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Abstract

Over the past few decades, political scien-
tists have increasingly used Natural Language
Processing (NLP) methods in their research.
Within the subdomain of public administration,
there remain further opportunities for the use
of NLP in the task of policy analysis. The po-
tential of a machine learning pipeline to iden-
tify sentences containing incentives has been
demonstrated for the Spanish-language forestry
policies of five Latin American countries, but
the study was not reproducible due to a lack of
model and data availability. This paper seeks
to validate the existing pipeline of policy col-
lection, sentence labelling, fine-tuning, and in-
centive classification by replicating it in a new
context and achieving comparable performance,
as well as to publish all relevant data and train-
ing information to ensure reproducibility. In
the domains of a different language and geopo-
litical system, namely English-language Irish
forestry policies, this implementation demon-
strates the pipeline’s transferability by achiev-
ing mean overall F1 scores of 88.3 for binary
classification and 96.8 for multiclass classifica-
tion with our best models. The contributions
of this paper are twofold: the validation of an
existing pipeline by replicating it in new geopo-
litical and linguistic domains, and the creation
of a novel open dataset of Irish forestry policy
sentences labelled for incentive classification.

1 Introduction

Political and social scientists have been utilizing
Natural Language Processing (NLP) methods in
their research for decades in order to better anal-
yse text as data (Laver et al., 2003; Grimmer and
Stewart, 2013). NLP-based analyses of political
communication texts — including speeches, mani-
festos, news articles, and tweets — have provided
unique insights into political parties, propaganda,
and public opinion. While the field of public policy
has been slower in implementing NLP, researchers

are beginning to explore its potential applications
in the area of policy analysis.

A core task of policy analysis is the development
of reports to inform the creation or maintenance
of policies (i.e. official proposals of actions to be
taken by a government or institution) by present-
ing evidence-based solutions to a given problem.
The research behind these reports can help pre-
vent policy failure by combatting the inappropriate
solutions and ambiguity that threaten successful
policy implementation, but the thoroughness of
policy analysis requires a high time cost that an an-
alyst cannot always afford. NLP can help to reduce
this bottleneck of policy creation, making the pro-
cess more efficient and leading to earlier real-world
changes.

Firebanks-Quevedo et al. (2022) demonstrated
that their NLP pipeline could help streamline key
tasks of policy analysis: finding policies about
a given topic and identifying the policy instru-
ments used within them. Policy instruments are
methods of government intervention to achieve cer-
tain outcomes, like laws (regulation), grants (eco-
nomic action), or propaganda (communication);
this project focused specifically on economic in-
struments called incentives, which encourage ac-
tions and behaviours through financial rewards or
pressures like subsidies or taxes (Badie et al., 2011).
The pipeline consists of scraping policies from the
websites of five Latin American governments, ex-
tracting and labelling their sentences for presence
and type of policy incentive, then training both a
binary and a multiclass classifier on the labelled
dataset. The original dataset and models are not
available, however, limiting the reproducibility as
well as the implementation of their work.

Despite Dodge et al. (2019) offering a structured
checklist to address the reproducibility crisis in
NLP, many projects do not make core information
relating to their research and the production of their
results available. This challenges not only the cred-
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ibility of the conclusions, but also the feasibility of
downstream impacts of their findings. Magnusson
et al. (2023) has shown that even a few years after
the publication of the checklist, the issues of miss-
ing data, code, and model training information are
still ongoing in NLP.

This project replicates the pipeline of Firebanks-
Quevedo et al. (2022) in a new domain, also ad-
dressing its reproducibility issues through the pub-
lication of our novel dataset1 and updated code2.
Where the original workflow was based on Spanish-
language texts from Latin American forestry poli-
cies, we focus on the English-language texts of
Irish forestry policies. We maintained the policy
domain of forestry as our implementation already
introduced changes to the language and country
of interest. Additionally, we further updated the
pipeline with new models and accommodations
for imbalanced datasets to improve performance.
Our final results validate the original pipeline by
demonstrating its transferability across linguistic
and geopolitical contexts, as well as contribute a
new resource for NLP and policy analysis through
the release of our code and 1.4k sentence dataset
labelled for binary and multiclass incentive classi-
fication.

2 Related Work

NLP has become a familiar tool for political and
social scientists working with diverse and ever-
growing text datasets for diverse and ever-growing
applications. For news analysis, classifiers have
been trained to identify different topics or agen-
das contained in articles, even so far as to identify
the use of different propaganda techniques (Yoosuf
and Yang, 2019; Terechshenko et al., 2020; Nel-
son et al., 2021). Studying political parties and
their messaging, classification and topic clustering
have provided novel insights into the speeches of
politicians and their electoral manifestos (Glavaš
et al., 2017; Wilkerson and Casas, 2017; Rheault
and Cochrane, 2020). Considering public opin-
ion, Hagen et al. (2015) used topic modelling to
explore policy suggestions from public petitions,
while Terechshenko et al. (2020) performed senti-
ment analysis on tweets about an electoral candi-
date. Across these various political media, NLP
has successfully helped scientists to synthesise new

1https://huggingface.co/datasets/mawaskow/
irish_forestry_incentives

2https://github.com/mawaskow/
policy-classifier

information and extract hidden patterns from the
often-unstructured text data.

