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Abstract

Hyperdimensional Computing (HDC) is a
promising approach for various machine learn-
ing tasks. In this work, we focus on its
application to encoding large text datasets,
where the curse of dimensionality presents
a significant challenge. To mitigate this is-
sue, we employ compression techniques that
are based on classical models such as Term
Frequency-Inverse Document Frequency (TF-
IDF) and Latent Dirichlet Allocation (LDA).
We derive theoretical expressions for Compres-
sion Rate, Jensen-Shannon Divergence, and
ROUGE score, which quantify text size reduc-
tion, preservation of word distributions, and re-
tention of key information, respectively. These
expressions are validated using the IMDB,
arXiv, and AG News datasets. Our results
demonstrate that TF-IDF compression can re-
duce the encoded text size to 10% (or less in
some cases) of the original input while also
achieving slightly worse distinguishability be-
tween classes in classification tasks.

1 Introduction

Hyperdimensional Computing (HDC) is a machine
learning approach inspired by principles of neural
computation. It represents and manipulates data
through high-dimensional vectors, typically in the
order of thousands or millions, enabling informa-
tion processing and storage. This methodology
exhibits inherent robustness to noise, offers effi-
cient learning capabilities, and effectively handles
complex, unstructured data (Kanerva, 2009). HDC
has gained considerable interest in emerging ap-
plications, such as robotics and health diagnostics,
alongside established areas including data center

recommendation systems (Mitrokhin et al., 2019;
Neubert and Schubert, 2021; Yunhui et al., 2021).
This increasing adoption and interest highlights the
need for a robust theoretical justification. To ad-
dress this, researchers have investigated HDC from
different perspectives. These studies include an in-
depth examination of its geometric characteristics
(Pourmand et al., 2024), a comprehensive analysis
of its algebraic foundations (Yu et al., 2024), and a
detailed investigation of encoding structures used
within HDC systems (Thomas et al., 2021). Each
perspective contributes to a deeper understanding
of HDC and its potential applications.

Kanerva (2009) identified several valuable as-
pects of different HDC realizations. These include
their robustness to noise, which allows HDC to
maintain performance despite disruptions. Their
inherent transparency also helps the understanding
and interpretation of results. Furthermore, HDC ex-
hibit useful distributed properties, which enable ef-
ficient parallel processing, for example using GPUs.
HDC have been successfully applied in various sci-
entific fields (Rahimi et al., 2019; Kanerva, 2009),
and their application to Natural Language Process-
ing (NLP) tasks is of particular interest. Specifi-
cally, Kleyko et al. (2023) demonstrated success-
ful applications of HDC to translation, sentence
similarity, and topic classification problems. How-
ever, Thomas et al. (2021) pointed out important
limitations of basic HDC. Among these, a critical
challenge is the curse of dimensionality. This ef-
fect describes how increases in data size can cause
an exponential rise in vector space dimensionality,
complicating analysis and processing.

To address the challenge of the curse of dimen-



sionality in HDC, we propose using text compres-
sion techniques. In this paper, we aim at explor-
ing two classical techniques for text compression:
TF-IDF selection (Spärck Jones, 1972) and LDA
(Blei et al., 2003). Our contribution to the state-
of-the-art in HDC is threefold: First, in Section 2
we introduce a novel model – compression HDC
(CHDC) which combines a theory-based encod-
ing procedure with data compression using TF-IDF
or LDA. This model allows encoding information
efficiently while reducing the size of representa-
tions. Second, we analyze the compression effect
of these techniques (Section 3.1), providing theo-
rems that estimate the compression rate. Third, we
examine the encoding effect of the binary uniform
HDC (Section 3.2), showing that our results are
robust to different conditions. In Section 4, we ex-
perimentally validate our theoretical findings, for
the quality of the proposed compression and en-
coding processes. Finally, Section 5 wraps up and
discusses prospects.

2 Model Setup

The scheme of our proposed model is presented in
Figure 1. Before any text analysis is performed, a
standard procedure of pre-processing is used and is
therefore not shown in the scheme. This procedure
involves four steps applied to a large text (docu-
ment): first, only letters and numbers are retained;
second, the text is broken down into words; third,
lemmatization is applied, which reduces words to
their base or dictionary form (lemma); and finally,
stemming is applied, which reduces words to their
root form.

Figure 1: Workflow of the compression HDC model,
illustrating the processing of a large text using text com-
pression and HDC encoding (blue), to produce a final
embedding.

The core of our proposed compression HDC
model is defined by two components: compres-
sion and HDC encoding. These components are
detailed in Sections 2.1 and 2.2, respectively.

2.1 Compression procedure
Let W = {w1, . . . , wM} represent a set of M
unique words and corpus D = {d1, . . . , dN} is a
set of N documents. Given these sets (W,D), our

goal is to reduce the number of words in each doc-
ument by focusing on the most informative ones.
To achieve this, we assign a score to each word
and extract the set of word-score pairs {(w, sw)}.
For the TF-IDF-based compression, we define the
score as follows:

Definition 1. The TF-IDF score for a word wi in
a corpus D is defined as:

sw = ts(w,D) =
1

N

N∑
j=1

fw,j ln
N

Nw
, (1)

where fw,j is the frequency of word w in document
dj , Nw is the number of documents inD containing
word w.

Note that our definition differs from the standard
TF-IDF definition, which depends on w, d and D
and does not contain averaging over documents.

