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Abstract

Large language model performance has ad-
vanced rapidly in recent years, driven by tech-
nical improvements in areas like model archi-
tecture, scaling, and reinforcement learning.
However, much of our understanding of these
models remains rooted in static evaluations cal-
culated post-training. While informative, these
snapshots offer limited insight into how models
learn, adapt, and transform internally during
training, overlooking dynamic processes and
representational shifts that occur throughout
fine-tuning, potentially concealing important
aspects of model behavior. We aim to con-
tribute to ongoing efforts to open the ‘black
box’ of language models by analyzing tempo-
ral information dynamics during fine-tuning.
Our findings suggest that tracking these internal
dynamics demonstrates both training-regime-
specific and task-specific differences in learn-
ing and may eventually contribute to applica-
tions such as change point detection or adaptive
training strategies. Ultimately, this work moves
toward a more nuanced, mathematical formula-
tion of what learning does to a model, highlight-
ing the constant flux of representational change
that underlies seemingly stable performance
improvements.

1 Introduction

The rapid development and widespread deployment
of large language models (LLMs) have amplified
interest in understanding how these models func-
tion internally. In pursuit of improved model per-
formance and generalization, the development of
pre-trained LL.Ms has led to models that are increas-
ingly becoming larger and more complex (Simon,
2021; Brown et al., 2020). Such complexity, often
driven by millions or even billions of parameters,
enables these models to capture and learn intricate
patterns within the training data, allowing them to
achieve state-of-the-art results across a wide array
of tasks (Devlin et al., 2019; Wang et al., 2018;
Roziere et al., 2024; Wang et al., 2020).

However, this power comes at a significant cost:
it obscures the internal mechanisms by which mod-
els arrive at their predictions, rendering the path
from input to output difficult to interpret and ex-
plain. As these models are increasingly adopted
in sensitive and high-stakes domains, the need for
transparency into their internal processes becomes
not just desirable, but essential (Hassija et al., 2024;
Embarak, 2023; Chen et al., 2025). To better un-
derstand what these models are actually learning
— and how their internal states evolve during train-
ing— we must look beyond static evaluations and
examine the learning process itself. Standard eval-
uation metrics such as accuracy, perplexity, or F1-
score provide only static snapshots of model behav-
ior. These metrics reflect what a model achieves
but offer little insight into how it learns.

In this paper, we propose analyzing the temporal
dynamics of learning in language models within an
information-theoretic framework (MacKay, 2002),
conceptualizing a model’s internal state as a dy-
namic information system (?). Rather than focus-
ing solely on final performance, we track how inter-
nal representations evolve during fine-tuning. This
allows us to characterize learning as a continuous
sequence of representational shifts, offering a more
granular and process-oriented perspective on model
behavior.

Our proposed framework builds on a growing
body of research that has used information theory
to study the evolution of complex, dynamic sys-
tems. In particular, several studies have modeled
cultural and linguistic phenomena by analyzing
the balance between how much new information is
being introduced and that information’s longevity
within the system (Barron et al., 2018; Nielbo
et al., 2021a,b; Vrangbak and Nielbo, 2021; Wev-
ers et al., 2021; Krisensen-McLachlan et al., 2024).
These studies used windowed relative entropy to
quantify the novelty of a system - the extent to
which a given time period diverges from preced-



ing time periods - and the resonance of a system,
which captures how information persists over time.

We extend this framework to the context of deep
learning by treating the internal states of a lan-
guage model as a dynamic information system. We
investigate the evolution of internal information
structure in models from the English BERT family
(Devlin et al., 2019) as they are fine-tuned across
various classification tasks. Through a series of
controlled experiments, we continuously extract in-
ternal representations from different BERT models
throughout the fine-tuning process. We adopt an
exploratory approach, examining whether tracking
the dynamics of internal representations over time
can reveal novel insights into the mechanisms of
learning within these models.