Progressing more into the subdomain of public
administration and policy, Żółkowski et al. (2022)
applied topic modelling and clustering to explore
how EU countries were framing their climate poli-
cies, and Ningpeng et al. (2024) performed topic
mining and text parsing on Chinese financial policy
documents. Brandt (2019) additionally examined
the restoration policies of three East African coun-
tries through paragraph topic classification. While
these projects provided insight into the priorities of
policies, their outcomes appear to be aimed more
at political scientists than specifically policy an-
alysts. In contrast, the sentence-level incentive
classification of Latin American forestry policies
in Firebanks-Quevedo et al. (2022) was explicitly
aimed at aiding the task of policy analysis, though
the inaccessibility of the models and dataset compli-
cated its impact. Finally, Sewerin et al. (2023) have
created a policy design annotations (POLIANNA)
dataset, consisting of labelled text spans from EU
climate policies and legal documents to provide
structured data for future policy analysis tools. In
summary, the application of NLP methods to anal-
yse policy documents has largely followed the trend
of topic modelling, clustering, and classification
used on other political texts, but this is beginning
to shift towards the use of sentence classification
on policy documents to aid in the task of policy
analysis.

3 Methodology

We gathered our policies by scraping them from
the website of the Irish government, processed the
PDFs into sentences, cultivated a dataset through
both manual and human-in-the-loop (HITL) la-
belling processes, then trained and evaluated both
the binary and multiclass classifiers. Figure 1
demonstrates this process.

3.1 Data Collection and Preprocessing

We began looking for Irish forestry policies in a
repository of policies on the website of the Irish
government3. At the time of our search, this page
was still in development. The structure of the page
was a list of the Irish government’s departments
and major initiatives wherein which a user, upon
selecting a title in the list, would be taken to that
topic’s page. Then, on that topic’s page, a user

3https://www.gov.ie/policies/
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Figure 1: The incentive classifier pipeline

could find a link to a page where they could finally
search that topic’s publications, including policies.
For a human, trying to find all the relevant policies
across all the topics pages would be tedious and
time-consuming, so we built a web crawler to help
us scrape the data we needed.

We used Python’s Scrapy4 library to create a
new "spider" or web crawler to extract the Uniform
Resource Locators (URLs) for all the topic publi-
cation search pages. With this list, we constructed
search query strings using keywords5 for policy in-
clusion based on those used by Firebanks-Quevedo
et al. (2022). Our crawler then visited all the search
result pages and parsed through the queried poli-
cies to gather the policy metadata and document
URLs, using exclusion keywords based on those
in the original pipeline to ignore irrelevant policies
and documents. In all, our scraper collected 138
relevant forestry policy documents across all the
topic policy lists. A breakdown of the policies by
source department can be found in Appendix A.

Once we had the collection of PDFs, we updated
some of the preprocessing scripts of Firebanks-
Quevedo et al. (2022) to retrieve the text from
the PDFs using Python’s PyPDF6 library, which is
based on text extraction instead of Optical Charac-
ter Recognition (OCR). We then cleaned the texts
of excess tags, spaces, and URLs and split them
into sentences for labelling using a sentence to-
keniser from Python’s NLTK7 library.

4https://www.scrapy.org/
5https://github.com/mawaskow/

policy-classifier/blob/main/policy_scraping/
policy_scraping/keywords/keywords_forestry.json

6https://pypdf.readthedocs.io/
7https://www.nltk.org/

3.2 Dataset Creation

We follow the dataset creation steps of Firebanks-
Quevedo et al. (2022), first hand-labelling a subset
of the collected sentences, then using those labelled
sentences as the basis for a HITL process to auto-
matically label remaining sentences. One labeller
completed both the manual and HITL steps, then
a policy researcher annotated a stratified subset of
the data in order to validate the labelling.

We classified sentences into one of six incentive
classes, or as a non-incentive, as defined in the
reference pipeline:

• Credit: Loans, insurance

• Direct payment: Cash, grants

• Fine: Penalty payment

• Supplies: Material support, equipment

• Tax deduction: Reduced tax liability

• Technical assistance: Training, experts

Firebanks-Quevedo et al. (2022) had noted that
their pipeline was unable to distinguish between
intentions, plans, or general mentions of incentives
in the sentences. In an attempt to address this, we
labelled sentences that simply mentioned incentive
keywords like grant or loan as a non-incentive,
while sentences which actually declared the cre-
ation or implementation of incentives were classi-
fied by incentive type.

3.2.1 Manual Labelling
For our first pass at labelling the sentences, we
performed a keyword search of incentive-related
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substrings, then manually assigned labels to a sub-
set of the possible incentive sentences. The hand-
labelling resulted in 965 sentences across the seven
classes.

3.2.2 HITL Labelling
Firebanks-Quevedo et al. (2022) conducted their
HITL labelling by using five sentences for each
incentive class as queries to perform a similarity
search in the remaining sentences. Of the sentences
returned, the original pipeline only kept sentences
that occurred across all five queries for each class.
As our data was reflective of one country instead of
five, the size of our dataset required that we lower
the inclusion criteria to occurrence within at least
four of the five queries for each label. Otherwise,
we followed the same steps and produced an addi-
tional 626 pre-labelled sentences across the seven
classes, subsequently validated by our labeller.

3.2.3 Novel Dataset
Our final dataset of the incentive sentences was the
result of merging the manually labelled and HITL-
labelled datasets. In order to account for duplicate
sentences across the two collections, we grouped
the sentences with Levenshtein or edit distances
above the hand-tuned threshold of 0.9 and removed
redundant entries. The final dataset consisted of
1419 labelled, filtered sentences containing both
binary and multiclass labels.

The dataset overall had a notable but expected
skew towards non-incentives, with incentives mak-
ing up only 18.5% of the dataset. The classes of
incentives were also unbalanced themselves, with
Supplies at 30.1% of all incentive sentences, Tech-
nical assistance at 27.9%, Direct payment at 23.0%,
then Fine at 8.6%, Credit at 7.1%, and Tax deduc-
tion at 3.3%.

