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Abstract

The widespread deployment of large language
models (LLMs) presents significant challenges
in balancing their performance and carbon cost.
To address this, we propose a prompt rout-
ing mechanism that balances quality and en-
vironmental cost to route prompts between a
set of candidate LLMs. In addition to fine-
tuning encoder models to account for carbon
cost, we introduce chain routing, a novel rout-
ing mechanism that breaks responses into three
stages, which can be routed to different LLMs.
Our system reduces environmental cost by 39%
whilst simultaneously improving response qual-
ity by 3.3%, both compared to the single high-
est performing model. We also show that chain
routing outperforms the quality of single model
routing by 3.1%, whilst only having a slightly
higher environmental cost. These results show
the potential for environmentally aware routing,
and chain routing to improve the environmental
sustainability of LLM inference. We provide
open access to our code !

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities, exceeding human accuracy
on some benchmarks (Annepaka and Pakray, 2025;
Bojic et al., 2023; Goldstein et al., 2023). However,
they are not without their drawbacks, specifically
cost and environmental impact (Mittelstadt et al.,
2023; Luccioni et al., 2024; Samsi et al., 2023).
The rise of reasoning models, such as Deepseek’s
R1 and OpenAl’s 01/3, has exacerbated these is-
sues; to reason before answering, they require sig-
nificantly more compute per prompt (Han et al.,
2025; DeepSeek-Al et al., 2025; OpenAl, 2024).
Whilst existing work highlights the potential
for routing to improve accuracy and reduce cost
(Stripelis et al., 2024; Shnitzer et al., 2023; Damani

!Code for our routing system can be found
at https://github.com/solomon-wheeler/
ChainRouterToReduceCarbonCosts

et al., 2024), environmental impact is an area
highlighted for further research (Hu et al., 2024;
Varangot-Reille et al., 2025). Wilkins et al. (2025)
factor environmental cost into routing, but this rout-
ing is offline and does not consider prompt context.
To address this gap, we introduce an online en-
vironmentally aware router that considers prompt
context in routing decisions.

Furthermore, whilst previous approaches have
explored swapping LLMs during inference, this
is done at the token level with a limited set of
models (Zheng et al., 2024). We propose a more
structured approach, chain routing, which breaks
Chain-of-Thought (CoT) responses into three dis-
tinct stages. Each stage can be routed to a different
candidate LL.M, balancing performance and carbon
cost throughout the reasoning process, as shown in
Fig 1.

Our key contributions are:

1. We create a system that predicts the quality
and environmental cost of LLM inference for
a given prompt and uses this to make routing
decisions. To the best of our knowledge, this
is the first time this has been done.

2. We measure the quality and environmental
cost of inference and training across a range
of routing methods.

3. We create a novel routing system, chain rout-
ing, which routes different parts of a reasoning
CoT to different LLMs. We also compare the
quality of smaller and larger LLMs for each
stage of a reasoning CoT.

In comparison to the highest performing candidate
LLM, our router reduces the environmental costs
of inference by 39% whilst also increasing quality,
measured in similarity to gold standard responses,
by 3.3%. We also show that chain routing outper-
forms single model routing by 3.1%, whilst only
having a slightly higher environmental cost.
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Figure 1: Overview of the chain routing system, which splits a CoT output into discrete stages, and routes these
partial reasoning outputs to different models, before outputting a final answer.

Our results also show that there is little impact
on quality when using smaller models (35 parame-
ters) instead of larger models (328 parameters) for
the initial two stages of reasoning (both less than
2.4% reduction in quality), a finding that could be
used to decrease the environmental cost of CoT
reasoning in LLMs.

2 Background & Related Work
2.1 LLM Routing

LLM routing is an area of intense research; sev-
eral methods have been proposed to decide which
of a set of candidate LLMs will best respond to a
prompt. These methods include training encoder-
only models, typically from the BERT family, to
classify prompts based on factors such as domain
relevance (Yadav et al., 2025; Simonds et al., 2024)
or anticipated performance (Stripelis et al., 2024;
Hu et al., 2024; Ding et al., 2024). Decoder-based
models have also been employed for similar clas-
sification tasks (Stripelis et al., 2024; Ong et al.,
2024; Shen et al., 2023). Alternative approaches
include clustering semantically similar prompts us-
ing KNNs or K-means clustering and selecting the
model that performed best on similar prompts (Sri-
vatsa et al., 2024; Stripelis et al., 2024; Hu et al.,
2024). Finally, reinforcement learning (RL) ap-
proaches learn routing policies over time (Zhang
et al., 2024b; Nguyen et al., 2024)

2.2 Alternative Approaches

LLM Cascading Instead of routing before out-
put is generated, cascading approaches send
prompts to the smallest model and then push them
up a stack of increasingly powerful models until
the output is high quality. This measure of quality
differs between systems; one method is to take the
uncertainty of a model’s output, either by measur-
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ing the likelihood of the tokens (perplexity) (Zhang
et al., 2024a), or by running inference multiple
times and comparing how similar the outputs are
(Yue et al., 2023; Aggarwal et al., 2024). Another
method is to use fine-tuned encoder models to clas-
sify if outputs are high quality (Chen et al., 2023).
Cascading systems must measure response quality
online, during inference. Since we use a routing
system that only needs quality scores offline to gen-
erate training labels, we can use a simpler method
of similarity between gold standard answers and
responses as a surrogate for quality.

Mixture of Experts LLM routing systems are
similar to the mixture of experts (MoE) architec-
ture, which includes several expert sub-models (Ya-
dav etal., 2025; Jacobs et al., 1991; Cai et al., 2025).
LLMs using this architecture include Mistral Al’s
Mixtral 8 x7B model, DeepSeek’s R1, and Meta’s
Llama-4 family (Jiang et al., 2024; DeepSeek-Al
et al., 2025; Meta, 2025).

