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Abstract

Automatic Speech Recognition (ASR) sys-
tems remain error-prone in challenging acous-
tic conditions, leading to spelling mistakes
that degrade downstream applications. Despite
the surge in the number of studies on post-
refinement methods, existing Spelling Correc-
tion (SC) approaches often rely solely on tex-
tual cues or phonetic features, limiting their
ability to provide speech-aware corrections. In
this work, we introduce a Cross-Modal Contex-
tualized Spelling Correction framework (CMC-
SC) that jointly incorporates contextualized
acoustic and textual information. Unlike prior
methods that use phonetics solely for candi-
date selection, our solution leverages contextu-
alized speech tokens in the generation of correc-
tions, improving accuracy and context aware-
ness. CMC-SC features a detection module to
identify errors, a cross-modal correction mod-
ule to generate fixes using acoustic and textual
tokens, and a soft fusion step to refine correc-
tions while retaining context. The proposed
method improves error rates compared to base-
lines and, with only 140M trainable parameters,
offers an efficient solution for ASR spelling cor-
rection.

1 Introduction

Automatic Speech Recognition (ASR) systems
have become increasingly important in recent years,
enabling a wide range of applications, from virtual
assistants to transcription services. The field has
seen significant growth, driven by advancements
in deep learning and natural language processing.
However, despite these advances, ASR systems
still face challenges, particularly in diverse acous-
tic environments and with speakers of different
accents Errattahi et al. (2018). Retraining ASR
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models with domain-specific data can often miti-
gate these issues to some extent, but in many cases,
the ASR model is not accessible for direct modifica-
tion, functioning as a black box. In such scenarios,
post-refinement techniques can be effectively em-
ployed to improve transcription quality.

Various ASR refinement techniques have been
explored, especially since the advent of Trans-
formers Vaswani et al. (2017). Broadly speaking,
ASR refinement can be categorized into three main
classes: fusion, re-scoring, and correction.

Fusion methods aim to improve ASR first-pass
decoding by integrating external linguistic informa-
tion at each decoding step. These techniques typi-
cally augment the ASR decoder’s internal language
model with external Language Models (LMs),
whether a simple n-gram Kannan et al. (2018), a
neural LM Kim et al. (2021), or a Large Language
Model (LLM) Hori et al. (2025).

The Re-Scoring paradigm, by contrast, is a
second-pass scheme that assumes the 1-best ASR
hypothesis may not properly represent the infor-
mation from the decoding step. This paradigm
generates an N-best list of hypotheses and uses an
external model (e.g., an n-gram or neural language
model) to re-rank those candidates, selecting a lin-
guistically superior candidate Shin et al. (2019);
Gandhe and Rastrow (2020).

Correction approaches tackle the problem by re-
vising a given ASR transcript to produce a new,
improved sequence. Some correction techniques
employ a second-pass decoding strategy, where a
second decoder (or encoder-decoder) reconsiders
acoustic features or the initial hypothesis. This
decoding step can utilize an n-gram Bassil and Se-
maan (2012), a neural LM Zhang et al. (2019), or
an LLM Udagawa et al. (2024), whether adopt-
ing both modalities Orihashi et al. (2021); Xia
et al. (2017) or text-only correction Hrinchuk et al.
(2020); Jia et al. (2025). In recent research, re-
searchers have used Retrieval Augmented Gen-
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Figure 1: The Overall Diagram of the Proposed CMC-SC.

eration (RAG) with an external corpus for tran-
script correction Robatian et al. (2025); Gong et al.
(2025).