For validation of our labelling, we brought in
a policy researcher to label a stratified subsample
of our final dataset. They annotated 10.7% of the
sentences, including 24.5% of the incentives. To
evaluate our agreement, we calculated the Cohen’s
kappa score of the resulting binary and multiclass
datasets (Cohen, 1960). The agreement of the bi-
nary labelling, computed across the entire dataset,
was 0.631, considered “substantial agreement.” For
the multiclass labelling, we evaluated agreement
across the subset of examples where both annota-
tors labelled the sentence as some kind of incen-
tive, resulting in a score of 0.859, “near perfect
agreement.” Further information about validator

Parameter Binary Multiclass
Epochs 5 15

Batch Size 16 16
Learning Rate 2E-5 2E-5
Weight Decay 0.01 0.01

Optimiser AdamW AdamW

Table 1: Hyperparameters for binary and multiclass
model training

agreement can be found in Appendix B.

3.3 Training and Testing

The next step in the pipeline is the fine-tuning of
models on each of the binary and multiclass ver-
sions of the dataset. All training was conducted
on a CUDA-enabled NVIDIA GeForce RTX 3080
Laptop GPU with 16 GB VRAM, appropriate for
small to medium size models.

To produce the binary dataset, we used all 1419
sentences, keeping the non-incentive label and re-
placing all incentive class labels with “Incentive.”
The multiclass dataset consisted of the 263 incen-
tive sentences from the final dataset with no addi-
tional alterations.

Due to the small size and significant class imbal-
ances of the datasets, we chose to train and evalu-
ate our classifiers across ten random train-dev-test
splits (60/20/20) of each of the binary and multi-
class datasets, stratified to maintain label propor-
tions. To ensure reproducibility and controlled ran-
domness, each split was generated using a distinct
random seed (ranging from 0 to 9). We averaged
our final metrics across all ten runs to account for
variations in performance across different splits,
providing a more robust estimate of model perfor-
mance.

3.3.1 Model Selection
We first established the baseline for our repli-
cation by using the same sentence-transformer
(Reimers and Gurevych, 2019) model and hy-
perparameters as the original pipeline for our
binary and multiclass classification. The ref-
erence model, sentence-transformers/paraphrase-
xlm-r-multilingual-v1 (XLM-R), is a multilingual
transformer with 278M parameters (Conneau et al.,
2020).

Following the first model, we explored whether
newer or more efficient models could im-
prove performance. We tried another multi-
lingual SBERT model with the same number
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Model Binary Multiclass
d 87.7 ± 1.4 94.1 ± 4.2

XLM-R l 87.5 ± 1.9 94.3 ± 3.5
o 87.5 ± 1.3 94.7 ± 3.7
d 88.3 ± 1.5 95.7 ± 2.5

MPNet l 88.0 ± 2.3 96.2 ± 2.5
o 88.2 ± 1.0 96.8 ± 2.1
d 87.1 ± 1.1 95.6 ± 3.2

GTE l 87.2 ± 1.4 95.3 ± 2.7
o 87.7 ± 1.2 96.3 ± 2.7
d 87.4 ± 1.6 95.7 ± 2.9

E5 l 86.8 ± 1.7 95.8 ± 2.0
o 86.5 ± 2.2 94.9 ± 3.3

Table 2: Overall F1 scores of the fine-tuned models (d:
default, l: weighted loss, o: oversampling) averaged
across 10 different dataset splits

of parameters, sentence-transformers/paraphrase-
multilingual-mpnet-base-v2 (MPNet), which offers
improved context capturing through its blending
of permutation language modelling (PLM) with
masked language modelling (MLM) (Song et al.,
2020). We additionally tried two more recent,
lightweight (109M parameters), English-only mod-
els, thenlper/gte-base (GTE) (Wang et al., 2022)
and intfloat/e5-base-v2 (E5) (Li et al., 2023), to
examine the possibility of pipeline deployment in
environments with fewer computational resources–
common in the political and social sciences. To
ensure controlled comparisons across models, we
used the same hyperparameters for all experiments
as shown in Table 1.

Beyond updating the models, we also attempted
to address the class imbalances of the dataset
through two common strategies. In our first ap-
proach, we weighted the cross entropy loss, mod-
ifying the loss function to more severely penalise
misclassification of the underrepresented classes
during training; our class weights were inversely
proportional to the class frequencies. Our other ap-
proach was to automatically oversample the minor-
ity classes with Imbalanced-learn’s8 RandomOver-
Sampler, reinforcing the model’s exposure to the
underrepresented classes by balancing their distri-
bution in the training data of each split.

3.3.2 Classification
Firebanks-Quevedo et al. (2022) determined that
their pipeline performed best when they used the
fine-tuned models to generate embeddings of the

8https://imbalanced-learn.org/stable/

Model Non-Incentive Incentive
d 92.5 ± 1.0 66.7 ± 3.6

XLM-R l 92.4 ± 1.2 66.1 ± 4.9
o 92.7 ± 0.8 64.7 ± 3.8
d 93.0 ± 0.9 68.1 ± 4.4

MPNet l 92.8 ± 1.4 67.0 ± 6.1
o 93.2 ± 0.6 66.6 ± 2.9
d 92.2 ± 0.8 64.8 ± 2.5

GTE l 92.4 ± 0.9 64.9 ± 3.9
o 92.7 ± 0.8 66.0 ± 3.5
d 92.5 ± 1.0 65.3 ± 4.3

E5 l 92.0 ± 1.1 63.9 ± 4.3
o 92.1 ± 1.3 62.1 ± 6.2

Table 3: Label-specific F1 scores for the binary dataset
(d: default, l: weighted loss, o: oversampling) averaged
across 10 different dataset splits

dataset, then sent those embeddings to a support
vector machine (SVM) for classification (Gunn,
1998). Before we conducted the classification this
way, we explored the inference capabilities of the
fine-tuned transformer heads but found that per-
formance on our small, imbalanced dataset was
consistently higher when using the external clas-
sifier. For that reason and to further support our
replication objective, all results reported are from
the embedding generation and SVM classification
method.