Latent Dirichlet Allocation (LDA) assumes that
documents are represented as bags of words, where
each document is a mixture of T topics, with T
being a predefined number of topics. The proba-
bility of a word w belonging to topic t is denoted
as ϕt,w. The matrix Φ = {ϕ1, . . . , ϕT } ∈ RT×M ,
where each ϕt represents the probability distribu-
tion of words for topic t, is determined by maxi-
mizing the likelihood function P(W,D|Φ, α), and
α ∈ RT

+ are the parameters of the Dirichlet distri-
bution (Blei et al., 2003). Based on the LDA model,
we define the score as follows:

Definition 2. The LDA-based score for a word w
in topic t is defined as:

st,w = ϕt,w . (2)

We consider the documents unordered and refer
to them interchangeably using either the index j
or the document d itself, as an element of D. For
words and word-related quantities, we will refer
to them interchangeably using either the word w
itself or the index i, specifying the ordering when
necessary. Thus, for example, fi,j and fw,d denote
the same quantity.

We present the following compression criteria.
For TF-IDF-based compression, we select the p-
quantile of words with the highest scores from
the set {(w, s)}w∈W , resulting in a reduced dic-
tionaryWp containing approximately pM words.
For LDA-based compression, we select the top
pM words from each topic, based on their topic
probabilities sw,t. Because each word has a prob-
ability of belonging to every topic, the resulting



reduced dictionary Wp typically contains fewer
than TpM words. Subsequently, we create a new
set of compressed documents D′ = {d′1, . . . , d′N},
where each d′j is formed by combining words from
Wp, preserving the most important words of the
original document and their sequential order within
each document.

To evaluate the compression quality, we intro-
duce three classical performance metrics:

1. Compression rate. A standard metric in com-
pression theory, defined as the ratio:

CR =

∑N
j=1 |d

′
j |∑N

j=1 |dj |
, (3)

where |dj | and |d′j | denote the total number of
non-unique words in the uncompressed doc-
ument dj and the compressed document d′j ,
respectively. This metric directly quantifies
the reduction in text size achieved by compres-
sion.

2. Jensen-Shannon divergence. For distribu-
tions p and q, the Jensen-Shannon diver-
gence (JSD) measures the dissimilarity be-
tween word distributions and is defined as:

JSD(p||q) = 1

2
[DKL(p||m) +DKL(q||m)] , (4)

where DKL is the Kulback-Leibler divergence,
m = (p+ q)/2. For TF-IDF compression, we
calculate the JSD between the average word
frequencies in the original and compressed
documents, defined as:

pi =
1

N

N∑
j=1

fi,j , qi =
1

N

N∑
j=1

f ′
i,j , (5)

where fi,j and f ′
i,j are the frequencies of word

wi in documents dj and d′j , respectively.

For LDA compression, we use the average
JSD across all topics, defined as:

JSD(p||q) =
T∑

t=1

πt JSD(pt, qt) , (6)

πt =
1

N

N∑
j=1

zt,dj , (7)

where zt,d is an indicator function that equals
1 if topic t is the most probable topic for doc-
ument d, and zero otherwise. The densities pt
and qt are defined as:

pt,i =
1

Nt

N∑
j=1

fi,j zt,dj , (8)

qt,i =
1

Nt

N∑
j=1

f ′
i,j zt,dj , (9)

with fi,j and f ′
i,j given in (5), and Nt is the

number of documents for which topic t is the
most probable one. Further details on the prop-
erties of JSD are available in Lin (1991). This
metric allows us to evaluate how well the com-
pressed documents retain the original word
distributions.

3. ROUGE score. As a summarization metric,
used to evaluate the quality of text summa-
rization, we use the ROUGE-LCS score, intro-
duced in Lin (2004), where LCS(r, s) denotes
the length of the longest sequence of words
that appear in both r and s in the same order.
The ROUGE-F1 score is defined as:

ROUGE-F1 = 2
RP

R+ P
, (10)

where recall R = |LCS(r, s)|/|r| and pre-
cision P = |LCS(r, s)|/|s|; |r|, |s|, and
|LCS(r, s)| are the word counts in the cor-
responding sequences. This metric is used to
assess how well the compressed documents
retain the key information of the original doc-
uments.

2.2 Encoding procedure

We now describe the steps of the encoding proce-
dure, following the work by Kanerva (1988):

1. We consider the English alphabet plus dig-
its, denoted as A, and assign to each element
ak ∈ A a random vector ϕ(ak) from the
space H = {±1}D, where D is the dimen-
sion of the space. In this vector space, we
define a coordinate-wise multiplication opera-
tion⊗ and a coordinate-wise sign operation⊕.
The multiplication is a simple coordinate-wise
product, while the sign operation is applied
after a coordinate-wise summation, with the
sign of zero defined as 1.

2. We use word-wise encoding. To encode a
word, we apply a permutation operation ρ to
each character’s vector ϕ(ak), shifting all but
the first coordinate to the left. The encoding
vector for word wi is then:

ϕ(wi) =
⊗

0≤k<|wi|

ρk(ϕ(ak)) , (11)

where |wi| is the number of characters in word
wi.



3. The document encoding is obtained by apply-
ing the sign operation to the coordinate-wise
summation of all word vectors:

ϕ(d) =

|d|⊕
i=1

ϕ(wi) . (12)

The outcome of this encoding procedure is a func-
tion ϕ(d) that maps a text to the vector spaceH.

3 Theoretical analysis

We divide our theoretical analysis into two main
components: compression and encoding, based on
the compression HDC model (Figure 1) and the
previous section. These components are supported
by intuition, assumptions and theorems in the fol-
lowing subsections.

3.1 Compression
In this section, we present our compression analysis
separately for TF-IDF and LDA-based approaches.
The original TF-IDF and LDA statistics were in-
troduced by (Aizawa, 2003) and (Blei et al., 2003),
respectively.