The key difference between LLM routing and
MoE systems is how tightly coupled model selec-
tion is to models. In MoE systems, the gating
method is trained with the sub-models, so updat-
ing any sub-model necessitates updating the entire
system (Shazeer et al., 2017). In contrast, LLM
routing systems train the gating/routing system sep-
arately, so can include new models more easily
(Jiang et al., 2023).

2.3 Environmental Impact of LLM Inference

We show estimates from previous work of the envi-
ronmental impact of LLM inference in Table 1.



Model Carbon | Citation

Cost (g

COy)
Llama 65B 0.4096 Samsi et al. (2023)
Llama 2 13B | 0.21 Li et al. (2024)
Llama2 70B | 1.14 Wilkins et al. (2025)
GPT-3.5 1.869 d’Aramon et al

(2024)

Table 1: The carbon cost of LLM inference, normalised
to a carbon intensity of 400g CO2/kWh and output
length of 1024 tokens.

3 Methodology

3.1 System Overview

Our primary routing system focuses on a fine-tuned
BERT classifier, which takes input of the prompt
(and chain output so far, if applicable), and out-
puts soft scores, similar to the method proposed
by Stripelis et al. (2024). We update the BERT
classifier to output two soft scores, for the expected
quality and environmental cost. We also include
a decoder router as a baseline, which employs a
smaller LLM to make routing decisions. The sys-
tem operates in two modes: single routing, in which
the entire prompt is sent to one model, and chain
routing, in which different stages of a reasoning
CoT are delegated to different models.

3.2 Routing Architectures

Each prompt is tokenised and then encoded using a
model from the BERT family. The training data for
this was gathered by sending prompts from several
datasets to each candidate LLM and recording the
similarity between the output and gold standard
answer, and the environmental cost of inference.
For gathering the chain routing training data we
also instruct the model to output its CoT.

3.3 Problem Formulation

In both chain and single routing, for every prompt
x € X and candidate LLM m; € M, the router
predicts two soft scores:

Sim;(z) € [0, 1], Env;(x) € [0,1], (1)

Sim; and Env; are the soft scores for expected
similarity to the gold standard answer and environ-
mental cost, the calculation of which is explained
in the next section.
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We then calculate a combined score for each
candidate LLM, including A € [0, 1], which varies
the trade-off between expected similarity and en-
vironmental cost, with lower values A favouring
increasing similarity:

CombinedScore;(x) = (1 — ) Sim; (z)

+A (1 — Env,(2)). @

At inference time, the router then selects the
candidate LLM with the highest score:

m*(x) = argmax CombinedScore;(z).  (3)
m;EM

3.4 Soft Score Calculation

We expand on the soft score implemented by
Stripelis et al. (2024) by predicting two soft scores
for each candidate LLM: the similarity score (Sim;)
and environmental cost (Env;). The general equa-
tion for this soft score (¢;) is

exp ()

Sitiexp ()

where NN is the number of models, S is the output
score, and s is the input score. The temperature (")
controls the sensitivity of the probability distribu-
tion. As T tends towards infinity, the output tends
towards a uniform distribution, and as 7" tends to-
wards 0 the output is 1 for the highest value, and 0
for all other values (Xuan et al., 2025). The input
score is the calculated similarity score for Sim; or
the environmental cost for Env;.

For chain routing, we require a soft score for
each model at each CoT stage. For example, in the
first CoT stage, we must calculate a soft score for
each of the three candidate models, even though ad-
ditional routing decisions will be made for the sub-
sequent CoT stages. To address this, we compute
the average soft score across all possible model
paths extending from the current stage (¢;). For
each model at CoT stage 7, we take the average soft
scores of each of the remaining model paths F;:

- 1
em-:@quj (5)

JER;

¢i(S;T) = “4)

3.5 Reasoning Chain Decomposition

To route different stages of a reasoning CoT to dif-
ferent candidate LLMs in chain routing, we require



a method to split a CoT into discrete stages. We
split the reasoning steps into three distinct sections,
exploration, reasoning and conclusion, loosely
following the special tokens used in DeepSeek-R1
(DeepSeek-Al et al., 2025). We instruct the cur-
rent model to generate a CoT stage and terminate it
with a predefined token (e.g. "EXPLORATION").
Once the model outputs this token, we stop decod-
ing, and pass the prompt and output so far to the
router to select the LLM for the next CoT stage.
The system prompt and an example CoT split into
stages are shown in Appendices D.14 and D.15.

3.6 Implementation Details

Models are loaded in Python using the weights
available on Hugging Face and run on A5000/3090
24GB GPUs. A full list of hyperparameters used
can be found in Appendix A, and an example sys-
tem prompt can be found in Appendix D.13.

Hyperparameters for training the BERT router
are shown in Appendix B.1. We use KL-divergence
loss with weighted classes to reduce the effect of
imbalanced classes, the formula for this can be
found in Appendix B.2.

4 Experimental setup

4.1 LLMs Used for Router Training and
Inference

To train the BERT router, we first require labels
for the similarity score and emissions output for
prompts. We therefore send a subset of prompts
from each dataset to a broad selection of LLMs, se-
lected due to their high performance-to-parameter
size ratio, to maximise performance, whilst min-
imising environmental cost. We also select smaller
task-specific models, such as Deepseek Coder,
which performs well in the programming domain,
whilst only having 1.6 billion active parameters
(DeepSeek-Al et al., 2024). The candidate LLMs
we use can be found in Table 2.

