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Abstract

Functional software testing is essential to en-
sure that software meets user expectations. Our
ambition is to enable business experts who have
extensive domain knowledge but limited soft-
ware engineering competences, to realize the
functional software tests, through formulating
test case descriptions in natural language. To
meet this challenge, we propose a framework
called GUIDE (Guided User-driven Interactive
Description Enhancement), which leverages
language models to improve functional soft-
ware test descriptions written in natural lan-
guage. Our framework implements an inter-
mediate step based on a structured language
(Gherkin1) that is a language widely used for
software tests. We translate test descriptions
written by the business expert to this language
using language models. We automatically eval-
uate the quality of the description based on the
generated Gherkin. When this quality is in-
sufficient, GUIDE initiates an interactive and
personalized assistance process, delivering tar-
geted advice to help business experts enhance
and improve their test case descriptions. We
evaluated our approach through a case study
based on test cases for a human resources man-
agement related software, written in French.
We recorded a 26% decrease in the average
number of descriptions required per test objec-
tive to reach the desired quality level thanks to
the advice generated.

1 Introduction

Software testing plays a crucial role in the qual-
ity and longevity of IT applications. However, a
persistent divide between developers and end-users
often complicates this essential task. While devel-
opers master the code and technical specifics, the
business expert is the one who know the functional

1https://cucumber.io/docs/gherkin/reference/

requirements. Nevertheless, they do not always
have the tools or the language to express their ex-
pectations that is precisely understandable by the
developers. This dissonance can compromise test
reliability and software quality.

The advent of language models, capable of gen-
erating code from natural language instructions, is
a promising solution for test production (Tufano
et al., 2021; Xie et al., 2023). However, this ap-
proach is still mainly accessible to people with
solid programming expertise, thus excluding many
business experts. The latter also encounter diffi-
culties in interacting with language models: they
often give up too early when faced with a lack
of understanding of the model, or formulate erro-
neous expectations based on dynamics specific to
human interaction (Zamfrescu-Pereira et al., 2023).
Moreover, each individual writes natural language
text differently, even when the objective is identi-
cal (Weigelt et al., 2020). In parallel, some recent
benchmarks (Jimenez et al., 2024) now include
expert-verified and human-annotated versions of
problem descriptions, acknowledging that instruc-
tions written by non-expert users are often insuffi-
cient to fully capture the functional intent behind a
request.

In light of these challenges, it becomes essen-
tial to explore novel approaches that qualify user
input and provide actionable guidance to improve
it before giving it to a code generation pipeline.
To this end, we propose a novel framework that
we call GUIDE (Guided User-driven Interactive
Description Enhancement), that aims to guide busi-
ness experts in improving the quality of functional
software test descriptions. The main objective of
GUIDE is to enhance the clarity and precision of
natural language test descriptions. More specifi-
cally, these descriptions are produced by a business
expert without any specific rules being imposed,

https://cucumber.io/docs/gherkin/reference/


Figure 1: Overview of the GUIDE framework. In blue
are the parts that the user is asked to perform, and in
black those that are automated. Firstly, the user pro-
duces a description of a functional test, which is then
translated into the Gherkin language using a language
model. The quality of the test description is then as-
sessed using this code. If the quality is judged to be
insufficient, advice is generated based on the test de-
scription and the Gherkin code, enabling the user to
modify the description himself.

and seek to explain how the system works accord-
ing to a particular functionality. Our approach is
based on three key components (Figure 1): (1) a
quality criterion leveraging the automatic transla-
tion of descriptions into an intermediate representa-
tion language (Gherkin), (2) a classification system
to evaluate the semantic similarity between the de-
scription and its translation, and (3) an interactive
advice generation mechanism to guide users in re-
fining their descriptions. A complete example of
such a test description, its translation into Gherkin
and their similarity according to our scale can be
found in Table 1.

To evaluate the effectiveness and relevance of
GUIDE, we seek to address the following research
questions:

• RQ1 : To what extends automatic translation
of a test description into an intermediate lan-
guage can constitute an appropriate quality
criterion?

• RQ2 : Can a small language model manage to
understand the semantic similarities between
a test description and its translation into an
intermediate language?