3.1.1 TF-IDF part
We analyze the TF-IDF score ts(wi,D) as a ran-
dom variable. The randomness stems from the
frequency fi,j and the number of documents Nwi

containing the word wi. The frequency fi,j is re-
lated to the number of occurrences ni,j of word wi

in document dj as ni,j = fi,j |dj |. We can represent
the documents schematically as:

dj = w1 . . . w1︸ ︷︷ ︸
n1,j

. . . wM . . . wM︸ ︷︷ ︸
nM,j

. (13)

Thus, each document can be considered as a ran-
dom vector (n1,j , n2,j , ..., nM,j). To proceed with
our analysis, we make the following assumptions:
Assumption 1 (Poisson-like distribution and in-
dependence across documents). To model the TF-
IDF distribution, we assume that the number of
occurrences ni,j of word wi in document dj are
independent of the document dj and follows a dis-
tribution Dist(λi), where:

P(ni,j = k) =

1− f(λi) , k = 0 ;

f(λi)
λk
i e

−λi

k!(1− e−λi)
, k > 0 .

(14)

Here, f(λi) is an auxiliary function introduced to
make our theoretical analysis tractable and ensure
a monotonically growing TF-IDF approximate es-
timate, prioritizing words with larger λi for encod-
ing.

The next assumption allows us to exclude ran-
domness from the TF part:

Assumption 2 (Average frequency). The TF part
can be fixed at pi, by approximating the average
frequency as:

1

N

N∑
j=1

fi,j =
1

N

N∑
j=1

ni,j

|dj |
≈ Eni

E|dj |
= pi , (15)

where E|dj | =
M∑
i=1

λi.

Thus randomness retains only in the IDF part,
i.e. in Nw. To estimate the number of documents
where word w occurs at least once, we have:

Nw =

N∑
j=1

1(w ∈ dj) , (16)

which is a sum of N i.i.d. Bernoulli variables
Bern(qw) with qw = 1 − exp(−λw). Hence, the
expectation of Nw is qwN , and for the TF-IDF
approximate we obtain:

t̃s(w) = − λwf(λw)

(1− e−λw )E|d| ln(1− e−λw ) . (17)

To ensure a monotonically growing TF-IDF approx-
imation, we make the next assumption:

Assumption 3 (Function f(x)). Function f(x) is
defined as:

f(λ) =
λ

1 + λ
(1− e−λ) . (18)

This results in the following score approximate
expectation:

t̃s(w) = − λ2
w

(1 + λw)E|d|
ln

[
λw

1 + λw
(1− e−λw )

]
(19)

with the asymptotic behavior t̃s(w)E|d| = 1 −
3/(2λ) +O(λ−2), i.e. attaining gradually 1 from
below.

Figure 2 illustrates the true TF-IDF score (1) for
IMDB dataset and our approximate expectation
t̃s(w) as a function of the parameter estimate λ̂w,
obtained using the method of moments from the
equation:

nw ≡ 1

N

N∑
j=1

nw,j =
λ̂wf(λ̂w)

1− e−λ̂w
(20)

(here and below, estimators of random variables are
denoted with a wide hat). As can be observed, t̃s(w)



Figure 2: Comparison of the true TF-IDF statistics ts(w)
(1) for IMDB dataset and its approximate expectation
t̃s(w) (19).

grows monotonically, as does the average true TF-
IDF. However, the true TF-IDF values exhibit a
noticeable vertical scatter (see blue points at λw <
0.4) due to the inherent randomness of the true
TF-IDF score.

The compression method outlined in Section 2.1
selects words with the largest TF-IDF score:

Wp = {w ∈ W : ts(w) ≥ ts(⌈(1−p)M⌉)}. (21)

Here and below X(k) denote is the k-th order statis-
tic of {X(w1), . . . , X(wM )}. Due to the complex-
ity of ts(w), we use expectation t̃s(w) to select the
pM words with the highest values of λ̂w:

Ŵp = {wi ∈ W : λ̂i ≥ λ̂∗} , (22)

where λ̂∗ ≡ λ̂(⌈(1−p)M⌉) is the minimal value λ̂w

of the word w included in set Ŵp. AlthoughWp

and Ŵp are not identical due to the randomness of
ts(wi) and λ̂w, the monotonicity of t̃s(w) implies
that both sets will contain the same words, except
for those in the vicinity of λ̂∗, where some words
will be randomly added and others excluded from
Wp. To simplify our analysis, we assume that the
setsWp and Ŵp differ negligibly:

Assumption 4 (Negligible difference in selected
words). We assume thatWp and Ŵp differ negli-
gibly.

For the theorems, we require an informational
inequality (proof follows from Pinsker’s inequality
and Lin, 1991):
Lemma 1. For Jensen-Shannon divergence, we
have:

1

4

[
V 2(p,m) + V 2(q,m)

]
≤ JSD(p||q) ≤ 1

2
V (p, q),

(23)

where V (p, q) =
∑
i

|pi − qi| and m = (p+ q)/2.

We now formulate the theorems (see Ap-
pendix A.1.1 for the proof).

Theorem 1 (TF-IDF compression). Based on as-
sumptions 1–4, we have the consistent estimators
for CR, JSD(p||q) and ROUGE-F1:

ĈR =

∑
w∈Ŵp

g(λ̂w)∑
w∈W g(λ̂w)

, (24)

ĴSD(p||q) = 1

2

 ∑
w∈Ŵp

p̂w ln

(
2ĈR

ĈR + 1

)
+

ln 2

2

∑
w∈W/Ŵp̂

pw +
1

2

 ∑
w∈Ŵp

p̂w

ĈR
ln

(
2

1 + ĈR

) , (25)

̂ROUGE-F1 = 2
ĈR

ĈR + 1
, (26)

where g(x) = x2/(1 + x) and p̂w =
g(λ̂w)/

∑
w∈W

g(λ̂w).

