
Coling-UniA at GermEval 2025 Shared Task on Candy Speech Detection:
Retrieval Augmented Generation for Identifying Expressions

of Positive Attitudes in German YouTube Comments

Georg Hofmann Annemarie Friedrich
University of Augsburg, Germany

{georg.hofmann|annemarie.friedrich}@uni-a.de

Abstract

We present our system for the GermEval
2025 Shared Task on Candy Speech Detec-
tion, which focuses on identifying and catego-
rizing positive expressions in German YouTube
comments. To address the task, we apply
a Retrieval-Augmented Generation approach
using large language models, experimenting
with two target output formats, an XML-style
and a CoNLL-style format. Our few-shot
setup, which selects relevant training examples
as demonstrations using dense encoders, en-
ables the model to predict labeled spans effec-
tively. Among all configurations, the XML-
style prompt with the Qwen model achieved
the best performance. Our system ranked
third in the official evaluation, highlighting the
potential of few-shot prompting of large lan-
guage models for fine-grained span classifica-
tion tasks, especially in low-resource scenarios.

1 Introduction

While many methods have been developed to detect
and moderate negative speech, such as hate speech
or offensive language on social media, much less
attention has been paid to identifying candy speech,
i.e., supporting, positive, or encouraging messages.
In this work, we describe our system for participat-
ing in the GermEval 2025 Shared Task on Candy
Speech Detection (Clausen et al., 2025),1 which
seeks to address this gap by encouraging research
on positive expressions in online communication.
The task focuses on identifying and labeling in-
stances of candy speech in German YouTube com-
ments. Specifically, it involves span-level detection,
requiring systems to mark the exact text segments
that contain candy speech and classify each span
into one of ten predefined categories.

To tackle the task, we apply a Retrieval-
Augmented Generation (RAG) method using a

1https://yuliacl.github.io/
GermEval2025-Flausch-Erkennung/

Retrieval Pool 
(Train Set)

Retriever

LLM

Super cool video .
crazy cat

Input Text

<positive feedback>Super cool 
video .</positive feedback> crazy cat

Candy Speech Prediction

The cat !! <positive feedback>Cool 
video :)</positive feedback>

Few-Shot Examples

Figure 1: Overview of the proposed Retrieval-
Augmented Generation (RAG) pipeline. (Input Text
and Few-Shot Example are translated to English.)

large language model (LLM), as shown in Figure 1.
For each test instance, our system retrieves similar
examples from the training data, using dense en-
coders and cosine similarity, to help the LLM to
accurately identify candy speech spans and their
categories. We test various specifications of out-
put formats for performing span detection as a se-
quence labeling task with nested spans, finding that
an XML-like style outperformed a CoNLL-based
format. Our system ranks third in the official eval-
uation, demonstrating that our method to prompt
LLMs for this task is promising.

2 Related Work

The task of candy speech detection is closely re-
lated to sentiment analysis and sequence label-
ing, as it involves identifying both the emotional
tone and the exact spans of expressions in user-
generated text.

LLMs have recently been explored for sentiment
analysis (e.g., Deng et al., 2023; Zhong et al., 2023;
Wang et al., 2023). Building on these efforts, Zhang
et al. (2024) provide a comprehensive evaluation
of LLMs across 13 sentiment analysis tasks and
26 datasets, including standard, aspect-based, and
multifaceted sentiment classification. While LLMs
perform competitively on simpler tasks in a zero-

Proceedings of the 21st Conference on Natural Language Processing (KONVENS), Volume 2: Workshops,
pages 404–410, 2025

https://yuliacl.github.io/GermEval2025-Flausch-Erkennung/
https://yuliacl.github.io/GermEval2025-Flausch-Erkennung/


shot setting, they struggle with more complex ones.
In few-shot scenarios, however, LLMs significantly
outperform smaller domain-specific models, show-
ing strong potential for low-resource settings.

In recent years, LLMs have also been applied
to sequence labeling tasks, such as named entity
recognition (NER). Although LLMs have advanced
significantly, their performance in NER tasks re-
mains substantially lower than fully supervised
BERT-based models (Xie et al., 2023; Kim et al.,
2024). Wang et al. (2025) proposed using spe-
cial tokens to mark entities for extraction in NER
tasks. These special tokens act as clear delimiters
around the target entity to help the model identify
it precisely. For example, when extracting a loca-
tion, the entity is wrapped with special tokens like
“@@China##”. Their approach achieved perfor-
mance comparable to fully supervised baselines,
marking a notable first in effectively leveraging
LLMs for NER.

We build on recent progress in sentiment clas-
sification and NER using LLMs to tackle candy
speech detection in German user-generated text.