• RQ3 : Does an interactive process using au-
tomatic advice generation can help a user im-
prove the quality of his description?

Thanks to the participation of 60 people, spread

over three labelling campaigns and two production
campaigns, we have been able to evaluate the ef-
fectiveness of GUIDE. The results show that 70%
of the advice generated is considered relevant by
users. In addition, we observed a measurable im-
provement in their ability to comply with the qual-
ity criteria, with a 26% reduction in the average
number of descriptions needed per test objective to
achieve the required level of quality.

The rest of the paper is organized as follows. We
start by discussing the related works in Section 2.
In Section 3, we introduce the three key compo-
nents of our GUIDE framework in detail. Then,
we discuss the practical implementation of GUIDE
in a real-world experiment, where business experts
interact with software under test conditions, that
we describe in Section 4. We conclude the paper in
Section 5.

2 Related Work

We review contributions related to large language
models for code generation, techniques for refining
ambiguous or incomplete user input, and methods
for assessing the quality of natural language de-
scriptions through text classification. We conclude
by positioning our approach, GUIDE, in relation to
these works.

2.1 LLM-based Code Generation

Large language models (LLMs) have emerged as a
powerful tool for various code-related tasks, includ-
ing program synthesis (Austin et al., 2021), bug fix-
ing (Zubair et al., 2024) or program testing (Xiong
et al., 2023). Through extensive pre-training, they
recognize patterns, comprehend context, and gen-
erate coherent and contextually relevant code snip-
pets.

In software testing, the use of natural language
as an entry point remains limited. Approaches such
as AthenaTest (Tufano et al., 2021) or A3Test (Ala-
garsamy et al., 2024) rely mainly on source code to
generate tests, while ChatUniTest (Xie et al., 2023)
uses a prompt composed mainly of code fragment.

2.2 Refining user input

The task of asking users to reformulate or mod-
ify their output is receiving increasing attention
in the fields of information retrieval and dialogue
systems. For example, Wang and Li (2021) pro-
pose a method based on question templates to help
users clarify their requests. They use a genera-



Table 1: An example of a functional test description written by a non AI expert, translated into Gherkin code by an
LLM and its similarity given by a human annotator using our similarity scale (Appendix A) (Example from our use
case. The original description was written in French and can be found in the first row of Table 6)

Description Gherkin Similarity
Label

Click on ‘OPEN’. Check that the file
selection window opens. Select a file
with the ‘.csv’ extension and check that
the search appears in the software.

Given the software is open
When I click on "OPEN"
Then the file selection window opens
And I select a file with the extension
".csv"
And the search appears in the software

VERSIM

tion model based on a Transformer. Eberhart and
McMillan (2022) propose a new method that uses
a task extraction algorithm to identify aspects of
the query and follows a rule-based procedure to
generate questions.

In code generation, dealing with ambiguous user
requirements has received more attention. Some
pipeline such as QualityFlow (Hu et al., 2025) have
integrated the evaluation of the quality of natu-
ral language requests and offers self-improvement
mechanisms to reformulate instructions without the
aid of the user. Other methods such as ClarifyGPT
(Mu et al., 2023) or CodeClarQA (Li et al., 2022)
questions the user to clarify ambiguities. In the
case of ClarifyGPT, the ambiguity of a requirement
is detected when several generations of code pro-
duced from the same instruction lead to different
behaviours for the same input. As for CodeClarQA,
it always asks questions, but has no system for as-
sessing this ambiguity.

2.3 Text classification

To address the issue of ambiguous or incomplete
test descriptions, recent research has focused on
automated classification of textual quality. Tra-
ditional methods rely on logical rule-based sys-
tems that detect key phrases or syntactic patterns
indicative of test completeness (Ormandjieva et al.,
2007). Although effective in well-structured sce-
narios, these systems lack the flexibility to handle
the linguistic diversity present in natural language
inputs. Another method involves supervised learn-
ing based on standard metrics, representing the cri-
teria that an expert takes into consideration when
assessing the quality of requirements (Parra et al.,
2015).