Model family Params
(B)
Llama 3.2(Grattafiori et al., 2024) ;

Llama 3.1(Grattafiori et al., 2024) 8

DeepSeek Coder-v2(DeepSeek-Al et al., 2024) | 16

DeepSeek RI-Distill(DeepSeek-Al et al., 2025) (>
Qwen 2.5(Qwen et al., 2025) 32

Table 2: LLM family and parameter sizes used both
for gathering labels for training the BERT router and as
candidate models for selection in single routing.
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4.2 Chain Routing Models

Running for all model combinations for each CoT
stage is intractable due to the exponentially increas-
ing number of combinations, so the set of models
is refined for the chain router. Distilled reasoning
models are excluded, as we find their predefined
reasoning format precludes them from responding
with a custom structure without further fine-tuning.
Therefore, we select the following models to run
for all combinations on the CoT dataset:

1. Llama 3.2 3B (Grattafiori et al., 2024)
2. Llama 3.1 8B (Grattafiori et al., 2024)
3. Qwen 2.5 32B (Qwen et al., 2025)

4.3 Encoder Models

We evaluate the following encoder models at rout-
ing:

1. DeBERTa-v3 base 183M (He et al., 2023)
2. RoBERTa base 125M (Zhuang et al., 2021)

We select DeBERTa-v3 as it achieves best-in-class
performance in natural language understanding
tasks and is used in NVIDIA’s routing blueprint
(He et al., 2023; NVIDIA, 2025). RoBERTa is
selected as previous work found it outperforms De-
BERTa for routing (Feng et al., 2024; Srivatsa et al.,
2024).

4.4 Datasets

Datasets are selected from the three types of rea-
soning benchmarks outlined by Wang et al. (2023):
arithmetic, common sense and symbolic. To cre-
ate a generalisable router, we also include MMLU
(Massive Multitask Language Understanding) and
MMLU-pro, which have questions across 57 top-
ics. Coding prompts from the MBPP (Mostly Basic
Programming Problems) dataset are also included,
as programming is commonly included in other
routing systems (Stripelis et al., 2024; Hu et al.,
2024). The final domain of datasets is question
answering, which is included as it is a good differ-
entiator between model performance (Fischer et al.,
2024).

Subsets of these datasets are combined for single
routing, generally of between 300 — 500 prompts,
except for the datasets combining multiple tasks,
such as Unified-QA and MMLU, which have be-
tween 1500 — 2500 prompts to ensure each task



has an appropriate number of prompts, creating a
dataset of over 9, 000 prompts for each model.

We reduce the number of prompts for chain rout-
ing to 200, and only use UNIFIEDQA from the
question-answering datasets, creating more than
100, 000 soft scores.

Task Dataset/s

Arithmetic reason- | GSM8K (Cobbe et al.,
ing 2021)

Common sense rea- | ARC (Clark et al., 2018)
soning

Symbolic reasoning | GSM-Symbolic

(Mirzadeh et al., 2024)

Multitask reasoning | MMLU (Hendrycks
et al., 2021) MMLU-PRO
(Wang et al., 2024)

Programming MBPP (Austin et al.,
2021)

Reading compre- | UNIFIEDQA (Khashabi

hension/ Question | et al., 2020) SQUAD

answering (Rajpurkar et al., 2016),

GPQA (Rein et al., 2024)

Table 3: The benchmark datasets we use for measuring
carbon cost and quality of responses for each model.

4.5 Baselines

We use the following baselines to compare the per-
formance of the BERT router implemented:

* A generative (decoder) router (Llama 3.2 1B).

* The single model with the highest average
similarity score.

* The single model with the lowest average
emissions.

¢ A random router.

 An oracle router as a topline, which is 100%
accurate at selecting the best model for a
prompt, following the method by Hu et al.
(2024).

4.6 Evaluation Metrics

We aim to create a system that reduces the environ-
mental impact of LLM inference whilst maintain-
ing accuracy. To quantify our success, we measure
the environmental impact of inference (g CO3) and
the similarity between responses and gold standard
answers, as a proxy for quality.
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4.7 Similarity Comparisons

As a surrogate measure for the quality of responses,
we measure the similarity between the outputs from
models and gold standard responses defined in the
benchmark datasets we use. Two methods are used
for similarity comparisons: BERTSim score and
CHREF (character n-gram F-Score) (Zhang et al.,
2020; Popovié, 2015). We instruct the models to
output #### followed by their final answer and only
calculate the similarity to the gold standard answer
after this, to ensure we do not penalise reasoning
models, which output reasoning tokens before their
final answer.

4.7.1 BERTScore

We select BERTScore for measuring similarity be-
tween outputs and gold standard answers, as this
approach correlates well with human judgements
(Zhang et al., 2020). BERTScore encodes texts,
computes token-wise cosine similarities, and ag-
gregates them using mean, precision, recall, or F1.
We simplify this by encoding the full sentences
and taking a single cosine similarity, providing a
more lightweight approximation. The BERTscore
equation is

en €y

BERTSCOfe(m,g) = W
m g

(6)

where m is a given model’s output, g the gold stan-
dard response, and e, and e, are their respective
BERT encodings.

4.7.2 CHRF

We evaluated coding tasks using CHREF, as
Evtikhiev et al. (2023) found this to be similar to
human evaluation for code. CHREF is calculated as

1+B8H)MG

HRF =
¢ (B2M + G) x 100

(7

where M and G are the mean n-gram recall be-
tween output and gold standard, and gold standard
and output, respectively, and 3 is a weighting pa-
rameter. We set 3 to 2, the value suggested by
Popovic¢ (2016). We implement CHRF using the
Evaluate library 2, and scale values to between 0
and 1 to match BERT score.