3 Task and Data

We participate in Subtask 2: Fine-Grained Classifi-
cation, which involves identifying the exact spans
of candy speech expressions in German YouTube
comments and classifying each into one of ten pre-
defined categories, such as positive feedback,
compliment, and group membership. Notably,
spans can overlap, and even spans of the same cate-
gory may be nested within each other. The dataset
comprises complete written comment threads from
a variety of YouTube creators and communities,
with no overlap between the videos used for train-
ing and testing. This setup guarantees diversity
in topics, styles, and audience demographics be-
tween the training and test sets. The input texts
were pre-tokenized: tokens are separated by whites-
pace e.g., “Viele Leute fühlen sich cool , wenn sie
haten .” (English: “Many people feel cool when
they hate .”). All annotations are span-based and
refer to these tokenized forms. For a more de-
tailed description of the task and data, we refer the
reader to the shared task overview by Clausen et al.
(2025).

4 Method

We propose a RAG approach for fine-grained candy
speech detection and classification that combines

a dense retrieval model with an LLM, as shown
in Figure 1. During inference, the retriever first
selects similar text documents from a predefined
pool, i.e., the training set. The top-k documents
with a similarity score above a threshold t are in-
cluded as demonstrations in the prompt to guide
the LLM in both span detection and classification.
The selected demonstrations, their spans, and asso-
ciated candy speech categories are combined with
the current test instance text to create a prompt that
guides the LLM in predicting candy speech spans
and categories. After the LLM generates its predic-
tion, any spans that have been assigned categories
not included in the predefined set are discarded to
ensure that only valid categories are retained.

4.1 Retrieval of Few-Shot Examples
For the retriever, we use a Sentence-BERT model
(Reimers and Gurevych, 2019) to convert texts into
embeddings. These embeddings are stored and
searched using the FAISS library (Douze et al.,
2024), which allows for fast and efficient retrieval
of semantically similar texts using cosine similar-
ity. The specific Sentence-BERT model we use
is all-mpnet-base-v2,2 intended for encoding sen-
tences and short paragraphs. This model is applied
without further fine-tuning in all experiments.

4.2 Prompting and Span Labeling
We use the instruction-tuned LLMs Llama-3.3-
70B-Instruct3 and Qwen2.5-72B-Instruct4 for our
experiments. These large models were chosen be-
cause their size and instruction tuning make them
particularly capable of following complex prompts.
We used two different prompts, which are illus-
trated in Figure 2.
XML-style prompting. The first prompt instructed
the LLM to mark spans directly within the text
using XML-style tags. Each span was enclosed
by an opening and closing tag corresponding to
one of the ten predefined candy speech categories.
For example, a model output might contain a
phrase like <compliment>you sing really well
:)</compliment> to indicate that the expression
“you sing really well :)” belongs to the compliment
category. In this format, the model is supposed
to explicitly identify both the boundaries and the

2https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

3https://huggingface.co/meta-llama/Llama-3.
3-70B-Instruct

4https://huggingface.co/Qwen/Qwen2.
5-72B-Instruct

405

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct


(a) XML-style prompt
system: You are a helpful assistant for detecting Candy
Speech...<Further details on the task and the desired output
format.>
user: Text: you sing really well :)
Insert the appropriate tags into the text.
assistant: <compliment>you sing really well
:)</compliment>

(b) CoNLL/BIO-style prompt
system: You are a helpful assistant for detecting Candy
Speech...<Further details on the task and the desired output
format.>
user: Text: you sing really well :)
Output the text with the appropriate categories in CoNLL for-
mat. Tokenize by whitespace.
assistant:
you B-compliment
sing I-compliment
really I-compliment
well I-compliment
:) I-compliment

Figure 2: Two prompt formats used to guide the LLM (translated to English). (a) In the XML-style prompt, the
assistant annotates positive spans directly using opening and closing tags for one of the predefined Candy Speech
categories. (b) In the CoNLL-style prompt, the assistant returns a token-per-line output using the BIO tagging
scheme, indicating span boundaries with prefix codes (B- for beginning, I- for inside, or O for outside tokens not
part of any span) and appending the corresponding category.

type of each positive span within the original in-
put. The XML-style format also made it possible
to represent overlapping spans or even nested spans
with the same category, both of which occur in the
dataset. In the case of overlapping spans, however,
the structure is no longer valid XML, as valid XML
does not support overlapping tags.