2.4 GUIDE positioning

We have seen that in current approaches to code
generation, consideration of the quality of user in-
put often comes after a long and costly process,
once the initial generation has already been car-
ried out. In contrast, GUIDE seeks to intervene
upstream, validating the quality of the request as
soon as it is created, to ensure that all the elements
required for correct generation are present.

In addition, when ambiguity is detected, some
approaches ask questions, sometimes of a technical
nature, to fill in the missing information. GUIDE
adopts a different strategy: it allows the user to
modify the description directly, making implicit
information explicit. This process is based on the
generation of targeted advice, offered to the user
in a non-binding way. In this way, the user retains
control of their production, while being guided to
improve it progressively.

3 The framework GUIDE

In this section, we will present our framework. In
order to do so, we start by discussing quality crite-
rion that we have chosen to discard the description.
Then, we will look at the method used to assess
automatically the quality of a test description using
its translation into Gherkin code. Finally, we will
present the method used to guide the user in the
process of improving his production.

3.1 Quality criterion

Our approach is based on the use of a quality cri-
terion to filter test descriptions according to their
relevance. Our aim is to develop a method that re-
tains only those test descriptions that contain all the
elements necessary for a language model to both
generate and verify the corresponding test. Thus,



the quality criterion aims to evaluate the ability of
the language model to restore all the information
contained inside the description.

Thus, to assess the language model’s ability to
understand the description, we use it in a simple
task: information reorganisation. Specifically, we
ask the language model to structure the information
present in the test description. To do so, we use
a intermediate language that meets this require-
ment perfectly: Gherkin. Gherkin is a human-
understandable specification language used in the
development method known as BDD (Behavior-
Driven Development).

We will therefore base our quality criterion on
the similarity level between the test description
and its translation into Gherkin code by a language
model. More specifically, it is based on a similarity
scale detailed in Appendix A, which is composed
of five labels:

• Similar : COMPSIM, VERSIM

• Different : SOMSIM, VERDIFF, COMPDIFF

By aggregating these labels into two distinct
groups, we define our quality criterion: a descrip-
tion is considered of good quality if it obtains a sim-
ilarity label of COMPSIM or VERSIM. Event though
our quality criterion does not take advantage of
all the nuance offered by the five similarity labels,
we have choose to retain this scale. This addi-
tional granularity proves invaluable during manual
labelling campaign, as it enables human annotators
to better express their perception of the similarity.
This finer distinction encourages a more precise
and nuanced assessment.

3.2 Supervised Learning Quality Assessment

Two main approaches can be used to classify a text
according to a given label: logical methods, based
on rules or feature extraction, and approaches based
on language models. However, in our case, the test
descriptions present a high degree of lexical and
structural heterogeneity, in addition to a dense tech-
nical content. These characteristics make logical
methods ineffective, as they are too rigid and not
very adaptable to the variability of the data.

We therefore opted to use language models,
which are better able to capture the subtleties of nat-
ural language, even in a technical context. Given
that our Framework is likely to handle sensitive or
confidential data, we have deliberately restricted

our choice to compact models that can be run lo-
cally, without depending on remote services.

3.3 Interactive Improvement Process

GUIDE not only qualifies the description written
by the user, but also provides guidance when it is
not of good quality. This guidance is intended to
suggest possible changes that the user could make.
We have chosen to use this form because we want
the user to have a choice of modification throughout
the procedure.

To produce it, we will use the description and its
associated Gherkin code and give it, using a pre-
defined prompt, to a language model. In order not
to introduce our own bias into this generation of
advice, and the evaluation of the prompts used to
generate them, we have decided to use an automatic
optimisation methods to find the best prompt, in
particular Beam Search (Pryzant et al., 2023). This
method is based on a starting prompt, a scoring
metric and a method for generating several varia-
tions of a prompt to explore the space of available
prompts.

The basic prompt is structured in three main
parts: two dedicated slots for inserting the test de-
scription and its translation into Gherkin; another
slot used to insert context of the software under test
to maximise the relevance of the advice generated;
an explicit sentence tells the language model the
expected objective as well as the constraints to be
respected (clarity, consistency and respect for the
context).

For the mutation prompt, we ask the language
model to produce three variations of a prompt,
while retaining the meaning and the three slots re-
served for description, Gherkin and context. These
variations aim to explore different formulations
while maintaining the structure of the task. An ex-
ample of a basic prompt and a mutation prompt can
be found at Appendix C.