4.8 Calculating Carbon Cost

We calculate carbon cost using the CodeCarbon li-
brary (Courty et al., 2024), which works by record-
ing the power consumption of CPU, GPU, and

2https: //github.com/huggingface/evaluate
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RAM and multiplying this by local carbon inten-
sity?, as shown in the equation:

_ power (kW) x time (h)
N 1000 (8)
x Carbon Intensity, /iy, -

CO2 (g)

Details of the energy mix and hardware we use
can be found in Appendix C. We use quantised
versions of the largest models due to hardware
limitations (hyperparameters can be found in Ap-
pendix A). To allow for fair comparison, we run 50
prompts on the unquantised version of each model
and scale the recorded emissions to match these.

5 Experiments & Results

5.1 Environmental Cost

The environmental cost for each model averaged
across all the datasets listed in Table 3 is shown in
Figure 2. These results show two patterns in the
data: firstly that larger parameter count generally
leads to a larger cost of inference, and secondly,
that reasoning models have a higher carbon cost
than non-reasoning models.

We include a reasoning distilled and non-
reasoning version of the same model (Qwen 2.5
32B) for comparison and find that the reasoning dis-
tilled version has a 35% higher environmental cost.
This can be explained by DeepSeek’s distilled ver-
sion of Qwen-2.5 32B producing three times more
output tokens on average in our experiments.

On average, our measured carbon costs are
slightly higher than for the models in Section 2.3.
This can be explained by the fact that these works
employ much higher batch sizes (64 vs. 8), run on
more powerful GPUs (A100 80GB vs. A5000/3090
24GB), and set much lower token limits (256 vs.
2500) (Samsi et al., 2023).

The environmental cost of gathering router train-
ing data, and training the single and chain routers
is shown in Appendices D.2 and D.3. We find the
largest carbon cost of router training is gathering
a dataset of responses to train the router on. We
ensured we minimised this cost as far as possible
by only running this inference once, with only the
models needed, and using a subsection of datasets
to gather enough prompts to train the router, but
not more.

Shttps://github.com/mlco2/codecarbon/blob/
master/codecarbon/core/emissions.py
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Figure 2: A comparison of the CO, emissions cost
measured, averaged across all datasets.

Single routing BERT (DeBERTA-v3) has the
lowest carbon cost (0.0001565 g CO2) of our rout-
ing approaches. BERT in chain routing is higher
(0.04102 g CO»), as it is invoked once for each
stage, with a growing input context each time. The
carbon cost and latency of all implemented routing
approaches can be found in Appendix D.1; we add
the cost of routing to all results to obtain an overall
system carbon cost.

5.2 Hyperparameter Selection

We evaluate the base version of two different
encoder models, RoBERTa and DeBERTa-v3
(Zhuang et al., 2021; He et al.,, 2023), fine-
tuned to predict soft scores.  DeBERTa-v3
achieves a slightly lower average error (0.4491%
vs 0.4401%), although it has a slightly longer av-
erage inference time (0.0976s vs 0.0619s), which
can be explained by DeBERTa-v3’s higher parame-
ter count (183 million vs. 125 million) (He et al.,
2023; Zhuang et al., 2021). We select DeBERTa-v3
to be used as the BERT model for the remaining
results, as the increased inference time is negligible
in comparison to the candidate LLMs.

The accuracy of the BERT router (DeBERTa-
v3) in single routing at predicting both similarity
and emissions on a dataset not used in training are
shown in Table 4.
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Routing Method Top-1 Ac-| Top-3 Ac-
curacy curacy
BERT (Similarity) | 31.0% 71.4%
BERT (Emissions) | 37.6% 85.2%
Random 14.3% 42.9%

Table 4: Single model router accuracy at predicting the
highest quality/lowest emissions from the seven candi-
date models for a given prompt from an unseen dataset.

We also test varying )\, the trade-off between
emissions and similarity scores introduced in Sec-
tion 3.3. We model this trade-off as a Pareto opti-
misation problem and find A = 0.7 to be the best.
Emissions decrease significantly beyond A = 0.7,
but with a significant reduction in output quality.
At A = 0 the two most carbon-intensive candidate
models handle the majority (57.3%) of requests,
while the two most efficient models receive just
15.8%. Conversely, at A\ = 1 only 16.2% of calls
are sent to the two high-carbon models, and 26.5%
to the two low-carbon models. Complete emis-
sion and quality values for all A values, as well as
how the usage of candidate models varies across A
values, are shown in Appendix D.4.

5.3 Single Model Routing

We evaluate single routing on the fine-tuned BERT
router with A = 0.7, using DeBERTa-v3 as the
BERT model, due to its superior performance in
Section 5.2. Figure 3 presents the emissions and
similarity scores for all routing methods, full re-
sults with confidence intervals can be found in Ap-
pendix D.8.

These results show our BERT router outperforms
all the baseline methods, except the oracle router.
This gap is expected; the oracle router is an upper
bound for the performance of a router which is
100% accurate at predicting the best model.

The BERT router outperforms the most powerful
single model (DeepSeek distilled Qwen-32B) by
3.3% whilst also reducing emissions by 39%. Our
BERT router also outperforms generative (decoder)
routing, whilst simultaneously decreasing the envi-
ronmental cost. We also show the utilisation of the
candidate LLMs by each router in Figure 4.

Scatter Plot of Emissions vs Similarity Scores
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Figure 3: Similarity score vs average inference emis-
sions, with A =0.7.
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Figure 4: The number of calls to each model in single
routing.