We argue that this approach offers a rich per-
spective on what it means for a model to learn
and opens the door to future applications, such
as tracking learning trajectories, identifying shifts
in representational focus, or detecting meaning-
ful change points during training. Ultimately, we
aim to bridge the gap between surface-level perfor-
mance and deeper representational change, provid-
ing insight into the temporal structure of learning
itself.

1.1 Related Work

Prior research has explored how fine-tuning affects
the internal structure of transformer-based mod-
els such as BERT. A common approach involves
probing internal layers to identify which aspects of
the model change during adaptation to downstream
tasks (Phang et al., 2021; Hao et al., 2020; Mer-
chant et al., 2020; Zhou and Srikumar, 2022; Voita
and Titov, 2020; Liu et al., 2019; Tenney et al.,
2018; Voita and Titov, 2020). Hao et al. (2020)
employ divergence-based measures to track shifts
in attention patterns and find that fine-tuning pri-
marily alters the attention modes of higher layers.
This is consistent with observations from Merchant
et al. (2020) who use probing classifiers and ab-
lation experiments to show that representational
change during fine-tuning is concentrated in upper
layers. Furthermore, they find variations in this
effect across fine-tuning tasks. For example, tasks
such as dependency parsing produce deeper repre-
sentational shifts than tasks like natural language
inference or reading comprehension.

Further analyses have investigated the spatial
structure of learned representations (Coenen et al.

(2019); Hernandez and Andreas (2021). Com-
paring the spatial structure of class-level embed-
dings before and after fine-tuning, Zhou and Sriku-
mar (2022) observe that class representations are
pushed further apart in the embedding space after
fine-tuning, even in cases where the classes were al-
ready linearly separable. Extending the findings of
Merchant et al. (2020), they also report that while
higher layers change more than lower ones, these
changes preserve structural similarity with the pre-
trained model, suggesting that fine-tuning reshapes
but does not fully overwrite earlier representations.

While these studies offer valuable insight into
how models change across fine-tuning, they are
typically limited to static comparisons between pre-
trained and post-trained states. In contrast, our
work adopts a dynamic perspective, examining
internal representations at every step during the
fine-tuning process. Moreover, rather than ana-
lyzing intermediate encoder layers, we focus on
prediction-layer outputs, treating class-level out-
put vectors as a dynamic system whose evolution
reflects learning in real time. This allows us to
capture transient changes and transitions that static
snapshots may miss, offering a more granular view
of representational dynamics during training.

2 Methods

We base our analysis on information signals ex-
tracted from 24 experiments: four pre-trained large
language models fine-tuned on three classification
tasks under two conditions. Details of this process
are laid out in the following sections.!

2.1 Model architectures

We fine-tune four different pre-trained BERT-style
models, namely BERT (Devlin et al., 2019), dis-
tilBERT (Sanh et al., 2020), roBERTa (Zhuang
et al., 2021), and multilingual BERT (mBERT)
(Devlin et al., 2019). The models are all core mod-
els that have been trained across many language-
understanding tasks. Each model is based primarily
on the BERT architecture, although they each dis-
play variations across different parameters such as
size or training regime, allowing for a range of pos-
sible comparisons across models. An overview of
the key differences across model types can be found
in Appendix A.2. The pre-trained model weights of

'The code-base for the project can be found at
https://github.com/frillecode/BERT-infodynamics



all four models were retrieved from HuggingFace.”

2.2 Classification tasks

We fine-tune the above-mentioned pre-trained mod-
els across three different language classification
tasks from the General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2018).
GLUE comprises a collection of resources for eval-
uating the performance of natural language under-
standing systems across a wide range of linguistic
tasks. GLUE consists of nine different language un-
derstanding tasks, each built on established English-
language text datasets, that are widely accepted
as standard benchmarks for assessing how well
models can understand and process natural lan-
guage (Devlin et al., 2019; Radford et al., 2019).
In the present study, a subset of three tasks from
the GLUE benchmark is used, namely:

* MNLI: The Multi-Genre Natural Language
Inference Corpus (Williams et al., 2018).

