between
dietary behavior and empowerment attitudes in a
study of women with cancer (Pinto et al., 2002).

8 Conclusion

We have demonstrated an algorithm for improv-
ing automated classification accuracy on highly
skewed tasks for conversational data. This algo-
rithm, particularly its focus on content selection, is
rooted in the structural format of our data, which
can generalize to many tasks involving conversa-
tional data. Our experiments show that this model
significantly improves machine learning perfor-
mance. Our algorithm is taking advantage of
structural facets of discourse markers, lending ba-
sic sociolinguistic validity to its behavior. Though
we have treated each of these rarely-occurring la-
bels as independent thus far, in practice we know
that this is not the case. Joint prediction of labels
through structured modeling is an obvious next



step for improving classification accuracy.

This is an important step towards large-scale
analysis of the impact of support groups on pa-
tients and caregivers. Our method can be used to
confidently highlight occurrences of rare labels in
large data sets. This has real-world implications
for professional intervention in social conversa-
tional domains, especially in scenarios where such
an intervention is likely to be associated with a
high cost or high risk. With the construction of
more accurate classifiers, we open the possibility
of automating annotation on large conversational
datasets, enabling new directions for researchers
with domain expertise.
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Abstract

Efficiently incorporating entity-level in-
formation is a challenge for coreference
resolution systems due to the difficulty of
exact inference over partitions. We de-
scribe an end-to-end discriminative prob-
abilistic model for coreference that, along
with standard pairwise features, enforces
structural agreement constraints between
specified properties of coreferent men-
tions. This model can be represented as
a factor graph for each document that ad-
mits efficient inference via belief propaga-
tion. We show that our method can use
entity-level information to outperform a
basic pairwise system.

1 Introduction

The inclusion of entity-level features has been a
driving force behind the development of many
coreference resolution systems (Luo et al., 2004;
Rahman and Ng, 2009; Haghighi and Klein, 2010;
Lee et al., 2011). There is no polynomial-time dy-
namic program for inference in a model with ar-
bitrary entity-level features, so systems that use
such features typically rely on making decisions
in a pipelined manner and sticking with them, op-
erating greedily in a left-to-right fashion (Rahman
and Ng, 2009) or in a multi-pass, sieve-like man-
ner (Raghunathan et al., 2010). However, such
systems may be locked into bad coreference deci-
sions and are difficult to directly optimize for stan-
dard evaluation metrics.

In this work, we present a new structured model
of entity-level information designed to allow effi-
cient inference. We use a log-linear model that can
be expressed as a factor graph. Pairwise features
appear in the model as unary factors, adjacent
to nodes representing a choice of antecedent (or
none) for each mention. Additional nodes model
entity-level properties on a per-mention basis, and
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structural agreement factors softly drive properties
of coreferent mentions to agree with one another.
This is a key feature of our model: mentions man-
age their partial membership in various corefer-
ence chains, so that information about entity-level
properties is decentralized and propagated across
individual mentions, and we never need to explic-
itly instantiate entities.

Exact inference in this factor graph is in-
tractable, but efficient approximate inference can
be carried out with belief propagation. Our model
is the first discriminatively-trained model that both
makes joint decisions over an entire document and
models specific entity-level properties, rather than
simply enforcing transitivity of pairwise decisions
(Finkel and Manning, 2008; Song et al., 2012).

We evaluate our system on the dataset from
the CoNLL 2011 shared task using three differ-
ent types of properties: synthetic oracle proper-
ties, entity phi features (number, gender, animacy,
and NER type), and properties derived from un-
supervised clusters targeting semantic type infor-
mation. In all cases, our transitive model of en-
tity properties equals or outperforms our pairwise
system and our reimplementation of a previous
entity-level system (Rahman and Ng, 2009). Our
final system is competitive with the winner of the
CoNLL 2011 shared task (Lee et al., 2011).

2 Example

We begin with an example motivating our use of
entity-level features. Consider the following ex-
cerpt concerning two famous auction houses:

When looking for lart items], [people] go
to [Sotheby’s and Christie’s] because [they]a
believe [theylg can get the best price for
[them].

The first three mentions are all distinct entities,
theya and theyp refer to people, and them refers to
art items. The three pronouns are tricky to resolve
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automatically because they could at first glance re-
solve to any of the preceding mentions. We focus
in particular on the resolution of theya and them.
In order to correctly resolve theya to people rather
than Sotheby’s and Christie’s, we must take ad-
vantage of the fact that theys appears as the sub-
ject of the verb believe, which is much more likely
to be attributed to people than to auction houses.

Binding principles prevent them from attaching
to theyg. But how do we prevent it from choos-
ing as its antecedent the next closest agreeing pro-
noun, theya? One way is to exploit the correct
coreference decision we have already made, theya
referring to people, since people are not as likely
to have a price as art items are. This observa-
tion argues for enforcing agreement of entity-level
semantic properties during inference, specifically
properties relating to permitted semantic roles.
Because even these six mentions have hundreds
of potential partitions into coreference chains, we
cannot search over partitions exhaustively, and
therefore we must design our model to be able to
use this information while still admitting an effi-
cient inference scheme.

3 Models

We will first present our BASIC model (Sec-
tion 3.1) and describe the features it incorporates
(Section 3.2), then explain how to extend it to use
transitive features (Sections 3.3 and 3.4).

Throughout this section, let x be a variable con-
taining the words in a document along with any
relevant precomputed annotation (such as parse in-
formation, semantic roles, etc.), and let n denote
the number of mentions in a given document.

3.1 BASIC Model

Our BASIC model is depicted in Figure 1 in stan-
dard factor graph notation. Each mention ¢ has
an associated random variable a; taking values in
the set {1,...,i—1, <new>}; this variable spec-
ifies mention ¢’s selected antecedent or indicates
that it begins a new coreference chain. Let a
(a1, ..., ay) be the vector of the a;. Note that a set
of coreference chains C' (the final desired output)
can be uniquely determined from a, but a is not
uniquely determined by C'.

We use a log linear model of the conditional dis-
tribution P(a|x) as follows:

n
P(a|x) x exp ZWTfA(ijai,x)
i=1
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When looking for [art items], [people] go to [Sotheby's
and Christie's] because [they]a believe [they]s can get
the best price for [them].

@ @ @ g } antecedent
4 .
choices

antecedent
art items 0.05 art items 0.15
<new> 0.95 people 04
Sotheb.y s (?nd 04

Christie’s

<new> 0.05

Figure 1: Our BASIC coreference model. A de-
cision a; is made independently for each men-
tion about what its antecedent mention should
be or whether it should start a new coreference
chain. Each unary factor A; has a log-linear form
with features examining mention ¢, its selected an-
tecedent a;, and the document context x.

where f4 (i, a;, ) is a feature function that exam-
ines the coreference decision a; for mention 7 with
document context x; note that this feature function
can include pairwise features based on mention ¢
and the chosen antecedent a;, since information
about each mention is contained in z.

Because the model factors completely over the
individual a;, these feature functions f4 can be ex-
pressed as unary factors A; (see Figure 1), with
A;i(j) o< exp (wTfa(i,j,2)). Given a setting of
w, we can determine & = arg max, P(a|z) and
then deterministically compute C'(a), the final set
of coreference chains.

While the features of this model factor over
coreference links, this approach differs from clas-
sical pairwise systems such as Bengtson and Roth
(2008) or Stoyanov et al. (2010). Because poten-
tial antecedents compete with each other and with
the non-anaphoric hypothesis, the choice of a; ac-
tually represents a joint decision about ¢—1 pair-
wise links, as opposed to systems that use a pair-
wise binary classifier and a separate agglomera-
tion step, which consider one link at a time during
learning. This approach is similar to the mention-
ranking model of Rahman and Ng (2009).

3.2 Pairwise Features

We now present the set of features f4 used by our
unary factors A;. Each feature examines the an-



tecedent choice a; of the current mention as well
as the observed information z in the document.
For each of the features we present, two conjoined
versions are included: one with an indicator of the
type of the current mention being resolved, and
one with an indicator of the types of the current
and antecedent mentions. Mention types are either
NOMINAL, PROPER, or, if the mention is pronom-
inal, a canonicalized version of the pronoun ab-
stracting away case.!

Several features, especially those based on the
precise constructs (apposition, etc.) and those in-
corporating phi feature information, are computed
using the machinery in Lee et al. (2011). Other
features were inspired by Song et al. (2012) and
Rahman and Ng (2009).

Anaphoricity features: Indicator of anaphoric-
ity, indicator on definiteness.

Configurational features: Indicator on distance
in mentions (capped at 10), indicator on dis-
tance in sentences (capped at 10), does the an-
tecedent c-command the current mention, are the
two mentions in a subject/object construction, are
the mentions nested, are the mentions in determin-
istic appositive/role appositive/predicate nomina-
tive/relative pronoun constructions.

Match features: Is one mention an acronym of
the other, head match, head contained (each way),
string match, string contained (each way), relaxed
head match features from Lee et al. (2011).

Agreement features: Gender, number, ani-
macy, and NER type of the current mention and
the antecedent (separately and conjoined).

Discourse features: Speaker match conjoined
with an indicator of whether the document is an
article or conversation.

Because we use conjunctions of these base fea-
tures together with the antecedent and mention
type, our system can capture many relationships
that previous systems hand-coded, especially re-
garding pronouns. For example, our system has
access to features such as “it is non-anaphoric”,
“it has as its antecedent a geopolitical entity”, or
“I has as its antecedent I with the same speaker.”

'While this canonicalization could theoretically impair
our ability to resolve, for example, reflexive pronouns, con-
joining features with raw pronoun strings does not improve
performance.
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We experimented with synonymy and hyper-
nymy features from WordNet (Miller, 1995), but
these did not empirically improve performance.

3.3 TRANSITIVE Model

The BASIC model can capture many relationships
between pairs of mentions, but cannot necessarily
capture entity-level properties like those discussed
in Section 2. We could of course model entities
directly (Luo et al., 2004; Rahman and Ng, 2009),
saying that each mention refers to some prior en-
tity rather than to some prior mention. However,
inference in this model would require reasoning
about all possible partitions of mentions, which is
computationally infeasible without resorting to se-
vere approximations like a left-to-right inference
method (Rahman and Ng, 2009).

Instead, we would like to try to preserve the
tractability of the BASIC model while still being
able to exploit entity-level information. To do so,
we will allow each mention to maintain its own
distributions over values for a number of proper-
ties; these properties could include gender, named-
entity type, or semantic class. Then, we will re-
quire each anaphoric mention to agree with its an-
tecedent on the value of each of these properties.

Our TRANSITIVE model which implements this
scheme is shown in Figure 2. Each mention ¢
has been augmented with a single property node
pi € {1,...,k}. The unary P; factors encode prior
knowledge about the setting of each p;; these fac-
tors may be hard (I will not refer to a plural entity),
soft (such as a distribution over named entity types
output by an NER tagger), or practically uniform
(e.g. the last name Smith does not specify a partic-
ular gender).

To enforce agreement of a particular property,
we require a mention to have the same property
value as its antecedent. That is, for mentions z and
J, if a; = 7, we want to ensure that p; and p;
agree. We can achieve this with the following set
of structural equality factors:

E;_j(ai,pi,pj) =1 —1[a; = j A pi # pj]

In words, this factor is zero if both a; = j and
p; disagrees with p;. These equality factors es-
sentially provide a mechanism by which these pri-
ors P; can influence the coreference decisions: if,
for example, the factors P; and P; disagree very
strongly, choosing a; # j will be preferred in or-
der to avoid forcing one of p; or p; to take an un-
desirable value. Moreover, note that although a;
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factors

} properties

equality
factors
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choices
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Az } factors
people Sotheby's they
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Figure 2: The factor graph for our TRANSI-
TIVE coreference model. Each node a; now has
a property p;, which is informed by its own unary
factor P;. In our example, a4 strongly indicates
that mentions 2 and 4 are coreferent; the factor
Lo then enforces equality between p2 and py,
while the factor F4_3 has no effect.

only indicates a single antecedent, the transitive
nature of the F factors forces p; to agree with the
p nodes of all other mentions likely to be in the
same entity.

3.4 Property Projection

So far, our model as specified ensures agreement
of our entity-level properties, but strictly enforc-
ing agreement may not always be correct. Suppose
that we are using named entity type as an entity-
level property. Organizations and geo-political en-
tities are two frequently confused and ambiguous
tags, and in the gold-standard coreference chains
it may be the case that a single chain contains in-
stances of both. We might wish to learn that or-
ganizations and geo-political entities are “compat-
ible” in the sense that we should forgive entities
for containing both, but without losing the ability
to reject a chain containing both organizations and
people, for example.