4 Results

We examined the F1 scores for the SVM classifi-
cation of each model’s sentence embeddings, aver-
aged across the ten splits of the binary and multi-
class datasets.

The mean F1 score and standard deviation for
all models across the default, weighted loss, and
oversampling training runs can be found in Table
2. MPNet outperformed the XLM-R model used
in the reference pipeline and both other models,
reporting a best average F1 score of 88.3 for binary
classification and 96.8 for multiclass classification.

Overall, for binary classification, MPNet’s em-
beddings achieved the highest average F1 scores,
reporting a best value of 88.3. MPNet’s perfor-
mance was then followed by the XLM-R model,
with the GTE and E5 models performing similarly
but slightly worse than XLM-R. For multiclass clas-
sification, the MPNet again achieved the highest
average F1 scores, this time reporting a best value
of 96.8. After the MPNet, the rankings followed as
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Model Credit Direct
Payment

Fine Supplies Tax
Deduction

Technical
Assistance

d 97.1 ± 5.7 93.3 ± 5.1 93.3 ± 7.9 95.7 ± 4.0 81.7 ± 32.0 93.4 ± 4.8
XLM-R l 97.1 ± 5.7 92.1 ± 6.1 91.7 ± 9.6 96.5 ± 3.9 81.7 ± 32.0 94.7 ± 3.7

o 98.6 ± 4.3 94.3 ± 5.4 94.4 ± 8.0 96.2 ± 3.7 78.3 ± 31.7 93.5 ± 3.7
d 94.3 ± 7.0 93.5 ± 4.2 97.5 ± 7.5 97.1 ± 3.1 95.0 ± 15.0 95.7 ± 2.9

MPNet l 93.2 ± 8.8 94.0 ± 3.9 97.8 ± 4.4 98.4 ± 2.1 96.7 ± 10.0 95.8 ± 4.2
o 94.6 ± 8.6 95.5 ± 2.8 98.9 ± 3.3 97.5 ± 2.3 96.7 ± 10.0 96.9 ± 2.9
d 94.6 ± 6.7 93.7 ± 4.6 100.0 ± 0.0 96.5 ± 2.1 90.0 ± 30.0 95.3 ± 3.7

GTE l 89.8 ± 10.1 94.4 ± 3.5 100.0 ± 0.0 97.2 ± 2.6 90.0 ± 30.0 94.3 ± 3.6
o 97.1 ± 5.7 95.3 ± 4.1 97.5 ± 7.5 97.2 ± 2.6 85.0 ± 32.0 96.4 ± 2.3
d 94.6 ± 6.7 94.5 ± 5.0 97.8 ± 4.4 97.2 ± 2.5 96.7 ± 10.0 94.5 ± 4.4

E5 l 93.2 ± 6.9 94.6 ± 3.1 100.0 ± 0.0 96.9 ± 3.4 100.0 ± 0.0 94.7 ± 2.6
o 95.7 ± 6.5 93.2 ± 4.7 97.5 ± 7.5 96.5 ± 3.1 95.0 ± 15.0 93.6 ± 4.4

Table 4: Label-specific F1 scores for the multiclass dataset (d: default, l: weighted loss, o: oversampling) averaged
across 10 different dataset splits

GTE, then E5, then the XLM-R.
Tables 3 and 4 include the F1 scores for each

classification label in the binary and multiclass
datasets, respectively. Our best binary model’s em-
beddings achieved average F1 scores of 93.0 and
68.1 for the classes of Non-incentive and Incen-
tive, and our best multiclass classification model
achieved average F1 scores of 94.6 for Credit, 95.5
for Direct payment, 98.9 for Fine, 97.5 for Supplies,
96.7 for Tax deduction, and 96.9 for Technical as-
sistance.

We additionally report the overall validation F1
scores of our models in Appendix C as recom-
mended by Dodge et al. (2019), as well as the over-
all and label-specific precision and recall scores of
our models in Appendix D.

4.1 Qualitative Analysis

Examples of accurately and inaccurately classified
binary incentive sentences can be found in Table 5.
These sentences, embedded by MPNet and classi-
fied via SVM, highlight the semantic challenges of
incentive sentence labelling and classification.

In the successfully identified examples, the la-
bel of the incentive sentence is clear due to its
incentive-related keywords of financial support,
payments, and beneficiaries, numerical amounts,
and use of will to denote action. While the non-
incentive sentence is a bit ambiguous due to the
keywords taxation and incentivising, the use of
committed demonstrates that this is a statement of
intention or policy aspiration instead of a properly
declared incentive, likely leading to its correct clas-

sification.
In the unsuccessful classification examples, the

incentive sentence states the requirement in a
scheme to apply financial penalties to herdown-
ers but was marked as a non-incentive. Despite the
use of keywords, this type of incentive– fine– may
be better understood as a disincentive, so its lack of
mention of rewards as found in other incentive sen-
tences may have contributed to its misclassification.
The non-incentive sentence mistakenly classified as
an incentive did mention direct payments, but was
in reality a description of a mechanism currently in
place. The model likely picked up on the incentive
keywords but missed the overall context of being
a factual statement of existing supports rather than
being an actionable incentive.