* MRPC: The Microsoft Research Paraphrase
Corpus (Dolan and Brockett, 2005).

e SST-2: Stanford Sentiment Treebank (Socher
etal., 2013).

The choice of using a subset of tasks is motivated
by the following reasons. Firstly, the GLUE bench-
mark is typically used to assess how well mod-
els generalize across tasks and text genres, often
with the ultimate goal of driving the development
of robust natural language understanding systems
(Wang et al., 2018). In contrast, this study seeks
to explore the underlying processes of the models
as they learn rather than assessing their final per-
formance. Secondly, the experiments in this study
make for 24 different fine-tuning processes and sub-
sequent analyses, with the windowed relative en-
tropy calculation adding substantial computational
load. Thirdly, the choice of these tasks ensures that
the study encompasses both binary and multi-class
classification problems, as well as different dataset
sizes. Furthermore, the tasks cover a wide range of
linguistic phenomena as they represent each of the
three general categories of the benchmark (Wang
et al., 2018). As such, the tasks provide a sufficient
variety of linguistic challenges to, within the scope

Zhttps://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/distilbert/distilbert-base-uncased
https://huggingface.co/Facebook Al/roberta-base
https://huggingface.co/google-bert/bert-base-

multilingual-uncased

Hyperparameter Values
Batch size 16, 32
Learning rate 275, 3¢7° e ®
N epochs 2,3,4

Table 1: Search space for hyperparameter optimization.

of this study, explore how models process and learn
throughout different natural language understand-
ing tasks.

2.3 Training procedures

The fine-tuning process of each model on each
task is carried out under two conditions differing
in parts of the training setup.

In the fixed condition, the hyperparameters of
the training process are kept fixed across all experi-
ments to allow for a more direct comparison. The
models are trained for 5000 steps using a batch size
of 64. All other hyperparameters are kept at default
values.

In the optimized condition, hyperparameter op-
timization is incorporated in the training process
to explore the effects of optimizing the models’
learning process to the task. We perform a simple
grid search over pre-defined values for batch size,
learning rate, and number of epochs. We use the
search space recommended in the original BERT
paper (Devlin et al., 2019), as seen in Table 1. For
each experiment, we run a total of 10 trials. Based
on this, we define the best configuration for each
experiment. These can be found in the Appendix
A.1. All other hyperparameters are kept at default
values.

In both conditions, a standard pipeline for fine-
tuning machine-learning models was employed
using the HuggingFace Transformers library (v.
4.42.4) (Wolf et al., 2020), and the datasets for
the different GLUE tasks were retrieved using the
Datasets class. All models are fine-tuned using
a Cross-Entropy loss function, and the standard
training and validation splits are retrieved automat-
ically upon accessing the datasets from GLUE. All
analysis is performed using Python (v. 3.12.3).

2.4 Feature extraction

During the fine-tuning process for each of the ex-
periments, we save the logits at every training step
by extracting the output of the last layer of the
neural network. By passing the logits through the
softmax function, they are converted to vectors rep-
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Figure 1: Overview of pipeline for extracting information signals from logits. Fictional example for a classification
task with 3 classes and a window size of w = 2. (a) illustrates the matrix with probability scores based on which
the information signals will be extracted. (b) illustrates a novelty signal, with the blue area representing the window
size within which it is calculated and the light red area representing the documents that are removed. (c) illustrates a
transience signal, with the green area representing the window size within which it is calculated and the red area

representing the documents that are removed.

resenting a probability distribution across labels.
As the fine-tuning process continues over training
steps, the resulting matrix becomes a temporally
sorted series of probability distributions represent-
ing the model’s predictions. Since these matrices
(one for each experiment) capture how the models’
predictions evolve over time, this can be used as a
proxy reflecting the learning process as the models
update their internal representations in response
to the data. These probability distribution matri-
ces hence serve as the input from which to extract
information signals, as described in the following
section. A visual representation of the process of
extracting the information signals from the logits
can be seen in Figure 1.

