Text-to-image (T2I) generation models have achieved great results in image quality, flexibility, and text alignment, leading to widespread use. Through improvements in multilingual abilities, a larger community can access this technology. Yet, we show that multilingual models suffer from substantial gender bias. Furthermore, the expectation that results should be similar across languages does not hold. We introduce MAGBIG, a controlled benchmark designed to study gender bias in multilingual T2I models, and use it to assess the impact of multilingualism on gender bias. To this end, we construct a set of multilingual prompts that offers a carefully controlled setting accounting for the complex grammatical differences influencing gender across languages. Our results show strong gender biases and notable language-specific differences across models. While we explore prompt engineering strategies to mitigate these biases, we find them largely ineffective and sometimes even detrimental to text-to-image alignment. Our analysis highlights the need for research on diverse language representations and greater control over bias in T2I models.
Tokenizers are crucial for encoding information in Large Language Models, but their development has recently stagnated, and they contain inherent weaknesses. Major limitations include computational overhead, ineffective vocabulary use, and unnecessarily large embedding and head layers. Additionally, their performance is biased towards a reference corpus, leading to reduced effectiveness for underrepresented languages.To remedy these issues, we propose T-Free, which directly embeds words through sparse activation patterns over character triplets and does not require a reference corpus. T-Free inherently exploits morphological similarities and allows for strong compression of embedding layers. In our exhaustive experimental evaluation, we achieve competitive downstream performance with a parameter reduction of more than 85% on these layers. Further, T-Free shows significant improvements in cross-lingual transfer learning.
The development of large language models (LLMs) relies heavily on extensive, high-quality datasets. Publicly available datasets focus predominantly on English, leaving other language communities behind. To address this issue, we introduce Community OSCAR, a multilingual dataset initiative designed to address the gap between English and non-English data availability. Through a collective effort, Community OSCAR covers over 150 languages with 45 billion documents, totaling over 345 TiB of data. Initial results indicate that Community OSCAR provides valuable raw data for training LLMs and enhancing the performance of multilingual models. This work aims to contribute to the ongoing advancements in multilingual NLP and to support a more inclusive AI ecosystem by making high-quality, multilingual data more accessible to those working with low-resource languages.
This document describes the submission of the very first version of the Occiglot open-source large language model to the General MT Shared Task of the 9th Conference of Machine Translation (WMT24). Occiglot is an open-source, community-based LLM based on Mistral-7B, which went through language-specific continual pre-training and subsequent instruction tuning, including instructions relevant to machine translation.We examine the automatic metric scores for translating the WMT24 test set and provide a detailed linguistically-motivated analysis.Despite Occiglot performing worse than many of the other system submissions, we observe that it performs better than Mistral7B, which has been based upon, which indicates the positive effect of the language specific continual-pretraining and instruction tuning. We see the submission of this very early version of the model as a motivation to unite community forces and pursue future LLM research on the translation task.