Theorem 2 (Quantile criteria). Under assump-
tions 1–4, the TF-IDF compression model with
p-quantile criteria has the following bounds from
Table 1.

3.1.2 LDA part
We now examine the LDA compression procedure.
For a fixed topic t, the distribution of words is a
Dirichlet random variable, Φt ∼ Dir(α), where α
is a vector of parameters (α1, . . . , αM ) (see Blei
et al., 2003, for details). As outlined in Section 2.1,
we define the set:

Wt,p = {wi ∈ W : Φt,w ≥ Φt,(⌈(1−p)M⌉)} , (27)

where Φt,w is the probability of word w belong-
ing to topic t. To determine the distribution of
Φt,(⌈(1−p)M⌉), we need the marginal distributions
of Φt,wi .

Lemma 2. If Φ = (Φ1, . . . ,ΦM ) ∼ Dir(α), then
its marginal distributions are beta distributed ran-
dom variables:

Φi ∼ Beta

(
αi,

M∑
k=1

αk − αi

)
. (28)

This lemma allows us to identify and general-
ize the object of our interest. Applying the same
conceptual approach as in the TF-IDF part, we fo-
cus on the quantile value of the (Φt,1, . . . ,Φt,M ),
where each Φt,i is distributed as in (28).

The model has an additional parameter α, which
we set to (0.5, . . . , 0.5), implying that we are un-
sure about word significance in topic t:



Assumption 5 (Non-significance). α =
(0.5, . . . , 0.5).

Under Assumption 5, we have a set of
Beta(0.5, 0.5[M − 1]) random variables. Using
the same expectation approach as in the TF-IDF
case, we focus on estimating EΦt,(k). To proceed,
we use the following lemma (see Arnold and Groen-
eveld, 1979, for the proof):

Lemma 3. For i.i.d. random variables
X1, . . . , Xn with mean µ and variance σ2, we have
the following inequality:

−σ

√
n− k

k
≤ EX(k) − µ ≤ σ

√
k − 1

n− k + 1
. (29)

For X ∼ Beta(α, β), we have:

µ =
α

α+ β
= M−1 , (30)

σ2 =
αβ

(α+ β)2(α+ β + 1)
= (31)

M − 1

M2(0.5M + 1)
≈ 2M−2 . (32)

Hence, we can estimate the bounds of
EΦt,(⌈(1−p)M⌉).

Before proceeding with the theorems, we clarify
the distribution of the number of occurrences. Un-
like the TF-IDF model, where we calculated ni,j

directly, in the LDA model, we operate with Φt,i

values. Therefore, we assume:

Assumption 6 (Poisson distribution). For each
topic t, we assume that the number of occurrences
of each word wi in a document dt are independent
random variables following the Poisson distribu-
tion:

dt = w1 . . . w1︸ ︷︷ ︸
υt,1∼Pois(Φt,1C)

. . . wM . . . wM︸ ︷︷ ︸
υt,M∼Pois(Φt,MC)

, (33)

where υt,i is the number of occurrences of word wi

in a document dt belonging to topic t.

This assumption is quite strict, as it assumes
a constant C that regulates the number of occur-
rences of each word in the document, and that this
constant is the same for all topics. As we argue
below, we use it to estimate the number of words
in a document on a given topic.

Given a matrix of words in topic probabilities
Φ̂t,w, we formulate the following theorems:

Theorem 3 (LDA compression estimators). Un-
der assumptions 5–6, we have asymptotically-
unbiased estimators for CR, JSD(p||q), and

ROUGE-F1:

ĈR =

∑T
t=1 πt

∑
w∈Wp,t

Φ̂t,w∑T
t=1 πt

∑
w∈W Φ̂t,w

, (34)

ĴSD(p||q) = 1

2

T∑
t=1

πt

[∑
w∈W

Φ̂t,w ln

(
2ĈR

ĈR + 1

)]

+
1

2

T∑
t=1

πt

[∑
w∈W

Φ̂t,w

ĈR
ln

(
2

1 + ĈR

)]

+
ln 2

2

T∑
t=1

πt

∑
w∈W\Wp

Φ̂t,w , (35)

̂ROUGE-F1 = 2
ĈR

ĈR + 1
(36)

with πt defined by Eq. (7).

Theorem 4 (LDA compression bounds). Under
assumptions 5–6, the LDA compression model with
p-quantile criteria has the following bounds from
Table 1.

3.2 Encoding

To prove the applicability of our proposed CHDC
approach, we now turn to encoding implications
and focus on estimating the quality of document
analysis based on an average document size. As in
the previous section, we consider documents as a
bag of words (13). Consider now two documents,
d1 and d2. Given the binary HDC encoding, we
map our documents to the ϕ(d1) and ϕ(d2), ac-
cording to the rules from Section 2.2. As pointed
in (Kanerva, 1988), the HDC model should distin-
guish the vectors ϕ(d1) and ϕ(d2), which means
that:

⟨ϕ(d1), ϕ(d2)⟩ → 0 (37)

with D →∞ (here ⟨., .⟩ denotes the standard Eu-
clidean dot-product). To estimate the effect of the
encoding under fixed D, we propose to consider:

P(⟨ϕ(d1), ϕ(d2)⟩ ≥ εD) , (38)

where D is the vector-space dimension, ε is small
parameter that characterize distinguishability, ϕ is
the encoding function, mentioned before. Notice
that the ϕ(d) is a random vector, since we use a ran-
dom binary HDC encoding. Therefore, we need to
be sure that the probability of P(⟨ϕ(d1), ϕ(d2)⟩ >
εD) is low.