To address these effects, we expand our model
as indicated in Figure 3. As before, we have a
set of properties p; and agreement factors £;;. On
top of that, we introduce the notion of raw prop-
erty values r; € {1,...,k} together with priors in
the form of the R; factors. The r; and p; could in
principle have different domains, but for this work
we take them to have the same domain. The F;
factors now have a new structure: they now rep-
resent a featurized projection of the r; onto the
pi, which can now be thought of as “coreference-
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raw property

} factors
@ }raw properties

projection
factors

projected
properties

Figure 3: The complete factor graph for our
TRANSITIVE coreference model. Compared to
Figure 2, the R; contain the raw cluster posteriors,
and the P; factors now project raw cluster values r;
into a set of “coreference-adapted” clusters p; that
are used as before. This projection allows men-
tions with different but compatible raw property
values to coexist in the same coreference chain.

adapted” properties. The P; factors are defined by
P;(p;, i) o< exp(w! fp(p;, 7)), where fp is a fea-
ture vector over the projection of r; onto p;. While
there are many possible choices of fp, we choose
it to be an indicator of the values of p; and r;, so
that we learn a fully-parameterized projection ma-
trix.> The R; are constant factors, and may come
from an upstream model or some other source de-
pending on the property being modeled.

Our description thus far has assumed that we
are modeling only one type of property. In fact,
we can use multiple properties for each mention
by duplicating the r and p nodes and the R, P,
and E factors across each desired property. We
index each of these by [ € {1,...,m} for each of
m properties.

The final log-linear model is given by the fol-

lowing formula:

P(alz) o< > ( ) (H Rli(m)>
i,l

fa(i,as,z) + Z fr(pus, m)) ):|

H Eiij(ai,pii, piy)
p,’r‘
l

5,0
T
exp (W (

i
where ¢ and j range over mentions, [ ranges over
Initialized to zero (or small values), this matrix actually
causes the transitive machinery to have no effect, since all
posteriors over the p; are flat and completely uninformative.
Therefore, we regularize the weights of the indicators of p;
r; towards 1 and all other features towards 0 to give each raw
cluster a preference for a distinct projected cluster.



each of m properties, and the outer sum indicates
marginalization over all p and r variables.

4 Learning

Now that we have defined our model, we must
decide how to train its weights w. The first
issue to address is one of the supervision pro-
vided. Our model traffics in sets of labels a
which are more specified than gold coreference
chains C, which give cluster membership for each
mention but not antecedence. Let A(C) be the
set of labelings a that are consistent with a set
of coreference chains C. For example, if C' =
{{1,2,3},{4}}, then (<new>,1,2, <new>) €
A(C) and (<new>,1,1,<new>) € A(C) but
(<new>,1, <new>,3) ¢ A(C), since this im-
plies the chains C' = {{1, 2}, {3,4}}

The most natural objective is a variant of
standard conditional log-likelihood that treats the
choice of a for the specified C as a latent variable
to be marginalized out:

> Plalz)

acA(C?)

t
Uw) = Zlog (1)
i=1

where (2%, C?) is the ith labeled training example.
This optimizes for the 0-1 loss; however, we are
much more interested in optimizing with respect
to a coreference-specific loss function.

To this end, we will use softmax-margin (Gim-
pel and Smith, 2010), which augments the proba-
bility of each example with a term proportional to
its loss, pushing the model to assign less mass to
highly incorrect examples. We modify Equation 1
to use a new probability distribution P’ instead
of P, where P'(alz’) oc P(a|z’)exp (I(a,C))
and [(a,C) is a loss function. In order to
perform inference efficiently, [(a,C) must de-
compose linearly across mentions: [(a,C)
>ir1 l(ai, C). Commonly-used coreference met-
rics such as MUC (Vilain et al., 1995) and B3
(Bagga and Baldwin, 1998) do not have this prop-
erty, so we instead make use of a parameterized
loss function that does and fit the parameters to
give good performance. Specifically, we take

n

I(a,C) = [e1l(K1(as, C)) + el (K2(as, C))
=1

+ Cg]I(Kg(ai, C))]

where ¢y, co, and c3 are real-valued weights, K
denotes the event that a; is falsely anaphoric when
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it should be non-anaphoric, K5 denotes the event
that a; is falsely non-anaphoric when it should be
anaphoric, and K3 denotes the event that a; is cor-
rectly determined to be anaphoric but . These can
be computed based on only a; and C. By setting
c1 low and c2 high relative to c3, we can force
the system to be less conservative about making
anaphoricity decisions and achieve a better bal-
ance with the final coreference metrics.

Finally, we incorporate L regularization, giv-
ing us our final objective:

t
(w)=> log | > Plalz’) | +Alwl:
i=1 a€A(CH)

We optimize this objective using AdaGrad
(Duchi et al., 2011); we found this to be faster and
give higher performance than L-BFGS using Lo
regularization (Liu and Nocedal, 1989). Note that
because of the marginalization over A(C?), even

the objective for the BASIC model is not convex.

5 Inference

Inference in the BASIC model is straightforward.
Given a set of weights w, we can predict

a = argmax P(a|z)
a

We then report the corresponding chains C'(a)
as the system output.> For learning, the gradi-
ent takes the standard form of the gradient of a
log-linear model, a difference of expected feature
counts under the gold annotation and under no
annotation. This requires computing marginals
P’(a;|x) for each mention i, but because the
model already factors this way, this step is easy.
The TRANSITIVE model is more complex. Ex-
act inference is intractable due to the E factors that
couple all of the a; by way of the p; nodes. How-
ever, we can compute approximate marginals for
the a;, p;, and r; using belief propagation. BP has
been effectively used on other NLP tasks (Smith
and Eisner, 2008; Burkett and Klein, 2012), and is
effective in cases such as this where the model is
largely driven by non-loopy factors (here, the A;).
From marginals over each node, we can com-
pute the necessary gradient and decode as before:

a = argmax P(a|x)
a

30ne could use ILP-based decoding in the style of Finkel
and Manning (2008) and Song et al. (2012) to attempt to ex-
plicitly find the optimal C' with choice of a marginalized out,
but we did not explore this option.



This corresponds to minimum-risk decoding with
respect to the Hamming loss over antecedence pre-
dictions.

Pruning. The TRANSITIVE model requires in-
stantiating a factor for each potential setting of
each a;. This factor graph grows quadratically in
the size of the document, and even approximate in-
ference becomes slow when a document contains
over 200 mentions. Therefore, we use our BA-
SIC model to prune antecedent choices for each
a; in order to reduce the size of the factor graph
that we must instantiate. Specifically, we prune
links between pairs of mentions that are of men-
tion distance more than 100, as well as values for
a; that fall below a particular odds ratio threshold
with respect to the best setting of that a; in the
BASIC model; that is, those for which

log <

is below a cutoff ~.

Pgasic (ai|$)
max, Pgasic (ai = ]‘33)

6 Related Work

Our BASIC model is a mention-ranking approach
resembling models used by Denis and Baldridge
(2008) and Rahman and Ng (2009), though it is
trained using a novel parameterized loss function.
It is also similar to the MLN-JOINT(BF) model
of Song et al. (2012), but we enforce the single-
parent constraint at a deeper structural level, al-
lowing us to treat non-anaphoricity symmetrically
with coreference as in Denis and Baldridge (2007)
and Stoyanov and FEisner (2012). The model of
Fernandes et al. (2012) also uses the single-parent
constraint structurally, but with learning via la-
tent perceptron and ILP-based one-best decod-
ing rather than logistic regression and BP-based
marginal computation.

Our TRANSITIVE model is novel; while Mc-
Callum and Wellner (2004) proposed the idea of
using attributes for mentions, they do not actu-
ally implement a model that does so. Other sys-
tems include entity-level information via hand-
written rules (Raghunathan et al., 2010), induced
rules (Yang et al., 2008), or features with learned
weights (Luo et al., 2004; Rahman and Ng, 2011),
but all of these systems freeze past coreference de-
cisions in order to compute their entities.

Most similar to our entity-level approach is
the system of Haghighi and Klein (2010), which

119

also uses approximate global inference; however,
theirs is an unsupervised, generative system and
they attempt to directly model multinomials over
words in each mention. Their system could be ex-
tended to handle property information like we do,
but our system has many other advantages, such as
freedom from a pre-specified list of entity types,
the ability to use multiple input clusterings, and
discriminative projection of clusters.

7 Experiments

We use the datasets, experimental setup, and scor-
ing program from the CoNLL 2011 shared task
(Pradhan et al., 2011), based on the OntoNotes
corpus (Hovy et al., 2006). We use the standard
automatic parses and NER tags for each docu-
ment. Our mentions are those output by the sys-
tem of Lee et al. (2011); we also use their postpro-
cessing to remove appositives, predicate nomina-
tives, and singletons before evaluation. For each
experiment, we report MUC (Vilain et al., 1995),
B3 (Bagga and Baldwin, 1998), and CEAF, (Luo,
2005), as well as their average.

Parameter settings. We take the regularization
constant A = 0.001 and the parameters of our
surrogate loss (c1,c2,c3) = (0.15,2.5,1) for all
models.* All models are trained for 20 iterations.
We take the pruning threshold v = —2.

7.1 Systems

Besides our BASIC and TRANSITIVE systems, we
evaluate a strictly pairwise system that incorpo-
rates property information by way of indicator fea-
tures on the current mention’s most likely property
value and the proposed antecedent’s most likely
property value. We call this system PAIRPROP-
ERTY; it is simply the BASIC system with an ex-
panded feature set.

Furthermore, we compare against a LEFT-
TORIGHT entity-level system like that of Rahman
and Ng (2009).> Decoding now operates in a se-
quential fashion, with BASIC features computed
as before and entity features computed for each
mention based on the coreference decisions made
thus far. Following Rahman and Ng (2009), fea-
tures for each property indicate whether the cur-

4 Additional tuning of these hyper parameters did not sig-
nificantly improve any of the models under any of the exper-
imental conditions.

SUnfortunately, their publicly-available system is closed-

source and performs poorly on the CoNLL shared task
dataset, so direct comparison is difficult.



rent mention agrees with no mentions in the an-
tecedent cluster, at least one mention, over half of
the mentions, or all of the mentions; antecedent
clusters of size 1 or 2 fire special-cased features.
These additional features beyond those in Rah-
man and Ng (2009) were helpful, but more in-
volved conjunction schemes and fine-grained fea-
tures were not. During training, entity features of
both the gold and the prediction are computed us-
ing the Viterbi clustering of preceding mentions
under the current model parameters.®

All systems are run in a two-pass manner:
first, the BASIC model is run, then antecedent
choices are pruned, then our second-round model
is trained from scratch on the pruned data.’

7.2 Noisy Oracle Features

We first evaluate our model’s ability to exploit syn-
thetic entity-level properties. For this experiment,
mention properties are derived from corrupted or-
acle information about the true underlying corefer-
ence cluster. Each coreference cluster is assumed
to have one underlying value for each of m coref-
erence properties, each taking values over a do-
main D. Mentions then sample distributions over
D from a Dirichlet distribution peaked around the
true underlying value.® These posteriors are taken
as the R; for the TRANSITIVE model.

We choose this setup to reflect two important
properties of entity-level information: first, that it
may come from a variety of disparate sources, and
second, that it may be based on the determinations
of upstream models which produce posteriors nat-
urally. A strength of our model is that it can accept
such posteriors as input, naturally making use of
this information in a model-based way.

Table 1 shows development results averaged
across ten train-test splits with m 3 proper-
ties, each taking one of |D| = 5 values. We em-
phasize that these parameter settings give fairly
weak oracle information: a document may have
hundreds of clusters, so even in the absence of
noise these oracle properties do not have high dis-

Using gold entities for training as in Rahman and Ng
(2009) resulted in a lower-performing system.

"We even do this for the BASIC model, since we found
that performance of the pruned and retrained model was gen-
erally higher.