5.3.1 Unseen dataset Performance

In the previous section, we evaluated routing on a
test set of 10% of the prompts from each bench-
mark dataset. We also reserve an entire benchmark
dataset (SQUAD) from training, to test generalis-
ability to new tasks (Rajpurkar et al., 2016). This
addresses a limitation of similar research, where
routing models were only tested on the benchmark
datasets on which they were trained.

As shown in Figure 5, our router only reduces
similarity scores by 0.51% compared to the largest
model, whilst also reducing environmental costs by
12.5%. Full results with confidence intervals can
be found in Appendix D.9.
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Scatter Plot of Emissions vs Similarity Scores
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Figure 5: Similarity versus inference emission on un-
seen datasets, with A =0.7.

5.4 Chain Routing
5.5 Parameter Size Impact on Reasoning

We evaluate the impact of using larger models on
each stage of reasoning CoTs in Figure 6.

These results show that smaller LLMs can effec-
tively perform exploration and break down tasks,
with under 2.4% impact on final similarity scores
as opposed to larger models. However, they often
fail to produce the correct final answer, even with
the right reasoning chain, with the conclusion stage
having by far the greatest impact on performance
(14%). The average similarity score for each model
combination is shown in Appendix D.7.

Impact of 3B vs 32B model for each reasoning stage

= = =
o N IS

®

% change in accuracy (3B vs 32B)

2. Reasoning 3. Conclusion & Final answer
Response Part

1. Exploration

Figure 6: The percentage change in similarity scores
when using the largest versus the smallest model for
each part in the reasoning chain.

5.5.1 Chain Routing Inference Results

We evaluate the BERT router on the dataset of CoT
responses in both modes: chain routing and single
routing. To ensure fair results, we reduce the can-
didate LLMs available to the single model router
to those used for chain routing and set A = 0.7 in
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both cases. The results shown in Figure 7 high-
light the potential of chain routing, which outper-
formed all methods except oracle routing. Full
results with confidence intervals can be found in
Appendix D.10. Notably, in comparison with the
single largest model, our chain routing approach
increases the similarity score by 0.43%, whilst de-
creasing the environmental cost by 18.7%.

Chain routing outperforms single routing on
similarity scores by 4.84%, whilst only having a
slightly higher environmental cost, highlighting the
potential of chain routing as a more effective al-
ternative to single routing. The headline figures
for similarity score increase and emissions reduc-
tion are not as high as the previous single routing
test, and single routing no longer outperforms the
largest model. This can be explained by the fact
that we use three models instead of seven, due to
the exponentially increasing number of combina-
tions in chain routing. We expect that scaling the
number of models further would widen the margin
and unlock further carbon savings.

The number of calls to each LLM is shown
in Figure 8, showing that the BERT chain router
mainly utilises the largest models. However, the
chain router improves on the score of the largest
model, showing that it is delegating to the smaller
model at the correct times.

The number of calls to each model using the
BERT router varies at different CoT stages. Smaller
models are predominantly used for the first two
stages (60 and 43 calls to the smallest model), and
are used substantially less for the final step (17 calls
to the smallest model). This mirrors the results
found in Section 5.5, that output can be delegated
to smaller models for the first two steps with a
much lower impact on output quality than for the
final step.

Breakdowns of the calls to each model for each
CoT stage for both the generative and BERT routers
are presented in Appendices D.11 and D.12.
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Figure 8: The number of calls to each model in chain
routing.

5.6 Chain Routing Qualitative Error Analysis

We also manually analyse a sample of 50 prompts
from the test set, to investigate the reliability of
our similarity (to gold standard answer) metrics
(BERTScore and chrF). Table 5 shows our com-
parison between the router’s choice and the result
with the highest metric. We record the number of
times routing was successful/unsuccessful (whether
the response from the model chosen by the router
matched the gold standard response). We also
record the number of cases where the similarity
metric was correct/incorrect (whether the response
with the highest similarity score matches the gold
standard answer). Examples of CoT responses
from the models chosen by the router and responses
with the highest similarity score are shown in Ap-
pendix E.

6 Future Work
6.1 Additional Objectives

Whilst we focus on optimising output quality and
environmental cost, the system could be extended
to include other objectives. The leading candidate

Category | Count | %
Routing Quality
Successful routing 42 84%
Unsuccessful routing | 8 16%
Similarity Metric Quality
Metric correct 46 92%
Metric incorrect 4 8%

Table 5: Qualitative error analysis of chain routing on a
sample of 50 prompts.

for this is the cost of inference; whilst this is dif-
ficult to quantify when running models locally, it
is incorporated in related systems which rely on
external APIs for inference (Hu et al., 2024).

6.2 Expanding Chain Routing

Our implementation of chain routing is a proof-
of-concept to showcase the potential of this novel
routing approach. This leaves several areas for
future work to expand on, such as splitting the out-
put into different stages and trying different model
combinations, to further decrease environmental
cost.

6.3 Improving Efficiency in Reasoning Models

Our results show that using smaller models for ini-
tial exploration steps in reasoning has little impact
on final response quality, which could guide reason-
ing model development. Reasoning pipelines could
incorporate a smaller model to explore the problem
before passing the output to a larger model or MoE
models could incorporate a dedicated lightweight
expert for this phase.

7 Concluding Remarks

We incorporate environmental cost into routing de-
cisions and introduce chain routing, which directs
different stages of a reasoning CoT to different
LLMs. We show that our system can significantly
reduce the environmental impact of LLM inference,
whilst also increasing the quality of outputs. Our
results also show that using smaller models during
early reasoning stages does not significantly affect
final performance, a finding which can be used to
create more efficient reasoning models. Overall,
our findings highlight the substantial potential of
environmentally aware chain routing in making
LLM inference more sustainable.
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Limitations

Generalisability and Dataset Selection

Whilst we attempt to make the system as generalis-
able as possible by including datasets spanning a
wide range of domains, it is possible that the sys-
tem may not generalise to all domains. The system
may have to be fine-tuned further for deployment
in tasks not included in the training data, such as
dialogue.