The score metric is based on a realistic approach,
aimed to simulate the behaviour of a user using the
advice generated by a prompt. Using a dataset of
test descriptions classified as of bad quality, and the
prompt submitted for evaluation, we will produce
advice for each of them. This advice, combined
with the initial description and the context of the
software under test, is then provided to a language
model which simulates a user by producing a new
version of the description, incorporating the sug-
gested recommendations. This new descriptions,



together with its translation into Gherkin, is sub-
mitted to the classifier for quality evaluation. We
calculate the prompt score by measuring the per-
centage of descriptions that, after modifications,
pass the quality criterion.

4 Software Testing by business expert :
Case study

In order to evaluate GUIDE in a real-life appli-
cation, we chose to involve users, not necessarily
with a background in IT, in the task of writing test
descriptions. To this end, we set up three comple-
mentary campaigns as illustrated in Figure 2:

• A labelling campaign which has the objective
to evaluate the relevance of Gherkin produc-
tions automatically generated by a language
model.

• A production campaign which aims to observe
how users behave when writing descriptions,
measuring in particular their ability to produce
content in line with our quality criterion.

• An advice campaign that seeks to assess user
satisfaction with the use of advice produced
by our method.

For the sake of simplicity, we decided to ask for
the descriptions to be produced in French for all the
campaigns. This allowed us to have more people
available to take part in the campaigns.

4.1 Software under test

The software to be tested is called “Esco Explorer”.
It is a tool for displaying a graph in the form of an
Acyclic Guided Graph (AGG) based on the occupa-
tions/skills given by the Esco ontology (Appendix
B). Esco is a European classification of skills, com-
petencies, qualifications and professions. The sys-
tem identifies and categorizes skills, competences,
qualifications and occupations relevant to the EU
labor market, education and training, in 25 Euro-
pean languages. The system provides occupational
profiles showing the relationships between occu-
pations, skills, competences and qualifications; it
functions like a dictionary.

During software development, a test plan con-
sisting of 68 tests divided into 9 categories was
produced. We used this same test breakdown for
the rest of this section, enabling us to indicate a
category and a precise test goal to the user, to help

them write their description. An example of a cate-
gory and its associated test purpose is: Category –
Node Information, with the Test purpose – Display
an optional job for a skill.

4.2 Campaigns

Labelling Campaign
Prior to the various experiments, five users were

asked to write one natural language description
per test purpose, resulting in five complete test
plans. Based on these plans, we generated a manual
labeling campaign aimed at assessing the quality
of the descriptions via their correspondence with
an automatically generated Gherkin code.

In concrete terms, each annotator was assigned
a test plan, in which he or she had to select a de-
scription, consult the corresponding Gherkin code,
generated by a language model, and then evaluate
the similarity between the two elements. This eval-
uation was carried out using our similarity scale.
Production Campaign

During a second campaign, users will have to
write test description for each test purpose them-
selves. For each test purpose, users will have to
produce a test description then label the similar-
ity between the description and its translation in
Gherkin. If their description doesn’t respect our
quality criterion, they will have to modify their
description and redo the labeling process.

In order to avoid blocking users when faced with
cases they consider too complex, we have left open
the possibility of changing the test to be described
even when the quality criterion has not been met.
However, to guarantee a minimum of reformula-
tion effort, each user was required to propose at
least two attempts to improve his initial description
before having the possibility to abandon and do a
new test.
Advice Campaign

Using the same protocol as the production cam-
paign, this time we decided to add the tips gener-
ated from the prompt designed in Section 3.3. More
specifically, when the user indicates that their de-
scription is not of sufficient quality, we offer them
the advice generated from their description and the
Gherkin. The user can then take these tips into
account, or not use them if they don’t find them
interesting. This is indicated by two labels.
Gherkin Generation

In the interests of data governance and in order to
guarantee local execution without dependency on



Figure 2: Overview of the different campaigns. The
blue color represents the labelling campaign, where
users assess the similarity between a previously written
description and its Gherkin translation. The orange
indicates the production campaign, in which users write
a description based on a given test purpose, evaluate
its quality, and revise it if necessary. Finally, the green
corresponds to the advice campaign, where users receive
guidance generated from their initial description and its
Gherkin translation to help them improve their text.

external services, we opted to use the Mistral V0.3-
7b language model (Jiang et al., 2023), quantised
in 4 bits. The prompt used to generate Gherkin
was manually optimised using a set of descriptions
considered to be of good quality.