5 Discussion

Following the identification of incentive sentences
through binary classification, the multiclass clas-
sification of incentive type is able to achieve high
performance. In the binary context, we faced a
challenge also noted by Firebanks-Quevedo et al.
(2022), that it is difficult to distinguish incen-
tive declarations from non-incentive sentences that
mention incentives or state intentions to create
them. At the label-specific level, the performance
of incentive classification was worse than non-
incentive classification, assumedly due to the im-
balance of the dataset.

Regarding the different training methods, in the
binary classification setting, the loss and oversam-
pling methods did not appear to improve on default
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model performance, sometimes worsening it. In the
multiclass classification setting, however, XLM-R,
MPNet, and GTE models all benefited from the
introduction of oversampling to the training.

The multiclass labels of Credit and Tax deduc-
tion received notably higher standard deviations
across models and methods, though in the case of
Tax deduction, this standard deviation was reduced
through updating the embedding model to MPNet
as well as by adding weighted cross entropy loss
or oversampling in the training process. The high
standard deviations were likely due to these being
the most under-represented incentive classes in the
dataset, resulting in high variability of the success
of their classification across training splits. The
challenge of correctly classifying the Tax deduc-
tion label was also interestingly consistent with the
results of Firebanks-Quevedo et al. (2022).

As our best-performing model for generating em-
beddings was a multilingual MPNet sentence trans-
former, we share in the hope of Firebanks-Quevedo
et al. (2022) that the models from our pipeline can
be used to classify the sentences of policies in an-
other language via cross-lingual transfer learning,
removing the need to construct a whole new dataset
for fine-tuning.

While the outcomes of this research primarily
serve the development and evaluation of NLP ap-
plications for incentive sentence classification in
policy texts, the practical impact on policy ana-
lysts remains indirect at this stage. As most policy
analysts are not comfortable with building their
own NLP pipeline implementations, the immediate
application of this dataset and models is limited.
However, we envision future work that translates
these models into accessible tools, namely an inter-
face where policy analysts can input search terms
and websites of policy repositories to automatically
retrieve relevant documents, or where analysts can
upload policy documents to extract incentive sen-
tences using the classification pipeline– first iden-
tifying incentives with our binary classifier, then
categorising them with our muticlass classifier. We
hope to soon make our pipeline accessible in this
way to bridge the gap to impact real-world policy
analysis, with the ultimate goal of improving the
policymaking process and preventing policy fail-
ure.

6 Conclusion

This paper applied an existing policy incentive clas-
sification pipeline to a new geopolitical and linguis-
tic context, demonstrating the transferability of the
reference pipeline and creating a novel dataset of
Irish forestry policy sentences labelled for incentive
classification. The binary and multiclass classifi-
cation of sentence embeddings produced by our
best models achieved similar performance to the
original Firebanks-Quevedo et al. (2022) pipeline’s
results on their own policy dataset, serving as a
validation of their methodology.

We prioritised reproducibility in this replication,
and encourage researchers to implement this or
similar pipelines for policy incentive classification
in more domains across languages, political con-
texts, and policy areas. Additionally, our dataset
and training information is available for anyone
who wants to fine-tune their own multilingual in-
centive classification models on an existing dataset
for transfer learning into new contexts.

We hope that with more progress in the area of
automatic policy incentive or instrument classifi-
cation, this work can help streamline the task of
policy analysis to enable robust recommendations
of policy solutions, ultimately working towards the
creation of more successful policies.

Limitations

Our pipeline did encounter limitations, some of
which were shared with Firebanks-Quevedo et al.
(2022) and some of which were unique to this im-
plementation. We encountered the same challenge
that Firebanks-Quevedo et al. (2022) did concern-
ing the ambiguity of incentive sentences across
intentions, plans, and mentions, resulting in sub-
optimal incentive identification performance in the
binary classification context. Further examples of
ambiguous sentences are presented in Appendix E.

Specific to this pipeline, in our labelling pro-
cess we found that there were no incentive sen-
tences about providing direct material support or
equipment, so we adapted the Supplies definition
to include grants which were exclusively for the
purchase of materials or equipment. Additionally,
when it came to labelling sentences about carbon
taxes, we were conflicted between labelling it a Tax
deduction since it is a tax mechanism, or including
it with Fine since it can be considered a penalty or
disincentive; we decided to proceed with the latter
option. Additionally, the training and testing of our
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Successes True Label

Financial support towards the professional costs, such as legal, taxation and advisory
for older farmers will contribute 50% of such vouched costs, to a maximum payment
of C1,500 per beneficiary.

Incentive

We are committed to further developing a taxation framework, which plays its full
part in incentivising, along with other available policy levers, the necessary actions
to reduce our emissions.

Non-incentive

Errors True Label

Where it can be established that such ineligible features/areas existed in previous
years, there is a requirement to reduce the area and apply the relevant financial
reduction and/or penalty to the herdowner.

Incentive

EU CAP direct payments provide vital income support for farmers, and act as an
important cushion against commodity price volatility.

Non-incentive

Table 5: Sentences from the binary dataset correctly and incorrectly classified with our best-performing model

embedding models and classifier were limited by
the small size and class imbalances of the dataset.

We also noted that the pipeline may benefit from
span extraction and classification rather than simple
sentence classification, especially in cases where
there are several incentives contained in a single
sentence. We are now experimenting with the PO-
LIANNA dataset for extracting spans to use as fea-
tures in the sentence classification, enabling multil-
abel classification for incentives as well (Sewerin
et al., 2023).

Ethics

The data for this project consists of sentences from
public policy documents, none of which contain
private or personal information. Bias may be intro-
duced to the dataset and resulting models by the
aforementioned single annotator and annotation de-
cisions in ambiguous cases, as well as by the small
size and class imbalance of the dataset. While
our pipeline is primarily designed and intended for
policy analysis, it could be manipulated to create bi-
ased classifiers that mislabel incentives in order to
fit a certain agenda, potentially over-representing
or under-representing different incentive classes
in order to sway the downstream choice of pol-
icy solutions. As such, it is important for future
implementations of the pipeline to maintain open-
ness and transparency in the construction of their
datasets and training of their models.