8Specifically, the distribution used is a Dirichlet with
a = 3.5 for the true underlying cluster and o = 1 for other
values, chosen so that 25% of samples from the distribution
did not have the correct mode. Though these parameters af-
fect the quality of the oracle information, varying them did
not change the relative performance of the different models.
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NoOISY ORACLE
MUC  B® CEAF.| Avg.
Basic | 61.96 70.66  47.30 | 59.97
PAIRPROPERTY | 66.31 72.68  49.08 | 62.69
LEFTTORIGHT | 66.49 73.14  49.46 | 63.03
TRANSITIVE | 67.37 74.05  49.68 | 63.70

Table 1: CoNLL metric scores for our four dif-
ferent systems incorporating noisy oracle data.
This information helps substantially in all cases.
Both entity-level models outperform the PAIR-
PROPERTY model, but we observe that the TRAN-
SITIVE model is more effective than the LEFT-
TORIGHT model at using this information.

criminating power. Still, we see that all mod-
els are able to benefit from incorporating this in-
formation; however, our TRANSITIVE model out-
performs both the PAIRPROPERTY model and the
LEFTTORIGHT model. There are a few reasons
for this: first, our model is able to directly use soft
posteriors, so it is able to exploit the fact that more
peaked samples from the Dirichlet are more likely
to be correct. Moreover, our model can propagate
information backwards in a document as well as
forwards, so the effects of noise can be more eas-
ily mitigated. By contrast, in the LEFTTORIGHT
model, if the first or second mention in a cluster
has the wrong property value, features indicating
high levels of property agreement will not fire on
the next few mentions in those clusters.

7.3 Phi Features

As we have seen, our TRANSITIVE model can ex-
ploit high-quality entity-level features. How does
it perform using real features that have been pro-
posed for entity-level coreference?

Here, we use hard phi feature determinations
extracted from the system of Lee et al. (2011).
Named-entity type and animacy are both com-
puted based on the output of a named-entity tag-
ger, while number and gender use the dataset of
Bergsma and Lin (2006). Once this informa-
tion is determined, the PATRPROPERTY and LEFT-
TORIGHT systems can compute features over it di-
rectly. In the TRANSITIVE model, each of the R;
factors places % of its mass on the determined la-
bel and distributes the remainder uniformly among
the possible options.

Table 2 shows results when adding entity-level
phi features on top of our BASIC pairwise system
(which already contains pairwise features) and on
top of an ablated BASIC system without pairwise



PHI FEATURES

MUC  B® CEAF.| Avg.
Basic | 61.96 70.66  47.30 | 59.97
LEFTTORIGHT | 61.34 70.41 47.64 | 59.80
TRANSITIVE | 62.66 70.92 46.88 | 60.16

PHI FEATURES (ABLATED BASIC)
BAsIc-PHI | 59.45 69.21 46.02 | 58.23
PAIRPROPERTY | 61.88 70.66  47.14 | 59.90
LEFTTORIGHT | 61.42 70.53 47.49 | 59.81
TRANSITIVE | 62.23 70.78 46.74 | 59.92

Table 2: CoNLL metric scores for our systems in-
corporating phi features. Our standard BASIC sys-
tem already includes phi features, so no results are
reported for PAIRPROPERTY. Here, our TRAN-
SITIVE system does not give substantial improve-
ment on the averaged metric. Over a baseline
which does not include phi features, all systems
are able to incorporate them comparably.

phi features. Our entity-level systems successfully
captures phi features when they are not present in
the baseline, but there is only slight benefit over
pairwise incorporation, a result which has been
noted previously (Luo et al., 2004).

7.4 Clustering Features

Finally, we consider mention properties derived
from unsupervised clusterings; these properties
are designed to target semantic properties of nom-
inals that should behave more like the oracle fea-
tures than the phi features do.

We consider clusterings that take as input pairs
(n,r) of a noun head n and a string r which con-
tains the semantic role of n (or some approxima-
tion thereof) conjoined with its governor. Two dif-
ferent algorithms are used to cluster these pairs: a
NAIVEBAYES model, where ¢ generates n and 7,
and a CONDITIONAL model, where c is generated
conditioned on 7 and then n is generated from c.
Parameters for each can be learned with the ex-
pectation maximization (EM) algorithm (Demp-
ster et al., 1977), with symmetry broken by a small
amount of random noise at initialization.

Similar models have been used to learn sub-
categorization information (Rooth et al., 1999)
or properties of verb argument slots (Yao et al.,
2011). We choose this kind of clustering for its rel-
ative simplicity and because it allows pronouns to
have more informed properties (from their verbal
context) than would be possible using a model that
makes type-level decisions about nominals only.
Though these specific cluster features are novel
to coreference, previous work has used similar
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CLUSTERS
MUC  B® CEAF.| Avg.
Basic | 61.96 70.66  47.30 | 59.97
PAIRPROPERTY | 62.88 70.71 4745 | 60.35
LEFTTORIGHT | 61.98 70.19  45.77 | 59.31
TRANSITIVE | 63.34 70.89 46.88 | 60.37

Table 3: CoNLL metric scores for our systems
incorporating clustering features. These features
are equally effectively incorporated by our PAIR-
PROPERTY system and our TRANSITIVE system.

(govemment ARGO:said way ARGl :signed
officials |ARGO:say law ARG1:announced
court |ARGO:found agreement | ARG1:set
authorities | ARGO:announced plan ARG :approved
L e N I .- eee )
LR
f attack [ARGlI:cause prices | ARGl:rose
problems [ARG2:following shares | ARGI:fell
attacks [ARG]1:reported index | ARGl:cut
charges |ARG]:filed rates | ARGl:closed
L ees JIN ees )

Figure 4: Examples of clusters produced by the
NAIVEBAYES model on SRL-tagged data with
pronouns discarded.

types of fine-grained semantic class information
(Hendrickx and Daelemans, 2007; Ng, 2007; Rah-
man and Ng, 2010). Other approaches incorpo-
rate information from other sources (Ponzetto and
Strube, 2006) or compute heuristic scores for real-
valued features based on a large corpus or the web
(Dagan and Itai, 1990; Yang et al., 2005; Bansal
and Klein, 2012).

We use four different clusterings in our
experiments, each with twenty clusters:
dependency-parse-derived NAIVEBAYES clusters,
semantic-role-derived CONDITIONAL clusters,
SRL-derived NAIVEBAYES clusters generating
a NOVERB token when r cannot be determined,
and SRL-derived NAIVEBAYES clusters with all
pronoun tuples discarded. Examples of the latter
clusters are shown in Figure 4. Each clustering
is learned for 30 iterations of EM over English
Gigaword (Graff et al., 2007), parsed with the
Berkeley Parser (Petrov et al., 2006) and with
SRL determined by Senna (Collobert et al., 2011).

Table 3 shows results of modeling these cluster
properties. As in the case of oracle features, the
PAIRPROPERTY and LEFTTORIGHT systems use
the modes of the cluster posteriors, and the TRAN-
SITIVE system uses the posteriors directly as the
R;. We see comparable performance from incor-
porating features in both an entity-level framework
and a pairwise framework, though the TRANSI-



MUC B3 CEAF, Avg.
Prec. Rec. i Prec. Rec. F Prec. Rec. a2l 2l

Basic | 69.99 55.59 61.96 | 80.96 62.69 70.66 | 41.37 55.21 47.30 | 59.97

STANFORD | 61.49 59.59 60.49 | 74.60 68.25 71.28 | 47.57 4945 48.49 | 60.10
NoIsY ORACLE

PAIRPROPERTY | 76.49 58.53 66.31 | 8498 63.48 72.68 | 41.84 59.36 49.08 | 62.69

LEFTTORIGHT | 76.92 58.55 66.49 | 85.68 63.81 73.14 | 42.07 60.01 49.46 | 63.03

TRANSITIVE | 76.48 60.20 *67.37 | 84.84 65.69 *74.05 | 42.89 59.01 *49.68 | 63.70
PHI FEATURES

LEFTTORIGHT | 69.77 54.73 61.34 | 81.40 62.04 70.41 | 4149 5592 47.64 | 59.80

TRANSITIVE | 70.27 56.54 *62.66 | 79.81 63.82 *70.92 | 41.17 54.44 46.88 | 60.16

PHI FEATURES (ABLATED BASIC)

Basic-PHI | 67.04 5341 59.45 | 7893 61.63 69.21 | 4040 53.46 46.02 | 58.23
PAIRPROPERTY | 70.24 55.31 61.88 | 81.10 62.60 70.66 | 41.04 55.38 47.14 | 59.90
LEFTTORIGHT | 69.94 54.75 61.42 | 81.38 62.23 70.53 | 41.29 55.87 47.49 | 59.81

TRANSITIVE | 70.06 5598 *62.23 | 79.92 63.52 70.78 | 4090 54.52 46.74 | 59.92
CLUSTERS

PAIRPROPERTY | 71.77 55.95 62.88 | 81.76  62.30 70.71 | 4098 56.35 47.45 | 60.35

LEFTTORIGHT | 69.75 54.82 61.39 | 81.48 6229 70.60 | 41.62 55.89 47.71 | 59.90

TRANSITIVE | 71.54 56.83 *63.34 | 80.55 63.31 *70.89 | 40.77 55.14 46.88 | 60.37

Table 4: CoNLL metric scores averaged across ten different splits of the training set for each experiment.
We include precision, recall, and F} for each metric for completeness. Starred F7 values on the individual
metrics for the TRANSITIVE system are significantly better than all other results in the same block at the
p = 0.01 level according to a bootstrap resampling test.

MUC B3 CEAF, Avg.

Prec. Rec. Fi Prec. Rec. Fi Prec. Rec. F F
BAsIC | 68.84 56.08 61.81 | 77.60 61.40 68.56 | 38.25 50.57 4355 | 57.97
PAIRPROPERTY | 70.90 56.26 62.73 | 7895 60.79 68.69 | 37.69 5192 43.67 | 58.37
LEFTTORIGHT | 68.84 55.56 61.49 | 78.64 61.03 68.72 | 3897 51.74 4446 | 58.22
TRANSITIVE | 70.62 58.06 *63.73 | 76.93 6224 68.81 | 38.00 50.40 43.33 | 58.62
STANFORD | 6091 62.13 61.51 | 70.61 67.75 69.15 | 4579 4455 45.16 | 58.61

Table 5: CoNLL metric scores for our best systems (including clustering features) on the CoNLL blind

test set, reported in the same manner as Table 4.

TIVE system appears to be more effective than the
LEFTTORIGHT system.

7.5 Final Results

Table 4 shows expanded results on our develop-
ment sets for the different types of entity-level
information we considered. We also show in in
Table 5 the results of our system on the CoNLL
test set, and see that it performs comparably to
the Stanford coreference system (Lee et al., 2011).
Here, our TRANSITIVE system provides modest
improvements over all our other systems.

Based on Table 4, our TRANSITIVE system ap-
pears to do better on MUC and B3 than on CEAF..
However, we found no simple way to change the
relative performance characteristics of our various
systems; notably, modifying the parameters of the
loss function mentioned in Section 4 or changing
it entirely did not trade off these three metrics but
merely increased or decreased them in lockstep.
Therefore, the TRANSITIVE system actually sub-
stantially improves over our baselines and is not

merely trading off metrics in a way that could be
easily reproduced through other means.

8 Conclusion

In this work, we presented a novel coreference ar-
chitecture that can both take advantage of standard
pairwise features as well as use transitivity to en-
force coherence of decentralized entity-level prop-
erties within coreference clusters. Our transitive
system is more effective at using properties than
a pairwise system and a previous entity-level sys-
tem, and it achieves performance comparable to
that of the Stanford coreference resolution system,
the winner of the CoNLL 2011 shared task.
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Abstract

Characters play an important role in the
Chinese language, yet computational pro-
cessing of Chinese has been dominated
by word-based approaches, with leaves in
syntax trees being words. We investigate
Chinese parsing from the character-level,
extending the notion of phrase-structure
trees by annotating internal structures of
words. We demonstrate the importance
of character-level information to Chinese
processing by building a joint segmen-
tation, part-of-speech (POS) tagging and
phrase-structure parsing system that inte-
grates character-structure features. Our
joint system significantly outperforms a
state-of-the-art word-based baseline on the
standard CTBS5 test, and gives the best
published results for Chinese parsing.

1 Introduction

Characters play an important role in the Chinese
language. They act as basic phonetic, morpho-
syntactic and semantic units in a Chinese sentence.
Frequently-occurring character sequences that ex-
press certain meanings can be treated as words,
while most Chinese words have syntactic struc-
tures. For example, Figure 1(b) shows the struc-
ture of the word “& 37\l (construction and build-
ing industry)”, where the characters “% (construc-
tion)” and “IZf{ (building)” form a coordination,
and modify the character “Nl. (industry)”.
However, computational processing of Chinese
is typically based on words. Words are treated
as the atomic units in syntactic parsing, machine
translation, question answering and other NLP
tasks. Manually annotated corpora, such as the
Chinese Treebank (CTB) (Xue et al., 2005), usu-
ally have words as the basic syntactic elements

*Email correspondence.
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(a) CTB-style word-based syntax tree for “1[% (China) 7
Mk (architecture industry) £ I (show) #Hr (new) ¥ J5
(pattern)”.
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JAi

(b) character-level syntax tree with hierarchal word structures
for “H' (middle) [# (nation) & (construction) 3% (building)
Mk (industry) £ (present) I (show) # (new) #% (style) J&i
(situation)”.