4.3 GUIDE Implementation

4.3.1 Quality Classifier
In order to evaluate several possible classifiers
based on language models, we have chosen to
use CamemBERT v2 (Antoun et al., 2024) and
SomlLM2-135M (Allal et al., 2025) as a basis.
CamemBERT v2 is a robust and high-performance
reference for automatic language processing tasks
in French. SmolLM2-135M is a more recent,
lightweight model, that is recognised for its good
general capabilities despite its small size. This
choice makes it possible to combine confidentiality,
linguistic performance and operational efficiency.

Since SmolLM2 is trained exclusively on En-
glish data, we explored its viability by automati-
cally translating our dataset into English using the
opus-mt-fr-en (Tiedemann et al., 2023; Tiedemann
and Thottingal, 2020) model. This model allows
efficient conversion of descriptions and Gherkins
written in French into English, ensuring consistent
basis for training.

To train our classification models, we used the

data collected from two campaigns described in
Section 4.2: the labelling campaign and the produc-
tion campaign. This resulted in a dataset of 1522
test description / Gherkin code pairs. Each pair
was transformed into a single classifier input using
explicit keywords (Description:, Gherkin:) and a
[SEP] separator token.

Based on our quality criterion, we converted the
original similarity labels into binary quality labels:
885 instances were labeled as SIMILAR (indicat-
ing sufficient quality), and 637 as DIFFERENT. The
dataset was split into a 70/30 ratio for training and
validation. All models were trained with 3 epochs
and a batch size of 8.

To complement this training set, we also
constructed a separate test set of 68 descrip-
tion/Gherkin pairs. These descriptions were writ-
ten by a single user not involved in the previous
datasets, and each pair was annotated five times.
The final label for each instance was computed as
an average label, using the method described in
Section 4.4.1.

Table 2: Performance of classification models in training
and evaluation

Model Training
Accuracy

Evaluation
Accuracy

Test
Accuracy

CBERT-Mix 81.78 74.55 60.29
Smol-FR 98.97 73.52 70.59
Smol-EN 98.97 72.23 58.82

The training results for the different models can
be found inside Table 2. The models based on
SmolLM2 show better accuracy during training,
but this superiority is not reflected on the evaluation
set, where the performance is similar to that of
the models based on CamemBERT. Furthermore,
translating the data into English did not bring any
significant improvement in terms of accuracy.

Of the models evaluated, only one managed to
maintain good accuracy over the test set: Smol-FR.
The other two models showed a significant drop in
performance, indicating a more limited ability to
generalise. As a result, we have chosen Smol-FR
for the rest of our experiments.

4.3.2 Advice Prompt
Using this classifier, we were able to launch the
BeamSearch algorithm to produce the prompt used
to generate the advice. We retrieved the first para-
graph of Section 4.1 to be used as the context of
the application under test inside the advice prompt.



As for the description dataset required for the score
metric, we selected the descriptions from the pro-
duction campaign (presented in the in Section 4.2),
which were identified as being of insufficient qual-
ity by the classifier as well as the user who pro-
duced the description.

In total, our method evaluated 45 prompts each
of which was evaluated with 218 data items. The
selected prompt (found in Listing 3) received a
score of 0.79.

4.4 Data Analysis

In this section, we will analyse the data from the
three campaigns presented above. We will seek to
answer the various research questions we had, as
well as assessing the usefulness of GUIDE.

4.4.1 Gherkin Generation ability

Mean Label
A total of 21 people took part in the labelling

campaign. Of the five test plans proposed, three
were annotated by five people, while the other two
were annotated by three people. Since several an-
notators evaluated the same pairs of data (test de-
scription and Gherkin code generated by an LLM),
it is necessary to assign a consensus similarity label
of each piece of data. To achieve this, we adopt a
majority voting approach.