Acknowledgments

Thank you to Dr. Yifan Wang for annotating a
subset of our data for validation. This work was
funded by Research Ireland as part of Grant Num-
ber SFI/12/RC/2289_P2 Insight_2, the Insight Re-
search Ireland Centre for Data Analytics.

References
Bertrand Badie, Dirk Berg-Schlosser, and Leonardo

Morlino. 2011. International Encyclopedia of Po-
litical Science, volume 1. SAGE Publications, Inc.,
Thousand Oaks, California.

John Brandt. 2019. Text mining policy: Classifying
forest and landscape restoration policy agenda with
neural information retrieval. In KDD Fragile Earth
workshop (FEED 2019).

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and Psychological Mea-
surement, 20(1):37–46.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy
Schwartz, and Noah A. Smith. 2019. Show your
work: Improved reporting of experimental results.
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), page 2185–2194.

81

https://doi.org/10.4135/9781412994163
https://doi.org/10.4135/9781412994163
https://doi.org/10.48550/arXiv.1908.02425
https://doi.org/10.48550/arXiv.1908.02425
https://doi.org/10.48550/arXiv.1908.02425
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/d19-1224
https://doi.org/10.18653/v1/d19-1224


Daniel Firebanks-Quevedo, Jordi Planas, Kathleen
Buckingham, Cristina Taylor, David Silva, Galina
Naydenova, and René Zamora-Cristales. 2022. Us-
ing machine learning to identify incentives in forestry
policy: Towards a new paradigm in policy analysis.
Forest Policy and Economics, 134:102624.

Goran Glavaš, Federico Nanni, and Simone Paolo
Ponzetto. 2017. Cross-lingual classification of top-
ics in political texts. In Proceedings of the Second
Workshop on NLP and Computational Social Science,
pages 42–46, Vancouver, Canada. Association for
Computational Linguistics.

Justin Grimmer and Brandon M. Stewart. 2013. Text
as data: The promise and pitfalls of automatic con-
tent analysis methods for political texts. Political
Analysis, 21(3):267–297.

Steve R. Gunn. 1998. Support vector machines for clas-
sification and regression. Project report, University
of Southampton. Address: Southampton, U.K.

Loni Hagen, Özlem Uzuner, Christopher Kotfila,
Teresa M. Harrison, and Dan Lamanna. 2015. Un-
derstanding citizens’ direct policy suggestions to the
federal government: A natural language processing
and topic modeling approach. In 2015 48th Hawaii
International Conference on System Sciences, pages
2134–2143.

Michael Laver, Kenneth Benoit, and John Garry. 2003.
Extracting policy positions from political texts using
words as data. American Political Science Review,
97(2):311–331.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023. Towards
general text embeddings with multi-stage contrastive
learning. arXiv preprint arXiv:2308.03281.

Ian Magnusson, Noah A. Smith, and Jesse Dodge.
2023. Reproducibility in NLP: What have we learned
from the checklist? Findings of the Association
for Computational Linguistics: ACL 2023, page
12789–12811.

Laura K. Nelson, Derek Burk, Marcel Knudsen, and
Leslie McCall. 2021. The future of coding: A com-
parison of hand-coding and three types of computer-
assisted text analysis methods. Sociological Methods
& Research, 50(1):202–237.

Jiang Ningpeng, Han Tian, Wang Haibo, Xu Ruzhi, and
Ma Shiyu. 2024. A study on structured text parsing
for policies based on BERTopic. In 2024 IEEE 6th
Advanced Information Management, Communicates,
Electronic and Automation Control Conference (IM-
CEC), volume 6, pages 16–22.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Ludovic Rheault and Christopher Cochrane. 2020.
Word embeddings for the analysis of ideological
placement in parliamentary corpora. Political Analy-
sis, 28(1):112–133.

Sebastian Sewerin, Lynn H. Kaack, Joel Küttel, Fride
Sigurdsson, Onerva Martikainen, Alisha Esshaki, and
Fabian Hafner. 2023. Towards understanding pol-
icy design through text-as-data approaches: The pol-
icy design annotations (polianna) dataset. Scientific
Data, 10(896).

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2020. MPNet: masked and permuted pre-
training for language understanding. In Proceedings
of the 34th International Conference on Neural In-
formation Processing Systems, NIPS ’20, Red Hook,
NY, USA. Curran Associates Inc.

Zhanna Terechshenko, Fridolin Linder, Vishakh Pad-
makumar, Michael Liu, Jonathan Nagler, Joshua A.
Tucker, and Richard Bonneau. 2020. A compari-
son of methods in political science text classification:
Transfer learning language models for politics. Other
Information Systems & eBusiness eJournal.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533.

John Wilkerson and Andreu Casas. 2017. Large-scale
computerized text analysis in political science: Op-
portunities and challenges. Annual Review of Politi-
cal Science, 20(Volume 20, 2017):529–544.

Shehel Yoosuf and Yin Yang. 2019. Fine-grained propa-
ganda detection with fine-tuned BERT. In Proceed-
ings of the Second Workshop on Natural Language
Processing for Internet Freedom: Censorship, Dis-
information, and Propaganda, pages 87–91, Hong
Kong, China. Association for Computational Linguis-
tics.
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A Policy Sources

Table 6 shows the departments of origin for the
policies in the dataset at the time of collection.
Since the collection however, two of the depart-
ments have been renamed and their websites and
URLs restructured. In order to address this issue of
changing PDF sources and addresses, we provide a
ZIP file9 of the policies in our repository.

