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Introduction

Preface by the General Chair

The 2017 edition of *SEM, the 6th in the annual series, took on as its theme ‘“representations of
meaning”, an area of acute interest in the field for the past several years. The conference program
shows that this year’s *SEM has been especially successful in covering its theme from a broad range of
perspectives, including various flavors of distributional, lexical, and formal/linguistic semantics. Thus,
the 2017 conference meets the overall goal of the *SEM series, by bridging across relatively independent
communities approaching the computational modeling of semantics from different angles. Hopefully,
the diversity of the program will provide not only something of interest to a broad audience of NLP
researchers, but also serve to stimulate new ideas and synergies that can significantly impact the field.

As always, *SEM would not have been possible without the active involvement of our community. Aside
from our dedicated program committee, to whom we give an extended acknowledgement further in this
introduction, we are very thankful to Eduardo Blanco (Publicity Chair) and Sandro Pezzelle (Publication
Chair) for their efficiency and hard work in making the conference a visible event, from website to
proceedings. We are particularly grateful to ACL SIGLEX, who made it possible to offer two exciting
keynotes, and to SIGLEX and Lexical Computing for supporting the annual Adam Kilgarriff Award for
the best paper at *SEM 2017. Our keynote speakers, Yejin Choi and Katrin Erk, are owed special thanks
for taking part in the selection of the best paper.

On behalf of the Program Committee Chairs, to whom we owe the greatest debt for the excellence of
the program, and myself as General Chair, I invite you to explore, exploit, and enjoy the diversity of
perspectives on the computational modeling of semantics that *SEM 2017 strives to provide.

Nancy Ide,
General Chair of *SEM 2017
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Preface by the Program Chairs

We are pleased to present this volume containing the papers accepted at the Sixth Joint Conference on
Lexical and Computational Semantics (*SEM 2017, co-located with ACL in Vancouver, Canada, on
August 3-4, 2017).

*SEM received a record number of submissions this year, which allowed us to compile a diverse and
high-quality program. The number of submissions was over one hundred (107). After we had discarded
some papers due to formal issues, 101 papers were reviewed for the conference, (52 long and 49 short).
Out of these, 36 papers were accepted (22 long, 14 short). Thus, the acceptance rate was 35.6% overall,
42.3% for the long papers and 28.6% for the short submissions. Some of the papers were withdrawn
after acceptance, due to multiple submissions to other conferences (the 2017 schedule was particularly
complicated, with significant intersection of *SEM with EMNLP, CoNLL, IWCS and other venues). The
final number of papers in the program is 30.

Submissions were reviewed in 9 different areas: Representations of Meaning (special topic of interest),
Distributional Semantics, Semantics for Applications, Lexical Semantics, Lexical Resources and
Ontologies, Discourse and Dialogue, Semantic Parsing and Semantic Role Labeling, Multimodal
Semantics, Formal and Linguistic Semantics. The most prolific areas were Distributional Semantics
(19 submitted papers), Representations of Meaning (15), and Semantics for Applications (15).

The papers were evaluated by a program committee of 14 area chairs from Asia, Europe and North
America, assisted by a panel of 167 reviewers. Each submission was reviewed by three reviewers, who
were furthermore encouraged to discuss any divergence in evaluation. The papers in each area were
subsequently ranked by the area chairs. The final selection was made by the program co-chairs after an
independent check of all reviews and discussion with the area chairs. Reviewers’ recommendations were
also used to shortlist a set of papers nominated for the Adam Kilgarriff Award. These papers were judged
by a committee chaired by Nancy Ide.

The final *SEM 2017 program consists of 17 oral presentations and 13 posters, as well as two
keynote talks by Yejin Choi (“From Naive Physics to Connotation: Modeling Commonsense in Frame
Semantics”, joint keynote with SemEval 2017) and Katrin Erk (“What do you know about an alligator
when you know the company it keeps?”).

We are deeply thankful to all area chairs and reviewers for their help in the selection of the program, for
their readiness in engaging in thoughtful discussions about individual papers, and for providing valuable
feedback to the authors. We are also grateful to Eduardo Blanco for his precious help in publicizing the
conference, and to Sandro Pezzelle for his dedication and thoroughness in turning the program into the
proceedings you now have under your eyes. Last but not least, we are indebted to our General Chair,
Nancy Ide, for her continuous guidance and support throughout the process of organizing this installment
of *SEM.

We hope you enjoy the conference!

Aurélie Herbelot & Lluis Marquez,
Program Co-Chairs of *SEM 2017
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Invited Talk: From Naive Physics to Connotation:
Modeling Commonsense in Frame Semantics

Yejin Choi
(Joint Invited Speaker with SemEval 2017)

University of Washington, USA

Abstract

Intelligent communication requires reading between the lines, which in turn, requires rich back-
ground knowledge about how the world works. However, learning unspoken commonsense knowl-
edge from language is nontrivial, as people rarely state the obvious, e.g., “my house is bigger than
me.” In this talk, I will discuss how we can recover the trivial everyday knowledge just from language
without an embodied agent. A key insight is this: The implicit knowledge people share and assume
systematically influences the way people use language, which provides indirect clues to reason about
the world. For example, if “Jen entered her house”, it must be that her house is bigger than her. I
will discuss how we can model a variety of aspects of knowledge — ranging from naive physics to
connotation — adapting the representations of frame semantics.
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Invited Talk: What Do You Know About an Alligator
When You Know the Company It Keeps?

Katrin Erk
University of Texas at Austin, USA

Abstract

How can people learn about the meaning of a word from textual context? If we assume that
lexical knowledge has to do with truth conditions, then what can textual (distributional) information
contribute? I will argue that at the least, an agent can observe how textual contexts co-occur with
concepts that have particular properties, and that the agent can use this information to make infer-
ences about unknown words: “I don’t know what an alligator is, but it must be something like a
crocodile”. I will further argue that this inference can only be noisy and partial, and is best described
in probabilistic terms.
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What Analogies Reveal about Word Vectors and their Compositionality

Gregory P. Finley
EMR AT*
San Francisco, CA
gregpfinley@gmail.com

Abstract

Analogy completion via vector arithmetic
has become a common means of demon-
strating the compositionality of word em-
beddings. Previous work have shown that
this strategy works more reliably for cer-
tain types of analogical word relationships
than for others, but these studies have not
offered a convincing account for why this
is the case. We arrive at such an account
through an experiment that targets a wide
variety of analogy questions and defines
a baseline condition to more accurately
measure the efficacy of our system. We
find that the most reliably solvable anal-
ogy categories involve either 1) the appli-
cation of a morpheme with clear syntac-
tic effects, 2) male—female alternations, or
3) named entities. These broader types
do not pattern cleanly along a syntactic—
semantic divide. We suggest instead that
their commonality is distributional, in that
the difference between the distributions
of two words in any given pair encom-
passes a relatively small number of word
types. Our study offers a needed expla-
nation for why analogy tests succeed and
fail where they do and provides nuanced
insight into the relationship between word
distributions and the theoretical linguistic
domains of syntax and semantics.

1 Introduction

In recent years, low-dimensional vectors have
proven an efficient and fruitful means of represent-
ing words for numerous computational applica-
tions, from calculating semantic similarity to serv-

* This work was done while the first author was a post-
doctoral research associate at the University of Minnesota.

Stephanie Farmer
Department of Linguistics
Macalester College
Saint Paul, MN

sfarmer@macalester.edu

1

Serguei V.S. Pakhomov
College of Pharmacy
University of Minnesota
Minneapolis, MN
pakh0002@umn.edu

ing as an early layer in deep learning architec-
tures (Baroni et al., 2014; Schnabel et al., 2015;
LeCun et al., 2015). Despite these advances,
however, strategies for representing meaning com-
positionally with a vector model remain limited.
Given the difficulties in training representations of
composed meaning (for example, most possible
phrases will be rare or unattested in training data),
achieving an accurate means of building complex
lexical or phrasal representations from lower-order
ones would be a decisive coup in computational
semantics.

Another promising avenue of compositional se-
mantics is the representation of concepts that do
not map easily to lexemes. A simple averaging
of two vectors may yield a concept that is seman-
tically akin to both, and the arithmetic difference
between word vectors has been said to represent
the relationship between two terms. The ability to
model knowledge unbounded by linguistic labels
is an exciting prospect for natural language pro-
cessing and artificial intelligence more broadly.

A common test of the compositional proper-
ties of word vectors is complete-the-analogy ques-
tions. Word vector arithmetic has achieved sur-
prisingly high accuracy on this type of task. A
flurry of recent studies have applied this test under
various conditions, but there has been limited fo-
cus on defining precisely what types of relations
vectors can capture, and less still on explaining
these differences. As such, there remains a major
gap in our understanding of distributional seman-
tics. Our original experimental work improves
upon prior methods by 1) targeting a wide vari-
ety of analogy questions drawn from several avail-
able resources and 2) defining a baseline condition
to control for differences in “difficulty” between
questions. These considerations enable an anal-
ysis that constitutes a major step towards a com-
prehensive, theoretically grounded account for the

Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017), pages 1-11,
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observed phenomena. To begin, however, we
present a brief review of the analogy problem as
usually posed.

2 Background

Several computational approaches have been pro-
posed for representing the meaning of words (and
holistic phrases) in terms of their co-occurrence
with other words in large text corpora. Some of
these, such as latent semantic analysis (Landauer
and Dumais, 1997), focus on developing semantic
representations based on theories of human cog-
nition, whereas others, such as random indexing
(Kanerva, 2009) and word embeddings (Bengio
et al., 2003; Mikolov et al., 2013a) focus more
on computational efficiency. Despite differences
in purpose and implementation, all current dis-
tributional semantic approaches rely on the same
basic principle of using similarity between co-
occurrence frequency distributions as a way to in-
fer the strength of association between words. For
many practical purposes, such as information in-
dexing and retrieval and semantic clustering, these
approaches work remarkably well.

There is no obvious best way to compose these
types of representations into larger arbitrary lin-
guistic units, although it does seem that cer-
tain regularities exist between terms that surface
through vector subtraction (Mikolov et al., 2013c;
Levy et al., 2014). Why should this be the case?
Consider the relationships between a difference
vector wp, — w, and other words in the vocabulary:
wp, — w, Will be orthogonal to words that co-occur
equally frequently with w, and wy, highly simi-
lar to words that co-occur only with wy, and dis-
similar (negative) to words that co-occur only with
w,.! If a word’s context is a fair representation of
its meaning, as is the key tenet of the distributional
hypothesis, then this vector difference should iso-
late crucial differences in meaning.

Analogy tasks have been used to test how well
vector differences capture consistent semantic dif-
ferences. Four-word proportional analogies, typi-
cally written as wy :wa::w3:wy, feature two pairs of
words such that the relationship between w; and
wsq 1S the same as between w3 and w,. If these
words are represented with vectors, then, it is as-
sumed that the differences between each pair are

!These assertions are supported by the distributivity of a
dot product, which is the standard calculation for similarity,
over addition: wg - (Wp — Wa) = We * Wp — Wg * Wa.

roughly equal:
wg — w1 R wWg — W3 (1)

In the most popular version of this task, a sys-
tem is given the first three words in the analogy
and asked guess the best candidate for wy. Solv-
ing for wy,

Wy X W3 + Wo — W1 ()

and thus a system selects its hypothesis wy,,;, from
the vocabulary V—typically excluding wy, wo and
w3—>by finding the word with maximum angular
(cosine) similarity to the hypothesis vector (ex-
pressed as vector dot product, assuming all word
vectors are unit length):

Whyp = argmax (w - (w3 + w2 —wi))  (3)
weV

We call this algorithm 3COSADD following
Levy et al. (2014). Levy and Goldberg (2014) note
that this strategy is equivalent to finding the word
in the lexicon that is the best match for w3 and wso
while also being most distant from w;. This re-
framing suggests that it may not be necessary at all
to represent ineffable concepts through intermedi-
ate stages of vector composition; 3COSADD could
be solving analogies simply through term similar-
ity. Indeed, words in a pair sharing some relation
tend to be similar to each other; when they are ex-
tremely similar, the difference between wy and w;
is negligible, and the task becomes trivial.

Linzen (2016) makes this observation as well
and goes on to demonstrate that accuracy falls to
near zero across the board when not excluding
wy, wz, and ws from contention in the hypoth-
esis space, which shows how strongly dependent
3COSADD is upon vector similarity. We agree
wholeheartedly with that paper’s claim that it is
important to measure the consistency of vector dif-
ferences in a way that is mindful of the typically
high similarity between paired terms.

2.1 Analogy Test Sets

Several categorized sets of semantic and syn-
tactic analogies are publicly available. One of
the earliest was published by Microsoft Research
(Mikolov et al., 2013c) and consists of 16 cate-
gories of inflectional morphological relations for
English nouns, verbs, and adjectives. The most
commonly reported test set, which we refer to as
the Google set, is included with the distribution of



the word2vec tool (Mikolov et al., 2013a). The
Google set comprises 14 categories, mostly in-
volving inflectional or geographical relationships
between terms. Categories are grouped into a “se-
mantic” and a “syntactic” subset, and results are
often reported averaged over each rather than by
category. This practice is rather problematic in our
view, as the syntactic/semantic division is quite
coarse and even questionable in some cases. We
explore the relationship between syntax, seman-
tics, and morphology in detail later on.

The “Better Analogy Test Set” (BATS) is a large
set developed to contain a balanced sampling of a
wide range of categories (Gladkova et al., 2016).
BATS features 40 categories of 50 word pairs
each, covering inflectional and derivational mor-
phology as well as several semantic relations.

The relational similarity task in SemEval-2012
featured relations between word pairs targeting
a massive range of lexical semantic relationships
(Jurgens et al., 2012). By drawing on the aggre-
gated results of the task’s participants, we have ex-
tracted highly representative pairs for each relation
to build an analogy set.

2.2 Accounting for Analogy Performance

In addition to those already cited, numerous other
recent papers have evaluated word embeddings
by benchmarking on analogy questions (Mikolov
et al.,, 2013b; Garten et al.,, 2015; Lofi et al.,
2016). There is some consensus regarding per-
formance across question types: systems do well
on questions of inflectional morphology (espe-
cially so for English (Nicolai et al., 2015)), but
far less reliably so for various non-geographical
semantic questions—although some gains in per-
formance are possible by adjusting the embedding
algorithms used or their hyperparameters (Levy
etal., 2015), or by training further on subproblems
(Drozd et al., 2016).

Amongst all of these findings, however, we
found lacking a cohesive, thorough, and satisfy-
ing account of why vector arithmetic works where
it does to solve analogies. To that end, we con-
ducted an experiment to arrive at such an expla-
nation, with some notable departures from previ-
ously used methods. We included a wide range
of available test data, which is key because indi-
vidual sets usually feature some bias towards one
type or a few types of question, and benchmark-
ers often report nothing more than accuracy av-

eraged over an entire set (Schnabel et al., 2015).
Additionally, we define a baseline, which is criti-
cal not only to gauge effectiveness, but also to un-
derstand the mechanism behind solving analogies
using compositional methods.

In the following sections we present the design
of the experiment, baseline condition, and ques-
tion sets; a discussion of how performance on
analogy questions breaks down by broad category;
and finally, a theoretical accounting for the ob-
served patterns and the implications for distribu-
tional semantics.

3 Method
3.1 Word Embeddings

We used word embeddings trained on the plain
text of all articles from Wikipedia as of Septem-
ber 2015, processed to remove all punctuation
and case distinctions. We tested the word2vec
and GloVe (Pennington et al., 2014) training algo-
rithms. Results were qualitatively very similar be-
tween the two, although word2vec scored slightly
higher on our metrics. Due to space considera-
tions, we discuss only the word2vec results.

Hyperparameters were set as recommended for
analogy tasks by the developers: 200-dimensional
vectors, continuous bag-of-words sampling, 8-
word window size. (We also tested a skip-gram
model in word2vec and saw only slight and oc-
casional differences—more subtle even than those
seen between word2vec and GloVe.)

3.2 Test Set

We used a pooled set of analogy questions com-
prising the Google, Microsoft, SemEval 2012, and
BATS test sets. At test time, any analogies that
featured a word absent from our lexicon were dis-
carded. (Note that the Microsoft categories testing
the English possessive enclitic ’s were not tested,
as preprocessing for our vector training corpus re-
moved all punctuation.) The sizes of each set fol-
lowing the removal of out-of-vocabulary analogies
are given in Table 1.

Note that the BATS and SemEval data sets fea-
ture a number of word pairs in each category but
not four-word analogy questions. We simply took
every possible pair of pairs from the same cate-
gory, so long as this did not result in an analogy
in which w; and w9 were the same word or in
which w4 was not unique. Some pairs in BATS
have more than one correct answer; for uniformity



SOURCE ‘ CATEGORIES | ANALOGIES

Microsoft Research 14 7,000
Google (word2vec) 14 19,544
SemEval2012 79 30,082
BATS 40 95,625
Total 147 152,251

Table 1: Summary of test data sources.

with other test sets, we use only the first answer
provided for each of these pairs.

For SemEval, we used the “platinum standard”
data distribution, which includes rankings of word
pairs in each category based on how well they rep-
resent the relationship as defined. We took only
the best half of pairs from that ranking to gener-
ate the test set. This was necessary because pairs
lower down the list tend to poorly represent the re-
lationship, or even to represent its opposite.

3.3 Measures

Virtually all existing studies of automated analogy
solving report accuracy as the main measure. Ac-
curacy is indeed a relevant measure when the goal
is to simulate human performance on a particular
task. Our purpose, however, is to understand the
nature of semantic representations and account for
when vector arithmetic does and does not function
well as a model of relationships.

For every analogy question, we calculate the
ranking of the correct w4 in the hypothesis
space—that is, the ordering of all words in the
lexicon in descending order of the result of the
3CO0SADD hypothesis function (3). A “correct”
answer would correspond to a ranking of 1.

Accuracy is a coarse measure in that it is in-
sensitive to any ranking other than 1. Rather than
accuracy, we borrow a measure from information
retrieval (Voorhees, 1999)—the reciprocal of rank
(RR) averaged across analogy questions in each
category, which is always a positive fraction in the
range:

vy = s @
Numerically, RR acts as a “softer” version of ac-
curacy, with rankings other than 1 contributing
somewhat to the average.

Besides being coarse, accuracy is also an un-
controlled measure in that it is insensitive to dif-
ferences in analogy “difficulty,” by which we
mean the prior degree of similarity between sin-

gle word vectors. An example: nominal plural
analogies, such as dog:dogs::horse:horses, often
achieve high accuracy, but this may follow natu-
rally from the high similarity between most singu-
lar nouns and their plural forms—indeed, for both
of these pairs, the singular and plural forms are
the closest terms to each other in our trained vec-
tor space.

To measure the efficacy of vector arithmetic in
a manner controlled for variances in prior vector
similarity, we propose a baseline, defined for each
analogy as the best ranking between the word most
similar to w9 and the word most similar to ws:

rankpgse = min(rank(arg max (w - ws)),
weV

rank(arg max (w - ws))) (5)
weV

For the above example, as dog is the most sim-
ilar word to dogs, there is no improvement to be
made upon baseline. Likewise, for the analogy
banana:yellow::sky:blue, baseline would likely be
high because yellow and blue are very similar.

Consistent with reporting RR for 3COSADD,
we report baseline reciprocal rank (BRR). We
suspect that using RR will be especially illustra-
tive for baseline, where there may be many “near
misses” that are informative but would all be re-
duced to zero if measuring only accuracy.

Our baseline is similar to the so-called ONLY-B
baseline tested by Linzen (2016), except that the
latter considers only ws. We include wo because
this term has just as much effect on the 3COSADD
hypothesis as ws. Note that our baseline would
not itself be implementable as a solving strategy
because it presumes access to wy to select be-
tween wo and ws; nevertheless, we contend that it
is helpful to define the baseline as we have done to
account for those categories in the test data where
all wo and w,4 are drawn from a small semantic
cluste—most notably, the color example in the
previous paragraph. (Overall, 16-18% of analo-
gies across our test sets show similarity to ws as a
better baseline than to ws.)

Improvement is defined as the difference be-
tween 3COSADD RR and baseline RR, a measure
we will refer to as reciprocal rank gain (RRG).
RRG is more sensitive to shifts in rank that might
not result in perfect accuracy. Analogies that show
improvement from a very poor rank to first place
will show a gain of nearly 1, whereas moving from
second to first place is only 0.5 (and moving from



poor rank to second is nearly 0.5). If 3COSADD
yields a worse hypothesis, this will be reflected as
a negative RRG.

We also tested other solving methods suggested
by Levy and Goldberg (Levy et al., 2014), 3C0S-
MUL and PAIRDIRECTION, although we do not
report them here—results with the former were
virtually indistinguishable from 3COSADD, and
poorer overall with the latter.

The raw results of our similarity experiments,
as well as source code to replicate all steps of the
experiments and analysis, can be downloaded at
https://github.com/gpfinley/analogies.

4 Results

Most broadly, we confirm prior findings that vec-
tor arithmetic can be used to solve analogy ques-
tions, with a mean RRG of .165 across all ques-
tions in all categories (¢ = 187, p <« .01). For
a more nuanced analysis, we sorted analogy tests
into four broad supercategories of analogical rela-
tionship: 30 categories of inflectional morphology,
12 of derivational morphology, 10 of named enti-
ties, and 95 of semantics of non-named entities (79
of which are from SemEval).

The gain in RR from baseline for all categories
is presented visually in Figure 1, where they are
grouped into our four supercategories for ease of
interpretation. (See the appendix for the names
of the top performing categories.) Each individ-
ual category is represented by a line between its
BRR and 3CoSADD RR. Within each supercate-
gory, we also consider intermediate groupings of
categories, and these are visualized by differences
in line stroke in the figure. Note that some patterns
are evident between and within supercategories:

o Inflectional: Although all inflectional cate-
gories show positive RRG, adjectival and ver-
bal inflection shows reliably higher RRG than
nominal inflection.

e Derivational: Derivational morphemes
whose primary function is to shift syntactic
class (-tion, -ment, -ly, -ness) show on
average higher RRG than those with stronger
regular semantic consequences (-less, -able,
over-, adjectival un-, repetitive re-, agentive
-er).

o Named entities: All categories—and partic-
ularly those dealing with country capitals—
show high RRG.

e Lexical: Analogy relationships based on
gender difference exhibit high RRG, while
most other categories have low or even nega-
tive RRG.

We performed a linear regression analysis to
predict RRG as a function of supercategory (F' =
24600, p < .01, R? = .39). The model is sum-
marized in Table 4. (Note that the model contains
no intercept term, so the coefficient for each super-
category is equivalent to its mean RRG.) A posi-
tive RRG can be demonstrated with high statistical
significance for all supercategories except lexical
semantics.

We also investigated possible effects of word
frequency on analogy performance. Multi-
collinearity poses a major challenge here: the fre-
quencies of all four words in an analogy are highly
correlated, and frequency can change dramatically
across category. A comprehensive analysis of this
complex problem is beyond the scope of this study,
although we did find that the difference between
an analogy’s wy frequency and the mean wy fre-
quency in that category correlates positively with
RRG, although this effect is subtle (r = .016,
t=6.28,p < .01).

5 Discussion

It is clear from our results that vector arithmetic
is a better approach for certain types of analogy
questions than for others. Almost as clear is the
hierarchy of the four broad types of questions that
we have defined: excellent performance for inflec-
tion and named entities, with decidedly mixed re-
sults for derivational morphology and poorer still
for lexical semantics—with the notable exception
of male—female analogies. Below, we account for
these patterns in the context of two domains of lin-
guistic theory: the interaction between morphol-
ogy and syntax, and the type-theoretic difference
between individuals and sets.

5.1 Morphology and Syntax

Verbal and adjectival inflection show much more
improvement over baseline than nominal inflec-
tion. It may simply be that the nominal cate-
gories have too high a baseline value to show
much evidence of improvement by 3COSADD. It
is also possible, however, that the nominal plural
has fewer syntactic implications than verbal and
adjectival morphology: nouns in non-subject po-
sition do not participate in number agreement in
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Figure 1: Mean reciprocal rank shifts between baseline and 3COSADD for four supercategories. Each
line is a single category of analogy questions (“country - capital” or “male - female,” for example). Some
lines are differentiated by stroke type (dotted, solid, or dashed), the meaning of which is idiosyncratic
to each supercategory: for inflectional, dashed lines are for nouns, dotted lines for adjectives, and solid
lines for verbs; for derivational, dotted lines are for morphemes that change syntactic class with minimal
semantic impact (e.g., -Iy, as opposed to re-); for named entities, dotted lines are for country capitals;
for lexical semantics, dotted lines are for gender relationships. Within supercategory, the difference in
RRG between categories of different stroke types is significant in every case (|¢| between 14.5 and 58.7,

p < .01).

English, so the plurality of many nouns in a text
has little syntactic consequence.

Derivational morphology might be expected to
perform worse than inflectional morphology for
a number of reasons. Even for highly produc-
tive morphemes, derivation tends to have more id-

iosyncratic meaning (Haspelmath and Sims, 2010,
100). For example, although ‘recruitment’ refers
to the act of recruiting, ‘government’ refers to a
governing body rather than the act of governing;
similarly, the adverb ‘sadly’ can be used as a sen-
tential adverb (expressing the speaker’s attitude



SUPERCATEGORY | ESTIMATE | STD ERROR t
Inflectional .345 .0015 228 **k
Derivational .106 .0018 57.7 #**
Lexical semantics —.000 .0012 —0.293
Named entities 420 .0020 207 ***

Table 2: Summary of regression model for reciprocal rank gain as a function of analogy supercategory.

All starred levels are highly significant (p < .01).

about the statement) as well as a manner adverb,
whereas ‘angrily’ cannot. These semantic char-
acteristics introduce lexically dependent variance
that is far less pronounced for inflection.

From our results with derivational sets, there
is evidence of a trend in which morphemes with
predominantly syntactic consequences are better
handled than those with stronger semantic conse-
quences (see dotted/solid lines in Figure 1). Sig-
nificant further experimental work is needed to
quantify the syntactic versus semantic effects of
derivational morphemes.

We predict that such work would support the
notion of a continuum between morphemes with
only syntactic effects and those with only (lexi-
cally) semantic effects. Those towards the syntac-
tic end of the continuum will tend to be better cap-
tured by vector offsets in distributional represen-
tations. There would be a partial overlap between
this continuum and the inflectional-derivational
continuum in that derivational morphology tends
to have more idiosyncratic meanings and is less
relevant to syntax. There would be differences
as well, especially as regards the property that
word class-changing morphology is more deriva-
tional: the repetitive re- in English, for example,
may be considered less derivational than the dever-
bal nominalizer -ment because it does not change
word class, but re- has virtually no syntactic con-
sequences for the verb to which it affixes.

5.2 Semantics: Named Entities as Individuals

Our results show that analogy sets containing
named entities are more readily solvable than
those that contain other lexical categories (com-
mon nouns, verbs, etc.).

A possible explanation for this is that named en-
tities have a single real-world referent—there is,
for instance, only one Amsterdam—while there is
a large set of real-world referents that correspond
to a common noun like ‘dog’. We would expect
the co-occurrences of ‘dog’, then, to be more di-

verse than those of a named entity like ‘Amster-
dam’.

The distinction drawn here between named en-
tities and other parts of speech is analogous to the
distinction between words of type e (“individu-
als”) and words of type (e, t) in Montagovian set-
theoretic semantics (Montague, 1973). According
to Montague, proper names (arguments of type
e) denote individuals, while verbs and common
nouns (predicates of type (e, t)) denote sets of in-
dividuals. Thus, ‘Amsterdam’ denotes an individ-
ual, while ‘dog’ denotes the set of dogs.

To better appreciate how this distinction might
lead to “fuzzier” representations for some words,
consider that training a vector on separate refer-
ences to numerous members of a set of individuals
is akin to a massive case of pseudo-polysemy—the
vector can only capture the average of all refer-
ents rather than a single, clear referent. Polysemy
is a well-known problem in training word vectors
(Reisinger and Mooney, 2010), although this case
of multiple referents has not been considered be-
fore to our knowledge.

Overall, named entity categories show very
good RRG results, especially when both terms in
a pair are named entities (as opposed to ‘name -
occupation’, say). Country capitals show excel-
lent performance in particular. In the broader his-
tory of this line of reserach, it is worth noting that
the composition of the Google test set plays to this
strength: country capital questions constitute over
a quarter of its analogies (and over half of those
in the “semantic” set, as noted by Gladkova et
al. (2016)). As our experiments and others have
demonstrated, however, the vector arithmetic ap-
proach struggles for most semantic questions.

Given the enormous influence of word2vec, it
is worth asking whether prevailing knowledge in
this field has been influenced by a selective fo-
cus on easier tasks. As further illustration of
this point, note that the classic go-to example,
king:queen::man:woman, is drawn from the sole



category in lexical semantics with any clear posi-
tive result in our experiments.

As a matter of fact, we should address the
exceptional performance on analogies in male—
female categories; why, of all lexical semantic
sets, do we see such high performance here? We
suspect these categories does well for the same
reason that inflectional analogies do well: En-
glish features gender agreement with some per-
sonal pronouns—and, of course, with coreferen-
tial gendered terms—so there are concrete and
regular distributional consequences of a noun’s se-
mantic gender.

5.3 A Unified Account

A recurrent thread in our accounting for all
categories is that 3COSADD does well with
relationships that have predictable effects on
distribution—i.e., nearby terms and their morphol-
ogy and syntax (although all morphology is effec-
tively suppletive for these embeddings). This is
especially evident with inflectional morphology,
and true as well for certain types of derivational
morphology as well as classes that participate in
agreement, such as gender.

Relations between named entities are not gov-
erned by syntactic differences as inflectional rela-
tionships are, but there is a certain distributional
parallel between the two: terms with a single
referent will generally exhibit a less blurred co-
occurrence profile than those with multiple refer-
ents; similarly, the difference between two realiza-
tions of the same root (e.g. ‘hot’ and ‘hotter’) will
be highly non-orthogonal primarily with words of
syntactic relevance, which is also a small set. The
common theme is clear: the smaller the set of
unique word types that co-occur with either word
1 or word 2 but not both (i.e.,the symmetric differ-
ence), the more cleanly the relationship between
word 1 and word 2 can be captured.

Recall that our results also suggest that analogy
questions containing frequent words are easier to
solve with vector arithmetic than those containing
less frequent words. We suspect that this is be-
cause the distributional representations of frequent
words are more robust and less noisy. We believe,
however, that more targeted investigation into the
effects of frequency might qualify this generaliza-
tion. For instance, it is reasonable to assume that
a word’s frequency correlates with the diversity
of its co-occurrence, and that this diversity could

signal distinct word senses, which are notoriously
tricky for distributional representations. This is a
ripe topic for further study.

5.4 Challenges

One challenge in interpreting our results is that
categories with seemingly identical relations can
show marked discrepancies in performance: note
the differences between Google ‘comparative’ and
Microsoft ‘JJ_JJR’, which examine the same in-
flectional relationship but show rather different
levels of performance. Similarly, note the ex-
treme difference in baseline rank for Google ‘gen-
der’ (called ‘family’ in the original set) and BATS
‘male - female’ categories. Clearly, lexical choices
make a significant difference and can even over-
shadow the inter-category differences that we are
trying to measure. Note that in both of the above
examples, the version of the category featuring
more unique word types showed lower baseline
and lower gain.

The explanations we put forward here may
need to be extended to address other types
of relationships that we did not evaluate.
One particular interesting example might be
Linzen et al’s (2016) tests of analogies be-
tween quantifiers across domains—e.g., ev-
erything:nothing::always:never—which show in-
triguingly mixed results.

6 Conclusion

We evaluated syntactic and semantic analogy
questions from a large and highly diverse test set
using metrics more controlled and more sensitive
than accuracy. Inspecting the results across cate-
gories, we were able to account for the differences
in performance we observed across types of word
relationships in terms that are consistent with the
distributional training objectives of word embed-
dings.

Vector arithmetic with word embeddings is
most effective when co-occurrence are limited to
a small number of words, either by syntactic reg-
ularities or ease of semantic representation. It is
possible to account for both of these by consider-
ing distributional phenomena directly.

Still, questions remain—do our negative results
reflect the failure of word vectors to model seman-
tic nuances, or the failure of vector arithmetic to
capture them, or is the semantic data simply too
noisy for current methods? Further experiments



with special attention paid to smoothing lexical se-
mantic representations will be key to solving this
problem.
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Appendix: Mean Rank by Category

|

CATEGORY RR | CATEGORY BRR || CATEGORY RRG
G:capital .950 G:plural .711 G:capital .750
G:capital-all .945 noun - plural reg  .674 country - capital .659
G:gender 933 G:gender .618 verb_inf - 3pSg  .604
G:nationality-adj .917 noun - plural_irreg  .603 G:superlative  .600
country - capital .909 NN_NNS .596 G:capital-all .584
G:comparative .896 G:pres-participle .566 VBZ_VB .580
verb_inf - 3pSg  .843 X is opp. dir. fromY 535 G:comparative .578
G:plural .841 verb_inf - Ving 496 VB_VBZ 573

noun - plural.reg .835 G:city-in-state  .486 G:nationality-adj .548
VB_VBZ 818 NNS_NN .484 JJSJIR 536
verb_inf - Ving .783 verb_Ving - Ved .478 JJRJIS 496
VBZ_VB 781 G:past-tense  .463 VBD_VB 470
G:city-in-state .774 X, Y same category .462 VBD_VBZ .469
G:pres-participle .755 antonyms - binary 436 VBZ_VBD  .465
G:plural-verbs .752 G:plural-verbs .371 verb_inf - Ved  .465
G:past-tense  .739 G:nationality-adj .369 VB_VBD 443
G:superlative 713 G:capital-all .361 JJJIR 443
NN_NNS .710 things - color 340 JJJIS 426
VBD_VB .677 verb_Ving - 3pSg  .336 adj - comparative 422
verb_Ving - Ved .670 || can’t X and Y at same time .320 verb_3pSg - Ved .400
noun - plural_irreg  .662 G:comparative .317 G:plural-verbs  .381
verb_Ving - 3pSg  .661 male - female 317 adj - superlative  .373
JJJIR 659 antonyms - gradable 306 || name - occupation .340

JJSJJJR  .653 G:opposite 292 verb_Ving - 3pSg  .325
NNS_NN .626 || X, Y two kinds in category .283 JJRJT 321
VBD_VBZ .623 X and Y are contrary 279 G:gender 316
VB_VBD .621 un+adj_reg .268 || name - nationality .312
verb_inf - Ved .604 country - capital .250 G:city-in-state .288
VBZ_VBD 571 X, Y similar type of thing 245 verb_inf - Ving .287

adj - comparative .570 VB_VBZ 245 || country - language .278
male - female 557 verb_inf - 3pSg  .239 G:past-tense  .276
verb_3pSg - Ved .553 X will become Y 239 G:currency .246
JIRJIS 543 JJIR 217 male - female 240

JJJIS  .520 G:adj-to-adverb 208 verb+tion_irreg 240

adj - superlative .468 VBD_VB .207 verb+ment_irreg 231
JJRJ 437 re+verb_reg 207 JJSJJ 228

Xis opp. dir. fromY 421 VBZ_VB 201 UK _city - county .219
G:adj-to-adverb 402 G:capital .200 G:adj-to-adverb  .195
name - occupation .389 synonyms - exact .199 adj+ly_reg  .192
1SJ1 376 VB_VBD .178 verb_Ving - Ved .192

Table 3: The top 40 categories for reciprocal rank using 3COSADD (RR), baseline reciprocal rank (BRR),
and reciprocal rank gain (RRG = RR — BRR) as calculated from embeddings trained on Wikipedia text
using word2vec. Categories based on inflectional morphology are in plain text, derivational morphology
in italics, named entity semantics in bold, and lexical in bold italic. Sources for analogy questions can be
identified from category names: those starting with ‘G:” are from the Google set; in all capital letters, the
Microsoft set; with reference to ‘X’ and ‘Y’, the SemEval set; all others, BATS. Some category names

are abbreviated from their original names.
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Abstract

Recognizing and distinguishing antonyms
from other types of semantic relations is
an essential part of language understand-
ing systems. In this paper, we present a
novel method for deriving antonym pairs
using paraphrase pairs containing negation
markers. We further propose a neural net-
work model, AnftNET, that integrates mor-
phological features indicative of antonymy
into a path-based relation detection algo-
rithm. We demonstrate that our model
outperforms state-of-the-art models in dis-
tinguishing antonyms from other semantic
relations and is capable of efficiently han-
dling multi-word expressions.

1 Introduction

Identifying antonymy and expressions with con-
trasting meanings is valuable for NLP systems
which go beyond recognizing semantic related-
ness and require to identify specific semantic re-
lations. While manually created semantic tax-
onomies, like WordNet (Fellbaum, 1998), define
antonymy relations between some word pairs that
native speakers consider antonyms, they have lim-
ited coverage. Further, as each term of an antony-
mous pair can have many semantically close
terms, the contrasting word pairs far outnum-
ber those that are commonly considered antonym
pairs, and they remain unrecorded. Therefore,
automated methods have been proposed to deter-
mine for a given term-pair (z, y), whether x and y
are antonyms of each other, based on their occur-
rences in a large corpus.

Charles and Miller (1989) put forward the co-
occurrence hypothesis that antonyms occur to-
gether in a sentence more often than chance. How-
ever, non-antonymous semantically related words
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Paraphrase Pair Antonym Pair

sufficient/insufficient

significant/negligible
honest/lying

usual/pretty strange

not sufficient/insufficient
insignificant/negligible
dishonest/lying
unusual/pretty strange

Table 1: Examples of antonyms derived from
PPDB paraphrases. The antonym pairs in column
2 were derived from the corresponding paraphrase
pairs in column 1.

such as hypernyms, holonyms, meronyms, and
near-synonyms also tend to occur together more
often than chance. Thus, separating antonyms
from pairs linked by other relationships has proven
to be difficult. Approaches to antonym detec-
tion have exploited distributional vector represen-
tations relying on the distributional hypothesis of
semantic similarity (Harris, 1954; Firth, 1957) that
words co-occurring in similar contexts tend to be
semantically close. Two main information sources
are used to recognize semantic relations: path-
based and distributional. Path-based methods con-
sider the joint occurrences of the two terms in
a given sentence and use the dependency paths
that connect the terms as features (Hearst, 1992;
Roth and Schulte im Walde, 2014; Schwartz et al.,
2015). For distinguishing antonyms from other re-
lations, Lin et al. (2003) proposed to use antonym
patterns (such as either X or Y and from X to
Y). Distributional methods are based on the dis-
Jjoint occurrences of each term and have recently
become popular using word embeddings (Mikolov
et al., 2013; Pennington et al., 2014) which pro-
vide a distributional representation for each term.
Recently, combined path-based and distributional
methods for relation detection have also been
proposed (Shwartz et al., 2016; Nguyen et al.,
2017). They showed that a good path representa-
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tion can provide substantial complementary infor-
mation to the distributional signal for distinguish-
ing between different semantic relations.

While antonymy applies to expressions that
represent contrasting meanings, paraphrases are
phrases expressing the same meaning, which usu-
ally occur in similar textual contexts (Barzilay and
McKeown, 2001) or have common translations
in other languages (Bannard and Callison-Burch,
2005). Specifically, if two words or phrases are
paraphrases, they are unlikely to be antonyms of
each other. Our first approach to antonym de-
tection exploits this fact and uses paraphrases for
detecting and generating antonyms (The demen-
tors caught Sirius Black/ Black could not escape
the dementors). We start by focusing on phrase
pairs that are most salient for deriving antonyms.
Our assumption is that phrases (or words) contain-
ing negating words (or prefixes) are more help-
ful for identifying opposing relationships between
term-pairs. For example, from the paraphrase pair
(caught/not escape), we can derive the antonym
pair (caught/escape) by just removing the negat-
ing word ‘not’.

Our second method is inspired by the recent
success of deep learning methods for relation de-
tection. Shwartz et al. (2016) proposed an inte-
grated path-based and distributional model to im-
prove hypernymy detection between term-pairs,
and later extended it to classify multiple semantic
relations (Shwartz and Dagan, 2016) (LexNET).
Although LexNET was the best performing sys-
tem in the semantic relation classification task of
the CogALex 2016 shared task, the model per-
formed poorly on synonyms and antonyms com-
pared to other relations. The path-based compo-
nent is weak in recognizing synonyms, which do
not tend to co-occur, and the distributional infor-
mation caused confusion between synonyms and
antonyms, since both tend to occur in the same
contexts. We propose AntNET, a novel exten-
sion of LexNET that integrates information about
negating prefixes as a new morphological pat-
tern feature and is able to distinguish antonyms
from other semantic relations. In addition, we op-
timize the vector representations of dependency
paths between the given term pair, encoded using
a neural network, by replacing the embeddings of
words with negating prefixes by the embeddings
of the base, non-negated, forms of the words.
For example, for the term pair unhappy/joyful,
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we record the negating prefix of urhappy using
a new path feature and replace the word embed-
ding of unhappy with happy in the vector represen-
tation of the dependency path between unhappy
and sad. The proposed model improves the path
embeddings to better distinguish antonyms from
other semantic relations and gets higher perfor-
mance than prior path-based methods on this task.
We used the antonym pairs extracted from the
Paraphrase Database (PPDB) (Ganitkevitch et al.,
2013; Pavlick et al., 2015b) in the paraphrase-
based method as training data for our neural net-
work model.
The main contributions of this paper are:

e We present a novel technique of using para-
phrases for antonym detection and success-
fully derive antonym pairs from paraphrases
in the PPDB, the largest paraphrase resource
currently available.

e We demonstrate improvements to an inte-
grated path-based and distributional model,
showing that our morphology-aware neural
network model, AntNET, performs better
than state-of-the-art methods for antonym de-
tection.

2 Related Work

Paraphrase Extraction Methods Paraphrases
are words or phrases expressing the same mean-
ing. Paraphrase extraction methods that exploit
distributional or translation similarity might how-
ever propose paraphrase pairs that are not mean-
ing equivalent but linked by other types of re-
lations. These methods often extract pairs hav-
ing a related but not equivalent meaning, such as
contradictory pairs. For instance, Lin and Pan-
tel (2001) extracted 12 million “inference rules"
from monolingual text by exploiting shared depen-
dency contexts. Their method learns paraphrases
that are truly meaning equivalent, but it just as
readily learns contradictory pairs such as (X rises,
X falls). Ganitkevitch et al. (2013) extract over
150 million paraphrase rules from parallel cor-
pora by pivoting through foreign translations. This
multilingual paraphrasing method often learns hy-
pernym/hyponym pairs, due to variation in the
discourse structure of translations, and unrelated
pairs due to misalignments or polysemy in the for-
eign language. Pavlick et al. (2015a) added inter-
pretable semantics to PPDB (see Section 3.1 for



Method #pairs

(x,y) from paraphrase (X,y)/(x.¥) 80,669
(x, paraphrase(y)), (paraphrase(x), y) | 81,221
(x, synset(y)), (synset(x), y) 692,231

Table 2: Number of unique antonym pairs derived
from PPDB at each step. Paraphrases and synsets
were obtained from PPDB and WordNet respec-
tively.

details) and showed that paraphrases in this re-
source represent a variety of relations other than
equivalence, including contradictory pairs like no-
body/someone and close/open.

Pattern-based Methods Pattern-based methods
for inducing semantic relations between a pair of
terms (x,y) consider the lexico-syntactic paths
that connect the joint occurrences of z and y in
a large corpus. A variety of approaches have been
proposed that rely on patterns between terms in
a corpus to distinguish antonyms from other rela-
tions. Lin et al. (2003) used translation informa-
tion and lexico-syntactic patterns to extract dis-
tributionally similar words, and then filtered out
words that appeared with the patterns ‘from X to
Y’ or ‘either X or Y’ significantly often. The in-
tuition behind this was that if two words X and Y
appear in one of these patterns, they are unlikely to
represent a synonymous pair. Roth and Schulte im
Walde (2014) combined general lexico-syntactic
patterns with discourse markers as indicators for
the specific semantic relations between word pairs
(e.g. contrast relations might indicate antonymy
and elaborations may indicate synonymy or hy-
ponymy). Unlike previous pattern-based methods
which relied on the standard distribution of pat-
terns, Schwartz et al. (2015) used patterns to learn
word embeddings. They presented a symmetric
pattern-based model for representing word vectors
in which antonyms are assigned to dissimilar vec-
tor representations. More recently, Nguyen et al.
(2017) presented a pattern-based neural network
model that exploits lexico-syntactic patterns from
syntactic parse trees for the task of distinguishing
between antonyms and synonyms. They applied
HypeNET Shwartz et al. (2016) to the task of dis-
tinguishing between synonyms and antonyms, re-
placing the direction feature with the distance in
the path representation.

14

Source | #pairs
WordNet | 18,306
PPDB 773,452

Table 3: Number of unique antonym pairs derived
from different sources. The number of pairs ob-
tained from PPDB far outnumbers the antonym
pairs present in EVALution and WordNet.

3 Paraphrase-Based Antonym
Derivation

Existing semantic resources like WordNet (Fell-
baum, 1998) contain a much smaller set of
antonyms compared to other semantic relations
(synonyms, hypernyms and meronyms). Our
aim is to create a large resource of high quality
antonym pairs using paraphrases.

3.1 The Paraphrase Database

The Paraphrase Database (PPDB) contains over
150 million paraphrase rules covering three para-
phrase types: lexical (single word), phrasal (multi-
word), and syntactic restructuring rules, and is the
largest collection of paraphrases currently avail-
able. PPDB . In this paper, we focus on lexical and
phrasal paraphrases up to two words in length. We
examine the relationships between phrase pairs in
the PPDB focusing on phrase pairs that are most
salient for deriving antonyms.

3.2 Antonym Derivation

Selection of Paraphrases We consider all
phrase pairs from PPDB (p1, p2) up to two words
in length such that one of the two phrases either
begins with a negating word like not, or contains
a negating prefix.!| We chose these two types of
paraphrase pairs since we believe them to be the
most indicative of an antonymy relationship be-
tween the target words. There are 7,878 unordered
phrase pairs of the form (p),p2) where p) be-
gins with ‘not’, and 183,159 phrases of the form
(p!, p2) where p) contains a negating prefix.

Paraphrase Transformation For paraphrases
containing a negating prefix, we perform morpho-
logical analysis to identify and remove the negat-
ing prefixes. For a phrase pair like unhappy/sad,
an antonymy relation is derived between the base
form of the negated word, without the negation
prefix, and its paraphrase (happy/sad). We use

INegating prefixes include de, un, in, anti, il, non, dis



Unrelated Paraphrases Categories Entailment Other relation
much/worthless | correct/that’s right | Japan/Korea investing/ twinkle/dark
increased investment
disability/present simply/merely black/red efficiency/ naw/not gonna
operational efficiency
equality/gap till/until Jan/Feb valid/equally valid | access/available

Table 4: Examples of different types of non-antonyms derived from PPDB.

MORSEL (Lignos, 2010) to perform morpholog-
ical analysis and identify negation markers. For
multi-word phrases with a negating word, the
negating word is simply dropped to obtain an
antonym pair (e.g. different/not identical — dif-
ferent/identical). Some examples of PPDB para-
phrase pairs and antonym pairs derived from them
are shown in Table 1. The derived antonym pairs
are further expanded by associating the synonyms
(from WordNet) and lexical paraphrases (from
PPDB) of each phrase with the other phrase in
the derived pair. While expanding each phrase
in the derived pair by its paraphrases, we filter
out paraphrase pairs with a PPDB score (Pavlick
et al., 2015a) of less than 2.5. In the above ex-
ample, unhappy/sad, we first derive happy/sad as
an antonym pair and expand it by considering all
synonyms of happy as antonyms of sad (e.g. joy-
ful/sad), and all synonyms of sad as antonyms
of happy (e.g. happy/gloomy). Table 2 shows
the number of pairs derived at each step using
PPDB. In total, we were able to derive around
773K unique pairs from PPDB. This is a much
larger dataset than existing resources like Word-
Net and EVALution as shown in Table 3.

Analysis We performed a manual evaluation of
the quality of the extracted antonyms by randomly
selecting 1000 pairs classified as ‘antonym’ and
observed that the dataset contained about 63%
antonyms. Errors mostly consisted of phrases and
words that do not have an opposing meaning after
the removal of the negation pattern. For example,
the equivalent pair till/until that was derived from
the PPDB paraphrase rule not till/until. Other non-
antonyms derived from the above methods can be
classified into unrelated pairs (background/figure),
paraphrases or pairs that have an equivalent mean-
ing (admissible/permissible), words that belong to
a category (Africa/Asia), pairs that have an entail-
ment relation (valid/equally valid) and pairs that
are related but not with an antonym relationship
(twinkle/dark). Table 4 gives some examples of
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categories of non-antonyms.

Annotation Since the pairs derived from PPDB
seemed to contain a variety of relations in addi-
tion to antonyms, we crowdsourced the task of la-
belling a subset of these pairs in order to obtain the
true labels.” We asked workers to choose between
the labels: antonym, synonym (or paraphrase for
multi-word expressions), unrelated, other, entail-
ment, and category. We showed each pair to 3
workers, taking the majority label as truth.

4 LSTM-Based Antonym Detection

In this section we describe AntNET, a long short
term memory (LSTM) based, morphology-aware
neural network model for antonym detection. We
first focus on improving the neural embeddings of
the path representation (Section 4.1), and then in-
tegrate distributional signals into our network re-
sulting in a combined method (Section 4.2).

4.1 Path-Based Network

Similarly to prior work, we represent each de-
pendency path as a sequence of edges that leads
from x to y in the dependency tree. We use
the same path-based features proposed by Shwartz
et al. (2016) for recognizing hypernym relations:
lemma and part-of-speech (POS) tag of the source
node, the dependency label, and the edge direction
between two subsequent nodes. Additionally, we
also add a new feature that indicates whether the
source node is negated.

Rather than treating an entire dependency path
as a single feature, we encode the sequence
of edges using a long short term memory net-
work (Hochreiter and Schmidhuber, 1997). The
vectors obtained for the different paths of a given
(x,y) pair are pooled, and the resulting vector is
used for classification. The overall network struc-
ture is depicted in Figure 1.

25884 pairs were randomly chosen and were annotated on
www.crowdflower.com
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Figure 1: Illustration of the AntNET model. Each pair is represented by several paths and each path
is a sequence of edges. An edge consists of five features: lemma, POS, dependency label, dependency

direction, and negation marker.

Edge Representation We denote each edge as
lemma/pos/dep/dir /neg. We are only inter-
ested in checking if x and/or y have negation
markers but not the intermediate edges since nega-
tion information for intermediate lemmas is un-
likely to contribute to identifying whether there is
an antonym relationship between = and y. Hence,
in our model, neg is represented in one of three
ways: negated if x or y is negated, not-negated if
x or y is not negated, and unavailable for the inter-
mediate edges. If the source node is negated, we
replace the lemma by the lemma of its base, non-
negated, form. For example, if we identified un-
happy as a ‘negated’ word, we replace the lemma
embedding of unhappy by the embedding of happy
in the path representation. The negation feature
will help in separating antonyms from other se-
mantic relations, especially those that are hard to
distinguish from, like synonyms.

The replacement of a negated word’s embed-
ding by its base form’s embedding is done for a
few reasons. First, words and their polar antonyms
are more likely to co-occur in sentences compared
to words and their negated forms. For example,
Neither happy nor sad is probably a more com-
mon phrase than Neither happy nor unhappy, so
this technique will help our model to identify an
opposing relationship between both types of pairs,
happy/unhappy and happy/sad. Second, a com-
mon practice for creating word embeddings for
multi-word expressions (MWESs) is by averaging
over the embeddings of each word in the expres-
sion. Ideally, this is not a good representation
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for phrases like not identical since we lose out on
the negating information obtained from not. In-
dicating the presence of not using a negation fea-
ture and replacing the embedding of not identical
by identical will increase the classifier’s probabil-
ity of identifying not identical/different as para-
phrases and identical/different as antonyms. And
finally, this method helps us distinguish between
terms that are seemingly negated but are not in re-
ality (e.g. invaluable). We encode the sequence
of edges using an LSTM network. The vectors
obtained for all the paths connecting x and y are
pooled and combined, and the resulting vector is
used for classification. The vector representation
of each edge is the concatenation of its feature vec-
tors:

Vedge = [vlemmaa Upos Vdeps Vdir, Uneg]

where Ulemma, Uposs Udeps Udir» Uneg Tepresent the
vector embeddings of the negation marker, lemma,
POS tag, dependency label and dependency direc-
tion, respectively.

Path Representation The representation for
a path p composed of a sequence of edges
edge1, edges, .., edgey, is a sequence of edge vec-
tors: p = [edﬁel, edges, ..., edgek]. The edge vec-
tors are fed in order to a recurrent neural network
(RNN) with LSTM units, resulting in the encoded
path vector 7).

Classification Task Given a lexical or phrasal
pair (z, y) we induce patterns from a corpus where
each pattern represents a lexico-syntactic path



connecting x and y. The vector representation for
each term pair (x,y) is computed as the weighted
average of its path vectors by applying average
pooling as follows:

L X peP(ay) fp
Up(z,y) =

(D
2 peP(z.y)fy

—

Up(z,y) refers to the vector of the pair (z,y);
P(z,y) is the multi-set of paths connecting = and
y in the corpus and f, is the frequency of p in
P(z,y). The vector ¥, ) is then fed into a neu-
ral network that outputs the class distribution ¢ for
each class (relation type), and the pair is assigned

to the relation with the highest score r:

c= softmax(MLP(ﬁp(fE,y))
r = argmaz;cli]

(2a)
(2b)

MLP stands for Multi Layer Perceptron and can
be computed with or without a hidden layer (equa-
tions 4 and 5 respectively).