Another notable approach to ASR error correc-
tion is the use of encoder transformers, primarily
BERT Devlin et al. (2019). These models leverage
their contextual understanding to replace erroneous
tokens. However, using pre-trained BERT alone is
suboptimal for ASR correction Zhang et al. (2020)
due to (1) reliance on textual cues, which risks in-
correct substitutions, and (2) a domain mismatch
between its clean pre-training data and noisy ASR
outputs. To address this, FASPell Hong et al. (2019)
employs a Confidence-Similarity Decoder (CSD)
to filter BERT’s candidates by phonetic and or-
thographic similarity. Similarly, SpellGCN Cheng
et al. (2020) enhances BERT with a Graph Con-
volutional Network (GCN) to model phonological
and symbolic relations. Other methods incorpo-
rate detection modules. For instance, a method
Zhang et al. (2020) detects and softly masks prob-
able errors based on confidence scores, feeding
them into a correction model and summing out-
puts with original embeddings. Another approach
Zhang et al. (2021) fuses token and phonetic em-
beddings post-detection for phonetic-aware correc-
tion. Additionally, a dynamic error scaling method
Fan et al. (2023) integrates words and pinyin for se-
mantically and phonetically aware character-level
correction.

However, encoder-based methods addressing
these challenges often rely on phonetic informa-
tion derived from text, which can be misleading.
Our method addresses this issue by:

1. Extracting contextualized acoustic informa-
tion directly from speech using WavLM
Chen et al. (2022), unlike Fan et al. (2023)
and Zhang et al. (2021), which rely on

transcription-based information.

2. Joint processing of contextualized acoustic
and textual tokens through a Cross-Modal
BERT (CM-BERT) unlike Hong et al. (2019);
Cheng et al. (2020), which rely on phonetic
information in a secondary branch.

3. Using a soft fusion technique to combine
CM-BERT outputs with original token embed-
dings, preserving transcription information,
unlike the direct summing approach used in
Zhang et al. (2021).

Finally, our approach improves upon existing
baselines by a large margin, demonstrating its ef-
fectiveness in improving ASR quality.

2 Method

This section presents the methodology for enhanc-
ing ASR transcriptions using a cross-modal frame-
work that integrates textual and acoustic data. The
approach comprises two main components: a de-
tection module to identify erroneous tokens and
a cross-modal correction module to rectify these
errors using a soft-fusion framework. The structure
of the proposed CMC-SC is illustrated in Figure 1,
and subsequent subsections detail each component.

2.1 Data Pre-Processing

We perform the following data preprocessing steps
to enable end-to-end (E2E) training of our proposed
model:

1. We run paired speech-text examples through
a black-box ASR to obtain its transcriptions.

2. For each utterance, we align the ASR tran-
scription with the corresponding ground-truth
using Levenshtein alignment (edit distance).



From this, we create a per-token binary se-
quence where ‘1’ indicates an erroneous token
and ‘0’ indicates a correctly recognized token.

Consequently, our dataset comprises samples in
the form of (utterance, erroneous text, labels, target
text). The (erroneous text, labels) pairs are used
to train the Detection module, while the (utterance,
erroneous text, target text) pairs are used to train
the Correction module.

2.2 Detection and Masking

The detection module, the first stage of our spelling
correction pipeline, aims to identify erroneous to-
kens in ASR transcriptions to enable targeted cor-
rections and prevent over-correction, which is a
common issue in E2E methods Imai et al. (2025).
It integrates a frozen and pre-trained BERT model
(denoted T-BERT) to extract contextual token em-
beddings, combines these embeddings with ini-
tial token embeddings via a residual connection,
and feeds them to a two-layer BILSTM classifi-
cation head. The residual connection is crucial,
as it allows the model to consider content other
than context, addressing potential misclassifica-
tions from incorrect tokens affecting the frozen
BERT’s embeddings. Then, a linear layer outputs
logits for each token, indicating whether it is erro-
neous. This module is trained using Binary Cross-
Entropy (BCE) loss with logits and per-token bi-
nary labels:

T
BCEp = % Z log (1 + e_(Qy"_l)zi).
=1
where z; is the logit for token 7, and y; € {0,1}
indicates if the token is erroneous.

At inference time, we compute the sigmoid of
each logit and compare it to a predefined thresh-
old; tokens with likelihood above this threshold are
deemed erroneous and replaced with the [MASK]
token. This masking strategy ensures that CM-
BERT’s context is derived from the most probable
correct tokens, preventing incorrect tokens from
negatively affecting the contextual representation.