Figure 1: Word-based and character-level phrase-
structure trees for the sentence “H [E &5\l 2 I
B H% 5 (China’s architecture industry shows new
patterns)”, where “1”, “r”, “c” denote the direc-

tions of head characters (see section 2).

(Figure 1(a)). This form of annotation does not
give character-level syntactic structures for words,
a source of linguistic information that is more fun-
damental and less sparse than atomic words.

In this paper, we investigate Chinese syn-
tactic parsing with character-level information
by extending the notation of phrase-structure

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 125-134,
Sofia, Bulgaria, August 4-9 2013. (©2013 Association for Computational Linguistics



(constituent) trees, adding recursive structures of
characters for words. We manually annotate the
structures of 37,382 words, which cover the entire
CTBS. Using these annotations, we transform
CTB-style constituent trees into character-level
trees (Figure 1(b)). Our word structure corpus,
together with a set of tools to transform CTB-style
trees into character-level trees, is released at
https://github.com/zhangmeishan/wordstructures.
Our annotation work is in line with the work of
Vadas and Curran (2007) and Li (2011), which
provide extended annotations of Penn Treebank
(PTB) noun phrases and CTB words (on the
morphological level), respectively.

We build a character-based Chinese parsing
model to parse the character-level syntax trees.
Given an input Chinese sentence, our parser pro-
duces its character-level syntax trees (Figure 1(b)).
With richer information than word-level trees, this
form of parse trees can be useful for all the afore-
mentioned Chinese NLP applications.

With regard to task of parsing itself, an impor-
tant advantage of the character-level syntax trees is
that they allow word segmentation, part-of-speech
(POS) tagging and parsing to be performed jointly,
using an efficient CKY-style or shift-reduce algo-
rithm. Luo (2003) exploited this advantage by
adding flat word structures without manually an-
notation to CTB trees, and building a generative
character-based parser. Compared to a pipeline
system, the advantages of a joint system include
reduction of error propagation, and the integration
of segmentation, POS tagging and syntax features.
With hierarchical structures and head character in-
formation, our annotated words are more informa-
tive than flat word structures, and hence can bring
further improvements to phrase-structure parsing.

To analyze word structures in addition to phrase
structures, our character-based parser naturally
performs joint word segmentation, POS tagging
and parsing jointly. Our model is based on the
discriminative shift-reduce parser of Zhang and
Clark (2009; 2011), which is a state-of-the-art
word-based phrase-structure parser for Chinese.
We extend their shift-reduce framework, adding
more transition actions for word segmentation and
POS tagging, and defining novel features that cap-
ture character information. Even when trained
using character-level syntax trees with flat word
structures, our joint parser outperforms a strong
pipelined baseline that consists of a state-of-the-

NN-r NN-|

/\ /\
NN-b NN-i W-b VV-i
LooLol ]
(repository) (saving)  (investigate)  (ancient)

(a) subject-predicate. (b) verb-object.

NN-C NN-r
/\ /\
NN-b NN-i NN-b NN-i
il B Ja 4‘:
(science) (technology) (bad) (kind)

(c) coordination. (d) modifier-noun.
Figure 2: Inner word structures of “J {7 (reper-

tory)”,“Z% i (archaeology)”, “F$ (science and
technology)” and “IM(Z% (degenerate)”.

art joint segmenter and POS tagger, and our base-
line word-based parser. Our word annotations lead
to further improvements to the joint system, espe-
cially for phrase-structure parsing accuracy.

Our parser work falls in line with recent work
of joint segmentation, POS tagging and parsing
(Hatori et al.,, 2012; Li and Zhou, 2012; Qian
and Liu, 2012). Compared with related work,
our model gives the best published results for
joint segmentation and POS tagging, as well as
joint phrase-structure parsing on standard CTBS5
evaluations. With linear-time complexity, our
parser is highly efficient, processing over 30 sen-
tences per second with a beam size of 16. An
open release of the parser is freely available at
http://sourceforge.net/projects/zpar/, version 0.6.

2  Word Structures and Syntax Trees

The Chinese language is a character-based lan-
guage. Unlike alphabetical languages, Chinese
characters convey meanings, and the meaning of
most Chinese words takes roots in their charac-
ter. For example, the word “TI 5 Al (computer)” is
composed of the characters “i1" (count)”, “%. (cal-
culate)” and “#l. (machine)”. An informal name of
“computer’” is “HLJix”, which is composed of “F,
(electronic)” and “fii (brain)”.

Chinese words have internal structures (Xue,
2001; Ma et al., 2012). The way characters inter-
act within words can be similar to the way words
interact within phrases. Figure 2 shows the struc-
tures of the four words “F 17 (repertory)”, “ %51l
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NN-C

/\

NN-F NN-F
NN-b NN-i NN-i NN-i
it I ek T
(crouching) (tiger) (hidden) (dragon)

Figure 3: Character-level word structure of “kFg
jX J& (crouching tiger hidden dragon)”.

(archaeology)”, “Fl+f (science and technology)”
and “M 2K (degenerate)’, which demonstrate
four typical syntactic structures of two-character
words, including subject-predicate, verb-object,
coordination and modifier-noun structures. Multi-
character words can also have recursive syntac-
tic structures. Figure 3 illustrates the structure
of the word “l}JEj& & (crouching tiger hidden
dragon)”, which is composed of two subwords “fi}
J& (crouching tiger)” and “Ji& /% (hidden dragon)”,
both having a modifier-noun structure.

The meaning of characters can be a useful
source of information for computational process-
ing of Chinese, and some recent work has started
to exploit this information. Zhang and Clark
(2010) found that the first character in a Chinese
word is a useful indicator of the word’s POS. They
made use of this information to help joint word
segmentation and POS tagging.

Li (2011) studied the morphological structures
of Chinese words, showing that 35% percent of
the words in CTBS5 can be treated as having mor-
phemes. Figure 4(a) illustrates the morphological
structures of the words *“ i & 1] (friends)” and
“HH A (educational world)”, in which the char-
acters “f[] (plural)” and “%t (field)” can be treated
as suffix morphemes. They studied the influence
of such morphology to Chinese dependency pars-
ing (Li and Zhou, 2012).

The aforementioned work explores the influ-
ence of particular types of characters to Chinese
processing, yet not the full potentials of complete
word structures. We take one step further in this
line of work, annotating the full syntactic struc-
tures of 37,382 Chinese words in the form of Fig-
ure 2 and Figure 3. Our annotation covers the
entire vocabulary of CTBS5. In addition to dif-
ference in coverage (100% vs 35%), our annota-
tion is structurally more informative than that of
Li (2011), as illustrated in Figure 4(b).

Our annotations are binarized recursive word
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NN NN
/\ /\
NN-f NN-f NN-f NN-f
iy 17 uE It
(friend) (plural) (education) (field)

(a) morphological-level word structures, where “f” de-
notes a special mark for fine-grained words.

NN-r

A A
NN-c NN-i NN-c NN-i
NN-b NN-i 111 NN-b NN-i 5
‘ ‘ (plural) ‘ ‘ (field)
JH K # &l

(friend) (friend) (teach) (education)

(b) character-level word structures.

Figure 4: Comparison between character-level and
morphological-level word structures.

structures. For each word or subword, we spec-
ify its POS and head direction. We use “1”, “r”
and “c” to indicate the “left”, “right” and “coordi-
nation” head directions, respectively. The “coor-
dination” direction is mostly used in coordination
structures, while a very small number of translit-
eration words, such as “% [ I (Obama)” and “¥%
#2491 (Los Angeles)”, have flat structures, and we
use “coordination” for their left binarization. For
leaf characters, we follow previous work on word
segmentation (Xue, 2003; Ng and Low, 2004), and
use “b” and “i” to indicate the beginning and non-
beginning characters of a word, respectively.

The vast majority of words do not have struc-
tural ambiguities. However, the structures of some
words may vary according to different POS. For
example, “fill x” means “dominate” when it is
tagged as a verb, of which the head is the left char-
acter; the same word means “uniform dress”” when
tagged as a noun, of which the head is the right
character. Thus the input of the word structure
annotation is a word together with its POS. The
annotation work was conducted by three persons,
with one person annotating the entire corpus, and
the other two checking the annotations.

Using our annotations, we can extend CTB-
style syntax trees (Figure 1(a)) into character-
level trees (Figure 1(b)). In particular, we mark
the original nodes that represent POS tags in CTB-
style trees with “-t”, and insert our word structures
as unary subnodes of the “-t” nodes. For the rest
of the paper, we refer to the “-t” nodes as full-word
nodes, all nodes above full-word nodes as phrase



nodes, and all nodes below full-word nodes as sub-
word nodes.

Our character-level trees contain additional syn-
tactic information, which are potentially useful to
Chinese processing. For example, the head char-
acters of words can be populated up to phrase-
level nodes, and serve as an additional source of
information that is less sparse than head words. In
this paper, we build a parser that yields character-
level trees from raw character sequences. In addi-
tion, we use this parser to study the effects of our
annotations to character-based statistical Chinese
parsing, showing that they are useful in improving
parsing accuracies.

3 Character-based Chinese Parsing

To produce character-level trees for Chinese
NLP tasks, we develop a character-based parsing
model, which can jointly perform word segmen-
tation, POS tagging and phrase-structure parsing.
To our knowledge, this is the first work to develop
a transition-based system that jointly performs the
above three tasks. Trained using annotated word
structures, our parser also analyzes the internal
structures of Chinese words.

Our character-based Chinese parsing model is
based on the work of Zhang and Clark (2009),
which is a transition-based model for lexicalized
constituent parsing. They use a beam-search de-
coder so that the transition action sequence can be
globally optimized. The averaged perceptron with
early-update (Collins and Roark, 2004) is used to
train the model parameters. Their transition sys-
tem contains four kinds of actions: (1) SHIFT,
(2) REDUCE-UNARY, (3) REDUCE-BINARY and
(4) TERMINATE. The system can provide bina-
rzied CFG trees in Chomsky Norm Form, and they
present a reversible conversion procedure to map
arbitrary CFG trees into binarized trees.

In this work, we remain consistent with their
work, using the head-finding rules of Zhang and
Clark (2008), and the same binarization algo-
rithm.! We apply the same beam-search algorithm
for decoding, and employ the averaged perceptron
with early-update to train our model.

We make two extensions to their work to en-
able joint segmentation, POS tagging and phrase-
structure parsing from the character level. First,
we modify the actions of the transition system for

"We use a left-binarization process for flat word structures
that contain more than two characters.

«— stack queue —»

Figure 5: A state in a transition-based model.

parsing the inner structures of words. Second, we
extend the feature set for our parsing problem.

3.1 The Transition System

In a transition-based system, an input sentence is
processed in a linear left-to-right pass, and the
output is constructed by a state-transition pro-
cess. We learn a model for scoring the transi-
tion A; from one state ST; to the next ST; 1. As
shown in Figure 5, a state ST consists of a stack
S and a queue Q, where S = (---,51,S) con-
tains partially constructed parse trees, and ) =
(Q0,Q1, -+ ,Qn—j) = (¢j,¢jy1,--+ ,Cy) is the
sequence of input characters that have not been
processed. The candidate transition action A at
each step is defined as follows:

e SHIFT-SEPARATE (t): remove the head

character ¢; from (), pushing a subword node
S’
2

parse tree Sy must correspond to a full-word
or a phrase node, and the character c; is the
first character of the next word. The argu-

ment ¢ denotes the POS of S’.

onto S, assigning S’.t = t. Note that the

e SHIFT-APPEND: remove the head character
¢; from @, pushing a subword node f—; onto
S. ¢; will eventually be combined with all the
subword nodes on top of .S to form a word,
and thus we must have S’.t = Sy.t.

e REDUCE-SUBWORD (d): pop the top two
nodes Sy and S off S, pushing a new sub-
word node %:90 onto S. The argument d
denotes the head direction of S’, of which
the value can be “left”, “right” or “coordi-
nation”.> Both Sy and S; must be subword
nodes and S’.t = Sp.t = 5.t

2We use this notation for a compact representation of a

tree node, where the numerator represents a father node, and
the denominator represents the children.