2.5 Information dynamics

Based on the temporally sorted probability scores
for each of the experiments, we employ methods
from information theory to extract information sig-

nals (novelty, resonance, transience). Using win-
dowed relative entropy, we can measure the simi-
larity (or ’surprise’) between the information pat-
terns in a series of probability distributions (Cover
and Thomas, 2006). Novelty serves as a measure
of how surprising the probability distribution pat-
terns in a document are given past documents, tran-
sience measures the extent to which those patterns
persist in future documents, and resonance mea-
sures the degree to which patterns in future docu-
ments conform to the novelty.

Information signals are extracted for each doc-
ument using a window size of 160 (w=160). A
document in this context refers to a document from
the training data (i.e. an input sentence) of the
given GLUE task that the model sees during fine-
tuning. As such, a window size of 160 means that
the information signals are extracted by comparing
the model’s representation of the current input sen-
tence to the previous 160 input sentences and the



following 160 input sentences.

For the implementation of relative entropy,
Jensen-Shannon divergence was used:
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Given the definitions outlined above, we can see
that these information theoretic measures neatly
translate into easily interpretable descriptions of the
learning process over time. Novelty in our setup
describes by how much the predictions of a given
model at a particular training step differ from those
which have come immediately before, indicating
a substantial shift in model behavior. Resonance,
on the other hand, considers to what extent this
novelty persists in the system during subsequent
training steps. This further allows the characteri-
zation of individual (per-experiment-level) signals
as information dynamics profiles based on internal
representation change. These information patterns
can then be analyzed to see how the dynamics of
the internals of a language model system evolve
over time (i.e. during fine-tuning).

j+d)) (5)

2.6 Signal processing

Due to the granularity of the experiments, the gen-
erated information signals are very long (as deter-
mined by batch size multiplied by number of train-
ing steps). As such, some processing must be done
to analyze and interpret the signals meaningfully.

First, the first 160 and last 160 (i.e., the window
size) documents are removed from the novelty and
resonance signals. Second, following existing re-
search into information dynamics (Nielbo et al.,
2021a; Wevers et al., 2021; Nielbo et al., 2021b),
non-linear adaptive filtering is performed to extract
global trends in the novelty and resonance signals.
In broad terms, the algorithm identifies a globally
smooth trend signal by ’stitching’ together locally
best-fitting polynomials in overlapping partitions
of the time series, allowing identification of broad
trends while preserving local variations within the
data. Following Riley et al. (2012), we define the
span value (size of the partitions) by visually in-
specting the results across a range of values to iden-
tify the best fit to extract the globally smooth trend
across the different signals. In this study, this is
done by comparing the smoothed signal produced
by adaptive filters with varying span values to a
moving average (see Appendix C.1 for an exam-
ple). Based on this procedure, the span value for
the partitions is set to 92.

3 Results

Figure 2 depicts the smoothed, normalized novelty
and resonance signals for the 12 experiments in
the fixed group (2a) and the optimized group (2b).
Across both groups, the resonance signals show
more frequent and periodic oscillations compared
to the novelty signals. The trajectories of both nov-
elty and resonance signals in the fixed group show
a higher degree of similarity across experiments
compared to those of the optimized group.

In the fixed group (Figure 2a), both novelty and
resonance signals appear smoother and more coher-
ent with slower oscillations, and we observe visible
patterns that correlate across the different experi-
ments. The novelty signals show closely aligned
trajectories during the initial training phase, but
begin to diverge after seeing approximately 20% of
the documents. The divergence is apparent in the
magnitude of the fluctuations, with some models
having more or less pronounced variance. How-
ever, the overall direction of the changes - either
increasing or decreasing - remains largely consis-
tent across experiments. Though more variable
from the outset, the resonance signals show simi-
lar patterns of divergence over time; they exhibit
somewhat aligned trajectories in the initial training
phase, but the magnitude of the oscillations grows
more unsynchronized as the training progresses.
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Figure 2: Normalized, smoothed novelty and resonance signals for experiments in (a) the fixed group and (b) the
optimized group. The signals are visualized over fine-tuning time with the percentage of training documents seen by

the model on the x-axis.