-

h = tanh(Wl.z_)'p(%y) +b1) 3
MLP(6y(ay)) = Wa.hs + by “
MLP(Z_}’p(xvy)) = Wl'ﬁp(x,y) + by 5)

W refers to a matrix of weights that projects in-
formation between two layers; b is a layer-specific
vector of bias terms and £ is the hidden layer.

4.2 Combined Path-Based and Distributional
Network

The path-based supervised model in Section 4.1
classifies each pair (x,y) based on the lexico-
syntactic patterns that connect x and y in a cor-
pus. Inspired by the improved performance of
Shwartz et al.’s (2016) integrated path-based and
distributional method over a simpler path-based
algorithm, we integrate distributional features into
our path-based network. We create a combined
vector representation using both the syntactic path
features and the co-occurrence distributional fea-
tures of x and y for each pair (x,y). The com-
bined vector representation for (x,y), Ug(zy)s 18
computed by simply concatenating the word em-
beddings of x (U;) and y () to the path-based

feature vector U, )

(6)

UC(.Z’y) = [Uﬁ, Up(ac,y)a Uy]
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5 Experiments

We experiment with the path-based and combined
models for antonym identification by performing
two types of classification: binary and multiclass
classification.

Train
5,122

Test
1,829

Val
367

Total
7,318

Table 5: Number of instances present in the
train/test/validation splits of the crowdsourced
dataset.

5.1 Dataset

Neural networks require a large amount of train-
ing data. We use the labelled portion of the dataset
that we created using PPDB, as described in Sec-
tion 3. In order to induce paths for the pairs in
the dataset, we identify sentences in the corpus
that contain the pair and extract all patterns for
the given pair. Pairs with an antonym relationship
are considered as positive instances in both clas-
sification experiments. In the binary classification
experiment, we consider all pairs related by other
relations (entailment, synonymy, category, unre-
lated, other) as negative instances. We also per-
form a variant of the multiclass classification with
three classes (antonym, other, unrelated). Due to
the skewed nature of the dataset, we combined cat-
egory, entailment and synonym/paraphrases into
one class. For both classification experiments, we
perform random split with 70% train, 25% test,
and 5% validation sets. Table 5 displays the num-
ber of relations in our dataset. Wikipedia® was
used as the underlying corpus for all methods and
we perform model selection on the validation set
to tune the hyper-parameters of each method. We
apply grid search for a range of values and pick the
ones that yield the highest F score on the valida-
tion set. The best hyper-parameters are reported in
the appendix.

5.2 Baselines

Majority Baseline The majority baseline is
achieved by labelling all the instances with the
most frequent class occuring in the dataset i.e.
FALSE (binary) or UNRELATED (multiclass).

3We used the English Wikipedia dump from May 2015 as
the corpus.



Model Binary Multiclass
P R Fq P R Fq

Majority baseline 0.304 0.551 0.392 0.222 0472 0.303

SP baseline 0.661 0.568 0.436 0.583 0.488 0.344

Path-based SD baseline | 0.723 0.724 0.722 0.636 0.675 0.651
Path-based AntNET 0.732 0.722 0.713 0.652 0.687 0.661**

Combined SD baseline | 0.790 0.788 0.788 0.744 0.750 0.738

Combined AntNET 0.803 0.802 0.802%* 0.746 0.757 0.746*

Table 6: Performance of the AntNET models in comparison to the baseline models.

Feature Model Binary Multiclass
P R Fq P R Fy
Distance | Path-based | 0.727 0.727 0.724 | 0.665 0.692 0.664
Combined | 0.789 0.788 0.788 | 0.732 0.743 0.734
Negation | Path-based | 0.732 0.722 0.713 | 0.652 0.687 0.661
Combined | 0.803 0.802 0.802 | 0.746 0.757 0.746

Table 7: Comparing the novel negation marking feature with the distance feature proposed by Nguyen

etal. (2017).

Distributed Baseline The method proposed by
Schwartz et al. (2015) uses symmetric patterns
(SPs) for generating word embeddings. The au-
thors automatically acquired symmetric patterns
(defined as a sequence of 3—-5 tokens consisting of
exactly 2 wildcards and 1-3 words) from a large
plain-text corpus, and generated vectors where
each co-ordinate represented the co-occurrence in
symmetric patterns of the represented word with
another word of the vocabulary. For antonym rep-
resentation, the authors relied on the patterns sug-
gested by (Lin et al., 2003) to construct word em-
beddings containing an antonym parameter that
can be turned on in order to represent antonyms as
dissimilar, and that can be turned off to represent
antonyms as similar. To evaluate the SP method
on our data, we used the pre-trained SP embed-
dings* with 500 dimensions. We use the SVM
classifier with RBF kernel for the classification of
word pairs.

Path-based and Combined Baseline Since
AntNET is an extension of the path-based and
combined models proposed by (Shwartz and Da-
gan, 2016) for classifying multiple semantic rela-
tions, we use their models as additional baselines.
Because their model used a different dataset that
contained very few antonym instances, we repli-

*https://homes.cs.washington.edu/
~roysch/papers/sp_embeddings/sp_
embeddings.html
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cated the baseline (SD) with the dataset and corpus
information as in Sectionn 5.1 rather than compar-
ing to the reported results.

5.3 Results

Table 6 displays the performance scores of
AntNET and the baselines in terms of precision,
recall and F;. Our combined model significantly?
outperforms all baselines in both binary and mul-
ticlass classifications. Both path-based and com-
bined models of AntNET achieve a much better
performance in comparison to the majority class
and SP baselines.

Comparing the path-based methods, the
AntNET model achieves a higher precision com-
pared to the path-based SD baseline for binary
classification, and outperforms the SD model in
precision, recall and Fj in the multiclass clas-
sification experiment. The low precision of the
SD model stems from its inability to distinguish
between antonyms and synonyms, and between
related and unrelated pairs which are common in
our dataset, causing many false positive pairs such
as difficult/harsh, bad/cunning, finish/far which
were classified as antonyms.

Comparing the combined models, the AntNET
model outperforms the SD model in precision, re-
call and F7i, achieving state-of-the-art results for
antonym detection. In all the experiments, the

SWe used paired t-test. *p < 0.1, **p < 0.05



performance of the model in the binary classifi-
cation task was better than in the multiclass clas-
sification. Multiclass classification seems to be in-
herently harder for all methods, due to the large
number of relations and the smaller number of in-
stances for each relation. We also observed that as
we increased the size of the training dataset used
in our experiments, the results improved for both
path-based and combined models, confirming the
need for large-scale datasets that will benefit train-
ing neural models.

Effect of the Negation-marking Feature In our
models, the novel negation marking feature is suc-
cessfully integrated along the syntactic path to rep-
resent the paths between = and y. In order to eval-
uate the effect of our novel negation-marking fea-
ture for antonym detection, we compare this fea-
ture to the distance feature proposed by Nguyen
et al. (2017). In their approach, they integrate
the distance between related words in a lexico-
syntactic path as a new pattern feature, along
with lemma, POS and dependency for the task
of distinguishing antonyms and synonyms. We
re-implemented this model by making use of the
same information regarding dataset and patterns as
in Section 5.1 and then replacing the direction fea-
ture in the SD models by the distance feature.

The results are shown in Table 7 and indicate
that the negation marking feature and the replace-
ment of the embeddings of negated words by the
ones of their base forms enhance the performance
of our models more effectively than the distance
feature does, across both binary and multiclass
classifications. Although, the distance feature has
previously been shown to perform well for the task
of distinguishing antonyms from synonyms, this
feature is not very effective in the multiclass set-
ting.

5.4 Error Analysis

Figure 2 displays the confusion matrices for the
binary and multiclass experiments of the best per-
forming AntNET model. The confusion matrix
shows that pairs were mostly assigned to the cor-
rect relation more than to any other class.

False Positives We analyzed the false positives
from both the binary and multiclass experiments.
We sampled about 20% false positive pairs and
identified the following common errors. The ma-
jority of the misclassification errors stem from
antonym-like or near-antonym relations: these are
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predictions predictions

False

True

antonym other unrelated

anlonym. 1%

other| 31% 18% 51%

219 21%

gold

False 19% unrelated 17% 29

Figure 2: Confusion matrices for the combined
AntNET model for binary (left) and multiclass
(right) classifications. Rows indicate gold labels
and columns indicate predictions. The matrix is
normalized along rows, so that the predictions for
each (true) class sum to 100%.

relations that could be considered as antonymy but
were annotated by crowd-workers as other rela-
tions because they contain polysemous terms, for
which the relation holds in a specific sense. For
example: north/south and polite/sassy were la-
belled as category and other respectively. Other
errors stem from confusing antonyms and unre-
lated pairs.

False Negatives We again sampled about 20%
false positive pairs from both the binary and mul-
ticlass experiments and analyzed the major types
of errors. Most of these pairs had only few co-
occurrences in the corpus often due to infrequent
terms (e.g. cisc/risc which define computer ar-
chitectures). While our model effectively handled
negative prefixes, it failed to handle negative suf-
fixes causing incorrect classification of pairs like
spiritless/spirited. A possible future work is to
simply extend this model to handle negative suf-
fixes as well.

6 Conclusion

In this paper, we presented an original technique
for deriving antonyms using paraphrases from
PPDB. We also proposed a novel morphology-
aware neural network model, AntNET, which im-
proves antonymy prediction for path-based and
combined models. In addition to lexical and syn-
tactic information, we suggested to include a novel
morphological negation-marking feature.

Our models outperform the baselines in two re-
lation classification tasks. We also demonstrated
that the negation marking feature outperforms pre-
viously suggested path-based features for this task.



Since our proposed techniques for antonymy de-
tection are corpus based, they can be applied to
different languages and relations. The paraphrase-
based method can be applied to other languages
by extracting the paraphrases for these languages
from the PPDB and using a morphological analy-
sis tool (e.g. Morfette for French (Chrupala et al.,
2008)) or by looking up the negation prefixes in a
grammar book for languages that do not dispose of
such a tool. The LSTM-based model could also be
used in other languages since the method is corpus
based, but we would need to create a training set
for new languages. This would not however be too
difficult; the training set used by the model is not
that big (the one used here was around 6000 pairs)
and could be easily labelled through crowdsourc-
ing.

We release our code and the large-scale dataset
derived from PPDB, annotated with semantic rela-
tions.
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A Supplemental Material

For deriving antonyms using PPDB, we used
the XXXL size of PPDB version 2.0 found in
http://paraphrase.org/.

To compute the metrics in Tables 6 and 7, We
used scikit-learn with the "averaged setup", which
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computes the metrics for each relation and reports
their average weighted by support (the number of
true instances for each relation). Note that it can
result in a F} score that is not the harmonic mean
of precision and recall.

During preprocessing we handled removal of
punctuation. Since our dataset only contains short
phrases, we removed any stop words occurring at
the beginning of a sentence (Example: a man —
man) and we also removed plurals. The best hy-
perparameters for all models mentioned in this pa-
per are shown in Table 8. The learning rate was
set to 0.001 for all experiments.

Model Type Dropout
SD-path Binary 0.2
SD-path Multiclass 0.4
SD-combined Binary 0.4
SD-combined Multiclass 0.2
ASD-path Binary 0.0
ASD-path Multiclass 0.2
ASD-combined Binary 0.0
ASD-combined Multiclass 0.2
AntNET-path Binary 0.0
AntNET-path Multiclass 0.2
AntNET-combined Binary 0.4
AntNET-combined | Multiclass 0.2
Table 8: The best hyper-parameters in every

model.
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Abstract

Distributed representations of sentences
have been developed recently to represent
their meaning as real-valued vectors. How-
ever, it is not clear how much information
such representations retain about the po-
larity of sentences. To study this question,
we decode sentiment from unsupervised
sentence representations learned with dif-
ferent architectures (sensitive to the order
of words, the order of sentences, or none)
in 9 typologically diverse languages. Senti-
ment results from the (recursive) composi-
tion of lexical items and grammatical strate-
gies such as negation and concession. The
results are manifold: we show that there
is no ‘one-size-fits-all’ representation ar-
chitecture outperforming the others across
the board. Rather, the top-ranking archi-
tectures depend on the language and data
at hand. Moreover, we find that in several
cases the additive composition model based
on skip-gram word vectors may surpass su-
pervised state-of-art architectures such as
bidirectional LSTMs. Finally, we provide a
possible explanation of the observed varia-
tion based on the type of negative construc-
tions in each language.

1 Introduction

Distributed representations of sentences are usu-
ally acquired in an unsupervised fashion from raw
texts. Those inferred from different algorithms are
prone to grasp parts of their meaning and disregard
others. Representations have been evaluated thor-
oughly, both intrinsically (interpretation through
distance measures) and extrinsically (performance
on downstream tasks). Moreover, several methods
have been considered, based on both the compo-
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sition of word embeddings (Milajevs et al., 2014;
Marelli et al., 2014; Sultan et al., 2015) and direct
generation (Hill et al., 2016). The evaluation was
focused solely on English, and it rarely concerned
other languages (Adi et al., 2017; Conneau et al.,
2017). As a consequence, many ‘core’ methods
to learn distributed sentence representations are
largely under-explored in a variety of typologically
diverse languages, and still lack a demonstration of
their usefulness in actual downstream tasks.

In this work, we study how well distributed sen-
tence representations capture the polarity of a sen-
tence. To this end, we choose the Sentiment Anal-
ysis task as an extrinsic evaluation protocol: it di-
rectly detects the polarity of a text, where polarity
is defined as the attitude of the speaker with respect
to the whole content of the string or one of the enti-
ties mentioned therein. This attitude is measured
quantitatively on a scale spanning from negative
to positive with arbitrary granularity. As such, po-
larity consists in a crucial part of the meaning of a
sentence, which should not be lost.

The polarity of a sentence depends heavily on a
complex interaction between lexical items endowed
with an intrinsic polarity, and morphosyntactic con-
structions altering polarity, most notably negation
and concession. The interaction is deemed to be
recursive, hence some approaches take into account
word order and phrase boundaries in order to apply
the correct composition (Socher et al., 2013). How-
ever, some languages lack continuous constituents:
contiguous spans of words do not correspond to
syntactic subtrees, making composition unreliable
(Ponti, 2016). Moreover, the expression of negation
varies across languages, as demonstrated by works
in Linguistic Typology (Dahl, 1979, inter alia). In
particular, negation can appear as a bounded mor-
pheme or a free morpheme; it can precede or follow
the verb; it can ‘agree’ or not in polarity with indef-
inite pronouns; it can alter the expression of verbal

Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017), pages 22-32,
Vancouver, Canada, August 3-4, 2017. (©2017 Association for Computational Linguistics



categories (e.g. tense, aspect, or modality).

We explore a series of methods endowed with
different features: some hinge upon word order,
others on sentence order, others on neither. We
evaluate these unsupervised representations using
a Multi-Layer Perceptron which uses the gener-
ated sentence representations as input and predicts
sentiment classes (positive vs. negative) as output.
Training and evaluation are based on a collection
of annotated databases. Owing to the variety of
methods and languages, we expect to observe a
variation in the performance correlated with the
properties of both.

Moreover, we establish a ceiling to the possible
performances of our method based on decoding
unsupervised distributed representations. In fact,
we offer a comparison between this and supervised
deep learning architectures that achieve state-of-art
scores in the Sentiment Analysis task. In particular,
we also evaluate a bi-directional LSTM (Li et al.,
2015) on the same task. These models have ad-
vantage over distributed representations as: i) they
are specialised on a single task rather than built as
general-purpose representations; ii) their recurrent
nature allows to capture the sequential composition
of polarity in a sentence. However, since training
these models requires large amounts of annotated
data, resource scarcity in other languages hampers
their portability.

The aim of this work is to assess which algo-
rithm for distributed sentence representations is
the most appropriate for capturing polarity in a
given language. Moreover, we study how language-
specific properties have an impact on performance,
finding an explanation in Language Typology. We
also provide an in-depth analysis of the most rele-
vant features by visualising the activation of hidden
neurons. This will hopefully contribute to advanc-
ing the Sentiment Analysis task in the multilingual
scenarios. In § 2, we survey prior work on multi-
lingual sentiment analysis. Afterwards, we present
the tested algorithms for generating distributed rep-
resentations of sentences in § 3. In § 4, we sketch
the dataset and the experimental setup. Finally, §
5 examines the results in light of the sensitivity of
the algorithms and the typology of negation.

2 Multilingual Sentiment Analysis

The task of sentiment classification is mostly ad-
dressed through supervised approaches. However,
these achieve unsatisfactory results in resource-lean
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languages because of the scarcity of resources to
train dedicated models (Denecke, 2008). This af-
flicts state-of-art deep learning architectures even
more compared to traditional machine learning al-
gorithms (Chen et al., 2016). As a consequence,
previous work resorted to 1) language transfer or
ii) joint multilingual learning. The former adapts
models from a source resource-rich language to a
target resource-poor language; the latter infers a sin-
gle model portable across languages. Approaches
based on distributed representations induced in an
unsupervised fashion do not face the difficulty re-
sulting from resource scarcity: they are portable
to other tasks and languages. In this section we
survey deep learning techniques, adaptive models,
and unsupervised distributed representations for
sentiment classification in a multilingual scenario.
The last approach is the focus of this work.

Deep learning algorithms for sentiment classifi-
cation are designed to deal with compositionality.
Hence, they often rely on recurrent networks trac-
ing the sequential history of a sentence, or special
compositional devices. Recurrent models include
bi-directional LSTMs (Li et al., 2015), possibly
enriched with context (Mousa and Schuller, 2017).
On the other hand, Socher et al. (2013) put forth
a Recursive Neural Tensor Network, which com-
poses representations recursively through a single
tensor-based composition function. Subsequent
improvements of this line of research include the
Structural Attention Neural Networks (Kokkinos
and Potamianos, 2017), which adds structural in-
formation around each node of a syntactic tree.

When supervised monolingual models are not
feasible, language transfer can bridge between mul-
tiple languages, for instance through supervised la-
tent Dirichlet allocation (Boyd-Graber and Resnik,
2010). Direct transfer relies on word-aligned par-
allel texts where the source language text is either
manually or automatically annotated. The senti-
ment information is then projected onto the tar-
get text (Almeida et al., 2015), also leveraging
non-parallel data (Zhou et al., 2015). Chen et al.
(2016) devised a multi-task network where an ad-
versarial branch spurs the shared layers to learn
language-independent features. Finally, Lu et al.
(2011) learned from annotated examples in both
the source and target language. Alternatively, sen-
tences from other languages are translated into En-
glish and assigned a sentiment based on lexical
resources (Denecke, 2008) or supervised methods



(Balahur and Turchi, 2014).

Finally, cross-lingual sentiment classification
can leverage on shared distributed representations.
Zhou et al. (2016) captured shared high-level fea-
tures across aligned sentences through autoen-
coders. In this latent space, distances were op-
timised to reflect differences in sentiment. On the
other hand, Ferndndez et al. (2015) exploited bilin-
gual word representations, where vector dimen-
sions mirror the distributional overlap with respect
to a pivot. Le and Mikolov (2014) concatenated
sentence representations obtained through variants
of Paragraph Vector and trained a Logistic Regres-
sion model on top of them.

Previous studies thus demonstrated that sen-
tence representations retain information about po-
larity, and that they partly alleviate the drawbacks
of deep architectures (single-purposed and data-
demanding). Hence, the Sentiment Analysis tasks
seems convenient to compare different sentence
representation architectures. Nonetheless, a sys-
tematic evaluation has never taken place for this
task, and a large-scale study over typologically di-
verse languages has not been attempted for any of
the algorithms reviewed. We intend to fill these
gaps, considering the methods to generate sentence
representations outlined in the next section.

3 Distributed Sentence Representations

Word vectors can be combined through various
compositional operations to obtain representations
of phrases and sentences. Mitchell and Lapata
(2010) explored two operations: addition and mul-
tiplication. Notwithstanding their simplicity, they
are hardly outperformed by more sophisticated op-
erations (Rimell et al., 2016). Some of these com-
positional representations based on matrix multipli-
cation were also evaluated on sentiment classifica-
tion (Yessenalina and Cardie, 2011). Alternatively,
sentence representations can be induced directly
with no intermediate step at the word level. In this
paper, we focus on sentence representations that are
generated in an unsupervised fashion. Furthermore,
they are ‘fixed’, that is, they are not fine-tuned for
any particular downstream task, since we are inter-
ested in their intrinsic content. !

!This excludes methods concerned with phrases, like the

ECO embeddings (Poliak et al., 2017), or requiring structured
knowledge, like CHARAGRAM (Wieting et al., 2016a).
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3.1 Algorithms

We explore several methods to generate sentence
representations. One exploits a compositional op-
eration (addition) over word representations stem-
ming from a Skip-Gram model (§ 3.1.1). Others are
direct methods, including FastSent (§ 3.1.2), a Se-
quential Denoising AutoEncoder (SDAE, § 3.1.3)
and Paragraph Vector (§ 3.1.4). Note that FastSent
relies on sentence order, SDAE on word order, and
Paragraph Vector on neither. All these algorithms
were trained on cleaned-up Wikipedia dumps.

The choice of the algorithms was based on fol-
lowing criteria: i) their performance reported in
recent surveys (n.b., the surveys were limited to
English and evaluated on other tasks), most notably
Hill et al. (2016) and Milajevs et al. (2014); ii) the
variety of their modelling assumptions and features
encoded. The referenced surveys already hinted
that the usefulness of a representation is largely
dependent on the actual application. Shallower but
more interpretable representations can be decoded
with spatial distance metrics. Others, more deep
and convoluted architectures, outperform the others
in supervised tasks. We inquire whether the gen-
eralisation is tenable also in the task of Sentiment
Analysis targeting sentence polarity.

3.1.1 Additive Skip-Gram

As a bottom-up method, we train word embeddings
using skip-gram with negative sampling (Mikolov
et al., 2013). The algorithm finds the parameter 6
such that, given a pair of a word w and a context
¢, the model discriminates correctly whether it be-
longs to a set of sentences .S or a set of randomly
generated incorrect sentences S”:

H p(S = 1|w,ec,0) H p(S" = 0lw, c,0)

(w,c)eS (w,c)es’

The representation of a sentence was obtained via
element-wise addition of the vectors of the words
belonging to it (Mitchell and Lapata, 2010).

3.1.2 FastSent

The FastSent model was proposed by Hill et al.
(2016). It hinges on a sentence-level distributional
hypothesis (Polajnar et al., 2015; Kiros et al., 2015).
In other terms, it assumes that the meaning of a sen-
tence can be inferred by the neighbour sentences
in a text. It is a simple additive log-linear model
conceived to mitigate the computational expensive-
ness of algorithms based on a similar assumption.



Hence, it was preferred over SkipThought (Kiros
et al., 2015) because of 1) these efficiency issues
and ii) its competitive performances reported by
Hill et al. (2016). In FastSent, sentences are repre-
sented as bags of words: a context of sentences is
used to predict the adjacent sentence. Each word
w corresponds to a source vector u,, and a target
vector v,,. A sentence S; is represented as the
sum of the source vectors of its words s; Uw-
Hence, the cost C of a representation is given by
the softmax o (x) of a sentence representation and
the target vectors of the words in its context c.

Cg, = Z ol Z Uy, Ve)

CESi,1USi+1 wES;

)

This model does not rely on word order, but rather
on sentence order. It encodes new sentences by
summing over the source vectors of their words.

3.1.3 Sequential Denoising AutoEncoder

Sequential Denoising AutoEncoders (SDAEs) com-
bine features of Denoising AutoEncoders (DAE)
and Sequence-to-Sequence models. In DAE, the in-
put representation is corrupted by a noise function
and the algorithms learns to recover the original
(Vincent et al., 2008). Intuitively, this makes the
model more robust to changes in input that are
irrelevant for the task at hand. This architecture
was later adapted to encode and decode variable-
length inputs, and the corruption process was imple-
mented in the form of dropout (Iyyer et al., 2015).
In the implementation by Hill et al. (2016),> the
corruption function is defined as f(S|po, ps). S is
a list of words (a sentence) where each has a prob-
ability p, to be deleted, and the order of the words
in every distinct bigram has a probability p,. to be
swapped. The architecture consists in a Recurrent
Layer and predicts p(S|f(S|po, pz))-

3.1.4 Paragraph Vector

Paragraph Vector is a collection of log-linear mod-
els proposed by Le and Mikolov (2014) for para-
graph/sentence representation. It consists of two
different models, namely the Distributed Memory
model (DM) and the Distributed Bag Of Words
model (DBOW). In DM, the ID of every distinct
paragraph (or sentence) is mapped to a unique vec-
tor in a matrix D and each word is mapped to a
unique vector in matrix W. Given a sentence i and

https://github.com/£fh295/
SentenceRepresentation
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a window size k, the vector D; . is used in con-
junction with the concatenation of the vectors of
the words in a sampled context (w;, , ..., w;, ) to
predict the next word through logistic regression:

) 2)

Note that the sentence ID vector is shared by the
contexts sampled from the same sentence. On the
other hand, DBOW focuses on predicting the word
embedding W;, for a sampled word j belonging
to sentence i given the sentence representation D;.
As a result, the main difference between the two
Paragraph Vector models is that the first is sensitive
to word order (represented by the word vector con-
catenation), whereas the second is insensitive with
respect to it. These models store a representation
for each sentence in the training set, hence they are
memory demanding. We use the gensim implemen-
tation of the two models available as Doc2Vec.?

Wi,

p(Wik+1’ (DiaI/Vip ey

3.2 Hyper-parameters

The choice of the models’ hyper-parameters was
based on two (contrasting) criteria: i) conservative-
ness with those proposed in the original models
and ii) comparability among the models in this
work. In particular, we ensured that each model
had the same sentence vector dimensionality: 300.
The only exception is SDAE: we kept the recom-
mended value of 2400. Paragraph Vector DBOW
and SkipGram were trained for 10 epochs, with a
window size of 10, a minimum frequency count of
5, and a sampling threshold of 10~°. FastSent was
set as having a minimum count of 3, and no sam-
pling. The probabilities in the corruption function
of the SDAE were set as p, = 0.1 (deletion) and
pz = 0.1 (swapping). The dimension of the RNN
(GRU) hidden states (and hence sentence vector)
was 2400, whereas single words were assigned 100
dimensions. The learning rate was set to 0.01 with-
out decay, and the training lasted 7.2 hours on a
NVIDIA Titan X GPU. The main properties of each
algorithm are summarised in Table 1.

Algorithm WO | SO
Additive SkipGram

ParagraphVec DBOW

FastSent v
Sequential Denoising AutoEncoder v

Table 1: Sensitivity to Word or Sentence Order.

*https://radimrehurek.com/gensim/
models/doc2vec.html
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Figure 1: Percentages of negative (left) and positive (right) sentences with the same amount of negative
grammatical markers. A count of 0 is represented in dark blue, 1 in light blue, and 2 or more in green.

4 Experimental Setup

Now, we evaluate the quality of the distributed sen-
tence representations from § 3 on Sentiment Anal-
ysis. In § 4.1 we introduce the datasets of all the
considered languages, and the evaluation protocol
in § 4.2. Finally, to provide a potential performance
ceiling, we compare the obtained results with those
of a deep, state-of-art classifier, outlined in § 4.3.

4.1 Datasets

The data for training and testing are sourced from
the SemEval 2016: Task 5 (Pontiki et al., 2016).
These datasets provide customer reviews in 8 lan-
guages labelled with Aspect-Based Sentiment, i.e.,
opinions about specific entities or attributes rather
than generic stances. The languages include Ara-
bic (hotels domain), Chinese (electronics), Dutch
(restaurants and electronics), English (restaurants
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and electronics), French, Russian, Spanish, and
Turkish (restaurants all). We mapped the labels
to an overall polarity class (positive or negative)
by selecting the majority class among the aspect-
based sentiment classes for a given sentence. Note
that no general sentiment for the sentence was in-
cluded in this pool. Moreover, we added data for
Italian (tweets) from the SENTIPOLC shared task in
EVALITA 2016 (Barbieri et al., 2016). We discarded
neutral stances from the corpus, and retained only
positive and negative ones. Table 2 shows the fi-
nal size of the dataset partitions and the Wikipedia
dumps. In Figure 1, we report the percentage of
sentences with the same amount of negative gram-
matical markers (e.g. the word not and the suffix
n’t in English) based on their polarity class. We
discuss the impact of the variation of these percent-
ages on the results in § 5.



Language Wikipedia | Train Test
Dumps
Arabic 3406732 4570 1163
Chinese 8067971 2593 1011
Dutch 11860559 2169 683
English 30000002 3584 1102
French 26024881 1410 534
Italian 15338617 4588 512
Russian 16671224 2555 835
Spanish 22328668 1553 646
Turkish 3622336 1008 121

Table 2: Size of the data partitions (# sentences).

4.2 Evaluation Protocol

After mapping each sentence in the dataset to its
distributed representation, we fed them to a Multi-
Layer Perceptron (MLP), trained to detect the sen-
tence polarity. In the MLP, a logistic regression
layer is stacked onto a 60-dimensional hidden layer
with a hyperbolic tangent activation. The weights
were initialised from the random xavier distribution
Glorot and Bengio (2010). The cross-entropy loss
was normalised with the L2-norm of the weights
scaled by A = 1073, The optimisation with gradi-
ent descent ran for 20 epochs with early stopping.
Batch size was 10 and the learning rate 1072,

4.3 Comparison with State-of-Art Models

In addition to unsupervised distributed sentence
representations, we test a bi-directional Long Short-
Term Memory neural network (bi-LSTM) on the
same task. This is a benchmark to compare against
results of deep state-of-art architectures. The
choice is based on the competitive results of this
algorithm and on its sensitivity to word order. The
accuracy of this architecture is 45.7 for 5-class and
85.4 for 2-class Sentiment Analysis on the standard
dataset of the Stanford Sentiment Treebank.

The importance of word order is evident from the
architecture of the network. In a recurrent model,
the word embedding of a word wy at time ¢ is com-
bined with the hidden state h;_; from the previous
time step. The process is iterated throughout the
whole sequence of words of a sentence. This model
can be extended to multiple layers. LSTM is a re-
finement associating each time epoch with an input,
control and memory gate, in order to filter out ir-
relevant information (Hochreiter and Schmidhuber,
1997). This model is bi-directional if it is split in
two branches reading simultaneously the sentence
in opposite directions (Schuster and Paliwal, 1997).
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Contrary to the evaluation protocol sketched in §
4.2, the bi-LSTM does not utilise unsupervised sen-
tence representations. Rather, it is trained directly
on the datasets from § 4.1. The optimisation ran for
20 epochs, with a batch size of 20 and a learning
rate of 5 - 102, The 60-dimensional hidden layer
had a dropout probability of 0.2. Crucially, the
word embeddings were initialised with the Skip-
Gram model described in § 3.1.1. Since perfor-
mance tends to vary depending on the initialisation,
this ensures a fair comparison.

5 Results

The results are displayed in Figure 2. Weighted F1
scores were preferred over accuracy scores, since
the two classes (positive and negative) are unbal-
anced. We decoded the unsupervised representa-
tions multiple times through different initialisation
of the MLP weights, hence we report both the mean
value and its standard deviation. The results are
not straightforward: there is no algorithm outper-
forming the others in each language; unexpectedly
not even the bi-LSTM used as a ceiling. However,
the variation in performance follows certain trends,
depending on the properties of languages and algo-
rithms. We now examine: i) how performance is
affected by the properties of the algorithms, such
as those summarised in Table 1; ii) how typological
features concerning negation and the text domain
could make polarity harder to detect; iii) the inter-
action between negation and indefinite pronouns,
by visualising the contribution of each word to the
predicted class probabilities.

5.1 Feature Sensitivity of the Algorithms

The state-of-art bi-LSTM algorithm chosen as a
ceiling is not the best choice in some languages
(Italian, and Turkish). In these cases, it is always
surpassed by the same model: additive Skip-Gram.
The drop in Italian is possibly linked to its dataset
in specific, since all the algorithms behave simi-
larly badly. Turkish is possibly challenging for a
recursive model because of the sparsity of its vo-
cabulary. These cases, however, are not isolated:
averaged word embeddings outperformed LSTMs
in text similarity tasks (Arora et al., 2016) and pro-
vide a strong baseline in English (Adi et al., 2017).

In any case, the general high performance of
additive Skip-Gram is noteworthy: it shows that
a simple method achieves close-to-best results in
almost every language among decoded distributed
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Figure 2: Results of 5 different algorithms on 9 languages. Values report the mean Weighted F1 Score and
the standard deviation. The best results per language are given in bold and the second-best is underlined.
Data points where the ceiling is outperformed are in italics.

representations. This result is in line with other
findings: Wieting et al. (2016b) showed that word
embeddings, once retrained and decoded by lin-
ear regression, beat many methods that generate
sentence representations directly.

Moreover, the second-best method for languages
is always FastSent, which is the only one hing-
ing upon neighbouring sentences as features. This
demonstrate that sentiment is encoded not only
within a sentence, but also in its textual context.
As a consequence, a relatively small and accessi-
ble dataset (Wikipedia) is sufficient to provide a
reliable model in most languages. Nonetheless, the
varying size of the dumps affects FastSent as well
as the other unsupervised algorithms: limited data
hinders them from learning faithful representations,
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as in Arabic, Chinese, and Turkish (see Table 2).

In general, algorithms sensitive to the same fea-
tures behave similarly, e.g. SDAE and bi-LSTM.
They follow the same trend in relative improve-
ments from one language to another. The generally
low performance of SDAE could depend on the lim-
ited training time, which was necessary to evaluate
the algorithm on the whole set of languages.

5.2 Typology of Negation and Domain

In some languages, the scores are very scattered:
this fluctuation might be due to their peculiar mor-
phological properties. In particular, Arabic is an in-
troflexive language, Chinese is a radically isolating
language, and Turkish an agglutinative language.
On the other hand, the algorithms achieve better
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Figure 3: Visualization of the derivative of the class scores with respect to the word embeddings.

scores in the fusional languages, save Italian.

A fine-grained analysis shows also that the per-
formance is affected by the typology of the nega-
tion in each language, although negative mark-
ers appear in a reduced number of examples (see
Figure 1). Semantically, negation is crucial in
switching or mitigating the polarity of lexical items
and phrases. Morpho-syntactically, negation is ex-
pressed through several constructions across the
languages of the world. Constructions differ in
many respects, which are classified as feature-value
pairs in databases like the World Atlas of Language
Structures (Dryer and Haspelmath, 2013).4

Negation can affect the declarative verbal main
clauses. In fact, negative clauses can be: i) sym-
metric, i.e., identical to the affirmative counterpart
except for the negative marker; ii) asymmetric,
i.e. showing structural differences between neg-
ative and affirmative clauses (in constructions or
paradigms); iii) showing mixed behaviour. Alter-
ations concern for instance finiteness, the oblig-
atory marking of unreality status, or the expres-
sion of verbal categories. Secondly, negation inter-
acts with indefinite pronoun (e.g. nobody, nowhere,
never). Negative indefinites can i) co-occur with
standard negation; ii) be forbidden in concurrence;

“The features considered here for negation are 113A ‘Sym-
metric and Asymmetric Standard Negation’, 114A ‘Subtypes
of Asymmetric Standard Negation’, 115A ‘Negative Indefi-
nite Pronouns and Predicate Negation’, and 143A ‘Order of
Negative Morpheme and Verb’.

iii) display a mixed behaviour. Finally, the rela-
tion of the negative marker with respect to verb
is prone to change. Firstly, it can be either an af-
fix or a prosodically independent word. Secondly,
its position can be anchored to the verb (preced-
ing, following, or both). Thirdly, negation can be
omitted, doubled or even tripled.

Performances seem to suffer the ambiguity in
mapping between a negative marker and negative
meaning. In fact, the bi-LSTM achieves lower
scores in languages with asymmetric constructions
(Chinese, English, and Turkish): the additional
changes in the sentence construction and/or verb
paradigm might create noise. Additional reasons
of difficulty may occur when negation is doubled
(French) or affixed (Turkish), since this makes nega-
tion redundant or sparse. On the other hand, add-
SkipGram appears to be sensitive to the presence
of negation: according to the counts in Figure 1,
when this is too pervasive (Arabic and Russian) or
rare (Chinese), the scores tend to decrease.

These comments on the results based on linguis-
tic properties can also suggest speculative solutions
for future work. For algorithms based on sentence
order, it is not clear whether the problem lies in the
lack of wider collections of texts in some languages,
or rather on the maximum amount of information
about polarity that is learnt through a sentence-level
distributional hypothesis. On the other hand, im-
pairments of the other algorithms seem to be linked

29



with redundancies and noise. Filtering out words
that contribute to this effect might benefit the qual-
ity of the representation. Moreover, the sparsity
due to cases where negation is an affix might be
mitigated by introducing character-level features.
The other inherent source of variation is the text
domain, on which the difficulty of the task depends
(Glorot et al., 2011). Although the unstructured
nature of tweets could hinder the quality of the
sentence representations in Italian, however, no
clear effect is evident based on the other domains.

5.3 Visualisation

Since languages vary in the “polarity agreement”
between verbs and indefinite pronouns, algorithms
may weigh these as features differently. We analyse
their role through a visualizasion of the activation
in the hidden layer of the bi-LSTM. In particular,
we approximated the objective function through
a linear function, and estimated the contribution
of each word to the true class probability by com-
puting the prime derivative of the output scores
with respect to the embeddings. This technique is
presented and detailed by Li et al. (2015). The visu-
alised hidden layers are shown in Figure 3, whereas
the sentences used as input are glossed in Ex. (3)
(Arabic), Ex. (4) (Spanish), and Ex. 5 (Russian).

(3) ‘ana ‘uhibu kl shay‘ fi hadha
1SG 1like.NPST.1SG every thing in this
almataeim / ‘ana la ‘uhibu
restaurant / 1SG not.NPST like.NPST.1SG
‘ayu shay‘ fi hadha almataeam
any thing in this restaurant

) me gust-a  todo en est-e
1SG.DAT like-3SG everything in this-SG
restaurant-e / no me gust-a
restaurant-SG / not 1SG.DAT like-3SG
nada en est-e restaurant-e

nothing in this-SG restaurant-SG

(5) mne nrdv-itsja vs-jo v
1SG.DAT like.IMPV-PRS.3SG all-NOM.SG in
ét-om restordne / mne
this-PREP.SG restaurant-PREP.SG / 1SG.DAT
ni-cevo ne nrdv-itsja v
nothing-GEN not like.IMPV-PRS.3SG in
ét-om restordn-e

this-PREP.SG restaurant-PREP.SG

The two compared sentences correspond to the
translation of two English sentences. The first
is positive: ‘I like everything in this restaurant’;
the second is negative: ‘I don’t like anything in

30

this restaurant’. These include a domain-specific
but sentiment-neutral word that plays the role of
a touchstone. The more a cell tends to blue, the
higher its activation. In some languages (e.g. Ara-
bic), the sentiment verb elicits a stronger reaction
in the positive polarity, whereas the indefinite pro-
noun dominates in the negative polarity. In several
other languages (e.g. Spanish), indefinite pronouns
are more relevant than any other feature. In Rus-
sian, only sentiment verbs always provoke a re-
action. These differences might be related to the
“polarity agreement” of these languages, which hap-
pens always, sometimes, and never, respectively.
In some other languages, however, no evidence is
found of any similar activation pattern.

6 Conclusion

In this work, we examined how much sentiment
polarity information is retained by distributed rep-
resentations of sentences in multiple typologically
diverse languages. We generated the representa-
tions through various algorithms, sensitive to dif-
ferent properties from training corpora (e.g, word
or sentence order). We decoded them through a
simple MLP and compared their performance with
one of the state-of-art algorithms for Sentiment
Analysis: bi-directional LSTM. Unexpectedly, for
some languages the bi-directional LSTM is outper-
formed by unsupervised strategies like the addi-
tion of the word embeddings obtained from a Skip-
Gram model. This model, in turn, surpasses more
sophisticated algorithms for most of the languages.
This demonstrates 1) that no algorithm is the best
across the board; and ii) that some simple mod-
els are to be preferred even for downstream tasks,
which partially contrasts with the conclusions of
Hill et al. (2016). Moreover, representation algo-
rithms sensitive to word order have similar trends,
but they do not always achieve performance su-
perior to algorithms based on the sentence order.
Finally, some properties of languages (i.e. their
type of negation) appear to have an impact on the
scores: in particular, the asymmetry of negative
and affirmative clauses and the doubling of nega-
tive markers.
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Abstract

We introduce WHIC'!, a challenging
testbed for detecting hypernymy, an asym-
metric relation between words. While pre-
vious work has focused on detecting hy-
pernymy between word types, we ground
the meaning of words in specific contexts
drawn from WordNet examples, and re-
quire predictions to be sensitive to changes
in contexts. WHIC lets us analyze com-
plementary properties of two approaches
of inducing vector representations of word
meaning in context. We show that such
contextualized word representations also
improve detection of a wider range of se-
mantic relations in context.

1 Introduction

Language understanding applications like ques-
tion answering (Harabagiu and Hickl, 2006) and
textual entailment (Dagan et al., 2013) bene-
fit from identifying semantic relations between
words beyond synonymy and paraphrasing. For
instance, given “Anand plays chess.”, and the
question “Which game does Anand play?”, suc-
cessfully answering the question requires know-
ing that chess is a kind of game, i.e. chess entails
game. Such lexical entailment relations are asym-
metric (chess = game, but game =~ chess),
and detecting their direction accurately is a chal-
lenge.

While prior work has defined lexical entailment
as a relation between word types, we argue that
it is better defined between word meanings illus-
trated by examples of usage in context. Ignoring
context is problematic since entailment might hold
between some senses of the words, but not others.
Consider the word game in the following contexts:

"https://github.com/yogarshi/whic
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1. The championship game was played in NYC.
2. The hunters were interested in the big game.

Given the sentence, Anand is the world chess
champion, chess = game in the first context,
while chess =% game in the second context.

Lexical entailment encompasses several seman-
tic relations, with one important relation being
hypernymy (Roller et al., 2014; Shwartz et al.,
2016). In this work, we focus on hypernymy de-
tection in context, and show that existing resources
can be leveraged to automatically create test beds
for evaluation. We introduce “Wordnet Hyper-
nyms in Context” (WHIC, pronounced which), a
large dataset, automatically extracted from Word-
Net (Fellbaum, 1998) using examples provided
with synsets. Crucially, WHIC includes challeng-
ing negative examples that assess the ability of
models to detect the direction of hypernymy.

We use WHIC to determine the effectiveness of
existing supervised models for hypernymy detec-
tion (Roller and Erk, 2016) applied to represen-
tations, not only of word types, but of words in
context. Such contextualized representations are
induced in two ways: the first is based on Con-
text2Vec, a BILSTM model that embeds contexts
and words in the same space (Melamud et al.,
2016); the second aims to capture geometric prop-
erties of the context in a standard word embedding
space built using GloVe (Pennington et al., 2014).

We show that the two contextualized rep-
resentations improve performance over context-
agnostic baselines. The structure of WHIC lets
us show that they have complementary proper-
ties: Context2Vec-based models have higher re-
call and tend to identify directionality much bet-
ter than Glove-based models. We also show that
the context-aware representations improve perfor-
mance on identifying a broader range of semantic
relations (Shwartz and Dagan, 2016).

Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017), pages 33—43,
Vancouver, Canada, August 3-4, 2017. (©2017 Association for Computational Linguistics



Words (w;, w,) Exemplars (¢;,c,) Does w; = w, ?
. ¢; = He walked with the help of a wooden staff .
staff , stick ¢, = The kid had a candied apple on a stick. Yes
c; = The hospital has an excellent nursing staff .
staff . body ¢ = The whole body filed out of the auditorium. Yes
. ¢; = The hospital has an excellent nursing staff .
staff , stick ¢ = The kid had a candied apple on a stick. No

Table 1: Examples of the context-aware hypernymy detection task

2 Detecting Hypernymy in Context
2.1 Task Definition

We frame hypernymy detection in context as a bi-
nary classification task. Each example consists
of a 4-tuple (wy, wy, ¢, ¢;), where w; and w, are
word types, and ¢; and ¢, are sentences which il-
lustrate each word usage. The example is treated
as positive if w; = w,, given the meaning of
each word exemplified by the contexts, and nega-
tive otherwise, as can be seen in Table 1.

As mentioned in Section 1, hypernymy is only
one specific case of lexical entailment. The nature
of entailment relations captured out-of-context can
be broader depending on the test beds consid-
ered’. These relations can include synonymy,
hypernymy, some meronymy relations, and also
cause-effect relations.

2.2 Motivation

The need to study hypernymy detection in con-
text is important due to several reasons. First,
many downstream tasks which might benefit from
detecting hypernyms will have words appearing
in specific contexts. Second, existing definitions
(and, by extension, annotations) of lexical entail-
ment do not explicitly or consistently address pol-
ysemy. For instance, the substitutional definition
for entailment by Zhitomirsky-Geffet and Dagan
(2009) asks the reader to think of a natural sen-
tence that provides the missing context to the two
words being considered, thus constraining the pos-
sible senses of the two words. On the other hand,
Turney and Mohammad (2013) propose a rela-
tional definition, inviting the reader to imagine a
semantic relation that connects the two words and
constrains their possible senses. In contrast, we
propose to detect hypernymy between word mean-
ings described by specific contexts.

2We refer the reader to Turney and Mohammad (2013)
and Shwartz et al. (2017) for comprehensive surveys of super-
vised and unsupervised methods for the out-of-context task.
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Lexical entailment or hypernymy in context is
also different from recognizing textual entailment
(RTE). RTE (Dagan et al., 2006, 2013) involves
detecting entailment relations between sentences,
while hypernymy is a relation between words. Ad-
ditionally, the two contexts ¢; and ¢, in our task
can be very different, unlike in textual entailment,
where the premise and hypothesis are usually re-
lated. For instance, the first example in Table 1 il-
lustrates a scenario where the hypernymy relation
holds between staff and stick, but there is no en-
tailment relationship between the two sentences.
On the other hand, the sentence ”Children smile
and wave at the camera.” entails "There are chil-
dren present.”, but there is no meaningful hyper-
nymy relationship between words in the two sen-
tences.

Finally, the proposed task is also related to, but
different from word sense disambiguation (WSD).
Unlike WSD, this task eschews an explicit sense
inventory, instead relying on the provided contexts
to decide the specific relation between the words.
This might provide a more natural way to think
about word senses for (untrained) human annota-
tors (Erk et al., 2013). WSD can in principle be
used as a preprocessing step to address hypernymy
detection in context, but it is not required. Also,
WSD remains a challenging task (Moro and Nav-
igli, 2015) and it might introduce errors early in
the preprocessing pipeline.

2.3 WHIC : A Dataset for Lexical
Entailment in Context

We require a dataset to study hypernymy detec-
tion in context to satisfy the following desiderata:
(1) the dataset should make it possible to assess
the sensitivity of context-aware models to con-
texts that signal different word senses, and (2) the
dataset should help quantify the extent to which
models detect the asymmetric direction of hyper-
nymy, rather than symmetric semantic similarity.



Word : Room
Example : the rooms were small but comfortable

Word : Study
Example : he knocked on the door of the study

TIizseeszzzc

Word : Drawing
Example : he did complicated pen-and-ink drawings

> A

Word : Study
Example : he made several studies before the final
painting

Figure 1: Sample dataset creation process based on two synsets of the word study. The green/solid lines
indicate positive examples, while the red/dashed lines indicate negative examples

Existing datasets for lexical entailment (Baroni
and Lenci, 2011; Baroni et al., 2012; Kotlerman
et al., 2010) have driven progress on the out of
context task only, and are therefore insensitive
to context changes. In addition, they include a
variety of negative examples without controlling
for entailment direction. For instance, Baroni
and Lenci (2011) use cohyponyms and random
words as negative examples. Since cohyponyms
are words that share a common hypernym (for ex-
ample, salsa and tango are cohyponymys with re-
spect to dance), hypernymy does not hold between
them in any direction. On the other hand, ran-
dom examples (also used by Baroni et al. (2012))
are likely to be detected using symmetric seman-
tic similarity rather than asymmetric hypernymy
detection.

Shwartz and Dagan (2016) recently introduced
CONTEXT-PPDB, a dataset for fine-grained lexi-
cal inference in context. This dataset consists of
word pairs along with a pair of sentential con-
texts, with a label indicating the semantic rela-
tion between the two words in the given contexts.
However, since CONTEXT-PPDB only consists of
~3700 sentence pairs, it provides only a smaller
number of annotated examples per relation, mak-
ing it difficult to train large supervised models on
(we return to this dataset in Section 5).

We address these gaps by introducing, WHIC,
a large dataset automatically derived from Word-
Net (Fellbaum, 1998). WordNet groups synonyms
into synsets and defines semantic relations such as
hypernymy and meronymy between these synsets.
Most synsets are further accompanied by one or
more short sentences illustrating the use of the
members of the synset. WHIC uses these example
sentences as context for the words, and the hyper-
nymy relations to draw candidate word pairs. The
process starts from a seed list of words W and pro-
ceeds as follows (see Figure 1) :

1. For all word types w € W obtain synsets S,,.

35

2. For each synset i € S, pick a hypernym
synset s}, with a corresponding word form
wy,. Also obtain ¢' and cj, which are exam-
ple sentences corresponding to w* and wy, re-
spectively - (w', wy,, c', c},) serves as a posi-
tive example. Repeat this process for all hy-
pernyms (solid/green arrows in Figure 1).

. Permute the positive examples to get neg-

atiye examplgs. From (w*,w;,c', c;) and

(w’, wf}, c, c7 ), generate negative examples

(w',wi,c' ) and (w?,wj,c?,c},) (longer

dashed/red arrows in Figure 1).

Flip the positive examples to generate nega-

tive examples. From (w", wy,, ¢', ¢} ) generate

the negative example (w; , w", ¢}, c") (shorter

dashed/red arrows in Figure 1).

We run this process using the 9000 most fre-
quent words from Wikipedia as W (after filtering
the top 1000 as stopwords). This yields a total of
5239 positive examples, 12303 negative examples
from Step 3, and 5239 negative examples from
Step 4.

WHIC satisfies the desiderata outlined above.
The dataset has a well-defined focus, since we
only pick hypernym-hyponym pairs. The nega-
tive examples generated in Steps 3 and 4 require
discriminating between different word senses and
entailment directions. Finally, with over 22000
examples distributed over 6000 word pairs, the
dataset is large enough to train large supervised
models. We define a 70/5/25 train/dev/test split,
and ensure that each set contains different word
pairs, to avoid memorization and overfitting (Levy
etal., 2015).

3 Representing Words and their
Contexts for Entailment

How can we construct representations of the
meaning of target words w; and w;, and their re-
spective exemplar contexts ¢; and ¢, ?
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the |[03]o06]01 |
bank [ 1 [-50]0.18] Wimn
(w)

* [1.5]0.12]3.24 ]| Wi
a,mea” ?
o
. [o]oe] 0] pank

Figure 2: Constructing word-in-context represen-
tations for “bank”, in the context “the river bank”.
© indicates element-wise multiplication.

We will construct representations for ¢;, and ¢,
and create context-aware representations for w;
and w, by “masking” their word embeddings with
the embeddings for ¢; and ¢, (Section 3.3). We
compare two approaches to representing ¢; and c;.
The first (Section 3.1) builds on standard represen-
tations for word types, which have proven useful
for detecting lexical entailment and other seman-
tic relations out of context (Baroni et al., 2012;
Kruszewski and Baroni, 2015; Vylomova et al.,
2016; Turney and Mohammad, 2013). The sec-
ond approach (Section 3.2) uses a recurrent neural
model to embed words and contexts in the same
space, allowing direct comparisons between them.

3.1 Creating Context Representations from
Word Type Representations

Given an example (wy, wy, ¢, ¢,), let @) and ),
refer to the context-agnostic representations of wy
and w,, and let C; and C, represent the matri-
ces obtained by row-wise stacking of the context-
agnostic representations of words in ¢; and ¢, re-
spectively.

Following Thater et al. (2011); Erk and Padé
(2008), we apply a filter to word type represen-
tations to highlight the salient dimensions of the
exemplar context, emphasizing relevant dimen-
sions and downplaying unimportant ones. How-
ever, while prior work represents context by aver-
aging word vectors, we propose richer represen-
tations that better capture the salient geometrical
properties of the exemplar context that might get
lost by averaging.

We construct fixed length representations for
the contexts ¢; and ¢, by running convolutional fil-
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ters over C; and C.. Specifically, we calculate the
column-wise maximum, minimum and the mean
over the matrices C; and C,, as done by Tang
et al. (2014) for supervised sentiment classifica-
tion. This yields three d-dimensional vectors for ¢;
(Clmaz> Clmin> Clmean), and three d-dimensional
vectors for ¢, (Grmaz> Crmin> Crymean). Comput-
ing the maximum and minimum across all vec-
tor dimensions captures the exterior surface of the
“instance manifold” (the volume in embedding
space within which all words in the instance re-
side), while the mean summarizes the density per-
dimension within the manifold (Hovy, 2015).

3.2 LSTM-based Context Representations:
Context2Vec

An alternative approach to contextualizing word
representations is to directly compare the repre-
sentations of words with representations of con-
texts. This can be done using Context2Vec (Mela-
mud et al.,, 2016), a neural model that, given
a target word and its sentential context, embeds
both the word and the context in the same low-
dimensional space using a BiLSTM, with the
objective of having the context predict the tar-
get word via a log-linear model. This model
approaches the state-of-the-art on lexical sub-
stitution, sentence completion, and supervised
word sense disambiguation. For each example
(wy, wy, ¢, ¢), we extract the word type repre-
sentations 0 o, and .9, from Context2Vec,
as well as the context representations ¢j .2,, and

Cr.c2v-

3.3 Context-aware Masked Representations

Given these two methods to learn representations
for words and their contexts, we also learn context
aware word representations for the target words.
We transform initial context-agnostic representa-
tions for target word types by taking an element-
wise product of the word type vectors with vectors
representing the context.