Using the decomposition of the five similarity
label according to our quality criterion, we will
look at the group with the most labels. Inside this
majority group, if one label stand out with a clear
majority, it is selected. Otherwise, we proceed to
average the labels to select the most representative.
Model capability

Looking at the distribution of average labels ob-
tained for each test plan (Table 3), we can see that
some users, with no prior knowledge of the Gherkin
language or the quality criterion used, manage to
produce descriptions that directly satisfy this crite-
rion. However, this success is not homogeneous:
other test plans present initial descriptions whose
quality is insufficient according to our quality crite-
rion.

Despite these disparities, one encouraging point
stands out: no test plan is completely misunder-
stood by the language model. This illustrates the
robust ability of the selected model (MistralV0.3-
7b) to interpret even descriptions from non-expert
authors, and to produce usable Gherkin transla-
tions.

Table 3: Distribution of the similarity label depending
of the Test plan.

Test
Plan COMPSIM VERSIM SOMSIM VERDIFF COMPDIFF

1 12 11 15 11 19
2 43 16 5 3 1
3 4 18 22 19 5
4 7 28 15 12 6
5 26 37 2 3 —

That said, a qualitative analysis of the comments
left by annotators allows us to distinguish two main
sources of error in Gherkin generation: problems
of structure, linked to poor syntactic or logical or-
ganization of the generated code, and problems
of ambiguity, due to an incomplete or poorly for-
mulated initial description. This ambiguity is due
to the annotator, who did not necessarily under-
stand the test description correctly, as he pointed
out in his commentary. It is therefore a semantic
ambiguity, linked to imprecise wording or wording
that is open to several interpretations in the ini-
tial description. Table 4 shows, for each test plan,
the proportion of descriptions identified as having
these two types of problem.

Table 4: Distribution of Structure and Ambiguity Errors
in Low-Quality Descriptions per Test Plan (as Labeled
by Annotators)

Test Plan Structure (%) Ambiguity (%)

1 90.2 58.6
2 76.3 88.9
3 89.2 73.0
4 90.7 65.8
5 55.2 51.8

We find that, in the majority of cases, failures to
meet our quality criterion stem first and foremost
from problems with the model’s structuring of the
Gherkin, with rates exceeding 90% in some shots.
However, these structural errors are often exacer-
bated by poorly constructed initial descriptions, as
shown by the high rate of ambiguity problems -
reaching 88.9% in plan 9. This twofold observa-
tion highlights both the current limitations of the
language model in correctly handling Gherkin’s
syntactic constraints, and the need to support users
in improving the clarity and completeness of their
descriptions.



4.4.2 User behaviour
Based on the results presented in Table 8, we ob-
serve that all users needed to revise their descrip-
tions at least once, and in many cases several times,
before reaching a level that matched our defined
quality criterion. This reinforces the idea that gener-
ating a high-quality test description is not straight-
forward, especially for non-expert users.

However, the low number of abandons suggests
that the effort required to improve a description
is not perceived as excessive. In particular, only
36 abandons were recorded out of 680 attempts,
indicating that most users were willing to iterate to
reach the expected quality level.

Each user had to produce descriptions for 9 dif-
ferent test categories, in a fixed order that was
identical for everyone. This enabled us to observe
a potential progression. However, no clear trend
emerged. We find this to be the case even when we
split each categories into two equal halves (Table
7). No systematic improvement dynamic can be
observed. So we don’t need to take into account a
history for each user in our GUIDE framework.

4.4.3 Advice capability
In total, 125 advice have been generated, with an
overall satisfaction rate of 70%. This result indi-
cated that the majority of users were positive about
the usefulness of the advice provided.

The analysis also shows a reduction in the aver-
age number of descriptions per test: this drops from
1.75 (observed during the initial production cam-
paign) to 1.29 during this campaign (Table 9). This
reduction suggests that the advice makes it easier
to achieve the quality criteria, thereby reducing the
number of iterations required.

