Die SuperGLEBer at GermEval 2025 Shared Tasks:
Growing Pains - When More Isn’t Always Better

Julia Wunderle * and Jan Pfister © and Andreas Hotho
Data Science Chair
Center for Artificial Intelligence and Data Science (CAIDAS)
Julius-Maximilians-Universitit Wiirzburg (JMU)
{lastname}@informatik.uni-wuerzburg.de

Abstract

We participate in this year’s GermEval 2025
Shared Tasks by extending SuperGLEBer,
a comprehensive benchmark for evaluating
German language understanding to the new
tasks. Rather than focusing on optimizing task-
specific performance, we adopt a complemen-
tary strategy: applying simple methods across
38 diverse (L)LMs (100M to 9B parameters)
to analyze the tasks themselves, revealing that
most models perform similarly on this year’s
tasks compared to existing SuperGLEBer tasks.
Notably, the regression-based verifiability rat-
ing task diverges from this trend, emerging as
substantially more difficult and methodolog-
ically distinct. Through our comprehensive
analysis, we find that three new tasks, including
Flausch-Erkennung subtask 2, rank among the
top 10 most discriminating tasks of the bench-
mark, effectively distinguishing between model
capabilities. Most remarkably, we demonstrate
that just 2-3 strategically selected tasks can ap-
proximate the complete benchmark rankings
with 97-99% correlation, potentially enabling
more efficient large-scale model evaluation
while maintaining ranking accuracy. Overall,
our submissions achieved competitive results,
placing Ist (out of one)-6th across different
tasks, i.e. for Flausch-Erkennung subtask 1 and
2 we placed 3rd and 6th respectively.

1 Introduction

In an earlier work we introduced the first com-
prehensive benchmark for German language un-
derstanding models called SuperGLEBer (Pfister
and Hotho, 2024). It contains 29 diverse tasks
such as document classification, sequence tagging,
sentence similarity, and question answering. This
allowed us to systematically evaluate the perfor-
mance of any existing HuggingFace model on Ger-
man language understanding tasks.

¥ These authors contributed equally to this work.

In this work, we extend SuperGLEBer with all
four shared tasks from GermEval 2025 to provide a
comprehensive evaluation of current German mod-
els on all shared tasks: (1) Flausch-/Candy Speech
Detection (Clausen et al.), which identifies “candy
speech” in YouTube comments through coarse—
grained binary classification and fine-grained span
detection with category assignment (10 categories);
(2) SustainEval (Prange et al.), which analyzes
German sustainability reports through content clas-
sification of text snippets to predefined reporting
criteria and verifiability rating of sentences on a
0.0-1.0 scale; (3) Harmful Content Detection in
Social Media (Felser et al.), which detects harm-
ful content in German social media posts through
three binary/multi-class classifications: calls to
action, stance toward democratic order (4 cate-
gories), and positive attitudes toward violence; and
(4) LLMs4Subjects (D’Souza et al.), a multi-la-
bel classification task that assigns library records to
subject domains (28 categories) using the GND tax-
onomy. We participate in all subtasks, except for
LLMs4Subjects, where we only benchmark on sub-
task 1. However, we did not officially submit a run
due to limitations requiring participation in both
subtasks, and subtask 2 was not trivial to imple-
ment into the existing SuperGLEBer framework'.

Our approach is partly inverse to traditional
shared task participations, following the spirit of
van der Goot (2022, 2023) at SemEval: we partic-
ipate in multiple shared tasks at once, and rather
than focusing solely on optimizing model perfor-
mance, we aim to learn more about the tasks them-
selves by applying simple methods across a wide
range of models. This systematic evaluation al-
lows us not only to assess model performance but
also to analyze the complexity and discriminative
power of the new tasks in comparison to existing
SuperGLEBer benchmark tasks.

"https://github.com/LSX-UniWue/SuperGLEBer
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2 Modelling the tasks in SuperGLEBer

SuperGLEBer is an open-source benchmark suite
designed to evaluate German language understand-
ing of language models across a wide range of tasks
(Pfister and Hotho, 2024). It includes 29 diverse
tasks such as document classification, sequence tag-
ging, sentence similarity, and question answering,
reflecting the breadth of natural language under-
standing challenges in German. We add the shared
tasks to the SuperGLEBer framework, which al-
ready supports most task types. Following flair’s
implementation (Akbik et al., 2019) we finetune the
text classification tasks using the standard approach
of adding a linear layer on top of the output rep-
resentation of the CLS token, while for sequence
tagging tasks we use the same approach, but train
the linear layer to predict the correct class on top
of the output representation of each input token
individually.