Specifically, for the context representations
learned in Section 3.1, we take an element-
wise product of the word type vectors () with
(Cx,maz> Cx,min> Cxmean) Where x € {l,7}. This
yields three d-dimensional vectors for w; (W) ymqz»
U_jl,min, wl,mean), and three for w, (U_jr,maxa
Wr.min, Wrmean)- We refer to our final word-in-
context representations for w; and w, as W mask
and Wy mqsk respectively, where w45 is the



concatenation of Wy maz> Wimin, Wimean, and
Wy, mask 1s also similarly constructed.

For the word and context representations ob-
tained from Context2Vec (Section 3.2), we cre-
ate the context-aware representations Wy 2y mask
by vector multiplication between .2, and ¢ c2,.
We also obtain W, ¢2, mask Similarly.

4 Comparing Words and Contexts for
Entailment

Given the word, context, and word-in-context rep-
resentations described above, we predict entail-
ment via supervised classification.

Our classifier is the Hypernymy-Feature detec-
tor (Roller and Erk, 2016), which is the current
state-of-the-art supervised model for detecting hy-
pernymy on several datasets. This model aims to
overcome the shortcomings of previous supervised
hypernymy detection models, which used linear
classifiers on top of concatenation of the two vec-
tors representing the target words. These models
only captured notions of prototypicality without
modeling the interactions between the two words;
that is, they guessed that (animal, sofa) is a pos-
itive example because animal looks like a hyper-
nym (Levy et al., 2015).

Instead, the H-Feature detector model trains a
linear classifier using concatenation, as described
above, and then removes this prototypical infor-
mation from the word vectors by projecting them
on a hyperplane orthogonal to the separating hy-
perplane learned by the linear classifier. By re-
peating this process, one can learn multiple classi-
fiers, each of which increases the models represen-
tational power. In each iteration ¢, four features are
extracted to represent the word pair, based on the
current representations of the word pair (Z, ¢) and
the hyperplane p; learned in the current iteration :

1. The similarity between & and the hyperplane,
Z.p;

The similarity between ¢ and the hyperplane,
y.pi

The similarity between the two words, Z.1/
The similarity between the difference of the
two words, and the hyperplane, (¢ — Z).p;

»

Features 1 and 2 capture similarities like the
one included in the concatenation classifier. The
third feature aims to overcome the shortcomings
of the concatenation model by directly modeling
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the similarities between the two target words. Fi-
nally, the fourth feature captures the distributional
inclusion hypothesis (Geffet and Dagan, 2005) — if
word v is a hypernym of u, then the set of features
of u are included in the set of features of v — by
intuitively capturing whether y includes = (Roller
etal., 2014).

5 Experimental Set-up

Tasks In addition to WHIC, we evaluate
our context-aware representations on CONTEXT-
PPDB. As mentioned in Section 2.3, CONTEXT-
PPDB is a dataset for fine-grained lexical infer-
ence in context that captures other semantic rela-
tions beyond hypernymy. It has been created us-
ing 375 word pairs from a subset of the English
Paraphrase Database (Ganitkevitch et al., 2013;
Pavlick et al., 2015). These word pairs are semi-
automatically labeled with semantic relations out-
of-context. Shwartz and Dagan (2016) augmented
them with examples of word usage in context, and
re-annotated the word pairs given the extra con-
textual information. The final dataset consists of
3750 words/contexts tuples with a corresponding
semantic label, one of which is entailment.

All our experiments are with the default
train/dev/test splits on both datasets.

Contextualized Word Representations To ob-
tain the Context2Vec representations, we use
an existing 600-dimensional model trained on
ukWaC (Ferraresi et al., 2006). We use 600 di-
mensional GloVe embeddings trained on the same
corpus to create wj, w,, Cj, and C'., and allow for
a controlled comparison with Context2Vec. Con-
text2Vec representations are significantly more ex-
pensive to train: Melamud et al. (2016) indicate
that training requires ~30 hours on a Tesla K80
GPU, while the GloVe embeddings can be trained
on the exact same amount of data in less than 7
hours on a CPU.

Supervised Lexical Entailment Classifier We
use an SVM with an RBF kernel for WHIC and
Logistic Regression for CONTEXT-PPDB as im-
plemented in Scikit-Learn 3 as our classifiers, to
allow for exact comparisons with past work on
CONTEXT-PPDB. We use default parameters, ex-
cept for adding class weights in the WHIC exper-
iments to account for the unbalanced data. For
WHIC we use features derived from the H-Feature

‘http://scikit-learn.org



model described in Section 4. For CONTEXT-
PPDB we simply concatenate the representations
and use them directly as the features. We evaluate
the predictions using F1 score.

6 Experiments on WHIC

In our first set of experiments, we evaluate the two
models described in Section 3 on WHIC under a
variety of combinations.

6.1 Overall Results

Results are summarized in Table 2. Supervised
models* outperform the baseline that always pre-
dict that hypernymy holds (“All True Baseline™)
by up to 16 F-score points. Context-aware mod-
els outperform context-agnostic models by up
to 3 points’>. GloVe and Context2Vec mod-
els yield similar F1, both when used as word
type representations alone, and when combined
with masked representations. However, GloVe
and Context2Vec representations capture comple-
mentary information: GloVe yields slightly bet-
ter precision while Context2Vec models yield
significantly better recall. ~ The best perfor-
mance overall is obtained by a hybrid model that
uses word-type representations from Context2Vec
and masked context-aware representations derived
from GloVe.

Additionally using Context2Vec vectors di-
rectly (€] c2v,Cr,c20) performs much worse than us-
ing them as masks (W7 2y, masksCr,c2v,mask)- This
highlights the benefit of using context to influence
the word type representation rather than to directly
compare word and context representations.

Finally, there is no benefit in using the context-
aware masked representations without the word
type representations: using just the masked rep-
resentations by themselves does worse than using
them in combination with the word type represen-
tations.

Overall, the scores in Table 2 highlight the chal-
lenging nature of WHIC, and leave scope for
improvement with potentially better models for
context-aware representations.

*We also tried two unsupervised context-agnostic base-
lines using cosine similarity and balAPinc (Kotlerman et al.,
2010) but they trivially predicted all pairs as entailing

> A statistically significant difference with p < 0.01 under
the McNemar’s test (McNemar, 1947)
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Supervised Model Config.
Word-type Context-aware P R F
GloVe None 4 60 51
GloVe GloVe Masks 42 73 53
None GloVe Masks 32 64 43
C2vV None 40 73 52
C2v C2V Masks 41 73 52
None C2V Masks 30 94 45
C2V C2V Contexts 23 10 14
None C2V Contexts 8 2 3
C2V Words GloVe Masks 41 78 54
GloVe Words C2V Masks 4 64 52
All True Baseline 24 100 38

Table 2: Results on WHIC. a) Word type indi-
cates (GloVe or Context2Vec (C2V)) H-Features
extracted from context-agnostic representations.
b) Context aware indicates H-Features extracted
from the context-aware representations described
in Section 3.

6.2 Sensitivity to context

To determine the sensitivity of our models to con-
text changes, we evaluate on the balanced sub-
set of WHIC comprised of positive examples and
negative examples created by permuting contexts
in Step 3 of the dataset creation process. We an-
alyze the predictions using a modified version of
precision, recall and F-score, defined as the pre-
cision, recall, and F1-score calculated over each
(wy,w,) word pair, and then averaged over all word
pairs. We call these measures the Macro-P/R/F1.

Table 3 shows that context-aware representa-
tions generally improve performance on all three
metrics, but the gain is larger on recall. Again
we observe that models using Context2Vec word
types and masks have a better Macro-R than the
corresponding GloVe models. Overall, the masked
representations obtained from Context2Vec per-
form the best on these metrics, closely followed by
the overall best model that uses the Context2Vec
word type representations and the masked repre-
sentations from GloVe.

Finally, note that the all-true baseline surpris-
ingly does as well as the best context-aware model
on this metric. However, it cannot detect the direc-
tion of hypernymy (Section 6.3), and the structure
of WHIC allows us to distinguish these two fac-
tors.



Supervised Model Config.

Context sensitivity Directionality

Word Type rep.  Context-aware rep. Macro-P  Macro-R  Macro-F  Pairwise Acc.
GloVe None 13 28 17 59
GloVe GloVe Masks 17 35 22 71
None GloVe Masks 13 30 18 59

C2V None 15 35 21 71
c2v C2V Masks 16 35 21 72
None C2V Masks 18 45 25 62
C2vV C2V Contexts 5 5 4 9
None C2V Contexts 1 1 1 1
C2V GloVe Masks 17 37 23 76
GloVe C2V Masks 14 29 19 63
All True Baseline 18 50 25 0

Table 3: Macro-P/R/F1 and Pairwise accuracy, are intended to capture context-awareness (Section 6.2)
and directionality-discrimination abilities (Section 6.3) of the models, respectively.

6.3 Sensitivity to Entailment Direction

Next, we evaluate to what extent the models cap-
ture the direction of hypernymy using the balanced
subset of WHIC that consists of all positive exam-
ples and flipped negative examples generated in
Step 4 in the dataset creation process. We mea-
sure directionality by looking at the fraction of
pairs ((wy, wy, ¢y, ¢r), (wy, wy, ¢, 1)) where both
examples are correctly labeled, i.e. the former is
labeled as = and the latter as =~ . We call
this metric the pairwise accuracy.

As seen in Table 3, the best pairwise accu-
racy is again obtained by the hybrid model using
word type representations from Context2Vec and
the masked representations from GloVe. Overall
Context2Vec models do a better job at capturing
directionality than GloVe.

6.4 Nature of Contextualized Masks

We also hypothesized that masked contextual-
ized representations based on the full volume of
the context using men and max operations (Sec-
tion 3.1) better capture salient context dimensions
than the more usual vector averaging approach.
We test this hypothesis empirically by replacing
masked word-in-context representations Wy ,mqsk
and Wy, yqsk by two other ways to capture context.
In the first method, we use the mean of the con-
texts (Clmeans Cr,mean ). In the second method, we
use (W) means Wr,mean), 1.e. the masked represen-
tations calculated by using only the mean of the
context, and not the max and min.
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Table 4 shows that our preferred method out-
performs the two alternatives on WHIC, with our
proposed representations outperforming the other
methods by 3 F1 points. Additionally, this in-
crease in performance also comes with significant
improvement in detection of asymmetric relations.

6.5 Summary

Overall, both Context2Vec and Glove representa-
tions improve performance over context-agnostic
baselines. Using masking to contextualize word
type representations works better than just us-
ing the context representations as is. The best
performing model is a hybrid model that uses
word type representations from Context2Vec and
masked representations from GloVe. Analysis en-
abled by the structure of the dataset shows that all
masked representations are sensitive to changes in
meaning indicated by glosses from distinct Word-
Net synsets. However, the more expensive Con-
text2Vec representations do a better job at recall
and direction of hypernymy.

7 CONTEXT-PPDB

We now experiment on CONTEXT-PPDB to test
the ability of contextualized representations to
capture semantic relations beyond hypernymy, to
aid future work on recognizing other contextual-
ized relationships.

Shwartz and Dagan (2016) establish a base-
line of 67 F1 on this dataset using rich features
characterizing word pairs drawn from PPDB as



Dataset | Representations | P R F | Context sensitivity | Directionality
El,mean ,Er,mean 45 59 51 17 58

WHIC | W mean Wrmean | 43 62 51 18 61
'U_jl,mask ’wr,mask 42 73 53 22 71

Table 4: Impact of masks on WHIC measured by Precision (P), Recall (R), F-Measure (F), context sen-
sitivity (Macro-F1) and directionality (Pairwise accuracy). Replacing our contextualized representations
by a mean representation of the context, or a contextualized representation based only on the mean, leads

to drops in performance.

Word Type P R F Label Baseline ++ Context-aware Rep.s

Baseline 68 70 67 Equivalence 76 76

++ context-aware rep.s 72 72 72 Entailment 79 87

Alternation 55 55

Table 5: Results on CONTEXT-PPDB. Baseline Other-related 12 28

indicates the previous state of the art result on this Independent 71 78
dataset (Shwartz and Dagan, 2016)

Table 6: Performance of the baseline and

well as similarity scores between words and con-
texts. The PPDB features notably include scores
for likelihood of context-agnostic entailment la-
bels, distributional similarities, and probabilities
of the word pair being paraphrases, among other
scores. Additionally, word representation fea-
tures are used: given two word/context pairs
(Wg, €z, Wy, ¢y), GloVe vectors are used to repre-
sent w, and w,, as well as words in ¢, and ¢, and
are used to extract the following feature, which
capture the most salient word/context similarities
between the two pairs :

{max 7, - %, max 1, - 17, @ - w'}

wecey wECy

max
WECy,w Ecy

We augment this system with contextualized
word representations. We use the GloVe based
masked representations, as they can be obtained
with a negligible computation cost in addition the
features already included in the baseline, and as
the labels denote a mix of directional and non-
directional relations. This remarkably yields an
improvement ~5 F1 points compared to the previ-
ous state-of-the-art (Table 5). Breaking down re-
sults per label (Table 6) shows an increase of 8 F1
points for the entailment class. This improvement
again stems from a large increase in recall, mir-
roring the behavior observed on WHIC. The di-
verse “other-related” category also benefits from
context-aware representations.
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augmented model on all semantic relations in
CONTEXT-PPDB measured using per-class F1

8 Related Work

WordNet and lexical entailment The “is-a” hi-
erarchy of WordNet (Fellbaum, 1998) is a promi-
nent source of information for unsupervised de-
tection of hypernymy and entailment (Harabagiu
and Moldovan, 1998; Shwartz et al., 2015), as well
as a source of various datasets (Baroni and Lenci,
2011; Baroni et al., 2012). WHIC is inspired by
the latter line of work, except that we extract ex-
emplar contexts from WordNet in addition to rela-
tions between words.

Modeling word meaning in context Prior mod-
els for the meaning of a word in a given context
aimed to capture semantic equivalence in tasks
such as lexical substitution, word sense disam-
biguation or paraphrase ranking, rather than asym-
metric relations such as entailment. One line
of work (Dinu and Lapata, 2010; Reisinger and
Mooney, 2010) views each word as a set of la-
tent word senses. These models rely on token rep-
resentations for individual occurrences of a word
and then choose a set of token vectors based on
the current context. An alternate set of models
(Erk and Padé, 2008; Thater et al., 2011; Dinu
et al., 2012) avoids defining a fixed set of word
senses, and instead contextualizes word type vec-
tors as we do here. These models share the idea



of using an element-wise multiplication to apply a
context mask to word type representations. The
nature of the context representation varies: Erk
and Padoé (2008) use inverse selectional prefer-
ences; Thater et al. (2010) combine a first order
co-occurrence based representation for the context
with a second order representation for the target,
Thater et al. (2011) rely on syntactic dependencies
to define context. Apidianaki (2016) shows that
bag-of-word context representation within a small
context window works as well as syntactic defini-
tions of context for ranking paraphrases in context.

Our use of convolution is motivated by success
of similar models on sentence classification tasks.
Tang et al. (2014) uses convolution over embed-
ding matrices for unigrams, bigrams, and trigrams,
while Hovy (2015) uses just unigrams. However,
all these works use the resulting representations to
predict properties of the sentence (e.g., sentiment),
rather than to contextualize target word represen-
tations.

In-context lexical semantic tasks Besides en-
tailment, other lexical semantic tasks studied in
context include lexical substitution (McCarthy and
Navigli, 2007) and cross-lingual lexical substitu-
tion (Mihalcea et al., 2010). The focus of these
tasks and their related datasets is on synonymy
and translation equivalence, since they require one
to predict substitutes for a target word instance,
which preserve its meaning in a given sentential
context. On the other hand, the focus of this work
and WHIC is on detecting more fine-grained rela-
tions via lexical entailment. Another related task
is that of paraphrase ranking (Apidianaki, 2016).
The work by Apidianaki (2016) is also notable be-
cause of their successful use of models of word-
meaning in context from Thater et al. (2011),
which is closely related to our work.

9 Conclusion

We introduced WHIC, a dataset to evaluate lexi-
cal entailment in context, providing exemplar sen-
tences to ground the meaning of words being
considered for entailment, and challenging exam-
ples designed to capture entailment direction ac-
curately.

We showed that supervised models developed
for context-agnostic lexical entailment can address
the context-aware task to some extent, when re-
placing word representations with a contextual-
ized version. We compared two contextualized
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representations including (1) a simple context-
aware representation based on the geometry of
word embeddings, and (2) Context2Vec, a more
expensive BILSTM-based model that yields repre-
sentations of words and their context in the same
space. Both improve performance over context-
agnostic models, and have complementary prop-
erties: models using Context2Vec are more accu-
rate at discriminating the direction of entailment.
They also have a better recall when measured us-
ing metrics designed to test sensitivity to context.
Finally, we also showed that contextualized repre-
sentations can improve detection of other semantic
relations in context.

While encouraging, the performance of mod-
els considered leave substantial room for improve-
ment. For instance, it remains to be seen whether
richer features for the supervised models and
richer context representations can improve sensi-
tivity to context, and whether the nuances of the
task can be better captured with annotations on
a graded scale, following previous work on word
meaning in context (Erk et al., 2013).
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Abstract

With the explosive growth of Internet,
more and more domain-specific environ-
ments appear, such as forums, blogs,
MOOCs and etc. Domain-specific words
appear in these areas and always play a
critical role in the domain-specific NLP
tasks. This paper aims at extracting Chi-
nese domain-specific new words automat-
ically. The extraction of domain-specific
new words has two parts including both
new words in this domain and the espe-
cially important words. In this work, we
propose a joint statistical model to perform
these two works simultaneously. Com-
pared to traditional new words detection
models, our model doesn't need handcraft
features which are labor intensive. Exper-
imental results demonstrate that our joint
model achieves a better performance com-
pared with the state-of-the-art methods.

1 Introduction

Accompanying with the development of Inter-
net, many new specific domains appear, such
as forums, blogs, Massive Open Online Courses
(MOOCs) and etc. There are always a group
of important words in these domains, which
are known as domain-specific words. Domain-
specific words include two types as shown in Ta-
ble 1. The first ones are rare and unambiguous
words which will seldom appear in other domains
such as “F% Tl (stack top) and “— X’ (binary
tree). These words may cause word segmentation
problems. For example, if we do not recognize
“}£ 101" (stack top) as a word, the segmentation “F%;
I J2HAF j& 35 (the operator at stack top is
multiplication sign) will be like “i% Tiliz HFF
F& 35 In this case, “t]i” means “stack top”
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Domain words | Translation | Type
AT stack top 1
X binary tree 1
HRE complexity 2
I iterate 2

Table 1: Examples of domain-specific word in
data structure domain

and “52 H " means “operator”, but in the seg-
mentation result, “JiiZ” is segmented into a word
in mistake and will bring lots of problems to the
further applications.

The other type is common and ambiguous
words which have specific new meanings in this
domain, such as “& Z% & (complexity) and “#
71 (iterate). These words often play important
roles in domain-specific tasks. For example, in
MOOCs which are typical domain-specific envi-
ronments, there is an Automated Navigation Sug-
gestion(ANS)(Zhang et al., 2017) task which sug-
gests a time point for users when they want to
review the front contents of the video. With the
help of the recognition of this type of words, we
can easily give higher weights to those domain-
specific contents.

After extracting these two type of words, we
can also use them for creating ontologies, term
lists, and in the Semantic Web Area for find-
ing novel entities(Farber et al., 2016). Besides,
in MOOC:s area it will also benefit Certification
Prediction(CP)(Coleman et al., 2015) (which pre-
dicts whether a user will get a course certification
or not), Course Recommendation(CR)(Aher and
Lobo, 2013) and so on by providing textual knowl-
edge.

Researchers have made great efforts to extract
domain-specific words. Traditional new word de-
tection methods usually employ statistical meth-
ods according to the pattern that new words ap-
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pear constantly. Such methods like Pointwise Mu-
tual Information(Church and Hanks, 1990), En-
hanced Mutual Information(Zhang et al., 2009),
and Multi-word Expression Distance(Bu et al.,
2010). These methods focus on extracting the first
type of domain-specific words and conduct post-
processing to discover the second type of words.
Deng et al. proposed a statistical model Top-
Words(Deng et al., 2016) to extract the first type
of words, it can imply some of these statistical
measures into the model itself. Besides, it designs
a feature called relative frequency to extract the
second type of domain-specific words. TopWords
is based on a Word Dictionary Model( WDM)(Ge
et al., 1999; Chang and Su, 1997; Cohen et al.,
2007) in which a sentence is sampled from a word
dictionary. To extract the second type of words, it
needs to train its model on a common background
corpus which is expensive and time-consuming.

To address these issues, we propose a Domain
TopWords model by assuming that a sentence
is sampled from two word dictionaries, one for
common words and the other for domain-specific
words. Besides, we propose a flexible domain
score function to take the external information into
consideration, such as word frequencies in com-
mon background corpus. Therefore, the proposed
model can extract these two types of words jointly.
The main contributions of this paper are summa-
rized as follows:

* We propose a novel Domain TopWords
model that can extract both two types of
domain-specific words jointly. Experimental
results demonstrate the effectiveness of our
model.

* Our model achieves a comparable perfor-
mance even with much less information com-
paring to the origin TopWords model.

The rest of the paper is structured as follows:
the related work will be introduced in section 2.
Our model will be introduced in section 3, in-
cluding model definition and the algorithm details.
Then we will present the experiments in section 4.
Finally, the work is summarized in section 5.

2 Related work

New word detection as a superset of new domain-
specific word detection has been investigated for a
long time. New word detection methods mainly

contain two directions: the first ones conduct
the word segmentation and new word detection
jointly. Most of them are supervised models,
typical models include conditional random fields
proposed by Peng et al. (2004). These super-
vised models cannot be used in domain-specific
words detection directly, due to the lack of an-
notated domain-specific data. In addition, there
are also some unsupervised models, such as Top-
Words proposed by Deng et al. (2016). How-
ever, it needs time-consuming post-processing to
extract the second type of domain-specific words.

Another type treats new word detection as a sep-
arate task. This line of methods can be mainly
divided into three genres. The first genre is usu-
ally preceded by part-of-speech tagging, and treats
the new word detection task as a classification
problem or directly extracts new words by seman-
tic rules. For example, Argamon et al. (1998)
segments the POS sequence of a multi-word into
small POS tiles, and then counts tile frequency in
both new words and non-new words on training
sets, then uses these counts to extract new word.
Chen and Ma (2002) uses statistical rules to extract
new Chinese word. GuoDong (2005) proposes a
discriminative Markov Model to detect new words
by chunking one or more separated words. How-
ever, these supervised models usually need expert
knowledge to design linguistic features and lots of
annotated data which are expensive and unavail-
able in the new arising domains.

The second genre employs user behavior data to
detect new words. User typing behavior in Sogou
Chinese Pinyin input method which is the most
popular Chinese input method is used to detect
new words by Zheng et al. (2009). Zhang et al.
(2010) proposed to utilize user query log to ex-
tract new words. However, these works are usu-
ally limited by the availability of the commercial
resources.

The third genre employs statistical features and
has been extensively studied. In this type of
works, new word detection is usually considered
as multi-word expression extraction. The mea-
surements of multi-word association are crucial
in this type of work. Traditional measurements
include: Pointwise Mutual Information (PMI)
(Church and Hanks, 1990) and Symmetrical Con-
ditional Probability (SCP) (da Silva and Lopes,
1999). Both these two measures are proposed to
measure bi-gram association. Among all 84 bi-



gram association measurements, PMI has been re-
ported to be the best in Czech data(Pecina, 2005).
To measure arbitrary of n-grams, some works sep-
arate n-grams into two parts and adopt the existing
bi-gram based measurements directly. Some other
n-gram based measures are also proposed, such
as Enhanced Mutual Information (EMI) Zhang
et al. (2009). And Multi-word Expression Dis-
tance (MED) was proposed by Bu et al. (2010)
which based on the information distance theory.
The MED measure was reported superior perfor-
mance to EMI, SCP and other measures. And a
pattern based framework which integrates these
statistical features together to detect new words
was proposed by Huang et al. (2014).

3 Methodology

In this section, we propose a Domain Top-
Words model. We introduce the Word Dictionary
Model(Ge et al., 1999; Chang and Su, 1997; Co-
hen et al., 2007) and TopWords model proposed
by Deng et al. (2016) in subsection 3.1 and 3.2.
Then we introduce our Domain TopWords model
in subsection 3.3, 3.4 and 3.5. At last, we intro-
duce the modified EM algorithm for our model in
3.6.

3.1 Word Dictionary Model

Word Dictionary Model (WDM) is a unigram
language model. It treats a sentence as a se-
quence of basic units, i.e., words, phrases, id-
ioms, which in this paper are broadly defined as
“words”. Let D = {wy,ws,...,wy} be the vo-
cabulary (dictionary) which contains all interested
words, then the sentence can be represented as
Si = w;, wi, . .. (U And each word is a sequence
of characters. Let A = {a1,...,a,} be the ba-
sic characters of the interested language which in
English contain only 26 letters but may include
thousands of distinct Chinese characters. Then the
words can be represented as w; = a;, i, - . . aj;-
WDM treats each sentence S as a sampling of
words from D with the sampling probability 6; for
word w;. Let 0 = (01,02, ...0N) be the sampling
probability of the whole D, then the probability of
sampling a specific sentence with length K is:

P(S|D,0) (D

H,:]N
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3.2 TopWords

TopWords algorithm based on WDM is introduced
in Deng et al. (2016), and is used as an unsu-
pervised Chinese text segmentation and new word
discovery method. In English texts, words are split
by spacing, but in Chinese, there is no spacing
between words in a sentence. For unsegemented
Chinese text 7', let C'r denote the set of all possi-
ble segmentations under the dictionary D. Then,
under WDM, we have the probability of a Chinese
text 1"

P(T|D,6) =

2.

S»;ECT

P(Si|D,0) 2)

Then the likelihood of the parameter ¢ under the
given corpus G is:

L(6|D,G) = P(G|D,0)
= H P(Tj\D;@)

T;€eG

I

i= 1S€CT

3)
Si|D, )

where 6;, is the sampling probability of k-th word
w;, in segmentation S;, n is the number of sen-
tences in the corpus G. Then the value of 6
can be estimated by the maximum-likelihood es-
timate(MLE) as follows:

= arg max H Z

i= ISGCT

(Si|D,0) (4

The MLE value of 6 can be computed by the
EM algorithm.

After extracting the first type of domain-specific
words, the author proposes a measure called rel-
ative frequency to extract the second type of
domain-specific words. The relative frequency gf)f
of word w; in domain k can be estimated as fol-
lows:

k _ 3
S
gk

i is estimated probability of word w; from the
kth domain.

6))



3.3 Domain Word Dictionary Model

To add the ability to discover domain-specific
words, we first use a Domain Word Dictionary
Model (D-WDM) instead of the origin WDM
model. D-WDM regards a sentence as a sampling
from two word dictionaries, one is the common
background word dictionary D¢ and the other is
the domain word dictionary D?. So a word w; in
a sentence S is sampling first with probability ¢
to determine which dictionary it is from, and then
with probability 6% from D¢ or D€. So the proba-
bility of sampling in D-WDM a specific sentence
with length K is:

K;
P(Si|D,0,0) = [ [ (e85, + (1 — @)05) (6)

k=1
where

0 = (6°,0% (7)
3.4 Domain TopWords
The main difference between Domain

TopWords(D-TopWords) and TopWords is
that D-TopWords is under the D-WDM model. So
there are two word dictionaries, one for common
words and the other for the domain-specific
words. So the likelihood of 6 with the given
corpus GG under the D-WDM model is:

LOID,G, o) = [[ D_ P(SiD,0,9)

Tj€G S;€Cr,
=11 > Il + -0

j=18€Cr, k=1
(8)

where the parameter ¢ need to be fixed. If the ¢ is
adapted, the model will converge at a point which
maximize the probability difference of the words
between the initial 6, and 6,.

However, in the D-WDM model, there is no
difference between the domain dictionary Dy and
the common dictionary D, except the parameter
. So if we use pure EM algorithm to estimate
the parameter 6¢ and 6%, it is obvious that the al-
gorithm cannot determine whether a word should
be sampled from D, or D;. And even though
the model has the ability to distinguish the two
kinds of words, it can not find out which words
are domain-specific words either if we only use
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the domain-specific corpus. So we must add the
common background corpus knowledge into our
model and denote this function as domain score
function o.

Domain TopWords model uses an optimized
probability function of a segmentation which can
take the background knowledge into considera-
tion. The probability of a segmentation S; of a
sentence as follows:

QUSIIT; D, 0, o)

P zTaDa s =
(S ‘ 9 4 U) ZS’iGCT Q(SZ‘T7 D7 07 SO)

)
K;

Q(SIIT; D,0,¢,0) = [ [ (905, + (1 — )b 0i,)
k=1

(10)

is the score of the sampled segmentation .S; of
T. P(S;|T; D, 0, ¢, ) is the nomorlized version of
Q(Si|T; D, 8, p,0). 0;, is the domain score of the
word w;, .

3.5 Selection of domain score o

As mentioned above, we need a domain score
function o to tell our model how to distinguish
whether a word is a common word or a domain-
specific word. This function has several choices,
i.e., the frequency of the word in a large back-
ground corpus, matches of specific templates, and
so on. And we find that statistical features, like
left(right) entropy and mutual information, are
useless as the background knowledge function be-
cause the D-TopWords model itself has taken this
part of features into consideration. We introduce
some choices of the o function and evaluate the
effects in our experiment.

Constant Score The first choice of ¢ function is
a constant function which returns a constant num-
ber for all words. This means there is no encour-
agement for any word so that we will get a #¢
which has almost the same word distribution as 6°.
We denote D-TopWords with constant o function
as D-TopWords+Const.

Background Frequency Score It is a natural
idea that uses the reciprocal of the frequency of
the word in a common background corpus. This o
function encourages words with low background
frequency to be sampled from 6¢. The detailed



function is as follows:

o(w) (11

P
Fre(w)

where P is a constant. The parameter P need to be
tuned according to the size of the domain corpus,
in our experiments we choose 900 to get a domain
score in the range of 1-10 for domain words. And
Fre(w) is the frequency of word w in background
corpus. We denote the result as D-TopWords+Fre.
RF Score We use the reciprocal of word prob-
ability in the dictionary of the origin TopWords
method estimated with common background cor-
pus as our domain score. We denote this function
as RF function respect to the relative frequency in
TopWords. The detailed function is as follows:

(12)

o(w)

WP(w) x 105

where the W P(w) is the word probability of word
w in the dictionary of origin TopWords model. We
denote the result as D-TopWords+RF.

3.6 EM estimation of ¢

The parameter 6 will be estimated by the EM al-
gorithm as we will show below. In the beginning,
we add all the words in vocabulary to 6 and de-
fault values will be set for both #¢ and 6¢ be-
fore EM steps. We employ a “top-down” strat-
egy to discover words, and this is the reason why
this method is called TopWords. It adds all words
into its dictionary at first and then drops the words
whose probability is close to zero (e.g., < 1078,
and we use this value in our experiments). A good
choice of the default value for 6s is the normalized
frequency vector of the words in the corpus.

Next, we will show the EM algorithm for our D-
TopWords model. Let (") be the estimated value
of 6 at the r-th iteration. Then the E-step and the
M-step can be computed as follows. The E-step
computes the Q-function:

Q(010") =Eg; g [logL(6; G, 5))]

=S % P(SIT;D,60) (13

7j=1 SGCTJ.

logP(S|D,0)
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and the M-step maximizes Q(0|0(r)) so as to up-
date 84 and 6° as follows

gelr+1) — (CY), el c%)

) /(n+ > ()

)

o1 = (@, d ) /(4 Y (d))
(14)
where
o = > alTy)
TjGG
a(ly) = 3 elS)- P(SIT D,0) (o
SETj
007"
07" + (1= @)t

¢i(S) is the number of occurrences of w; which is
sampled from common dictionary in sentence S,
and

" =3 d(m)
TjGG
di(Tj) = > di(S) - P(S|Ty; D,0")-
SeT; (16)

(1— )02
d(r)

P07 + (1 - )6
d;(S) is the number of occurrences of w; which is

sampled from domain dictionary D, in sentence

S.

0j

In the experiment, we found that because of the
lack of domain-specific data the model tends to
get long words and short segmentation. We add
a segmentation length related factor to reduce this
tendency, then our () function of segmentation S;
becomes:

K;

Q(Si]0) = o [T (w05, + (1

k=1

©)0% 03, (17)
« is a constant parameter. K is the length of the
segmentation S;.

4 Experiments

In this section, we first perform an experiment to
compare our method to several baselines. And



top K words = 100 200 400 700
Huang et al.(2014) | 0.435 | 0.413 | 0.378 | 0.353
D-TopWords+Const | 0.266 | 0.162 | 0.152 | 0.150
TopWords+Fre 0.630 | 0.576 | 0.495 | 0.412
D-TopWords+Fre | 0.719 | 0.664 | 0.573 | 0.504
TopWords+RF 0.759 | 0.679 | 0.601 | 0.548
D-TopWords+RF | 0.795 | 0.705 | 0.615 | 0.553

Table 2: Discovering new words in data structure domain (MAP)

then we perform parameter analysis to demon-
strate how the parameters will affect our model.
At last, we conduct some case studies to analysis
these methods in details.

4.1 Data Preparation

We use transcripts of an online course called Data
Structure from Xuetangx.com. Xuetangx.com is
one of the biggest MOOC platforms in China.
These transcripts are a total of 55,045 lines, in-
cluding 655312 Chinese characters in it and totally
1,792 different characters.

We segment the corpus by characters and count
the frequency of character-based n-grams from un-
igram up to 7-gram. We drop words with the fre-
quency less than 5 and result in a 55,452 lines n-
gram list. The resulted n-gram list is very sparse
(close to 1:170) and most of the results are obvi-
ously meaningless (like “5X 1% —" which means
“one such”). We asked two annotators to label
these n-grams. These two annotators are requested
to judge whether an n-gram is a domain-specific
word or not, it takes almost one week to anno-
tate these n-grams. If there is a disagreement in
these annotations, the annotators will discuss the
final annotation and result in a 12.6% disagree-
ment ratio. Most of the disagreements are like “i/j
[A]”(visit) and “fd A (insert) which are somewhat
ambiguous. Finally, we use a relatively strict stan-
dard, this results in 326 domain-specific words.
The final annotated file can be accessed in our
Github repo!.

We use YUWEI corpus as our common back-
ground corpus. This corpus is developed by the
National Language Commission, which contains
25,000,309 words with 51,311,659 characters.

4.2 Evaluation Metric

The output of our method is a ranked list, so we
use mean average precision (MAP) as one of our

"http://github.com/dreamszl/dtopwords
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evaluation metrics. The MAP value is computed
as follows:

_ iy P(k) x rel(k)
S ke rel(k)

where the P (k) is the precision of the top k words,
rel(k) is a indicator function which return 1 when
word at rank k£ is a domain-specific word and
0 otherwise. K is the length of the result list.
When we get a list whose elements are all domain-
specific words, the M AP(K) will be 1.

We will also display the precision-recall curves
of our results.

MAP(K) (18)

4.3 Discovering New Words
4.3.1 Experiment Settings

We compare different settings of our method with
two baselines. The first baseline is pattern-based
unsupervised new word detection method, which
is proposed by Huang et al. (2014). The follow-
ing statistical features are taken into considera-
tion: left pattern entropy (LPE), normalized multi-
word expression distance (NMED), enhanced mu-
tual information (EMI). We implement both char-
acter based and word-based version, and the word-
based version outperforms character based ver-
sion. We use the optimal parameter setting in
Huang's method, which is the LPE+NMED setting
in their paper. And we use annotated words to ex-
tract the candidate patterns which is a pretty good
treatment for this method.

The second baseline is origin TopWords method
which has been mentioned in above section. We
first run the TopWords method in the domain-
specific corpus, and then use a function to rerank
the word dictionary #. We use two functions to
rerank the dictionary. The first one is the back-
ground frequency function and we denote this ver-
sion as TopWords+Fre. The second one is the stan-
dard relative frequency method, we use the dictio-
nary 6p of TopWords method run in background



D-TopWords+Fre TopWords+Fre Huang et al.
BAKR 1 (specifically speaking) N K (next) 15 (indeed)
15 & (attention please) #4171 E Z (in other words) % /D(at least)
.11 5 Z (in other words) H AR i (specifically speaking) | X771 & (alignment position)
ZF1fF(character) [7] 2241 1% (hello students) I (succession)
55 (brackets) A l(we) TE U 2R (and so on)

Table 3: Top 5 wrong results of D-TopWords+Fre, TopWords+Fre and Huang et al.'s method

PR-Curve

Huang et al.2014
» D-TopWORDS+Const
TopWORDS+Fre
D-TopWORDS+Fre
TopWORDS+RF
D-TopWORDS+RF
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o
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0.0
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Figure 1: PR-Curves of our methods and two base-
lines

corpus to rerank 6. We denote this version as Top-
Words+RF.

4.3.2 Result and Analysis

(1) The MAP values of all the methods are
shown in Table 2, and the PR-curves are shown
in Figure 1. From the results, we can see
our D-TopWords+RF and TopWords+RF achieve
the best performance. Our D-TopWords+RF
achieves better performance than TopWords+RF
method, especially when the recall is lower our
D-TopWords+RF outperforms TopWords+RF ob-
viously as shown in Figure 1. In the actual appli-
cation scenario, our model is more practical as the
top results returned by the model are more impor-
tant.

(2) Our D-TopWords methods achieve better
performance than the corresponding TopWords re-
sults. We expect that our D-TopWords model
can use the external information more effectively
and accurately. Our D-TopWords model will give
more weights to the probability whether a se-
quence can be a word or not, and the TopWords
model will more reliable on the external informa-
tion.

(3) More than that, our D-TopWords+Fre meth-
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ods is significantly better than TopWords+Fre
model and comparable to the D-TopWords+RF
and TopWords+Rf model. The external back-
ground information RF takes the probability a se-
quence can be a word or not into consideration,
however, our D-TopWords can consider this infor-
mation in the model itself. So RF information is
relative redundancy than Fre information to our
D-TopWords model. The RF information needs
to be trained on the common background corpus
when the common background corpus is large it
will take a very long time.

(4) We perform experiments of Huang et al.'s
method with different domain score functions and
all of these result in a poor performance. With the
recall raising the precision decreases sharply, we
suppose that it is because such statistical features
based models cannot deal with low-frequency
words well. However, our model can deal with
this kind of words better by using the context in-
formation. And our model can hold a better bal-
ance between the probability whether a sequence
can be a word or not and the domain score, which
is hard for Huang et al.'s method.

4.4 Parameter Tuning

Table 5 shows how the performance changes with
different o which is the segmentation length re-
lated parameter and ¢ which is the dictionary
weight parameter. As we can see, the perfor-
mance gets better when ¢ increases and get the
best result when ¢ is 0.9. ¢ represents the prob-
ability a word is sampled from the common dic-
tionary, so it means that a word is sampled from
the common dictionary with a 90% possibility and
domain-specific dictionary with 10%.

It achieves the best performance when ¢ is set
as 0.9 and «ais set as 100. Looking into the results,
we found « determines the length of the words in
6. When « chooses a smaller value the results tend
to be longer, when a chooses bigger value the re-
sults tend to be shorter. And when the size of cor-



Data Structure University Chemistry Nuclear Physics
Ik 7] (iterate) 12 2 H (in the process) %ﬁ’x—”‘(decay)
KHEI (key code) P11 %% (equilibrium constant) 1% (activity)
1% I (recursive) fit &%) (complex) TR (redioactive source)
BEAKR i (specifically speaking) f# 5 (dissociation) 7y FHE% (y-ray)
5 7~ JZ (complexity) T A1 8971 H FHHE(Gibbs free energy) F3R7R(to express)
BST (binary search tree) %%@C?jliﬁ(hybrid track) ASTHL(incident grain)
- % T (left child) PI%S B, (lone paired electron) MeV (MeV)
12 5 ¥ (operator) FH, 1 B9, 3% (electrode potential) #13Z (target nucleus)
FPE 451 (data structure) [6] 11 T4F (hello students) =35 HH(half-life period)
B (B tree) 52 N3 K (reaction rate) 1% Z (species)

Table 4: Top 10 results of D-TopWords+Fre in three courses

o @ 10 50 100 500 | 1000
0.3 | 0.243 | 0.344 | 0.389 | 0.416 | 0.429
0.5 |0.323 | 0441 | 0479 | 0.529 | 0.516
0.7 | 0.405 | 0.513 | 0.559 | 0.593 | 0.483
0.9 | 0.437 | 0.672 | 0.719 | 0.547 | 0.448
0.99 | 0.306 | 0.470 | 0.479 | 0.519 | 0.447

Table 5: MAP of top 100 results'performance
with different o and ¢, wunder the D-
TopWords+Fre model.

pus increasing, a smaller o value will get better
performance. We set o as 10 when estimates 6 of
the common background corpus.

4.5 Case study

(1) The top five wrong results of D-TopWords+RF
and TopWords+RF are similar. There are some
wrong results appearing in top 100 results in
TopWords+RF but not in D-TopWords+RF such
as “NRN K {F & (everybody attention). Af-
ter inspecting the common dictionary 6. in D-
TopWords+RF, we find both “K Z”(everybody)
and *“{F & ”(attention) are in high ranks. We sup-
pose that the usage of Domain Word Dictionary
Model helps to deal with this type of sequences
better.

(2) The teacher of this course uses “Ht T
F Z”(in other words), “H {& 3 i (specifically
speaking) very frequently, so the TopWords+Fre
and D-TopWords+Fre cannot recognize them.
And the wrong results “HZ | 27 (next) and “[F]2%
i1 (hello students) rank lower in our method
compared to TopWords+Fre method (i.e., 25 and
41 vs 4 and 13). We suppose that it is because our
method can keep a better balance of the domain
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score and the probability that a sequence be a new
word. And we inspect other wrong results which
have a similar situation, these words all have a
much lower rank in our method. So these phe-
nomena confirm our assumption that our model
achieves better performance in the sequences that
with low frequency in background corpus but can-
not be a word.

(3) The wrong result “F{/]”(we) doesn't appear
in the domain dictionary 6;, but appears at rank
7 in the 6. dictionary in our model. There are
also some results appearing in a high rank in Top-
Words+Fre method, but in a low rank in our D-
TopWords+Fre method. For example, 415 (for
example) ranks in 39 in TopWords+Fre but rank in
574 in D-TopWords+Fre, “iX 2 £ (the same as it)
ranks in 31 in TopWords+Fre but ranks in 2759 in
D-TopWords+Fre, “ 5 & (that's it) ranks in 53
in TopWords+Fre but not appear in our method,
and so on. We suppose that the usage of Do-
main Word Dictionary Model is the reason that our
model can reach a better performance in these type
of words.

(4) The first 10 results (D-TopWords+Fre) in
Data Structure course and two other courses are
shown in table 4.

5 Conclusion

We propose a pure unsupervised D-TopWords
model to extract new domain-specific words.
Compared to traditional new word extraction
model, our model doesn't need handcrafted lexi-
cal features or statistical features and starts from
the unsegmented corpus. Compared to the origin
TopWords model, our model can reach a better
performance with the same information and can
reach a comparable performance with only back-



ground corpus frequency information to the Top-
Words model with the relative frequency which is
expensive and time-consuming.

Our D-TopWords model adds the ability to dis-
tinguish whether a word from common dictio-
nary or domain dictionary to the origin TopWords
model. We add a domain score parameter to let
our model which can take the external information
easily and efficiently. Experiments show that due
to our modification our model can use much less
external information to reach a comparable perfor-
mance to the origin TopWords model.
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Abstract

Multiword expressions (MWEs) are lex-
ical items that can be decomposed into
multiple component words, but have prop-
erties that are unpredictable with respect
to their component words. In this paper
we propose the first deep learning mod-
els for token-level identification of MWEs.
Specifically, we consider a layered feed-
forward network, a recurrent neural net-
work, and convolutional neural networks.
In experimental results we show that con-
volutional neural networks are able to out-
perform the previous state-of-the-art for
MWE identification, with a convolutional
neural network with three hidden layers
giving the best performance.

1 Introduction

Multiword expressions (MWESs) are lexical items
that can be decomposed into multiple component
words, but have properties that are idiomatic, i.e.,
marked or unpredictable, with respect to proper-
ties of their component words (Baldwin and Kim,
2010). MWE:s include a wide range of phenom-
ena such as noun compounds (e.g., speed limit
and monkey business), verb—particle constructions
(e.g., clean up and throw out), and verb—noun id-
iomatic combinations (e.g., hit the roof and blow
the whistle), as well as named entities (e.g., Prime
Minister Justin Trudeau) and proverbs (e.g., Two
wrongs don’t make a right). One particular chal-
lenge for natural language processing (NLP) is
MWE identification — i.e., to identify which to-
kens in running text correspond to MWEs so that
they can be analyzed accordingly. The challenges
posed by MWESs have led to them to be referred to
as a “pain in the neck” for NLP (Sag et al., 2002);
nevertheless, incorporating knowledge of MWEs
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into NLP applications can lead to improvements in
tasks including machine translation (Carpuat and
Diab, 2010), information retrieval (Newman et al.,
2012), and opinion mining (Berend, 2011).

Recent work on token-level MWE identification
has focused on methods that are applicable to the
full spectrum of kinds of MWEs (Schneider et al.,
2014a), in contrast to earlier work that tended to
focus on specific kinds of MWEs (Uchiyama et al.,
2005; Fazly et al., 2009; Fothergill and Baldwin,
2012). Deep learning is an emerging class of ma-
chine learning models that have recently achieved
promising results on a range of NLP tasks such
as machine translation (Bahdanau et al., 2015;
Sutskever et al., 2014), named entity recognition
(Lample et al., 2016), natural language generation
(Li et al., 2015), and sentence classification (Kim,
2014). Such models have, however, not yet been
applied to broad-coverage MWE identification.

In this paper we propose the first deep learn-
ing models for broad-coverage MWE identifica-
tion. Specifically, we propose and evaluate a
layered feedforward network, a recurrent neural
network, and two convolutional neural networks.
We compare these models against the previous
state-of-the-art (Kirilin et al., 2016) and several
more-traditional supervised machine learning ap-
proaches. We show that the convolutional neural
networks outperform the previous state-of-the-art.
This finding is particularly remarkable given the
relatively small size of the training data available,
and demonstrates that deep learning models are
able to learn well from small datasets. Moreover,
we show that our proposed deep learning models
are able to generalize more-effectively than pre-
vious approaches, based on comparisons between
the models’ performances on validation and test
data.

Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017), pages 54—64,
Vancouver, Canada, August 3-4, 2017. (©2017 Association for Computational Linguistics



2 Related Work

MWE identification is the task of determining, at
the token level, which words are parts of MWEs,
and which are not. For example, in the sentence
The staff leaves a lot to be desired (also used in
Figure 1) a lot and leaves ___ to be desired are
MWEs. An important part of MWE identifica-
tion is to be able to distinguish between MWEs
and literal combinations that have the same surface
form; e.g., kick the bucket is ambiguous between
an idiomatic usage — meaning roughly ‘die’ —
which is an MWE, and a literal one which is not.
Many earlier studies on MWE identification have
focused on this type of ambiguity, and treated
the problem as one of word sense disambigua-
tion, where literal and idiomatic usages are con-
sidered different word senses (Birke and Sarkar,
2006; Katz and Giesbrecht, 2006; Li et al., 2010).
Other work has leveraged linguistic knowledge
of properties of MWEs in order to make these
distinctions (Uchiyama et al., 2005; Fazly et al.,
2009; Fothergill and Baldwin, 2012). Crucially,
this work has typically focused on specific kinds
of MWEs, and has not considered identification of
the full spectrum of MWE:s.

More-recent work has considered the identifica-
tion of a wider range of types of MWEs. Brooke
et al. (2014) present an unsupervised learning
approach to segment a corpus into multiword
units based on their predictability. Schneider
et al. (2014a) propose methods for broad-coverage
MWE identification, and evaluate them on a size-
able corpus (Schneider et al., 2014b). They pro-
posed a supervised learning approach based on the
structured perceptron (Collins, 2002). The sys-
tem labels tokens using the BIO convention, where
B indicates the beginning of an MWE, I indi-
cates the continuation of an MWE, and O indi-
cates that the token is not part of an MWE. The
model includes features based on part-of-speech
tags, MWE lexicons, and Brown clusters (Brown
et al., 1992). Qu et al. (2015) later improved
upon that system by using skip-gram embeddings
(Mikolov et al., 2013) instead of Brown clus-
ters with a variant of conditional random fields.
More recently, Constant and Nivre (2016) incor-
porate MWE identification along with dependency
parsing by forming two representations for a sen-
tence: a tree that represents the syntactic depen-
dencies, and a forest of lexical trees that includes
the MWE:s identified in the sentence.
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The recent SemEval shared task on Detect-
ing Minimal Semantic Units and their Meanings
(DIMSUM) focused on MWE identification along
with supersense tagging (Schneider et al., 2016).
The best performing system for MWE identifica-
tion for this shared task was that of Kirilin et al.
(2016) which took into consideration all of the ba-
sic features used by Schneider et al. (2014a) and
two novel feature sets. The first one is based on the
YAGO ontology (Suchanek et al., 2007), where
heuristics were applied to extract potential named
entities from the ontology. The second feature set
was GloVe (Pennington et al., 2014) word embed-
dings, with the word vectors scaled by a constant
and divided by the standard deviation of each of
its dimensions. None of the systems that partici-
pated in the DiMSUM shared task considered deep
learning approaches.

In this paper we propose the first deep learn-
ing approaches to MWE identification. We use
the DIMSUM data for training and evaluating our
models, and compare against the state-of-the-art
method of Kirilin et al. (2016). Here we focus
solely on the MWE identification task, leaving su-
persense tagging for future work.

3 Neural Network Models

In this section, we discuss the features extracted
for the neural network models, and the model ar-
chitectures. Schneider et al. (2014b) extracted
roughly 320k sparse features. Because of the large
input feature space, the only feasible way to train
a model on those features is by using a linear clas-
sifier. In contrast to Schneider et al. (2014b) our
aim is to create dense input features to allow neu-
ral network architectures, as well as other machine
learning algorithms, to be trained on them. Specif-
ically, we propose three neural network models:
a layered feedforward network (LFN), a recurrent
neural network (RNN), and a convolutional neural
network (CNN).!

3.1 Layered Feedforward Network

Although LFNs have been used to solve a wide
range of classification and regression problems,
they have been shown to be less effective for tasks
at which deep learning models excel, such as im-
age classification (Krizhevsky et al., 2012) and

'In preliminary experiments we also considered a
sequence-to-sequence model (Cho et al., 2014), but found it
to perform poorly relative to the other models, and so do not
discuss it further.



machine translation (Bahdanau et al., 2015). The
LFN is therefore proposed as a benchmark for
comparing the performance of the other architec-
tures, as well as for developing informative input
features. Most feature engineering was carried out
while developing this model and then transferred
to the other architectures.

The composition of the DiMSUM corpus
(Schneider et al., 2016), and the token-level
lemma and part-of-speech annotations it provides,
influenced our feature extraction. Most of the text
in the DiIMSUM corpus is social media text. The
tokens and lemmas were therefore preprocessed
by removing # characters from tokens and lemmas
that contain them, and mapping URLs, numbers,
and any token or lemma containing the @ symbol
to the special tokens URL, NUMBER, and USER,
respectively. After pre-processing, distributed rep-
resentations of all tokens and lemmas were ob-
tained from a skip-gram (Mikolov et al., 2013)
model. Specifically, the gensim (Rehiifek and
Sojka, 2010) implementation of skip-gram was
trained on a snapshot of Wikipedia from Septem-
ber 2015 to learn 100 dimensional word embed-
dings. Any token occurring less than 15 times
was discarded, the context window was set to 5,
the negative sampling rate was set to 5, and un-
known tokens were represented with a zero vector.
The part-of-speech tag for each token was also en-
coded, in this case as a one-hot vector.

Schneider et al. (2014a) included word shape
features, which can be informative for the iden-
tification of MWEs, especially named entities. We
therefore also include word shape features. These
are binary features for each token and lemma
that capture whether it includes single or double
quotes; consists of all capital letters; starts with
a capital letter (but is otherwise lowercase); con-
tains a number; includes a # or @ character; cor-
responds to a URL; contains any punctuation; and
consists entirely of punctuation characters.

Schneider et al. (2014a) include features based
on MWE lexicons that represent which tokens and
lemmas are potentially part of an MWE and ac-
cording to which lexicon. We use a script provided
by Schneider et al. (2014a) to include these same
features in our representation.

Finally, Salton et al. (2016) showed that embed-
ding the entire sentence in which a target MWE
occurs was helpful for distinguishing idiomatic
from literal verb—noun idiomatic combinations.
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We therefore also include a representation for the
entire sentence. Specifically, we separately aver-
age the skip-gram embeddings for the tokens and
lemmas in the sentence containing the target word.
These features were then input into an LFN model
with a single hidden layer, which we refer to as
LFNI.

3.2 Recurrent Neural Network

RNNs are a natural fit for many NLP problems due
to their ability to model sequences. Here we apply
an RNN to broad coverage MWE identification.
The token for the current time step is represented
using the same features as LFN1 described above,
except we do not include the average of the skip-
gram representations for tokens and lemmas in the
same sentence as the target word because we ex-
pect the RNN to be able to learn a representation
of the sentence by itself. We use a single layer
RNN model, referred to as RNNI.