The situation is markedly different in the op-
timized group (Figure 2b), where the signals are
more chaotic and noisy overall, with more rapid
fluctuations and less apparent structure. Both nov-
elty and resonance signals show high variability
from the beginning of training and remain unsyn-
chronized throughout. We observe less alignment
across experiments, with more rapid fluctuations
and no clear common direction of changes between
experiments.

Figure 3 displays the novelty and resonance sig-
nals of the fixed group grouped by fine-tuning task.
We can observe clear task-specific patterns in the
trajectories of the signals, with high within-task
alignment, especially for the MRPC task (Figure

3b). The same is not evident for the optimized
group, nor do we find visible shared patterns in
either group when grouping signals by model type
(see Appendix B.1).

4 Discussion

Our findings reveal variations in information dy-
namics during the learning process across all exper-
iments, suggesting that BERT models process and
handle new information in distinct ways as they
learn. Most notably, we observe a high degree of
similarity in the signals from experiments in the
fixed group. Despite divergences in magnitude, the
overall directions of the changes in novelty and
resonance remain largely consistent across exper-



(@)

novelty

(b)

novelty

Rresonance

©

novelty

resonance

N documents.

Figure 3: Normalized, smoothed novelty (blue) and
resonance (green) signals for experiments in the fixed
group grouped by task. The highlighted lines depict the
signals from fine-tuning on the (a) MNLI, (b) MRPC,
and (c) SST-2 task, respectively. The transparent lines
show the remaining signals, i.e., signals from those tasks
not highlighted in each plot.

iments, suggesting somewhat stable information
structure and shared underlying trends in the evo-
lution of those signals over time. This contrasts
with the optimized group, where the signals show
more variability and noise across experiments, im-
plying less consistency in information dynamics
in that group. Contrary to previous methodologi-
cally related research in other data domains (e.g.
Nielbo et al. (2021b) and Vrangbak and Nielbo
(2021)), this study does not find clear temporal
change points in the information signals that cor-
respond to key events, such as shifts in learning
curves (see Appendix B.2).

The consistency we observe in the novelty sig-
nals in the fixed group suggests that, across model
types, new information is being integrated in a sta-
ble and comparable way. The resonance curves
show similar trends across models and tasks, in-
dicating that when new information is introduced,

its influence tends to persist consistently across
experiments. This illustrates a shared structure of
learning dynamics, where the models steadily adapt
to incoming training data in a similar manner. In
contrast, while generally achieving better classifi-
cation task performance (see Appendix B.2), the
optimized group exhibits less consistent informa-
tion integration. Frequent and high fluctuations in
novelty signals in this group suggest that the mod-
els are encountering more abrupt changes in their
internal representations, likely due to different op-
timal hyperparameters (e.g. learning rate or batch
size). Resonance signals are also less uniform,
implying that the influence of novel information
on future representations is less predictable and
more specific to the given experiment. These obser-
vations suggest that hyperparameter optimization
introduces variability in how models process and
retain information, possibly due to faster conver-
gence, more aggressive adaptation, and divergent
learning regimes across runs. However, it remains
unclear whether these fluctuations reflect meaning-
ful learning phenomena — such as adaptive ca-
pacity or sensitivity to task complexity — or are
artifacts introduced by tuning. Distinguishing be-
tween the two remains a challenge and motivates
future work involving finer-grained ablation stud-
ies and statistical analysis. Overall, these findings
indicate that stability in training procedure (i.e.,
fixed hyperparameters) leads to more uniform in-
formation dynamics, while optimization increases
variability in novelty and resonance, even if it may
improve downstream task performance.