Flausch-Erkennung For the binary classifica-
tion in subtask 1, the input sentence: “ihr seid
die Besten” has to be classified as yes. For the
span prediction in subtask 2, each token’s class is
predicted individually using a BIO-label scheme:

Token Label

ihr B-affection_declaration

seid I-affection_declaration

die I-affection_declaration

Besten I-affection_declaration
SustainEval The multi-class classification sub-

task 1 is solved by assigning text snippets to pre-
defined reporting criteria: “Prévention Uber das
Kerngeschiift ,, Versicherung" hinaus fiihlt sich ...’
and “Die [ORG] arbeitet hier eng mit den relevan-
ten Institutionen und Einrichtungen. .. ” the model
has to classify this as class 18, i.e Corporate
Citizenship. For the regression subtask 2 the
verifiability of the last sentence given the previ-
ous context has to be predicted, in this case @.667.
Here, we also follow flair’s standard setup, using
a simple linear layer on top of the model’s hidden
states. As we found that this can be unstable during
training, we add two stabilizing measures:

>

1. An RMS-Norm before the linear layer, as
some hidden state features can be very large,
leading to training instabilities.

2. A sigmoid activation function after the linear
layer, constraining outputs to the value range
of the task: between 0 and 1.

Harmful Content Detection For harmful con-
tent detection, we perform binary or multi-class
classification across three subtasks to detect harm-
ful content in German social media posts: C2A
and VIO use binary classification to detect calls
to action and positive attitudes toward violence re-
spectively. For example, given the input: “In 300
Jahren sind dann alle wieder daheim” the model
classifies this as False for the violence subtask.
DBO performs multi-class classification (4 cate-
gories) to determine stance toward democratic or-
der. For example, given: “Die schddliche Arbeit-
sagentur soll mal in den Spiegel schauen.” the
correct label would be criticism.

LLMs4Subjects Subtask 1 Here, we perform
multi-label classification (28 categories) to assign
library records to subject domains. For example,
given the input describing a cultural heritage site:
“Der Lohrerhof in Hiirth : Denkmalgerechte Pla-
nung und Sanierung "Der Lohrerhof ist eine bduer-
liche Hofanlage aus dem 19. Jh. im Stadtteil Alt-
Hiirth, die zuletzt hauptsdchlich als Kunst- und
Kulturzentrum genutzt wurde.” the model assigns
the labels arc ; bau.

3 Experiments

We evaluate the performance of all models from
the original SuperGLEBer benchmark, as well as
models added after its official release using the flair
internal default metric: F1-score for classification
and sequence tagging, and mean squared error for
regression.

3.1 Models

This results in evaluating 38 models, all of which
are listed alongside their results in Table 5. As Su-
perGLEBer is a model-architecture-agnostic frame-
work, which allows us to evaluate most Hugging-
Face compatible models, we refer to these models
using their HuggingFace identifiers, often omitting
the leading organization name for simplicity (i.e.
“(LSX-UniWue/)ModernGBERT _1B”’). The mod-
els vary in size (from 100M to 9B parameters),
and architecture (encoder and decoder), including
recent multilingual models, German-specific mod-
els and models pretrained in languages other than
German and later fine-tuned on German data (see
Table 6 for more details).
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3.2 Training Setup

For each of the task type, we follow SuperGLEBer
(Pfister and Hotho, 2024) in implementing the train-
ing routine. For text classification, regression and
sequence tagging we use flair (Akbik et al., 2019),
applying consistent training procedures across all
models: a batch size of 8 (without gradient accumu-
lation), a learning rate of Se-5, 5 epochs and a seed
set to 42. In addition, we introduce a maximum
input sequence length of 512 tokens, to enable fair
comparisons for all models regardless of their in-
dividual context size and class weighting for all
classification tasks during training.

Efficient Training with (Q)LoRA We conse-
quently opt to use QLoRA-training (Dettmers et al.,
2023) for all models where it is supported by the
HuggingFace library, falling back to LoRA (Hu
et al., 2022) for the GBERT family where quanti-
zation is not supported. Enabling (Q)LoRA for all
models where possible ensures comparability be-
tween different models and rules out the possibility
that the performance difference between models
stems from different training procedures. Follow-
ing the hyperparameters given by Dettmers et al.
(2023) we use 4-bit quantization, double quantiza-
tion and NormalFloat4, with a default LoRA rank
of 8 and a dropout rate of 0.1. All models are
trained on H100 GPUs.

4 Results

4.1 How does our simple approach perform?

Our full evaluation on the development datasets
is presented in Table 5. For datasets without a
predefined development split, we randomly split
the training set into new train and dev subsets using
an 80:20 ratio.

Flausch-Erkennung For Flausch-Erkennung,
the binary classification subtask 1 proves relatively
straightforward, with leo-hessian-7b achieving the
highest performance (0.953), closely followed by
DOSMo-7B-v0.2 (0.952). However, the span detec-
tion subtask 2 emerges as significantly more chal-
lenging, with ModernGBERT _1B leading at only
0.662, followed by LL&Mmlein2Vec_7B (0.657)
according to our metric. This substantial per-
formance drop highlights the complexity of fine-
grained span detection with category assignment
compared to coarse-grained binary classification.
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SustainEval Both SustainEval subtasks present
considerable challenges for current models. The
content classification subtask achieves moder-
ate performance with ModernGBERT_1B lead-
ing (0.659) and LLiMmlein_7B following (0.633).
The verifiability rating regression subtask proves
particularly difficult, with even the best-performing
Meta-Llama-3.1-8B reaching only 0.454, while
Llama3-German-8B achieves 0.430. This regres-
sion task’s low scores across all models suggest it
requires fundamentally different capabilities than
traditional classification tasks.