3.3 Convolutional Neural Network

CNNs have been shown to be powerful classifiers
(Kim, 2014; Kim et al., 2016), and since MWE
identification can be formulated as a classification
task, CNNs have the potential to perform well on
it. The feature representation for the CNN was
split into feature columns to enable the implemen-
tation of the convolution layer. Each feature col-
umn contains the same features as those for the
RNN at each time step but since the CNN does not
learn sequential information, a window of feature
columns was given as an input.

Multiple filters can then be applied on these
feature columns to extract different local features
across different window sizes. After finding the
optimal number of filters and their sizes, a max-
pooling operation is executed on the values ex-
tracted by the feature map to form the hidden layer
which will be used to produce the predicted out-
put. For our evaluation, we use CNN architectures
with two and three fully connected hidden layers,
which we refer to as CNN2 and CNN3, respec-
tively. We observed that CNNs with 2 and 3 hid-
den layers performed well on the validation set but
adding more layers resulted in overfitting. Simi-
larly, adding more hidden layers to the LEN and
RNN also resulted in overfitting.



4 Data and Evaluation

This section presents the statistics and structure of
the dataset used for this task, as well as the evalu-
ation methodology.

4.1 Dataset

We use the DiIMSUM dataset (Schneider et al.,
2016) for our experiments, which allows for direct
comparison with previous results. Table 1 displays
the source corpora from which the dataset was
constructed; their domain (i.e., reviews, tweets,
or TED talks); the number of sentences, words,
MWEs, and gappy (i.e., discontiguous) MWES in
each source corpus; and the percentage of tokens
belonging to an MWE in each source corpus. The
dataset is split into training and testing sets such
that the testing data contains a novel text type, i.e.,
TED talks.

For parameter tuning purposes, we also require
validation data. We form a validation set from the
training data by splitting the training data to cre-
ate 5 folds, where every fold contained 20% vali-
dation data, and the remaining 80% was used for
training.

4.2 Structure

Every line in the dataset provides 8 pieces of in-
formation: the numeric position of the token in
its sentence; the token itself; its lemmatized form;
its part-of-speech tag; its gold-standard MWE tag;
the position of the last token that is part of its
MWE; its supersense tag;> and the sentence ID.
Six MWE tags are used for MWE identification
in this dataset, B which indicates the beginning of
an MWE, T which indicates the continuation of an
MWE, 0 which indicates that the token is not part
of an MWE, b indicates the beginning of a new
MWE inside an MWE, i indicates the continua-
tion of the new MWE inside an MWE, and finally,
o indicates that the token that is inside an MWE is
not part of the nested MWE. This convention as-
sumes that MWEs can only be nested to a depth
of one (i.e., an MWE inside an MWE), and that
MWEs must be properly nested.

4.3 Performance Metric

We use the link-based F-score evaluation met-
ric from Schneider et al. (2014a), which allows

2Schneider et al. (2014a) consider MWE identification
and super-sense tagging. We focus only on MWE identifica-
tion in this work and so don’t use the super-sense tag infor-
mation provided in the dataset.
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T R———

0 0 B b i I I I 0
Gold Standard
The staff leaves a lot to be desired
Model Predictions
0 0 0
1 2 3 4 5 6 7 8 9

Figure 1: An example of how a model could tag
a sequence, along with its gold standard tagging
(adapted from Schneider et al. (2016)).

for direct comparison with prior work. Table 1
shows that the percentage of tokens occurring in
MWESs ranges from 9-22%. As such, MWEs oc-
cur much less frequently than literal word combi-
nations. This evaluation metric correspondingly
puts more emphasis on the ability of the model
to detect MWESs rather than literal word combi-
nations.

Figure 1 is a diagram adapted from Schneider
et al. (2016) which shows an example of how a
model could tag a sequence, as well as its gold
standard tagging. The MWE tags on top represent
the gold standard, and the MWE tags predicted by
a system are shown on the bottom. A link is de-
fined as the path from one token to another, as in
Figure 1, regardless of the number of tokens in
that path. Precision is calculated as the ratio of
the number of correctly predicted links to the total
number of links predicted by the model. Recall is
calculated in the same way but swapping the gold
standard and predicted links.

For example, in Figure 1, the model was able
to correctly predict two links. The first link goes
from b to 1 in the gold standard which is matched
by a predicted link from token 4-5 by the model.
The second link is from token 67 in the gold stan-
dard which matches the model’s prediction. Since
the model predicted five links in total, the preci-
sion is %

To calculate recall, the roles of the gold standard
and model predictions are reversed. This way,
three links have been correctly predicted. Two of
the three links are the previously mentioned links.
The third one is the link from B to I in the gold
standard which corresponds to the path from to-
ken 3—6. Because there are four links in the gold
standard, the recall is therefore %.

The F-score is then calculated based on preci-
sion and recall according to the following equa-
tion:



Split Domain Source corpus Sentences Words MWEs Gappy MWEs % tokens in MWE
REVIEWS STREUSLE 2.1 (Schneider and Smith, 2015) 3,812 55,579 3,117 397 13%
Train TWEETS Lowlands (Johannsen et al., 2014) 200 3,062 276 5 22%
TWEETS Ritter (Ritter et al., 2011; Johannsen et al., 2014) 787 15,185 839 65 13%
Train Total 4,799 73,826 4,232 467 13%
REVIEWS Trustpilot (Hovy etal., 2015) 340 6,357 327 13 12%
Test TWEETS Tweebank (Kong et al., 2014) 500 6,627 362 20 13%
TED NAIST-NTT (Cettolo et al., 2012; Neubig et al., 2014) 100 2,187 93 2 9%
TED IWSLT test (cettolo et al., 2012) 60 1,329 55 1 9%
Test Total 1,000 16,500 837 36 12%

Table 1: Statistics describing the composition of the DiMSUM dataset.
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where F' is the F-score, and P and R are precision
and recall, respectively.

5 Parameter Settings

In this section, the architecture and parameters of
all neural network models are presented in detail.
The cost function used to train the neural network
models was based on the cost function used by
Schneider et al. (2014a) for this task:
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cost = Z c(Tiy yi)
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where j; is the ith gold standard MWE tag, and y;
is the ith MWE tag predicted by the neural net-
work model. To ensure that the MWE tag pre-
dicted by the neural network is a probability dis-
tribution, the output layer of all neural models was
the softmax layer. The function c in Equation 2 is
defined as:

(Ui, yi) = Yilog(yi) + p(vie{ B} Ayie{O}) (3)

Some MWE tag sequences are invalid, for ex-
ample, a B followed immediately by an O (be-
cause MWEs are composed of multiple tokens),
and similarly, an 0 cannot occur immediately be-
fore an I (because the beginning of every MWE
must be tagged with a B). We therefore use the
Viterbi algorithm on the output of the neural net-
work models to obtain the valid MWE tag se-
quence with the highest probability. In prelimi-
nary experiments we observed that setting all valid
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transitions to be of equal probability, and the prob-
ability of all invalid transitions to 0, performed
best, and therefore use this strategy.

5.1 Layered Feedforward Network

The LFEN was used as a benchmark neural network
model against which the performance of the other
deep learning models was compared. The param-
eters that had to be tuned for this model were
the size of the context window, the misclassifica-
tion penalty p (in Equation 3), the number of neu-
rons in each hidden layer, the number of iterations
before training is stopped, and the dropout rate.
Optimizing these parameters is important as they
greatly influence the performance of the LFN. For
all models considered, all parameter tuning was
done using the validation data; the test data was
never used for setting parameters.

Context window of sizes of 1, 2, and 3 tokens to
the left and right were considered. A larger con-
text window allows the model to see additional to-
kens, but also makes the training process longer
and more prone to overfitting. In the case of p,
we investigated setting it between 40 and 100. A
small value of p would cause the model to have
high precision but low recall, while a larger value
would trade off recall for precision. The number
of neurons in the hidden layer that was examined
ranged from 100 to 1200. Adding more neurons in
a hidden layer, and introducing more hidden lay-
ers, allows the LFN to model more complex func-
tions, but can also make it more prone to over-
fitting. We avoid overfitting by stopping training
after a defined number of iterations (by observ-
ing the performance of the model on the valida-
tion set), and by using dropout (Srivastava et al.,
2014). Dropout combats overfitting by randomly
switching off a percentage of the neurons in a hid-
den layer during training, which allows a neural
network to be more robust in its predictions as it



decreases the association between neurons. It also
has the same effect as ensembling multiple neu-
ral network models because different neurons are
switched on and off in every training iteration. The
dropout rates that we considered ranged from 0.4
to 0.6.

After running multiple experiments, the best
performing LFN model (LFN1) had a context win-
dow of size 1, which means that the features for
the tokens before and after the target token were
input into the LEN along with the features of the
target token. The value of p was set to 50, and
the LFN had a single hidden layer containing 1000
neurons with the fanh activation function. The
LEN was trained for 1000 iterations with a dropout
rate of 0.5.

5.2 Recurrent Neural Network

As previously mentioned in Section 3.2, RNNs
are a natural fit to many NLP problems due to
their ability to model sequences. At each timestep,
the features for a token were input into the RNN
which then output the corresponding MWE tag for
that token. Many of the parameters that had to be
tuned for the LFN had to be tuned for the RNN
as well: p ranged from 10 to 50; the number of
neurons in each hidden layer ranged from 50 to
300; the dropout rate ranged from 0.5 to 1; and we
again tuned the number of iterations before train-
ing is stopped.> Parameters specific to the RNN
model that had to be tuned include whether the
RNN is unidirectional or bidirectional, and the cell
type, where we consider a fully connected RNN,
an LSTM cell, and a GRU cell.

After observing the performance of the RNN
on the validation set, the best performing RNN
model (RNNT1) was a bidirectional LSTM with p
set to 25, with a single hidden layer containing 100
neurons. It was trained for 60 iterations with no
dropout. This indicates that the LSTM cell was
able to handle the complexity of the sequences of
tokens without requiring regularization.

As we will see in Section 6, RNN1 unfortu-
nately did not perform as well as the other neu-
ral network models. We therefore attempted to
improve its performance using two additional ap-
proaches. In the first approach, the RNN LSTM
was orthogonally initialized. Saxe et al. (2014)
showed that orthogonally initializing RNNs led to

3We choose parameter settings to explore based on per-
formance on the validation data, and so consider different pa-
rameter settings here than for LFN1.
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better learning in deep neural networks. Never-
theless, orthogonal initialization did not seem to
have an effect on the performance of RNN1. In
the second approach, the dataset was artificially
expanded by splitting the input sentences on punc-
tuation. This provided more “sentences” for the
RNN LSTM to learn from, but again did not im-
prove performance.

5.3 Convolutional Neural Network

Every token was represented by a feature column
and these feature columns were then concatenated
to form the input to the CNN. A convolutional
layer was then applied to the input and then max-
pooled to form the hidden layer which was used
to produce the predicted output. There were again
many parameters to optimize in the CNN. We con-
sidered the same settings for the context window
size as for LFN1, i.e., 1, 2, and 3 tokens to the
left and right. The number of neurons in each hid-
den layer ranged from 25 to 200. In contrast to
LFNT1 and RNNI, here we consider varying num-
bers of fully connected hidden layers from 1-3.
The dropout rate at the fully connected layers, as
well as the convolutional layer, ranged from 0.3 to
1, and p ranged from 10 to 30. Parameters specific
to the convolutional neural network that were op-
timized were the number of filters, which ranged
from 100 to 500, and spanned 1, 2, or 3 feature
columns, and the types of convolution and pooling
operations that were performed. Having a large
number of filters can cause the network to pick up
noise patterns which makes the CNN overfit. The
size of the filters and the types of convolution and
pooling operations is largely dependent on the data
and were optimized according to the performance
of the model on the validation set.

We experiment with two CNN models, the best
performing CNN model with two hidden layers
(CNN2) and the best performing CNN model with
three hidden layers (CNN3). CNN2 was trained
for 600 iterations and had a context window of size
1 and p equal to 20, with 250 filters that spanned
2 feature columns, and 200 filters that spanned all
3 feature columns. Narrow convolution was used
which produced a hidden layer with 450 neurons.
This layer was then input into another hidden layer
containing 50 neurons with the sigmoid activation
function before being passed to the output softmax
layer.



CNNB3 is similar to CNN2 but was trained for
900 iterations and had the 450 neuron hidden layer
feed to a hidden layer containing 100 neurons with
the sigmoid activation function. The output of that
layer was then passed to another layer containing
50 neurons with the tanh activation function be-
fore being passed to the output softmax layer. The
intuition behind the fanh activation function for
the last hidden layer is that the layer before it has
the sigmoid activation function. This means that
the values that are passed to the last hidden layer
are between 0 and 1 multiplied by the weights be-
tween the two layers. Since these weights can be
negative, a sigmoid function that can deal with
negative values is required, and the tanh function
satisfies this requirement. Both models have a
dropout rate of 60% on the convolutional and hid-
den layers. They were also given batches of 6000
random examples at each training iteration.

5.4 Traditional Machine Learning Models

To demonstrate the effectiveness of neural net-
work models, we compare them against more-
traditional, non-neural machine learning models.
Here we consider k-nearest neighbour, random
forests, logistic regression, and gradient boosting.*
These models were given the same features that
were input into LFN1, and parameter tuning was
also carried out on the validation set. For the k-
nearest neighbour algorithm, k& was set to 3, and
the points were weighted by the inverse of their
distance. For random forests, 100 estimators were
used while multiplying the penalty of misclassify-
ing any class other than 0 as 0 by 1.2. In the case of
logistic regression, L2 regularization was utilized
with a regularization factor of 0.5. For gradient
boosting, 100 estimators with a maximum depth
of 13 nodes were used. Using a larger number of
estimators for random forest and gradient boost-
ing has shown to improve their cross validation
performance. However, the point of diminishing
returns was found to be at around 50 estimators,
and it was clear that increasing the number of esti-
mators above 100 would not yield any significant
increase in performance. Added to that, with gra-
dient boosting, the cross validation performance
also increased with the maximum node depth, but
the point of diminishing returns was found to be
at around 9, and it was clear that increasing the

“In preliminary experiments we also considered an
SVM, but found the training time to be impractical, and so
did not consider it further.
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maximum depth beyond 13 would not yield any
significant increase in performance.

5.5 Implementation Details

Overall, 983 features were input into the LFN and
traditional machine learning models, and more
than 50 parameter combinations were examined.
Every LFN model required up to 2 days of train-
ing. For the RNN, every token was represented
by a feature vector of length 257, and took around
10 hours to train. More than 30 parameter combi-
nations were examined for the RNN model. Ev-
ery feature column in the CNN model contained
257 features, this amounts to a total of 771 input
features. More than 130 parameter combinations
were tested for the CNN, and it required around
12 hours of training. Tensorflow (et al., 2015) ver-
sion 0.12 was used to implement the neural net-
work models, and scikit-learn (Pedregosa et al.,
2011) was used to implement the traditional ma-
chine learning models. The experiments were run
on 2 GHz Intel Xeon E7-4809 v3 CPUs.

6 Results

The average F-score of the models on the five fold
cross validation set, and their F-score on the test
set, along with their generalization, is shown in
Table 2. All models except for that of Kirilin et al.
(2016) — which was already optimized for this
task by its authors — were run on the validation
set to tune their parameters. To evaluate the per-
formance of the models on the test set, the models
were trained on the entire training set (which in-
cludes the validation splits) and then tested on the
test set.

We first consider the traditional machine learn-
ing models. Amongst these models, gradient
boosting performed best on the validation set,
which can be attributed to the ability of gradient
boosting to learn complex functions and its ro-
bustness to outliers. However, it did not perform
as well on the test set, where logistic regression
performed best, and achieved the best generaliza-
tion out of the traditional machine learning mod-
els. This shows that relatively many instances in
the test set can be correctly classified by using a
hyperplane to separate the dense feature represen-
tations.

Turning to the proposed neural network mod-
els, LFN1 is indeed a strong baseline for this task.
This model achieved an F-score on the test set that



F-score

Model Class Model Validation Set  Test Set Generalization
Traditional k-Nearest Neighbour 48.35 31.30 64.74%
Machine R?nflom ForesF 52.26 32.02 61.27%
Learning Models Logistic Regression 57.68 53.37 92.53%
Gradient Boosting 64.98 48.79 75.08%
LFN1 66.48 57.99 87.23%
Neural Network RNNI1 56.96 53.07 93.17%
Models CNN2 66.95 59.18 88.39%
CNN3 67.40 59.96 88.96%
. Schneider and Smith (2015) 67.84 57.74 85.11%

Baseline Models Kirilin et al. (2016) - 58.69 -

Table 2: The average F-score of each model on the 5 fold cross validation set, and their F-score on the
test set, along with their generalization. The best performance in each column is shown in boldface.

comes close to the previous state-of-the-art of Kir-
ilin et al. (2016). RNNI1 achieved the best gener-
alization out of all models considered; however, it
performed relatively poorly compared to the other
neural network models on both the validation and
test sets. The CNN models, CNN2 and CNN3,
both improved over the previous best results on the
test set — with CNN3 achieving the best F-score
overall — and outperformed all other models ex-
cept for (Schneider et al., 2014a) on the validation
set. This shows that the CNN filters were able to
learn what makes a feature column a part of an
MWE or not. That CNN3 outperforms CNN?2 fur-
ther shows that adding an extra hidden layer for the
CNN model improves its performance as it is able
to handle more complex mappings. Moreover, the
training data for this task is relatively small; it con-
sists of less than 5,000 sentences. These results
therefore further show that convolutional neural
networks can still achieve good performance when
the amount of training data available is limited.

The highest F-score on the test set — achieved
by CNN3 — is 59.96. This shows that the task is
quite difficult, and suggests that there is scope for
further improvements. One issue, however, is that
there are notable inconsistencies in the annotations
in the dataset. For example, the expression a few is
labeled as an MWE 15 out of 32 times in the train-
ing set, even though there appears to be no vari-
ation in its usage. Recent efforts have, however,
proposed semi-automated methods for resolving
these inconsistencies (Chan et al., 2017).
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7 Conclusions and Future Work

We proposed and evaluated the first neural net-
work approaches for multiword expression identi-
fication, and compared their performance against
the previous state-of-art, and more-traditional ma-
chine learning approaches. We showed that our
proposed approach based on a convolutional neu-
ral network (CNN2 and CNN3) outperformed the
previous state-of-the-art for this task. Therefore,
although the task is inherently sequential, formu-
lating it as a classification task enabled the CNN
models to perform well on it. This finding sug-
gests that deep learning methods can still be ef-
fective when only limited amounts of training data
are available. Furthermore, the proposed neural
network-based approaches were able to generalize
more-effectively than previous approaches.

In future work, we intend to carry out an in-
depth analysis of the errors committed by the neu-
ral network models. Additionally, an ablation
study of the features can be conducted to deter-
mine the effect of each feature set on the overall
performance of the models. The proposed deep
learning models can also be extended to predict
supersense tags in addition to the MWE tags. In
particular, we intend to compare the performance
of a single model that predicts the supersense and
MWE tags, versus two separate models for each
task. Furthermore, we plan to measure the impact
of MWE identification on downstream NLP tasks
by incorporating the predicted MWE tags into ap-
plications such as machine translation.
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Abstract

This paper examines the task of detecting
intensity of emotion from text. We cre-
ate the first datasets of tweets annotated
for anger, fear, joy, and sadness intensities.
We use a technique called best—worst scal-
ing (BWS) that improves annotation con-
sistency and obtains reliable fine-grained
scores. We show that emotion-word hash-
tags often impact emotion intensity, usu-
ally conveying a more intense emotion. Fi-
nally, we create a benchmark regression
system and conduct experiments to deter-
mine: which features are useful for detect-
ing emotion intensity; and, the extent to
which two emotions are similar in terms
of how they manifest in language.

1 Introduction

We use language to communicate not only the
emotion we are feeling but also the intensity of
the emotion. For example, our utterances can con-
vey that we are very angry, slightly sad, absolutely
elated, etc. Here, intensity refers to the degree
or amount of an emotion such as anger or sad-
ness.! Natural language applications can benefit
from knowing both the class of emotion and its
intensity. For example, a commercial customer
satisfaction system would prefer to focus first on
instances of significant frustration or anger, as op-
posed to instances of minor inconvenience. How-
ever, most work on automatic emotion detection
has focused on categorical classification (presence
of anger, joy, sadness, etc.). A notable obstacle
in developing automatic affect intensity systems is
the lack of suitable annotated data. Existing af-
fect datasets are predominantly categorical. Anno-

ntensity is different from arousal, which refers to the
extent to which an emotion is calming or exciting.
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tating instances for degrees of affect is a substan-
tially more difficult undertaking: respondents are
presented with greater cognitive load and it is par-
ticularly hard to ensure consistency (both across
responses by different annotators and within the
responses produced by an individual annotator).

Best-Worst Scaling (BWS) is an annotation
scheme that addresses these limitations (Louviere,
1991; Louviere et al., 2015; Kiritchenko and Mo-
hammad, 2016, 2017). Annotators are given n
items (an n-tuple, where n > 1 and commonly
n 4). They are asked which item is the
best (highest in terms of the property of inter-
est) and which is the worst (lowest in terms of
the property of interest). When working on 4-
tuples, best—worst annotations are particularly ef-
ficient because each best and worst annotation will
reveal the order of five of the six item pairs. For
example, for a 4-tuple with items A, B, C, and D,
if A is the best, and D is the worst, then A > B, A
>C,A>D,B>D,and C > D.

BWS annotations for a set of 4-tuples can be
easily converted into real-valued scores of associ-
ation between the items and the property of inter-
est (Orme, 2009; Flynn and Marley, 2014). It has
been empirically shown that annotations for 2N
4-tuples is sufficient for obtaining reliable scores
(where N is the number of items) (Louviere, 1991;
Kiritchenko and Mohammad, 2016).> The lit-
tle work using BWS in computational linguistics
has focused on words (Jurgens et al., 2012; Kir-
itchenko and Mohammad, 2016). It is unclear
whether the approach can be scaled up to larger
textual units such as sentences.

Twitter has a large and diverse user base,
which entails rich textual content, including non-
standard language such as emoticons, emojis, cre-

2At its limit, when n = 2, BWS becomes a paired com-
parison (Thurstone, 1927; David, 1963), but then a much
larger set of tuples need to be annotated (closer to N?).
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atively spelled words (happee), and hashtagged
words (#luvumom). Tweets are often used to con-
vey one’s emotions, opinions towards products,
and stance over issues. Thus, automatically de-
tecting emotion intensities in tweets has many ap-
plications, including: tracking brand and product
perception, tracking support for issues and poli-
cies, tracking public health and well-being, and
disaster/crisis management.

In this paper, we present work on detecting
intensities (or degrees) of emotion in tweets.
Specifically, given a tweet and an emotion X,
the goal is to determine the intensity or degree
of emotion X felt by the speaker—a real-valued
score between 0 and 1.3 A score of 1 means that
the speaker feels the highest amount of emotion
X. A score of 0 means that the speaker feels
the lowest amount of emotion X. We annotate a
dataset of tweets for intensity of emotion using
best—worst scaling and crowdsourcing. The main
contributions of this work are summarized below:

e We formulate and develop the task of detecting

emotion intensities in tweets.

We create four datasets of tweets annotated
for intensity of anger, joy, sadness, and fear,
respectively. These are the first of their kind.*

We show that Best—Worst Scaling can be suc-
cessfully applied for annotating sentences (and
not just words). We hope that this will encour-
age the use of BWS more widely, producing
more reliable natural language annotations.

We annotate both tweets and a hashtag-removed
version of the tweets. We analyse the impact of
hashtags on emotion intensity.

We create a regression system, AffectiveTiveets
Package, to automatically determine emotion
intensity.> We show the extent to which various
features help determine emotion intensity. The
system is released as an open-source package
for the Weka workbench.

We conduct experiments to show the extent to

which two emotions are similar as per their

manifestation in language, by showing how

predictive the features for one emotion are of
another emotion’s intensity.

*Identifying intensity of emotion evoked in the reader, or
intensity of emotion felt by an entity mentioned in the tweet,
are also useful, and left for future work.

“We have also begun work on creating similar datasets
annotated for other emotion categories. We are also creating
a dataset annotated for valence, arousal, and dominance.
>https://github.com/felipebravom/Affective Tweets
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e We provide data for a new shared task WASSA-
2017 Shared Task on Emotion Intensity.® The
competition is organized on a CodalLab website,
where participants can upload their submis-
sions, and the leaderboard reports the results.’
Twenty-two teams participated. A description
of the task, details of participating systems,
and results are available in Mohammad and
Bravo-Marquez (2017).8

All of the data, annotation questionnaires, evalua-
tion scripts, regression code, and interactive visu-
alizations of the data are made freely available on
the shared task website.

2 Related Work

Psychologists have argued that some emotions are
more basic than others (Ekman, 1992; Plutchik,
1980; Parrot, 2001; Frijda, 1988). However, they
disagree on which emotions (and how many)
should be classified as basic emotions—some pro-
pose 6, some 8, some 20, and so on. Thus, most ef-
forts in automatic emotion detection have focused
on a handful of emotions, especially since manu-
ally annotating text for a large number of emotions
is arduous. Apart from these categorical models of
emotions, certain dimensional models of emotion
have also been proposed. The most popular among
them, Russell’s circumplex model, asserts that all
emotions are made up of two core dimensions: va-
lence and arousal (Russell, 2003). In this paper,
we describe work on four emotions that are the
most common amongst the many proposals for ba-
sic emotions: anger, fear, joy, and sadness. How-
ever, we have also begun work on other affect cat-
egories, as well as on valence and arousal.

The vast majority of emotion annotation work
provides discrete binary labels to the text instances
(joy—nojoy, fear—nofear, and so on) (Alm et al.,
2005; Aman and Szpakowicz, 2007; Brooks et al.,
2013; Neviarouskaya et al., 2009; Bollen et al.,
2009). The only annotation effort that provided
scores for degree of emotion is by Strapparava and
Mihalcea (2007) as part of one of the SemEval-
2007 shared task. Annotators were given newspa-
per headlines and asked to provide scores between

®http://saifmohammad.com/WebPages/EmotionIntensity-
SharedTask.html

"https://competitions.codalab.org/competitions/16380

8Even though the 2017 WASSA shared task has con-
cluded, the Codal.ab competition website is kept open. Thus
the best results obtained by any system on the 2017 test set
can be found on the CodalLab leaderboard.



0 and 100 via slide bars in a web interface. It is dif-
ficult for humans to provide direct scores at such
fine granularity. A common problem is inconsis-
tency in annotations. One annotator might assign a
score of 79 to a piece of text, whereas another an-
notator may assign a score of 62 to the same text.
It is also common that the same annotator assigns
different scores to the same text instance at differ-
ent points in time. Further, annotators often have
a bias towards different parts of the scale, known
as scale region bias.

Best—Worst Scaling (BWS) was developed by
Louviere (1991), building on some ground-
breaking research in the 1960s in mathemati-
cal psychology and psychophysics by Anthony
A. J. Marley and Duncan Luce. Kiritchenko
and Mohammad (2017) show through empiri-
cal experiments that BWS produces more re-
liable fine-grained scores than scores obtained
using rating scales. Within the NLP commu-
nity, Best—Worst Scaling (BWS) has thus far
been used only to annotate words: for exam-
ple, for creating datasets for relational similar-
ity (Jurgens et al., 2012), word-sense disambigua-
tion (Jurgens, 2013), word—sentiment intensity
(Kiritchenko et al., 2014), and phrase sentiment
composition (Kiritchenko and Mohammad, 2016).
However, in this work we use BWS to annotate
whole tweets for degree of emotion. With BWS
we address the challenges of direct scoring, and
produce more reliable emotion intensity scores.
Further, this will be the first dataset with emotion
scores for tweets.

Automatic emotion classification has been pro-
posed for many different kinds of texts, including
tweets (Summa et al., 2016; Mohammad, 2012;
Bollen et al., 2009; Aman and Szpakowicz, 2007;
Brooks et al., 2013). However, there is little work
on emotion regression other than the three submis-
sions to the 2007 SemEval task (Strapparava and
Mihalcea, 2007).

3 Data

For each of the four focus emotions, our goal was

to create a dataset of tweets such that:

e The tweets are associated with various intensi-
ties (or degrees) of emotion.

e Some tweets have words clearly indicative of
the focus emotion and some tweets do not.

A random collection of tweets is likely to have a
large proportion of tweets not associated with the
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focus emotion, and thus annotating all of them for
intensity of emotion is sub-optimal. To create a
dataset of tweets rich in a particular emotion, we
use the following methodology.

For each emotion X, we select 50 to 100 terms
that are associated with that emotion at differ-
ent intensity levels. For example, for the anger
dataset, we use the terms: angry, mad, frustrated,
annoyed, peeved, irritated, miffed, fury, antago-
nism, and so on. For the sadness dataset, we use
the terms: sad, devastated, sullen, down, crying,
dejected, heartbroken, grief, weeping, and so on.
We will refer to these terms as the query terms.

We identified the query words for an emotion
by first searching the Roget’s Thesaurus to find
categories that had the focus emotion word (or
a close synonym) as the head word.® We chose
all words listed within these categories to be the
query terms for the corresponding focus emotion.
We polled the Twitter API for tweets that included
the query terms. We discarded retweets (tweets
that start with RT) and tweets with urls. We
created a subset of the remaining tweets by:

e selecting at most 50 tweets per query term.

e selecting at most 1 tweet for every tweeter—
query term combination.

Thus, the master set of tweets is not heavily
skewed towards some tweeters or query terms.

To study the impact of emotion word hashtags
on the intensity of the whole tweet, we identified
tweets that had a query term in hashtag form
towards the end of the tweet—specifically, within
the trailing portion of the tweet made up solely
of hashtagged words. We created copies of these
tweets and then removed the hashtag query terms
from the copies. The updated tweets were then
added to the master set. Finally, our master set of
7,097 tweets includes:

1. Hashtag Query Term Tweets (HQT Tveets):
1030 tweets with a query term in the form
of a hashtag (#<query term>) in the trailing
portion of the tweet;

. No Query Term Tweets (NQT Tweets):
1030 tweets that are copies of ‘1°, but with the
hashtagged query term removed;

°The Roget’s Thesaurus groups words into about 1000
categories. The head word is the word that best represents
the meaning of the words within the category. The categories
chosen were: 900 Resentment (for anger), 860 Fear (for fear),
836 Cheerfulness (for joy), and 837 Dejection (for sadness).



3. Query Term Tweets (QT Tweets):
5037 tweets that include:
a. tweets that contain a query term in the form
of a word (no #<query term>)
b. tweets with a query term in hashtag form
followed by at least one non-hashtag word.

The master set of tweets was then manually an-
notated for intensity of emotion. Table 1 shows a
breakdown by emotion.

3.1 Annotating with Best—Worst Scaling

We followed the procedure described in Kir-
itchenko and Mohammad (2016) to obtain BWS
annotations. For each emotion, the annotators
were presented with four tweets at a time (4-
tuples) and asked to select the speakers of the
tweets with the highest and lowest emotion inten-
sity. 2 x N (where N is the number of tweets in
the emotion set) distinct 4-tuples were randomly
generated in such a manner that each item is seen
in eight different 4-tuples, and no pair of items
occurs in more than one 4-tuple. We will re-
fer to this as random maximum-diversity selection
(RMDS). RMDS maximizes the number of unique
items that each item co-occurs with in the 4-tuples.
After BWS annotations, this in turn leads to di-
rect comparative ranking information for the max-
imum number of pairs of items. '’

It is desirable for an item to occur in sets of 4-
tuples such that the maximum intensities in those
4-tuples are spread across the range from low in-
tensity to high intensity, as then the proportion of
times an item is chosen as the best is indicative
of its intensity score. Similarly, it is desirable for
an item to occur in sets of 4-tuples such that the
minimum intensities are spread from low to high
intensity. However, since the intensities of items
are not known beforehand, RMDS is used.

Every 4-tuple was annotated by three indepen-
dent annotators.!! The questionnaires used were
developed through internal discussions and pilot

In combinatorial mathematics, balanced incomplete
block design refers to creating blocks (or tuples) of a handful
items from a set of NV items such that each item occurs in the
same number of blocks (say x) and each pair of distinct items
occurs in the same number of blocks (say y), where x and y
are integers ge 1 (Yates, 1936). The set of tuples we create
have similar properties, except that since we create only 2N
tuples, pairs of distinct items either never occur together in a
4-tuple or they occur in exactly one 4-tuple.

"Kiritchenko and Mohammad (2016) showed that using
just three annotations per 4-tuple produces highly reliable re-
sults. Note that since each tweet is seen in eight different
4-tuples, we obtain 8 x 3 = 24 judgments over each tweet.
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Emotion Train Dev. Test All
anger 857 84 760 1701
fear 1147 110 995 2252
joy 823 74 714 1611
sadness 786 74 673 1533
All 3613 342 3142 7097
Table 1: The number of instances in the Tweet

Emotion Intensity dataset.

annotations. A sample questionnaire is shown in
the Appendix (A.1).

The 4-tuples of tweets were uploaded on the
crowdsourcing platform, CrowdFlower. About
5% of the data was annotated internally before-
hand (by the authors). These questions are referred
to as gold questions. The gold questions are inter-
spersed with other questions. If one gets a gold
question wrong, they are immediately notified of
it. If one’s accuracy on the gold questions falls be-
low 70%, they are refused further annotation, and
all of their annotations are discarded. This serves
as a mechanism to avoid malicious annotations.'?

The BWS responses were translated into scores
by a simple calculation (Orme, 2009; Flynn and
Marley, 2014): For each item, the score is the per-
centage of times the item was chosen as having
the most intensity minus the percentage of times
the item was chosen as having the least intensity.'?
The scores range from —1 to 1. Since degree of
emotion is a unipolar scale, we linearly transform
the the —1 to 1 scores to scores in the range O to 1.

3.2 Training, Development, and Test Sets

We refer to the newly created emotion-intensity la-
beled data as the Tweet Emotion Intensity Dataset.
The dataset is partitioned into training, develop-
ment, and test sets for machine learning experi-
ments (see Table 1). For each emotion, we chose
to include about 50% of the tweets in the training
set, about 5% in the development set, and about
45% in the test set. Further, we made sure that
an NQT tweet is in the same partition as the HQT
tweet it was created from. See Appendix (A.4) for
details of an interactive visualization of the data.

12In case more than one item can be reasonably chosen as
the best (or worst) item, then more than one acceptable gold
answers are provided. The goal with the gold annotations
is to identify clearly poor or malicious annotators. In case
where two items are close in intensity, we want the crowd
of annotators to indicate, through their BWS annotations, the
relative ranking of the items.

BKiritchenko and Mohammad (2016) provide code
for generating tuples from items using RMDS, as well

as code for generating scores from BWS annotations:
http://saitmohammad.com/WebPages/BestWorst.html



4 Reliability of Annotations

One cannot use standard inter-annotator agree-
ment measures to determine quality of BWS anno-
tations because the disagreement that arises when
a tuple has two items that are close in emotion in-
tensity is a useful signal for BWS. For a given 4-
tuple, if respondents are not able to consistently
identify the tweet that has highest (or lowest) emo-
tion intensity, then the disagreement will lead to
the two tweets obtaining scores that are close to
each other, which is the desired outcome. Thus a
different measure of quality of annotations must
be utilized.

A useful measure of quality is reproducibility
of the end result—if repeated independent man-
ual annotations from multiple respondents result
in similar intensity rankings (and scores), then one
can be confident that the scores capture the true
emotion intensities. To assess this reproducibility,
we calculate average split-half reliability (SHR),
a commonly used approach to determine consis-
tency (Kuder and Richardson, 1937; Cronbach,
1946). The intuition behind SHR is as follows.
All annotations for an item (in our case, tuples)
are randomly split into two halves. Two sets of
scores are produced independently from the two
halves. Then the correlation between the two sets
of scores is calculated. If the annotations are of
good quality, then the correlation between the two
halves will be high.

Since each tuple in this dataset was annotated by
three annotators (odd number), we calculate SHR
by randomly placing one or two annotations per
tuple in one bin and the remaining (two or one)
annotations for the tuple in another bin. Then two
sets of intensity scores (and rankings) are calcu-
lated from the annotations in each of the two bins.
The process is repeated 100 times and the correla-
tions across the two sets of rankings and intensity
scores are averaged. Table 2 shows the split-half
reliabilities for the anger, fear, joy, and sadness
tweets in the Tweet Emotion Intensity Dataset.'*
Observe that for fear, joy, and sadness datasets,
both the Pearson correlations and the Spearman
rank correlations lie between 0.84 and 0.88, indi-
cating a high degree of reproducibility. However,

1“Past work has found the SHR for sentiment intensity an-
notations for words, with 8 annotations per tuple, to be 0.98
(Kiritchenko et al., 2014). In contrast, here SHR is calculated
from 3 annotations, for emotions, and from whole sentences.
SHR determined from a smaller number of annotations and
on more complex annotation tasks are expected to be lower.
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Emotion  Spearman  Pearson
anger 0.779 0.797
fear 0.845 0.850
joy 0.881 0.882
sadness 0.847 0.847

Table 2: Split-half reliabilities (as measured by
Pearson correlation and Spearman rank correla-
tion) for the anger, fear, joy, and sadness tweets
in the Tweet Emotion Intensity Dataset.

the correlations are slightly lower for anger indi-
cating that it is relative more difficult to ascertain
the degrees of anger of speakers from their tweets.
Note that SHR indicates the quality of annotations
obtained when using only half the number of an-
notations. The correlations obtained when repeat-
ing the experiment with three annotations for each
4-tuple is expected to be even higher. Thus the
numbers shown in Table 2 are a lower bound on
the quality of annotations obtained with three an-
notations per 4-tuple.

5 Impact of Emotion Word Hashtags on
Emotion Intensity

Some studies have shown that emoticons tend
to be redundant in terms of the sentiment (Go
et al., 2009; Mohammad et al., 2013). That is,
if we remove a smiley face, ‘:)’, from a tweet,
we find that the rest of the tweet still conveys a
positive sentiment. Similarly, it has been shown
that hashtag emotion words are also somewhat
redundant in terms of the class of emotion being
conveyed by the rest of the tweet (Mohammad,
2012). For example, removal of ‘#angry’ from the
tweet below leaves a tweet that still conveys anger.

This mindless support of a demagogue
needs to stop. #racism #grrr #angry

However, it is unclear what impact such emotion
word hashtags have on the infensity of emotion. In
fact, there exists no prior work to systematically
study this. One of the goals of creating this dataset
and including HQT-NQT tweet pairs, is to allow
for exactly such an investigation. '3

We analyzed the scores in our dataset to cre-
ate scatter plots where each point corresponds to
a HQT-NQT tweet pair, the x-axis is the emotion
intensity score of the HQT tweet, and the y-axis
is the score of the NQT tweet. Figure 1 shows
the scatter plot for the fear data. We observe that

15See Appendix (A.2) for further discussion on how emo-
tion word hashtags have been used in prior research.



No. of HQT-NQT

% Tweets Pairs

Average Emotion Intensity Score

Emotion Tweet Pairs Drop Rise None HQT tweets NQT tweets Drop Rise
anger 282 76.6 199 3.4 0.58 048 0.15 0.07
fear 454 86.1 13.9 44 0.57 043 0.18 0.07
joy 204 71.6  26.5 1.9 0.59 050 0.15 0.09
sadness 90 856 11,1 3.3 0.65 049 0.19 0.05
All 1030 78.6 178 3.6 0.58 047 0.17 0.08

Table 3: The impact of removal of emotion word hashtags on the emotion intensities of tweets.
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Figure 1: The scatter plot of fear intensity of HQT
tweet vs. corresponding NQT tweet. As per space
availability, some points are labeled with the rele-
vant hashtag.

in a majority of the cases, the points are on the
lower-right side of the diagonal, indicating that the
removal of the emotion word hashtag causes the
emotion intensity of the tweet to drop. However,
we do see a number of points on the upper-left side
of the diagonal (indicating a rise), and some ex-
actly on the diagonal (indicating no impact), due
to the removal of a hashtag. Also observe that the
removal of a hashtag can result in a drop in emo-
tion scores for some tweets, but a rise for others
(e.g., see the three labeled points for #nervous in
the plot). We observe a similar pattern for other
emotions as well (plots not shown here). Table 3
summarizes these results by showing the percent-
age of times the three outcomes occur for each of
the emotions.

The table also shows that the average scores of
HQT tweets and NQT tweets. The difference be-
tween 0.58 and 0.47 is statistically significant.!®
The last two columns show that when there is a
drop in score on removal of the hashtag, the aver-

'®Wilcoxon signed-rank test at 0.05 significance level.
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age drop is about 0.17 (17% of the total range 0—
1), whereas when there is a rise, the average rise
is 0.08 (8% of the total range). These results show
that emotion word hashtags are often not redun-
dant with the rest of tweet in terms of what they
bring to bear at the overall emotion intensity. Fur-
ther, even though it is common for many of these
hashtags to increase the emotion intensity, there
is a more complex interplay between the text of
the tweet and the hashtag which determines the di-
rectionality and magnitude of the impact on emo-
tion intensity. For instance, we often found that
if the rest of the tweet clearly indicated the pres-
ence of an emotion (through another emotion word
hashtag, emojis, or through the non-hashtagged
words), then the emotion word hashtag had only
a small impact on the score.!”

However, if the rest of the tweet is under-
specified in terms of the emotion of the speaker,
then the emotion word hashtag markedly in-
creased the perceived emotion intensity. We also
observed patterns unique to particular emotions.
For example, when judging degree of fear of
a speaker, lower scores were assigned when
the speaker used a hashtag that indicated some
outward judgment.

@RocksNRopes Can’t believe how rude
your cashier was. fear: 0.48

@RocksNRopes Can’t believe how rude
your cashier was. #terrible fear: 0.31

We believe that not vocalizing an outward judg-
ment of the situation made the speaker appear
more fearful. The HQT-NQT subset of our dataset
will also be made separately, and freely, available
as it may be of interest on its own, especially for
the psychology and social sciences communities.

"Unless the hashtag word itself is associated with very
low emotion intensity (e.g., #peeved with anger), in which
case, there was a drop in perceived emotion intensity.



Twitter Annotation Scope Label
AFINN (Nielsen, 2011) Yes Manual Sentiment Numeric
BingLiu (Hu and Liu, 2004) No Manual Sentiment Nominal
MPQA (Wilson et al., 2005) No Manual Sentiment Nominal
NRC Affect Intensity Lexicon (NRC-Aff-Int) (Mohammad, 2017) Yes Manual Emotions  Numeric
NRC Word-Emotion Assn. Lexicon (NRC-EmoLex) (Mohammad and Turney, 2013) No Manual Emotions  Nominal
NRC10 Expanded (NRC10E) (Bravo-Marquez et al., 2016) Yes Automatic  Emotions  Numeric
NRC Hashtag Emotion Association Lexicon (NRC-Hash-Emo) Yes Automatic  Emotions  Numeric
(Mohammad and Kiritchenko, 2015)
NRC Hashtag Sentiment Lexicon (NRC-Hash-Sent) (Mohammad et al., 2013) Yes Automatic  Sentiment Numeric
Sentiment140 (Mohammad et al., 2013) Yes Automatic  Sentiment Numeric
SentiWordNet (Esuli and Sebastiani, 2006) No Automatic  Sentiment Numeric
SentiStrength (Thelwall et al., 2012) Yes Manual Sentiment Numeric

Table 4: Affect lexicons used in our experiments.

6 Automatically Determining Tweet
Emotion Intensity

We now describe our regression system, which we
use for obtaining benchmark prediction results on
the new Tweet Emotion Intensity Dataset (Section
6.1) and for determining the extent to which two
emotions are correlated (Section 6.2).

Regression System We implemented a pack-
age called AffectiveTweets for the Weka machine
learning workbench (Hall et al., 2009) that pro-
vides a collection of filters for extracting state-of-
the-art features from tweets for sentiment classifi-
cation and other related tasks. These include fea-
tures used in Kiritchenko et al. (2014) and Mo-
hammad et al. (2017).!% We use the package
for calculating feature vectors from our emotion-
intensity-labeled tweets and train Weka regression
models on this transformed data. We used an Lo-
regularized Lo-loss SVM regression model with
the regularization parameter C set to 1, imple-
mented in LIBLINEAR'®. The features used: >’

a. Word N-grams (WN): presence or absence of
word n-grams fromn = 1 ton = 4.

b. Character N-grams (CN): presence or absence
of character n-grams from n = 3ton = 5.

c. Word Embeddings (WE): an average of the
word embeddings of all the words in a tweet. We
calculate individual word embeddings using the
negative sampling skip-gram model implemented
in Word2Vec (Mikolov et al., 2013). Word vectors
are trained from ten million English tweets taken
from the Edinburgh Twitter Corpus (Petrovi¢
et al.,, 2010). We set Word2Vec parameters:

8Kiritchenko et al. (2014) describes the NRC-Canada
system which ranked first in three sentiment shared tasks:
SemEval-2013 Task 2, SemEval-2014 Task 9, and SemEval-
2014 Task 4. Mohammad et al. (2017) describes a stance-
detection system that outperformed submissions from all 19
teams that participated in SemEval-2016 Task 6.

Yhttp://www.csie.ntu.edu.tw/~cjlin/liblinear/

2See Appendix (A.3) for further implementation details.
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window size: 5; number of dimensions: 400.2!
d. Affect Lexicons (L): we use the lexicons shown
in Table 4, by aggregating the information for
all the words in a tweet. If the lexicon provides
nominal association labels (e.g, positive, anger,
etc.), then the number of words in the tweet
matching each class are counted. If the lexicon
provides numerical scores, the individual scores
for each class are summed. These resources
differ according to: whether the lexicon includes
Twitter-specific terms, whether the words were
manually or automatically annotated, whether the
words were annotated for sentiment or emotions,
and whether the affective associations provided
are nominal or numeric. (See Table 4.)
Evaluation We calculate the Pearson correla-

tion coefficient (r) between the scores produced
by the automatic system on the test sets and the
gold intensity scores to determine the extent to
which the output of the system matches the re-
sults of human annotation.?2 Pearson coefficient,
which measures linear correlations between two
variables, produces scores from -1 (perfectly in-
versely correlated) to 1 (perfectly correlated). A
score of 0 indicates no correlation.

6.1 Supervised Regression and Ablation

We developed our system by training on the offi-
cial training sets and applying the learned models
to the development sets. Once system parameters
were frozen, the system trained on the combined
training and development corpora. These models
were applied to the official test sets. Table 5 shows
the results obtained on the test sets using various
features, individually and in combination. The last
column ‘avg.” shows the macro-average of the cor-
relations for all of the emotions.

2Optimized for the task of word—emotion classification on
an independent dataset (Bravo-Marquez et al., 2016).

2We also determined Spearman rank correlations but
these were inline with the results obtained using Pearson.



anger fear joy sad. avg.

Individual feature sets
word ngrams (WN) 042 049 052 049 048
char. ngrams (CN) 0.50 048 045 049 048
word embeds. (WE) 048 0.54 0.57 0.60 0.55
all lexicons (L) 0.62 0.60 0.60 0.68 0.63

Individual Lexicons
AFINN 048 027 040 0.28 0.36
BingLiu 0.33 031 037 023 0.31
MPQA 0.18 020 0.28 0.12 0.20
NRC-Aff-Int 024 028 037 032 0.30
NRC-EmoLex 0.18 026 036 023 0.26
NRCI10E 0.35 034 043 037 0.37
NRC-Hash-Emo 0.55 055 046 054 0.53
NRC-Hash-Sent 0.33 024 041 039 0.34
Sentiment140 0.33 041 040 048 041
SentiWordNet 0.14 0.19 026 0.16 0.19
SentiStrength 043 034 046 0.61 0.46

Combinations

WN + CN + WE 0.50 048 045 049 048
WN +CN+L 0.61 061 0.61 0.63 0.61
WE +L 0.64 0.63 0.65 0.71 0.66
WN + WE +L 0.63 0.65 0.65 0.65 0.65
CN+WE+L 0.61 0.61 0.62 0.63 0.62
WN+CN+WE+L 061 061 061 0.63 0.62

Table 5: Pearson correlations (r) of emotion inten-
sity predictions with gold scores. Best results for
each column are shown in bold: highest score by
a feature set, highest score using a single lexicon,
and highest score using feature set combinations.

Using just character or just word n-grams leads
to results around 0.48, suggesting that they are
reasonably good indicators of emotion intensity
by themselves. (Guessing the intensity scores
at random between 0 and 1 is expected to get
correlations close to 0.) Word embeddings pro-
duce statistically significant improvement over the
ngrams (avg. r = 0.55).> Using features drawn
from affect lexicons produces results ranging from
avg. r = 0.19 with SentiWordNet to avg. r = 0.53
with NRC-Hash-Emo. Combining all the lexicons
leads to statistically significant improvement over
individual lexicons (avg. r = 0.63). Combining
the different kinds of features leads to even higher
scores, with the best overall result obtained us-
ing word embedding and lexicon features (avg. r
= 0.66).>* The feature space formed by all the
lexicons together is the strongest single feature
category. The results also show that some fea-
tures such as character ngrams are redundant in
the presence of certain other features.

BWe used the Wilcoxon signed-rank test at 0.05 signifi-
cance level calculated from ten random partitions of the data,
for all the significance tests reported in this paper.

**The increase from 0.63 to 0.66 is statistically significant.
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Among the lexicons, NRC-Hash-Emo is the
most predictive single lexicon. Lexicons that in-
clude Twitter-specific entries, lexicons that in-
clude intensity scores, and lexicons that label
emotions and not just sentiment, tend to be
more predictive on this task—dataset combination.
NRC-Aff-Int has real-valued fine-grained word—
emotion association scores for all the words in
NRC-EmoLex that were marked as being associ-
ated with anger, fear, joy, and sadness.?> Improve-
ment in scores obtained using NRC-Aff-Int over
the scores obtained using NRC-EmoLex also show
that using fine intensity scores of word-emotion
association are beneficial for tweet-level emotion
intensity detection. The correlations for anger,
fear, and joy are similar (around 0.65), but the cor-
relation for sadness is markedly higher (0.71). We
can observe from Table 5 that this boost in perfor-
mance for sadness is to some extent due to word
embeddings, but is more so due to lexicon fea-
tures, especially those from SentiStrength. Sen-
tiStrength focuses solely on positive and negative
classes, but provides numeric scores for each.

6.1.1 Moderate-to-High Intensity Prediction

In some applications, it may be more important
for a system to correctly determine emotion inten-
sities in the higher range of the scale than in the
lower range of the scale. To assess performance in
the moderate-to-high range of the intensity scale,
we calculated correlation scores over a subset of
the test data formed by taking only those instances
with gold emotion intensity scores > 0.5.

Table 6 shows the results. Firstly, the correla-
tion scores are in general lower here in the 0.5
to 1 range of intensity scores than in the experi-
ments over the full intensity range. This is sim-
ply because this is a harder task as now the sys-
tems do not benefit by making coarse distinctions
over whether a tweet is in the lower range or in the
higher range. Nonetheless, we observe that many
of the broad patterns of results stay the same, with
some differences. Lexicons still play a crucial
role, however, now embeddings and word ngrams
are not far behind. SentiStrength seems to be less
useful in this range, suggesting that its main bene-
fit was separating low- and high-intensity sadness
words. NRC-Hash-Emo is still the source of the
most predictive lexicon features.

25http://saifmohammad.com/WebPages/AffectIntensity.htm



anger fear joy sad. avg.
Individual feature sets
word ngrams (WN) 036 0.39 038 040 0.38
char. ngrams (CN) 0.39 036 034 034 0.36
word embeds. (WE) 041 042 037 0.51 043
all lexicons (L) 048 047 029 051 044
Individual Lexicons
(some low-score rows not shown to save space)
AFINN 0.31 0.06 0.11 0.05 0.13
BingLiu 0.31 0.06 0.11 0.05 0.13
NRCI0E 0.27 0.14 0.25 030 0.24
NRC-Hash-Emo 043 039 0.15 044 035
Sentiment140 0.18 0.24 0.09 032 0.21
SentiStrength 023 0.04 0.19 0.34 0.20
Combinations
WN + CN + WE 0.37 035 033 034 0.35
WN+CN+L 044 045 034 043 041
WE +L 0.51 049 038 0.54 048
WN + WE +L 051 0.51 040 049 047
CN+WE +L 045 045 034 043 042
WN+CN+WE+L 044 045 034 043 042

Table 6: Pearson correlations on a subset of the
test set where gold scores > 0.5.

6.2 Similarity of Emotion Pairs

Humans are capable of hundreds of emotions, and
some are closer to each other than others. One rea-
son why certain emotion pairs may be perceived as
being close is that their manifestation in language
is similar, for example, similar words and expres-
sion are used when expressing both emotions. We
quantify this similarity of linguistic manifestation
by using the Tweet Emotion Intensity dataset for
the following experiment: we train our regression
system (with features WN + WE + L) on the train-
ing data for one emotion and evaluate predictions
on the test data for a different emotion.

Table 7 shows the results. The numbers in the
diagonal are results obtained using training and
test data pertaining to the same emotion. These
results are upperbound benchmarks for the non-
diagonal results, which are expected to be lower.
We observe that negative emotions are positively
correlated with each other and negatively corre-
lated with the only positive emotion (joy). The
absolute values of these correlations go from r =
0.23 to » = 0.65. This shows that all of the emo-
tion pairs are correlated at least to some extent,
but that in some cases, for example, when learning
from fear data and predicting sadness scores, one
can obtain results (r = 0.63) close to the upper-
bound benchmark (r = 0.65).2° Note also that the
correlations are asymmetric. This means that even
though one emotion may be strongly predictive of

%60.63 and 0.65 are not statistically significantly different.
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Test On

Train On  anger fear joy  sadness
anger 0.63 037 -0.37 0.45
fear 046 0.65 -0.39 0.63
joy -041  -023  0.65 -0.41
sadness 039 047 -0.32 0.65

Table 7: Emotion intensity transfer Pearson corre-
lation on all target tweets.

another, the predictive power need not be similar
in the other direction. We also found that train-
ing on a simple combination of both the fear and
sadness data and using the model to predict sad-
ness obtained a correlation of 0.67 (exceeding the
score obtained with just the sadness training set).>’
Domain adaptation may provide further gains.