Let’s rewrite the dot-product as follows:

⟨ϕ(d1), ϕ(d2)⟩ =
D∑
i=1

ϕ1,iϕ2,i =

D∑
i=1

Xi , (39)



Th. CR JSD ROUGE-F1

Th. 2
pM

minw∈Wp g(λ̂w)∑
w∈W g(λ̂w)

; pM
maxw∈Wp g(λ̂w)∑

w∈W g(λ̂w)

 [
1

4

[
V̂

2
pm + V̂

2
qm

]
;
1

2
V̂pq

] [
2

CRmin

1 + CRmin

; 2
CRmax

1 + CRmax

]

Th. 4
[
p −

√
2p

1 − p
; p + p

√
2(M − 1)

] [
1

4

∑
t

π̂t

[
V̂

2
t,pm + V̂

2
t,qm

]
;
1

2

∑
t

π̂tV̂t,pq

] [
2

CRmin

1 + CRmin

; 2
CRmax

1 + CRmax

]

Table 1: Bounds for the performance metrics: compression rate (CR), Jensen-Shannon divergence (JSD), and
ROUGE-F1 score, under TF-IDF (Theorem 2) and LDA (Theorem 4) compression.

where Xi are dependent Bernoulli-type ran-
dom variables taking values in {±1}, with
γi(X1, . . . , Xi−1, Xi+1, . . . , XD) = P(Xi =
1|{X1, . . . , XD} \Xi). Unfortunately, we can’t di-
rectly apply known techniques due to the possible
dependency of the {Xi}Di=1. However, we propose
the following lemma to overcome this problem (for
proof, see Appendix A.2):

Lemma 4. Assume {Xi}i are dependent ran-
dom variables with Bernoulli-type distribution and
P(Xi = 1|Xi1 , . . . , Xik) ≤ p. Then there are
{Yi}i independent Bernoulli variables with P(Yi =
1) = p and we have:

P

(
D∑
i=1

Xi ≥ εD

)
≤ P

(
D∑
i=1

Yi ≥ εD

)
. (40)

The given lemma allows us to consider Xi as in-
dependent random variables with the same bound γ
on its probability. To estimate the value of probabil-
ity in (38), we propose using the following lemma
(see Chernoff, 1952, for proof):

Lemma 5 (Chernoff bound). For a sum of indepen-
dent random variables X =

∑
i

Xi, we have:

P(X ≥ a) ≤ inf
t>0

[
e−ta

∏
i

EetXi

]
. (41)

To justify the model, we formulate the following
theorem (for the proof, see Appendix A.2):

Theorem 5. The probability (38) is upper bounded
by:

P(⟨ϕ(d1), ϕ(d2)⟩ ≥ εD) ≤ F (D, γ, ε) , (42)

where:

1. The upper boundary:

lnF (D, ε, γ) =
D

2
(1− ε) ln

[
1− γ

γ

1 + ε

1− ε

]
−D ln

[
1 + ε

2γ

]
. (43)

2. The Bernoulli probability γ satisfies the in-
equality:

1

2
< γ ≤ 1

2
+

(
|d|

⌈|d|/2⌉

)
1

2|d|
≈ 1

2
+

√
2

π|d| , (44)

where |d| = E|di| is the average length of
the document, the round brackets denote the
binomial coefficient, and the asymptotical ex-
pansion in the r.h.s is obtained using Stirling’s
approximation.

The function F attains a maximum value of 1
when ε + 1 = 2γ. As we move away from this
line, the function rapidly declines, with the decline
becoming sharper as D increases. This implies that

ε ≲ 2

√
2

π|d| . (45)

For example, in the IMDB dataset, compression
for p = 0.1 from an average document length of
122 words to 100 words increases ε by a factor
of approximately

√
122/100 ≈ 1.1, just slightly

worsening distinguishability.

4 Experiments

To verify our theoretical results, we propose a two-
stage experimental setup, focusing on compression
effect estimation and encoding results.

4.1 Compression analysis
We explore TF-IDF and LDA text compression
techniques using Algorithm 1 (see A.4) applying
it to IMDB reviews (Maas et al., 2011), AG News
Dataset (Zhang et al., 2015), and arXiv dataset
(Clement et al., 2019). Figure 3 (see A.3) presents
the results, comparing direct calculations of the
three metrics (CR, JSD and ROUGE-F1) with
their theoretical expectations for different quantile
parameters p. The green bounds show the possi-
ble ranges of metric scatter due to the randomness
of word distributions (Theorems 2 and 4). The
three upper panel rows demonstrate that TF-IDF



TF-IDF LDA
D ε̂p=0.01 ε̂p=0.1 ε̂p=1 ε̂p=0.01 ε̂p=0.1 ε̂p=1

256 0.17± 0.02 0.13± 0.01 0.12± 0.01 0.16± 0.02 0.13± 0.01 0.12± 0.01
1024 0.17± 0.02 0.13± 0.01 0.12± 0.01 0.16± 0.01 0.12± 0.01 0.12± 0.01
4096 0.17± 0.02 0.13± 0.01 0.12± 0.01 0.16± 0.01 0.12± 0.01 0.12± 0.01
16384 0.17± 0.02 0.12± 0.01 0.11± 0.01 0.16± 0.01 0.12± 0.01 0.11± 0.01

Table 2: Encoding analysis for TF-IDF and LDA compression techniques using the IMDB dataset. The table shows
average scalar product values for dictionary compression parameters p = 0.01, 0.1, and 1 (|d| ≈ 60, 100, 122,
respectively) and vector space dimension D.

compression accurately captures all three metrics
across all datasets and different values of p, be-
cause the relevant variables are directly observed
and the assumptions are reasonable. In contrast,
the three lower panels show that the LDA compres-
sion estimators perform worse, likely because the
underlying distributional assumptions do not fully
correspond to the actual distributions.