These results are aligned with prior work in-
vestigating fine-tuning dynamics in BERT models.
For instance, as previously introduced, Hao et al.
(2020) use divergence-based methods to assess
shifts in attention patterns and find that fine-tuning
affects the higher layers of BERT more substan-
tially than lower layers. Their findings suggest that
learning-induced changes tend to concentrate in
specific architectural regions of the model and vary
by downstream task — a conclusion that aligns
with our observation that models under fixed train-
ing conditions exhibit consistent internal changes
with observable task-specific patterns, while those
under optimized regimes display greater variance.
Given these earlier findings, the present study’s
focus on the prediction layer is a natural starting
point for capturing salient representational changes
during fine-tuning. However, while this level offers



tractable insight into the model’s learning behavior,
it may not fully capture the dynamics occurring in
earlier layers. Extending the analysis to intermedi-
ate representations could provide a more nuanced
understanding of how internal structures evolve
across the network.

While the results may already conform with
expert intuition about how models are learning
over time, the explicitly information-theoretic ap-
proach can provide a new vocabulary and concep-
tual framework for explaining how and why certain
learning dynamics occur during fine-tuning on dif-
ferent tasks.

For example, Figure 3 illustrates the informa-
tion signals with fixed hyperparameters grouped by
classification task. For all three tasks, there is an
initial spike in novelty around 10% into training,
indicating that significant, consecutive represen-
tational changes are occurring at this stage. This
may reflect initial learning in the early stages of
fine-tuning where the models make more sporadic
or uninformed predictions, thus increasing novelty.
Subsequently, novelty decreases, suggesting that
the changes become more permanent, perhaps as
the models have learned useful patterns from the
training data. This is notably followed by a se-
ries of oscillations that manifest themselves consis-
tently within each task, perhaps reflecting episodic
shifts in representations as the models adjust to
task-specific data.

The resonance signals show similarly pro-
nounced regularity with structured, repeating reso-
nance peaks, especially for the MRPC task (Figure
3b). This periodicity might emerge from uniform
training dynamics across runs with fixed training
regimes; the same types of examples tend to re-
tain influence throughout training. The prominent
resonance fluctuations in the MRPC task may cor-
respond with overfitting tendencies observed in the
learning curves of models fine-tuned on this task
(see Appendix B.2). This suggests that certain train-
ing examples in MRPC repeatedly shape model be-
haviour, potentially leading to memorization rather
than generalization.

These discussions highlight how the perspec-
tive introduced here offers not only exploratory or
descriptive insights but also opens up for practi-
cal applications, such as change point detection.
This may allow us to identify critical transitions in
learning, e.g. sudden shifts in model behavior, con-
vergence phases, or the onset of overfitting, poten-

tially offering a more nuanced view of the training
progress. While qualitative patterns suggest links
between signal fluctuations and learning phenom-
ena (e.g., spikes in novelty during early training),
we do not currently quantify these relationships.
The scope of this study is primarily descriptive and
comparative; we focus on establishing the plausi-
bility and interpretability of the proposed signals
across training conditions. Future work could build
on this foundation by investigating formal change
point detection techniques or correlating signal dy-
namics with shifts in validation loss (Appendix
B.2) to strengthen causal interpretations. We leave
these directions for future research.

5 Conclusion

This paper presented a novel method demonstrating
how information-theoretic signals can offer insights
into the dynamics of how language models pro-
cess and integrate information during fine-tuning.
While traditional evaluation metrics provide static
snapshots of model performance, our findings un-
derscore the value of examining temporal learn-
ing dynamics to uncover how internal representa-
tions evolve over time. Across fixed training set-
tings, models exhibit synchronous and structured
changes, while optimized training regimes intro-
duce greater variability, thus revealing how differ-
ent learning conditions shape information flow.