In addition, result in Table 5 reveal a marked dif-
ference between advice that is considered relevant
and advice considered uninteresting. More specif-
ically, advice perceived as useful is significantly
more associated with improvements in the qual-
ity of the description. This trend suggests that the
perceived quality of the advice has a direct influ-
ence on the user’s ability to refine their description,
thereby reinforcing the effectiveness of GUIDE’s
interactive process.

5 Conclusion

This work introduced GUIDE (Guided User-driven
Interactive Description Enhancement), a frame-
work that improves the quality of test descriptions

Table 5: Improvement of the similarity label depending
on whether the advice has been deemed relevant by the
user.

Improvement Interesting Not Interesting

Upgrade 51 11
Constant 34 24
Downgrade 2 3

written by business experts through an interactive
process. By leveraging Gherkin as an intermediate
representation, GUIDE effectively assesses descrip-
tion quality and provides personalized advice for
refinement, enabling non-technical users to pro-
duce clearer and more complete test scenarios.

Our experiments show that small language mod-
els like CamemBERT and SmolLM2 successfully
identify semantic similarities between natural lan-
guage descriptions and their Gherkin translations
while maintaining data privacy through local pro-
cessing. Additionally, the interactive advice mech-
anism reduces the number of attempts required to
meet quality standards by 26%, highlighting its
effectiveness in user-driven improvements.

While GUIDE has shown promise in improv-
ing the quality of business-driven test descriptions,
several avenues for improvement remain open. No-
tably, we observed issues related to the structuring
of Gherkin translations during the evaluation pro-
cess. Despite its structured format, Gherkin gener-
ated by the translation step sometimes suffers from
syntactic inconsistencies or incorrect formatting,
which can hinder the subsequent classification and
assessment. To address this limitation, it could be
possible to use syntax-aware models that validate
Gherkin structure during generation, or to apply
post-processing corrections to ensure compliance
with Gherkin’s strict syntax.

Limitations

One of the core design choices of GUIDE is the
use of small language models (CamemBERT and
SmolLM2) to ensure local execution and respect
for data privacy. While this choice enables on-
premises deployment and reduces dependency on
external cloud services, it also introduces a lim-
itation in terms of generalization. Unlike larger
pre-trained models (e.g., GPT-4, PaLM), smaller
models require more task-specific fine-tuning to
perform adequately. This additional training phase



can cause GUIDE to become more domain-specific,
potentially limiting its effectiveness when exposed
to new application contexts or unseen business-
specific terminologies.

Moreover, GUIDE relies heavily on Gherkin as
an intermediate representation to assess the qual-
ity of test descriptions. While Gherkin is well-
structured and human-readable, it enforces a rigid
format that may not capture more complex test-
ing logic or non-linear interactions described by
business experts.
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A Similarity Scale

• Completely Similar (COMPSIM): it is the same
test and the same procedure expressed a little
differently.

• Very Similar (VERSIM): it is the same test,
but the operating procedures are different (one
may be more detailed than the other, but that
does not mean that the test described is dif-
ferent).it is the same test, but the operating
procedures are slightly different.

• Somewhat Similar (SOMSIM): it is probably
the same test (but I am not sure) and/or there
are many differences in the operating methods
used.

• Very Different (VERDIFF): it may be the same
test and/or the operating procedures expressed
have too many differences (but elements in
common).

• Completely Different (COMPDIFF): it is not
the same test and/or the operating procedures
are completely different (no common ele-
ments).

B Esco Explorer

Figure 3: Screenshot of the software Esco Explorer

C Prompt for the Beam Search

All the prompts presented in this appendix were
originally written in French.

Listing 1: The prompt used as the basis for the Beam
Search.
The user wrote a test description , and an automatic
analysis identified the elements that were missing
or needed to be improved.
Based on the following information:
- Test description provided:
"%s"

- Gherkin:
"%s"

- Software context:
"%s"

Generate clear , actionable suggestions to help the
user improve their description. Your recommendations
must be precise and adapted to the elements

detected as insufficient or missing. Respond only to
suggestions and nothing else.

Listing 2: The prompt used to make the mutation during
the Beam Search.
Generates three variations of the following
instruction , while retaining its semantic meaning.
Each variation must respect the following
constraints:

The message must remain clear and understandable.
The three %s markers must be retained , the first for
the description , the second for the Gherkin and the
third for the software.