3For the head direction “coordination”, we extract the
head character from the left node.



Category ‘ Feature templates

When to Apply

Sontl Sintl Sinwl Santl
Qoc Qic Q2c Qszc Qoc-Qic
Soztwl Sortwl Sout’wl Sutwl
Sonw - Sitnw  Sponw - Sinl
Sonw - Qoc  Sonl - Qoc  Sinw - Qoc
Sonl - Sinl - Saonl  Sponw - Sinl - Sanl
Sonw - Sinl - Qoc  Sonl - Sinw - Qoc
Sonct Sonctl Sincl
Sancl Sanct Sanctl Ssncl

Sonc-Sinec Soncl - Sinl

Structure Sonwl
features

Slrtwl

Soncl

Sanwl
Qic- Qzc
Slut’u}l,

Sonl - Stnw  Sonl - Sinl,
SlleQC,

Sonl - Sinw - Sanl
Sonl - Sinl - Qoc,
Sinect Sinctl,
Ssnet Ssnectl,
Sonl - Sincl
Sonc-Qoc Sonl-Qoc Sinc-Qoc Sinl-Qoc,
Sonc- Sinc-Qoc Sonc-Sinc-Qoc-Qic

Ssntl  Ssnwl, All

Q2c- Qszc,

Sonl . Slnl . SQTL’UJ,

Soncl - Sincl,

start(Sow) - start(S1w)
indict(SleOw) . len(SleOw)

start(Sow) - end(S1w),
indict(SleOw, Sot) . len(Sleow)

REDUCE-SUBWORD

String t_1-to t_o-t_1to w_1-to co-to

start(w, 1) -to

c—1-co-t—1-1o, SHIFT-SEPARATE

features | w_1

start(w—_1) - len(w_1)

w—2 - W-1
end(w-1) - len(w_1)
start(w—_1) - co

w—o - len(wfl)

w_1-co end(w—2) w_1

w—1 -+ len(wfz) w_q1-t_1

w—q-t_q- end(wfg)

w—1,where len(w_1) =1 end(w-1) - co,
start(w—1) - end(w-1),
end(w—2) - end(w-1),

w

C_2-C_1-:Cpo" t,l,where 16“(11)71) =1 end(wfl) . tfl,
c-t_1-end(w_1),where ¢ € w_1 and ¢ # end(w_1)

REDUCE-WORD

—1-°t—2 w-1-t-1-co,

co-t—1 c—_1-co start(w_l) ccot—1

C—-1-Co - t_l

SHIFT-APPEND

Table 1: Feature templates for the character-level parser. The function start(-), end(-) and len(-) denote
the first character, the last character and the length of a word, respectively.

e REDUCE-WORD: pop the top node Sy off .S,
pushing a full-word node g—; onto S. This re-
duce action generates a full-word node from
Sy, which must be a subword node.

REDUCE-BINARY (d,l): pop the top two
nodes Sy and S7 off S, pushing a binary
phrase node %:90 onto S. The argument [
denotes the constituent label of S’, and the ar-
gument d specifies the lexical head direction
of S’, which can be either “left” or “right”.
Both Sy and S7; must be a full-word node or
a phrase node.

REDUCE-UNARY (!) : pop the top node Sy
off S, pushing a unary phrase node g—; onto
S. 1 denotes the constituent label of S’.

e TERMINATE: mark parsing complete.

Compared to set of actions in our baseline
transition-based phrase-structure parser, we have
made three major changes. First, we split the orig-
inal SHIFT action into SHIFT-SEPARATE (t)
and SHIFT-APPEND, which jointly perform the
word segmentation and POS tagging tasks. Sec-
ond, we add an extra REDUCE—-SUBWORD (d) op-
eration, which is used for parsing the inner struc-
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tures of words. Third, we add REDUCE-WORD,
which applies a unary rule to mark a completed
subword node as a full-word node. The new node
corresponds to a unary “-t” node in Figure 1(b).

3.2 Features

Table 1 shows the feature templates of our model.
The feature set consists of two categories: (1)
structure features, which encode the structural in-
formation of subwords, full-words and phrases.
(2) string features, which encode the information
of neighboring characters and words.

For the structure features, the symbols .Sy, 51,
So, S3 represent the top four nodes on the stack;
Qo, Q1, Q2, Q3 denote the first four characters
in the queue; Sg;, Sor, Sy represent the left,
right child for a binary branching Sy, and the sin-
gle child for a unary branching Sy, respectively;
S11, Sir, S1y represent the left, right child for
a binary branching S;, and the single child for
a unary branching S, respectively; n represents
the type for a node; it is a binary value that indi-
cates whether the node is a subword node; ¢, w,
t and [ represent the head character, word (or sub-
word), POS tag and constituent label of a node, re-
spectively. The structure features are mostly taken



from the work of Zhang and Clark (2009). The
feature templates in bold are novel, are designed
to encode head character information. In particu-
lar, the indict function denotes whether a word is
in a tag dictionary, which is collected by extract-
ing all multi-character subwords that occur more
than five times in the training corpus.

For string features, cg, c_1 and c_g represent
the current character and its previous two charac-
ters, respectively; w_; and w_g represent the pre-
vious two words to the current character, respec-
tively; to, t—1 and t_o represent the POS tags of
the current word and the previous two words, re-
spectively. The string features are used for word
segmentation and POS tagging, and are adapted
from a state-of-the-art joint segmentation and tag-
ging model (Zhang and Clark, 2010).

In summary, our character-based parser con-
tains the word-based features of constituent parser
presented in Zhang and Clark (2009), the word-
based and shallow character-based features of
joint word segmentation and POS tagging pre-
sented in Zhang and Clark (2010), and addition-
ally the deep character-based features that encode
word structure information, which are the first pre-
sented by this paper.

4 Experiments

4.1 Setting

We conduct our experiments on the CTBS cor-
pus, using the standard split of data, with sections
1-270,400-931 and 1001-1151 for training, sec-
tions 301-325 for system development, and sec-
tions 271-300 for testing. We apply the same pre-
processing step as Harper and Huang (2011), so
that the non-terminal yield unary chains are col-
lapsed to single unary rules.

Since our model can jointly process word seg-
mentation, POS tagging and phrase-structure pars-
ing, we evaluate our model for the three tasks, re-
spectively. For word segmentation and POS tag-
ging, standard metrics of word precision, recall
and F-score are used, where the tagging accuracy
is the joint accuracy of word segmentation and
POS tagging. For phrase-structure parsing, we
use the standard parseval evaluation metrics on
bracketing precision, recall and F-score. As our
constituent trees are based on characters, we fol-
low previous work and redefine the boundary of
a constituent span by its start and end characters.
In addition, we evaluate the performance of word
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(a) Joint segmentation and
POS tagging F-scores.

(b) Joint constituent parsing
F-scores.

Figure 6: Accuracies against the training epoch
for joint segmentation and tagging as well as joint
phrase-structure parsing using beam sizes 1, 4, 16
and 64, respectively.

structures, using the word precision, recall and F-
score metrics. A word structure is correct only if
the word and its internal structure are both correct.

4.2 Development Results

Figure 6 shows the accuracies of our model using
different beam sizes with respect to the training
epoch. The performance of our model increases
as the beam size increases. The amount of in-
creases becomes smaller as the size of the beam
grows larger. Tested using gcc 4.7.2 and Fedora
17 on an Intel Core i5-3470 CPU (3.20GHz), the
decoding speeds are 318.2, 98.0, 30.3 and 7.9 sen-
tences per second with beam size 1, 4, 16 and 64,
respectively. Based on this experiment, we set the
beam size 64 for the rest of our experiments.

The character-level parsing model has the ad-
vantage that deep character information can be ex-
tracted as features for parsing. For example, the
head character of a word is exploited in our model.
We conduct feature ablation experiments to eval-
uate the effectiveness of these features. We find
that the parsing accuracy decreases about 0.6%
when the head character related features (the bold
feature templates in Table 1) are removed, which
demonstrates the usefulness of these features.

4.3 Final Results

In this section, we present the final results of our
model, and compare it to two baseline systems, a
pipelined system and a joint system that is trained
with automatically generated flat words structures.

The baseline pipelined system consists of the
joint segmentation and tagging model proposed by
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[Task [P R F
Pipeline Seg 197.35 98.02 97.69
Tag [93.51 94.15 93.83
Parse | 81.58 82.95 82.26
Flat word Seg 197.32 98.13 97.73
structures Tag |94.09 94.88 94.48
Parse | 83.39 83.84 83.61
Annotated Seg |97.49 98.18 97.84
word structures | Tag {94.46 95.14 94.80
Parse | 84.42 84.43 84.43
WS |94.02 94.69 94.35

Table 2: Final results on test corpus.

Zhang and Clark (2010), and the phrase-structure
parsing model of Zhang and Clark (2009). Both
models give state-of-the-art performances, and are
freely available.* The model for joint segmen-
tation and POS tagging is trained with a 16-
beam, since it achieves the best performance. The
phrase-structure parsing model is trained with a
64-beam. We train the parsing model using the
automatically generated POS tags by 10-way jack-
knifing, which gives about 1.5% increases in pars-
ing accuracy when tested on automatic segmented
and POS tagged inputs.

The joint system trained with flat word struc-
tures serves to test the effectiveness of our joint
parsing system over the pipelined baseline, since
flat word structures do not contain additional
sources of information over the baseline. It is also
used to test the usefulness of our annotation in im-
proving parsing accuracy.

Table 2 shows the final results of our model
and the two baseline systems on the test data.
We can see that both character-level joint mod-
els outperform the pipelined system; our model
with annotated word structures gives an improve-
ment of 0.97% in tagging accuracy and 2.17% in
phrase-structure parsing accuracy. The results also
demonstrate that the annotated word structures are
highly effective for syntactic parsing, giving an ab-
solute improvement of 0.82% in phrase-structure
parsing accuracy over the joint model with flat
word structures.

Row “WS” in Table 2 shows the accuracy of
hierarchical word-structure recovery of our joint
system. This figure can be useful for high-level ap-
plications that make use of character-level trees by

*http://sourceforge.net/projects/zpar/, version 0.5.
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our parser, as it reflects the capability of our parser
in analyzing word structures. In particular, the per-
formance of parsing OOV word structure is an im-
portant metric of our parser. The recall of OOV
word structures is 60.43%, while if we do not con-
sider the influences of segmentation and tagging
errors, counting only the correctly segmented and
tagged words, the recall is 87.96%.

4.4 Comparison with Previous Work

In this section, we compare our model to previous
systems on the performance of joint word segmen-
tation and POS tagging, and the performance of
joint phrase-structure parsing.

Table 3 shows the results. Kruengkrai+ ’09
denotes the results of Kruengkrai et al. (2009),
which is a lattice-based joint word segmentation
and POS tagging model; Sun 11 denotes a sub-
word based stacking model for joint segmenta-
tion and POS tagging (Sun, 2011), which uses a
dictionary of idioms; Wang+ ’11 denotes a semi-
supervised model proposed by Wang et al. (2011),
which additionally uses the Chinese Gigaword
Corpus; Li 11 denotes a generative model that
can perform word segmentation, POS tagging and
phrase-structure parsing jointly (Li, 2011); Li+
12 denotes a unified dependency parsing model
that can perform joint word segmentation, POS
tagging and dependency parsing (Li and Zhou,
2012); Li 11 and Li+ ’12 exploited annotated
morphological-level word structures for Chinese;
Hatori+ *12 denotes an incremental joint model
for word segmentation, POS tagging and depen-
dency parsing (Hatori et al., 2012); they use exter-
nal dictionary resources including HowNet Word
List and page names from the Chinese Wikipedia;
Qian+ ’12 denotes a joint segmentation, POS tag-
ging and parsing system using a unified frame-
work for decoding, incorporating a word segmen-
tation model, a POS tagging model and a phrase-
structure parsing model together (Qian and Liu,
2012); their word segmentation model is a combi-
nation of character-based model and word-based
model. Our model achieved the best performance
on both joint segmentation and tagging as well as
joint phrase-structure parsing.

Our final performance on constituent parsing is
by far the best that we are aware of for the Chinese
data, and even better than some state-of-the-art
models with gold segmentation. For example, the
un-lexicalized PCFG model of Petrov and Klein



System Seg Tag Parse
Kruengkrai+ *09 97.87 93.67 -
Sun 11 98.17% 94.02*% —
Wang+ 11 98.11*% 94.18*% —
Li’11 973 935 797
Li+ 12 9750 9331 -
Hatori+ *12 98.26% 94.64*% —
Qian+ 12 97.96 93.81 82.85
Ours pipeline 97.69 93.83 82.26
Ours joint flat 9773 94.48 83.61
Ours joint annotated |97.84 94.80 84.43

Table 3: Comparisons of our final model with
state-of-the-art systems, where “*” denotes that
external dictionary or corpus has been used.