4.2 Encoding analysis
To validate the results in Section 3.2, we analyze
how the encoding procedure impacts the distin-
guishability of randomly selected documents using
the IMDB dataset. This dataset, which comprises
two classes, simplifies our analysis (Algorithm 2)
while still revealing key insights. We use Monte
Carlo simulations with 100 iterations for the alpha-
bet A and 100 iterations for document sampling
(pairs from different classes), resulting in 10000
total iterations. Table 2 presents estimates of the
parameter ε, defined as:

ε̂p = D−1 E|⟨ϕ(d1,p), ϕ(d2,p)⟩| (46)

where d1,p and d2,p are randomly selected docu-
ments from different classes after compression, and
p is the compression parameter. The table shows re-
sults for p = 1 (no compression, |d| ≈ 122 words),
p = 0.1 (medium compression, |d| ≈ 100 words),
and p = 0.01 (high compression, |d| ≈ 60 words).

The estimates ε̂p are similar for TF-IDF and
LDA compression techniques, decreasing approx-
imately with the square root of the average doc-
ument size |d| and remaining within 20% of the
theoretical upper boundary (45).

5 Discussion

This paper introduces a novel approach to ad-
dress dimensionality concerns in Hyperdimen-
sional Computing (HDC) by adding compression.
We propose a model that combines TF-IDF or LDA-
based compression with binary HDC to mitigate
the curse of dimensionality. Section 3 presents the

core concepts, and Section 4 provides experimen-
tal results validating our approach. Our method
demonstrates that significantly reducing the encod-
ing space of the initial dictionary only slightly com-
promises class distinguishability in classification
tasks. Specifically, reducing the dictionary by 10
times increases the distinguishability parameter by
10%, and reducing it by 100 times increases the
parameter by 40%, while still maintaining a low
value (far from 1).

Theorems 1 and 3 provide estimators that ac-
curately estimate the necessary parameters, with
TF-IDF compression showing particularly low er-
ror and LDA offering slightly better explainability
in encoding analysis (see Table 2).

Despite our numerical results aligning with the-
ory, we identify two drawbacks that warrant further
research and development in this field:

1. We observe that the bounds provided in The-
orems 2–4 are not sufficiently tight. Because
these bounds are estimated using the distribu-
tion properties of the datasets, it is difficult to
obtain tighter bounds for the given metrics.

2. The encoding effect diminishes with increas-
ing vector space size D. This effect, explained
by Theorem 3.2, is due to the upper boundary
function F becoming concentrated in a nar-
row region near the line ε + 1 = 2γ as D
increases, which reduces the confidence inter-
vals of the estimates ε̂, without lowering the
estimates themselves.

Our results provide several insights into the ap-
plication of TF-IDF- and LDA-based compression
techniques and demonstrate the potential of Com-
pression HDC for broader practical application to
empirical problems, where noise significantly hin-
ders data compression and classification.
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A Appendix / supplemental material

A.1 Compression analysis
In the given section, we provide the theoretical
justification of the analysis provided in the paper
before. The first part of the upcoming appendix
correspond to the TF-IDF and LDA theories.

A.1.1 TF-IDF part
Lemma 1. From Theorem 3 in (Lin, 1991) we have:

JSD(p||q) ≤ 1

2
V (p, q)

Using definition of JSD and Pinsker inequality:

JSD(p||q) = 1

2
[DKL(p||m) +DKL(q||m)] ≥

1

4
[V (p,m) + V (q,m)]

Now, we are ready to move to the proofs of the
theorems.

Theorem 1-Theorem 2. 1. Follow the definition
of CR, we have:

CR =
1
N

∑
j |d′|j

1
N

∑
j |d|j

≃ E|d′|
E|d|

Based on the model in Assumption 1 we have:

E|d| =
∑
w∈W

λ2
w

1 + λw
(47)

Notice that after the compression procedure, we
leave only the words from Ŵp; hence, given the
(47), we have:

CR ≃
∑

w∈Wp
g(λw)∑

w∈W g(λw)
,

where g(x) =
x2

1 + x
. We obtain the result of the

Theorem 1.1 by using the consistent estimator (20)
for λw and using Slutsky’s theorem.

Also, we easily obtain the bounds for Theo-
rem 2.1 for ĈR:

(
pM

minw∈Wp g(λ̂w)∑
w g(λ̂w)

, pM
maxw∈Wp g(λ̂w)∑

w g(λ̂w)

)
(48)

2. Using the Jensen-Shannon divergence defini-
tion and Lemma 3 we have:

JSD(p||q) = 1

2
[DKL(p||m) +DKL(q||m)] ,

where p = {pw} and q = {qw}, defined in
(5). Notice that based on Assumption 1we have the
following form for pw and qw:

pw =
nw

|d| , qw =
nw

|d′| (49)

Hence we have CRpw = qw. Next, we can easily
find the consistent estimator for pw:

p̂w =
λ̂w∑

k g(λ̂k)
, (50)

because of Slutsky’s theorem and consistent esti-
mator for λw. Now, using the definition of DKL:

DKL(p||q) =
∑
w

pw log

(
pw
qw

)
, (51)

and previous properties: CR×pw = qw and qw = 0
for w ∈ W \ Ŵp we obtain the results.