For the purpose of this study, we focused only on
BERT-style models, but the methods proposed here
can be extended to other architectures. both the
information-theoretic framework and the format
of the GLUE benchmark can be model-agnostic,
meaning that this analysis could feasibly be ex-
tended to different architectures, training regimes,
and tasks. By quantifying how models react to and
retain new information, this moves beyond perfor-
mance outcomes to illuminate ~ow models learn,
not just how well. It captures the learning process
as a sequence of representational shifts, offering a
mathematical perspective on learning as continuous
adaptation rather than discrete updates. Our work
contributes a new layer of transparency to model
behavior, bridging performance metrics with inter-
nal state changes, and advancing our understanding
of learning as an unfolding, temporal process.



Limitations

Signal processing and window size

The generated information signals are inherently
dependent on the chosen window size, as this de-
fines the context for measuring ‘surprise’. In this
study, the choice of window size was intended to
balance the trade-off between capturing sufficient
context from the surrounding documents while
maintaining computational feasibility. Though
meaningfully defining an optimal window size for
a problem as such remains a complex challenge,
a sensitivity analysis (see Appendix C.2) showed
that varying the window size within a small range
had minimal impact on results. Still, all tested
sizes were relatively short compared to the full sig-
nal. Future work could explore larger windows
to examine long-term trends, though comparing
distributions over broader spans may introduce lim-
itations due to memory constraints in the current
information-theoretic measures. Additionally, as
previously discussed, the choice of adaptive filter
span value was guided by visual inspection due to
the lack of a standardized quantitative criterion for
adaptive filter tuning. Though a range of values
were tested for each experiment (Appendix C.1),
its effects on signal smoothing could be explored
more systematically in future work.

Model and task diversity

The classification tasks were carefully selected to
span a variety of differing scenarios. However,
extending this work to include more complex clas-
sification problems, such as with imbalanced data
or a wide number of classes, could offer addi-
tional insights. Likewise, our current work has
been confined to English language tasks. While we
found minimal differences between multilingual
and monolingual BERT models, further investiga-
tion could clarify how language diversity shapes
information dynamics. Similarly, while the models
examined in this study have notable differences in
architecture and training regimes, they all share the
same BERT-style model at their core. Comparing
information dynamics across more diverse model
types could reveal alternative learning patterns and
deepen our understanding of how different architec-
tures integrate and retain information. While our
model and task selection ensure a manageable com-
parison scope, extending this framework to other
architectures (e.g., TS, GPT) and task types (e.g.,
generation, multilingual classification) would help

assess the generalizability of information signals
across broader learning paradigms.

Ethics Statement

This study aimed to aid in opening the ‘black box’
of LLMs and enhance transparency by exploring
the information dynamics in their internal repre-
sentations. It takes an exploratory and analytical
approach in nature and does not involve model
deployment, private user data, or human subjects.
The dataset used is publicly available and widely
used in the research community. While our work
contributes to model transparency research, it does
not provide definitive explanations of model deci-
sions. We caution against potential misuse, such
as over-interpreting signals or applying our frame-
work to justify opaque model behavior without
sufficient validation. Finally, we must consider the
environmental impact of our work, with 24 fine-
tuning experiments and subsequent generation of
information signals.
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Appendices
A Additional methods

A.1 Hyperparameters for the optimized group

Before fine-tuning for experiments in the optimized
group, we performed hyperparameter tuning, as de-
scribed in the paper. The resulting hyperparameter
configurations can be found in Table 2. Hyper-
parameters not specified in the table were kept at
default values.

Model Task N epochs LR  Batch size
BERT MNLI 3 3e~?° 16
BERT MRPC 2 5¢7° 32
BERT SST-2 2 2¢~® 16
distiiBERT MNLI 4 5e~® 32
distiiBERT MRPC 3 3e~° 16
distilBERT  SST-2 2 5¢7° 64
roBERTa MNLI 4 2e¢5 32
roBERTa MRPC 4 2¢7° 64
roBERTa MRPC 4 5¢~° 64
mBERT MNLI 4 5¢7° 32
mBERT MRPC 3 5e~5 64
mBERT SST-2 3 2e¢5 64

Table 2: Hyperparameter configurations for each exper-
iment in the optimized group. LR is the learning rate.