Harmful Content Detection The harmful con-
tent detection tasks show varied difficulty lev-
els across subtasks. Call-to-action detection
(c2a) achieves high performance with ModernG-
BERT_1B (0.953) and LL&Mmlein_7B (0.952) per-
forming similarly well. Stance detection toward
democratic order (dbo) proves moderately more
challenging, with LL&Mmlein2Vec_7B leading
(0.900), followed closely by ModernGBERT_1B
and leo-hessian-7b (both 0.897). Violence detec-
tion (vio) represents the easiest subtask overall,
with LL@Mmlein_7B achieving the highest score
(0.956) and EuroLLM-9B close behind (0.954).

LLMs4Subjects The multi-label subject clas-
sification task shows competitive performance
between top models, with ModernGBERT_1B
(0.787) and Llama3-German-8B (0.786) achiev-
ing nearly identical results. This close performance
suggests that both encoder and decoder architec-
tures can effectively handle this taxonomic classifi-
cation challenge.

Overall Performance Patterns Remarkably, the
German-only encoder ModernGBERT_1B demon-
strates exceptional consistency, achieving best or
second-best performance in 6 out of 8 subtasks
despite being up to 9 times smaller than compet-
ing models. This pattern reinforces that special-
ized German training outweighs raw parameter
count for these tasks. The performance hierar-
chy generally follows with decoder models leo-
hessian-7b, LLiMmlein variants, and Meta-Llama-
3.1-8B, most of which received explicit German
fine-tuning, while even recent SotA model fami-
lies like Qwen stay behind, highlighting the im-
portance of specialized training for German. De-
spite this, many overall well performing models
do not perform as well on SustainEval-Regression,
with scores ranging from 0.029 to 0.454. This sug-



gests that verifiability rating and the regression task
present different challenges than the other Super-
GLEBer tasks.

Our official submissions Overall, we submit-
ted the three best overall performers according to
our analyses - “ModernGBERT_1B”, ‘LLaMm-
lein_7B”, and “Llama-3.1-8B” (details in Ta-
ble 6) - to all official leaderboards except for
LLMs4Subjects. Our simple SuperGLEBer frame-
work approach achieved competitive results across
most tasks: 3rd place out of 11 teams for Flausch-
Erkennung subtask 1, with an F1 score of 0.883
(Table 1), 6th place out of 7 teams for Flausch-
Erkennung subtask 2, with a strict F1 of 0.127,
type F1 of 0.173, and span F1 score of 0.580 (Ta-
ble 2). Notably, for subtask 2 we observed a signif-
icant discrepancy between the official span-based
evaluations vs. our BIO-label token classification-
based evaluation, which we aim to analyze in the
future. For the SustainEval classification subtask
we achieved 4th place out of 6 teams, with an accu-
racy score of 0.573 and 1st place out of 1 team for
SustainEval regression subtask, with an kendall’s
tau score of 0.402 (see Table 3). Official Harmful-
Content results have not yet been published?. For
subtask 1 (c2a) we achieved a F1 score of 0.870,
subtask 2 (dbo) 0.690 and subtask 3 vio (0.840).

4.2 How do models perform on the new tasks,
compared to the old tasks?

As we augmented the SuperGLEBer benchmark
with new tasks, we want to understand the perfor-
mance relationship between the new shared tasks
from this year and the already existing tasks. To
shed light on this, we analyze the ranking consis-
tency between tasks using Spearman rank correla-
tion. Figure 1 shows the correlation matrix between
all new tasks (rows) and existing tasks (columns)
based on model performance rankings.

What we find is that most new tasks exhibit
strong positive correlations (0.7-0.9) with many
existing tasks, suggesting that models performing
well on existing SuperGLEBer tasks also excel on
these new tasks. In contrast, SE-Regression shows
weak or inverse correlations, highlighting it as a
distinct challenge that deviates from existing per-
formance patterns. Interestingly, for the existing
up-dep and up-pos tasks, we find a (strong) in-
verse correlation to most new tasks - except for
Flausch-Erkennung Tagging and Harmful Content

2although it looks like atleast a Top-3 finish at the moment

c2a, indicating that models that perform well on
these tasks do not perform well on the new tasks.
We assume up-dep and up-pos are special, because
they are the only syntactic tasks in SuperGLEBer,
focusing on predicting dependency parse labels and
POS tags respectively, while all other tasks are se-
mantic/pragmatic in nature, focusing on extracting
meaning and content such as named entity recog-
nition or text classification. This also becomes
visible when embedding each task by interpreting
each model’s performance on a task as a “feature”
(Figure 5) and subsequently calculating a principal
component analysis (PCA) on the resulting space:
as anticipatable the previously already discussed
up-pos, up-dep and SE-Regression are most “out-
of-distribution”.