To summarize, the experiments in this section
show the extent to which two emotion are simi-
lar as per their manifestation in language. For the
four emotions studied here, the similarities vary
from small (joy with fear) to considerable (fear
with sadness). Also, the similarities are asymmet-
ric. We also show that in some cases it is bene-
ficial to use the training data for another emotion
to supplement the training data for the emotion of
interest. A promising avenue of future work is to
test theories of emotion composition: e.g, whether
optimism is indeed a combination of joy and an-
ticipation, whether awe if fear and surprise, and so
on, as some have suggested (Plutchik, 1980).

7 Conclusions

We created the first emotion intensity dataset for
tweets. We used best—worst scaling to improve
annotation consistency and obtained fine-grained
scores. We showed that emotion-word hashtags
often impact emotion intensity, often conveying a
more intense emotion. We created a benchmark
regression system and conducted experiments to
show that affect lexicons, especially those with
fine word—emotion association scores, are use-
ful in determining emotion intensity. Finally, we
showed the extent to which emotion pairs are cor-
related, and that the correlations are asymmetric—
e.g., fear is strongly indicative of sadness, but sad-
ness is only moderately indicative of fear.
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A Appendix
A.1 Best—Worst Scaling Questionnaire used
to Obtain Emotion Intensity Scores

The BWS questionnaire used for obtaining fear
annotations is shown below.

Degree Of Fear In English Language Tweets

The scale of fear can range from not fearful at all
(zero amount of fear) to extremely fearful. One
can often infer the degree of fear felt or expressed
by a person from what they say. The goal of this
task is to determine this degree of fear. Since it is
hard to give a numerical score indicating the de-
gree of fear, we will give you four different tweets
and ask you to indicate to us:

e Which of the four speakers is likely to be the
MOST fearful, and

e Which of the four speakers is likely to be the
LEAST fearful.

Important Notes

e This task is about fear levels of the speaker (and
not about the fear of someone else mentioned

or spoken to).

If the answer could be either one of two or
more speakers (i.e., they are likely to be equally
fearful), then select any one of them as the
answer.

Most importantly, try not to over-think the
answer. Let your instinct guide you.

EXAMPLE

Speaker 1: Don’t post my picture on FB #grrr
Speaker 2: If the teachers are this incompetent, 1
am afraid what the results will be.

Speaker 3: Results of medical test today #terrified
Speaker 4: Having to speak in front of so many
people is making me nervous.

Q1. Which of the four speakers is likely to be the
MOST fearful?

— Multiple choice options: Speaker 1, 2, 3,4 —
Ans: Speaker 3

Q2. Which of the four speakers is likely to be the
LEAST fearful?

— Multiple choice options: Speaker 1, 2, 3,4 —
Ans: Speaker 1
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The questionnaires for other emotions are similar
in structure. In a post-annotation survey, the re-
spondents gave the task high scores for clarity of
instruction (4.2/5) despite noting that the task it-
self requires some non-trivial amount of thought
(3.5 out of 5 on ease of task).

A.2 Use of Emotion Word Hashtags

Emotion word hashtags (e.g., #angry, #fear) have
been used to search and compile sets of tweets
that are likely to convey the emotions of interest.
Often, these tweets are used in one of two ways:
1. As noisy training data for distant supervision
(Pak and Paroubek, 2010; Mohammad, 2012; Sut-
tles and Ide, 2013). 2. As data that is manually
annotated for emotions to create training and test
datasets suitable for machine learning (Roberts
et al., 2012; Qadir and Riloff, 2014; Mohammad
et al., July 2015).%® We use emotion word hashtag
to create annotated data similar to ‘2°, however,
we use them to create separate emotion intensity
datasets for each emotion. We also examine the
impact of emotion word hashtags on emotion in-
tensity. This has not been studied before, even
though there is work on learning hashtags asso-
ciated with particular emotions (Qadir and Riloff,
2013), and on showing that some emotion word
hashtags are strongly indicative of the presence of
an emotion in the rest of the tweet, whereas others
are not (Kunneman et al., 2014).

A.3 AffectiveTweets Weka Package

AffectiveTweets includes five filters for converting
tweets into feature vectors that can be fed into the
large collection of machine learning algorithms
implemented within Weka.  The package is
installed using the WekaPackageManager and can
be used from the Weka GUI or the command line
interface. It uses the TweetNLP library (Gimpel
et al., 2011) for tokenization and POS tagging.
The filters are described as follows.

o TweetToSparseFeatureVector filter: calculates
the following sparse features: word n-grams
(adding a NEG prefix to words occurring in
negated contexts), character n-grams (CN),
POS tags, and Brown word clusters.?’

20ften, the query term is removed from the tweet so as to
erase obvious cues for a classification task.

PThe scope of negation was determined by a simple
heuristic: from the occurrence of a negator word up until a
punctuation mark or end of sentence. We used a list of 28
negator words such as no, not, won’t and never.



Tweet Emotion Intensity Data

Click on an item to select and filter information. Click again to deselect.

% by Emotion % by emotion, train-dev-test
Emotion Emotion Testflag

anger 23.97% anger train 50.38%
fear 31.73% dev 4.94%
joy 22.70% test 44.68%
sadness 21.60% Total 100.00%
Grand Total fear train 50.93%‘
dev 4.88%
test 44.18%
Total
joy train 51.09%
% b . . dev 4.59%
o by train-dev-test test 44.32%
Testflag Total
train 50.91% sadness train 51.27% ‘
dev 4.82% dev 4.83%
test 44.27% test 43.90%
Grand Total Total
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My blood is boiling

How the fu*k! Who the heck! moved my fridge!... should | knock the landlord door. #angry #mad ##

So my Indian Uber driver just called someone the N word. If | wasn't in a moving vehicle I'd have jumped out #disgusted
@DPD_UK | asked for my parcel to be delivered to a pick up store not my address #fuming #poorcustomerservice

so ef whichever butt wipe pulled the fire alarm in davis bc | was sound asleep #pissed #angry #upset #tired #sad #tired #h..

Don't join @BTCare they put the phone down on you, talk over you and are rude. Taking money out of my acc willynilly! #f..

When you've still got a whole season of Wentworth to watch and a stupid cunt in work ruins it for us @ @ @__KirstyGA #..

@bt_uk why does tracking show my equipment delivered, when it wasn't? Why is my service suddenly delayed? We've alr..
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Figure 2: Screenshot of the interactive visualization to explore the Tweet Emotion Intensity Dataset.
Available at: http://saifmohammad.com/WebPages/EmotionIntensity-SharedTask.html

TweetToLexiconFeatureVector filter: calculates
features from a fixed list of affective lexicons.

TweetTolnputLexiconFeatureVector: calculates
features from any lexicon. The input lexicon
can have multiple numeric or nominal word—
affect associations.
TweetToSentiStrengthFeatureVector filter:
calculates positive and negative sentiment
intensities for a tweet using the SentiStrength
lexicon-based method (Thelwall et al., 2012)
TweetToEmbeddingsFeatureVector filter: calcu-
lates a tweet-level feature representation us-
ing pre-trained word embeddings supporting
the following aggregation schemes: average of
word embeddings; addition of word embed-
dings; and concatenation of the first £ word em-
beddings in the tweet. The package also pro-
vides Word2Vec’s pre-trained word embeddings.

Additional filters for creating affective lexicons
from tweets and support for distant supervision are
currently under development.
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A.4 An Interactive Visualization to Explore

the Tweet Emotion Intensity Dataset

We created an interactive visualization to allow

ease of exploration of this new dataset.

The

visualization has several components:

1.

Tables showing the percentage of instances in
each of the emotion partitions (train, dev, test).
Hovering over a row shows the corresponding
number of instances. Clicking on an emotion
filters out data from all other emotions, in all
visualization components. Similarly, one can
click on just the train, dev, or test partitions to
view information just for that data. Clicking
again deselects the item.

A histogram of emotion intensity scores. A
slider that one can use to view only those
tweets within a certain score range.

. The list of tweets, emotion label, and emotion
intensity scores.

One can use filters in combination. For e.g., click-
ing on fear, test data, and setting the slider for the
0.5 to 1 range, shows information for only those
fear—testdata instances with scores > 0.5.
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Abstract

We propose an online, end-to-end, neural
generative conversational model for open-
domain dialogue. It is trained using a
unique combination of offline two-phase
supervised learning and online human-in-
the-loop active learning. While most ex-
isting research proposes offline supervi-
sion or hand-crafted reward functions for
online reinforcement, we devise a novel
interactive learning mechanism based on
hamming-diverse beam search for re-
sponse generation and one-character user-
feedback at each step. Experiments show
that our model inherently promotes the
generation of semantically relevant and
interesting responses, and can be used
to train agents with customized personas,
moods and conversational styles.

1 Introduction

Several recent works propose neural generative
conversational agents (CAs) for open-domain and
task-oriented dialogue (Shang et al., 2015; Sor-
doni et al., 2015; Vinyals and Le, 2015; Serban
et al., 2016, 2017; Wen et al., 2016; Shen et al.,
2017; Eric and Manning, 2017a,b). These mod-
els typically use LSTM encoder-decoder architec-
tures (e.g. the sequence-to-sequence (Seq2Seq)
framework (Sutskever et al., 2014)), which are lin-
guistically robust but can often generate short, dull
and inconsistent responses (Serban et al., 2016;
Li et al., 2016a). Researchers are now exploring
Deep Reinforcement Learning (DRL) to address
the hard problems of NLU and NLG in dialogue
generation. In most of the existing works, the re-
ward function is hand-crafted, and is either spe-
cific to the task to be completed, or is based on
a few desirable developer-defined conversational
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properties.

In this work we demonstrate how online Deep
Active Learning can be integrated with standard
neural network based dialogue systems to enhance
their open-domain conversational skills. The ar-
chitectural backbone of our model is the Seq2Seq
framework, which initially undergoes offline su-
pervised learning on two different types of con-
versational datasets. We then initiate an on-
line active learning phase to interact with human
users for incremental model improvement, where
a unique single-character' user-feedback mecha-
nism is used as a form of reinforcement at each
turn in the dialogue. The intuition is to rely on this
all-encompassing human-centric ‘reinforcement’
mechanism, instead of defining hand-crafted re-
ward functions that individually try to capture
each of the many subtle conversational properties.
This mechanism inherently promotes interesting
and relevant responses by relying on the humans’
far superior conversational prowess.

2 Related Work & Contributions

DRL-based dialogue generation is a relatively new
research paradigm that is most relevant to our
work. For task-specific dialogue (Su et al., 2016;
Zhao and Eskenazi, 2016; Cuayéhuitl et al., 2016;
Williams and Zweig, 2016; Li et al., 2017b,c; Peng
et al., 2017), the reward function is usually based
on task completion rate, and thus is easy to define.
For the much harder problem of open-domain dia-
logue generation (Li et al., 2016e; Yu et al., 2016;
Weston, 2016), hand-crafted reward functions are
used to capture desirable conversation properties.
Li et al. (2016d) propose DRL-based diversity-
promoting Beam Search (Koehn et al., 2003) for
response generation.

Very recently, new approaches have been pro-

"The user has the option to provide longer feedback.

Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017), pages 78-83,
Vancouver, Canada, August 3-4, 2017. (©2017 Association for Computational Linguistics



posed to incorporate online human feedback into
neural conversation models (Li et al., 2016¢; Abel
etal., 2017; Lietal., 2017a). Our work falls in this
line of research, and is distinguished from existing
approaches in the following key ways.

1. We use online deep active learning as a form
of reinforcement in a novel way, which elim-
inates the need for hand-crafted reward crite-
ria. We use a diversity-promoting decoding
heuristic (Vijayakumar et al., 2016) to facili-
tate this process.

Unlike existing CAs, our model can be tuned
for one-shot learning. It also eliminates the
need to explicitly incorporate coherence,
relevance or interestingness in the responses.

3 Model Overview

The architectural backbone of our model is the
Seq2Seq framework consisting of one encoder-
decoder layer, each containing 300 LSTM units.
The end-to-end model training consists of offline
supervised learning (SL) with mini-batches of 10,
followed by online active learning (AL).

3.1 Offline Two-Phase Supervised Learning

To establish an offline baseline, we train our
network sequentially on two datasets, one for
generic dialogue, and the other specially curated
for short-text conversation.

Phase 1: We use the Cornell Movie Dialogs Cor-
pus (Danescu-Niculescu-Mizil and Lee, 2011),
consisting of 300K message-response pairs. Each
pair is treated as an input and target sequence dur-
ing training with the joint cross-entropy (XENT)
loss function, which maximizes the likelihood of
generating the target sequence given its input.

Phase 2: Phase 1 enables our CA to learn the
language syntax and semantics reasonably well,
but it has difficulty carrying out short-text conver-
sations that are remarkably different from movie
conversations. To combat this issue, we curate
a dataset from JabberWacky’s chatlogs” available
online. The network is initialized with the weights
obtained in the first phase, and then trained on the

Zhttp://www.jabberwacky.com/j2conversations.  Jabber-
Wacky is an in-browser, open-domain, retrieval-based bot.
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Algorithm 1 Online Active Learning

1: procedure HAMMINGDBS(TEXT)

2 r = emptyList(size = K);,

3: fort=1to T do

4: r[1][t] = model.forward(text, r[1][1,...,t — 1]);

5: fori = 2to K do /I K = 5 in our setting

6 augmentedProbs = model.forward(t, fext, r[i])
+A(hammingDist(r[i], r[1, ..., i — 1]));

7: rli][t] = top1(augmentedProbs);

8: return r;

9: procedure ONLINEAL()

10: Ir — 0.001, // initial learningRate for Adam

11: while true do

12: usrMsg «— io.read();

13: responses <— HammingDBS(usrMsg);

14: io.write(responses);

15: feedback «— io.read();

16: botMsg < responses[feedback] OR feedback;

17: pred,xntLoss < model.forwrd(usrMsg,botMsg);

18: model.backward(pred, botMsg, xentLoss);

19: model.updateParameters(Adam(/r));

JabberWacky dataset (8K pairs). Through this ad-
ditional SL phase of fine-tuning on a small dataset,
we get an improved baseline for open-domain di-
alogue (Table 1, Figure 2a).

3.2 Online Active Learning

After offline SL, our CA is equipped with the ba-
sic conversational ability, but its responses are still
short and dull. To tackle this issue, we initiate
an online AL process where our model interacts
with real users and learns incrementally from their
feedback at each turn of dialogue.

The CA—human interaction for online AL is set
up as follows (pseudocode in Algorithm 1, exam-
ple interaction in Figure 1).

1. The user sends a message u; at time step .

2. CA generates K responses ¢; 1, C; 2, ..., Ci K
using hamming-diverse Beam Search. These
are displayed to the user in order of decreas-

ing generation likelihood.

. The user provides feedback by selecting one
of the K responses as the ‘best’ one or sug-
gesting a (K +1)’th response, denoted by ¢; ;.
The selection criterion is subjective and en-
tirely up to the user.

. The message-response pair (u;, ¢} ;) is propa-
gated through the network using XENT loss,
with a learning rate optimized for one-shot
learning.

*

. The user responds to ¢;; with a message
ui+1, and the process repeats.



Heuristic Response Generation: We use the re-
cently proposed Diverse Beam Search (DBS) al-
gorithm (Vijayakumar et al., 2016) to generate the
K CA responses at each turn in the dialogue. DBS
has been shown to outperform BS and other di-
verse decoding techniques on several NLP tasks,
including image captioning, machine translation
and visual question generation. DBS incorporates
diversity between the beams by maximizing an ob-
jective that consists of a standard sequence like-
lihood term and a dissimilarity metric between
the beams. We use the hamming diversity met-
ric for decoding at each time step, which penal-
izes the selection of words that have already been
chosen in other beams (Algorithm 1). In partic-
ular, the weight A\ associated with this metric is
tuned to aggressively promote diversity between
the first tokens of each of the K generated se-
quences, thereby avoiding similar beams like 7
don’t know and I really don’t know. We refer the
reader to the original paper by Vijayakumar et al.
for the complete DBS algorithm and derivation. K
is a tunable hyper-parameter; we used K = 5 in
all our experiments, based on our observation that
a smaller response set usually misses out a good
contender, and more than five responses become
too cumbersome for the user to read at each turn.

It is possible that displaying the K responses
in decreasing order of generation likelihood in-
troduces a bias to the user’s response, since users
typically prefer to pick items located at the top of
the screen. If this is a cause for concern for an ap-
plication, the problem can be resolved simply by
tweaking Algorithm 1 such that the K responses
are displayed to the user in a random order. In our
experiments, we assume that the users are unbi-
ased and do not take into consideration the display
order or the generation likelihood of the responses.

One-shot Learning: We control how quickly the
model learns from user feedback by tuning the pa-
rameter ‘initial learning rate’ (Ir in Algorithm 1)
of Adam, the stochastic optimizer (Kingma and
Ba, 2014). An appropriately high [r results in one-
shot learning, where the user’s feedback immedi-
ately becomes the model’s most likely prediction
for that prompt. This scenario is depicted in Figure
1. A low Ir leads to smaller gradient descent steps,
so the model requires several ‘nudges’ to adapt to
each new data point. We experiment with different
Ir values to determine a suitable value (Figure 2b).
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human:
bot:
bot:
bot:

I don’t want to work today.
No, you’ve just got to be quick.
I wish i could robot.

Ok i lie.

bot: Aww :).

bot: Why not?

feedback: 5

human: I just want to lie in my bed and have pizza.
bot: Good idea.

bot: Does he...

bot: I can’t do that again!

bot: Ok.

bot: Why not?

feedback: Good idea, may I Jjoin you?
human: I don’t want to work today.
bot: Why not?

bot: Ok.

bot: I wish I could.

bot: No, you’ve just got to be quick.
bot: Aww :).

feedback:

human: I just want to lie in bed and have pizza.
bot: Good idea, may I join you?

bot: I can’t do that again!

bot: Good idea.

Ok.

Does he?

Figure 1: An example human-CA interaction.

4 Experimental Evaluation

We evaluate our model via qualitative comparison
with offline SL, as well as quantitative evaluation
on four axes: syntactical coherence, relevance to
prompts, interestingness and user engagement.

4.1 Quantitative Evaluation

We begin by presenting the experimental results
of the quantitative evaluation our CA’s conver-
sational abilities when trained via one-phase SL,
two-phase SL and online AL (denoted by SLI,
SL2 and SL2+0AL respectively).

We first asked a human trainer to actively train
SL2+0AL using 200 prompts of his choice. We
then created a test set of 100 prompts by randomly
choosing 100 of the 200 training prompts and lin-
guistically rephrasing each of them to convey the
same semantics. For instance, the AL training
prompts ‘How’s it going?’, ‘I hate you’ and ‘What
are your favorite pizza toppings?’ were altered
to the following test prompts: ‘How are you do-
ing?’, ‘I don’t like you!” and ‘What do you like
on your pizza?’. Next, we recorded SL1’s, SL2’s
and SL24+0AL’s responses to these test prompts.
Finally, we asked five human judges (not includ-
ing the human trainer) to subjectively evaluate the
responses of the three models on the test set. The
evaluation of each response was done on four axes:
syntactical coherence, relevance to the prompt, in-
terestingness and user engagement®. Each judge

3We say that a CA response is engaging if it prompts the
user to continue the conversations, e.g. by asking a question.



Human Prompt

SL1 Response

SL2 Response

SL2+0AL Response

Hello my friend.

I don’t know.

Why did Donald Trump win?

Tell me something I don’t know.
You’re not making any sense at all.
Do you have any kids?

Life can be very cruel sometimes.
Do you believe in life after death?

You're an idiot!

I think bots are sweeter than humans.

No.

‘We’ll have to pick up a copy.
What'’s the difference?

He just likes it up!

I'll tell you, it is.

I just want to tell you something.

No.
That I’ve never been to it.
No.

1 know, but...

How old are you?

You are a good person.
About?

You are!

Ok, so how are you.
No, I'm thinking.

I have no!

It takes two to know two.

Do you want the long answer?

Yes I do.

Hehe, yes, beautiful.

Everyone is same on a basic chemical level.
Why did you suggest it?

Wouldn’t you like to know, fickle human?

If you were intelligent you would already know.
On the contrary, I am trying to educate you.
None that are really close to me.

It takes two to know two.

Yes, do you?

Aren’t you polite.

Table 1: Comparing CA responses after 1-phase SL (SL1), 2-phase SL (SL2) & online AL (SL2+0AL).

Human Prompt

Cheerful CA

Gloomy CA

Rude/Sarcastic CA

How do you feel?

Amazing, and you?

I’m not in the mood.

That makes one of us.

I am very happy today.
Repeat after me: I am dumb.
Comfort me.

What’s up?

I have to go now.

Life is amazing, right?
Sweet!
There there, feel better.

It is a fine morning.

Have a good night.

You are right, T am.
All who compose must one day decompose.
Not well, to be honest.

Please don’t go.

Buzz off.

You want a piece of me?

You suck.

Boo hoo.

The date I went back in time to & killed your parents.

Yeah leave me alone.

Table 2: Customized moods. Each SL2+0AL model was trained via 100 interactions.
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Figure 2: 2a shows the average percentage success of the three models SL1, SL2 and SL2+0AL (trained
via 200 interactions) on 100 test prompts over four axes: syntactical coherence, response relevance,
interestingness and engagement. 2b, ¢ show percentage success of SL2+0AL on 100 test prompts over
the same four axes, as Adam’s learning rate varies and the number of training interactions changes.

was asked to assign each response an integer score
of 0 (label = bad) or 1 (label = good). Their av-
eraged scores for the three models, SL.1, SL2 and
SL2+0AL, are shown in Figure 2a. We see that
SL2+0AL outperforms the other models on three
of the four axes by 14-21%.

Next, we asked the human trainer to train
SL2+0AL with the same 200 prompts and re-
sponses for different values of the initial learn-
ing rate for Adam (/r in Algorithm 1). We then
asked the five human judges to subjectively rate

each model’s syntactical coherence, response rele-
vance, interestingness and user engagement. Each
model’s percentage success on the test prompts
was recorded on four axes. The averaged scores
are given in Figure 2b. We see that the response
quality drops significantly for higher values of
learning rate. This is due to the instability in the
parameters induced by a high learning value asso-
ciated with new data, causing the model to forget
what it learned previously. Our experiments sug-
gest that a learning rate of 0.005 strikes the right



balance between stability and one-shot learning.

Finally, we asked the human trainer to train
SL2+0AL with [r = 0.005 and different num-
ber of training interactions. The results in Fig-
ure 2c confirm that the model improves slowly as
it continues to converse with humans. This is an
appropriate reflection of how humans learn lan-
guage: gradually but effectively. Although the
curves seem to plateau after 300 training interac-
tions and suggest that the learning has stopped,
this is not the case. The gradient is small but non-
zero, which is an expected behavior of reinforce-
ment learning algorithms in general.

4.2 Qualitative Comparison

We illustrate the qualitative differences between
the responses generated by SL1, SL2 and
SL2+0AL. Table 1 shows results on a small subset
of the 100 test prompts. We see that SL2 generates
more relevant and appropriate responses than SL1
in many cases. This illustrates that a small short-
text conversational dataset is a useful fine-tuning
add-on to a large and generic dialogue dataset
for offline Seq2Seq training. We also see that
SL2+0AL generates more interesting, relevant and
engaging responses than SL2. These results imply
that the model learns to make connections between
semantically similar prompts that are syntactically
different. While this may be a slow process (span-
ning thousands of interactions), it effectively em-
ulates the way humans learn a new language.
Table 2 illustrates how SL2+0AL can be trained
to adopt a wide variety of moods and conver-
sational styles. Here, we trained three copies
of SL2 separately to adopt three different emo-
tional personas: cheerful, gloomy and rude. Each
model underwent 100 training interactions with
one human trainer, who was instructed to adopt
each of the four conversation styles while train-
ing the SL2+0AL model. The test prompts shown
in Table 2 were syntactic variations of the train-
ing prompts, as before. The results illustrate that
SL2+0AL was able to modify the mood of its re-
sponses appropriately, based on the way it was
trained. Similar experiments can be done to create
agents with customized backgrounds and charac-
ters, akin to Li et al.’s persona-based CA (2016b).

5 Conclusion & Future Work

We have developed an end-to-end neural model
for open-domain dialogue generation. Our model
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augments the Seq2Seq framework with online
Deep Active Learning to overcome some of its
known short-comings with respect to dialogue
generation. Experiments show that the model pro-
motes semantically coherent, relevant, and inter-
esting responses and can be trained to adopt di-
verse moods, personas and conversation styles.

In the future, we will explore context-sensitive
active learning for encoder-decoder conversation
models. We will also investigate whether existing
Affective Computing techniques (e.g. (Asghar and
Hoey, 2015)) can be leveraged to develop emo-
tionally cognizant neural conversational agents.
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Abstract

WordNet has facilitated important re-
search in natural language processing but
its usefulness is somewhat limited by its
relatively small lexical coverage. The
Paraphrase Database (PPDB) covers 650
times more words, but lacks the semantic
structure of WordNet that would make it
more directly useful for downstream tasks.
We present a method for mapping words
from PPDB to WordNet synsets with 89%
accuracy. The mapping also lays impor-
tant groundwork for incorporating Word-
Net’s relations into PPDB so as to increase
its utility for semantic reasoning in appli-
cations.

1 Introduction

WordNet (Miller, 1995; Fellbaum, 1998) is one of
the most important resources for natural language
processing research. Despite its utility, Word-
Net! is manually compiled and therefore relatively
small. It contains roughly 155k words, which does
not approach web scale, and very few informal
or colloquial words, domain-specific terms, new
word uses, or named entities. Researchers have
compiled several larger, automatically-generated
thesaurus-like resources (Lin and Pantel, 2001;
Dolan and Brockett, 2005; Navigli and Ponzetto,
2012; Vila et al.,, 2015). One of these is the
Paraphrase Database (PPDB) (Ganitkevitch et al.,
2013; Pavlick et al., 2015b). With over 100 million
paraphrase pairs, PPDB dwarfs WordNet in size
but it lacks WordNet’s semantic structure. Para-
phrases for a given word are indistinguishable by
sense, and PPDB’s only inherent semantic rela-
tional information is predicted entailment relations
between word types (Pavlick et al., 2015a). Sev-
eral earlier studies attempted to incorporate se-

'In this work we refer specifically to WordNet version 3.0
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RULE-PRESCRIPT: imperative*, demand*, duty*, re-
quest, gun, decree, ranking

RULE-REGULATION: constraint*, limit*, derogation*,
notion

RULE-FORMULA: method*, standard*, plan*, proceed-
ing

RULE-LINGUISTIC RULE: notion

Table 1: Example of our model’s top-ranked para-
phrases for three WordNet synsets for rule (n).
Starred paraphrases have a predicted likelihood of
attachment of at least 95%; others have predicted
likelihood of at least 50%. Bold text indicates
paraphrases that match the correct sense of rule.

mantic awareness into PPDB, either by clustering
its paraphrases by word sense (Apidianaki et al.,
2014; Cocos and Callison-Burch, 2016) or choos-
ing appropriate PPDB paraphrases for a given con-
text (Apidianaki, 2016; Cocos et al., 2017). In
this work, we aim to marry the rich semantic
knowledge in WordNet with the massive scale of
PPDB by predicting WordNet synset membership
for PPDB paraphrases that do not appear in Word-
Net. Our goal is to increase the lexical coverage
of WordNet and incorporate some of the rich rela-
tional information from WordNet into PPDB. Ta-
ble 1 shows our model’s top-ranked outputs map-
ping PPDB paraphrases for the word rule onto
their corresponding WordNet synsets.

Our overall objective in this work is to map
PPDB paraphrases for a target word to the Word-
Net synsets of the target. This work has two
parts. In the first part (Section 4), we train
and evaluate a binary lemma-synset member-
ship classifier. The training and evaluation data
comes from lemma-synset pairs with known class
(member/non-member) from WordNet. In the
second part (Section 5), we predict membership
for lemma-synset pairs where the lemma appears
in PPDB, but not in WordNet, using the model
trained in part one.
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2 Related Work

There has been considerable research directed at
expanding WordNet’s coverage either by integrat-
ing WordNet with additional semantic resources,
as in Navigli and Ponzetto (2012), or by automat-
ically adding new words and senses. In the sec-
ond case, there have been several efforts specif-
ically focused on hyponym/hypernym detection
and attachment (Snow et al., 2006; Shwartz et al.,
2016). There is also previous work aimed at
adding semantic structure to PPDB. Cocos and
Callison-Burch (2016) clustered paraphrases by
word sense, effectively forming synsets within
PPDB. By mapping individual paraphrases to
WordNet synsets, our work could be used in co-
ordination with these previous results in order to
extend WordNet relations to the automatically-
induced PPDB sense clusters.

3 WordNet and PPDB Structure

The core concept in WordNet is the synonym set,
or synset — a set of words meaning the same thing.
Since words can be polysemous, a given lemma
may belong to multiple synsets corresponding to
its different senses. WordNet also defines rela-
tionships between synsets, such as hypernymy, hy-
ponymy, and meronymy. In the rest of the pa-
per, we will use S(w)) to denote the set of Word-
Net synsets containing word w,,, where the sub-
script p denotes the part of speech. Each synset
s, € S(wp) is a set containing w, as well as
its synonyms for the corresponding sense. PPDB
also has a graph structure, where nodes are words,
and edges connect mutual paraphrases. We will
use PPDB(w,) to denote the set of PPDB para-
phrases connected to target word wy,.

4 Predicting Synset Membership

Our objective is to map paraphrases for a target
word, ¢, to the WordNet synsets of the target. For
a given target word in a vocabulary, we make a
binary synset-attachment prediction between each
of t’s paraphrases, w, € PPDB(t), and each of
t's synsets, s, € S(t). We predict the likelihood
of a word wy, belonging to synset s;, on the basis
of multiple features describing their relationship.
We construct features from four primary types of
information.

PPDB 2.0 Score The PPDB 2.0 Score is a su-
pervised metric trained to estimate the strength of
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the paraphrase relationship between pairs of words
connected in PPDB (Pavlick et al., 2015b). Scores
range roughly from O to 5, with 5 indicating a
strong paraphrase relationship. We compute sev-
eral features for predicting whether a word w), be-
longs to synset s;, as follows. We call the set of
all lemmas belonging to s;, and any of its hyper-
nym or hyponym synsets the extended synset s; L
We calculate features that correspond to the aver-
age and maximum PPDB scores bewteen w,, and

lemmas in s;{ &

Tppdb.maz = Max PPDBScore(wp, w')
w’Es;ﬂH

Zw,esg—i PPDBScore(wp, w')

Lppdb.avg | S;ri|

Distributional Similarity Our distributional sim-
ilarity feature encodes the extent to which the
word and lemmas from the synset tend to appear
within similar contexts. Word embeddings are
real-valued vector representations of words that
capture contextual information from a large cor-
pus. Comparing the embeddings of two words is
a common method for estimating their semantic
similarity and relatedness. Embeddings can also
be constructed to represent word senses (Iacobacci
et al., 2015; Flekova and Gurevych, 2016; Jauhar
et al., 2015; Ettinger et al., 2016). Camacho-
Collados et al. (2016) developed compositional
vector representations of WordNet noun senses —
called NASARI embedded vectors — that are com-
puted as the weighted average of the embeddings
for words in each synset. They share the same
embedding space as a publicly available? set of
300-dimensional word2vec embeddings cover-
ing 300 million words (hereafter referred to as the
word2vec embeddings) (Mikolov et al., 2013a,b).
We calculate a distributional similarity feature for
each word-synset pair by simply taking the co-
sine similarity between the word’s word2vec vec-
tor and the synset’s NASARI vector:

Tdistrib — COS (UNASARI (3;) y Vword2vec (wp))

where vy AsArr and Vyord2vec denote the target
word and synset embeddings respectively. Since
NASARI covers only nouns, and only 80% of
the noun synsets for our target vocabulary are in
NASARI, we construct weighted vector represen-
tations for the remaining 20% of noun synsets and

*https://code.google.com/archive/p/word2vec/



all non-noun synsets as follows. We take the vec-
tor representation for each synset not in NASARI
to be the weighted average of the word2vec em-
beddings of the synset’s lemmas, where weights
are determined by the PPDB2.0 Score between the
lemma and the target word, if it exists, or 1.0 if it
does not:

Zzes; PPDBScore(t,l) - vorazvec(l)

Zzes; PPDBScore(t, 1)

1)(5;) =

Lesk Similarity Among the information con-
tained in WordNet for each synset is its definition,
or gloss. The simplified Lesk algorithm (Vasilescu
et al., 2004) identifies the most likely sense of
a target word in context by measuring the over-
lap between the given context and the definition
of each target sense. We use a slightly modi-
fied version of the algorithm to compute features
that measure the overlap between the PPDB para-
phrases for the target and the gloss of a synset.
For calculating these Lesk-based features, we find
synset glosses from WordNet 3.0 and from Babel-
Net v3.0 (Navigli and Ponzetto, 2012). First, we
find D, the set of content words of the gloss for
synset s;, by taking all nouns, verbs, adjectives,
and adverbs that appear within the gloss. In cases
where more than one gloss is available, we take
D to be the set of all content words in all glosses.
We also calculate an extended version of each fea-
ture, in which we take D to be the set of content
words, plus the PPDB paraphrases for each con-
tent word. Next, we calculate features that mea-
sure the relationship between the paraphrase w),
and the words in D in terms of PPDB2.0 Scores.
These features include the maximum PPDB score
between the paraphrase and any word in D, the
average score over all words in D, the percent of
words in D that are connected to the paraphrase in
PPDB, and the count of words in D that are con-
nected to the paraphrase in PPDB:

Tlesk.mas = MAX PPDBScore(wp,d)
> aep PPDBScore(wy,d)
|D|
Ziesk.cnt = |{d € D : PPDBScore(wp,d) > 0}

|{d € D : PPDBScore(wp,d) > 0}
1D

Tlesk.avg —

Tlesk.pct —

Lexical Substitutability The fourth feature type
that we compute to predict whether word w,, be-
longs to synset s]i is based on the substitutability of
wp for instances of s, in context. To compute this
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feature we measure lexical substitutability using
a simple but high-performing vector space model,
AddCos (Melamud et al., 2015). The AddCos
method quantifies the fit of substitute word s for
target word t in context C' by measuring the se-
mantic similarity of the substitute to the target, and
the similarity of the substitute to the context:
_|Cl-cos(s,t) + 3 . cos(s, )

AddCos(s,t,C) = 30|

The vectors s and ¢ are word embeddings of the
substitute and target generated by the skip-gram
with negative sampling model (Mikolov et al.,
2013b,a). The context C' is the set of words ap-
pearing within a fixed-width window of the tar-
get ¢ in a sentence (we use a window of 2), and
the embeddings c are context embeddings gener-
ated by skip-gram. In our implementation, we
train 300-dimensional word and context embed-
dings over the 4B words in the Annotated Giga-
word (AGiga) corpus (Napoles et al., 2012) us-
ing the gensim word2vec package (Mikolov et al.,
2013b,a; Rehdfek and Sojka, 2010). 3

To compute the lexical substitutability score be-
tween a word w), and synset sfo, we first retriev¢
example sentences e € E' containing ¢ in sense s,
from BabelNet v3.0 (Navigli and Ponzetto, 2012).
Then, for each example e, we compute the Ad-
dCos lexical substitutability between w), and the
target word in context C.. We compute two types
of this feature: The average AddCos score over all
synset examples, and the maximum AddCos score
over all synset examples.

Laddcos.max = maerEAddCOS(wpy t, Ce)

Laddcos.avg = avgeEEAddCOS(wpa L, Ce)

Derived Features For each paraphrase, we also
compute a set of derived features using the soft-
max and logodds functions over all synsets with
which that paraphrase is paired. This is to en-
code the relative strength of association with each
synset as compared to the others.

For a given feature z, calculated between
lemma w,, and synset s;'), the derived versions of
the feature are calculated as:

ez*(wpasi))

Ty, < (wposh)
ZS%ES(H}I)) e irtp
3The word2vec training parameters we use are a context
window of size 3, learning rate alpha from 0.025 to 0.0001,
minimum word count 100, sampling parameter le~*, 10 neg-
ative samples per target word, and 5 training epochs.



Cross-Validation Cross-Validation-LexSplit Test
Prec. | Rec. | F1 Acc. || Prec. | Rec. | F1 Acc. || Prec. | Rec. | F1 Acc.
Baseline: All negative attachments | O 0.854 | 0 0.854 || O 0.854 | 0 0.854 || 0 0.858 | 0 0.858
Baseline: PPDB2.0 Score Match | 0.536 | 0.419 | 0.471 | 0.862 | 0.536 | 0.419 | 0.471 | 0.862 || 0.268 | 0.718 | 0.390 | 0.681
~ Gaussian Naive Bayes (All Feat.) | 0.528 | 0.369 | 0.372 | 0.800 | 0.527 | 0.310 | 0.352'| 0.825 || 0.496 | 0.282 | 0.359 | 0.858
Gaussian Naive Bayes (Sel. Feat.) | 0.605 | 0.600 | 0.600 | 0.883 | 0.606 | 0.572 | 0.581 | 0.882 || 0.622 | 0.558 | 0.588 | 0.889

Table 2: Precision, recall, F1, and accuracy results over the training set (normal 10-fold Cross-Validation,
and lexical split 20-fold Cross-Validation-LexSplit) and test set for predicting paraphrase-synset attach-

ment.

2 (wpy 5h) + @

In -
ZS{;ES(UIP)J?SJ' (l‘* (wpv 5?’) + a)

xl*og()dds (wp: 5;) =

Model Training We train a binary classification
model that takes lemma-synset pairs as input, and
predicts whether the lemma belongs in the synset.
We train the model by generating features for a set
of lemma-synset pairs from WordNet for which
we know the correct classification. We evalu-
ate whether the resulting model correctly finds
lemma-synset pairs that belong together.

Our target vocabulary comes from the SensE-
val3 English Lexical Sample Task data (Mihal-
cea et al., 2004) which contains sentences corre-
sponding to 57 noun, verb, and adjective lemmas.
Each sentence may contain a different form of the
lemma (i.e. different in number or tense), and
PPDB paraphrases vary depending on the form.
So we take the set of all forms of all lemmas (251
word types in total) as our target vocabulary. To
generate pairs for training and evaluation, for each
of the 251 targets w,,, we find the lemmas in the in-
tersection of w,,’s synsets — S(w,) — and its para-
phrases — PPDB(w,). We call the set of lem-
mas in the intersection L(w,). Then, we take the
lemma-synset pairs in L(w,) x S(w)) as instances
for training and evaluation. The total number of
resulting lemma-synset pairs is 7459. We ran-
domly divide these into 80% training and 20% test
pairs.

We then generate all variations of each of the
four feature types for the lemma-synset pairs in
our training and test sets. In the case of positive
synset-lemma pairs — i.e. those pairs for which
the lemma actually belongs to the WordNet synset
— we exclude the lemma from the synset before
calculating the PPDB Score and distributional fea-
tures.

Finally, we train a Gaussian Naive Bayes
(GNB) classification model over the training data.
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GNB is advantageous for our setting, as 10% per-
cent of our instances have missing data (e.g. in
the case where a synset does not have an ex-
ample). For feature selection, we use two ver-
sions of cross-validation. The first is standard 10-
fold Cross-Validation. In order to estimate how
well our model will generalize to unseen lem-
mas, we also experiment with a lexical split tech-
nique described in Roller and Erk (2016) (Cross-
Validation-LexSplit). This method ensures that for
each cross-validation fold, none of the lemmas in
that fold’s validation lemma-synset pairs are seen
in the training split. Specifically, for each split we
randomly select 5% of training pairs for validation
and take the remainder of the training set that does
not share a lemma with the validation set as that
fold’s training instances. As a result, the valida-
tion set size remains constant for each fold, but
the training set sizes may vary between folds.

We train two versions of the model. The first
(All Features) uses all computed features. The sec-
ond (Selected Features) includes features selected
using cross validation (the selected features were
the same using standard and lexical split cross-
validation). We select one feature of each type
(PPDB Score, distributional, Lesk, and lexical
substitutability) whose combination maximizes
cross-validation F1 score. The selected features
are Tiesk.cnt (non—extended), T distrib> Laddcos.max>
and so ftmax(Zppdb.maz)-

Model Evaluation We report results of the model
using all features, and the results of the best model
achieved after feature selection (Table 2). In
each case we give both the Cross-Validation and
Cross-Validation-LexSplit performances, and per-
formance on the held-out test set. We compare
our model to two simple baselines. The first pre-
dicts all negative attachments, which yields an ac-
curacy of 85.8% on the test set (with F1 of 0).
The second baseline maps each paraphrase to the
synset of ¢ with which it has the highest-scoring



Precision-Recall Curve for Lemma-Synset Attachment
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Figure 1:  Precision-Recall curve for
paraphrase-synset attachment classifier.

our

PPDB feature (zppdp.mas) and yields an accuracy
of 68.1% on the test set. In comparison, our GNB
model with selected features yields an accuracy
of over 88% on the cross-validation and test sets.
Both cross-validation and test accuracies are sig-
nificantly higher than baselines (based on McNe-
mar’s test, p < .001).

Ablated Feature Type ‘ Change in Cross-Val. F1

PPDB 0.042
~Lexical Substitution | 0.031
Distributional [ 0009
Lesk -0.092
Table 3: Absolute decrease in mean cross-

validation F1 with different feature types ablated.
Higher numbers indicate greater feature impor-
tance.

In order to interpret the importance of each feature
type, we also run an ablation experiment where
we train our GNB model with all features except
those from a particular type (Table 3). We find that
removing the PPDB features leads to the greatest
drop in cross-validation F1, indicating that these
are the most important for our classifier. Ablating
all Lesk features improved F1, but on further anal-
ysis we found that ablating only the derived Lesk
log-odds features led to a decrease in F1. This
suggests that the Lesk features in general are use-
ful for classification, but the derived Lesk log-odds
features are not.

5 Mapping PPDB to WordNet

Using our trained lemma-synset attachment clas-
sifier, we can now augment the lexical coverage of
WordNet with PPDB paraphrases. For the 251 tar-
gets in our original dataset, we retrieve the PPDB
paraphrases (with PPDB score greater than 2.5, to
ensure high-quality paraphrases) that do not be-
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long to any synset of the target or any of their di-
rect hypernyms or hyponyms. We then make an at-
tachment prediction between each remaining para-
phrase and each of the target’s WordNet synsets.
In total, we make 160,813 unique paraphrase-
synset attachment predictions for the 4821 unique
paraphrase lemmas and 458 unique synsets asso-
ciated with the targets in our dataset.

When we map PPDB to WordNet we can esti-
mate the expected precision and recall of attach-
ment decisions based on the results of our model
evaluation on the test set. If we would like to em-
phasize precision over recall in the predicted at-
tachments, we can adjust a threshold for attach-
ment corresponding to the predicted likelihood of
our model (as shown in Figure 1). At a threshold
of 50% predicted likelihood, our classifier predicts
attachment for 7032 (4.4%) of the paraphrase-
synset pairs with an estimated precision of 62.2%.
If we increase the threshold to 95% predicted like-
lihood, the number of predicted attachments is
3690 (2.3%) with an estimated precision of 66.3%.
With the publication of this paper we release our
PPDB to WordNet mapping results.

6 Conclusion

We have proposed a method for mapping PPDB
paraphrases to WordNet synsets. Our classifier
makes accurate paraphrase-synset attachment pre-
dictions using features that capture paraphrase and
distributional similarity, and the substitutability of
paraphrases and synsets in context. The results
show that the classifier can successfully add new
PPDB paraphrases to WordNet synsets and in-
crease their coverage.
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Abstract

This paper explores the automatic learning
of distributed representations of the tar-
get’s context for semantic frame labeling
with target-based neural model. We con-
strain the whole sentence as the model’s
input without feature extraction from the
sentence. This is different from many pre-
vious works in which local feature extrac-
tion of the targets is widely used. This
constraint makes the task harder, especial-
ly with long sentences, but also makes our
model easily applicable to a range of re-
sources and other similar tasks. We evalu-
ate our model on several resources and get
the state-of-the-art result on subtask 2 of
SemEval 2015 task 15. Finally, we extend
the task to word-sense disambiguation task
and we also achieve a strong result in com-
parison to state-of-the-art work.

1 Introduction and Related Work

Semantic frame labeling is the task of selecting
the correct frame for a given target based on it-
s semantic scene. A target is often called lexi-
cal unit which evokes the corresponding seman-
tic frame. The lexical unit can be a verb, ad-
jective or noun. Generally, a semantic frame de-
scribes how the lexical unit is used and specifies
its characteristic interactions. There are many se-
mantic frame resources, such as FrameNet (Bak-
er et al., 1998), VerbNet (Schuler, 2006), Prop-
Bank (Palmer et al., 2005) and Corpus Pattern
Analysis (CPA) frames (Hanks, 2012). However,
most existing frame resources are manually creat-
ed, which is time-consuming and expensive. Au-
tomatic semantic frame labeling can lead to the de-
velopment of a broader range of resources.

*The corresponding author
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Early works for semantic frame labeling main-
ly focus on FrameNet, PropBank and VerbNet re-
sources. But most of them focus only one re-
source and rely heavily on feature engineering
(e.g., Honnibal and Hawker 2005; Abend et al.
2008). Recently, there are some works on learn-
ing CPA frames based on a new semantic frame
resource, the Pattern Dictionary of English Verbs
(PDEV) (El Maarouf and Baisa, 2013; El Maarouf
et al., 2014). The above two works also rely on
features and both are only tested on 25 verbs. Most
works aim at constructing the context represen-
tations of the target with explicit rules based on
some basic features, e.g., Parts Of Speech (POS),
Named Entities (NE) and dependency relations re-
lated to the target. Currently, some deep learning
models have been applied with dependency fea-
tures. Hermann et al. (2014) used the direct de-
pendents and dependency path to extract the con-
text representation based on distributed word em-
beddings on English FrameNet. Inspired by the
work, Zhao et al. (2016) used a deep feed forward
neural network on Chinese FrameNet with similar
features. This is different from our goal where we
want to explore an appropriate deep learning ar-
chitecture without complex rules to construct the
context representations. Feng et al. (2016) used
a multilayer perceptrons (MLP) model on CPA
frames without extra feature extraction, but the
model is quite simple and has an input window
which is not convenient.

In this paper, we present a target-based neural
model which takes the whole target-specific sen-
tence as input and gives the semantic frame label
as output. Our goal is to make the model light
without explicit rules to construct context repre-
sentations and applicable to a range of resources.
To cope with variable-length sentences under our
constraint, a simple idea is to use recurrent neu-
ral networks (RNN) to process the sentences. But
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noise caused by irrelevant words in long sentences
may hinder learning. In fact, the arguments re-
lated to the target are usually distributed near the
target because when we write or speak, we will
focus mainly on arguments that are in the imme-
diate context of a core word. We use two RNNs
each of which processes one part of the sentence
split by the target. The model takes the target as
the center and we call it the target-based recurren-
t networks (TRNN). In fact, TRNN itself is not
novel enough, but according to our knowledge, no
related research has focused on this topic. We will
show that TRNN is quite suitable for learning the
context of the target.

2 Model Description

Correct CPA frame for current input:
[Phrasal verb. Human answers for Eventuality]
.

Output Layer ’ framel ) ( frame2 ) - ( frameN ‘

,,,,,,,, r

| Context representations |

R SRR

LSTM LSTM LSTM
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This procedure can force a minister to answer for what
his department intends to do

Figure 1: Architecture of TRNN with an example
sentence whose target word is in bold.

In our model we select long short-term memo-
ry (LSTM) networks, a type of RNN designed to
avoid the vanishing and exploding gradients. The
overall structure is illustrated Figure 1. w; is the
t-th word in the sentence the length of which is
T and target is the index of the target. x; is ob-
tained by mapping wy into a fixed vector through
well pre-trained word vectors. The model has t-
wo LSTMs each of which processes one part of
the sentence split by the target. The model can au-
tomatically learn the distributed representation of
target’s context from w with few manual design.

2.1 Context Representations

An introduction about LSTM can be found in the
work of Hochreiter and Schmidhuber (1997). The
parameters of LSTM are W, Wj, and b, where
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* stands for one of several internal gates. W, is
the matrix between the input vector x; and gates,
Wi is the matrix between the output h; of LSTM
and gates and b, is the bias vector on gates. The
formulas of LSTM are:

it = 0(Waiws + Whihi—1 + bi)

fo = o(Wasxe + Whphi—1 + by)

ct = ft © c—1 + i © tanh(Waewy + Whehi—1 + be)

0t = 0(Waott + Whohi—1 + bo)

ht = o¢ ® tanh(cy)

where o is the sigmoid function and © represents
the element-wise multiplication. %;, f; ¢; and oy
are the output of input gates, forget gates, cell s-
tates and output gates, respectively. In our model,
two LSTMs share the same parameters. At last,
the target’s context representations cr are added
by the outputs of two LSTMs:

cr = htargetfl + htaTget

The dimension of c¢r is decided by the number of
hidden units in LSTM, which is a hyper parameter
in our model, and is usually much lower than that
of one word vector. Here we make some intuition-
s behind the above formulas. The gradients from
last layer flow equally on the (target — 1)-th LST-
M box and the target-th LSTM box and then the
two flows go to both ends. As it is quite common
in deep learning models, the gradients usually be-
come ineffective as the depth of the flow increas-
es especially when the sentence is very long. The
gradients on words far from the target get less im-
pact than those near the target. As a whole, more
data are usually required to learn the arguments
far from the target than those near the target. If
the real arguments are distributed near the target,
this model will be suitable as its architecture is de-
signed to take care of the local context of the tar-
get.

2.2 Output Layer

We use Softmax layer as the output layer on the
context representations. The output layer com-
putes a probability distribution over the semantic
frame labels. During the training, the cost we min-
imize is the negative log likelihood of the model:

M
L=-Ylogp,
m=1

Here M is number of the training sentences, t,, is
the index of the correct frame label for the m-th
sentence and p is the probability.



3 Experiments

3.1 Datasets

We simply divide all the datasets in two types:
per-target and non per-target. Per-target seman-
tic frame resources define a different set of frame
labels for each target and we train one model for
each target; different targets may share some se-
mantic frame labels in non per-target resources
and we train a single model for such resources. We
use the Semlink project (Loper et al., 2007) to cre-
ate our datasets !. Semlink aims to link together
different lexical resources via a set of mappings.
We use its corpus which annotates FrameNet and
Propbank frames for the WSJ section of the Pen-
n Treebank. Another resource we use is PDEV 2
which is quite new and has CPA frame annotat-
ed examples on British National Corpus. All the
original instances are sentence-tokenized and the
punctuation was removed. The details of creating
the datasets are as follows:

e FrameNet: Non per-target type. We get
FrameNet annotated instances through Sem-
link. If one FrameNet frame label contains
more than 300 instances, we divide it propor-
tionately: 70%, 20% and 10%. Then we re-
spectively accumulate the three parts by each
frame label to create the training, test and val-
idation set.

e PropBank: Per-target type. The creation pro-
cess is same as FrameNet except that we fi-
nally get training, test and validation set for
each target and the cutoff is set to 70 instead
of 300.

e PDEV: Same as PropBank but with the cutoff
set to 100 instead of 70.

Since the performance of our model is almost
decided by the training data we empirically choose
the cutoff above to keep the instances of each label
enough. Summary statistics of the above datasets
are in Table 2.

3.2 Models and Training

We compare our model with the following base-
lines.:

! The current version of the Semlink project has some
problems to get the right position of targets in WSJ section
of Penn Treebank. Instead, we use annotations of PropBank
corpus, also annotated in WSJ section of Penn Treebank, to
index targets.

*http://pdev.org.uk/
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Sentences

Frame Names

In Moscow they kept asking us
things like why do you make
15 different corkscrews

Activityongoing

It said it has taken measures to
continue shipments during
the work stoppage.

Activityongoing

But the Army Corps of Engineers
expects the river level to
continue falling this month.

Processcontinue

The oil industry’s middling profits
could persist through the rest
of the year.

Processcontinue

Table 1: Non per-target examples. Frames are
from FrameNet and the target words are in bold.

FrameNet | PropBank PDEV
Per-target No 153 targets 407 targets
Train 41206 31212 (204) | 152218 (374)
Test 11762 8568 (56) 42328 (104)
Valid. 5871 4131 (27) 20350 (50)
Frame 33 443 (2.89) 2197 (5.39)
Words/sent. 23 23 12

Table 2: Summary statistics for the datasets. The
average numbers per target are shown in the paren-
theses for per-target resources.

o MF: The most frequent (MF) method selects
the most frequent semantic frame label seen
in training instances for each instance in the
test dataset. MF is actually a strong baseline
for per-target dataset because we observed
that most targets have one main frame label.

o Target-Only: For FrameNet dataset, we use
Target-Only method: if the target in the test
instance has a unique frame label in the train-
ing data we give this frame label to current
test instance; if the target has multiple frame
labels in the training data we select the most
frequent one in these labels; if the target is not
seen in the training data, we select the most
frequent label from the whole training data.
This baseline is especially for FrameNet be-
cause we observed that each frame label has a
set of targets but only a few targets have mul-
tiple frame labels. It may be easy to predict
the frame label for test instances only accord-
ing to the target.

o LSTM: The standard LSTM model.

o MaxEnt: The Maximum Entropy model. We
use the Stanford CoreNLP module * to ex-

*http://stanfordnlp.github.io/CoreNLP/



tract features for MaxEnt toolkit 4. All de-
pendents related to the target, their POS tags,
dependency relations, lemmas, NE tags and
the target itself will be extracted as features.