The variations must reformulate the instruction
without changing its content.
Separate each variation with "---".

Reference instruction:
"%s"

Listing 3: The prompt considered to be the best during
the Beam Search.
The user has drawn up a test description , and an
automatic analysis has highlighted elements to be
enhanced or corrected.

Based on the following information:
- Test description provided:
"%s"

- Gherkin:
"%s

- Software context:
"%s

Make concrete , achievable suggestions to help the
user improve his description. Your recommendations
must be explicit and adapted to the elements deemed
to be missing or insufficient. Answer only the
suggestions and nothing else.



D Data

Table 6: Examples illustrating the disparity of functional test descriptions produced by different users. These
descriptions, taken from the production campaign, all aim to express the same test objective: ‘File - Open a CSV
file’. The similarity label was assigned by the user who wrote the description

Description Gherkin Similarity
Label

Cliquer sur "OPEN". Vérifier que la
fenêtre de choix des fichiers s’ouvre.
Sélectionner un fichier avec l’extension
".csv" et vérifier que la recherche
apparaît dans le logiciel.

Given le logiciel est ouvert
When je clique sur "OPEN"
Then la fenêtre de choix des fichiers
s’ouvre
And je sélectionne un fichier avec
l’extension ".csv"
And la recherche apparaît dans le
logiciel

VERSIM

Dans ESCO Explorer, appuyer sur le
bouton "OPEN" tout en haut à gauche.
Une fois fait, chercher dans la liste un
fichier avec comme type de fichier
"Fichier CSV Microsoft Excel". Double
cliquer sur le nom du fichier pour
l’ouvrir. Si le fichier s’ouvre dans
ESCO, on peut dire que le test est
validé.

Given l’utilisateur est sur l’application
ESCO.
When l’utilisateur sélectionne un fichier
CSV via le bouton "OPEN".
Then le fichier CSV choisi devrait
s’ouvrir dans ESCO.

COMPSIM

Cliquer sur le bouton ‘OPEN’ de la
barre de menu d’EscoExplorer. Cliquer
ensuite sur le fichier nommé
‘cobolview.csv’ dans la fenetre qui s’est
ouverte puis cliquer sur le bouton
‘ouvrir’. Le test est réussi si et
seulement si le mot ‘COBOL’ apparaît
dans la fenetre de recherche
d’EscoExplorer.

Given EscoExplorer a été lancé
And le langage sélectionné est ’English’
When cliquer sur le bouton ’OPEN’
And ouvrir le fichier ’cobolview.csv’
Then ’COBOL’ apparait dans la fenetre
de recherche

SOMSIM



E Campaign Analysis

Table 7: Average number of productions per test category, dividing the test categories into two halves.

Test Category 1 2 3 4 5 6 7 8 9

First Half 2.97 1.5 2.6 1.45 1.8 1.52 1.62 1.63 1.5
Second Half 2.02 1.6 1.72 1.9 1.47 1.63 1.5 1.62 1.43

Table 8: User Behavior During the Production Campaign (Number of attempts to meet quality criterion)

User ID Avg. Attempts 1 Attempt 2 Attempts 3 Attempts 3+ Attempts Abandonment

0 1.71 42 12 7 4 3
1 1.15 59 8 1 – –
2 3.07 18 18 12 20 –
3 1.91 32 19 12 5 –
4 2.31 21 11 10 1 25
5 1.79 35 18 8 5 2
6 1.29 53 12 2 1 –
7 1.38 51 13 2 2 –
8 1.44 45 16 6 – 1
9 1.41 46 12 5 – 5

Total 1.75 402 139 65 38 36

Table 9: User Behavior During the Advice Campaign (Number of attempts to meet quality criterion)

User ID Avg. Attempts 1 Attempt 2 Attempts 3 Attempts 3+ Attempts Abandonment

10 1.21 60 6 – 2 –
11 1.06 64 4 – – 1
12 1.19 59 6 2 1 1
13 1.16 58 9 1 – –
14 1.15 59 8 1 – –
15 1.15 49 11 4 4 3
16 1.18 60 4 4 – –
17 1.85 36 8 22 2 18

Total 1.29 445 46 34 9 23