9https://github.com/mawaskow/
policy-classifier/blob/main/policy_scraping/
policy_scraping/outputs/forestry/full.zip
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# Policies Department
45 Agriculture, Food and the Marine
45 Rural and Community Development
44 The Environment, Climate and Communications
4 Housing, Local Government and Heritage

Table 6: The number of policies from each Irish government department represented in the dataset

Figure 2: Confusion matrices for the validation sample (left: binary, right: multiclass)

B External Validation

For the external validation of our dataset, we pro-
vide the confusion matrices of our subset’s la-
belling in Figure 2 for binary and multiclass classi-
fication. Additional information about annotation
guidelines can be found on the dataset page.

C Validation Performance

Table 7 reflects performance using the transformer
head for classification rather than the SVM clas-
sifier used in our main pipeline, resulting in the
lower scores observed here. Despite this, the re-
sults confirm that MPNet consistently outperforms
the other models in incentive sentence embedding
for both binary and multiclass classification.

D Precision and Recall

In addition to reporting the overall and label-
specific F1 scores of our models’ binary and multi-
class classification experiments in Tables 2, 3, and
4, we report their precision in Tables 8, 10, and 12,
and recall in Tables 9, 11, and 13.

E Ambiguous Cases

Table 14 provides further examples of ambiguous
policy sentences.

Model Binary Multiclass
d 88.4 ± 2.7 87.2 ± 3.5

XLM-R l 88.0 ± 2.6 89.3 ± 3.0
o 89.1 ± 2.2 91.5 ± 3.7
d 89.8 ± 2.7 89.0 ± 2.9

MPNet l 89.2 ± 2.2 91.7 ± 3.0
o 89.1 ± 2.0 91.8 ± 3.1
d 88.4 ± 2.5 73.5 ± 7.3

GTE l 88.2 ± 2.6 82.9 ± 5.1
o 89.4 ± 2.3 90.5 ± 2.8
d 88.0 ± 2.8 83.6 ± 3.1

E5 l 88.1 ± 2.2 88.1 ± 5.0
o 89.6 ± 2.1 90.4 ± 3.6

Table 7: Overall validation F1 scores of the fine-tuned
models (d: default, l: weighted loss, o: oversampling)
averaged across 10 different dataset splits
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Model Binary Multiclass
d 87.7 ± 1.4 94.6 ± 3.8

XLM-R l 87.5 ± 1.9 95.0 ± 3.0
o 87.4 ± 1.4 95.3 ± 3.7
d 88.3 ± 1.6 96.3 ± 2.1

MPNet l 87.9 ± 2.2 96.6 ± 2.3
o 88.1 ± 1.0 97.0 ± 1.9
d 87.1 ± 1.1 95.8 ± 3.1

GTE l 87.2 ± 1.4 95.7 ± 2.6
o 87.6 ± 1.3 96.7 ± 2.6
d 87.3 ± 1.6 96.0 ± 2.8

E5 l 86.7 ± 1.7 96.1 ± 1.9
o 86.3 ± 2.3 95.5 ± 2.9

Table 8: Overall precision scores of the fine-tuned mod-
els (d: default, l: weighted loss, o: oversampling) aver-
aged across 10 different dataset splits

Model Binary Multiclass
d 87.8 ± 1.5 94.2 ± 4.2

XLM-R l 87.6 ± 2.0 94.3 ± 3.5
o 87.9 ± 1.3 94.7 ± 3.5
d 88.5 ± 1.5 95.7 ± 2.5

MPNet l 88.2 ± 2.3 96.2 ± 2.5
o 88.7 ± 1.0 96.8 ± 2.1
d 87.3 ± 1.2 95.7 ± 3.0

GTE l 87.5 ± 1.4 95.5 ± 2.6
o 87.9 ± 1.2 96.4 ± 2.6
d 87.6 ± 1.6 95.7 ± 2.9

E5 l 86.9 ± 1.8 95.8 ± 2.0
o 86.9 ± 2.1 94.9 ± 3.4

Table 9: Overall recall scores of the fine-tuned models
(d: default, l: weighted loss, o: oversampling) averaged
across 10 different dataset splits

Model Non-Incentive Incentive
d 92.1 ± 0.9 68.5 ± 5.7

XLM-R l 92.0 ± 1.1 67.9 ± 6.5
o 91.0 ± 1.0 71.4 ± 5.0
d 92.3 ± 1.1 70.6 ± 4.8

MPNet l 92.0 ± 1.4 70.2 ± 7.0
o 91.4 ± 0.7 74.0 ± 3.6
d 91.6 ± 0.8 67.6 ± 5.7

GTE l 91.5 ± 1.0 68.2 ± 5.1
o 91.7 ± 1.1 69.8 ± 4.9
d 91.5 ± 1.1 68.8 ± 5.2

E5 l 91.3 ± 0.9 66.4 ± 6.1
o 90.6 ± 1.4 67.7 ± 6.9

Table 10: Label-specific precision scores for the binary
dataset (d: default, l: weighted loss, o: oversampling)
averaged across 10 different dataset splits

Model Non-Incentive Incentive
d 93.0 ± 1.7 65.3 ± 4.2

XLM-R l 92.9 ± 1.8 64.7 ± 5.0
o 94.5 ± 1.4 59.4 ± 4.9
d 93.6 ± 1.4 66.0 ± 5.5

MPNet l 93.6 ± 2.1 64.5 ± 6.7
o 95.1 ± 0.9 60.8 ± 3.5
d 92.9 ± 1.8 62.6 ± 4.1

GTE l 93.2 ± 1.6 62.3 ± 5.1
o 93.6 ± 1.5 63.0 ± 5.4
d 93.5 ± 1.4 62.3 ± 5.1

E5 l 92.7 ± 1.7 61.7 ± 4.0
o 93.6 ± 1.6 57.5 ± 6.8

Table 11: Label-specific recall scores for the binary
dataset (d: default, l: weighted loss, o: oversampling)
averaged across 10 different dataset splits