The number of the iterations for MaxEnt is decid-
ed by the validation set. For simplicity, we set
the learning rate to 1.0 for TRNN and LSTM. The
number of hidden units is tested on validation da-
ta with the values {35, 45, 55} for per-target re-
source and {80, 100, 120} for non per-target re-
source. We use the publicly available word2vec
vectors, a dimensionality of 300, that were trained
through the GloVe model (Pennington et al., 2014)
on Wikipedia and Gigaword. For words not ap-
peared in the vector model, their word vectors are
all set to zero vectors. We train these models by
stochastic gradient descent with minibatches. The
minibatch is set to 10 for per-target resource and
50 for non per-target resource. We keep the word
vectors static since no obvious improvement has
been observed. Training will stop when the zero-
one loss is zero over training data.

3.3 Results

The results of the above datasets are in Table 3.
Target-Only gets very high scores on FrameNet
dataset. FrameNet dataset has 55 targets which
has multiple frame labels in the training data and
these targets have 1981 instances in the test da-
ta. We get 0.769 F-score on these instances and
0.393 F-score on 64 unseen targets with 77 test
instances. This can be the extreme case that the
main feature for the correct frame is the target it-
self. Despite this simple fact, standard LSTM per-
forms very badly on FrameNet. The main reason
is that sentences in FrameNet dataset are too long
and standard LSTM can not learn well due to the
large number of irrelevant words that appear in
long sentences. To show this, we select the size
of truncation window for original FrameNet sen-
tences and we get the best size of 5 on validation
data with each 2 words surrounding the target. Fi-
nally, we get 0.958 F-score on FrameNet test data
which is still lower than TRNN on full sentences.
As for PropBank and PDEV dataset, we train one
model for each target so the final F-score is the av-
erage of all targets. However, the number of train-
ing instances per target is limited. TRNN will usu-
ally not perform well when it tries to learn some

*https://github.com/Izhang 10/maxent
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frames which consist of many different concept-
s and especially when the frame has a few train-
ing instances. Considering the sentence 4 of Table
4 as an example, it is difficult to TRNN to learn
what is *Activity’ in the correct frame because this
concept is huge. TRNN may need lots of data to
learn something related to this concept. Howev-
er, this correct frame only has 6 instances in our
training data. The second reason of TRNN’s fail-
ure is lack of knowledge due to unseen words in
test data. The sentence 1 of Table 4 shows TRNN
will make the right decision since we observe that
it has seen the word "cow’ in the training data and
knows this word belongs to the concept ’Animate
or Plant’ in the correct frame. But TRNN does
not know the word ’Elegans’ in sentence 3 so it
usually selects the most frequent frame seen in the
training data. However, in many cases, the unseen
words can be captured by well trained word em-
beddings as the sentence 2 shows where ’ducks’,
"chickens’ and "geese’ are all unseen words.

Models FrameNet | PropBank | PDEV
MF 0.38 0.78 0.61
Target-Only 0.911 - -
MaxEnt 0.829/125 0.874/30 0.704/10
LSTM 0.55/80 0.78/35 0.72/55
TRNN 0.962/100 | 0.887/35 | 0.794/55
Table 3: Results on several semantic frame

resources. The format of cell value is “F-
score/hidden unit” for TRNN and LSTM and "’F-
score/iteration” for MaxEnt toolkit.

3.4 CPA Experiment

Corpus Pattern Analysis (CPA) is a new technique
for identifying the main patterns in which a word
is used in text and is currently being used to build
the PDEV resource as we mentioned above. It is
also a shared task in SemEval-2015 task 15 (Baisa
et al., 2015). The task is divided into three sub-
tasks: CPA parsing, CPA clustering and CPA lex-
icography. We only introduce the first two relat-
ed subtasks. CPA parsing aims at identifying the
arguments of the target and tagging predefined se-
mantic meaning on them; CPA clustering clusters
the instances to obtain CPA frames based on the
result of CPA parsing. However, the first step re-
sults seem unpromising (Feng et al., 2015; Mill-
s and Levow, 2015; Elia, 2016) which will influ-
ence the process of obtaining CPA frames. Since
our model can be applied on sentence-level input
without feature extraction we can directly evaluate
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Sentences

Frame Prediction

True Frame

One of the farmer’s cows had died of BSE
raising fears of cross-infection...

Same with true frame

Animate or Plant dies

One of the farmer’s ducks|chickens|geese

had died of BSE raising fears of cross-infection...

Same with true frame

Animate or Plant dies

Elegans also in central America
die of damping off as a function of distance

Human dies ((Time Point)(Location)(Causation)
(at Number or at the age of or at birth or earlage))

Animate or Plant dies

Indeed, the MEC does not advise

Human 1 or Institution 1 advises Human 2

the use of any insecticidal shampoo for...

or Institution 2 to-infinitive

Human or Institution advises Activity

Table 4: Case study for CPA frames. The target words are in bold.

our model on CPA clustering. Unfortunately, the
datasets provided by CPA clustering is a per-target
resource for our model and the targets in train-
ing and test set are not the same. Since this task
is not limited to use extra resources, we use the
training set of FrameNet, a type of non per-target,
mentioned in section 3.1 to solve this problem.
The hyper parameters are the same as before. C-
PA clustering is evaluated by B-cubed F-score, a
metric for clustering problem, so we do not need
to convert the FrameNet frame label to CPA frame
label. The result is in Table 5. All the models
are supervised except for baseline and DULUTH.
Feng et al. (2016) used the MLP to classify fixed-
length local text of the target based on distribut-
ed word embeddings. But the representation of
the target’s context is simply constructed with con-
catenated word embeddings and the length of local
context has to be chosen manually. Besides, MLP
may fail to train or predict well when some key
words are out of its input window.

System B-cubed F-score
BOB90(Best in SemEval 2015) 0.741
SemEval 2015 baseline 0.588
DULUTH 0.525
Feng et al. (2016) 0.70
This paper 0.763

Table 5: Results on Microcheck dataset of CPA
clustering.

3.5 Word Sense Disambiguation Experiment

Finally, we choose Word Sense Disambiguation
(WSD) task to extend our experiment. As our
benchmark for WSD task, we choose English Lex-
ical Sample WSD tasks of SemEval-2007 task
17 (Pradhan et al., 2007). We use cross-validation
on the training set and we observe the model per-
forms better when we update the word vectors
which is different from the preceding experimen-
tal setup. The number of hidden units is set to 55.
The result is in Table 6. The rows from 4 to 6
come from Iacobacci et al. (2016). They inte-
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grate word embeddings into IMS (It Makes Sense)
system (Zhong and Ng, 2010) which uses support
vector machine as its classifier based on some s-
tandard WSD features and they get the best result;
they use an exponential decay function, also de-
signed to give more importance to close context, to
compute the word representation, but their method
need manually choose the window size of the tar-
get word and one parameter of their exponential
decay function. Both with word vectors only, our
model is comparable with the sixth row.

System F-score
Rank 1 system in SemEval 2007 | 0.887
Rank 2 system in SemEval 2007 | 0.869
IMS (2010) 0.879
IMS + word vectors (2016) 0.894
IMS + word vectors only (2016) 0.880
This paper 0.886
Table 6: Result on Lexical Sample task of

SemEval-2007 task 17

4 Conclusion

In this paper, we describe an end-to-end neural
model to target-specific semantic frame labeling.
Without explicit rule construction to fit for some
specific resources, our model can be easily applied
to a range of semantic frame resources and similar
tasks. In the future, non-English semantic frame
resources can be considered to extend the coverage
of our model and our model can integrate the best
features explored in the state-of-the-art work to
see how many improvements our model can make.
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Abstract

We study how different frame annota-
tions complement one another when learn-
ing continuous lexical semantics. We
learn the representations from a tensorized
skip-gram model that consistently en-
codes syntactic-semantic content better,
with multiple 10% gains over baselines.

1 Introduction

Consider “Bill” in Fig. 1: what is his involve-
ment with the words “would try,” and what does
this involvement mean? Word embeddings repre-
sent such meaning as points in a real-valued vec-
tor space (Deerwester et al., 1990; Mikolov et al.,
2013). These representations are often learned by
exploiting the frequency that the word cooccurs
with contexts, often within a user-defined window
(Harris, 1954; Turney and Pantel, 2010). When
built from large-scale sources, like Wikipedia or
web crawls, embeddings capture general charac-
teristics of words and allow for robust downstream
applications (Kim, 2014; Das et al., 2015).

Frame semantics generalize word meanings to
that of analyzing structured and interconnected la-
beled “concepts” and abstractions (Minsky, 1974;
Fillmore, 1976, 1982). These concepts, or roles,
implicitly encode expected properties of that word.
In a frame semantic analysis of Fig. 1, the segment
“would try” triggers the ATTEMPT frame, filling
the expected roles AGENT and GOAL with “Bill”
and “the same tactic,” respectively. While frame
semantics provide a structured form for analyzing
words with crisp, categorically-labeled concepts,
the encoded properties and expectations are im-
plicit. What does it mean to fill a frame’s role?

Semantic proto-role (SPR) theory, motivated by
Dowty (1991)’s thematic proto-role theory, offers
an answer to this. SPR replaces categorical roles
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AGENT [—[M]—x

ATTEMPT
She said Bill would try the same tactic again.

Figure 1: A simple frame analysis.

with judgements about multiple underlying prop-
erties about what is likely true of the entity fill-
ing the role. For example, SPR talks about how
likely it is for Bill to be a willing participant in the
ATTEMPT. The answer to this and other simple
judgments characterize Bill and his involvement.
Since SPR both captures the likelihood of certain
properties and characterizes roles as groupings of
properties, we can view SPR as representing a type
of continuous frame semantics.

We are interested in capturing these SPR-based
properties and expectations within word embed-
dings. We present a method that learns frame-
enriched embeddings from millions of documents
that have been semantically parsed with multiple
different frame analyzers (Ferraro et al., 2014).
Our method leverages Cotterell et al. (2017)’s
formulation of Mikolov et al. (2013)’s popular
skip-gram model as exponential family principal
component analysis (EPCA) and tensor factor-
ization. This paper’s primary contributions are:
(i) enriching learned word embeddings with mul-
tiple, automatically obtained frames from large,
disparate corpora; and (ii) demonstrating these
enriched embeddings better capture SPR-based
properties. In so doing, we also generalize Cot-
terell et al.’s method to arbitrary tensor dimen-
sions. This allows us to include an arbitrary
amount of semantic information when learning
embeddings. Our variable-size tensor factoriza-
tion code is available at https://github.com/

fmof/tensor-factorization.

Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017), pages 97-103,
Vancouver, Canada, August 3-4, 2017. (©2017 Association for Computational Linguistics



2 Frame Semantics and Proto-Roles

Frame semantics currently used in NLP have arich
history in linguistic literature. Fillmore (1976)’s
frames are based on a word’s context and prototyp-
ical concepts that an individual word evokes; they
intend to represent the meaning of lexical items by
mapping words to real world concepts and shared
experiences. Frame-based semantics have inspired
many semantic annotation schemata and datasets,
such as FrameNet (Baker et al., 1998), PropBank
(Palmer et al., 2005), and Verbnet (Schuler, 2005),
as well as composite resources (Hovy et al., 2006;
Palmer, 2009; Banarescu et al., 2012).1

Thematic Roles and Proto Roles These re-
sources map words to their meanings through
discrete/categorically labeled frames and roles;
sometimes, as in FrameNet, the roles can be very
descriptive (e.g., the DEGREE role for the AF-
FIRM_OR_DENY frame), while in other cases, as
in PropBank, the roles can be quite general (e.g.,
ARGO0). Regardless of the actual schema, the roles
are based on thematic roles, which map a predi-
cate’s arguments to a semantic representation that
makes various semantic distinctions among the ar-
guments (Dowty, 1989).2 Dowty (1991) claims
that thematic role distinctions are not atomic, i.e.,
they can be deconstructed and analyzed at a lower
level. Instead of many discrete thematic roles,
Dowty (1991) argues for proto-thematic roles, e.g.
PROTO-AGENT rather than AGENT, where dis-
tinctions in proto-roles are based on clusterings of
logical entailments. That is, PROTO-AGENTS of-
ten have certain properties in common, e.g., ma-
nipulating other objects or willingly participating
in an action; PROTO-PATIENTS are often changed
or affected by some action. By decomposing the
meaning of roles into properties or expectations
that can be reasoned about, proto-roles can be seen
as including a form of vector representation within
structured frame semantics.

3 Continuous Lexical Semantics

Word embeddings represent word meanings as el-
ements of a (real-valued) vector space (Deerwester
et al., 1990). Mikolov et al. (2013)’s word2vec
methods—skip-gram (SG) and continuous bag of

!See Petruck and de Melo (20 14) for detailed descriptions
on frame semantics’ contributions to applied NLP tasks.

>Thematic role theory is rich, and beyond this paper’s
scope (Whitehead, 1920; Davidson, 1967; Cresswell, 1973;
Kamp, 1979; Carlson, 1984).
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words (CBOW)—repopularized these methods.
We focus on SG, which predicts the context i
around a word j, with learned representations c;
and w, respectively, as p(contexts | word j) o
exp (c]w;) = exp (17(c; ® w;)), where © is the
Hadamard (pointwise) product. Traditionally, the
context words ¢ are those words within a small
window of j and are trained with negative sam-
pling (Goldberg and Levy, 2014).

3.1 Skip-Gram as Matrix Factorization

Levy and Goldberg (2014b), and subsequently
Keerthi et al. (2015), showed how vectors learned
under SG with the negative sampling are, under
certain conditions, the factorization of (shifted)
positive pointwise mutual information. Cotterell
et al. (2017) showed that SG is a form of ex-
ponential family PCA that factorizes the matrix
of word/context cooccurrence counts (rather than
shifted positive PMI values). With this interpre-
tation, they generalize SG from matrix to tensor
factorization, and provide a theoretical basis for
modeling higher-order SG (or additional context,
such as morphological features of words) within a
word embeddings framework.

Specifically, Cotterell et al. recast higher-order
SG as maximizing the log-likelihood

Z X;jx log p(context i | word j, feature k) (1)
ijk

= Z Xijk log

ijk

exp (1T(Ci Ow; © ak))
Yosexp(1T(cy ©@w; O ay))

,

where X;;; is a cooccurrence count 3-tensor of
words j, surrounding contexts ¢, and features k.

3.2 Skip-Gram as n-Tensor Factorization

When factorizing an n-dimensional tensor to in-
clude an arbitrary number of L annotations, we
replace feature k in Equation (1) and a;, in Equa-
tion (2) with each annotation type [ and vector o
included. X; ; becomes X; ;;, ;. representing
the number of times word j appeared in context ¢
with features /; through [;,. We maximize
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4 Experiments

Our end goal is to use multiple kinds of au-
tomatically obtained, ‘“in-the-wild” frame se-



mantic parses in order to improve the seman-
tic content—specifically SPR-type information—
within learned lexical embeddings. We utilize ma-
jority portions of the Concretely Annotated New
York Times and Wikipedia corpora from Ferraro
et al. (2014). These have been annotated with
three frame semantic parses: FrameNet from Das
et al. (2010), and both FrameNet and PropBank
from Wolfe et al. (2016). In total, we use nearly
five million frame-annotated documents.
Extracting Counts The baseline extraction we
consider is a standard sliding window: for each
word w; seen > T’ times, extract all words w; two
to the left and right of w;. These counts, forming a
matrix, are then used within standard word2vec.
We also follow Cotterell et al. (2017) and augment
the above with the signed number of tokens sepa-
rating w; and wyj, e.g., recording that w; appeared
two to the left of w;; these counts form a 3-tensor.
To turn semantic parses into tensor counts, we
first identify relevant information from the parses.
We consider all parses that are triggered by the tar-
get word w; (seen > T' times) and that have at
least one role filled by some word in the sentence.
We organize the extraction around roles and what
fills them. We extract every word w, that fills all
possible triggered frames; each of those frame and
role labels; and the distance between filler w, and
trigger w;. This process yields a 9-tensor X.2 Al-
though we always treat the trigger as the “origi-
nal” word (e.g., word j, with vector w;), later we
consider (1) what to include from X, (2) what to
predict (what to treat as the “context” word 7), and
(3) what to treat as auxiliary features.
Data Discussion The baseline extraction methods
result in roughly symmetric target and surround-
ing word counts. This is not the case for the frame
extraction. Our target words must trigger some
semantic parse, so our target words are actually
target triggers. However, the surrounding context
words are those words that fill semantic roles. As
shown in Table 1, there are an order-of-magnitude
fewer triggers than target words, but up to an
order-of-magnitude more surrounding words.
Implementation We generalize Levy and Gold-
berg (2014a)’s and Cotterell et al. (2017)’s code

3 Each record consists of the trigger, a role filler, the num-
ber of words between the trigger and filler, and the relevant
frame and roles from the three semantic parsers. Being au-
tomatically obtained, the parses are overlapping and incom-
plete; to properly form X, one can implicitly include special
(NO_FRAME) and (NO_ROLE) labels as needed.
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windowed frame
232 35.9 (triggers)
# target words 404 45.7 (triggers)
# surrounding 232 531 (role fillers)
words 404 2,305 (role fillers)

Table 1: Vocabulary sizes, in thousands, extracted from Fer-
raro et al. (2014)’s data with both the standard sliding context
window approach (§3) and the frame-based approach (§4).
Upper numbers (Roman) are for newswire; lower numbers
(italics) are Wikipedia. For both corpora, 800 total FrameNet
frame types and 5100 PropBank frame types are extracted.

to enable any arbitrary dimensional tensor fac-
torization, as described in §3.2. We learn 100-
dimensional embeddings for words that appear at
least 100 times from 15 negative samples.* The
implementation is available at https://github.
com/fmof/tensor-factorization.

Metric We evaluate our learned (trigger) embed-
dings w via QVEC (Tsvetkov et al., 2015). QVEC
uses canonical correlation analysis to measure the
Pearson correlation between w and a collection
of oracle lexical vectors o. These oracle vectors
are derived from a human-annotated resource. For
QVEC, higher is better: a higher score indicates w
more closely correlates (positively) with o.
Evaluating Semantic Content with SPR Mo-
tivated by Dowty (1991)’s proto-role theory,
Reisinger et al. (2015), with a subsequent expan-
sion by White et al. (2016), annotated thousands
of predicate-argument pairs (v, a) with (boolean)
applicability and (ordinal) likelihoods of well-
motivated semantic properties applying to/being
true of a.> These likelihood judgments, under
the SPR framework, are converted from a five-
point Likert scale to a 1-5 interval scale. Be-
cause the predicate-argument pairs were extracted
from previously annotated dependency trees, we
link each property with the dependency relation
joining v and a when forming the oracle vectors;
each component of an oracle vector 0, is the unity-
normalized sum of likelihood judgments for joint
property and grammatical relation, using the inter-
val responses when the property is applicable and
discarding non-applicable properties, i.e. treating
the response as 0. Thus, the combined 20 prop-
erties of Reisinger et al. (2015) and White et al.
(2016)—together with the four basic grammatical

*In preliminary experiments, this occurrence threshold
did not change the overall conclusions.

> We use the training portion of http:
//decomp.net/wp—content/uploads/2015/08/
UniversalDecompositionalSemantics.tar.gz.
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(b) Changes in SPR-QVEC for Wikipedia.

Figure 2: Effect of frame-extracted tensor counts on our SPR-QVEC evaulation. Deltas are shown as relative percent changes
vs. the word2vec baseline. The dashed line represents the 3-tensor word2vec method of Cotterell et al. (2017). Each
row represents an ablation model: sep means the prediction relies on the token separation distance between the frame and
role filler, fn—frame means the prediction uses FrameNet frames, fn—role means the prediction uses FrameNet roles, and
filler means the prediction uses the tokens filling the frame role. Read from top to bottom, additional contextual features
are denoted with a +. Note when £iller is used, we only predict PropBank roles.

relations nsubj, dobj, iobj and nsubjpass—result
in 80-dimensional oracle vectors.®

Predict Fillers or Roles? Since SPR judgments
are between predicates and arguments, we predict
the words filling the roles, and treat all other frame
information as auxiliary features. SPR annotations
were originally based off of (gold-standard) Prop-
Bank annotations, so we also train a model to pre-
dict PropBank frames and roles, thereby treating
role-filling text and all other frame information as
auxiliary features. In early experiments, we found
it beneficial to treat the FrameNet annotations ad-
ditively and not distinguish one system’s output
from another. Treating the annotations additively
serves as a type of collapsing operation. Although
X started as a 9-tensor, we only consider up to
6-tensors: trigger, role filler, token separation be-
tween the trigger and filler, PropBank frame and
role, FrameNet frame, and FrameNet role.
Results Fig. 2 shows the overall percent change
for SPR-QVEC from the filler and role predic-
tion models, on newswire (Fig. 2a) and Wikipedia
(Fig. 2b), across different ablation models. We
indicate additional contextual features being used
with a +: sep uses the token separation distance
between the frame and role filler, fn—-frame
uses FrameNet frames, fn—role uses FrameNet
roles, filler uses the tokens filling the frame

% The full cooccurrence among the properties and rela-
tions is relatively sparse. Nearly two thirds of all non-zero
oracle components are comprised of just fourteen properties,
and only the nsubj and dobj relations.

100

role, and none indicates no additional informa-
tion is used when predicting. The O line represents
a plain word2vec baseline and the dashed line
represents the 3-tensor baseline of Cotterell et al.
(2017). Both of these baselines are windowed:
they are restricted to a local context and cannot
take advantage of frames or any lexical signal that
can be derived from frames.

Overall, we notice that we obtain large improve-
ments from models trained on lexical signals that
have been derived from frame output (sep and
none), even if the model itself does not incorpo-
rate any frame labels. The embeddings that predict
the role filling lexical items (the green triangles)
correlate higher with SPR oracles than the em-
beddings that predict PropBank frames and roles
(red circles). Examining Fig. 2a, we see that both
model types outperform both the word2vec and
Cotterell et al. (2017) baselines in nearly all model
configurations and ablations. We see the highest
improvement when predicting role fillers given the
frame trigger and the number of tokens separating
the two (the green triangles in the sep rows).

Comparing Fig. 2a to Fig. 2b, we see newswire
is more amenable to predicting PropBank frames
and roles. We posit this is a type of out-of-
domain error, as the PropBank parser was trained
on newswire. We also find that newswire is over-
all more amenable to incorporating limited frame-
based features, particularly when predicting Prop-
Bank using lexical role fillers as part of the con-



anticipated
Filler | sep

anticipated
PropBank | sep

1 foresaw 6 pondered 1 anticipate 6 intimidated
2 figuring 7 kidded 2 anticipating 7 separating
3 alleviated 8 constituted 3 anticipates 8 separates
4 craved 9 uttering 4 stabbing 9 drag
5 jeopardized 10 forgiven 5 separate 10 guarantee
invented invented
Filler | sep PropBank | sep
1 pioneered 6 tolerated 1invent 6 aspire
2 scratch 7 resurrected 2 document 7 documenting
3 complemented 8 sweated 3 documented 8 aspires
4 competed 9 fancies 4 invents 9 inventing
5 consoled 10 concocted 5 documents 10 swinging
producing producing
Filler | sep PropBank | sep
1 containing 6 storing 1 produces 6 ridden
2 contains 7 reproduce 2 produce 7 improves
3 manufactures 8 store 3 produced 8 surround
4 contain 9 exhibiting 4 prized 9 surrounds
5 consume 10 furnish 5 originates 10 originating

Figure 3: K-Nearest Neighbors for three randomly sampled
trigger words, from two newswire models.

textual features. We hypothesize this is due to
the significantly increased vocabulary size of the
Wikipedia role fillers (c.f., Tab. 1). Note, how-
ever, that by using all available schema informa-
tion when predicting PropBank, we are able to
compensate for the increased vocabulary.

In Fig. 3 we display the ten nearest neighbors
for three randomly sampled trigger words accord-
ing to two of the highest performing newswire
models. They each condition on the trigger and the
role filler/trigger separation; these correspond to
the sep rows of Fig. 2a. The left column of Fig. 3
predicts the role filler, while the right column pre-
dicts PropBank annotations. We see that while
both models learn inflectional relations, this qual-
ity is prominent in the model that predicts Prop-
Bank information while the model predicting role
fillers learns more non-inflectional paraphrases.

5 Related Work

The recent popularity of word embeddings have
inspired others to consider leveraging linguistic
annotations and resources to learn embeddings.
Both Cotterell et al. (2017) and Levy and Gold-
berg (2014a) incorporate additional syntactic and
morphological information in their word embed-
dings. Rothe and Schiitze (2015)’s use lexical re-
source entries, such as WordNet synsets, to im-
prove pre-computed word embeddings. Through
generalized CCA, Rastogi et al. (2015) incorpo-
rate paraphrased FrameNet training data. On the
applied side, Wang and Yang (2015) used frame
embeddings—produced by training word2vec
on tweet-derived semantic frame (names)—as ad-
ditional features in downstream prediction.
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Teichert et al. (2017) similarly explored the re-
lationship between semantic frames and thematic
proto-roles. They proposed using a Conditional
Random Field (Lafferty et al., 2001) to jointly
and conditionally model SPR and SRL. Teichert
et al. (2017) demonstrated slight improvements
in jointly and conditionally predicting PropBank
(Bonial et al., 2013)’s semantic role labels and
Reisinger et al. (2015)’s proto-role labels.

6 Conclusion

We presented a way to learn embeddings enriched
with multiple, automatically obtained frames from
large, disparate corpora. We also presented a
QVEC evaluation for semantic proto-roles. As
demonstrated by our experiments, our extension
of Cotterell et al. (2017)’s tensor factorization en-
riches word embeddings by including syntactic-
semantic information not often captured, result-
ing in consistently higher SPR-based correla-
tions. The implementation is available at https:

//github.com/fmof/tensor-factorization.
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Abstract

Word embeddings are supposed to provide
easy access to semantic relations such as
“male of” (man—woman). While this claim
has been investigated for concepts, little
is known about the distributional behavior
of relations of (Named) Entities. We de-
scribe two word embedding-based models
that predict values for relational attributes
of entities, and analyse them. The task is
challenging, with major performance dif-
ferences between relations. Contrary to
many NLP tasks, high difficulty for a re-
lation does not result from low frequency,
but from (a) one-to-many mappings; and
(b) lack of context patterns expressing the
relation that are easy to pick up by word
embeddings.

1 Introduction

A central claim about distributed models of word
meaning (e.g., Mikolov et al. (2013)) is that word
embedding space provides easy access to semantic
relations. E.g., Mikolov et al.’s space was shown
to encode the “male-female relation” linearly, as a
vector (m—m:%—M).

The accessibility of semantic relations was sub-
sequently examined in more detail. Rei and Briscoe
(2014) and Melamud et al. (2014) reported success-
ful modeling of lexical relations such as hyper-
nymy and synonymy. Koper et al. (2015) consid-
ered a broader range of relationships,with mixed
results. Levy and Goldberg (2014b) developed an
improved, nonlinear relation extraction method.

These studies were conducted primarily on
concepts and their semantic relations, like
hypernym(politician) = person. Mean-
while, entities and the relations they partake in are

much less well understood.! Entities are instances
of concepts, i.e., they refer to specific individual ob-
jects in the real world, for example, Donald Trump
is an instance of the concept politician. Conse-
quently, entities are generally associated with a
rich set of numeric and relational attributes (for
politician instances: size, office,etc.). In
contrast to concepts, the values of these attributes
tend to be discrete (Herbelot, 2015): while the
size of politician is best described by a prob-
ability distribution, the size of Donald Trump
is 1.88m. Since distributional representations
are notoriously bad at handling discrete knowl-
edge (Fodor and Lepore, 1999; Smolensky, 1990),
this raises the question of how well such models
can capture entity-related knowledge.

In our previous work (Gupta et al., 2015), we
analysed distributional prediction of numeric at-
tributes of entities, found a large variance in quality
among attributes, and identified factors determin-
ing prediction difficulty. A corresponding analysis
for relational (categorial) attributes of entities is
still missing, even though entities are highly rele-
vant for NLP. This is evident from the highly ac-
tive area of knowledge base completion (KBC), the
task of extending incomplete entity information in
knowledge bases such as Yago or Wikidata (e.g.,
Bordes et al., 2013; Freitas et al., 2014; Neelakan-
tan and Chang, 2015; Guu et al., 2015; Krishna-
murthy and Mitchell, 2015).

In this paper, we assess to what extent re-
lational attributes of entities are easily acces-
sible from word embedding space. To this
end, we define two models that predict, given
a target entity (Star Wars) and a relation
(director), a distributed representation for the
relatum (George_Lucas). We carry out a detailed
per-relation analyses of their performance on seven

!The original dataset by Mikolov et al. (2013) did contain
a small number of entity-entity relations.
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Figure 1: Nonlinear model (NonLinM) structure

major FreeBase domains and identify what makes
a relation difficult by correlating performance with
properties of the relations. We find that, contrary
to many other NLP tasks, relations are not difficult
if they are infrequent or sparse, but instead (a) if
they relate one target to multiple relata; (b) if they
do not give rise to linguistic patterns that can be
picked up by bag-of-words distributional models.

2 Two Relatum Prediction Models

Both models predict a vector for a relatum r (plural:
relata) given a target entity vector t and a symbolic
relation p.

The Linear Model (LinM) is inspired by
Mikolov et al.’s “phrase analogy” evaluatiﬂa of
word embeddings (man — woman = king —
queen) . However, instead of looking at individ-
ual words, we extract representations of semantic
relations from sets of pairs 7, = {(¢;,p,r;)} in-
stantiating the relation p. For each relation p, LinM
computes the average (or centroid) difference vec-
tor over the set of training pairs:

Mtp)=t+ Y (r=t)/N (@D

(r,p,t)€T,

That is, the predicted 7 for an input (¢, p) is the
sum of the target vector and the relation’s proto-
type. This model should work well if relations are
represented additively in the embedding space.

The Nonlinear Model (NonLinM) is a feed-
forward network (Figure 1) introducing a nonlin-
earity, inspired by Levy and Goldberg (2014b) and
similar to models used in KBC, e.g., Socher et al.
(2013). The relatum vector is predicted as

fg(t, P) = U(U(t - Win + Vp - Wr) : Wout) 2)

where v, is the relation encoded as an m-
dimensional one-hot vector and the three matrices
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Win, Wi, Wy form the model parameters 6. For
the nonlinearity o, we use tanh.

In this model, the hidden layer represents a non-
linearly transformed composition of target and re-
lation from which the relatum can be predicted.
NonLinM can theoretically make accurate predic-
tions even if relations are not additive in embedding
space. Also, its sharing of training data among re-
lations should lead to more reliable learning for
infrequent relations. As objective function, we use

L(0) =Y [cos(Fy(t, p), )
(t,r)
— a-cos(Ty(t, p), nc(ro(t, p)))]
(3)

where nc(v) is the nearest confounder of v, i.e., the
next neighbor of v that is not a relatum for the cur-
rent target-relation pair. Thus, we minimize the co-
sine distance between the predicted vector and the
gold vector for the relatum while maximizing the
cosine distance of the prediction to the closest nega-
tive example. We introduce a weight o € [0, 1] for
the negative sampling term as a hyper-parameter
optimized on the development set. During train-
ing, we apply gradient descent with the adaptive
learning rate method AdaDelta (Zeiler, 2012).

3 Experiments

Data. We extract relation data from FreeBase.
We follow our earlier work Gupta et al. (2015), but
go beyond its limitation to two domains (country,
citytown). We experiment with seven major
FreeBase domains: animal, book, citytown,
country, employer, organization, people.
We limit the number of datapoints of very large
relation types to 3000 with random sampling for
efficiency reasons. We only remove relation types
with fewer than 3 datapoints. This results in a quite
challenging dataset that demonstrates the general-
izability of our models and is roughly comparable,
in variety and size, to the FB 15K dataset (Bordes
et al., 2013).

The distributed representations for all entities
come from the 1000-dimensional “Google News”
skip-gram model (Mikolov et al., 2013) for Free-
Base entities” trained on a 100G token news corpus.
We only retain relation datapoints where both tar-
get and relatum are covered in the Google News
vectors. Table 1 shows the numbers of relations
and unique objects (target plus relata).

2https ://code.google.com/p/word2vec/



Size Performance Relation-level statistics
Domain #R #Ts+tRa. BL LM NLM %R>03 %R<0.1 p(NLM,#In) p(NLM, #RpT)
animal 24 3428 0.11 0.16 0.29 38% 42% .07 -.34
book 22 7,014 0.11 024 0.26 9% 68% .09 -.15
citytown 46 86,551 0.05 0.13 0.26 28% 39% -12 =22
country 89 191,196 0.04 0.08 0.18 20% 52% -.32 -23
employer 76 14,658 0.05 0.15 0.23 30% 45% .01 -.35
organization 53 8,989 0.07 0.17 0.26 34% 42% -.24 -29
people 91 11,397 0.09 0.19 0.27 34% 23% 23 -25
Micro average 0.06 0.14 0.22 25% 45% =12 -.25
Macro average 0.08 0.16 0.23 28% 44% -.05 -.26

Table 1: Test set statistics and results. #R: relations; #Ts+Ra: unique targets and relata; BL/LM/NLM:
Baseline, linear and nonlinear model (macro-average MRR); %R<x: percent of relations with MRR <x;
p: Spearman correlation; #In: instances; #RpT: relata per target

We split all domains into training, validation,
and test sets (60%—20%-20%). The split applies to
each relation type: in test, we face no unseen rela-
tion types, but unseen datapoints for each relation.’

Hyperparameter settings. The NonLinM
model uses an Ly norm constraint of s=3. We
adopt the best AdaDelta parameters from Zeiler
(2012), viz. p = 0.95 and € = 10~%. We optimize
the negative sampling weight a (cf. Eq. 3) by
line search with a step size of 0.1 on the largest
domain, country, and find 0.6 to be the optimal
value, which we reuse for all domains. Due to the
varying dimensionality m of the relation vector
per domain, we set the size of the hidden layer
to k = 2n + m/10 (n is the dimensionality of
the word embeddings, cf. Figure 1). We train all
models for a maximum of 1000 epochs with early

stopping.

Evaluation. Models that predict vectors in a con-
tinuous vector space, like ours, cannot expect to
predict the output vector precisely. Thus, we ap-
ply nearest neighbor mapping using the set of all
unique targets and relata in each domain (cf. Ta-
ble 1) to identify the correct relatum name. We
then perform an Information Retrieval-style rank-
ing evaluation: We compute the rank of the correct
relatum r, given the target ¢ and the relation p, in
the test set 7" and aggregate these ranks to compute
the mean reciprocal rank (MRR):

1 1
MRR= " > ———0 (4
17| ranky,p(r)

(t,p,m)ET

where rank is the nearest neighbor rank of the
relatum vector r given the prediction of the model

>The dataset are available at:
stuttgart.de/data/RelationPrediction.html

http://www.ims.uni-

for the input ¢, p. We report results at the relation
level as well as macro- and micro-averaged MRR
for the complete dataset.

Frequency Baseline (BL). Our baseline model
ignores the target. For each relation, it predicts the
frequency-ordered list of all training set relata.

4 Results and Discussion

Overall results. Table 1 shows that the nonlinear
model NonLinM consistently gives the best results
and statistically outperforms the linear model on
all domains according to a Wilcoxon test (a=0.05).
Both LinM and NonLinM clearly outclass the base-
line. Most MRRs are around 0.25 (micro average
0.22), with one outlier, at 0.18, for country, the
largest domain. Overall, the numbers may appear
disappointing at first glance: these MRRs mean that
the correct relatum is typically around the fourth
nearest neighbor of the prediction vector. This in-
dicates that open-vocabulary relatum prediction in
a space of tens of thousands of words is a chal-
lenging task that warrants more detailed analysis.
We observe that the nonlinear model achieves rea-
sonable results even for sparse domains (cf. the
low baseline), which we take as evidence for its
generalization capabilities.

Analysis at relation level. Table 1 shows the
number of relations with good MRRs (greater than
0.3) and bad MRRs (smaller than 0.1) for each rela-
tion. While the numbers vary across domains, the
models tend to do badly on around 40-50% of all
relations, and obtain good scores for less than one
third of all relations.

Figure 2 shows the distribution for the best do-
main (animal) and the worst one (country) .
Both plots show a Zipfian distribution with a rel-
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Figure 2: Results by relation for best and worst
domains ( animal, above; people, below), sorted

by NonLinM performance

Target Correct LinM NonLinM
%J Japan Asia Japan Asia
S Kazakhstan Asia Central Asia Asia
£ Nicaragua  North Latin Americas
S America America
o5 Nepal Kathmandu Nepal Dhaka
5 Qatar Doha Qatar Riyadh
2 Venezuela Caracas Caracas Quito
O

Table 2: Example predictions for two country
relations (correct answer in boldface)

atively small set of well-modelled relations and a
long tail of poorly modelled ones. NonLinM does
better or as well as LinM for almost all relations.
The performances of the two models are very tighly
correlated for difficult relations; they only differ
for the easier ones, where NonLinM’s evidently
captures the data better.

Qualitatively, the two models differ substantially
with regard to prediction patterns at the level of
targets. Table 2 shows the first predictions for three
targets from two relations: continent, where
NonLinM outperforms LinM, and capital, where
it is the other way around. NonLinM’s errors con-
sist almost exclusively in predicting semantically
similar entities of the correct relatum type, e.g.,
predicting Quito (the capital of Ecuador) as capi-
tal of Venezuela. In contrast, the LinM model has
a harder time capturing the correct type, predict-
ing country entities as capitals (e.g., Nepal as the
capital of Nepal).
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Figure 3: Scatterplot: MRR vs. number of relata
per target (above: animal, below: country)

Analysis of Difficulty. So what makes many
FreeBase relations hard to model? To test for spar-
sity problems, we first computed the correlation
between model performance and the “usual sus-
pect” relation frequency (number of instances for
each relation). In NLP applications, this typically
yields a high positive correlation. The second-to-
last column of Table 1 shows that this is not true
for our dataset. We find a substantial positive cor-
relation only for people, correlations around zero
for most domains, and substantial negative ones for
organization and country. For these domains,
therefore, frequent relations are actually harder to
model. Further analysis revealed two main sources
of difficulty:

(1) One-to-many relations. Relations with
many datapoints tend to be one-to-many. We
assume this to be a major source of difficulty,
since the model is presented with multiple re-
lata for the same target during training and will
typically learn to predict a centroid of these re-
lata. As an extreme case, consider a relation like
administrative_divisions thatrelates the US
to all of its federal states: the resulting prediction
will arguably be dissimilar to every individual state.
To test this hypothesis, we computed the rank cor-
relation at the relation level between the number of
relata per target and NonLinM performance, shown
in the last column of Table 1. Indeed, we find a
strong negative correlation for every single domain.
In addition, Figure 3 plots relation performance (y
axis) against the ratio of relata per target (x axis:
one-to-one on the left, one-to-many on the right)
for animal and country.
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Qualitatively, Table 3 shows examples for the
three most easy and difficult relations for country.
The list suggests that relations tend to be easy when
they associate targets with single relata: the rela-
tion country maps territories and colonies onto
their motherlands, and the t ournament s relation
is only populated with a few Commonwealth games
(cf. the high baseline). In contrast, relations that
map targets on many relata are difficult, such as
administrative divisions of countries, or a list of
disputed_territories. Note that this is not an
evaluation issue, since MRR can deal with multiple
correct answers. Our models do badly because they
lack strategies to address these cases.

(2) Lack of contextual support. One-to-many
relations are not the only culprit. Strikingly, Fig-
ure 2 shows that a low target-relatum ratio is a
necessary condition for good performance (the
upper right corners are empty), but not a suffi-
cient one (the lower left corners are not empty).
Some relations are not modelled well even though
they are (almost) one-to-one. Examples include
currency_formerly_used Or named_after for
country and place._of_origin for animal.
Further analysis indicated that these relations suf-
fer from what Gupta et al. (2015) called lack of
contextual support: Although they are expressed
overtly in the linguistic context of the target and
relatum (and often even frequently so), their real-
izations cannot be tied to individual words or topics.
Instead, they are expressed by relatively specific
linguistic patterns, often predicate-argument struc-
tures (X used to pay with Y, X is named in the honor
of Y). Such structures are hard to pick up by word
embedding models that make the bag-of-words in-
dependence assumption among context words.

5 Conclusion

This paper considers the prediction of related enti-
ties (“relata”) given a pair of a target Named Entity
and a relation (Star Wars, director, ?) on
the basis of distributional information. This task is
challenging due to the more discrete behavior of
attributes of entities as compared to concepts. We
provide an analysis based on two models that use
vector representations for both the targets and the
relata.

Our results yield new insights into how embed-
ding spaces represent entity relations: they are gen-
erally not represented additively, and nonlinearity
helps. They also complement insights on the be-

108

Relation BL LinM NonLinM
tournaments 0.88 0.82 0.88
continent 0.29 0.29 0.77
country 0.25 0.24 0.77
disputed_territories 0.00 0.01 0.01
horses_from_here 0.00 0.01 0.01
2nd_level_divisions 0.00 0.00 0.01

Table 3: The three most easy and most difficult
relations for the count ry domain

havior of numeric attributes of entities (Gupta et al.,
2015): Relations, like numeric attributes, are diffi-
cult to model if they are not specifically expressed
in the lingusitic context of target and relatum. A
new challenge specific to relations are situations
where a single target maps onto many relata. If
none of the two problems applies, relations are
easy to model. If one applies, they are difficult.
And if both apply, they are essentially impossible.

Among the two challenges, the problem of one-
to-many relations appears easier to address, since
a continuous output vector is, at least in principle,
able to be similar to many relata. In the future,
we will extend the model to deal better with one-
to-many relations. While the lack of contextual
support seems more fundamental, it could be ad-
dressed by either using syntax-based embeddings
(Levy and Goldberg, 2014a) that can better pick up
the specific context patterns characteristic for these
relations, or by optimizing the input word embed-
dings for the task. This becomes a similar problem
to joint training of representations from knowledge
base structure and textual evidence (Perozzi et al.,
2014; Toutanova et al., 2015).
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Abstract

Collecting spontaneous speech corpora
that are open-ended, yet topically con-
strained, is increasingly popular for re-
search in spoken dialogue systems and
speaker state, inter alia. Typically, these
corpora are labeled by human annota-
tors, either in the lab or through crowd-
sourcing; however, this is cumbersome
and time-consuming for large corpora. We
present four different approaches to auto-
matically tagging a corpus when general
topics of the conversations are known. We
develop these approaches on the Columbia
X-Cultural Deception corpus and find ac-
curacy that significantly exceeds the base-
line. Finally, we conduct a cross-corpus
evaluation by testing the best performing
approach on the Columbia/SRI/Colorado
corpus.

1 Introduction

Corpora of spontaneous speech are often col-
lected through interviews or by otherwise provid-
ing subjects with question prompts. Such cor-
pora are semi-structured; they are constrained by
the prompts used, but the elicited speech is open-
ended in vocabulary and structure. It is often de-
sirable to segment these corpora into their under-
lying topics based on the questions asked. This is
typically done manually by annotators in the lab or
via crowd-sourcing. However, such annotation is
impractical and time-consuming for large corpora.

In this paper we describe a set of experi-
ments aimed at automatically tagging a large cor-
pus with topic labels. We tag the Columbia X-
Cultural Deception (CXD) corpus, a large-scale
(120-hour) corpus of deceptive and non-deceptive
dialogues collected using a semi-structured inter-
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view paradigm. Participants took turns interview-
ing each other using a fixed set of biographical in-
terview questions', but the questions were asked
in individual variants, in any order, and interview-
ers often asked follow-up questions. For example,
the question, ”Are your parents divorced?” could
be produced as "Are your mom and dad still to-
gether?” These questions are semantically simi-
lar, but differ lexically, presenting the challenge
of topically tagging a corpus based on semantic
similarity. The question, "Have you ever broken
a bone?” could be followed by another, "How did
you break your bone?” This illustrates the chal-
lenge of distinguishing between phrases that are
lexically similar, but differ semantically. These
two examples highlight problems faced when try-
ing to automatically annotate a corpus for re-
sponses to a given set of questions.

With such a large corpus, it is not practical to
manually annotate topic boundaries. So, to com-
pare question responses from multiple subjects,
we identify conversational turns in the corpus that
correspond to the original interview questions. We
compare four approaches to question identifica-
tion: (1) a baseline approach that identifies ques-
tions using strict string matches, (2) the ROUGE
metric which is based on n-gram comparisons, (3)
cosine similarity between word embedding repre-
sentations and (4) cosine similarity between doc-
ument embeddings. We include experiments with
varying thresholds for approaches (2), (3), and (4)
to highlight the trade-off between precision and
recall for these approaches. Finally, we test our
best approach using word embeddings on another
corpus, the Columbia/SRI/Colorado (CSC) corpus
(Hirschberg et al., 2005), collected with a similar
interview paradigm but different questions, in or-
der to evaluate the utility of this method in another

!The interview questions can be found here: http://

tinyurl.com/1zfa8zl
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domain.

This work draws upon the body of research
on short-text semantic similarity (e.g. (Mihalcea
et al., 2006; Kenter and de Rijke, 2015; Oliva et al.,
2011)). It is also related to work on topic seg-
mentation (e.g. (Cardoso et al., 2013; Dias et al.,
2007) ), however here we focus on matching con-
versational turns to a fixed set of possible topics.
While this work is done in support of our ongo-
ing work on deception detection using speech and
text-based features, we believe that our approach
could be applied to other spontaneous transcribed
speech or text corpora which were collected with
some constraints on topics.

2 Corpus

The Columbia X-Cultural Deception (CXD) Cor-
pus (Levitan et al., 2015) is a collection of within-
subject deceptive and non-deceptive speech from
native speakers of Standard American English
(SAE) and Mandarin Chinese (MC), all speak-
ing in English. The corpus contains dialogues
between 340 subjects. A variation of a fake re-
sume paradigm was used to collect the data. Previ-
ously unacquainted pairs of subjects played a "’ly-
ing game” with each other. Each subject filled out
a 24-item biographical questionnaire and were in-
structed to create false answers for a random half
of the questions. The lying game was recorded
in a sound booth. For the first half of the game,
one subject assumed the role of the interviewer,
while the other answered the biographical ques-
tions, lying for half and telling the truth for the
other; questions chosen in each category were bal-
anced across the corpus. For the second half of
the game, the subjects roles were reversed, and
the interviewer became the interviewee. During
the game, the interviewer was allowed to ask the
24 questions in any order s/he chose; the inter-
viewer was also encouraged to ask follow-up ques-
tions to aid them in determining the truth of the
interviewees answers. The entire corpus was or-
thographically transcribed using the Amazon Me-
chanical Turk (AMT)? crowd-sourcing platform,
and transcripts were forced-aligned with the au-
dio recordings. The speech was then automatically
segmented into inter-pausal units (IPUs), defined
as pause-free segments of speech separated by a
minimum pause length of 50 ms. The speech was
also segmented into turn units, where a turn is de-

“https://www.mturk.com/mturk/
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fined as a maximal sequence of IPUs from a single
speaker without any interlocutor speech that is not
a backchannel (a simple acknowledgment that is
not an attempt to take the turn). For this work, we
compiled 40 interviewer sessions (about 20% of
the corpus) and hand-annotated the turns for all of
these sessions, giving us a total of 5308 turns. Out
of these turns, 923 were interviewer questions that
corresponded to the list of the original biograph-
ical questions, which we labeled with the ques-
tion number. Below we describe the different ap-
proaches and then discuss results in Section 4 with
a comparison of performance in Table 1.

3  Question Identification Approaches

3.1 String-matching Baseline

As a baseline for matching the 24 questions in-
terviewers were instructed to ask with interviewer
turns, we performed a simple two-pass question
matching procedure for exact string matches be-
tween written questions and the transcripts. In the
first pass, we searched for exact matches of strings
with punctuation and spacing removed. With
the remaining unmatched questions, we then per-
formed another round of matching, with the tran-
script lemmatized and with filler words removed,
to identify very close though not exact matches.

3.2 ROUGE

ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation)(Lin, 2004) is a package designed
to evaluate computer-generated summaries against
a human-written baseline using a simple n-gram
comparison to find precision, recall, and f-score
for each machine-human summary comparison.
Using ROUGE, we evaluated matches for ques-
tions which had not been detected by the baseline.
We created a ROUGE task for each unmatched
question. For each task, the original question
was used as the reference text. We then tested
each interviewer turn in the conversation against
the reference, using bi-gram matching. We thus
matched the turn receiving the highest similarity
score to the reference text to that question, testing
this method at a variety of similarity thresholds.

3.3 Word Embeddings

The previous two methods identify questions us-
ing lexical similarity. In the next two approaches
we explored semantic similarity. We began by
obtaining a vector representation for each of the



24 questions. We use a pre-trained Word2vec
model on the Google News dataset’® with over
three million words and phrases to obtain word
embeddings. The primary benefit of a Word2vec
model is that it clusters semantically similar words
and phrases together: for example, "Golden Gate
Bridge” and ”San Francisco” have very low cosine
distance between each other in this model. There-
fore, semantically similar words were likely to be
represented as vectors with high cosine similarity.

To obtain a vector representation for each ques-
tion as a whole, we found the vector representa-
tion for each word using Word2vec. We then took
a weighted average of all of the word vectors in
the question where words that directly contributed
to the topic of the turn such as relationship” or
“mom” were weighed more than words that, if re-
moved, did not affect the topic of the turn such
as "have” or “really.” This produced a final vector
representation of the entire question. We exclude
stop words from this vector average. Following
the same approach, we obtained vector represen-
tations for each interviewer turn. We then cal-
culated the cosine similarities between a turn and
each question and found the question that had the
highest cosine similarity to the turn vector. We
compared the cosine similarity of the turn and the
question to the cosine similarity of any previous
identified matches. If the newly calculated cosine
similarity was higher, then the current turn was
deemed the best match so far to the question, oth-
erwise we repeated this comparison with the ques-
tion that had the second highest cosine similarity
to the turn. At the end of each particular inter-
viewer session, we had a mapping of each turn to
a question if a match was detected, otherwise the
turn was marked as not being a question.

3.4 Document Embeddings

We also explored the use of document embeddings
for this task. We began by finding a vector repre-
sentation for each of the 24 questions. We used
a Doc2vec model pre-trained on Wikipedia text®.
Recall that, in our paradigm, questions could be
asked in individual variants, in any order, and
along with follow-up questions. The primary ben-
efit of a Doc2Vec model is that it allows for unsu-
pervised learning of larger blocks of text. There-

3The model can be found here: https://code.
google.com/archive/p/word2vec/

“The model can be found here: https://github.
com/jhlau/doc2vec

fore, we hypothesized that Doc2Vec would return
word vectors that also depended on contextual us-
age as well as semantic similarity. We then cal-
culated the vector averages for each turn and pro-
duced turn-to-question mappings as explained in
the word embeddings approach above.

4 Results

Table 1 shows the accuracy, precision, recall, and
fl-score of each of the four approaches outlined
above, evaluated on our hand-labeled subset of
interviews. We see that the word embeddings
method achieved the highest accuracy, recall, and
f1-score of all the methods developed and tested,
whereas the ROUGE approach obtained the high-
est precision. With the word embeddings ap-
proach, most correctly identified turns share one
or more meaningful words with the corresponding
original question and are often syntactically very
similar. This approach, however, is able to make
ambiguous matches as well. For example, an inter-
viewer turn said, "wow you broke you broke your
hand when you were in elementary school wow i
yeah i get so student hate to do homework so have
you ever tweet tweeted.” This turn shares mean-
ingful words with many other questions, but this
approach correctly identified it as matching the
question Have you ever tweeted? The word em-
beddings approach could also make difficult se-
mantic matches. Many interviewers asked, ”Are
your mom and dad still together?” instead of ”Are
your parents divorced?” Even though there are
few lexically common meaningful words between
these two phrases, this approach correctly mapped
these questions to each other because of their se-
mantic similarity. One of the main causes of er-
ror for this method is that follow-up questions
were sometimes mis-identified as original ques-
tions. For example, "How do you like your ma-
jor?” could be mapped to the original question, ~’If
you attended college, what was your major?” even
though the question the interviewer asked was a
follow-up question.

We also analyzed the accuracy of the method-
ologies using varying thresholds. For word em-
beddings and document embeddings, the thresh-
old is determined by cosine similarity of a turn
and question. For ROUGE, the threshold is the
fl-score. For each approach, We compiled a set
of turns from the CXD corpus that had the low-
est cosine similarity to the question each turn was
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Approach Accuracy | Precision | Recall | F1-Score
Baseline (Rule-based) 39.0 72.0 42.0 53.1
ROUGE 74.0 93.0 78.0 84.8
Word Embeddings 914 92.1 99.1 95.5
Document Embeddings 88.6 90.0 98.2 93.9

Table 1: Accuracy, precision, and recall of each approach, evaluated on hand annotated turns
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Figure 1: Accuracy of each approach determined
by threshold. Filled in dots are word embeddings.
Squares represent document embeddings. Trian-
gles represent ROUGE.

matched with. We capped the threshold at 0.82.
Figure 1 shows that, as we increase the thresh-
old, generally, the accuracy of the question match-
ing for all approaches is higher. This, intuitively,
makes sense because, as we increase the threshold,
we are selecting turns that have higher similarity
to their matched question. Although this results
in lower recall, it can be used in cases where high
precision is needed for annotations.