The input texts are already provided in a tok-
enized format by the shared task organizers, as
mentioned in Section 3. When using Llama with
the XML-style prompt, we observed that the model
almost consistently removed whitespaces, typically
before punctuation marks that are not likely present
in the original YouTube comments, despite explicit
instructions in the prompt to not change the input
text. This led to incorrect span boundaries when
constructing the annotations from the LLM out-
put. To mitigate this issue, we applied a simple
postprocessing step to restore the original spacing.
CoNLL-style prompting. The second prompt fol-
lows a more structured sequence labeling approach.
We instructed the LLM to tokenize the input text us-
ing whitespace and apply the BIO tagging scheme
(also known as IOB: Inside, Outside, Beginning).
This format assigns a label to each token indicat-
ing whether it is part of a candy speech span and,
whether it appears at the beginning (B-), inside
(I-), or outside (O) of that span. The specific candy
speech category is appended to the prefix, form-
ing labels such as B-compliment, I-gratitude,
or simply O if the token is not part of any span.
The output is structured in a CoNLL-style format,
where each token appears on a separate line along-
side its BIO tag, separated by a tab character. This
format is commonly used in sequence labeling

tasks such as NER. This format makes it possible to
handle overlapping or adjacent spans. However, it
cannot represent nested spans of the same category,
which is a known limitation of the BIO scheme.
This type of nesting appears once in the training
set and three times in the test set.

5 Experiments

We test different combinations of LLMs and
prompt formats in both few-shot and zero-shot set-
tings.
Hyperparameters. To tune our hyperparameters,
we split the original training set into a reduced
training set and a separate development set. The
development set corresponds to the official trial set
provided with the dataset. We conduct a series of
preliminary experiments on the development set.
Based on these experiments, we set the number of
retrieved demonstrations top-k to 50 and the simi-
larity threshold t to 0.25 for the few-shot setting.
Evaluation metrics. The primary metric for the
shared task is strict match, which requires systems
to correctly identify both the type and the exact
character span of each candy speech expression
in a comment. In addition, type match evaluates
whether the correct candy speech types are pre-
dicted for each comment regardless of their spans.
Both metrics account for multiple instances of the
same type in a single comment. Span match, as-
sesses whether the character spans are identified
correctly, ignoring the type labels.
Results. Table 1 presents the results for five differ-
ent model and prompt format combinations, evalu-
ated in the zero-shot and few-shot settings. When
considering strict match, the XML-style prompt

406



Zero-Shot Few-Shot

Strict Match Strict Match Type Match Span Match

LLM Prompt P R F1 P R F1 P R F1 P R F1

Llama CoNLL 2.10 3.88 2.72 43.96 42.77 43.36 66.12 64.32 65.20 50.68 49.30 49.98
Llama XML 2.02 4.14 2.71 29.26 35.20 31.96 59.18 71.18 64.63 32.88 39.54 35.90
Llama XML (fw*) 2.71 5.58 3.65 42.36 50.95 46.26 59.18 71.18 64.63 48.29 58.09 52.74
Qwen CoNLL 4.15 11.08 6.03 44.34 43.48 43.91 67.02 65.74 66.37 50.20 49.23 49.71
Qwen XML 8.44 14.18 10.58 47.48 52.36 49.80 64.82 71.47 67.98 54.05 59.59 56.68

Table 1: Performance results on the test set across LLMs, prompt formats and match types. For each metric, the
highest value per column is shown in bold, and the second highest is underlined. P stands for Precision, R for
Recall, and F1 for F1-score. *fw = fixed whitespaces. Only the few-shot systems using the XML-style prompt were
submitted to the official evaluation.

consistently outperforms the CoNLL-style prompt
for both Qwen and Llama (with fixed whites-
paces) in terms of recall and F1-score. Notably
in the few-shot setting, the precision for Llama is
slightly higher when using the CoNLL-style (43.96
vs. 42.36 for XML), making it the only metric
where the BIO tagging format shows a small ad-
vantage. Comparing across models, Qwen outper-
forms Llama on all three metrics when using the
same prompt format, indicating stronger span pre-
diction capabilities.

Correcting the whitespace issues (“Llama XML
(fw*)”) resulted in a substantial improvement
across all metrics, highlighting the sensitivity of
generative models to formatting consistency. No-
tably, this issue did not occur with Qwen, which
preserved spacing as instructed. However, both
models occasionally altered the original input text
in both prompt formats, for example, by correcting
spelling or making small grammatical adjustments
and other times by making unrelated changes,
which can also negatively affect span predictions.
More details on how often the LLMs changed the
original input text across different settings are pro-
vided in the Appendix A.2.

Overall, performance in the zero-shot setting
is substantially lower compared to the few-shot
setting. We find that in this setting, both Llama
and Qwen sometimes fail to follow the CoNLL
format producing malformed outputs that could not
be evaluated (see Appendix A.1 for more details).