2.3 Soft Fusion and Cross-Modal Correction

The cross-modal correction module refines ASR
transcriptions by integrating textual and acoustic
data to produce accurate, speech-aware, and contex-
tually appropriate corrections. Using both modali-
ties, it improves transcription quality using a cross-
modal and joint attention approach.

The correction module receives a sequence of
token embeddings from the detection phase, where
tokens identified as incorrect are replaced with the
[MASK] token, denoted as E,,,. It also extracts con-
textualized speech features from raw audio using
a pre-trained WavLM network. These speech fea-
tures are then projected to match the dimensionality
of the CM-BERT, resulting in Eg.

The masked text embeddings E,, and the pro-
jected speech embeddings Eg are concatenated to
form the input E;;, = [E,,; Eg]. This concate-
nated input is then processed by the CM-BERT,
a transformer-based model that outputs contextu-
alized, speech-aware representations by enabling
cross-modal interactions between text and speech
through its attention mechanisms.

To prevent over-correction and preserve correct
tokens, the Soft-Fusion (SF) strategy blends each
token’s original embedding E(*) with its corre-
sponding cross-modal contextual embedding Egi),
based on a confidence score «; from the detection
phase that indicates the likelihood that token i is
incorrect. Specifically, under the SF strategy, the
output embedding for each token ¢ is computed as:

EY = (1—a;)-EY 4 q; - EY

As a result, tokens with a low «; (indicating they
are likely correct) retain more of their original
embedding, while tokens with a high «a; (indicat-
ing they are likely incorrect) incorporate more of
the speech-informed representation. This adap-
tive interpolation ensures precise corrections where
needed while preserving accurate text.

Finally, the softly-fused embeddings are classi-
fied into tokens using a softmax layer, guided by
the Cross Entropy (CE) loss with logits and token
IDs. The CE loss is given by:

1 & exp(zt.y,)
CEc = — - > log [ —Ptw)
T 2 (Z/‘f/l exp (2t k)

t=1

where 7' is the sequence length, V' is the vocabulary
size, 2, is the logit for token £ at position ¢, and
Yyt is the true token ID.

3 Experiments and Results

In this section, we detail the experiments conducted
to assess the proposed model and present the results
in comparison to several baseline models, which
were re-implemented to ensure a fair evaluation.
Additionally, we assess the performance of each



Model Parameters Detection Correction Error Rate

Total | Trainable| P ‘ R ‘ F1 P ‘ R ‘ F1 | Word | Character
Whisper-Tiny (Baseline) Radford et al. (2023) | 39M - - - - - - - 24.5 17.2
Comparative | Whisper-Small Radford et al. (2023) 244M - - - - - - - 13.7 6.1
Study | whisper-Medium Radford et al. (2023) 769M - . . . . y - 117 42
PT-BERT+BiLSTM (Multi-Task Training) 140M  30M [85.96 85.90 85.88|81.74 83.94 81.82| 18.2 17.5
FT-BERT+BiLSTM (Multi-Task Training) 140M 140M |85.84 85.95 85.79|82.08 85.77 82.18| 17.9 17.1
Soft-Masked BERT Zhang et al. (2020) 250M  250M |86.14 86.23 86.12|87.85 87.23 87.18| 13.2 9.8
CMC (Ours) 300M 140M |87.32 87.52 87.30|91.31 91.35 91.27| 9.2 5.6
Ablation | CMC - WavLM 210M  140M |[87.18 87.24 87.15|88.91 88.74 88.64| 12.1 9.6
Study | cmc - SF 300M 140M |87.17 87.18 87.15|89.03 89.12 89.01| 10.7 7.5

Table 1: Comparative and Ablation Studies (all refinement methods are applied to Whisper-Tiny)

module within the model through an ablation study,
systematically removing each module to evaluate
its impact on the overall performance.