84



Model Credit Direct
Payment

Fine Supplies Tax
Deduction

Technical
Assistance

d 100.0 ± 0.0 93.4 ± 5.0 98.3 ± 5.0 96.1 ± 6.1 78.3 ± 35.0 92.5 ± 5.5
XLM-R l 100.0 ± 0.0 91.5 ± 7.0 100.0 ± 0.0 96.9 ± 4.0 78.3 ± 35.0 93.8 ± 5.4

o 100.0 ± 0.0 95.9 ± 4.2 98.3 ± 5.0 96.9 ± 4.1 73.3 ± 35.1 92.2 ± 6.4
d 100.0 ± 0.0 91.9 ± 6.5 100.0 ± 0.0 98.2 ± 2.8 93.3 ± 20.0 95.9 ± 5.7

MPNet l 97.5 ± 7.5 91.9 ± 6.7 100.0 ± 0.0 98.2 ± 2.8 95.0 ± 15.0 97.4 ± 3.3
o 97.5 ± 7.5 95.4 ± 5.0 100.0 ± 0.0 97.0 ± 3.0 95.0 ± 15.0 97.5 ± 3.1
d 98.0 ± 6.0 91.2 ± 7.3 100.0 ± 0.0 97.6 ± 3.8 90.0 ± 30.0 96.1 ± 4.3

GTE l 98.0 ± 6.0 92.7 ± 6.9 100.0 ± 0.0 97.6 ± 3.8 90.0 ± 30.0 94.5 ± 5.6
o 100.0 ± 0.0 95.9 ± 4.1 100.0 ± 0.0 96.9 ± 3.1 83.3 ± 34.2 95.8 ± 4.6
d 98.0 ± 6.0 95.1 ± 5.5 100.0 ± 0.0 97.6 ± 3.9 95.5 ± 15.0 93.1 ± 5.8

E5 l 98.0 ± 6.0 94.5 ± 5.0 100.0 ± 0.0 97.0 ± 4.0 100.0 ± 0.0 94.3 ± 4.3
o 100.0 ± 0.0 94.5 ± 6.1 100.0 ± 0.0 97.5 ± 3.0 93.3 ± 20.0 91.7 ± 6.8

Table 12: Label-specific precision scores for the multiclass dataset (d: default, l: weighted loss, o: oversampling)
averaged across 10 different dataset splits

Model Credit Direct
Payment

Fine Supplies Tax
Deduction

Technical
Assistance

d 95.0 ± 10.0 93.3 ± 6.2 90.0 ± 13.4 95.6 ± 4.9 90.0 ± 30.0 94.7 ± 7.2
XLM-R l 95.0 ± 10.0 93.3 ± 9.0 86.0 ± 15.6 96.3 ± 5.0 90.0 ± 30.0 96.0 ± 5.3

o 97.5 ± 7.5 93.3 ± 9.0 92.0 ± 13.3 95.6 ± 4.9 90.0 ± 30.0 95.3 ± 5.2
d 90.0 ± 12.2 95.8 ± 6.7 96.0 ± 12.0 96.3 ± 5.0 100.0 ± 0.0 96.0 ± 5.3

MPNet l 90.0 ± 12.2 96.7 ± 4.1 96.0 ± 8.0 98.8 ± 2.5 100.0 ± 0.0 94.7 ± 7.2
o 92.5 ± 11.5 95.8 ± 4.2 98.0 ± 6.0 98.1 ± 2.9 100.0 ± 0.0 96.7 ± 5.4
d 92.5 ± 11.5 96.7 ± 4.1 100.0 ± 0.0 95.6 ± 2.9 90.0 ± 30.0 94.7 ± 5.0

GTE l 85.0 ± 16.6 96.7 ± 4.1 100.0 ± 0.0 96.9 ± 3.1 90.0 ± 30.0 94.7 ± 5.8
o 95.0 ± 10.0 95.0 ± 6.7 96.0 ± 12.0 97.5 ± 3.1 90.0 ± 30.0 97.3 ± 4.4
d 92.5 ± 11.5 94.2 ± 6.5 96.0 ± 8.0 96.9 ± 3.1 100.0 ± 0.0 96.0 ± 4.4

E5 l 90.0 ± 12.2 95.0 ± 4.1 100.0 ± 0.0 96.9 ± 4.2 100.0 ± 0.0 95.3 ± 4.3
o 92.5 ± 11.5 92.5 ± 6.9 96.0 ± 12.0 95.6 ± 4.9 100.0 ± 0.0 96.0 ± 5.3

Table 13: Label-specific recall scores for the multiclass dataset (d: default, l: weighted loss, o: oversampling)
averaged across 10 different dataset splits

The Eco-Schemes provides supports to farmers who undertake specific agricultural
practices, including extensive farming, tree planting, sewing a multi-species sward,
and enhancing crop diversification.

Department of Finance and DAFM to improve dissemination of information on taxa-
tion incentives including engagement with advisors, tax consultants and accountants.

LEADER may provide support rates greater than 65% in accordance with Article
73(4) (c)(ii) where investments include basic services in rural areas and infrastructure
in agriculture and forestry, as determined by Member States.

Table 14: Ambiguous policy sentences, unclear in either their status as incentive or non-incentive, or in the type of
incentive they are.
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