4.1 Cross-corpus Evaluation

To further evaluate our best-performing approach,
we applied the word embeddings method to an-
other corpus collected using a similar interview
paradigm, the Columbia SRI Colorado (CSC) cor-
pus. To test word embeddings on this corpus,
we compiled 31 interviewer sessions that were al-
ready hand annotated, giving us a total of 6395
turns. The (single) interviewer involving in col-
lecting this corpus always began with a list of four
standard biographical questions, thus reducing the
number of turns that contained an interviewer-
generated question to 114. Following the word
embeddings method described above, we obtained
an accuracy of 99.8%, precision of 91.2%, recall
of 100%, and F1-score of 95.3 on the CSC corpus.

The incorrectly identified questions were
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largely because the interviewer did not ask all four
biographical questions in every session, while
the word embeddings approach assumes that
all questions were asked and therefore, matches
some turn to the original question even though the
interviewer did not ask it. The higher accuracy
obtained on the CSC corpus is probably due to
the fact that the interviews were all conducted by
a single interviewer, so the questions were asked
with greater consistency. In addition, all subjects
were native speakers of Standard American
English, while half the participants in the CXD
corpus were native speakers of Mandarin Chinese.

5 Conclusion

Corpora consisting of spontaneous speech that is
open-ended, yet topically constrained, is more
commonplace, as researchers seek spontaneous
speech with some similarity of topic across sub-
jects. Traditionally, such corpora are hand anno-
tated for topic segments to serve as training ma-
terial. However, on large corpora such as the
CXD corpus, this can be cumbersome and time-
consuming. In this paper, we have presented four
approaches to automatically identifying question
topics on the CXD corpus to discover which ap-
proach achieves the best results in automatically
tagging corpora into question-defined topics. We
found that the word embeddings approach was
the best performing approach with an f1-score of
95.5%. We then applied the word embeddings
approach to the CSC corpus to verify that this
approach was useful for other corpora and also
achieved very good results. We conclude that this
automated, unsupervised approach to tagging cor-
pora can be very useful in annotation and analy-
sis for corpora collected using question prompts.
For more exact annotations, this approach could
also be used as an automated pre-processing stage
to reduce human annotation efforts. In future, we
would like to extend the embeddings approach to
scale to less constrained tasks, evaluate it on addi-
tional corpora, and also more accurately tag cor-
pora based on an ambiguous number of topics.
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Abstract

The Practical Lexical Function (PLF)
model is a model of computational distri-
butional semantics that attempts to strike
a balance between expressivity and learn-
ability in predicting phrase meaning and
shows competitive results. We investigate
how well the PLF carries over to free word
order languages, given that it builds on ob-
servations of predicate-argument combina-
tions that are harder to recover in free word
order languages. We evaluate variants of
the PLF for Croatian, using a new lexical
substitution dataset. We find that the PLF
works about as well for Croatian as for En-
glish, but demonstrate that its strength lies
in modeling verbs, and that the free word
order affects the less robust PLF variant.

1 Introduction

Compositional distributional semantic models
(CDSMs) represent phrase meaning in a vector
space by composing the meanings of individual
words. Many CDSMs were proposed, ranging from
basic ones that use element-wise operations on
word vectors to compute phrase vectors (Mitchell
and Lapata, 2008), to more complex models that
represent predicate arguments as higher-order ten-
sors (Baroni and Zamparelli, 2010; Guevara, 2010).
The latter models assume that predicates in a phrase
act as functions that act on other phrase compo-
nents to yield the final representation of the phrase.
For example, an adjective acts as a function on the
noun in an adjective-noun phrase, while a transitive
verb acts as a binary function on its subject and
object. However, since the number of parameters
in a tensor grows exponentially with the number of
arguments of the function that it models, learning
full tensors for predicates with many arguments is
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tedious to impractical (Grefenstette et al., 2012).

The Practical Lexical Function model (PLF, Pa-
perno et al. (2014)) strikes a middle ground by
breaking down all tensors with ranks higher than
two into multiple matrices, each representing the
predicate’s composition with a single argument
(cf. Section 2 for details). In the experiments of
Paperno et al. (2014), PLF has been shown to work
better than some other CDSMs in modeling seman-
tic similarity. Particularly good results were ob-
tained on ANVAN (adjective-noun-verb-adjective-
noun) phrases, where PLF outperformed both sim-
ple CDSMs (due to its higher expressiveness) as
well as the higher-order Lexical Function model
(Baroni and Zamparelli, 2010).

Although the PLF shows promising results, ex-
isting work still leaves open two questions. First,
it is not obvious that these results carry over to
languages with free word order, such as Slavic lan-
guages, where predicates and arguments are often
separated. For example, in the English sentence ‘/
like my dog’, the predicate is adjacent to both the
subject and the object, while in the Croatian trans-
lation ‘Svida mi se moj pas’, the object ‘moj pas
is separated from the predicate. As corpus-derived
vectors for predicate-argument combinations are
a key part of the PLF, non-adjacency might make
it difficult to estimate its parameters reliably for
such languages. Secondly, the evaluation method
reported by Paperno et al. (2014) uses a somewhat
artificial setup by assuming that all phrase pairs,
even ill-formed ones, can be graded for similarity.

In this work we consider both of these questions.
We investigate the application of PLF to Croatian
language, a Slavic language with relatively free
word order. We compare PLF with other, simpler
CDSMs, as well as PLF modifications proposed by
Gupta et al. (2015). In contrast to Paperno et al.
(2014), we adopt lexical substitution as evaluation,
building a new dataset of Croatian ANVAN phrases,
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together with word substitutes for each word. The
PLF model for Croatian performs comparably well
to English, outperforming simpler CDSMs in par-
ticular at the verb position.

2 The Practical Lexical Function Model

Basic model. As described above, the idea of the
PLF is to represent predicates as sets of matrices
for each argument slot of the predicate, plus a vec-
tor for its lexical meaning. The meaning of the
predicate-argument combination is computed by
multiplying all argument vectors with the predi-
cates’ slot matrices and finally adding the predi-
cate’s lexical vector. For example, the vector for
the phrase ‘big window’ is computed as:

— ON  —
P (big window) = big + big X window (1)

This can easily be generalized to more complex
ANVAN phrases, as exemplified in Figure 1.

The predicate matrices are estimated using ridge
regression with corpus-extracted vectors for argu-
ments (77) as input and vectors for bigram phrases
(an) as output. For example, the predicate matrix

O . . .
a for an adjective a is computed as follows:

4 A arg min Z ”M ><71>—671H2 2)
M nenouns(a)

PLF modifications. Gupta et al. (2015) identify
an inconsistency within the PLF: there is a differ-
ence between the meaning modeled by a matrix ob-
tained with training and its usage in phrase vector
calculation. The matrix obtained using Eq. (2) di-
rectly approximates the phrase meaning for a given
predicate-argument phrase, while the PLF phrase
vector in Eq. (1) adds the predicate vector on top
of the product of predicate matrix and argument
vector. They propose two remedies, as follows.

Train phase modification changes Eq. (2) so that
the predicate matrix does not learn a direct transfor-
mation from an argument vector to a phrase vector,
but rather a difference between these vectors:

aLagmin Y [|MxT-@-d)| @

M nenouns(a)

This justifies the addition of predicate vector in (1).

In contrast, test phase modification retains the
same training process, but omits the predicate vec-
tor when computing the phrase vector:!

On -
P (big window) = big X window (@Y)

IFor one-argument predicates, this is equivalent to the
Lexical Function model (Baroni and Zamparelli, 2010).

Gupta et al. (2015) found both modifications to out-
perform simple baseline CDSMs for English when
evaluated on ANVAN datasets, with test adaptation
outperforming the original PLF.

PLF for Croatian. We implemented the basic
PLF and the two above-mentioned modifications
for Croatian following the procedure described by
Paperno et al. (2014). As a corpus for building
word and phrase lexical vectors we used fHrwaC
(gnajder et al., 2013), a filtered version of Croatian
web corpus (Ljubesi¢ and Erjavec, 2011), total-
ing 51M sentences and 1.2B tokens. The corpus
has been parsed using the MSTParser for Croatian
(Agié¢ and Merkler, 2013).

As a first step in obtaining word vector repre-
sentations, we extracted a co-occurrence matrix of
30K most frequent lemmas (nouns, verbs, and ad-
jectives) in corpus, using a window of size 3. Next,
the vectors contained in the resulting matrix were
transformed using Positive Pointwise Mutual In-
formation (PPMI) and reduced to size 300 using
Singular Value Decomposition. Finally, all vectors
in the matrix were normalized to unit length.

For the extraction of phrase (bigram) vectors,
we consider two different approaches. The first
approach considers all occurrences where the pred-
icate and argument are adjacent in the dependency
trees in fHrWaC even if they are not adjacent on
the surface, sidestepping the free word order issue.
The second approach extracts only those phrases
in which the predicate and argument are adjacent
on the surface, resulting in a smaller but potentially
cleaner set of co-occurrences. The phrase vectors
from both approaches use the same 30K context
lemmas and window size as the unigrams.

Using the extracted lemma and bigram vectors,
we train matrices for each of the predicate words
from our evaluation dataset. As our dataset consists
of ANVAN phrases, we train one matrix for each
adjective and two matrices for each verb (one for
subject and one for object). We train two versions
of each matrix: one using the originally proposed
training and another with modified training.

3 Experiments

Evaluation methodology. Paperno et al. (2014)
evaluated the PLF on five datasets containing
phrases in different forms. Two consist of free-
form sentences, one of a number of differently
formed phrases, and the two ANVAN datasets
contain adjective-noun-verb-adjective-noun phrase
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5 mp — Oo —>
open + opén X NPsubj + open x NPobj

/

N Og —_ Oo
{open + open X npy,;,open}

N

— Oy O
{open,open,open}

7

— A —— On —
NPsubj = young + young X boy

™~

AT N ——
npoyj = big + big X window

Figure 1: Computing the vector for an ANVAN phrase (young boy open big window) using PLF.

ANVAN phrase (target word in bold)

Substitute words

legendaran trener voditi suparnicka momdcad
(legendary coach lead opponent team)

cijenjen (appreciated), izvanredan (outstanding), poz-
nat (famous), uspjesan (successful), znamenit (notable)

dobar igra¢ dati pobjednicki gol
(good player score winning goal)

pogoditi (to hit), postii (to achieve), zabiti (to score),
zadati (to give)

sportski automobil prijeéi velika udaljenost
(sports car travel large distance)

dionica (section), duZina (length), put (way), razdaljina
(distance)

Table 1: Examples of ANVAN phrases with manually collected substitutes for boldfaced targets.

pairs rated for semantic similarity (Kartsaklis et al.,
2013; Grefenstette, 2013). The phrases in each pair
differ only in the verb. Annotators rated the sim-
ilarity on a scale from 1 to 7, and CDSMs were
evaluated by correlating the ratings with the simi-
larity of the predicted phrase vectors.

The described approach is not appropriate when
one or both ANVAN phrases are ungrammatical
or nonsensical. Consider the following phrase pair
in the ANVAN dataset by Kartsaklis et al. (2013):
‘dental service file false tooth’ — ‘dental service
register false tooth’. While the first sentence is
plausible, the second one is arguably somewhere
between implausible and nonsensical. We believe
that semantic similarity is not a reasonable evalua-
tion criterion for such (relatively frequent) cases.

For our experiment, we chose a word-choice
evaluation setup, which essentially builds on the
idea of lexical substitution. Lexical substitution
is the task of identifying a substitute for a word
in a given context (McCarthy and Navigli, 2007).
Typically, a system is presented with a phrase and
candidate substitutes for a target word in the phrase
and needs to select one or more adequate substi-
tutes. Systems either have to rank the candidates
in the appropriate order (McCarthy and Navigli,
2007; Sinha and Mihalcea, 2009), or just choose
one best substitute (Melamud et al., 2016).

An additional benefit of a lexical substitution
setup is that we can evaluate the predictions of the

model not just globally, but at the level of individual
words. We will exploit that possibility below.

Croatian ANVAN dataset. We constructed indi-
vidual ANVAN phrases for Croatian like in prior
English work (Kartsaklis et al., 2013; Grefenstette,
2013). We started by choosing six transitive verbs
from the list of polysemous verbs on the Croat-
ian language portal.> We chose verbs with high
polysemy level, while avoiding those that overlap
in semantic meaning. The list consist of the fol-
lowing verbs: ‘baciti’ (to throw), ‘dati’ (to give),

‘izdati’ (to issue), ‘prijeci’ (to cross), ‘vidjeti’ (to
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see), and ‘voditi’ (to lead). Using the distributional
memory for Croatian (gnajder etal., 2013), we se-
lected the three most frequent subjects and objects
for each verb. Finally, we chose a single adjective
for each subject and object from the list of 20 most
frequently co-occurring adjectives. This leaves us
with 18 semantically plausible ANVAN phrases,
illustrated in Table 1 (left column).

We manually collected substitutes for each word
in the phrases. Three annotators were given a
phrase and instructed to propose up to three substi-
tutes for each word, while preserving both gram-
maticality and meaning; cf. the right column in
Table 1. This yielded an evaluation dataset that
contains 408 words: 158 adjectives, 167 nouns,
and 83 verbs, each with multiple substitutes.

2http://hjp.znanje.hr



Target odlican dak prijeéi brza cesta
phrase (excellent pupil cross fast road)
Possible dobar (good), potvrdan (affirma-
substitutes  ftive), crtani (drawn), sportski

(sportive)

Table 2: Word-choice item example. Target word
in bold; correct substitute underlined.

Word Choice Task and Evaluation. We use the
substitution dataset to set up a word choice task
(Melamud et al., 2016): Each CDSM is presented
with an ANVAN target phrase, a position in this
phrase, a correct substitute and three distractors. Its
task is to recognize the substitute that fits best into
the context. Distractors were chosen by randomly
picking three words of the same POS (adjective,
noun or verb) that were not proposed as substitutes
for that component in the given phrase. Table 2
shows an example of a single word-choice item.

In concrete terms, to evaluate a candidate substi-
tute with respect to an ANVAN target phrase, we
compute the cosine similarity between the compo-
sitionally computed vector for the ANVAN phrase
computed “as is”, and the phrase vector for the AN-
VAN phrase with the word at the current position
replaced by the candidate substitute. The assump-
tion is that a meaning-preserving substitution will
leave the phrase vector largely unchanged and thus
lead to a high cosine value. We report accuracy
as the percentage of items for which the correct
substitute received a higher cosine value than the
incorrect substitutes.’

Models. We use the PLF and the two variants
described in Section 2 (PLF-train and PLF-test).
We build all three PLF versions for both phrase
extraction approaches described in Sec. 2. In addi-
tion, we consider two baselines, namely the simple
componentwise additive (add) and multiplicative
(mult) models (Mitchell and Lapata, 2008).

4 Results

Table 3 shows the overall accuracy for each model.
The standard PLF with dependency-extracted bi-
grams obtained the highest overall accuracy. The
difference to the next-best model, add, is however
not significant (p>0.01, McNemar’s test).

3The annotated dataset with compiled word choice
tasks is available at: http://takelab.fer.hr/data/
croanvan
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Counts
Type Surface level Dependency level
adj-noun 14,249,655 15,548,616
subject-verb 3,147,289 3,994,552
verb-object 2,698,654 4,931,198

Table 4: fHrWaC number of predicate-argument
co-occurrences at surface and dependency level.

Our new evaluation method allows us to further
analyze this result by computing results for individ-
ual phrase positions (columns in Table 3). We find
that PLF significantly outperforms both baselines
for verbs (p<0.01, McNemar’s test). This is in line
with, and can potentially explain, the good results
for English (Paperno et al., 2014), since in the En-
glish evaluation setup, the ANVAN phrase pairs
differ only in the verbs (cf. Section 3). In contrast,
add performs as well as or better than the PLF an
adjectives and nouns.

A potential explanation for these patterns is va-
lency: The verb has the highest valency of all words
in the phrase (two arguments). Arguably, verbs
can profit most from the additional expressive-
ness of PLF over the simpler CDSMs. Apparently,
for adjectives (one argument) the expressiveness-
learnability tradeoff is balanced between the two
models, and for nouns (no arguments, thus no func-
tional role) the additive model’s simplicity wins.

Comparing the different PLF versions, we find
no benefit for the modifications proposed by Gupta
et al. (2015), who also obtained a null result for
PLF-train, but found PLF-test to outperform plain
PLF. For Croatian, PLF-test performs comparably
to PLF for nouns and adjectives, but does clearly
worse for verbs. A potential explanation follows
from Gupta et al.’s analysis of the difference be-
tween PLF and PLF-test as a bias-variance tradeoff:
the original PLF uses the lexical vector of the pred-
icate as a “prior” for the phrase meaning, which
makes it more robust, but also less flexible. PLF-
test uses only the predicate matrix to compute a
phrase vector and is thus more dependent on the
data quality: on good data, it can outperform PLF,
but it will be outperformed on noisy data.

Indeed, there is evidence that the verb-argument
matrices are noisy in Croatian: Table 4 compares
co-occurrence frequencies at the surface and depen-
dency levels for three predicate-argument combina-
tions. It shows that >90% of A-N combinations are



Phrase position

Model Phrase vectors Al N1 \Y A2 N2 Overall
add 734 92.0 44.6 70.1 89.7 74.0
mult 392 614 325 40.2 62.8 47.4
PLF 747 852 663* 67.5 859 76.0
PLF-train Dependency-based 582 89.8 494 519 833 669
PLF-test 722 852 60.2 67.5 84.6 74.0
PLF 557 87.5 639 654 84.6 71.7
PLF-train Surface-based 544 89.8 51.8 56.4 82.1 67.2
PLF-test 69.6 87.5 554 60.3 83.3 71.4

Table 3: Model accuracy per phrase position. Asterisk (*) indicates a statistically significant result when
comparing the best PLF version with the best simple CDSM, namely add (McNemar’s test, p<0.01).

adjacent on the surface, while this holds for less
than 80% of the S-V and 55% of the V-O combina-
tions. As it is generally true that parsing quality de-
teriorates for long distance dependencies, the S-V
and V-O matrices are arguably built from noisier
data, which can account for disadvantage for PLF-
test. In this manner, the free word order of Croatian
does have an effect on CDSM performance.

That being said, parsing quality is evidently good
enough for syntactic analysis to pay off: the results
for using surface co-occurrence based versions of
the PLF model perform generally worse than the
PLF using dependency-base co-occurrences, with
the exception of N1 (subject) position.

5 Conclusion

We built a Practical Lexical Function (PLF) model
for Croatian and evaluated it on a newly created
dataset of adjective-noun-verb-adjective-noun (AN-
VAN) phrases. Our evaluation differs from existing
English work (Paperno et al., 2014) by using a lex-
ical substitution setup. Crucially, this allows us to
analyze performance for individual phrase compo-
nents. We find that the PLF’s specific strength lies
in modeling verbs, while it only does as well as sim-
ple additive models for nouns and adjectives. As
we use dependency parses, the free word order of
Croatian does not pose a major problem of the plain
PLF, although we have evidence that it does affect
the less robust PLF-test by Gupta et al. (2015). For
future work, we will perform similar evaluation on
a wider range of models and collect more evidence
on the impact of typological differences on results.
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Abstract

Word embeddings are now a standard
technique for inducing meaning represen-
tations for words. For getting good repre-
sentations, it is important to take into ac-
count different senses of a word. In this
paper, we propose a mixture model for
learning multi-sense word embeddings.
Our model generalizes the previous works
in that it allows to induce different weights
of different senses of a word. The experi-
mental results show that our model outper-
forms previous models on standard evalu-
ation tasks.

1 Introduction

Word embeddings have shown to be useful in var-
ious NLP tasks such as sentiment analysis, topic
models, script learning, machine translation, se-
quence labeling and parsing (Socher et al., 2013;
Sutskever et al., 2014; Modi and Titov, 2014,
Nguyen et al., 2015a,b; Modi, 2016; Ma and
Hovy, 2016; Nguyen et al., 2017; Modi et al.,
2017). A word embedding captures the syntac-
tic and semantic properties of a word by repre-
senting the word in a form of a real-valued vector
(Mikolov et al., 2013a,b; Pennington et al., 2014;
Levy and Goldberg, 2014).

However, usually word embedding models do
not take into account lexical ambiguity. For ex-
ample, the word bank is usually represented by
a single vector representation for all senses in-
cluding sloping land and financial institution. Re-
cently, approaches have been proposed to learn
multi-sense word embeddings, where each sense
of a word corresponds to a sense-specific em-
bedding. Reisinger and Mooney (2010), Huang
et al. (2012) and Wu and Giles (2015) proposed
methods to cluster the contexts of each word and
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then using cluster centroids as vector representa-
tions for word senses. Neelakantan et al. (2014),
Tian et al. (2014), Li and Jurafsky (2015) and
Chen et al. (2015) extended Word2Vec models
(Mikolov et al., 2013a,b) to learn a vector repre-
sentation for each sense of a word. Chen et al.
(2014), Iacobacci et al. (2015) and Flekova and
Gurevych (2016) performed word sense induction
using external resources (e.g., WordNet, Babel-
Net) and then learned sense embeddings using the
Word2Vec models. Rothe and Schiitze (2015) and
Pilehvar and Collier (2016) presented methods us-
ing pre-trained word embeddings to learn embed-
dings from WordNet synsets. Cheng et al. (2015),
Liu et al. (2015b), Liu et al. (2015a) and Zhang
and Zhong (2016) directly opt the Word2Vec Skip-
gram model (Mikolov et al., 2013b) for learning
the embeddings of words and topics on a topic-
assigned corpus.

One issue in these previous works is that they
assign the same weight to every sense of a word.
The central assumption of our work is that each
sense of a word given a context, should correspond
to a mixture of weights reflecting different asso-
ciation degrees of the word with multiple senses
in the context. The mixture weights will help to
model word meaning better.

In this paper, we propose a new model for learn-
ing Multi-Sense Word Embeddings (MSWE). Our
MSWE model learns vector representations of a
word based on a mixture of its sense represen-
tations. The key difference between MSWE and
other models is that we induce the weights of
senses while jointly learning the word and sense
embeddings. Specifically, we train a topic model
(Blei et al., 2003) to obtain the topic-to-word and
document-to-topic probability distributions which
are then used to infer the weights of topics. We
use these weights to define a compositional vec-
tor representation for each target word to predict
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its context words. MSWE thus is different from
the topic-based models (Cheng et al., 2015; Liu
et al., 2015b,a; Zhang and Zhong, 2016), in which
we do not use the topic assignments when jointly
learning vector representations of words and top-
ics. Here we not only learn vectors based on the
most suitable topic of a word given its context, but
we also take into consideration all possible mean-
ings of the word.

The main contributions of our study are: (i) We
introduce a mixture model for learning word and
sense embeddings (MSWE) by inducing mixture
weights of word senses. (ii) We show that MSWE
performs better than the baseline Word2Vec Skip-
gram and other embedding models on the word
analogy task (Mikolov et al., 2013a) and the word
similarity task (Reisinger and Mooney, 2010).

2 The mixture model

In this section, we present the mixture model for
learning multi-sense word embeddings. Here we
treat topics as senses. The model learns a repre-
sentation for each word using a mixture of its top-
ical representations.

Given a number of topics and a corpus D of
documents d = {wgq 1, w42, ..., Wq,n, }, We apply
a topic model (Blei et al., 2003) to obtain the topic-
to-word Pr(wl|t) and document-to-topic Pr(¢|d)
probability distributions. We then infer a weight
for the m*" word Wq,m With topic ¢ in document d:

At = Pr(wgm|t) x Pr(t|d) (1)

We define two MSWE variants: MSWE-1 learns
vectors for words based on the most suitable topic
given document d while MSWE-2 marginalizes
over all senses of a word to take into account all
possible senses of the word:

Vwy,m + )\d,m,t/ X vy
1+ )\d,m,t’
T
Vwy,m + Zt:l )‘d,m,t X Uy
T
1+ Zt:1 )\d,m,t

MSWE-1:

Swd,m

MSWE-2:

Swd,m

where sy, ,, is the compositional vector represen-
tation of the m*" word wq,m and the topics in doc-
ument d; v,, is the target vector representation of a
word type w in vocabulary V'; v, is the vector rep-
resentation of topic ¢; 71" is the number of topics;
Ad,m,¢ 1s defined as in Equation 1, and in MSWE-1

we define t' = arg max Agm, ;.
t
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We learn representations by minimizing the fol-
lowing negative log-likelihood function:

My
L=- Z Z Z 1Og Pr(i}wd,m+]"swd,m) (2)
deD m=1 —k<j<k
770
h

where the m word Wq,m in document d is a tar-
get word while the (m + 7)™ word wg, .+ ; in doc-
ument d is a context word of wg,, and k is the
context size. In addition, v,, is the context vec-
tor representation of the word type w. The proba-
bility Pr(Vuw, . ;|Sw,,, ) is defined using the soft-
max function as follows:

- T
exp(’vwd’m+j Swd,m, )

> ey D50,

Pr(i}wd,m+]’ | Swd,m ) =

Since computing log Pr(¥w, ., ;|8w,.,) i ex-
pensive for each training instance, we approximate
log Pr(Vuw, ., ;|8ws,,) in Equation 2 with the
following negative-sampling objective (Mikolov
et al., 2013b):

Odm,m-+j
+

where each word ¢; is sampled from a noise distri-
bution.! In fact, MSWE can be viewed as a gener-
alization of the well-known Word2Vec Skip-gram
model with negative sampling (Mikolov et al.,
2013b) where all the mixture weights Ay, ; are
set to zero. The models are trained using Stochas-
tic Gradient Descent (SGD).

3 Experiments

We evaluate MSWE on two different tasks: word
similarity and word analogy. We also pro-
vide experimental results obtained by the baseline
Word2Vec Skip-gram model and other previous
works.

Note that not all previous results are mentioned
in this paper for comparison because the train-
ing corpora used in most previous research work
are much larger than ours (Baroni et al., 2014; Li
and Jurafsky, 2015; Schwartz et al., 2015; Levy
et al., 2015). Also there are differences in the
pre-processing steps that could affect the results.
We could also improve obtained results by using a

"We use an unigram distribution raised to the 3/4 power
(Mikolov et al., 2013b) as the noise distribution.



larger training corpus, but this is not central point
of our paper. The objective of our paper is that the
embeddings of topic and word can be combined
into a single mixture model, leading to good im-
provements as established empirically.

3.1 Experimental Setup

Following Huang et al. (2012) and Neelakantan
et al. (2014), we use the Wesbury Lab Wikipedia
corpus (Shaoul and Westbury, 2010) containing
over 2M articles with about 990M words for train-
ing. In the preprocessing step, texts are lower-
cased and tokenized, numbers are mapped to O,
and punctuation marks are removed. We extract a
vocabulary of 200,000 most frequent word tokens
from the pre-processed corpus. Words not occur-
ring in the vocabulary are mapped to a special to-
ken UNK, in which we use the embedding of UNK
for unknown words in the benchmark datasets.

We firstly use a small subset extracted from the
ws353 dataset (Finkelstein et al., 2002) to tune
the hyper-parameters of the baseline Word2Vec
Skip-gram model for the word similarity task (see
Section 3.2 for the task definition). We then
directly use the tuned hyper-parameters for our
MSWE variants. Vector size is also a hyper-
parameter. While some approaches use a higher
number of dimensions to obtain better results, we
fix the vector size to be 300 as used by the baseline
for a fair comparison. The vanilla Latent Dirichlet
Allocation (LDA) topic model (Blei et al., 2003) is
not scalable to a very large corpus, so we explore
faster online topic models developed for large cor-
pora. We train the online LDA topic model (Hoff-
man et al., 2010) on the training corpus, and use
the output of this topic model to compute the mix-
ture weights as in Equation 1.> We also use the
same WS353 subset to tune the numbers of top-
ics T' € {50,100, 200, 300,400}. We find that the
most suitable numbers are 7' = 50 and 1" = 200
then used for all our experiments. Here we learn
300-dimensional embeddings with the fixed con-
text size k = 5 (in Equation 2) and K = 10 (in
Equation 3) as used by the baseline. During train-
ing, we randomly initialize model parameters (i.e.
word and topic embeddings) and then learn them
by using SGD with the initial learning rate of 0.01.

2We use default parameters in gensim (Rehiifek and So-
jka, 2010) for the online LDA model.

Dataset |Word pairs | Reference
ws353 353 Finkelstein et al. (2002)
SIMLEX 999 Hill et al. (2015)
SCWS 2003 Huang et al. (2012)
RW 2034 Luong et al. (2013)
MEN 3000 |Bruni et al. (2014)
Table 1: The benchmark datasets. WsS353:

WordSimilarity-353. RW: Rare-Words. SIMLEX:
SimLex-999. scws: Stanford’s Contextual Word
Similarities. MEN: The MEN Test Collection.
Each dataset contains similarity scores of human
judgments for pairs of words.

3.2 Word Similarity

The word similarity task evaluates the quality of
word embedding models (Reisinger and Mooney,
2010). For a given dataset of word pairs, the eval-
uation is done by calculating correlation between
the similarity scores of corresponding word em-
bedding pairs with the human judgment scores.
Higher Spearman’s rank correlation (p) reflects
better word embedding model. We evaluate MSWE
on standard datasets (as given in Table 1) for the
word similarity evaluation task.

Following Reisinger and Mooney (2010),
Huang et al. (2012), Neelakantan et al. (2014), we
compute the similarity scores for a pair of words
(w,w") with or without their respective contexts
(¢, ) as:

GlobalSim (w,w") = cos (vw, V)

_T2 E E €08 (Va1 Vat 17)

t=1t'=1

Angzm w, w
AvgSimC (w, w/)
T

T
;222( (Vaw,t,Ve) X O (Ut 17, Ver)

t=1¢'=1

X €OS (Vw, ¢, Uyt 17) )

where v,, is the vector representation of the word
W, Uy ¢ 1s the multiple representation of the word
w and the topic t, v, is the vector representation
of the context ¢ of the word w. And cos (v, v’)
is the cosine similarity between two vectors v
and v’. For our experiments, we set Vot =
vy @ (Pr(w|t) x v;) and v, = <ﬁ Y wee 'vw> @
(>_; Pr(t|e) x vy), in which & is the concatena-
tion operation and Pr (t|c) is inferred from the
topic models by considering context ¢ as a docu-
ment. GlobalSim only regards word embeddings,
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Model [RW  [SIMLEX[scws[ws353[MEN
Huang et al. (2012) - - 58.6 |71.3 |-
Luong et al. (2013) 34.36 |- 48.48 |64.58 |-
Qiu et al. (2014) 32.13 |- 53.40 [65.19 |-
Neelakantan et al. (2014) - - 65.5 69.2 -
Chen et al. (2014) - - 64.2 |- -
Hill et al. (2015) - 414 - 65.5 |69.9
Vilnis and McCallum (2015) |- 32.23 - 65.49 |71.31
Schnabel et al. (2015) - - - 64.0 |70.7
Rastogi et al. (2015) 329 |36.7 65.6 |70.8 73.9
Flekova and Gurevych (2016) |- - - - 74.26
Word2Vec Skip-gram 32.64 [3820 66.37|71.61 |75.49
MSWE- 150 34.85 [38.77 |66.83|72.40 |76.23
MSWE- 1509 35.27 |38.70  |66.80 |72.05 |76.05
MSWE-25¢ 3498 |38.79 66.61 |71.71 |75.90
MSWE-2500 35.56*39.19* |66.65|72.29 |76.37*

Table 2: Spearman’s rank correlation (p x 100) for
the word similarity task when using GlobalSim.
Subscripts 50 and 200 denote the online LDA
topic model trained with 7' = 50 and T' = 200
topics, respectively. * denotes that our best score
is significantly higher than the score of the base-
line (with p < 0.05, online toolkit from http:
/Iwww.philippsinger.info/?p=347). Scores in bold
and underline are the best and second best scores.

while AvgSim considers multiple representations
to capture different meanings (i.e. topics) and us-
ages of a word. AvgSimC generalizes AvgSim
by taking into account the likelihood 6 (v ¢, v.)
that word w takes topic ¢ given context c. § (v, v”’)
is the inverse of the cosine distance from v to v’
(Huang et al., 2012; Neelakantan et al., 2014).

3.2.1 Results for word similarity

Table 2 compares the evaluation results of MSWE
with results reported in prior work on the stan-
dard word similarity task when using GlobalSim.
We use subscripts 50 and 200 to denote the topic
model trained with T" = 50 and 7" = 200 topics,
respectively. Table 2 shows that our model out-
performs the baseline Word2 Vec Skip-gram model
(in fifth row from bottom). Specifically, on the RW
dataset, MSWE obtains a significant improvement
of 2.92 in the Spearman’s rank correlation (which
is about 8.5% relative improvement).

Compared to the published results, MSWE ob-
tains the highest accuracy on the RW, SCWS,
WS353 and MEN datasets, and achieves the second
highest result on the SIMLEX dataset. These in-
dicate that MSWE learns better representations for
words taking into account different meanings.

3.2.2 Results for contextual word similarity

We evaluate our model MSWE by using AvgSim
and AvgSimC' on the benchmark SCWS dataset
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Model ‘ AvgSim ‘ AvgSimC
Huang et al. (2012) 62.8 65.7
Neelakantan et al. (2014) 67.3 69.3
Chen et al. (2014) 66.2 68.9
Chen et al. (2015) 65.7 66.4
Wu and Giles (2015) - 66.4
Jauhar et al. (2015) - 65.7
Cheng and Kartsaklis (2015)| 62.5 -
Tacobacci et al. (2015) 62.4 -
Cheng et al. (2015) - 65.9
MSWE-15¢ 66.6 66.7
MSWE- 1999 66.7 66.6
MSWE-250 66.4 66.6
MSWE-2909 66.6 66.6

Table 3: Spearman’s rank correlation (p x 100) on
SCWS, using AvgSim and AvgSimC.

which considers effects of the contextual informa-
tion on the word similarity task. As shown in Ta-
ble 3, MSWE scores better than the closely related
model proposed by Cheng et al. (2015) and gener-
ally obtains good results for this context sensitive
dataset. Although we produce better scores than
Neelakantan et al. (2014) and Chen et al. (2014)
when using GlobalSim, we are outperformed by
them when using AvgSim and AvgSimC'. Nee-
lakantan et al. (2014) clustered the embeddings
of the context words around each target word to
predict its sense and Chen et al. (2014) used pre-
trained word embeddings to initialize vector rep-
resentations of senses taken from WordNet, while
we use a fixed number of topics as senses for
words in MSWE.

3.3 Word Analogy

We evaluate the embedding models on the word
analogy task introduced by Mikolov et al. (2013a).
The task aims to answer questions in the form of
“aistobascisto_?’ denoted as “a: b — c:
?” (e.g., “Hanoi : Vietham — Bern : ?”). There
are 8,869 semantic and 10,675 syntactic questions
grouped into 14 categories. Each question is an-
swered by finding the most suitable word closest
to “vp — v, + v~ measured by the cosine similar-
ity. The answer is correct only if the found closest
word is exactly the same as the gold-standard (cor-
rect) one for the question.

We report accuracies in Table 4 and show that
MSWE achieves better results in comparison with
the baseline Word2Vec Skip-gram. In particular,
MSWE reaches the accuracies of around 69.7%



Model ‘ Accuracy (%)
Pennington et al. (2014) 70.3
Baroni et al. (2014) 68.0
Neelakantan et al. (2014) 64.0
Ghannay et al. (2016) 62.3
Word2Vec Skip-gram \ 68.6
MSWE-15q 69.6
MSWE-1990 69.9
MSWE-25q 69.7
MSWE-2900 69.5

Table 4: Accuracies for the word analogy task. All
our results are significantly higher than the result
of Word2Vec Skip-gram (with two-tail p < 0.001
using McNemar’s test). Pennington et al. (2014)
used a larger training corpus of 1.6B words.

which is higher than the accuracy of 68.6% ob-
tained by Word2Vec Skip-gram.

4 Conclusions

In this paper, we described a mixture model for
learning multi-sense embeddings. Our model in-
duces mixture weights to represent a word given
context based on a mixture of its sense representa-
tions. The results show that our model scores bet-
ter than Word2Vec, and produces highly competi-
tive results on the standard evaluation tasks. In fu-
ture work, we will explore better methods for tak-
ing into account the contextual information. We
also plan to explore different approaches to com-
pute the mixture weights in our model. For exam-
ple, if there is a large sense-annotated corpus avail-
able for training, the mixture weights could be de-
fined based on the frequency (sense-count) distri-
butions, instead of using the probability distribu-
tions produced by a topic model. Furthermore, it is
possible to consider the weights of senses as addi-
tional model parameters to be then learned during
training.
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Abstract

Script knowledge plays a central role in
text understanding and is relevant for a va-
riety of downstream tasks. In this paper, we
consider two recent datasets which provide
arich and general representation of script
events in terms of paraphrase sets. We in-
troduce the task of mapping event mentions
in narrative texts to such script event types,
and present a model for this task that ex-
ploits rich linguistic representations as well
as information on temporal ordering. The
results of our experiments demonstrate that
this complex task is indeed feasible.

1 Introduction

Event structure is a prominent topic in NLP. While
semantic role labelers (Gildea and Jurafsky, 2002;
Palmer et al., 2010) are well-established tools for
the analysis of the internal structure of event de-
scriptions, modeling relations between events has
gained increasing attention in recent years. Re-
search on event coreference (Bejan and Harabagiu,
2010; Lee et al., 2012), temporal event ordering
in newswire texts (Ling and Weld, 2010), as well
as shared tasks on cross-document event ordering
(Minard et al., 2015, inter alia) have in common
that they model cross-document relations.

The focus of this paper is on the task of analyzing
text-internal event structure. We share the view of a
long tradition in NLP (see e.g. Schank and Abelson
(1975); Chambers and Jurafsky (2009); Regneri
et al. (2010)) that script knowledge is of central im-
portance to this task, i.e. common-sense knowledge
about events and their typical order in everyday
activities (also referred to as scenarios, Barr and
Feigenbaum (1981)). Script knowledge guides ex-
pectation by predicting which type of event or dis-
course referent might be addressed next in a story
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(Modi et al., 2017), allows to infer missing events
from events explicitly mentioned (Chambers and
Jurafsky, 2009; Jans et al., 2012; Rudinger et al.,
2015), and to determine text-internal temporal or-
der (Modi and Titov, 2014; Frermann et al., 2014).

We address the task of automatically mapping
narrative texts to scripts, which will leverage ex-
plicit script knowledge for the afore-mentioned as-
pects of text understanding, as well as for down-
stream tasks such as textual entailment, question
answering or paraphrase detection. We build on
the work of Regneri et al. (2010) and Wanzare et al.
(2016), who collect explicit script knowledge via
crowdsourcing, by asking people to describe ev-
eryday activities. These crowdsourced descriptions
form a basis for high-quality automatic extraction
of script structure without any human intervention
(Regneri et al., 2010; Wanzare et al., 2017). The
events of the resulting structure are defined as sets
of alternative realizations, which cover lexical vari-
ation and provide paraphrase information. To the
best of our knowledge, these advantages have not
been explicitly used elsewhere.

Aligning script structures with texts is a complex
task. In a first attempt, we assume that three steps
are necessary to solve it, although in the long run,
an integrated approach will be preferable: First, the
script which is addressed by the event mention must
be identified. Second, it has to be decided whether
a verb denotes a script event at all. Finally, event
verbs need to be assigned a script-specific event
type label. This work focuses on the last two steps:
We use a corpus of narrative stories each of which
is centered around a specific script scenario, and
distinguish verbs related to the central script from
all other verb occurrences with a simple decision
tree classifier. We then train a sequence labeling
model only on crowdsourced script data and assign
event type labels to all script-related event verbs.

Our results substantially outperform informed
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Yesterday was my sister's birthday. I decided to bake a cake.

I looll(ed up the recipe. In my kitchen, I nllixed the ingredients.

: TAKE_INGR. /
1 — 1
| - take ing. from !
v cupboard 4
CHOOSE_  |7_ got eggs a/MIX_INGR. | |BAKE
RECIPE - mix - put cake in
- find recipe thoroughly oven
- look for recipe ™| BUY_INGR. | use mixer - bake batter
- buy flour
- go to store

Figure 1: An example of text-to-script mapping
with an excerpt of the BAKING A CAKE script and
a story snippet.

baselines, in spite of the availability of only small
amounts of training data. In particular, we also
demonstrate the relevance of event ordering infor-
mation provided by script knowledge.

Our code and all data and parameters that
are used are publicly available under https://
github.com/SimonOst.

2 Task and Data

As a basis for the task of text-to-script mapping,
we make use of two recently published datasets.
DeScript (Wanzare et al., 2016) is a collection of
crowdsourced linguistic descriptions of event pat-
terns for everyday activities, so called event se-
quence descriptions (ESDs). ESDs consist of short
telegram-style descriptions of single events (event
descriptions, ED). The textual order of EDs corre-
sponds to the temporal order of respective events,
i.e. temporal information is explicitly encoded. De-
Script contains 50 ESDs for each of 40 different
scenarios. Alongside the ESDs, it also provides
gold event paraphrase sets, i.e. clusters of all event
descriptions denoting the same event type, labeled
with the respective type.

While DeScript is a source of structured script
knowledge, the InScript corpus (Modi et al., 2016)
provides us with the appropriate kind of narrative
texts. InScript is a collection of 910 stories cen-
tered around some specific scenario, for 10 of the
40 scenarios in DeScript, e.g. BAKING A CAKE,
RIDING A BUS, TAKING A SHOWER. All verbs
occurring in the texts are annotated with an event
type if they are relevant to the script instantiated by
the story; as non-script event otherwise.

In the upper part of Fig. 1, you see the initial
fragment of a story about baking a cake; together
with a script excerpt in the lower part, depicted
by labeled event paraphrase sets. I looked up the

recipe and I mixed the ingredients mention rele-
vant script events, and therefore should be labeled
with the indicated event types (CHOOSE_RECIPE,
MIX_INGREDIENTS). Fig. 1 also illustrates the po-
tential of text-to-script mapping: script knowledge
enables to predict that a baking event might be ad-
dressed next in the story. The verb was does not
denote an event at all, and decide is not part of the
BAKING A CAKE script, so they are assigned the la-
bel non-script event. Actually, InScript comes with
two additional categories of verbs (script-related
and script-evoking), which we subsume under non-
script event.

The central task addressed in our paper, the au-
tomatic labeling of all script-relevant verbs in the
InScript text with a script-specific event type, uses
only DeScript data for training; event-type labels
of InScript are used for evaluation purposes only.

3 Model

Section 3.1 defines the central part of our system,
a sequence model for classifying script-relevant
verbs into scenario-specific event types. For full
automation of the text-to-script mapping, we de-
scribe in Section 3.2 a model for identifying script-
relevant verbs.

3.1 Event Type Classification

For identifying the correct event type given a script-
relevant verb, we leverage two types of information:
We require a representation for the meaning and
content of the event mention, which takes into ac-
count not only the verb, but also the persons and
objects involved in an event, i.e. the script partic-
ipants. In addition, we take event ordering infor-
mation into account, which helps to disambiguate
event mentions based on their local context. To
model both event types and sequences thereof, we
implement a linear-chain conditional random field
(CREF, Lafferty et al. (2001)). Our implementation
is based on the CRF++ toolkit' and employs two
types of features:

Sequential Feature. Our CRF model utilizes
event ordering information in the form of binary
indicator features that encode the co-occurrence of
two event type labels in sequence.

Meaning Representation Features. Two fea-
ture types encode the meaning of a textual event
mention. One is a shallow form of representa-
tion derived from precomputed word embeddings

'taku910.github.io/crfpp/
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(word2vec, Mikolov et al. (2013)). This feature
type captures distributional information of the verb
and its direct nominal dependents?, which we as-
sume to denote script participants, and is computed
by averaging over the respective word vector rep-
resentations.> We use pretrained 300-dimensional
embeddings that are trained on the Google News
corpus.*As a more explicit but sparse form of con-
tent representation, we use as the other type of
feature the lemma of the verb, its indirect object
and its direct object.

3.2 Identifying Script-Relevant Verbs

We use a decision tree classifier for identifying
script-relevant verbs (J48 from the Weka toolkit,
Frank et al. (2016)) that takes into account four
classes: the three non-script event classes from In-
Script and one class for all event-verbs. At test
time, the three non-script event classes are merged
into one class. Due to the lack of non-script event
instances in DeScript, we train and test our model
on all verbs occurring in InScript. We use the fol-
lowing feature types:

Syntactic Features. We employ syntactic fea-
tures for identifying verbs that only rarely denote
script events, independent of the scenario: a feature
for auxiliaries; for verbs that govern an adverbial
phrase (mostly if-clauses); a feature indicating the
number of direct and indirect objects; and a lex-
ical feature that checks if the verb belongs to a
predefined list of non-action verbs.

Script Features. For finding verbs that match
the current script scenario, we employ two features:
a binary feature indicating whether the verb is used
in the ESDs for the given scenario; and a scenario-
specific tf—idf score that is computed by treating all
ESDs from a scenario as one document, summed
over the verb and its dependents. In Section 4.2, we
evaluate models with and without script features,
to test the impact of scenario-specific information.

Frame Feature. We further employ frame-
semantic information because we expect script
events to typically evoke certain frames.We use
a state-of-the-art semantic role labeler (Roth, 2016;
Roth and Lapata, 2016) based on FrameNet (Rup-

For EDs, we use all mentioned head nouns.

3To emphasize the importance of the verb, we double its
weight when averaging.

“Because our CRF model only supports nominal fea-
tures, we discretize embeddings from code . google.com/
archive/p/word2vec/ by binning the component val-
ues into three intervals [—oco, —€], [—¢, €], [¢, oo]. The hyper-
parameter e is determined on a held-out development set.

P R Fp

Lemma 0.365 0.949 0.526
Our model 0.628 0.817 0.709
Our model (scen. indep.) 0.513 0.877 0.645

Table 1: Identification of script-relevant verbs
within a scenario and independent of the scenario.

penhofer et al., 2006) to predict frames for all verbs,
encoding the frame as a feature. We address spar-
sity of too specific frames by mapping all frames
to higher-level super frames using the framenet
querying package’.

4 Evaluation

4.1 Experimental Setup

We evaluate our model for text-to-script mapping
based on the resources introduced in Section 2. We
process the InScript and DeScript data sets using
the Stanford Parser (Klein and Manning, 2003)°.
We further resolve pronouns in InScript using an-
notated coreference chains from the gold standard.

We individually test the two components, i.e.
the identification of script-relevant verbs and event
classification. Experiments on the first sub-task
are described in Section 4.2. Sections 4.3 and 4.4
present results on the latter task and a combination
of both tasks, respectively.

4.2 Identifying Script-Relevant Verbs

In this evaluation, we test the ability of our model
to identify verbs in narrative texts that instanti-
ate script events. Our experiments make use of
a 10-fold cross-validation setting within all texts
of one scenario. To test the model in a scenario-
independent setting, we perform additional experi-
ments based on a cross-validation with the 10 sce-
narios as one fold each and exclude the script fea-
tures. That is, we repeatedly train our model on 9
scenarios and evaluate on the remaining scenario,
without using any information about the test sce-
nario.

Models. We compare the model described in
Section 3.2 to a baseline (Lemma) that always as-
signs the event class if the verb lemma is mentioned
in DeScript. We report precision, recall and Fi-
score on event verbs, averaged over all scenarios.

5github .com/icsi-berkeley/framenet
%To improve performance on the simplistic sentences from
DeScript, we follow Regneri (2013) and re-train the parser.
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Results. Table 1 gives an overview of the results
based on 10-fold cross-validation. Our scenario-
specific model is capable of identifying more than
81% of script-relevant verbs at a precision of about
63%. This is a notable improvement over the base-
line, which identifies 94.9% of the event verbs, but
at a precision of only 36.5%.

The table also gives numbers for the scenario-
independent setting: Precision drops to around 51%
if only training data from other scenarios is avail-
able. One of the main difficulties here lies in clas-
sifying different non-script event verb classes in a
way that generalizes across scenarios. Modi et al.
(2016) also found that distinguishing specific types
of non-script events from script events can be diffi-
cult even for humans.

4.3 Event Type Classification

In this section, we describe experiments on the
text-to-script mapping task based on the subset of
event instances from InScript that are annotated as
script-related. As training data, we use the ESDs
and the event type annotations from the DeScript
gold standard’. The evaluation task is to classify
individual event mentions in /nScript based on their
verbal realization in the narrative text. We evaluate
against the gold-standard annotations from InScript.
Since event type annotations are used for evaluation
purposes only, this task comes close to a realistic
setup, in which script knowledge is available for
specific scenarios but no training data in the form
of event-type annotated narrative texts exists.

Models. We evaluate our CRF model described
in Section 3.1 against two baselines that are based
on textual similarity. Both baselines compare the
event verb and its dependents in InScript to all EDs
in DeScript and assign the event type with the high-
est similarity. Lemma is a simple measure based on
word overlap, word2vec uses the same embedding
representation as the CRF model (before discretiza-
tion) but simply assigns the best matching event
type label based on cosine similarity. We report pre-
cision, recall and F;-scores, macro-averaged over
all script-event types and scenarios.

Results. Results for all models are presented in
Table 2. Our CRF model achieves a F;-score of
0.545, a considerably higher performance in com-
parison to the baselines. As can be seen from ex-
cluding the sequential feature, ordering information

"In DeScript, there are some rare cases of EDs that do not

describe a script event, but that are labeled as non-script event.
We exclude these from the training data.
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P R F;
Lemma 0.343 0.416 0.374
Word2vec 0.356 0.448 0.395
CRF model  0.608 0.496 0.545
CRE no seq. 0.599 0.487 0.536

Table 2: Event Type Classification performance,
with and without sequential features.

P R F,

0.253 0.451 0.323
0.255 0.477 0.331
0.445 0.520 0.479

Ident. model+Lemma
Ident. model+Word2vec
Ident. model4+CRF model

Table 3: Full text-to-script mapping results.

improves the result. The rather small difference is
due to the fact that ordering information can also
be misleading (cf. Section 5). We found, however,
that including the sequential feature accounts for
an improvement of up to 4% in F; score, depending
on the scenario.

4.4 Full Text-to-Script Mapping Task

We now address the full text-to-script mapping task,
a combination of the identification of relevant verbs
and event type classification. This setup allows
us to assess whether the general task of a fully
automatic mapping of verbs in narrative texts to
script events is feasible.

Models. We compare the same models as in
Section 4.3, but use them on top of our model for
identifying script-relevant verbs (cf. Section 4.2)
instead of using the gold standard for identification.

Results. On the full text-to-script mapping
task, our combined identification and CRF model
achieves a precision and recall of 0.445 and 0.52,
resp. (cf. Table 3). This reflects an absolute im-
provement over the baselines of 0.148 and 0.156
in terms of Fy-score. The results reflect the general
difficulty of this task but are promising overall. As
reported by Modi et al. (2016), even human anno-
tators only achieve an agreement of 0.64 in terms
of Fleiss’ Kappa (1971).

5 Discussion

In this section, we discuss cases in which our sys-
tem predicted the wrong event type and give exam-
ples for each case. We identified three major error
sources:



Lexical Coverage. We found that although De-
Script is a small resource, training a model purely
on ESDs works reasonably well. Coverage prob-
lems can be seen in cases of events for which only
few EDs exist. An example is the CHOOSE_TREE
event (the event of picking a tree at the shop) in the
PLANTING A TREE scenario. There are only 3 EDs
describing the event, each of which uses the event
verb “choose”. In contrast, we find that “choose”
is used in less than 10% of the event mentions in
InScript. Because of this mismatch, which can be
attributed to the small training data size, more fre-
quently used verbs for this event in InScript, such
as “pick” and “decide”, are labeled incorrectly.

We observe that our meaning representation
might be insufficient for finding synonyms for
about 30% of observed verb tokens. This specif-
ically includes scenario-specific and uncommon
verbs, such as “squirt” in the context of the BAK-
ING A CAKE scenario (squirt the frosting onto the
cake). Problems may also arise from the fact that
about 23% of the verb types occur in multiple para-
phrase clusters of a scenario.

Misleading Ordering Information. We found
that ordering information is in general beneficial
for text-to-script alignment. We however also iden-
tified cases for which it can be misleading, by com-
paring the output of our full model to the model
that does not use sequential features. As another
result of the small size of DeScript, there are plau-
sible event sequences that appear only rarely or
never in the training data. This error source is
involved in 60-70% of the observed misclassifi-
cations due to misleading ordering information.
An example is the WASH event in the GETTING A
HAIRCUT scenario: It never appears directly after
the MOVE_IN_SALON event (i.e. walking from the
counter to the chair) in DeScript, but its a plausible
sequence that is misclassified by our model.

In almost 15% of the observed errors, an event
type is mentioned more than once, leading to mis-
classifications whenever ordering information is
used. One reason for this might be that events in
InScript are described in a more exhaustive or fine-
grained way. For example, the WASH event in the
TAKING A BATH scenario is often broken up into
three mentions: wetting the hair, applying sham-
poo, and washing it again. However, because there
is only one event type for the three mentions, this
sequence is never observed in DeScript.

Events with an interchangeable natural order
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lead to errors in a number of cases: In the BAKING
A CAKE scenario, a few misclassifications happen
because the order in which e.g. ingredients are pre-
pared, the pan is greased and the oven is preheated
is very flexible, but the model overfits to what it
observed from the training.

As last, there are also a few cases in which an
event is mentioned, even before it actually takes
place. In the case of the borrowing a book scenario,
there are cases in InScript that mention in the first
sentence that the purpose of the visit is to return a
book. In DeScript in contrast, the RETURN event
always takes place in the very end.

Near Misses. For many verbs, it is also difficult
for humans to come up with one correct event la-
bel. By investigating confusion matrices for single
scenarios, we found that for at least 3—-5% of script
event verbs in the test set, our model predicted
an “incorrect” label for such verbs, but that label
might still be plausible. In the BAKING A CAKE
scenario, for example, there is little to no differ-
ence between mentions of making the dough and
preparing ingredients. As a consequence, these two
events are often confused: Approximately 50% of
the instances labeled as PREPARE_INGREDIENTS
are actually instances of MAKE_DOUGH.