(2007) achieves 83.45%° in parsing accuracy on
the test corpus, and our pipeline constituent pars-
ing model achieves 83.55% with gold segmenta-
tion. They are lower than the performance of our
character-level model, which is 84.43% without
gold segmentation. The main differences between
word-based and character-level parsing models are
that character-level model can exploit character
features. This further demonstrates the effective-
ness of characters in Chinese parsing.

5 Related Work

Recent work on using the internal structure of
words to help Chinese processing gives impor-
tant motivations to our work. Zhao (2009) stud-
ied character-level dependencies for Chinese word
segmentation by formalizing segmentsion task in
a dependency parsing framework. Their results
demonstrate that annotated word dependencies
can be helpful for word segmentation. Li (2011)
pointed out that the word’s internal structure is
very important for Chinese NLP. They annotated
morphological-level word structures, and a unified
generative model was proposed to parse the Chi-
nese morphological and phrase-structures. Li and
Zhou (2012) also exploited the morphological-
level word structures for Chinese dependency
parsing. They proposed a unified transition-based
model to parse the morphological and depen-
dency structures of a Chinese sentence in a unified
framework. The morphological-level word struc-

SWe rerun the parser and evaluate it using the publicly-
available code on http://code.google.com/p/berkeleyparser
by ourselves, since we have a preprocessing step for the
CTBS5 corpus.
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tures concern only prefixes and suffixes, which
cover only 35% of entire words in CTB. Accord-
ing to their results, the final performances of their
model on word segmentation and POS tagging are
below the state-of-the-art joint segmentation and
POS tagging models. Compared to their work,
we consider the character-level word structures
for Chinese parsing, presenting a unified frame-
work for segmentation, POS tagging and phrase-
structure parsing. We can achieve improved seg-
mentation and tagging performance.

Our character-level parsing model is inspired
by the work of Zhang and Clark (2009), which
is a transition-based model with a beam-search
decoder for word-based constituent parsing. Our
work is based on the shift-reduce operations of
their work, while we introduce additional opera-
tions for segmentation and POS tagging. By such
an extension, our model can include all the fea-
tures in their work, together with the features for
segmentation and POS tagging. In addition, we
propose novel features related to word structures
and interactions between word segmentation, POS
tagging and word-based constituent parsing.

Luo (2003) was the first work to introduce the
character-based syntax parsing. They use it as
a joint framework to perform Chinese word seg-
mentation, POS tagging and syntax parsing. They
exploit a generative maximum entropy model for
character-based constituent parsing, and find that
POS information is very useful for Chinese word
segmentation, but high-level syntactic information
seems to have little effect on segmentation. Com-
pared to their work, we use a transition-based dis-
criminative model, which can benefit from large
amounts of flexible features. In addition, in-
stead of using flat structures, we manually anno-
tate hierarchal tree structures of Chinese words
for converting word-based constituent trees into
character-based constituent trees.

Hatori et al. (2012) proposed the first joint work
for the word segmentation, POS tagging and de-
pendency parsing. They used a single transition-
based model to perform the three tasks. Their
work demonstrates that a joint model can improve
the performance of the three tasks, particularly
for POS tagging and dependency parsing. Qian
and Liu (2012) proposed a joint decoder for word
segmentation, POS tagging and word-based con-
stituent parsing, although they trained models for
the three tasks separately. They reported better



performances when using a joint decoder. In our
work, we employ a single character-based dis-
criminative model to perform segmentation, POS
tagging and phrase-structure parsing jointly, and
study the influence of annotated word structures.

6 Conclusions and Future Work

We studied the internal structures of more than
37,382 Chinese words, analyzing their structures
as the recursive combinations of characters. Using
these word structures, we extended the CTB into
character-level trees, and developed a character-
based parser that builds such trees from raw char-
acter sequences. Our character-based parser per-
forms segmentation, POS tagging and parsing
simultaneously, and significantly outperforms a
pipelined baseline. We make both our annotations
and our parser available online.
In summary, our contributions include:

e We annotated the internal structures of Chi-
nese words, which are potentially useful
to character-based studies of Chinese NLP.
We extend CTB-style constituent trees into
character-level trees using our annotations.

We developed a character-based parsing
model that can produce our character-level
constituent trees. Our parser jointly performs
word segmentation, POS tagging and syntac-
tic parsing.

We investigated the effectiveness of our joint
parser over pipelined baseline, and the effec-
tiveness of our annotated word structures in
improving parsing accuracies.

Future work includes investigations of our
parser and annotations on Chinese NLP tasks.
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Abstract

We present a novel transition-based, greedy
dependency parser which implements a
flexible mix of bottom-up and top-down
strategies. The new strategy allows the
parser to postpone difficult decisions until
the relevant information becomes available.
The novel parser has a ~12% error reduc-
tion in unlabeled attachment score over an
arc-eager parser, with a slow-down factor
of 2.8.

1 Introduction

Dependency-based methods for syntactic parsing
have become increasingly popular during the last
decade or so. This development is probably due
to many factors, such as the increased availability
of dependency treebanks and the perceived use-
fulness of dependency structures as an interface
to downstream applications, but a very important
reason is also the high efficiency offered by de-
pendency parsers, enabling web-scale parsing with
high throughput. The most efficient parsers are
greedy transition-based parsers, which only explore
a single derivation for each input and relies on
a locally trained classifier for predicting the next
parser action given a compact representation of the
derivation history, as pioneered by Yamada and
Matsumoto (2003), Nivre (2003), Attardi (2006),
and others. However, while these parsers are cap-
able of processing tens of thousands of tokens per
second with the right choice of classifiers, they are
also known to perform slightly below the state-of-
the-art because of search errors and subsequent
error propagation (McDonald and Nivre, 2007),
and recent research on transition-based depend-
ency parsing has therefore explored different ways
of improving their accuracy.

The most common approach is to use beam
search instead of greedy decoding, in combination
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with a globally trained model that tries to minim-
ize the loss over the entire sentence instead of a
locally trained classifier that tries to maximize the
accuracy of single decisions (given no previous er-
rors), as first proposed by Zhang and Clark (2008).
With these methods, transition-based parsers have
reached state-of-the-art accuracy for a number of
languages (Zhang and Nivre, 2011; Bohnet and
Nivre, 2012). However, the drawback with this ap-
proach is that parsing speed is proportional to the
size of the beam, which means that the most accur-
ate transition-based parsers are not nearly as fast
as the original greedy transition-based parsers. An-
other line of research tries to retain the efficiency of
greedy classifier-based parsing by instead improv-
ing the way in which classifiers are learned from
data. While the classical approach limits training
data to parser states that result from oracle predic-
tions (derived from a treebank), these novel ap-
proaches allow the classifier to explore states that
result from its own (sometimes erroneous) predic-
tions (Choi and Palmer, 2011; Goldberg and Nivre,
2012).

In this paper, we explore an orthogonal approach
to improving the accuracy of transition-based pars-
ers, without sacrificing their advantage in efficiency,
by introducing a new type of transition system.
While all previous transition systems assume a
static parsing strategy with respect to top-down
and bottom-up processing, our new system allows
a dynamic strategy for ordering parsing decisions.
This has the advantage that the parser can postpone
difficult decisions until the relevant information be-
comes available, in a way that is not possible in
existing transition systems. A second advantage of
dynamic parsing is that we can extend the feature
inventory of previous systems. Our experiments
show that these advantages lead to significant im-
provements in parsing accuracy, compared to a
baseline parser that uses the arc-eager transition
system of Nivre (2003), which is one of the most
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widely used static transition systems.

2 Static vs. Dynamic Parsing

The notions of bottom-up and top-down parsing
strategies do not have a general mathematical defin-
ition; they are instead specified, often only inform-
ally, for individual families of grammar formal-
isms. In the context of dependency parsing, a pars-
ing strategy is called purely bottom-up if every
dependency h — d is constructed only after all
dependencies of the form d — ¢ have been con-
structed. Here h — d denotes a dependency with
h the head node and d the dependent node. In con-
trast, a parsing strategy is called purely top-down
if h — d is constructed before any dependency of
the form d — 1.

If we consider transition-based dependency pars-
ing (Nivre, 2008), the purely bottom-up strategy is
implemented by the arc-standard model of Nivre
(2004). After building a dependency h — d, this
model immediately removes from its stack node d,
preventing further attachment of dependents to this
node. A second popular parser, the arc-eager model
of Nivre (2003), instead adopts a mixed strategy.
In this model, a dependency h — d is constructed
using a purely bottom-up strategy if it represents a
left-arc, that is, if the dependent d is placed to the
left of the head £ in the input string. In contrast, if
h — d represents a right-arc (defined symmetric-
ally), then this dependency is constructed before
any right-arc d — ¢ (top-down) but after any left-
arc d — ¢ (bottom-up).

What is important to notice about the above
transition-based parsers is that the adopted pars-
ing strategies are static. By this we mean that each
dependency is constructed according to some fixed
criterion, depending on structural conditions such
as the fact that the dependency represents a left or a
right arc. This should be contrasted with dynamic
parsing strategies in which several parsing options
are simultaneously available for the dependencies
being constructed.

In the context of left-to-right, transition-based
parsers, dynamic strategies are attractive for sev-
eral reasons. One argument is related to the well-
known PP-attachment problem, illustrated in Fig-
ure 1. Here we have to choose whether to attach
node P as a dependent of V (arc a3) or else as
a dependent of N1 (arc az). The purely bottom-
up arc-standard model has to take a decision as
soon as N1 is placed into the stack. This is so
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Figure 1: PP-attachment example, with dashed arcs
identifying two alternative choices.

because the construction of « excludes arg from
the search space, while the alternative decision of
shifting P into the stack excludes as. This is bad,
because the information about the correct attach-
ment could come from the lexical content of node P.
The arc-eager model performs slightly better, since
it can delay the decision up to the point in which o
has been constructed and P is read from the buffer.
However, at this point it must make a commitment
and either construct ag or pop N1 from the stack
(implicitly committing to ai) before N2 is read
from the buffer. In contrast with this scenario, in
the next sections we implement a dynamic parsing
strategy that allows a transition system to decide
between the attachments ais and «vg after it has seen
all of the four nodes V, N1, P and N2.

Other additional advantages of dynamic parsing
strategies with respect to static strategies are re-
lated to the increase in the feature inventory that
we apply to parser states, and to the increase of
spurious ambiguity. However, these arguments are
more technical than the PP-attachment argument
above, and will be discussed later.

3 Dependency Parser

In this section we present a novel transition-based
parser for projective dependency trees, implement-
ing a dynamic parsing strategy.

3.1 Preliminaries

For non-negative integers ¢ and j with ¢ < j, we
write [i, j] to denote the set {¢,i+1,...,j}. When
i > 7, [4,j] is the empty set.

We represent an input sentence as a string w =
wo - Wy, 1 > 1, where token wq is a special
root symbol and, for each ¢ € [1,n], token w; =
(i, ai,t;) encodes a lexical element a; and a part-of-
speech tag t; associated with the i-th word in the
sentence.

A dependency tree for w is a directed, ordered
tree Ty, = (Viy, Aw), where V,, = {w; | 1 €
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Figure 2: A dependency tree with left spine
(wyg, we, w1 ) and right spine (wy, wy).

[0,n]} is the set of nodes, and A,, C V,, x V,, is
the set of arcs. Arc (w;, w;) encodes a dependency
w; — w;. A sample dependency tree (excluding
wp) is displayed in Figure 2. If (w;, w;) € A,, for
J < i, we say that w; is a left child of w;; a right
child is defined in a symmetrical way.

The left spine of 7', is an ordered sequence
(u1,...,up) withp > 1and u; € V,, fori € [1, p],
consisting of all nodes in a descending path from
the root of T, taking the leftmost child node at
each step. More formally, wu; is the root node of T,
and u; is the leftmost child of u;_1, for i € [2,p].
The right spine of T, is defined symmetrically;
see again Figure 2. Note that the left and the right
spines share the root node and no other node.

3.2 Basic Idea

Transition-based dependency parsers use a stack
data structure, where each stack element is associ-
ated with a tree spanning some (contiguous) sub-
string of the input w. The parser can combine
two trees T and 7" through attachment operations,
called left-arc or right-arc, under the condition that
T and T” appear at the two topmost positions in
the stack. Crucially, only the roots of 7" and 7" are
available for attachment; see Figure 3(a).