For the bounds in Theorem 2 we use Lemma 3.
3. ROUGE-L score. Here, we focus on the

classical text compression score. ROUGE-L has
three components to analyze:

1. Precision: P =
E|LCS|
Eq|d|

2. Recall: R =
E|LCS|
Ep|d|

3. F-score: F1 = 2
R · P
R+ P

Notice that our procedure preserves the order,
hence E|LCS| = Eq|d|. Hence, we have the fol-
lowing:

1. Precision: P ≡ 1

2. Recall: R = CR

3. F-score: F1 = 2
CR

CR+1

Now, since f(x) =
x

x+ 1
is increasing for x ≥

0, we proved our bounds.

A.1.2 LDA part
Theorem 3-4.

1. Notice that CR ≃ E|d′|
E|d|

, hence using As-

sumption 6

E|d| =
M∑
i=1

Eυi =
M∑
i=1

T∑
t=1

πtCΦt,i,



where πt - probability of document’s topic is t.
Hence using the

ĈR =

∑M
i=1

∑
w∈Wt,tp

π̂tΦt,w∑M
i=1

∑
w π̂tΦt,w

,

where π̂t =
1

N

N∑
j=1

zt,dj we obtain the consistent

estimator of the CR.
The upper bound can be obtained as follows:

ĈR =
∑
t

πt
∑

w∈Wp,t

Φw,t,

where Φw,t ≈ EX(j), j corresponding number of
order statistics and X = {X1, . . . , XM} sequence
of Beta distributed r.v. as in 2. Hence using the∑
t

πt = 1, we can proceed with the Lemma 3 to

obtain:

ĈR ≥ p−
√
2

M

M∑
i=⌈(1−p)M⌉

√
M − i

i
(52)

ĈR ≤

p+

√
2

M

M∑
i=⌈(1−p)M⌉

√
i− 1

M − i+ 1

 (53)

This leads us to the following:

p−
√

2p

1− p
≤ ĈR ≤ p+ p

√
2(M − 1)

2. We want to examine the value of the:

JSD(p||q) =
T∑
t=1

πtJSD(pt, qt),

where pt,i =
1

Nt

N∑
j=1

fi,jzt,dj and qt,i =

1

Nt

N∑
j=1

f ′
i,jzt,dj . Under assumption Assumption 6,

we have:

pt,i/qt,i = fi/f
′
i = 1/CR

Therefore, we have: CR× pt,i = qt,i. Also, we
have:

p̂t,i =
C × Φt,i∑
k C × Φt,k

= Φt,i
P−→ pt,i,

hence using Slutsky’s theorem and consistent es-
timators for πt and pt,i, qt,i we have the consistent
estimator.

Bounds for JSD are obtained as in the proof of
Theorem 2, using the definition (6)

3. The same idea as in the proof of the Theo-
rem 2 works here.

A.2 Encoding analysis
In the given section, we provide the theoretical
justification of the encoding analysis, provided in
the paper.

Lemma 4. Let’s consider u1, . . . , uD indepen-
dent uniform distributions on [0, 1]. Denote Yi =
1(ui ≤ p), then {Yi}i are independent. Here we as-
sume 1(...) ∈ {±1}, to satisfy the Bernoulli-type
distribution of Xi.

Notice that P(Xi = 1) = P(ui ≤ qi), where
qi = P(Xi = 1|X1, . . . , Xi−1) and thence:

Xi ≤ Yi ⇒ P(
D∑
i=1

Xi ≥ εD) ≤ P

(
D∑
i=1

Yi ≥ εD

)
Theorem 5.
Probability estimation part.
In the given appendix, we justify the ideas pro-

vided in the encoding part in the theory section.
Notice that we aimed to consider the given proba-
bility:

P(⟨ϕ(d1), ϕ(d2)⟩ ≥ εD) =

P

(
D∑
i=1

Xi ≥ εD

)
= ⋆

Using the Lemma 5, we can obtain:

⋆ ≤ inf
t>0

[
e−εDt

(
EetX

)D]
,

where X is a Bernoulli random variable with pa-
rameter γ and values in {±1}. Hence, we have:

⋆ ≤ inf
t>0

[
e−εDt

(
γet + (1− γ)e−t

)D]
= inf

t>0
L(t)

To find the minimum of the L(t), we need to
derive the first-order condition:

d

dt
L(t) = 0

This is equivalent to:

(γ(e2t − 1) + 1)D−1︸ ︷︷ ︸
>0, since γ < 1

×
(
(γ − 1)(εD +D)− γe2t(εD −D)

)
= 0



(1− γ)D(ε+ 1) = γD(1− ε)e2t ⇒

tmin =
1

2
ln

[
1− γ

γ

1 + ε

1− ε

]
=

1

2
lnC(ε)C(γ)︸ ︷︷ ︸

C(ε,γ)

After rearranging, we have:

exp

[
−D

(
ε ln

√
C(ε, γ)

− ln
(
p
√
C(ε, γ) + 1−γ√

C(ε,γ)

))]
=

exp

[
−D ln

(
C(ε, γ)(ε+1)/2

1− γ + γC(ε, γ)

)]
=

exp

−D ln

(
1

2

[
1− γ

γ

1 + ε

1− ε

](ε−1)/2
1 + ε

γ

)
︸ ︷︷ ︸

⋆⋆


Hence, this probability decreases with increasing

D or by managing the expression in scopes. Simple
algebra shows that for the same level of D and ε,
we can increase the expression ⋆⋆ by increasing the

γ value after the critical point γε =
1 + ε

2
.