To better understand model performance beyond
strict match metrics, we examine the type match
and span match metrics the few-shot setting. For
Qwen, the XML-style prompt overall yields better
results for the type and span match. For Llama,
the picture is less clear—while type match per-
formance is slightly better with the CoNLL-style

prompt, the XML-style prompt appears more ro-
bust overall when considering both match types.

For type match, both Qwen and Llama achieve
higher precision with the CoNLL-style prompt and
higher recall with the XML-style prompt, meaning
the XML-style prompt results in more predicted
labels overall, at the cost of moderately reduced
precision. For span match, the XML-style prompt
performs better for both LLMs across all metrics,
with one exception: for Llama, the CoNLL-style
prompt results in slightly higher precision. This
suggests that XML formatting helps both models
better localize relevant spans, while Llama may
benefit from the more structured CoNLL format
when it comes to making precise span boundary
decisions. Overall, however, Qwen with the XML-
style prompt achieves the best performance. No-
tably, only the few-shot systems using the XML-
style prompt were submitted to the official evalua-
tion.

The span match metrics also reflects that Llama’s
original XML output without whitespace correc-
tion results in substantially lower span match per-
formance. After applying a simple postprocessing
step to fix spacing, the span-level metrics improve
clearly, showing that consistent formatting plays an
important role in structured prediction tasks using
LLMs.

6 Discussion

Despite achieving strong results in the shared task,
we have observed several challenges with using
LLMs for span prediction. Both Llama and Qwen
occasionally change the original input text, even
when explicitly instructed not to do so. This in-
cluded Llama removing whitespaces in the XML-
style prompt, and both models occasionally correct-
ing spelling or grammar and at other times making

407



unrelated changes. These seemingly harmless edits
often led to incorrect span boundaries and reduced
performance, particularly for strict match and span
match metrics. However, our system ranks third
in the official evaluation, showing that prompting
LLMs, especially in a few-shot setup that retrieves
similar examples from the training data, can be a
highly effective strategy. This makes it a promising
approach for tasks where annotated training data is
scarce.

7 Conclusion and Future Work

Our experiments show that prompting LLMs can
effectively identify and classify candy speech spans.
The best performance was achieved by Qwen using
the XML-style prompt in the few-shot setting. Fu-
ture work could explore category-specific prompt-
ing, asking the model to find only one candy speech
category at a time, which might improve perfor-
mance at the cost of increased computation time.

References
Yulia Clausen, Tatjana Scheffler, and Michael Wiegand.

2025. Overview of the GermEval 2025 Shared Task
on Candy Speech Detection. In Proceedings of the
21st Conference on Natural Language Processing
(KONVENS 2025): Workshops, Hildesheim, Ger-
many. ACL.

Xiang Deng, Vasilisa Bashlovkina, Feng Han, Simon
Baumgartner, and Michael Bendersky. 2023. LLMs
to the Moon? Reddit Market Sentiment Analysis
with Large Language Models. In Companion Pro-
ceedings of the ACM Web Conference 2023, WWW
’23 Companion, page 1014–1019, New York, NY,
USA. Association for Computing Machinery.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou.
2024. The Faiss library. CoRR, abs/2401.08281.

Hongjin Kim, Jai-Eun Kim, and Harksoo Kim. 2024.
Exploring Nested Named Entity Recognition with
Large Language Models: Methods, Challenges, and
Insights. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 8653–8670, Miami, Florida, USA. Association
for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang,
Fei Wu, Tianwei Zhang, Jiwei Li, Guoyin Wang, and
Chen Guo. 2025. GPT-NER: Named Entity Recogni-
tion via Large Language Models. In Findings of the
Association for Computational Linguistics: NAACL
2025, pages 4257–4275, Albuquerque, New Mexico.
Association for Computational Linguistics.

Zengzhi Wang, Qiming Xie, Zixiang Ding, Yi Feng, and
Rui Xia. 2023. Is ChatGPT a Good Sentiment Ana-
lyzer? A Preliminary Study. CoRR, abs/2304.04339.

Tingyu Xie, Qi Li, Jian Zhang, Yan Zhang, Zuozhu Liu,
and Hongwei Wang. 2023. Empirical Study of Zero-
Shot NER with ChatGPT. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 7935–7956, Singapore.
Association for Computational Linguistics.

Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Pan, and
Lidong Bing. 2024. Sentiment Analysis in the Era
of Large Language Models: A Reality Check. In
Findings of the Association for Computational Lin-
guistics: NAACL 2024, pages 3881–3906, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and
Dacheng Tao. 2023. Can ChatGPT Understand Too?
A Comparative Study on ChatGPT and Fine-tuned
BERT. CoRR, abs/2302.10198.

408

https://doi.org/10.1145/3543873.3587605
https://doi.org/10.1145/3543873.3587605
https://doi.org/10.1145/3543873.3587605
https://doi.org/10.48550/ARXIV.2401.08281
https://doi.org/10.18653/v1/2024.emnlp-main.492
https://doi.org/10.18653/v1/2024.emnlp-main.492
https://doi.org/10.18653/v1/2024.emnlp-main.492
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2025.findings-naacl.239
https://doi.org/10.18653/v1/2025.findings-naacl.239
https://doi.org/10.48550/ARXIV.2304.04339
https://doi.org/10.48550/ARXIV.2304.04339
https://doi.org/10.18653/v1/2023.emnlp-main.493
https://doi.org/10.18653/v1/2023.emnlp-main.493
https://doi.org/10.18653/v1/2024.findings-naacl.246
https://doi.org/10.18653/v1/2024.findings-naacl.246
https://doi.org/10.48550/ARXIV.2302.10198
https://doi.org/10.48550/ARXIV.2302.10198
https://doi.org/10.48550/ARXIV.2302.10198


A Evaluation of LLM Output Quality

A.1 How Often LLMs Failed to Follow the
CoNLL-Format

Few-Shot Setting Zero-Shot Setting0

2

4

6

8

10

Pe
rc

en
ta

ge
 o

f c
ha

ng
ed

 te
xt

s

Qwen
LLama

Figure 3: Percentage of LLM outputs instructed to use
the CoNLL-format that did not follow the format on the
test set.

Figure 3 shows the percentage of LLM outputs
that were instructed to use the CoNLL-format, but
did not follow it. In both the few-shot and zero-
shot settings, Llama struggles more to adhere to the
CoNLL-format. Additionally, LLMs generally per-
form worse in the zero-shot setting, with a higher
rate of format violations compared to the few-shot
setting.

A.2 How Often LLMs Changed the Original
Input Texts

Few-Shot Setting Zero-Shot Setting0
10
20
30
40
50
60
70
80
90

Pe
rc

en
ta

ge
 o

f c
ha

ng
ed

 te
xt

s Qwen XML-format
Qwen CoNLL-format
LLama XML-format
LLama XML-format (fixed whitespaces)
LLama CoNLL-format

Figure 4: Percentage of input texts altered by the LLM
on the test set. (For the CoNLL-format we only consid-
ered LLM outputs conforming to the instructed format.)

In both the few-shot and zero-shot settings, Fig-
ure 4 shows how the whitespace removal issue
of Llama in the XML-style prompt leads to a
high percentage of altered texts when span pre-
dictions are inserted directly into the original input
text. Once these whitespace inconsistencies are
corrected through post-processing, the percentage

of changed texts drops significantly (“Llama XML-
format (fixed whitespaces)”). In the few-shot set-
ting, both LLMs tend to modify the original input
text more when using the CoNLL-format (when
accounting for missing whitespaces in the case of
Llama).

In the zero-shot setting, we observe the same
pattern for Llama, but Qwen struggles more when
using the XML-format. Overall, both LLMs find it
more difficult to maintain the original input text in
the zero-shot setting.

In the following, we list a few test instances for
which the LLM changed the original input text
using Llama and the XML-type format in the few-
shot setting. For better comparison, we show the
original input, the LLM output, the output without
XML-style tags, and highlight the part that was
changed:

409



• Original input text: Löslich liebe diesen song
LLM output: <positive feedback>Ich liebe diesen song</positive feedback>
LLM output without XML-type tags: Ich liebe diesen song
Changed part: Löslich → Ich

• Original input text: schönes Lied
LLM output: <positive feedback>schoenes Lied</positive feedback>
LLM output without XML-type tags: schoenes Lied
Changed part: schönes → schoenes

• Original input text: Ihr seit so cool . Ich liebe eure parodie . Hab es mir sogar
runtergeladen . :-)
LLM output: affection declaration>Ihr seit so cool</affection declaration>.
<affection declaration>Ich liebe eure parodie</affection declaration>. <positive
feedback>Hab es mir sogar runtergeladen</positive feedback>. :-)
LLM output without XML-type tags: Ihr seit so cool. Ich liebe eure parodie. Hab
es mir sogar runtergeladen. :-)
Changed part: whitespaces

Figure 5: Examples of input text, LLM outputs with and without XML-type tags, and the corresponding differences.

410