4.3 How well do the tasks discriminate
between models?

Inspired by these insights, we reverse the process
by interpreting task performance as embedding
features for the models in Figure 4. We observe
distinct clustering patterns: smaller multilingual
models without a German focus (i.e., “bloomz-
560m” and “Qwen2.5-0.5B”) group in the lower-
left quadrant, while high-performing models like
ModernGBERTSs and larger LL&Mmlein variants
tend to place in the upper-right region. Smaller
German-focused encoder models (e.g., gbert vari-
ants and gelectra models) cluster together in the
upper-center area, suggesting similar performance
profiles despite architectural differences. On the
other hand, decoder models (e.g. “bueble-lm-2b”,
EuroLLM, “leo-hessianai-7b”) are grouped in the
lower-right area. This pattern suggests that model
architecture families and language-specific train-
ing create recognizable performance signatures that
transcend individual task results.

In this figure the first two principal components
already capture 74.7% of the total variance (PC1:
61.9%, PC2: 12.8%), indicating that model perfor-
mance can be largely characterized by these two
dominant factors, each resembling an axis in the
“task performance space”. Similarly, when we color
the models in this graph according to the perfor-
mance of the subtasks in Figure 3, we can identify a
clear “gradient” in this PCA space along which the
performance evolves rather monotonously. This is
an indicator that most of the model performance
discrimination might be driven by a small subset
of tasks in the SuperGLEBer.

To further analyze this behavior we calculate
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Model Ranking Consistency: New
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Figure 1: Model ranking consistency between new GermEval 2025 tasks and existing SuperGLEBer tasks. Each
cell shows the Spearman rank correlation coefficient between model rankings on the corresponding task pair. Darker
red indicates higher positive correlation (similar model rankings), while blue indicates negative correlations. The
analysis reveals which new tasks are most predictive of performance on the existing tasks.

the standard deviation of model performances for
each task. Tasks with higher deviation in model
performance scores are more effective at distin-
guishing between models, while tasks where all
models perform similarly provide less discrimi-
native power (Figure 2). We find that three of
the new tasks (SE-Class, Flausch-Tagging and SE-
Regression) are able to create a standard deviation
across models of about 0.1 or more, placing them
in the top 10 most discriminating tasks overall. A
more detailed list of task discrimination for new
and existing tasks separately is provided in Fig-
ure 6. When examining these most discriminative
tasks, we identify a common characteristic: most
of these tasks have many target classes, like for the
existing tasks “hotel_aspect” (15 labels, one for
each combination of an aspect-class and sentiment
class) or “massive_intents” (60 labels). A similar
pattern holds for the new tasks: “SE-class” (20
labels), and “Flausch-tagging” (21 labels).

4.4 Do we need the entire SuperGLEBer
benchmark to reproduce the rankings?

Motivated by the findings in Sections 4.2 and 4.3,
we investigate whether a smaller, carefully chosen
subset of tasks can approximate the full bench-
mark’s model rankings. This could greatly re-
duce evaluation costs while maintaining ranking
accuracy. Using a greedy selection strategy, we
construct subsets of increasing size by iteratively
adding tasks that maximize alignment with the full
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Top 10 Most Discriminating Tasks Overall
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Figure 2: Top 10 most discriminating tasks, perfor-
mance score standard deviation across all 38 evaluated
models. Higher deviation indicates better discrimination
between model capabilities: three of the new tasks from
this year rank among the most discriminating overall.

37-task ranking across all 38 models. We measure
the subset quality using Spearman rank correlation,
mean absolute rank difference (MAD), exact rank
matches (number of models that keep their rank),
and the number of models involved in ranking ties.

As shown in Table 4, remarkably few tasks are
needed to approximate the full benchmark rankings.
Starting with a single task (“massive_intents”), we
achieve 96.9% correlation with the complete 37-
task ranking, though this results in 10 models hav-
ing identical performance scores and thus being
tied for the same rank position.



When we expand to two selected existing Su-
perGLEBer tasks - “verbal_idioms” and “mas-
sive_intents” - the correlation improves to 97.8%
while reducing ranking ambiguity: only 2 models
remain tied in placement, compared to 10 with a
single task. This means that 36 out of 38 mod-
els can be clearly distinguished and ranked using
these two tasks. Expanding further to three tasks
(“toxic_comments”, “db_aspect”, and “ner_legal”)
achieves 99.0% correlation with the full benchmark.
The MAD, which measures the average difference
in rank positions between the subset and full rank-
ings, drops to 1.21 ranks. This means that on aver-
age, a model’s rank using these three tasks differs
by only about one position from its rank using all
37 tasks. Importantly, this subset eliminates all ties,
providing a clear ranking for all models.

A four-task subset maintains similar correlation
(99.2%) with slightly better rank precision (MAD
of 1.16), while a five-task subset that includes one
of this year’s new tasks (“HC-dbo”) achieves 99.4%
correlation with a MAD of just 0.68 ranks. At this
point, 22 out of 38 models maintain their exact rank
positions compared to the full benchmark.

These results demonstrate that comprehensive
model evaluation can be effectively approximated
using a small, strategically chosen subset of tasks,
making large-scale model comparison more com-
putationally efficient - confirming that more isn’t
always better when it comes to benchmark design.