Measuring similarity

Although research has shown that BERTScore and
CHREF align well with human preference, they do
not perfectly align (Zhang et al., 2020; Evtikhiev
et al., 2023). However, we show from a manual
qualitative review that the output with the highest
similarity score matches the gold standard answer
in 92% of cases.

Carbon Cost Estimation

The CodeCarbon library shows results broadly in
line with results from previous research; models
with more parameters or longer outputs consume
more energy (Patterson et al., 2021). However,
these results are based on batch inference on shared
hardware (more details in Appendix C). Results in
real-world deployment may differ dependent on de-
ployment infrastructure, system load, and regional
carbon intensity. However, we expect that all val-
ues will scale up or down in this case, and com-
parisons of the values between models will still
hold.

Chain Routing Assumptions

Chain routing assumes that all reasoning processes
can be segmented into the same three-phase struc-
ture; this aligns well with all tasks we use, and
is likely to generalise to other tasks. However, it
may not generalise to all tasks. Future work could
explore chain routing with different methods for
splitting CoT into stages.

Ethics Statement

Our work introduces a routing framework that
considers both expected answer quality and envi-
ronmental cost of inference in routing decisions.
Whilst we hope that systems like ours will have a
positive effect by decreasing the environmental cost
of LLMs, it is important to address the potential
ethical implications.
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Carbon Cost of Training

The first consideration is the carbon cost and GPUs
necessary to train the model. To address this, we
carefully planned experiments to limit the amount
of computing used to what was strictly necessary
to train our system. We also only used a subset of
prompts from each dataset and reduced the num-
ber of models in chain routing to ensure that we
limit the environmental impact of gathering train-
ing data.

Transparency

Next, we need to consider transparency; systems
like ours must make it clear at deployment time
which model they are routing to, and allow for the
end user to override this to ensure transparency and
human agency.

Human Agency

The next consideration is the impact of these rout-
ing decisions; whilst we show that, on average, our
routing increases performance, there will be some
prompts where routing decreases the quality of re-
sponses. Routing could also have an impact on
response hallucination rates. Thus, routing systems
should always be deployed with a human-in-the-
loop, to quality-check responses.

Bias

Finally, we need to consider bias, routing systems
like ours are based on identifying statistical patterns
in prompts to route them to the correct model. This
could lead to prompts on certain topics or phrased
in certain ways, being routed to smaller models,
potentially reducing the quality of responses. At
deployment time any system like ours would have
to be carefully monitored and audited to ensure this
was not happening.
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A Decoder Hyperparameters

A.1 LLM parameters (< 255 parameters)

Setting Value
Compute precision float16
Top-k 50
Top-p 0.9
Temperature 0.7
Repetition penalty 1.2
Maximum output tokens | 2500

Table 6: LLM hyperparameters for smaller models(<32B parameters).

A.2 LLM parameters (> 255 parameters)

Setting Value
Quantisation 8-bit
Compute precision float16
Top-k 50
Top-p 0.9
Temperature 0.7
Repetition penalty 1.2
Maximum output tokens | 2500

Table 7: LLM hyperparameters for larger models (>32B parameters).

B Encoder Hyperparameters

B.1 BERT Fine-Tuning Hyperparameters

Hyperparameter Value
Learning rate 2 x 107
Number of training epochs | 3

Batch Size (Per GPU) 8
Warmup ratio 0.1
Weight decay 0.01
Mixed precision (fp16) Enabled
Gradient accumulation steps | 4

Soft score temperature 4.5

Table 8: BERT fine-tuning hyperparameters.

B.2 BERT Fine-Tuning Loss

The loss formula is shown in the equations below, where P (X)) is the correct soft score distribution, Q(X)
is the predicted soft score distribution, V is the total number of examples, k is the number of classes, and
Nj is the number of examples in class .

P, ;
Dk (P, Q;) = Z Qi jlog Q.J, ®
j ”
N
;= 10
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loss(Qi, P;, Ni) = Dgr,(Qi, P;) X w; (11)

C Carbon Calculation Details

C.1 Hardware Details

Component Details
GPUs
* NVIDIA RTX A5000: 23.99 GB
* NVIDIA GeForce RTX 3090: 24.00 GB
GPUS Utilised At most 2 per experiment
System Memory DDR4 3200MHz (250-500GB)
CPUs
* AMD EPYC 7543P: 32 cores, 2.8-3.7 GHz
e AMD EPYC 7443 : 24 cores, 2.85-4.0 GHz
CPU Cores Utilised At most 2 cores per experiment

C.2 Code Carbon Implementation Details

Table 9: The hardware used for training and evaluation.

We ran all of our results using the energy mix defined in Code Carbon for the United Kingdom (GBR),
which uses an average grid-mix carbon intensity of 237.6g CO5 per kWh 4.

These carbon intensity values are static, so they are the same between runs, but recreating our results in
different jurisdictions or on different hardware will yield different results.

D Raw Results Output

D.1 Environmental Cost and Latency of Routing Approaches

Routing Method Carbon Cost (g CO-) Latency (s)
BERT (Single Routing) 0.0001565 0.0251
BERT (Chain Routing) 0.04102 0.8969
Generative (Single Routing) 0.01565 1.004
Random, Oracle Routing 0 0

Table 10: A comparison of the environmental cost of each routing approach.