6 Summary

In this paper, we addressed the task of automati-
cally mapping event denoting expressions in nar-
rative texts to script events, based on an explicit
script representation that is learned from crowd-
sourced data rather than from text collections. Our
models outperform two similarity-based baselines
by leveraging rich event representations and or-
dering information. We showed that models of
script knowledge can be successfully trained on
crowdsourced data, even if the number of training
examples is small. This work thus builds a basis
for utilizing the advantages of crowdsourced script
representations for downstream tasks and future
work, e.g. paraphrase identification in discourse
context or event prediction on narrative texts.
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Abstract

This paper explores the possibilities of
analogical reasoning with vector space
models. Given two pairs of words with
the same relation (e.g.
king:queen), it was proposed that the off-
set between one pair of the corresponding
word vectors can be used to identify the

man:woman .:

—
unknown member of the other pair (king
— man + woman = lqueen). We ar-
gue against such “linguistic regularities”
as a model for linguistic relations in vector
space models and as a benchmark, and we
show that the vector offset (as well as two
other, better-performing methods) suffers
from dependence on vector similarity.

1 Introduction

This paper considers the phenomenon of “vector-
oriented reasoning” via linear vector offset in
vector space models (VSMs) (Mikolov et al.,
2013c,a). Given two pairs of words with the same
linguistic relation (woman:man :: king:queen), it
has been proposed that the offset between one pair
of word vectors can be used to identify the un-
known member of a different pair of words via
solving proportional analogy problems (lTné -
man + woman = ?queen), as shown in Fig. 1.
We will refer to this method as 3CosAdd.

This approach attracted a lot of attention, both
as the “poster child” of word embeddings, and
for its potential practical utility. Given the vi-
tal role that analogical reasoning plays in human
cognition for discovering new knowledge and un-
derstanding new concepts, automated analogical
reasoning could become a game-changer in many
fields, providing a universal mechanism for detect-
ing linguistic relations (Turney, 2008) and word
sense disambiguation (Federici et al., 1997). It is
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already used in many downstream NLP tasks, such
as splitting compounds (Daiber et al., 2015), se-
mantic search (Cohen et al., 2015), cross-language
relational search (Duc et al., 2012), to name a few.

WOMAN

A

MAN

QUEENS

N\

QUEEN

AUNT

KINGS

AN

KING

UNCLE
QUEEN

KING

Figure 1: Linguistic relations modeled by linear
vector offset (Mikolov et al., 2013c¢)

The idea that linguistic relations are mirrored in
neat geometrical relations (as shown in Fig. 1) is
also intuitively appealing, and 3CosAdd has be-
come a popular benchmark. Roughly, the current
VSMs score between 40% (Lai et al., 2016) and
75% (Pennington et al., 2014) on the Google test
set (Mikolov et al., 2013a). However, in fact per-
formance varies widely for different types of re-
lations (Levy and Goldberg, 2014; Koper et al.,
2015; Gladkova et al., 2016).

One way to explain the current limitations is to
attribute them to the imperfections of the current
models and/or corpora with which they are built:
with this view, in a perfect VSM, any linguistic
relation should be recoverable via vector offset.

The alternative to be explored in this paper is
that perhaps natural language semantics is more
complex than suggested by Fig. 1, and there may
be both theoretical and mathematical issues with
analogical reasoning with word vectors and its
3CosAdd implementation.

We present a series of experiments with two
popular VSMs (GloVe and Word2Vec) to show
that the accuracy of 3CosAdd depends on the
proximity of the target vector to its source (i.e.
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queen should be quite similar to lTrLg)). Since
not all linguistic relations can be expected to result
in high word vector proximity, the method is lim-
ited to those that happen to be so in a given VSM.
Furthermore, its accuracy also varies because the
“linguistic regularities” are actually not so regu-
lar, and should not be expected to be so. We also
compare 3CosAdd to two alternative methods to
investigate whether better algorithms can improve
on these and other accounts.

2 Background: “Relational Similarity”
vs “Word Analogies”

The most fundamental term for what 3CosAdd is
supposed to capture is actually not analogy, but
rather relational similarity, i.e. the idea that pairs
of words may hold similar relations to those be-
tween other pairs of words. For example, the re-
lation between cat and feline is similar to the re-
lation between dog and canine. Notably, this is
similarity rather than identity: “instances of a sin-
gle relation may still have significant variability in
how characteristic they are of that class” (Jurgens
etal., 2012).

Analogy as it is known in philosophy and logic
is something quite different. The “classical” ana-
logical reasoning follows roughly this template:
objects X and Y share properties a, b, and c; there-
fore, they may also share the property d. For ex-
ample, both Earth and Mars orbit the Sun, have at
least one moon, revolve on axis, and are subject to
gravity; therefore, if Earth supports life, so could
Mars (Bartha, 2016).

The NLP move from relational similarity to
analogy follows the use of the term by P. Turney,
who distinguishes between attributional similarity
between two words and relational similarity be-
tween two pairs of words. On this interpretation,
two word pairs that have a high degree of rela-
tional similarity are analogous (Turney, 2006).

In terms of practical NLP tasks, Turney et al.
(2003) introduced the task of solving SAT' anal-
ogy problems by choosing from several provided
options. These problems were formulated as pro-
portional analogies, written in the form a : a ::
b:b (aistoa’ asbistod)

It is this use of the term “analogy” that Mikolov
et al. (2013c) followed in proposing the 3CosAdd
method. They formulated the task as selecting a
single best fitting vector out of the whole vocabu-

'Scholastic Aptitude Test.
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lary of the VSM. It became known as word anal-
ogy task, but in its core it is still basically esti-
mation of relational similarity, and could be for-
mulated as such: given a pair of words a and d’,
find how they are related and then find word b/,
such that it has a similar relation with the word b.
A crucial difference is that the graded, non-binary
nature of relational similarity is now not in focus:
the goal is to find a single correct answer.

The dataset that came to be known as the
Google analogy test set (Mikolov et al., 2013a),
included 14 linguistic relations with 19544 ques-
tions in total. It has become one of the most
popular benchmarks for VSMs. This evaluation
paradigm assumes that:

(1) Words in similar linguistic relations should in
principle be recoverable via relational similar-
ity to known word pairs.

(2) 3CosAdd score reflects the extent to which a
given VSM encodes linguistic relations.

(1) became dubious when it was shown that ac-
curacy of 3CosAdd varies widely between cate-
gories (Levy and Goldberg, 2014), and even the
best-performing GloVe model scores under 30%
on the more challenging Bigger Analogy Test Set
(BATS) (Gladkova et al., 2016). It appears that
not all relations can be identified in this way, with
lexical semantic relations such as synonymy and
antonymy being particularly difficult (K&per et al.,
2015; Vylomova et al., 2016). The assumption of
a single best-fitting candidate answer is also being
targeted (Newman-Griffis et al., 2017).

(2) was refuted when Drozd et al. (2016)
demonstrated that some relations missed by
3CosAdd could be recovered with a supervised
method, and therefore the information was present
in the VSM - just not recoverable with 3CosAdd.

Let us consider why both (1) and (2) failed.

3 What Does 3CosAdd Really Do?
3.1 Methodology

We present a series of experiments performed with
BATS dataset. Although there are more results on
analogy task published with Google test than with
BATS, Google test only contains 15 types of lin-
guistic relations, and these happen to be the easier
ones (Gladkova et al., 2016).

Table 1 lists examples of each BATS category:
there are 50 word pairs for each of 40 linguistic



Inflectional Nouns regular plurals (student:students), plurals with orthographic changes (wife:wives)
morphology  Adjectives comparative degree (strong:stronger), superlative degree (strong:strongest)

Verbs infinitive: 3Ps.Sg (follow:follows), infinitive: participle (follow:following), infinitive:
past (follow:followed), participle: 3Ps.Sg (following:follows), participle: past (follow-
ing:followed), 3Ps.Sg : past (follows:followed)

Derivational ~ Stem verb+er (bake:baker), verb+able (edit:editable), verb+ation (continue:continuation),
morphology  change verb+ment (argue:argument)

No stem re+verb (create:recreate), noun+less (home:homeless), adj.+ness (mad:madness),

change un+adj. (able:unable), adj.+ly (usual:usually), over+adj. (used:overused)

Lexicographic Hypernyms animals (turtle:reptile), miscellaneous (peach:fruit)
semantics Hyponyms miscellaneous (color:white)

Meronyms part-whole (car:engine), substance (sea:water), member (player:team),

Antonyms  opposites (up:down), gradable (clean:dirty)

Synonyms  exact (sofa:couch), intensity (cry:scream)

Encyclopedic Animals the young (cat:kitten), sounds (dog:bark), shelter fox:den

semantics Geography capitals (Athens:Greece), languages (Peru:Spanish), UK city:county York:Yorkshire
People occupation (Lincoln:president), nationalities (Lincoln:American)
Other thing:color (blood:red), male:female (actor:actress)

Table 1: The Bigger Analogy Test Set: categories and examples

relations (98,000 questions in total). BATS covers
most relations in the Google set, but it adds many
new and more difficult relations, balanced across
derivational and inflectional morphology, lexico-
graphic and encyclopedic semantics (10 relations
of each type). Thus BATS provides a less flatter-
ing, but more accurate estimate of the capacity for
analogical reasoning in the current VSMs.

We use pre-trained GloVe vectors by Penning-
ton et al. (2014), released by the authors® and
trained on Gigaword 5 + Wikipedia 2014 (300 di-
mensions, window size 10). We also experiment
with Word2Vec vectors (Mikolov et al., 2013b) re-
leased by the authors?, trained on a subcorpus of
Google news (also with 300 dimensions).

The evaluation with 3CosAdd and LRCos meth-
ods was conducted with the Python script that ac-
companies BATS. We also added an implementa-
tion of 3CosMul, a multiplicative objective pro-
posed by Levy and Goldberg (2014), now avail-
able in the same script*. Since 3CosMul requires
normalization, we used normalized GloVe and
Word2Vec vectors in all experiments.

Questions with words not in the model vocab-
ulary were excluded (0.01% BATS questions for
GloVe and 0.016% for Word2Vec).

3.2 The “Honest” 3CosAdd

Let us remember that 3CosAdd as initially formu-
lated by Mikolov et al. (2013c) excludes the three

https://nlp.stanford.edu/projects/
glove/
Shttps://code.google.com/archive/p/
word2vec/
4 .
http://vsm.blackbird.pw/tools/
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source vectors a, a’ and b from the pool of possi-
ble answers. Linzen (2016) showed that if that is
not done, the accuracy drops dramatically, hitting
zero for 9 out of 15 Google test categories.

Let us investigate what happens on BATS data,
split by 4 relation types. The rows of Fig. 2
represent all questions of a given category, with
darker color indicating higher percentage of pre-
dicted vectors being the closest to a, a’, b, b/, or
any other vector.

b b'  other

Derivation . 0.75
Inflections . 0.60
0.45

Lexicography . 0.30
Encyclopedia . 0.15
0.00

Figure 2: The result of a — @’ + b calculation on
BATS: source vectors a, a’, and b are not excluded.

Fig. 2 shows that if we do not exclude the
source vectors, b is the most likely to be predicted;
in derivational and encyclopedic categories a’ is
also possible in under 30% of cases. ' is as un-
likely to be predicted as a, or any other vector.

This experiment suggests that the addition of
the offset between a and o typically has a very
small effect on the b vector — not sufficient to in-
duce a shift to a different vector on its own. This
would in effect limit the search space of 3CosAdd
to the close neighborhood of the b vector.

It explains another phenomenon pointed out by
Linzen (2016): for the plural noun category in the



Ly
=)

share of all questions
B accuracy (top 1)
[0 accuracy (top 3)
3 accuracy (top 5)

o
©

o
o

o

share / accuracy
H

1.0

share of all questions
B accuracy (top 1)
3 accuracy (top 3)
[ accuracy (top 5)

o o
o o

I

share / accuracy
»

o
N

(d) similarity between vector b’ and pre-
dicted vector

(e) similarity between vector b’ and a

() rank of b in the neighborhood of ¥’

*X-axis labels indicate lower boundary of the corresponding similarity/rank bins.
The numerical values for all data can be found in the Appendix.

Figure 3: Accuracy of 3CosAdd method on GloVe vs characteristics of the vector space.

Google test set 70% accuracy was achieved by
simply taking the closest neighbor of the vector
b, while 3CosAdd improved the accuracy by only
10%. That would indeed be expected if most sin-
gular (a) and plural (a’) forms of the same noun
were so similar, that subtracting them would result
in a nearly-null vector which would not change
much when added to b.

3.3 Distance to the Target Vector

Levy and Goldberg (2014, p.173) suggested that
3CosAdd method is “mathematically equivalent to
seeking a word (b') which is similar to b and o’ but
is different from a.” We examined the similarity
between all source vector pairs, looking not only
at the actual, top-1 accuracy of the 3CosAdd (i.e.
the vector the closest to the hypothetical vector),
but also at whether the correct answer was found
in the top-3 and top-5 neighbors of the predicted
vector. For each similarity bin we also estimated
how many questions of the whole BATS dataset
there were. The results are presented in Fig. 3.
Our data indicates that, indeed, for all combina-
tions of source vectors, the accuracy of 3CosAdd
decreases as their distance in vector space in-
creases. It is the most successful when all three
source vectors are relatively close to each other
and the target vector. This is in line with the above
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evidence from the “honest” 3CosAdd: if the offset
is typically small, for it to lead to the target vector,
that target vector should be close.

Consider also the ranks of the b vectors in the
neighborhood of ¥’, shown in Fig. 3f. For nearly
40% of the successful questions b’ was within 10
neighbors of b — and over 40% of low-accuracy
questions were over 90 neighbors away.

As predicted by Levy et al., b’ and a vectors do
not exhibit the same clear trend for higher accu-
racy with higher similarity that is observed in all
other cases (Fig. 3f). However, in experiments
with only 20 morphological categories we did ob-
serve the same trend for &’ and a as for the other
vector pairs (see Fig. 4). This is counter-intuitive,
and requires further examination.

share of all questions
@A accuracy (top 1)
=3 accuracy (top 3)
[Z3 accuracy (top 5)

o

share / accuracy
S

Figure 4: The similarity between & and a on
GloVe: morphological BATS categories only.



The observed correlation between the accuracy
of 3CosAdd and the distance to the target vec-
tor could explain in particular the overall lower
performance on BATS derivational morphology
questions (only 0.08% top-1 accuracy) as opposed
to inflectional (0.59%) or encyclopedic seman-
tics (0.26%). man and woman could be ex-
pected to be reasonably similar distributionally,
as they combine with many of the same verbs:
both men and women sit, sleep, drink etc. How-
ever, the same could not be said of words derived
with prefixes that change part of speech. Going

from happy to happiness, or from govern to
government, is likely to have to take us further
in the vector space.

To make sure that the above trend is not spe-
cific to GloVe, we repeated these experiments with
Word2Vec, which exhibited the same trends. All
data is presented in Appendix A.1.

3.4 Uniqueness of a Relation

Note that the dependence of 3CosAdd on similar-
ity is not entirely straightforward: Fig. 3b shows
that for the highest similarity (0.9 and more) there
is actually a drop in accuracy. The same trend was
observed with Word2Vec (Fig 10 in Appendix 1).
Theoretically, it could be attributed to there not be-
ing much data in the highest similarity range; but
BATS has 98,000 questions, and even 0.1% of that
is considerable.

The culprit is the “dishonesty” of 3CosAdd: as
discussed above, it excludes the source vectors a,
a’, and b from the pool of possible answers. Not
only does this mask the real extent of the differ-
ence between a and o/, but it also creates a funda-
mental difficulty with categories where the source
vectors may be the correct answers.

This is what explains the unexpected drops in
accuracy at the highest similarity between vec-

. . _ —
tors b’ and a/. Consider the question blood:red

L
:: snow:?Twhite. The vector offset could theoret-
ically solve it, but if the question is snow:white
i1 sugar:?white, the correct answer would a pri-
ori be excluded. In BATS data, this factor af-
fects several semantic categories, including coun-
try:language, thing:color, animal:young, and ani-
mal:shelter.

3.5 Density of Vector Neighborhoods

If solving proportional analogies with word vec-
tors is like shooting, the farther away the target

139

vector is, the more difficult it should be to hit.
Also, we can hypothesize that the more crowded
a particular region is, the more difficult it should
be to hit a particular target.

However, density of vector neighborhoods is
not as straightforward to measure as vector sim-
ilarity. We could look at average similarity be-
tween, e.g., top-10 ranking neighbors, but that
could misrepresent the situation if some neighbors
were very close and some were very far.

In this experiment we estimate density as the
similarity to the 5th neighbor. The higher it is, the
more highly similar neighbors a word vector has.
This approach is shown in Fig. 5.

1.0

¥zz2 share of all questions
B accuracy (top 1)
[ accuracy (top 3)
[ accuracy (top 5)

¢ o
o ©

N
>

share / accuracy

o
N

00 01 02 0.3 0.4 0.5 0.6 0.7 08 0.9

Figure 5: The similarity between b" and its 5th
neighbor

The results seem counter-intuitive: denser
neighborhoods actually yield higher accuracy (al-
though there are virtually no cases of very tight
neighborhoods). One explanation could be its re-
verse correlation with distance: if the neighbor-
hood of b’ is sparse, the closest word is likely to be
relatively far away. But that runs contrary to the
above findings that closer source vectors improve
the accuracy of 3CosAdd. Then we could expect
lower accuracy in sparser neighborhoods.

In this respect, too, GloVe and Word2Vec be-
have similarly (Fig. 15).

4 Comparison with Other Methods

We repeat the above experiments on GloVe with
3CosMul, a multiplication-based alternative to
3CosAdd proposed by Levy and Goldberg (2014):

cos(b',b)cos(V',a’)
cos(b',a) +¢

argmaXy cyv

(e = 0.001 is used to prevent division by zero)

As 3CosMul does not explicitly calculate the
predicted vector, we did not plot the similarity of
b’ to the predicted vector. But for other vector
pairs shown in Fig. 6, we can see that 3CosMul,
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Figure 6: Accuracy of 3CosMul method on GloVe model vs characteristics of the vector space.

like 3CosAdd, has much higher chances of success
where target vectors are close to the source.

We also consider LRCos, a method based on su-
pervised learning from a set of word pairs (Drozd
et al.,, 2016). LRCos reinterprets the analogy
task as follows: given a set of word pairs (e.g.
brother:sister, husband:wife, man:woman, etc.),
the available examples of the class of the target
b’ vector (sister, wife, woman, etc.) and randomly
selected negative examples are used to learn a rep-
resentation of the target class with a supervised
classifier. The question is this: what word is the

I —
closest to king, but belongs to the “women” class?
With LRCos it is only meaningful to look at the

similarity of b to b’ (Fig. 7). Once again, we see
the same trend: closer targets are easier to hit.

¥773 share of all questions
B accuracy (top 1)
3 accuracy (top 3)
[ accuracy (top 5)

o

share / accuracy
S

0.0
0.0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9

Figure 7: Accuracy of LRCos method vs similar-
ity between vectors b and b’
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However, if we look at overall accuracy, there is
a big difference between the three methods.

Fig. 8b shows that the accuracy of LRCos is
much higher than the top-1 3CosAdd or 3Cos-
Mul. Moreover, its “honest” version (Fig. 8a) per-
forms just as well as the “dishonest” one. These
results are consistent with the results reported by
Drozd et al. (2016). As for 3CosMul, Levy et al.
(2015) show that 3CosMul outperforms 3CosAdd
in PPMI, SGNS, GloVe and SVD models with the
Google dataset, sometimes yielding 10-25% im-
provement. Our BATS experiment confirms the
overall superiority of 3CosMul to 3CosAdd, al-
though the difference is less dramatic.

Thus LRCos considerably outdoes its competi-
tors, although it does not manage to avoid the sim-
ilarity problem. We attribute this to the set-based,
supervised nature of LRCos that gives it an edge
on a different problem that affects both 3CosAdd
and 3CosMul: the assumption of “linguistic regu-
larities” from which we started.

5 Discussion: What Should We Expect
from the Word Analogy Task?

5.1 How Regular Are “Linguistic
Regularities”?

There are unresolved questions about the underly-
ing assumption that the offset between vectors a’
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Figure 8: LRCos performance on BATS

and a provides access to certain features combin-
able with vector b to detect b/, and that such offset
should be more or less constant for all words in a
given linguistic relations.

Table 2 shows that this does not happen in a re-
liable way (data: BATS category D06 “re+verb”).

Table 2: 3CosAdd: effect of various a : a’ vector
pairs with the same b : b/ pair (marry:remarry)

No a a b predicted Sim. correct
vector score b’ score

T acquire reacquire marry filancée  0.54 <0.51

2 tell retell marry betrothed 0.51 0.49

3 engage reengage marry eloped 0.52 0.51

4 appear reappear marry marries 0.65 0.55

5 establish reestablish marry marries  0.58 0.52

6 invest reinvest marry marries 0.59 0.57

7 adjust  readjust marry marrying 0.59 0.55

8 arrange rearrange marry marrying 0.52 0.43

9 discover rediscover marry marrying 0.54 0.49

10 apply reapply  marry remarry 0.53 0.53

Both correct and incorrect answers lie in about
the same similarity range, so we cannot attribute
the failures to the reliance of 3CosAdd on close
neighborhoods. The distance from marry to
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remarry is the same; thus it must be the case
that the offset between different ¢ and ' is not
the same, and leads to different answers — with a
frustratingly small margin of error.

5.2 Can We Just Blame the Corpus?

Source corpora are noisy, and it is tempting to
blame almost anything on that. It could be lit-
eral text-processing noise (e.g. not quite cleaned
HTML data and ad texts) or, more broadly, any
kind of information in the VSM that is irrelevant
to the question at hand. This includes polysemy:
for a word-level VSM the difference between ang)
and queen is not exactly the same as the difference
between man and woman just for the existence
of the Queen band (although that factor should not
affect the “re-” prefix verbs in Table 2).

In addition to irrelevant information, there is
also missing information. Corpora of written texts
are a priori not the same source of input as what
children get when they learn their language. Natu-
ral language semantics relies on much data that the
current VSMs do not have, including multimodal
data and frequencies of events too commonplace
to be mentioned in writing (Erk, 2016, p.18).

This means that the distributional difference be-

T — — [
tween tell and retell (or marry and remarry,
or both pairs) does not necessarily reflect the full
range of the relevant difference, which could per-
haps have helped to bring the vector offset calcula-
tion closer to the desired outcome. On this view, in
the ideal world all word vectors with the “re-” fea-
ture would be nearly aligned. Some blame could
also be passed to the condensed vectors such as
SVD or neural word embeddings, which blend dis-
tributional features in a non-transparent way, po-
tentially obscuring the relevant ones.

The current source corpora and VSMs could
certainly be improved. But both linguistics and
philosophy suggest that there are also issues with
the idea of linguistic relations being so regular.

5.3 Semantics is Messy

In theory, according to the distributional hypoth-
esis, we would expect the relatively straightfor-
ward “repeated action” paradigm of verbs with
and without the prefix “re-” in Table 2 to surface
distributionally in the use of adverbs like “again”.
However, we have no reason to expect this to hap-
pen in quantitatively exactly the same way for all
the verbs, even in an “ideal” corpus. And variation
would lead to irregularities that we observe.



In fact, such variation would make VSMs more
like human mental lexicon, not less. A well-
known problem in psychology is the asymmetry of
similarity judgments, upon which relational simi-
larity and analogical reasoning are based. Logi-
cally a is like b is equivalent to b is like a, but
humans do not necessarily agree with both state-
ments to the same degree (Tversky, 1977).

Consider the “re-” prefix examples above. We
could expect 100% success by native English
speakers on a “complete the verb paradigm” task,
because they would be inevitably made aware of
the “add re-” rule during its completion. Even so,
processing time would vary due to such factors
as frequencies and prototypicality. The psycho-
logical evidence is piling for certain gradedness
in mental representation of morphological rules:
people can rate the same structure differently on
complexity (“settlement” is reported more affixed
that “government”), similarity judgments for se-
mantically transparent and non-transparent bases
are continuous, and there are graded priming ef-
fects for both orthographic, semantic and phono-
logical similarity between derived words and their
roots (Hay and Baayen, 2005).

There are several connectionist proposals to
simulate asymmetry through biases, saliency
features, or structural alignment (Thomas and
Mareschal, 1997, p.758). The irregularities we
observe in the VSMs could perhaps even be wel-
comed as another way to model this phenomenon
- although it remains to be seen to what extent the
parallel we draw here is appropriate.

As a side note, let us remember that equations

such as lTng> — man + woman = queen should
only be interpreted distributionally, although it is
tempting to suppose that they reflect something
like semantic features. That would be mislead-
ing on several accounts. First of all, the 3CosAdd
math is commutative, which would be dubious for
semantic features®. Secondly, it would bring us
to the wall that componential analysis in linguistic
semantics has hit a long time ago: semantic fea-
tures defy definitions®, they only apply to a por-
tion of vocabulary, and they impose binary op-
positions that are psycholinguistically unrealistic
(Leech, 1981, pp.117-119).

5 —
((remarry — marry) + write) makes some sense, but

—_
((write — marry) + remarry) does not.

81s the iman — woman result certainly “femaleness” — or
perhaps “maleness”, or some mysterious “malefemale gender
change” semantic feature?
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5.4 Analogy Is Not an Inference Rule

Let us now come back to the fact that the “linguis-
tic regularities” are in fact relying on relational
similarity (Section 2), and relational similarity is
not something binary. That takes us straight to the
most fundamental difficulty with analogy as it is
known in philosophy and logic. Analogy is unde-
niably fundamental to human reasoning as an in-
strument for discovery and understanding the un-
known from the known — but it is not, and has
never been an inference rule.

Consider the example where Mars is similar to
Earth in several ways, and therefore could be sup-
porting life. This analogy does not guarantee the
existence of Martians, and it could even be simi-
larly applied to even less suitable planets.

Basically, the problem with analogy is that not
all similarities warrant all conclusions, and estab-
lishing valid analogies requires much case-by-case
consideration. For this and some other reasons,
analogy has long been rejected in generative lin-
guistics as a mechanism for language acquisition
through discovery, although now it is making a
comeback (Itkonen, 2005, p.67-75).

This general difficulty with analogical reason-
ing — it does work in humans, but selectively, so
to say, — is inherited by the so-called proportional
analogies of the @ : @’ :: b : b kind. A case in
point is their use in schools as verbal reasoning
tests. In 2005 analogies were removed from SAT,
its criticisms including ambiguity, guesswork and
puzzle-like nature (Pringle, 2003). It is also telling
that SAT analogy problems came with a set of po-
tential answers to choose from, because otherwise
students would supply a range of answers with
varying degrees of incorrectness.

In case of the “re-” prefix above, once again, we
could expect 100% success rate by humans who
could see the “add re-” pattern; but semantic BATS
questions would yield more variation. Consider
the question “trout is to river as lion is to ___".
Some would say den, thinking of the river as the
trout’s “home”, but some could say savanna in the
broader habitat terms; cage or zoo or safari park
or even circus would all be valid to various de-
grees. BATS accepts several answer options, but it
is hardly feasible to list them all for all cases.

Given the above, the question is: if analogi-
cal reasoning requires much case-by-case consid-
eration in humans, what should we expect from
VSMs with a single linear algebra operation?



6 Implications for Evaluation of VSMs

The analogy task continues to enjoy immense pop-
ularity in the NLP community as the standard eval-
uation task for VSMs. We have already mentioned
two problems with the task: the problem of the
Google test scores being flattering to the VSMs
(Gladkova et al., 2016), and also 3CosAdd disad-
vantaging them, because the required semantic in-
formation may be encoded in more complex ways
(Drozd et al., 2016).

What the present work adds to the discussion is
the demonstration of how strongly the accuracy on
the analogy task depends on the target vector being
relatively close to the source in the vector space
model — not only for 3CosAdd, but also 3CosMul
and LRCos. This is in fact a fundamental problem
that is encountered in many other NLP tasks’.

That problem brings about the following ques-
tion: what have we been evaluating with 3CosAdd
all this time?

The answer seems to be this: analogy task
scores indicate to what extent the semantic space
of a given VSM was structured in a way that, for
each word category, favored the linguistic relation
that happened to be picked by the creators of the
particular test dataset. BATS makes this clearer,
because it is well balanced across different types
of relations. Most models score well on morpho-
logical inflections — because morphological forms
of the same word are highly distributionally sim-
ilar and are likely to be close. But we do not
see equal success for synonyms, suffixes, colors
and other categories — because it is hard to ex-
pect of any one model to “guess” which words
should have synonyms as closest neighbors and
which words should be close to their antonyms.

As a matter of fact, for a general-purpose VSM
we would not want that: every word can partic-
ipate in hundreds of linguistic relations that we
may be interested in, but we cannot expect them
all to be close neighbors. We would want a VSM
whose vector neighborhoods simply reflect what-
ever distributional properties were observed in a
corpus. The challenge is to find reasoning meth-
ods that could reliably identify linguistic relations
from vectors at any distance.

Given the irregularities discussed in section 5,

"E.g. in taxonomy construction it was found helpful to
narrow the semantic space with domains or clusters, essen-
tially “zooming in” on certain relations (Fu et al., 2014; Es-
pinosa Anke et al., 2016).
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these methods would also have to rely on a more
linguistically and cognitively realistic model of
how meanings are reflected in distributional prop-
erties of words.

LRCos made a step in the right direction, as it
does not rely on unique and neatly aligned word
pairs, but it can only work for relations between
coherent word classes. That excludes many lexi-
cographic relations like synonyms (car is to auto-
mobile as snake is to serpent), frame-semantic or
encyclopedic relations (white is to snow as red is
to rose).

7 Conclusion

While it would be highly desirable to have au-
tomated reasoning about linguistic relations with
VSMs as a powerful, all-purpose tool, it is so far
a remote goal. We investigated the potential of
the vector offset method in solving the so-called
proportional analogies, which rely on one pair of
words with a known linguistic relation to identify
the missing member of another pair of words.

We have presented a series of experiments
showing that the success of the linear vector off-
set (as well as two better-performing methods) de-
pends on the structure of the VSM: the targets that
are further away in the vector space have worse
chances of being recovered. This is a crucial lim-
itation: no model could possibly hold all related
words close in the vector space, as there are many
thousands of linguistic relations, and many are
context-dependent.

Furthermore, the offsets of different word vec-
tor pairs appear to not be so regular, even for rel-
atively straightforward linguistic relations. We ar-
gue that the observed irregularities should not just
be blamed on the corpus. There is a number of the-
oretical issues with the very approach to linguistic
relations as something neat and binary. We hope
to drive attention to the graded nature of relational
similarity that underlies analogical reasoning, and
the need for automated reasoning algorithms to be-
come more psychologically plausible in order to
become more successful.

Acknowledgements

This work was partially supported by JST CREST
Grant number JPMIJCR1303, JSPS KAKENHI
Grant number JP17K12739, and performed under
the auspices of Real-world Big-Data Computation
Open Innovation Laboratory, Japan.



References

Paul Bartha. 2016. Analogy and analogical reason-
ing. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy, Metaphysics Research
Lab, Stanford University. Winter 2016 edition.
https://plato.stanford.edu/archives/win2016/entries/
reasoning-analogy/.

Trevor Cohen, Dominic Widdows, and Thomas Rind-
flesch. 2015. Expansion-by-analogy: a vec-
tor symbolic approach to semantic search. In
Quantum Interaction, Springer, pages 54-66.
https://doi.org/10.1007/978-3-319-15931-7 5.

Joachim Daiber, Lautaro Quiroz, Roger Wechsler, and
Stella Frank. 2015. Splitting compounds by seman-
tic analogy. In Proceedings of the 1st Deep Machine
Translation Workshop. Charles University in Prague,
Praha, Czech Republic, 3-4 September 2015, pages
20-28. http://www.aclweb.org/anthology/W15-
5703.

Aleksandr Drozd, Anna Gladkova, and Satoshi Mat-
suoka. 2016. Word embeddings, analogies, and
machine learning: beyond king - man + woman
= queen. In Proceedings of COLING 2016, the
26th International Conference on Computational
Linguistics: Technical Papers. pages 3519-3530.
https://www.aclweb.org/anthology/C/C16/C16-
1332.pdf.

Nguyen Tuan Duc, Danushka Bollegala, and Mitsuru
Ishizuka. 2012. Cross-language latent relational
search between Japanese and English languages us-
ing a Web corpus. ACM Transactions on Asian Lan-
guage Information Processing (TALIP) 11(3):11.
http://dl.acm.org/citation.cfm?id=2334805.

Katrin Erk. 2016. What do you know about
an alligator when you know the company it
keeps.  Semantics and Pragmatics 9(17):1-63.
https://doi.org/10.3765/sp.9.17.

Luis Espinosa Anke, Jose Camacho-Collados, Clau-
dio Delli Bovi, and Horacio Saggion. 2016. Su-
pervised distributional hypernym discovery via do-
main adaptation. In Proceedings of the 2016
Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 424-435.
https://aclweb.org/anthology/D16-1041.

Stefano Federici, Simonetta Montemagni, and Vito Pir-
relli. 1997. Inferring semantic similarity from dis-
tributional evidence: An analogy-based approach
to word sense disambiguation. In Proceedings
of the ACL/EACL Workshop on Automatic Infor-
mation Extraction and Building of Lexical Se-
mantic Resources for NLP Applications. pages
90-97. http://aclweb.org/anthology/W/W97/W97-
0813.pdf.

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che,
Haifeng Wang, and Ting Liu. 2014. Learn-
ing semantic hierarchies via word embeddings.

144

In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguis-
tics. Association for Computational Linguistics,
Baltimore, Maryland, USA, pages 1199-1209.
http://202.118.253.69/ rjfu/publications/acl2014.pdf.

Anna Gladkova, Aleksandr Drozd, and Satoshi Mat-
suoka. 2016. Analogy-based detection of mor-
phological and semantic relations with word em-
beddings: What works and what doesn’t. In
Proceedings of the NAACL-HLT SRW. ACL, San
Diego, California, June 12-17, 2016, pages 47-54.
https://doi.org/10.18653/v1/N16-2002.

Jennifer B. Hay and R. Harald Baayen. 2005. Shift-
ing paradigms: Gradient structure in morphol-
ogy. Trends in cognitive sciences 9(7):342-348.
https://doi.org/10.1016/j.tics.2005.04.002.

Esa Itkonen. 2005. Analogy as Structure and Pro-
cess: Approaches in Linguistic, Cognitive Psy-
chology, and Philosophy of Science. Num-
ber 14 in Human cognitive processing. John
Benjamins Pub. Co, Amsterdam ; Philadelphia.
https://doi.org/10.1075/hcp.14.

David A. Jurgens, Peter D. Turney, Saif M. Mo-
hammad, and Keith J. Holyoak. 2012. Semeval-
2012 task 2: measuring degrees of relational sim-
ilarity. In Proceedings of the First Joint Con-
ference on Lexical and Computational Semantics
(*SEM). Association for Computational Linguistics,
Montréal, Canada, June 7-8, 2012, pages 356-364.
http://dl.acm.org/citation.cfm?id=2387693.

Maximilian Ko6per,  Christian Scheible, and
Sabine Schulte im Walde. 2015. Multilingual
reliability and “semantic” structure of continuous
word spaces. In Proceedings of the 11th Interna-
tional Conference on Computational Semantics.
Association for Computational Linguistics, pages
40-45. http://www.aclweb.org/anthology/W15-
01#page=56.

Siwei Lai, Kang Liu, Liheng Xu, and Jun Zhao.
2016. How to generate a good word embed-
ding? IEEE Intelligent Systems 31(6):5-14.
https://doi.org/10.1109/MIS.2016.45.

Geoffrey Leech. 1981. Semantics: The Study of Mean-
ing. Harmondsworth: Penguin Books.

Omer Levy and Yoav Goldberg. 2014. Linguistic regu-
larities in sparse and explicit word representations.
In Proceedings of the Eighteenth Conference on
Computational Natural Language Learning. pages
171-180. https://doi.org/10.3115/v1/W14-1618.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the As-
sociation for Computational Linguistics 3:211-225.
http://www.aclweb.org/anthology/Q15-1016.



Tal Linzen. 2016. Issues in evaluating semantic spaces
using word analogies. In Proceedings of the First
Workshop on Evaluating Vector Space Representa-
tions for NLP. Association for Computational Lin-
guistics. https://doi.org/10.18653/v1/W16-2503.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word repre-
sentations in vector space. Proceedings of Inter-
national Conference on Learning Representations
(ICLR) http://arxiv.org/abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S.
Corrado, and Jeff Dean. 2013b. Distributed repre-
sentations of words and phrases and their composi-
tionality. In Advances in Neural Information Pro-
cessing Systems 26 (NIPS 2013). pages 3111-3119.
http://papers.nips.cc/paper/5021-di.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continuous space
word representations. In Proceedings of the
2013 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics:  Human Language Technologies. Associa-
tion for Computational Linguistics, pages 746-751.
http://aclweb.org/anthology/N13-1090.

Denis Newman-Griffis, Albert M. Lai, and Eric Fosler-
Lussier. 2017. Insights into analogy completion
from the biomedical domain. arXiv:1706.02241
[cs] http://arxiv.org/abs/1706.02241.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: global vectors
for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). volume 12, pages
1532-1543. https://doi.org/10.3115/v1/D14-1162.

Paul Pringle. 2003.  College board scores with
critics of SAT analogies. Los Angeles Times
http://articles.latimes.com/2003/jul/27/local/me-
sat27/2.

Michael SC Thomas and Denis Mareschal. 1997. Con-
nectionism and psychological notions of similar-
ity. In The Proceedings of the 19th Annual Con-
ference of the Cognitive Science Society. Mah-
wah, NJ: Erlbaum, Stanford, USA, pages 757-762.
http://eprints.bbk.ac.uk/4611/.

Peter Turney, Michael L. Littman, Jeffrey Bigham,
and Victor Shnayder. 2003.  Combining inde-
pendent modules to solve multiple-choice syn-
onym and analogy problems. In Proceed-
ings of the International Conference on Re-
cent Advances in Natural Language Process-
ing. pages 482—489.  http://nparc.cisti-icist.nrc-
cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=8913366.

Peter D. Turney. 2006. Similarity of semantic rela-
tions. Computational Linguistics 32(3):379-416.
https://doi.org/10.1162/coli.2006.32.3.379.

145

Peter D. Turney. 2008. A uniform approach
to analogies, synonyms, antonyms, and associa-
tions. In Proceedings of the 22nd International
Conference on Computational Linguistics (Coling
2008). pages 905-912. http://nparc.cisti-icist.nrc-
cnrc.gc.ca/npsi/ctrl 7action=rtdoc&an=5764174.

Amos Tversky. 1977. Features of similar-
ity. Psychological Review 84(4):327-352.
https://doi.org/10.1037/0033-295X.84.4.327.

Ekaterina Vylomova, Laura Rimmel, Trevor Cohn,
and Timothy Baldwin. 2016. Take and took, gag-
gle and goose, book and read: evaluating the util-
ity of vector differences for lexical relation learn-
ing. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 1671—
1682. https://doi.org/10.18653/v1/P16-1158.



A Supplementary Material

A.1 3CosAdd on GloVe and Word2Vec
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Figure 9: Similarity between vectors a and o’
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Figure 24: 3CosAdd vs 3CosMul vs LRCos (“honest” version)
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Semantic Frames and Visual Scenes:
Learning Semantic Role Inventories from Image and Video Descriptions
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Abstract

Frame-semantic parsing and semantic role
labelling, that aim to automatically assign
semantic roles to arguments of verbs in
a sentence, have recently become an ac-
tive strand of research in NLP. However,
to date these methods have relied on a pre-
defined inventory of semantic roles. In
this paper, we present a method to auto-
matically learn argument role inventories
for verbs from large corpora of text, im-
ages and videos. We evaluate the method
against manually constructed role inven-
tories in FrameNet and show that the vi-
sual model outperforms the language-only
model and operates with a high precision.

1 Introduction

The theory of frame semantics (Fillmore, 1976)
postulates that our interpretation of word mean-
ings is not limited to isolated concepts, but rather
instantiates complex knowledge structures about
events and their participants, known as semantic
frames. For instance, the COMMERCIAL TRANS-
ACTION frame includes elements such as a seller,
a buyer, goods and money which can be mapped to
higher-level semantic roles such as agent, patient,
instrument etc. The verbs linked to this frame are
buy, sell, pay, cost and charge, each evoking dif-
ferent aspects of the frame.

This theory has been implemented in a lexical-
semantic resource called FrameNet (Fillmore
et al., 2003). Each semantic frame is encoded in
FrameNet as a list of lexical units that evoke this
frame (typically verbs) and the roles that their se-
mantic arguments may take given the scenario rep-
resented by the frame. FrameNet has inspired a di-
rection in NLP research known as semantic role la-
belling (Gildea and Jurafsky, 2002; Marquez et al.,
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2008) and frame-semantic parsing (Das et al.,
2014), whose goal is to assign semantic roles to
arguments of the verbs in a sentence. However,
these works point out the coverage limitations of
the hand-constructed FrameNet database, suggest-
ing that a data-driven frame acquisition method
is needed to enable the integration of frame se-
mantics into real-world NLP applications. In this
paper, we propose such a method, experimenting
with semantic frame induction from linguistic and
visual data. Our system first performs clustering
of verb arguments to identify their possible seman-
tic roles and then computes the level of associa-
tion between a given argument role and the verb,
thus deriving the structure of the semantic frame
in which the verb participates.

Frame semantics emphasizes the relation be-
tween our lexical semantic knowledge and our ex-
perience in the world, suggesting that semantic
frames are not merely a linguistic construct but
also a result of our sensory-motor and perceptual
experience. However, frame semantic approaches
in NLP typically rely on textual data. Our method,
in contrast, induces semantic frames from both a
text corpus and a corpus of tagged images and
videos. We evaluate the method against hand-
constructed frames in FrameNet. Our results show
that the visual model outperforms the language-
only model and achieves a high precision. This
frame induction method can be used to comple-
ment existing FrameNets or to construct a new re-
source of automatically mined semantic frames,
free from manual annotation bias.

2 Experimental Data

Textual data. We extracted linguistic features
for our model from the British National Corpus
(BNC) (Burnard, 2007). We parsed the corpus us-
ing the RASP parser (Briscoe et al., 2006) and
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extracted subject—verb and verb—object relations
from its dependency output. These relations were
then used as features for clustering to obtain argu-
ments classes, which we then used as proxies for
frame elements, i.e. argument roles.

Image and video data. We used the Yahoo! Web-
scope Flickr-100M dataset (Shamma, 2014) to ex-
tract visual relations between verbs and their argu-
ments. Flickr-100M contains 99.3 million images
and 0.7 million videos with natural language tags
for scenes, objects and actions annotated by users.
We first stem the tags and remove words that are
absent in WordNet (e.g. named entities and mis-
spellings). We then identify their part of speech
based on their visual context using the method of
Shutova et al. (2015) and extract verb—noun co-
occurrences.

3 Frame Induction Model

3.1 Argument Clustering

We use a clustering method to obtain semantic
classes of arguments of verbs, thus generalising
from individual arguments to their semantic types
which correspond to frame roles. We obtain ar-
gument classes by means of spectral clustering of
nouns with lexico-syntactic features, which has
been shown effective in previous lexical classifi-
cation tasks (Sun and Korhonen, 2009).

Spectral clustering partitions the data relying
on a similarity matrix that records similarities be-
tween all pairs of data points. We use Jensen-
Shannon divergence to measure similarity be-
tween feature vectors for two nouns, w; and wj,
defined as follows:

dys (wi, wj) = %dKL(wz‘Hm) + %dKL(ijm%

(D
where dki, is the Kullback-Leibler divergence,
and m is the average of w; and w;. We construct
the similarity matrix S computing similarities S;;
as S;; = exp(—djys(w;, w;)). The matrix S then
encodes a similarity graph G (over our nouns),
where S;; are the adjacency weights. The cluster-
ing problem can then be defined as identifying the
optimal partition, or cut, of the graph into clusters,
such that the intra-cluster weights are high and the
inter-cluster weights are low. We use the multi-
way normalized cut (MNCut) algorithm of Meila
and Shi (2001) for this purpose. The algorithm
transforms S into a stochastic matrix P containing
transition probabilities between the vertices in the
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graph as P = D~!S, where the degree matrix D
is a diagonal matrix with D;; = Z;VZI S;j. It then
computes the K leading eigenvectors of P, where
K is the desired number of clusters. The graph
is partitioned by finding approximately equal el-
ements in the eigenvectors using a simpler clus-
tering algorithm, such as k-means. Meila and Shi
(2001) have shown that the partition I derived in

this way minimizes the MNCut criterion:
K

MNCut() = Y (1 — P(I) — I;|})),
k=1

2

which is the sum of transition probabilities across
different clusters. Since k-means starts from a ran-
dom cluster assignment, we ran the algorithm mul-
tiple times and used the partition that minimizes
the cluster distortion, i.e. distances to its centroid.

We clustered the 2,000 most frequent nouns in
the BNC, using their grammatical relations as fea-
tures. The features consisted of verb lemmas ap-
pearing in the subject, direct object and indirect
object relations with the given nouns in the RASP-
parsed BNC, indexed by relation type. The fea-
ture vectors were first constructed from the corpus
counts, and subsequently normalized by the sum
of the feature values.

Our use of linguistic dependency features for
argument clustering is motivated by the results
of previous research (Sun and Korhonen, 2011;
Shutova et al., 2015), that has shown that such
features lead to clusters of nouns belonging to
the same semantic type, as opposed to topic or
scene as it is the case with linguistic window-
based features or image-derived features (Shutova
et al., 2015). Since the argument roles in seman-
tic frames correspond to semantic types (such as
location or instrument), the linguistic dependency
features are best suited to generalise the predicate-
argument structure in semantic frames. Exam-
ple clusters produced by our method are shown in
Fig. 1. The resulting clusters represent frame ele-
ments, i.e. argument roles, in our model.

3.2 Predicate-Argument Association

We then use the verb—noun co-occurrence infor-
mation extracted from the visual data to quantify
the strength of association of a given verb with
each of the argument classes, thus identifying the
relevant argument roles for the verb. We adopted
an information theoretic measure originally pro-
posed by Resnik (1993) in his selectional pref-
erence model. Resnik first measures selectional
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Figure 1: Clusters representing argument roles

preference strength (SPS) of a verb in terms of
Kullback-Leibler divergence between the distribu-
tion of noun classes occurring as arguments of this
verb, p(c|v), and the prior distribution of the noun
classes, p(c):
SPS(v) = Y p(clv) log p;d“)
C

(c) -

SPS measures how strongly the predicate con-
strains its arguments. Selectional association of
the verb with a particular argument class is then
defined as a relative contribution of that argument
class to the overall SPS of the verb:

3)

p(clv)
ple)

We use this measure to quantify the strength of
verb—argument association based on the visual co-
occurrence information. We extract verb-noun co-
occurrences from Flickr-200M, map the nouns to
argument classes and quantify selectional associa-
tion of a given verb with each argument class, thus
acquiring its semantic frame structure. An exam-
ple argument distribution for the verb kill, and thus
the KILLING frame, is presented in Fig. 2. One
can see from the figure that the argument clusters
correspond to specific roles in FrameNet, e.g. the
killer and the victim, the motive, the weapon (in-
strument) and death (result).

SPS(v)

Ass(v,c) = p(clv) log “4)

4 Evaluation against FrameNet

Baseline. We evaluate the effectiveness of vi-
sual information for our task by comparing the
model based on vision and language (VIS) to a
baseline model using language alone (LING). In
the LING system, the predicate-argument associa-
tion scores are computed based on verb-argument
co-occurrence information extracted from verb-
subject, verb-direct object and verb-indirect object
relations in the BNC. In case of the indirect object
relations, the accompanying prepostions were dis-
carded and the noun counts were aggregated.
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0.180 defeat fall death tragedy loss collapse decline disas-
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0.018 official officer inspector journalist detective consta-
ble police policeman reporter

Figure 2: System output for kill

Evaluation setup. In order to investigate the
role of visual information for different types of
verbs, we selected 25 concrete verbs (e.g. cut,
throw, swim) and 25 abstract verbs (e.g. trust, pre-
pare, cheat), according to the MRC concreteness
database (Wilson, 1988). The verb was consid-
ered concrete if its concreteness score was > 400
and abstract if it was < 400. We extracted the 10
highest-ranked verb—argument class pairings pro-
duced by the system for each verb. Each pair-
ing was then evaluated against the argument roles
listed for this verb in FrameNet via manual com-
parison. This resulted in a dataset of 500 verb-
argument pairings for VIS and 500 for LING. The
pairing was considered correct if the argument
cluster corresponded to the semantic type of the
role listed in FrameNet and contained nouns listed
in the linguistic examples (if these were provided
in FrameNet). We have evaluated the system per-
formance in terms of precision at top 10 argument
classes and recall of the Core Frame Elements
(FEs) among the top 10 argument classes.

Results The VIS model attained a performance of
P =0.74 and R = 0.78, outperforming the LING
model with P = 0.72 and R = 0.76. When eval-
uated on the subsets of concrete and abstract verbs
separately, VIS attains a P = 0.76; R = 0.80
(concrete) and P = 0.72; R = 0.75 (abstract),
and LING attains P = 0.67; R = 0.75 (concrete)
and P = 0.78; R = 0.76 (abstract).

5 Discussion and Data Analysis

Our results show that the vision-based model out-
performs the language-only model on our dataset.
The difference in performance is particularly pro-
nounced for the concrete verbs. For the abstract
verbs in isolation, however, LING attains a higher



precision and recall. This is not surprising, as the
visual information is better suited to capture the
properties of concrete concepts than the abstract
ones (Kiela et al., 2014). However, our results
indicate that integrating linguistic and visual in-
formation provides a better overall model than the
linguistic information alone.

Our qualitative analysis of the data revealed a
number of interesting trends. Some of the errors
of both systems can be traced back to the clus-
tering step. Different argument roles according to
FrameNet are sometimes found in one cluster. For
instance, both the killer and the victim are in the
same cluster, as shown in Figure 2. However, it is
also the case that one FrameNet role can be split
into several clusters, e.g. the Victim role in the
killing frame is represented by two clusters of Au-
mans and animate beings more generally.

The common error of the LING model concerns
frame mixing, i.e. both literal and metaphorical ar-
guments of the verb are present in the output. For
instance, eat has a disease cluster as one of its ar-
guments; however, disease is not part of the inges-
tion frame, but rather an instance of its metaphor-
ical transfer. A common trend in the LING out-
put is that it is dominated by the Agent and Theme
roles, with situational roles (e.g. Location) typi-
cally ranked lower or not appearing at all. In con-
trast, the output of VIS encompases a range of sit-
uational roles, such as Instrument, Location, Time
etc. The two models also sometimes differ in the
roles that they identify. For instance, for the verb
risk the VIS output is dominated by arguments of
type Asset and the LING output by the arguments
related to the Bad outcome role in FrameNet.

6 Related Work

6.1 Semantic Role Induction

Approaches most similar in spirit to ours are those
concerned with unsupervised semantic role label-
ing. A number of methods represented seman-
tic roles as latent variables in a graphical model,
which related the verb, its semantic roles and
their syntactic realisations (Grenager and Man-
ning, 2006; Lang and Lapata, 2010; Garg and Hen-
derson, 2012). The induction process then re-
lied on inferring the state of the latent variable.
Other researchers adopted a similarity-based ar-
gument clustering framework to derive semantic
roles. The investigated methods include graph
partitioning algorithms (Lang and Lapata, 2014),
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Bayesian clustering based on Chinese Restaurant
Process (Titov and Klementiev, 2012) and integer
linear programming to incorporate semantic and
structural constraints during clustering (Woodsend
and Lapata, 2015). Titov and Khoddam (2015)
proposed a reconstruction-error minimization ap-
proach using a log-linear model to predict roles
given syntactic and lexical features and a proba-
bilistic tensor factorization model to identify ar-
gument fillers based on the role predictions and
the predicate. To the best of our knowledge, ours
is the first approach to this task exploiting visual
data, in the form of image and video descriptions.

6.2 Multi-modal Methods in Semantics

Visual data has been previously used to learn
meaning representations that project multiple
modalities into the same vector space. Semantic
models integrating linguistic and visual informa-
tion have been shown successful in tasks such as
modeling semantic similarity and relatedness (Sil-
berer and Lapata, 2014; Bruni et al., 2012), lexi-
cal entailment (Kiela et al., 2015a), composition-
ality (Roller and Schulte im Walde, 2013), bilin-
gual lexicon induction (Kiela et al., 2015b) and
metaphor identification (Shutova et al., 2016).

Other applications of multimodal data include
language modeling (Kiros et al., 2014) and knowl-
edge mining from images (Chen et al., 2013; Div-
vala et al., 2014). Young et al. (2014) show that
large collections of image captions can be ex-
ploited for entailment tasks. Shutova et al. (2015)
used image and video descriptions to induce verb
selectional preferences enhanced with visual in-
formation.

7 Conclusion

We have presented a method for semantic frame
induction from text, images and videos and shown
that it operates with a high precision and recall.
Although our experiments relied on manually an-
notated tags for images and videos, recent research
shows that such tags can be generated automat-
ically (Bernardi et al., 2016). In the future, our
model can be applied to such automatically gener-
ated tags, reducing its dependence on manual an-
notation. While our current experiments focused
on nominal arguments of the verbs for semantic
role identification, in principle, our model can be
applied to other parts of speech, e.g. adverbs, to
better incorporate argument roles such as Manner.
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