In contrast, a stack element in our parser records
the entire left spine and right spine of the associated
tree. This allows us to extend the inventory of the
attachment operations of the parser by including
the attachment of tree 7" as a dependent of any node
in the left or in the right spine of a second tree 17,
provided that this does not violate projectivity.'
See Figure 3(b) for an example.

The new parser implements a mix of bottom-up
and top-down strategies, since after any of the at-
tachments in Figure 3(b) is performed, additional
dependencies can still be created for the root of 7.
Furthermore, the new parsing strategy is clearly dy-

'A dependency tree for w is projective if every subtree has
a contiguous yield in w.
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Figure 3: Left-arc attachment of T to 7" in case
of (a) standard transition-based parsers and (b) our
parser.

namic, due to the free choice in the timing for these
attachments. The new strategy is more powerful
than the strategy of the arc-eager model, since we
can use top-down parsing at left arcs, which is not
allowed in arc-eager parsing, and we do not have
the restrictions of parsing right arcs (h — d) before
the attachment of right dependents at node d.

To conclude this section, let us resume our dis-
cussion of the PP-attachment example in Figure 1.
We observe that the new parsing strategy allows the
construction of a tree 7" consisting of the only de-
pendency V — N1 and a tree 7', placed at the right
of T, consisting of the only dependency P — N2.
Since the right spine of 7" consists of nodes V
and N1, we can freely choose between attachment
V — P and attachment N1 — P. Note that this is
done after we have seen node N2, as desired.

3.3 Transition-based Parser

We assume the reader is familiar with the formal
framework of transition-based dependency parsing
originally introduced by Nivre (2003); see Nivre
(2008) for an introduction. To keep the notation at
a simple level, we only discuss here the unlabeled
version of our parser; however, a labeled extension
is used in §5 for our experiments.

Our transition-based parser uses a stack data
structure to store partial parses for the input string
w. We represent the stack as an ordered sequence
o = |og,...,01],d > 0, of stack elements, with
the topmost element placed at the right. When d =
0, we have the empty stack o = [|. Sometimes we
use the vertical bar to denote the append operator
for o, and write 0 = ¢”'|o7 to indicate that o is the
topmost element of o.

A stack element is a pair
. 7,Uk’7q>)

Ok = (<uk,la s >uk,p>7 <Uk:,17 ..

where the ordered sequences (uy 1, . .., u,p) and



(Uk,1,...,Vk,q) are the left and the right spines, re-
spectively, of the tree associated with 0. Recall
that ug 1 = v 1, since the root node of the associ-
ated tree is shared by the two spines.

The parser also uses a buffer to store the por-
tion of the input string still to be processed. We
represent the buffer as an ordered sequence 5 =
[Wi, ..., wy], © > 0, of tokens from w, with the
first element placed at the left. Note that 3 always
represents a (non-necessarily proper) suffix of w.
When i > n, we have the empty buffer 5 = [].
Sometimes we use the vertical bar to denote the
append operator for 3, and write 8 = w; |’ to in-
dicate that w; is the first token of 3; consequently,
we have 8/ = [wit1, ..., wy).

When processing w, the parser reaches several
states, technically called configurations. A con-
figuration of the parser relative to w is a triple
¢ = (0,8,A), where o and (3 are a stack and
a buffer, respectively, and A C V,, x V,, is a
set of arcs. The initial configuration for w is
([, [wo, - .., wy],0). The set of terminal config-
urations consists of all configurations of the form
([e1], 1], A), where o7 is associated with a tree hav-
ing root wyo, thatis, u; 1 = v1,1 = wo, and A is any
set of arcs.

The core of a transition-based parser is the set
of its transitions. Each transition is a binary rela-
tion defined over the set of configurations of the
parser. Since the set of configurations is infinite,
a transition is infinite as well, when viewed as a
set. However, transitions can always be specified
by some finite means. Our parser uses three types
of transitions, defined in what follows.

e SHIFT, or sh for short. This transition re-
moves the first node from the buffer and
pushes into the stack a new element, consist-
ing of the left and right spines of the associ-
ated tree. More formally

(07 wi’/@a A) Fsh (U‘(<wi>7 <wi>)757‘4)

LEFT-ARCy, k > 1, or la, for short. Let h
be the k-th node in the left spine of the top-
most tree in the stack, and let d be the root
node of the second topmost tree in the stack.
This transition creates a new arc h — d. Fur-
thermore, the two topmost stack elements are
replaced by a new element associated with the
tree resulting from the h — d attachment. The
transition does not advance with the reading
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of the buffer. More formally

(o'oalor, B, A) Fiay, (0'|01as B, AU {h — d})

where
01 = (<U1,1, . ,U1,p>, <U1,1, e ,Ul,q>) )
02 = (<U2,1, e ,U2,r>, <U2,1, e ,02,s>) )
Ola = (<u1,17 R 7u1,k7u2,17 R 7u2,1”>5
<U171,...,2}17q>),

and where we have set h = uq  and d = ug 1.

RIGHT-ARCy, k > 1, or ra;, for short. This
transition is defined symmetrically with re-
spect to lag. We have

(U,‘O—2|017/87 A) l_rak (U,‘Ura,,@, AU {h — d})
where 01 and o3 are as in the laj, case,

LN u277’>7

<y U2,k V1,1, - -

ora = ((uz,1, ..

(v2,1, .. S U1Lg)) s

and we have set h = vy, and d = vy 1.

Transitions lag and ra; are parametric in k,
where k is bounded by the length of the input string
and not by a fixed constant (but see also the experi-
mental findings in §5). Thus our system uses an un-
bounded number of transition relations, which has
an apparent disadvantage for learning algorithms.
We will get back to this problem in §4.3.

A complete computation relative to w is a se-
quence of configurations ¢y, c3, . .., ¢, t > 1, such
that c; and ¢; are initial and final configurations,
respectively, and for each i € [2,t], ¢; is produced
by the application of some transition to ¢;—;. It is
not difficult to see that the transition-based parser
specified above is sound, meaning that the set of
arcs constructed in any complete computation on
w is always a dependency tree for w. The parser
is also complete, meaning that every (projective)
dependency tree for w is constructed by some com-
plete computation on w. A mathematical proof of
this statement is beyond the scope of this paper,
and will not be provided here.

3.4 Deterministic Parsing Algorithm

The transition-based parser of the previous sec-
tion is a nondeterministic device, since several
transitions can be applied to a given configuration.
This might result in several complete computations



Algorithm 1 Parsing Algorithm

Algorithm 2 Learning Algorithm

Input: string w = wy - - - wy,, function score()
Output: dependency tree T,
c=(0,8,A4) < (], [wo, ...
while [o| > 1V |5]| > 0do
while [o]| < 2 do
update ¢ with sh
p < length of left spine of o
s < length of right spine of o9
T+ {lax | ke [1,p]} U
{ra | k €[1,s]} U{sh}
bestT <« argmax, 7 score(t,c)
update ¢ with bestT
return 7, = (V,,, A)

; Wn), 0)

for w. We present here an algorithm that runs
the parser in pseudo-deterministic mode, greed-
ily choosing at each configuration the transition
that maximizes some score function. Algorithm 1
takes as input a string w and a scoring function
score() defined over parser transitions and parser
configurations. The scoring function will be the
subject of §4 and is not discussed here. The output
of the parser is a dependency tree for w.

At each iteration the algorithm checks whether
there are at least two elements in the stack and, if
this is not the case, it shifts elements from the buffer
to the stack. Then the algorithm uses the function
score() to evaluate all transitions that can be ap-
plied under the current configuration ¢ = (o, 3, A),
and it applies the transition with the highest score,
updating the current configuration.

To parse a sentence of length n (excluding the
root token wy) the algorithm applies exactly 2n + 1
transitions. In the worst case, each transition ap-
plication involves 1 + p + s transition evaluations.
We therefore conclude that the algorithm always
reaches a configuration with an empty buffer and a
stack which contains only one element. Then the al-
gorithm stops, returning the dependency tree whose
arc set is defined as in the current configuration.

4 Model and Training

In this section we introduce the adopted learning
algorithm and discuss the model parameters.

4.1 Learning Algorithm

We use a linear model for the score function in
Algorithm 1, and define score(t,c) = & - ¢(t,c).
Here @ is a weight vector and function ¢ provides
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Input: pair (w = wo - - - wy, Ay), vector &
Output: vector &J
c=(0,8,A) « ([], [wo,...
while o] > 1V || > 0do
while [o]| < 2 do
update ¢ with SHIFT
p < length of left spine of o
s < length of right spine of o9
T+ {lax | ke [1,p]} U
{rap | k €[1,s]} U{sh}
bestT < argmax,c7 score(t,c)
bestCorrectT <
argmaxcaisCorrect(t) score(t, C)
if bestT # bestCorrectT then
W & — ¢(bestT, c)
+¢(bestCorrectT, c)
update ¢ with bestCorrectT

, W), 0)

a feature vector representation for a transition ¢ ap-
plying to a configuration c. The function ¢ will be
discussed at length in §4.3. The vector & is trained
using the perceptron algorithm in combination with
the averaging method to avoid overfitting; see Fre-
und and Schapire (1999) and Collins and Duffy
(2002) for details.

The training data set consists of pairs (w, A,),
where w is a sentence and A, is the set of arcs
of the gold (desired) dependency tree for w. At
training time, each pair (w, A,) is processed using
the learning algorithm described as Algorithm 2.
The algorithm is based on the notions of correct and
incorrect transitions, discussed at length in §4.2.

Algorithm 2 parses w following Algorithm 1 and
using the current &, until the highest score selec-
ted transition best1" is incorrect according to A,.
When this happens, & is updated by decreasing the
weights of the features associated with the incorrect
bestT and by increasing the weights of the features
associated with the transition bestCorrectT having
the highest score among all possible correct trans-
itions. After each update, the learning algorithm
resumes parsing from the current configuration by
applying bestCorrectT, and moves on using the
updated weights.

4.2 Correct and Incorrect Transitions

Standard transition-based dependency parsers are
trained by associating each gold tree with a canon-
ical complete computation. This means that, for
each configuration of interest, only one transition
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Figure 4: Graphical representation of configura-
tions; drawn arcs are in A, but have not yet been
added to the configuration. Transition sh is incor-
rect for configuration (a) and (b); sh and ra; are
correct for (¢); sh and lay are correct for (d).

leading to the gold tree is considered as correct. In
this paper we depart from such a methodology, and
follow Goldberg and Nivre (2012) in allowing more
than one correct transition for each configuration,
as explained in detail below.

Let (w, Ay) be a pair in the training set. In §3.3
we have mentioned that there is always a complete
computation on w that results in the construction
of the set A,4. In general, there might be more than
one computation for A,. This means that the parser
shows spurious ambiguity.

Observe that all complete computations for A,
share the same initial configuration cy ,, and final
configuration cf 4,. Consider now the set C(w) of
all configurations c that are reachable from cy ,,
meaning that there exists a sequence of transitions
that takes the parser from ¢y ,, to c. A configuration
c € C(w) is correct for A, if cx 4, is reachable
from c; otherwise, c is incorrect for A,.

Let ¢ € C(w) be a correct configuration for A,.
A transition ¢ is correct for c and A, if ¢ c
and ¢ is correct for A,4; otherwise, ¢ is incorrect
for c and A,. The next lemma provides a charac-
terization of correct and incorrect transitions; see
Figure 4 for examples. We use this characterization
in the implementation of predicate isCorrect() in
Algorithm 2.

Lemma 1 Let (w, A,) be a pair in the training set
and let ¢ € C(w) with ¢ = (0,3, A) be a correct
configuration for Ay. Let also vy i, k € [1,q], be
the nodes in the right spine of o1.

() lag and ray, are incorrect for c and A, if and
only if they create a new arc (h — d) & Agy;

(ii) sh is incorrect for c and A, if and only if the
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following conditions are both satisfied:

(a) there exists an arc (h — d) in A, such
that his in o and d = vy 1;

(b) there is no arc (K — d') in Ay with
h =wvik k€l q], andd in B. O

PROOF (SKETCH) To prove part (i) we focus on

transition ray; a similar argument applies to lag.

The ‘if” statement in part (i) is self-evident.