5 Related Work

GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019) established the paradigm of compre-
hensive language understanding benchmarks with
11 and 10 diverse NLU tasks respectively. The
English-only nature of these benchmarks led to the
development of similar multilingual efforts for e.g.
Russian (Shavrina et al., 2020), Persian (Khashabi
et al., 2021), and Bulgarian (Hardalov et al., 2023).

While cross-lingual benchmarks like XTREME
(Hu et al., 2020) and XGLUE (Liang et al., 2020)
include German tasks, their focus on cross-lingual
transfer rather than monolingual capabilities makes
them less suitable for comprehensive German
model evaluation. Previous German evaluation ef-
forts have been task-specific, focusing on individ-
ual capabilities like sentiment analysis (Cieliebak
et al., 2017) or coreference resolution (Schroder
et al., 2021), rather than providing comprehensive
benchmarking frameworks.

6 Conclusion

We successfully extended SuperGLEBer with four
new GermEval 2025 shared tasks, providing com-
prehensive evaluation of 38 models ranging from
100M to 9B parameters. Our simple approach
achieved competitive results across tasks, placing
1st-6th in the shared task rankings, and on average
performed best when using a “small” 1B model.

The analysis reveals that most new tasks corre-
late well with existing SuperGLEBer tasks (0.7-0.9
correlation), except for the regression-based veri-
fiability rating which presents distinct challenges.
Three new tasks rank among the top 10 most dis-
criminating tasks, effectively distinguishing be-
tween model capabilities. We demonstrate that
strategic task selection can reduce model bench-
marking costs: just a small subset of 2-3 care-
fully chosen tasks approximate complete bench-
mark rankings consisting of 37 tasks with 97-99%
correlation, enabling efficient large-scale model
evaluation while maintaining ranking accuracy.

Regarding the Flausch-Erkennung (Candy
Speech Detection) task specifically, we achieved
solid performance with 3rd place in the binary clas-
sification subtask but found the span detection sub-
task more challenging, placing 6th with notable
discrepancies between span-based and BIO-token
evaluation approaches. Interestingly, the Flausch-
Erkennung tagging subtask emerged as one of the
top 10 most discriminating tasks in our benchmark,
effectively distinguishing between model capabili-
ties across the 38 evaluated models, suggesting its
value for comprehensive model evaluation beyond
just detecting candy speech in social media.

Limitations

Our evaluation relies on a simple approach that may
(likely) not capture the full potential of more so-
phisticated methods for these tasks. The regression
task implementation required additional stabiliza-
tion measures, indicating potential challenges in
the dataset or our approach - as no other team partic-
ipated in this subtask, we lack points of comparison
for further investigations.
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Team F1 Precision  Recall
Alxcellent Vibes 0.891 0.927 0.857
HHUflauschig 0.887 0.900 0,875
Die SuperGLEBer 0.883 0.915 0.853
NLPSuedwestfalen 0.880 0.911 0.850
TUM NLP Group 0.879 0.887 0.871

nlp-augsburg-04 0.836 0.903 0.778
StickyBeard Aux 0.819 0.868 0.775
Quabynar 0.754 0.710 0.804
Robert-Dennis-UniAugsburg03  0.746 0.817 0.687
Flauschgummi 0.697 0.888 0.574

Table 1: Leaderboard of Flausch-Erkennung subtask 1

Team F1 (strict) P (strict) R (strict) F1 (type) P (type) R (type) F1(span) P (span) R (span)
Alxcellent Vibes 0.631 0.658 0.605 0.769 0.803 0.738 0.676 0.705 0.648
HHUflauschig 0.615 0.629 0.601 0.766 0.785 0.749 0.668 0.684 0.653
Georg Hofmann 0.498 0.475 0.524 0.680 0.648 0.715 0.567 0.541 0.596
nlp-augsburg-04 0.334 0.241 0.543 0.492 0.355 0.801 0.365 0.264 0.594
Quabynar 0.159 0.149 0.171 0.408 0.381 0.438 0.257 0.240 0.276
Die SuperGLEBer 0.127 0.136 0.120 0.173 0.185 0.162 0.580 0.620 0.544
StickyBeardAux 0.039 0.044 0.036 0.562 0.629 0.507 0.050 0.056 0.045

Table 2: Leaderboard of Flausch-Erkennung subtask 2

Team Subtask 1 Subtask 2
Accuracy Kendall’s Tau

22520474 0.626 -
1234566 0.586 -

slnbo 0.579 -

janpf (our) 0.573 0.402
wangkongqgiang 0.505 -
supachoke 0.486 -

Table 3: Leaderboard of SustainEval subtask 1 - Content Classification and subtask 2 - Verifiability Rating

Size  Task Subset

Correlation

MAD'

Exact Rank Matches

Models in Ties

1 existing_massive_intents

0.969

2.00

3/38

10

2

existing_verbal_idioms
existing_massive_intents

0.978

1.71

8/38

2

existing_toxic_comments
3 existing_db_aspect
existing_ner_legal

0.990

1.21

8/38

existing_toxic_comments

existing_db_aspect

existing_verbal_idioms
existing_ner_legal

0.992

1.16

6/38

existing_offensive_lang
existing_db_aspect

5 existing_ner_news
existing_germanquad

new_HC-dbo

0.994

0.68

22/38

Full  All 37 tasks (29 existing + 8 new)