D.2 Environmental Cost of Training BERT Routers

Router Carbon cost (total) COz kg | Carbon cost (per training example) CO5 kg
Bert (single routing) 0.0364 0.00000474
BERT (chain routing) 0.809 0.00000927

Table 11: The carbon cost of training the BERT router for both single and chain routing

*https://github.com/mlco2/codecarbon/blob/master/codecarbon/data/private_infra/global_energy_mix.

json
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D.3 Environmental Cost of Gathering Training Dataset

Model Total Cost (kg CO>)
deepseek-ai/DeepSeek-R1-Distill-Qwen-32B 359
Qwen/Qwen2.5-32B 26.5
deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct 21.2
deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B 16.3
meta-llama/LLlama-3.1-8B 10.8
meta-llama/Llama-3.2-3B 8.3
meta-llama/Llama-3.2-1B 4.9
TOTAL 123.9

Table 13: Carbon costs by model combination for chain routing.

Table 12: Carbon costs by model for single routing.

Models Total Cost (kg CO5)
32B-32B-32B 4.10
3B-32B-3B 3.81
32B-32B-8B 3.11
32B-32B-3B 3.05
3B-32B-8B 2.76
3B-32B-32B 2.73
8B-32B-3B 2.19
8B-32B-8B 2.17
8B-32B-32B 2.16
3B-8B-32B 2.16
3B-3B-32B 2.08
32B-3B-8B 2.00
32B-8B-3B 1.97
8B-8B-3B 1.95
32B-8B-32B 1.91
8B-3B-3B 1.89
32B-3B-32B 1.66
8B-8B-8B 1.65
32B-3B-3B 1.63
8B-3B-8B 1.59
3B-8B-3B 1.58
8B-8B-32B 1.50
8B-3B-32B 1.39
3B-8B-8B 1.30
3B-3B-8B 1.69
3B-3B-3B 1.07
TOTAL 56.9
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D.4 Lambda Trade-off Results

Environmental Cost vs Similarity Score Trade-off
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Figure 9: A graph showing the similarity score and emissions for different A values.

Model Calls vs A Value
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Figure 10: The number of calls to each candidate model against the value of A.

268



Model/ A 0001 /,02|03|04 05|06 )|07]|08]09 1.0
Llama-3.2-1B 0 0 0 0 0 0 0 1 2 18 | 82
Llama-3.2-3B | 135 | 139 | 144 | 144 | 144 | 142 | 148 | 152 | 148 | 158 | 145
Llama-3.1-8B | 229 | 230 | 229 | 226 | 225 | 232 | 231 | 233 | 248 | 235 | 196
DS-Qwen-1.5B | 0 0 0 0 0 0 0 0 0 14 | 120
DS-Coder-16B | 0 0 0 1 1 1 2 2 11 | 28 | 173
Qwen2.5-32B | 125 | 127 | 126 | 134 | 141 | 147 | 159 | 178 | 190 | 219 | 79
DS-Qwen-32B | 365 | 368 | 355 | 349 | 343 | 332 | 314 | 288 | 255 | 182 | 59

Table 14: A table showing the number of calls to each candidate model for different A values in single routing.

D.5 Similarity Scores by Model and Task for Single Routing

Task Qwen2.5- DS-Coder- | DS-Qwen- DS-Qwen- Llama-3.1- | Llama-3.2- | Llama-3.2-
32B 16B 1.5B 32B 8B 3B 1B
GSM- 0.787 0.744 0.218 0.735 0.964 0.962 0.773
Symbolic
SQuAD 0.877 0.737 0.668 0.894 0.813 0.855 0.743
ARC 0.791 0.822 0.726 0.877 0.835 0.838 0.686
MBPP 0.179 0.194 0.090 0.142 0.238 0.116 0.189
MMLU 0.850 0.723 0.745 0.857 0.792 0.839 0.704
MMLU-Pro 0.902 0.745 0.754 0.890 0.807 0.863 0.805
GSMEK 0.971 0.773 0.681 0.979 0.987 0.959 0.803
GPQA 0.794 0.702 0.709 0.808 0.818 0.824 0.725
UnifiedQA 0.752 0.650 0.665 0.784 0.771 0.769 0.685
Table 15: Average similarity scores by task and model.
D.6 Similarity Scores by Model and Task for Chain Routing
Model GSM- ARC MBPP MMLU MMLU-Pro GSMSK UnifiedQA
Symbolic
32B-32B-32B 0.8990 0.7792 0.2089 0.8669 0.8409 0.8629 0.7122
32B-32B-8B 0.6214 0.8075 0.2281 0.8540 0.8075 0.6674 0.7449
32B-32B-3B 0.5959 0.7473 0.2140 0.7982 0.7931 0.6059 0.6766
32B-8B-32B 0.8445 0.7911 0.1777 0.8974 0.8462 0.7808 0.7161
32B-8B-8B 0.7020 0.7428 0.1899 0.8355 0.7837 0.7163 0.6793
32B-8B-3B 0.6045 0.7215 0.1782 0.8120 0.7930 0.5939 0.6451
32B-3B-32B 0.7380 0.7902 0.1814 0.8809 0.8243 0.7235 0.7147
32B-3B-8B 0.6651 0.7572 0.2097 0.8390 0.8073 07177 0.7147
32B-3B-3B 0.5846 0.7409 0.1988 0.8210 0.7914 0.6222 0.6606
8B-32B-32B 0.7883 0.7834 0.1732 09158 0.8763 0.7877 0.7135
8B-32B-8B 07171 0.7844 02012 0.8522 0.7971 0.7381 0.7194
8B-32B-3B 0.6223 0.7192 0.2056 0.8060 0.799%4 0.5967 0.6632
8B-8B-32B 0.8009 0.8071 0.1565 09193 0.8587 0.7779 0.7325
8B-8B-8B 0.8279 0.7602 0.1831 0.8342 0.8032 0.7950 0.7026
8B-8B-3B 0.6304 0.7081 0.1705 0.7930 0.7942 0.6311 0.6436
8B-3B-32B 0.7309 0.7984 0.1753 0.8769 0.8522 0.6958 0.7329
8B-3B-8B 0.7219 0.7808 0.2064 0.8347 0.8150 0.6720 0.7279
8B-3B-3B 0.6318 0.6874 0.1925 0.8124 0.7762 0.6195 0.6345
3B-32B-32B 0.7300 0.7870 0.1753 0.9020 0.8366 0.6989 0.7200
3B-32B-8B 0.7324 0.7559 0.2188 0.8451 0.7874 0.6983 0.6876
3B-32B-3B 0.6208 0.7044 0.2037 0.7959 0.7967 05472 0.6310
3B-8B-32B 0.7507 0.8034 0.1505 09125 0.8328 0.7372 0.7100
3B-8B-8B 0.7293 0.7464 0.1807 0.8216 0.7667 0.7519 0.6662
3B-8B-3B 0.6103 0.6927 0.1823 0.8095 0.8060 05851 0.6390
3B-3B-32B 0.7051 0.7919 0.1715 0.8846 0.8493 0.6578 0.7038
3B-3B-8B 0.7087 0.7596 0.2043 0.8497 0.8058 0.7213 0.6933
3B-3B-3B 0.5946 0.7168 0.1932 0.7923 0.8002 05514 0.6282