‘Only if’. Assuming that transition ray creates
anew arc (h — d) € Ay, we argue that from con-
figuration ¢’ with ¢ t,, ¢ we can still reach the
final configuration associated with A,. We have
h = va and d = uq1. The tree fragments in o
with roots vo 41 and w1 1 must be adjacent siblings
in the tree associated with A, since c is a correct
configuration for A, and (vo — wui1) € Ag.
This means that each of the nodes vg jy1,...,v26
in the right spine in o2 in ¢ must have already ac-
quired all of its right dependents, since the tree is
projective. Therefore it is safe for transition ray to
eliminate the nodes vo 11, ..., vz s from the right
spine in oy.

We now deal with part (ii). Let ¢ F¢, ¢, ¢ =
(o', 8, A).

‘If*. Assuming (ii)a and (ii)b, we argue that ¢’ is
incorrect. Node d is the head of o). Arc (b — d) is
not in A, and the only way we could create (h — d)
from ¢’ is by reaching a new configuration with d
in the topmost stack symbol, which amounts to say
that o] can be reduced by a correct transition. Node
h is in some o7, i > 2, by (ii)a. Then reduction of
o} implies that the root of o is reachable from the
root of %, which contradicts (ii)b.

‘Only if’. Assuming (ii)a is not satisfied, we
argue that sh is correct for c and A,. There must
be an arc (h — d) notin A with d = vy 1 and h is
some token w; in 8. From stack o/ = o”|c})|0] it
is always possible to construct (h — d) consuming
the substring of 5 up to w; and ending up with
stack 0”|0 g, Where o4 is a stack element with
root w;. From there, the parser can move on to
the final configuration ¢ 4,. A similar argument
applies if we assume that (ii)b is not satisfied. m

From condition (i) in Lemma 1 and from the fact
that there are no cycles in A, it follows that there
is at most one correct transition among the trans-
itions of type lay or rag. From condition (ii) in the
lemma we can also see that the existence of a cor-
rect transition of type lay or ra; for some configura-
tion does not imply that the sh transition is incorrect



for the same configuration; see Figures 4(c,d) for
examples. It follows that for a correct configuration
there might be at most 2 correct transitions. In our
training experiments for English in §5 we observe 2
correct transitions for 42% of the reached configur-
ations. This nondeterminism is a byproduct of the
adopted dynamic parsing strategy, and eventually
leads to the spurious ambiguity of the parser.

As already mentioned, we do not impose any ca-
nonical form on complete computations that would
hardwire a preference for some correct transition
and get rid of spurious ambiguity. Following Gold-
berg and Nivre (2012), we instead regard spurious
ambiguity as an additional resource of our pars-
ing strategy. Our main goal is that the training
algorithm learns to prefer a sh transition in a con-
figuration that does not provide enough information
for the choice of the correct arc. In the context of
dependency parsing, the strategy of delaying arc
construction when the current configuration is not
informative is called the easy-first strategy, and
has been first explored by Goldberg and Elhadad
(2010).

4.3 Feature Extraction

In existing transition-based parsers a set of atomic
features is statically defined and extracted from
each configuration. These features are then com-
bined together into complex features, according to
some feature template, and joined with the avail-
able transition types. This is not possible in our
system, since the number of transitions la; and ray,
is not bounded by a constant. Furthermore, it is not
meaningful to associate transitions la; and ray, for
any k > 1, always with the same features, since
the constructed arcs impinge on nodes at differ-
ent depths in the involved spines. It seems indeed
more significant to extract information that is local
to the arc h — d being constructed by each trans-
ition, such as for instance the grandparent and the
great grandparent nodes of d. This is possible if
we introduce a higher level of abstraction than in
existing transition-based parsers. We remark here
that this abstraction also makes the feature repres-
entation more similar to the ones typically found
in graph-based parsers, which are centered on arcs
or subgraphs of the dependency tree.

We index the nodes in the stack o relative to
the head node of the arc being constructed, in
case of the transitions la; or rag, or else relative
to the root node of o1, in case of the transition
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sh. More precisely, let ¢ = (0,3, A) be a con-
figuration and let ¢ be a transition. We define
the context of ¢ and ¢ as the tuple C(c,t) =
(ss3, $2, 81,41, 92, 9P, 99), Whose components are
placeholders for word tokens in o or in 5. All these
placeholders are specified in Table 1, for each c and
t. Figure 5 shows an example of feature extraction
for the displayed configuration ¢ = (o, 5, A) and
the transition la. In this case we have s3 = u3 1,
S9 = U1, 81 = U12, ¢1 = gp = U1, @2 = b1;
gg = none because the head of gp is not available
in c.

Note that in Table 1 placeholders are dynamic-
ally assigned in such a way that s; and s9 refer to
the nodes in the constructed arc h — d, and gp, gg
refer to the grandparent and the great grandparent
nodes, respectively, of d. Furthermore, the node
assigned to s3 is the parent node of ss, if such a
node is defined; otherwise, the node assigned to
s3 is the root of the tree fragment in the stack un-
derneath o2. Symmetrically, placeholders ¢; and
q2 refer to the parent and grandparent nodes of s,
respectively, when these nodes are defined; other-
wise, these placeholders get assigned tokens from
the buffer. See again Figure 5.

Finally, from the placeholders in C'(c, t) we ex-
tract a standard set of atomic features and their
complex combinations, to define the function ¢.
Our feature template is an extended version of the
feature template of Zhang and Nivre (2011), ori-
ginally developed for the arc-eager model. The
extension is obtained by adding top-down features
for left-arcs (based on placeholders gp and gg),
and by adding right child features for the first stack
element. The latter group of features is usually ex-
ploited for the arc-standard model, but is undefined
for the arc-eager model.

5 Experimental Assessment

Performance evaluation is carried out on the Penn
Treebank (Marcus et al., 1993) converted to Stan-
ford basic dependencies (De Marneffe et al., 2006).
We use sections 2-21 for training, 22 as develop-
ment set, and 23 as test set. The part-of-speech
tags are assigned by an automatic tagger with ac-
curacy 97.1%. The tagger used on the training set
is trained on the same data set by using four-way
jackknifing, while the tagger used on the develop-
ment and test sets is trained on all the training set.
We train an arc-labeled version of our parser.

In the first three lines of Table 2 we compare



context sh lag rag

placeholder k=1]k=2] k>2 k=1 | k=2]k>2
S1 U1 = V1,1 UL,k U1,1 = V1,1
S2 U2,1 = V2,1 U2,1 = V2,1 V2K
53 U3,1 = V3,1 U3,1 = 3,1 uz1 = V31 | V2 k-1
Q1 b1 by UL k—1 b1
q2 ba b2 by [ uig 2 b2
gp none none UL k-1 none V2 k-1
g9 none none none [ w1k 2 none none [ wak 2

Table 1: Definition of C'(c, t) = (s3, 2, S1, q1, q2, 9P, 99), for ¢ = (0’ |os|oa]o1, b1|b2|3, A) and ¢ of type
sh or lag, rag, & > 1. Symbols u; ; and v; y, are the k-th nodes in the left and right spines, respectively, of
stack element o, with u;1 = v;1 being the shared root of o;; none is an artificial element used when

some context’s placeholder is not available.

stack o buffer 3
_[2 N _
Uu3,1 = V3,1 U1 = V2,1 lag ~. U111 = V11 by by b3
| /\ \\ /\ |
| | \ | |
L U32 ug2 ! V22 ui2 ! V12 }
|
| | s |
I I U2,3 ’U/]_73 : I ’U]_73 1
! ! ! U
S3 52 S1 q1=9gp a2

context extracted for lag

Figure 5: Extraction of atomic features for context C'(c, lag) = (s3, s2, 81,41, q2, 9P, 99), ¢ = (o, 3, A).

[ parser [ iter | UAS [ LAS | UEM |
arc-standard 23 | 90.02 | 87.69 | 38.33
arc-eager 12 | 90.18 | 87.83 | 40.02
this work 30 | 91.33 | 89.16 | 42.38
arc-standard + easy-first | 21 | 90.49 | 88.22 | 39.61
arc-standard + spine 27 | 90.44 | 88.23 | 40.27

Table 2: Accuracy on test set, excluding punc-
tuation, for unlabeled attachment score (UAS),
labeled attachment score (LAS), unlabeled exact
match (UEM).

the accuracy of our parser against our implementa-
tion of the arc-eager and arc-standard parsers. For
the arc-eager parser, we use the feature template
of Zhang and Nivre (2011). The same template is
adapted to the arc-standard parser, by removing the
top-down parent features and by adding the right
child features for the first stack element. It turns out
that our feature template, described in §4.3, is the
exact merge of the templates used for the arc-eager
and the arc-standard parsers.

We train all parsers up to 30 iterations, and for
each parser we select the weight vector & from the
iteration with the best accuracy on the development
set. All our parsers attach the root node at the end
of the parsing process, following the ‘None’ ap-

proach discussed by Ballesteros and Nivre (2013).
Punctuation is excluded in all evaluation metrics.
Considering UAS, our parser provides an improve-
ment of 1.15 over the arc-eager parser and an im-
provement of 1.31 over the arc-standard parser, that
is an error reduction of ~12% and ~13%, respect-
ively. Considering LAS, we achieve improvements
of 1.33 and 1.47, with an error reduction of ~11%
and ~12%, over the arc-eager and the arc-standard
parsers, respectively.

We speculate that the observed improvement of
our parser can be ascribed to two distinct com-
ponents. The first component is the left-/right-
spine representation for stack elements, introduced
in §3.3. The second component is the easy-first
strategy, implemented on the basis of the spurious
ambiguity of our parser and the definition of cor-
rect/incorrect transitions in §4.2. In this perspective,
we observe that our parser can indeed be viewed as
an arc-standard model augmented with (i) the spine
representation, and (ii) the easy-first strategy. More
specifically, (i) generalizes the la/ra transitions to
the lag/ray, transitions, introducing a top-down com-
ponent into the purely bottom-up arc-standard. On
the other hand, (ii) drops the limitation of canonical
computations for the arc-standard, and leverages
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on the spurious ambiguity of the parser to enlarge
the search space.

The two components above are mutually inde-
pendent, meaning that we can individually imple-
ment each component on top of an arc-standard
model. More precisely, the arc-standard + spine
model uses the transitions lag/ra; but retains the
definition of canonical computation, defined by ap-
plying each lag/raj transition as soon as possible.
On the other hand, the arc-standard + easy-first
model retains the original la/ra transitions but is
trained allowing any correct transition at each con-
figuration. In this case the characterization of cor-
rect and incorrect configurations in Lemma 1 has
been adapted to transitions la/ra, taking into ac-
count the bottom-up constraint.

With the purpose of incremental comparison, we
report accuracy results for the two ‘incremental’
models in the last two lines of Table 2. Analyzing
these results, and comparing with the plain arc-
standard, we see that the spine representation and
the easy-first strategy individually improve accur-
acy. Moreover, their combination into our model
(third line of Table 2) works very well, with an
overall improvement larger than the sum of the
individual contributions.

We now turn to a computational analysis. At
each iteration our parser evaluates a number of
transitions bounded by ~ + 1, with ~y the maximum
value of the sum of the lengths of the left spine in o1
and of the right spine in o2. Quantity y is bounded
by the length n of the input sentence. Since the
parser applies exactly 2n + 1 transitions, worst
case running time is O(n?). We have computed
the average value of v on our English data set,
resulting in 2.98 (variance 2.15) for training set,
and 2.95 (variance 1.96) for development set. We
conclude that, in the expected case, running time is
O(n), with a slow down constant which is rather
small, in comparison to standard transition-based
parsers. Accordingly, when running our parser
against our implementation of the arc-eager and
arc-standard models, we measured a slow-down of
2.8 and 2.2, respectively. Besides the change in
representation, this slow-down is also due to the
increase in the number of features in our system.
We have also checked the worst case value of 7y in
our data set. Interestingly, we have seen that for
strings of length smaller than 40 this value linearly
grows with n, and for longer strings the growth
stops, with a maximum worst case observed value
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6 Concluding Remarks

We have presented a novel transition-based parser
using a dynamic parsing strategy, which achieves
a ~12% error reduction in unlabeled attachment
score over the static arc-eager strategy and even
more over the (equally static) arc-standard strategy,
when evaluated on English.

The idea of representing the right spine of a
tree within the stack elements of a shift-reduce
device is quite old in parsing, predating empirical
approaches. It has been mainly exploited to solve
the PP-attachment problem, motivated by psycho-
linguistic models. The same representation is also
adopted in applications of discourse parsing, where
right spines are usually called right frontiers; see
for instance Subba and Di Eugenio (2009). In
the context of transition-based dependency parsers,
right spines have also