Compression connection part.
Next, we aim to connect the encoding analysis

with the compression part. We provide the follow-
ing explanation. Consider the following relation-
ship:

γ = P(ϕ1,iϕ2,i = 1) = γ̃2 + (1− γ̃)2

where ϕi is the i-th position of the vector-
encoding of randomly generated document d.

Notice that:

γ̃ = P

sign

 |d|∑
j=1

ϕi,j

 = 1

 =

P

sign

 M∑
k=1

#{wk}ϕi,wk︸ ︷︷ ︸
νi

 = 1

 ,

where the support of the νi is determined by the

all possible sums of
M∑
k=1

±#{wk}. The behavior of

this sum is quite unpredictable, but we can say that
the given distribution is symmetrical. To estimate
P(sign νi = 1) we will consider the probability of
η = P(νi = 0). Hence (by symmetry), we have:

γ̃ =
1

2
+

η

2
,

i.e., we cut half of the probability from the left tail
of the distribution and add it to the right one. We
propose the following estimation of the η:

η ≤
(
|d|
⌈|d|/2⌉

)
1

2|d|

This bound is easy to obtain assuming νi ≈
|d|∑
i=1

υi, where υi is independent Bernoulli r.v. with

values ±1 and equal proabilities.
Based on the CR definition, CR×|d| = |d′|,

hence for compressed object the value of η will be
bounded by:

η ≤
(

CR |d|
⌈CR |d|/2⌉

)
1

2CR |d|

The RHS is increasing with the decreasing of the
CR. As a result, we have:

γ = γ̃2+(1− γ̃)2 =

(
1

2
+

η

2

)2

+

(
1

2
− η

2

)2

≤

1

2
+

(
|d|
⌈|d|/2⌉

)
1

2|d|

A.3 Additional results
In the given section we provide the figures, pro-
viding a comprehensive compression analysis com-
paring TF-IDF and LDA techniques across three
distinct datasets (IMDB, AG News, and arXiv).
The analysis evaluates three key metrics - Com-
pression Ratio (CR), Jensen-Shannon Divergence
(JSD), and ROUGE-F1 scores - as functions of
dictionary compression quantile p, with results
plotted against their theoretical estimators. The
green shaded regions represent confidence inter-
vals around the estimated values, while the black
dots indicate the true theoretical values for com-
parison. Both TF-IDF (top three rows) and LDA
(bottom three rows) methods show varying perfor-
mance patterns across the different datasets, with
the estimation curves generally tracking well with
their corresponding theoretical benchmarks.
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Figure 3: Compression analysis for TF-IDF (top three rows) and LDA (bottom three rows) techniques. The results
compare the compression ratio CR, Jensen-Shannon divergence JSD, and ROUGE-F1 scores, as functions of the
dictionary compression quantile p, with their theoretical estimators across the IMDB, AG News, and arXiv datasets .

A.4 Experiment algorithms

Here, we describe the algorithms referenced in the
main text and used throughout the experimental
section. For both of the central components of the
paper – the analysis of compression-based repre-
sentations and the evaluation of statistical bounds –
we provide clear pseudo-code that can be directly
translated into practical implementations. The goal
of presenting the algorithms in the appendix is to
give the reader a transparent view of how the theo-
retical quantities are computed in practice, bridging

the gap between abstract definitions and experimen-
tal procedures. Each algorithm is written in a way
that emphasizes the logical flow of operations, start-
ing from the input dataset, applying compression or
transformation, and proceeding to the estimation of
key quantities such as divergences, bounds, and er-
ror measures. By doing so, we aim to highlight that
the computational steps are straightforward and re-
producible, and that they can be adapted to other
datasets or models with minimal modification.



Algorithm 1 Clusterization statistics collection
Input: Dataset X , compression model fcomp ∈
{tf-idf,LDA}, pvalues list of possible compres-
sion parameters.
Return: Dp dictionary of statistics.
Dp ← {}
for p in pvalues do
Xc ← fcomp(X, p)

Ŷp ← Stats(Xc, p) {Calculate statistics
based on Theorems 1 – 4 with Xc}
Yp ← TrueV alues(Xc, p) {Calculate true
values based on definitions in Section 3.1.}
Dp[p]← (Ŷp, Yp) {Save the bounds and esti-
mators for the given value of p}

end for

Algorithm 2 Encoding statistics collection

Input: Dataset X , dimension size D, epochs
number of epochs of Monte Carlp, compression
model fcomp ∈ {tf-idf,LDA}, pvalues list of
possible compression parameters.
Return: E the list of encoding statistics
E ← []
for i in [1, . . . , epochs] do

Φ(A) ← U({±1}|A×d|) {Generate random
vectors}
ε̂p ← {p : 0} {Dict for interesting values of
p}
for j in [1, . . . , epochs] do

for p in pvalues do
d′1, d

′
2 ← fcomp(d1, p), fcomp(d2, p)

{Compress the documents}
ϕ′
1, ϕ

′
2 ← ϕ(d′1), ϕ(d

′
2) {Encode the doc-

uments}

ε̂p[p] = ε̂p[p] +
|⟨ϕ′

1, ϕ
′
2⟩|

D
end for

end for
ε̂p[p] = ε̂p[p]/epochs {Average the value of
dot-product}
E = E ∪ ε̂p

end for
E = (mean(E), std(E)) {Average and get std
of all estimators}