1.000

0.00

38/38

Table 4: Minimal task subsets for reproducing SuperGLEBer model rankings. We evaluate the correlation between
subset-based rankings and the full 37-task ranking across 38 models. Results show that just 2 tasks (“exist-
ing_verbal_idioms” + “existing_massive_intents”) achieve 97.8% correlation with the complete benchmark while
reducing ties from 10 to 2 models. This demonstrates that comprehensive model evaluation can be approximated

with carefully selected task subsets. TMAD = Mean Absolute Rank Difference.
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Flausch Harmful Content Llms4s | SustainEval | SuperGLEBer
model Class  Tag c2a dbo vio Class | Class Reg Old Avg
LLdMmlein_120M [Pfister et al.] 0.924 0.433 | 0920 0.845 0943 | 0.728 | 0.225 0.330 0.676
LLdMmlein_1B [Pfister et al.] 0.941 0.541 | 0936 0.886 0.945 | 0.773 | 0.449 0.321 0.733
LLi&Mmlein_7B [Pfister et al.] 0.950 0.575 | 0.952 0.887 0.956 | 0.784 | 0.633 0.357 0.747
LLdMmlein2Vec_120M [Ehrmanntraut et al.] 0918 0.419 | 0.905 0.832 0936 | 0.712 | 0.161 0.368 0.684
LL&Mmlein2Vec_1B [Ehrmanntraut et al.] 0.940 0.609 | 0.943 0.874 0.951 | 0.765 | 0.251 0.270 0.762
LL#Mmlein2Vec_7B [Ehrmanntraut et al.] 0.947 0.657 | 0.943 0.900 0.947 | 0.780 | 0.614 0.350 0.787
ModernGBERT_134M [Ehrmanntraut et al.] 0.932 0.520 | 0.932 0.865 0.936 | 0.753 | 0.210 0.243 0.749
ModernGBERT_1B [Ehrmanntraut et al.] 0.948 0.662 | 0.953 0.897 0952 | 0.787 | 0.659 0.118 0.808
german-gpt2 [Staatsbibliothek and Schweter] 0917 0318 | 0916 0.747 0.934 | 0.636 | 0.135 0.151 0.642
gerpt2 [Minixhofer] 0913 0.237 | 0923 0.779 0.932 | 0.702 | 0.094 0.281 0.619
gerpt2-large [Minixhofer] 0.935 0.450 | 0.935 0.858 0.941 | 0.749 | 0.382 0.321 0.708
gbert-base [Chan et al.] 0.924 0.386 | 0.929 0.843 0.933 | 0.729 | 0.292 0.222 0.718
gbert-large [Chan et al.] 0.937 0.567 | 0.948 0.878 0.943 | 0.753 | 0.378 0.307 0.768
gelectra-base [Chan et al.] 0.921 0.291 | 0.906 0.798 0.936 | 0.659 | 0.082 0.148 0.666
gelectra-large [Chan et al.] 0.936 0.536 | 0.928 0.858 0.940 | 0.726 | 0.191 0.248 0.734
bert-base-german-cased [Staatsbibliothek] 0911 0.300 | 0915 0.852 0.938 | 0.717 | 0.273 0.309 0.700
gottbert-base [Scheible et al.] 0.926 0.387 | 0.907 0.856 0.936 | 0.722 | 0.157 0.131 0.708
GeistBERT-base [Scheible-Schmitt and Frei] 0.933 0481 | 0927 0.842 0935 | 0.656 | 0.277 0.228 0.703
GottBERT-large [Scheible et al.] 0.936 0419 | 0.927 0.811 0932 | 0.751 | 0.288 0.154 0.724
gerturax-1 [GERTuraX] 0.930 0.433 | 0932 0.836 0949 | 0.714 | 0.176 0.281 0.740
gerturax-2 [GERTuraX] 0.935 0.444 1 0937 0.855 0943 | 0.716 | 0.232 0.214 0.744
gerturax-3 [GERTuraX] 0.934 0428 | 0937 0.843 0946 | 0.713 | 0.184 0.222 0.740
DOSMo-7B-v0.2 [Idahl] 0952 0.577 | 0.945 0.891 0.947 | 0.783 | 0.580 0.401 0.759
bueble-Im-2b [Delobelle et al.] 0.935 0.553 1 0932 0.873 0944 | 0.764 | 0.438 0.358 0.741
bloom-6b4-clp-german [Ostendorff and Rehm] 0.948 0.427 | 0947 0.884 0.949 | 0.778 | 0.502 0.391 0.752
leo-hessianai-7b [Pliister] 0.953 0.521 | 0.952 0.897 0.949 | 0.784 | 0.622 0.349 0.758
Llama3-German-8B [DiscoResearch and Occiglot] | 0.949 0.527 | 0.944 0.871 0.950 | 0.786 | 0.626 0.430 0.746
Llama-3.2-1B [Grattafiori et al.] 0.934 0.342 | 0910 0.872 0.938 | 0.760 | 0.371 0.357 0.710
Llama-3.2-3B [Grattafiori et al.] 0.939 0.455|0.923 0.867 0938 | 0.776 | 0.494 0.390 0.733
Meta-Llama-3.1-8B [Grattafiori et al.] 0.948 0.510 | 0.936 0.873 0.949 | 0.785 | 0.584 0.454 0.744
EuroBERT-210m [Boizard et al.] 0.906 0.296 | 0.888 0.785 0.931 | 0.711 | 0.120 0.122 -
EuroBERT-610m [Boizard et al.] 0.907 0.494 | 0.878 0.817 0.931 | 0.753 | 0.101 0.209 -
EuroBERT-2.1B [Boizard et al.] 0.898 0.389 | 0.894 0.773 0.931 | 0.770 | 0.127 0.151 -
EuroLLM-1.7B [Martins et al.] 0.940 0.496 | 0934 0.896 0.949 | 0.764 | 0.528 0.410 0.728
EuroLLM-9B [Martins et al.] 0.950 0.504 | 0.949 0.892 0.954 | 0.775 | 0.513 0.395 0.753
xlm-roberta-base [Conneau et al.] 0923 0.313 | 0913 0.839 0931 | 0.672 | 0.139 0.271 0.689
xIm-roberta-large [Conneau et al.] 0.933 0.465 | 0933 0.830 0937 | 0.733 | 0.101 0.029 0.730
Qwen2.5-0.5B [Team] 0917 0.205 | 0.888 0.832 0.931 | 0.703 | 0.086 0.305 0.661
Qwen2.5-7B [Team] 0.940 0.441 | 0930 0.865 0.947 | 0.772 | 0.498 0.308 0.728
Qwen3-0.6B [Team] 0.924 0.344 | 0.905 0.848 0.928 | 0.745 | 0.172 0.253 -
Qwen3-1.7B [Team] 0.932 0.390 | 0.904 0.866 0.931 | 0.768 | 0.191 0.393 -
Qwen3-4B [Team] 0941 0.441 0922 0.864 0938 | 0.774 | 0.412 0.358 -
bloomz-560m [Muennighoff et al.] 0914 0.242 | 0.883 0.780 0.929 | 0.638 | 0.109 0.288 0.622
mbart-large-50 [Liu et al.] 0.935 0.438 | 0.922 0.826 0.932 | 0.705 | 0.090 0.262 0.651