A.2 Model architectures and pre-training
details

In Table 3, we highlight some of the main differ-
ences between the four models in terms of architec-
ture and pre-training details.

Model N layers N parameters N languages
BERT 12 110M 1
distilBERT 6 66M 1
roBERTa 12 125M 1
mBERT 12 110M 102

Table 3: Overview of architecture and training details
for pre-trained versions of BERT, distilBERT, roBERTa,
and mBERT.

B Additonal results
B.1 Grouped signals

To explore patterns in the extracted information
signals, different groupings of the signals were
visualized. As discussed in the paper, the analysis
revealed task-specific patterns in the information
signals from the experiments in the fixed group.
In Figure 4, the information signals from the

optimized group are shown grouped by task.
All subfigures display all the same signals;
however, each subfigure highlights the novelty and
resonance signals for a respective task, while the
remaining signals are depicted in transparent lines
for comparison.
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Figure 4: Normalized, smoothed novelty (blue) and res-
onance (green) signals for experiments in the optimized
group grouped by task. The highlighted lines depict the
signals from fine-tuning on the (a) MNLI, (b) MRPC,
and (c) SST-2 task, respectively. The transparent lines
show the remaining signals, i.e., signals from those tasks
not highlighted in each plot.

Similarly, the information signals from the exper-
iments were grouped by model type to investigate
potential patterns. This is depicted in Figure 5, with
each row of subfigures highlighting the signals of
the four different models, respectively. The left
column shows experiments from the fixed group,
and the right column shows experiments from the
optimized group.
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Figure 5: Normalized, smoothed novelty (blue) and resonance (green) signals grouped by model. The left column
shows the fixed group and the right column shows the optimized group. Each row corresponds to a model: (a—b)
BERT, (c—d) distilBERT, (e—f) roBERTa, and (g—h) mBERT. Highlighted lines show signals for each model-task

combination; transparent lines show the rest.

B.2 Learning curves

In Figure 6, the learning curves for the various ex-
periments are presented, illustrating the models’
performances on the classification tasks during the
fine-tuning process. Each subfigure represents an
experiment, displaying the learning curves for each
of the models fine-tuned on a task. The purple line
represents validation accuracy, the red line repre-
sents validation loss, and the yellow line represents
training loss. Note that differing training durations
in the optimized group led to uneven checkpoint
sampling across experiments. As a consequence,
some plots — such as those for roBERTa — are
missing or incomplete (e.g., if training terminated
before enough checkpoints were saved).

C Sensitivity analyses

C.1 Defining the adaptive filter span

As discussed in Section 2.6, we follow the pro-
posed method for defining the span value for the
adaptive filter (Riley et al., 2012); namely, visual
inspection of the fit of the smoothed signal pro-
duced by varying span values. Figure 7 displays an
example of this.

C.2 Defining the window size

As mentioned in the Limitations, a sensitivity anal-
ysis was also performed to investigate the effect
of varying the window size in which to calculate
the information signals. An example of this can be
seen in Figure 8.
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Figure 6: Learning curves for experiments in (a) the fixed group and (b) the optimized group. The red line represents
the validation loss, the yellow line represents the training loss, and the purple line represents the validation accuracy.
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Figure 7: Example of the effect of different span values for the adaptive filter. The signal depicted here is the
novelty signal from BERT fine-tuned on the MRPC task with fixed hyperparameters. The grey line depicts the
original, unsmoothed novelty signal. The light blue line depicts the novelty signal’s moving average (w=10000).
The dark blue line depicts the smoothed signal from the adaptive filter using span values of (a) 32, (b) 56, and (c)

128, respectively. All signals are normalized.
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Figure 8: Example of the effect of varying the window size for which to calculate novelty, transience, and resonance
in. The signal depicted is the normalized, smoothed novelty signal from distilBERT fine-tuned on the MNLI task
with fixed hyperparameters. The different lines represent different window sizes (80, 160, 320)