To evaluate our model, we introduce baseline
models. We use three ASR models (Whisper-Tiny,
Whisper-Small, Whisper-Medium) to assess the
importance of post-refinement and Cross-Modal
attention against adopting larger ASR systems. We
also trained two spelling correction baselines, Pre-
Trained (PT) and Fine-Tuned (FT) BERT, follow-
ing Zhang et al. (2020); Cheng et al. (2020); Fan
et al. (2023), to highlight our model’s contribu-
tion. Plus, we re-implemented Soft-Masked BERT
Zhang et al. (2020) as another benchmark.

We perform an ablation study to quantify each
module’s contribution to the CMC-SC model. First,
we remove the speech tokens (i.e., contextualized
acoustic information) and retrain under identical
conditions, noting that CM-BERT is originally pre-
trained on text, so its performance may still reflect
textual bias rather than a true absence of cross-
modal data. This ablation also underscores the
significance of the residual connection in the de-
tection module, which is the primary distinction of
this module in the ablation and compared to the PT-
BERT. Next, we remove the Soft-Fusion module,
which retains information from the original tran-
scription, and train it again. Table 1 presents these
results, demonstrating that each module positively
impacts the overall performance of CMC-SC.

All experiments ran on an NVIDIA RTX 3090
GPU for 30 epochs using the AdamW optimizer.
The best model uses a batch size of 32, a learn-
ing rate of 1 x 107> with a linear scheduler, both
T-BERT and CM-BERT have a maximum context
length of 128 tokens, and the threshold in the mask-
ing module is set empirically to 0.5. To align
speech tokens with BERT embeddings, we project

1) the cut start on the fence

2) she begged home smiling all the way
knowing that she had won
1[1,1,1,0,0,0]
2)[0,1,0,0,0,0,0,0,0,0,0, 0]
1)[0,1,1,0,0,0]
2)[0,1,0,0,0,0,0,0,0,0,0, 0]

1) the cat sat on the fence

Transcriptions

Detection Predictions

Detection Labels

Refined 2) she biked home smiling all the way
knowing that she had won
1) the cat sat on the fence

Ground Truths 2) she biked home smiling all the way

knowing that she had won

Table 2: Examples of CMC-SC on the Common Voice
test set.

them into 50 tokens of dimension 768. We have em-
ployed the Mozilla Common Voice dataset Ardila
et al. (2019) (original train/dev/test splits) and re-
port results on its test set.

Finally, as shown in Table 1, our proposed
method improves the baselines by a large margin,
demonstrating substantial potential to improve the
spelling correction task. Notably, our model has
only 140M trainable parameters and outperforms
the pre-trained Whisper-medium with 769M param-
eters, making it a lightweight yet effective solution.
The examples of CMC-SC are provided in Table 2.

4 Conclusion

In this paper, we have introduced Cross-Modal
Contextualized Spelling Correction (CMC-SC), a
novel framework designed to enhance ASR tran-
scription accuracy by correcting spelling errors.
CMC-SC integrates a detection module using a
frozen BERT model and BiLSTM to identify er-
rors by capturing contextual and sequential pat-
terns, and a correction module that blends text em-
beddings with acoustic features from a pretrained



WavLM. This approach ensures precise, context-
aware corrections while preserving accurate tokens
via a soft fusion framework. Experiments show
CMC-SC reduces error rates with only 140 mil-
lion trainable parameters, balancing performance
and computational efficiency. Future work includes
supporting additional languages and integrating ad-
vanced pretrained cross-modal networks for deeper
linguistic and acoustic insights.

Limitations

Despite the resulting advancements, ASR models
remain error-prone in challenging environments.
In clean settings, errors are primarily substitutions
or spelling mistakes, for which spelling correction
methods are computationally efficient. However,
the proposed method may be less effective for er-
rors involving insertions and deletions. Addition-
ally, trained on general data, the model may require
re-training for domain-specific applications, such
as medical terminology.
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