Table 5: Model performance across tasks and a single, seeded run (Pfister and Hotho (2024) show SuperGLEBer to
produce stable results even across seeds). Where no development set was available, we split the train set 80/20 into a
new train and dev set. Best models in bold. “Old Avg” contains the overall average score on the old, already existing
SuperGLEBer tasks, a dash here means this model is missing from the official SuperGLEBer rankings. This table
can be viewed as an addition to the offical leaderboard: https://lsx-uniwue.github.io/SuperGLEBer-site/
leaderboard_v1. Contained in this table are the 38 models mentioned in the paper, and an additional 6 models
which are not yet contained in the official SuperGLEBer. Details for these models in Table 6.
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Model

Parameters

Description

German only

LLdaMmlein 120M, 1B & 7B

ModernGBERT 134M & 1B

LLaMmlein2Vec 120M, 1B & 7B

DOSMo-7B

german-gpt2

gbert-base/-large

bert-base-german-cased

gelectra-base/-large

gottbert-base

GottBERT-large

GeistBERT-base

gerturax-1/-2/-3

100M | 1.036B 16.612B

136M | 1.068B

100M | 1.036B | 6.612B

7.114B

125M

110M | 337M

109M

110M | 335M

126M

358M

126M

135M

German-only decoder models based on LLaMA?2 architecture
trained entirely from scratch, on the further deduplicated and
filtered German portion of RedPajama V2 (Weber et al., 2024).
German-only encoder models based on ModernBERT (Warner
et al., 2025), trained from scratch, on German-only using the
same dataset as the LLdMmlein models. Native context length
up to 8192 tokens.

Encoder versions of the LLiaMmlein decoder models, created
via LLM2Vec and additional context extension to up to 8192
tokens.

German-only decoder built from scratch using the Mistral archi-
tecture. Trained on approximately 1 trillion German samples
from RedPajama V2, MADLAD-400, OSCAR, mC4, Wikipedia,
textbooks, and YouTube subtitles.

German-only decoder based on GPT-2 architecture, trained from
scratch on 16 GB of German subtitles CommonCrawl web
crawls.

German-only encoder models based on BERT architecture
trained on 163.4 GB of German text, consisting of OSCAR,
OPUS, Wikipedia, legal documents.

German-only encoder model based on BERT architecture trained
from scratch on a 12GB dataset of wikipedia, legal documents
and news.

German-only encoder family based on Electra architecture
trained from scratch, on the same 163.4GB dataset as gbert-
base and gbert-large.

German-only encoders based on the RoBERTa architecture,
trained on 145 GB of text from OSCAR, Wikipedia and a book
corpus.

German-only encoder model based on RoBERTa architecture,
trained on 121GB of filtered texts sourced from the first released
OSCAR dataset.

German-only encoder model family building on GottBERT
trained on 1.3 trillion tokens sourced from OSCAR23, OPUS,
MC4, German Wikipedia, OpenLegalData, Europarl, EUbook-
shop, ECB, and EuroPat, OpenSubtitles and TildeMODEL.
German-only encoder family based on Electra architecture
trained on 147GB to 1.1TB of texts from the CulturaX corpus.

German Finetune

gerpt2(-large)

bloom-6b4-clp-german

bueble-lm-2b

leo-hessianai-7b

Llama-German-8b

125M | 776M

6.251B

2.072B

6.611B

7.508B

German-only GPT-2-style decoder family trained from scratch/
with weights initialized from the english GPT2 model on data
from the CC-100 corpus.

Decoder model preinitialized from multilingual bloom 7b check-
point transfer learned to German using CLIP-Transfer.
Decoder-only model preinitialized from multilingual gemma
checkpoint trans-tokenized to German. Trained on 3.8B tokens
from Occiglot-FineWeb.

Decoder-only model preinitialized from LLaMA?2 checkpoint
finetuned using German texts mostly sourced from OSCAR.
Decoder-only model preinitialized from the multilingual Llama3
8B and finetuned on German via continual pretraining on 65
billion tokens, sourced from occiglot-fineweb-0.5.

Multilingual

EuroBERT-210m/-610m/-2.1B

EuroLLM-1.7B/-9B
xIm-roberta-base/-large
mbart-large-50

bloomz-560m

212M 1 609M 12.110B

1.396B 1 8.633B

278M | 561M

612M

560M

Multilingual encoder family based on EuroBERT architecture,
supporting 15 languages.

Multilingual decoder family based on LLaMa architecture, sup-
porting 35 languages.

Multilingual encoder model family pretrained on 2.5TB of Com-
monCrawl data in 100 languages.

Multilingual encoder model trained on 50 languages, including
German using a sequence-to-sequence translation objective.
Multilingual decoder model initially trained on a 1.5 TB corpus
spanning 45 natural and 12 programming languages, followed
by supervised multitask fine-tuning across multiple languages.

Other Models

Qwen2.5-0.5B/-7B
Qwen3-0.6B/-1.7B/-4B
Llama-3.2-1B/-3B

Meta-Llama-3.1-8B

495M 1 7.073B

597M 1 1.722B 1 4.025B

1.237B 13.215B

7.508B

Multilingual decoder model family trained on 18 trillion tokens
supporting 29 languages.

Multilingual decoder model family trained on approximately 26
trillion tokens supporting over 100 languages and dialects
Multilingual decoder only model family trained on up to 9 trillion
tokens of multilingual text and code.

Multilingual decoder only model trained on over 15 trillion
tokens including multilingual text.

Table 6: Short description of the models mentioned in Table 5. Parameter counts reflect total number of parameters
after applying (Q)LoRA.
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Models in PCA Space - Colored by F-Tag Performance.

Models in PCA Space - Colored by F-Class Performance
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Figure 3: Models in PCA space colored by performance on individual GermEval 2025 tasks. Each subplot shows the
same PCA projection of models but colored by their performance on different tasks: (a) Flausch-Erkennung tagging,
(b) Flausch-Erkennung classification, (c-e) Harmful content detection subtasks, (f) SustainEval classification, (g)
SustainEval regression, and (h) LLMs4Subjects classification. The visualization reveals task-specific performance
patterns and model clustering behaviors across different evaluation metrics. Model placement is identical to fig. 4.
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Models in PCA Space - All Tasks
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Figure 4: PCA visualization of model performance. Models positioned in PCA space based on their performance
vectors across all tasks, showing clustering patterns of similar performing models. The visualization uses the
complete set of 37 tasks (29 existing + 8 new GermEval 2025 tasks). Inspired by this plot, we also plotted the
inverse loadings in Figure 5.
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Task Loadings in PCA Space - All Tasks
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Figure 5: PCA visualization of task performance. Tasks positioned in PCA space based on each model’s performance
showing clustering patterns of tasks, where models perform similar. The visualization is based on the complete set
of models, older SuperGLEBer tasks are blue, new ones from GermEval 2025 are red.

Top Discriminating New Tasks Top Discriminating Existing Tasks

HC-vio similarity_pawsx
ner_biofid
F-Class
db_aspect

HC-c2a
offensive_lang

HC-dbo germeval_opinions.

limsds massive_intents
ner_europarl

SE-Reg
ner_news

F-Tag

Fl

SE-Class hotel_aspect

°
3
8
o
s
&
°
N
8
o
»
R

0.125 0.150 0.175 0.200

0.000 0.025 0.050 0.075 10 0.15
Standard Deviation

0.100
Standard Deviation

(a) New GermEval 2025 tasks (b) Existing SuperGLEBer tasks

Figure 6: Task discrimination analysis showing standard deviation of model performance across tasks. (6a) New
GermEval 2025 tasks ranked by their ability to discriminate between models. (6b) Top 10 most discriminating
existing SuperGLEBer tasks. Higher standard deviation indicates better discrimination between model capabilities,

making these tasks valuable for benchmark evaluation.
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