Table 16: Average similarity scores by model and task.
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D.7 Chain Routing Model Performance
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Figure 11: A heatmap showing average performance across datasets for every combination of models

D.8 Single Routing Similarity and Emissions Results with Confidence Intervals

Router Emissions (grams CO-) | Similarity Score
BERT-router 2.31 £ 0.004 0.845 £+ 0.0264
Generative router 2.53 £0.002 0.81 4+ 0.0326
Random router 2.00 £ 0.008 0.74 £0.101
Largest model (no routing) 3.80 £ 0.00600 0.818 + 0.0302
Smallest model (no routing) 0.500 £ 0.002 0.716 £ 0.0330
Oracle router 2.10 £0.032 0.903 £ 0.644

Table 17: Model emissions and similarity scores with 95% confidence intervals for single routing.

D.9 Single Routing Similarity and Emissions Results on Unseen Dataset with Confidence Intervals

Router Emissions (grams CQO-) | Similarity Score
BERT-router 2.80 + 0.002 0.889 +£0.0131
Generative router 1.90 £+ 0.001 0.826 +£0.0155
Random router 1.70 £ 0.002 0.74 +0.0176

Largest model (no routing) 3.20 £ 0.001 0.894 4+ 0.0135
Smallest model (no routing) 0.40 4+ 0.002 0.743 £ 0.0188
Oracle router 1.90 4+ 0.002 0.950 £+ 0.0057

Table 18: Model emissions and similarity scores with 95% confidence intervals for single routing on unseen dataset.
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D.10 Chain Routing Similarity and Emissions Results with Confidence Intervals

Router Emissions (grams CO-) | Similarity Score
BERT-router (Chain) 2.51 +£0.00441 0.732 +£0.0479
BERT-router (Single) 2.20 +0.002 0.710 £ 0.0231
Generative router 1.33 +0.00176 0.681 +0.1282
Random router 1.73 £ 0.002 0.667 +£0.0176
Largest model (no routing) 3.09 4+ 0.005 0.728 £+ 0.04787
Smallest model (no routing) 0.824 + 0.006 0.612 £+ 0.0463
Oracle router 1.90 + 0.00212 0.861 4+ 0.01365

Table 19: Model emissions and similarity scores with 95% confidence intervals for chain routing.

D.11 Chain Routing model usage per stage for BERT Router

Stage LLama 3.2-3B | Llama 3.1-8B | Qwen 2.5-32B
1 (Exploration) 60 10 70
2 (Reasoning) 43 9 88
3 (Reasoning) 17 17 106

Table 20: The number of calls for each model for each CoT stage in the chain router when using the BERT router.

D.12 Chain Routing Model Usage per Stage for Generative Router

Stage LLama 3.2-3B | Llama 3.1-8B | Qwen 2.5-32B
1 (Exploration) 33 91 16
2 (Reasoning) 30 100 10
3 (Reasoning) 24 108 8

Table 21: The number of calls for each model for each CoT stage in the chain router when using the generative
router.

D.13 Example Prompt

System prompt

System: You are a helpful Al assistant. You provide clear, short, step-by-step solutions and
always conclude with #### followed by the final answer.

User: Now, answer the following question:

Which of the following was not cited as evidence for life in the Martian meteorite ALH84001?
<Options:>

Please provide a short, step-by-step solution to the question above, and conclude with the
#### followed by the final answer.

Table 22: Example system prompt.
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D.14 System Prompt for Reasoning Chain Decomposition

System prompt

System: Split your response into three distinct parts: initial EXPLORATION, REASONING, and a CONCLU-
SION containing #### followed by your final answer for evaluation. Format your response with the following
structure:

EXPLORATION: your initial thoughts

REASONING: your step-by-step reasoning

CONCLUSION:##i## your final answer

Table 23: Example system prompt for reasoning chain decomposition.

D.15 Example CoT Response Split Into Stages

Stage Output

Prompt A school board of a large school district is proposing a new dress code for students. Some students feel
that this dress code unfairly targets female students. To see if there is a difference between boys and
girls in their opposition to the new dress code, they conduct a poll of 60 randomly selected male and 70
randomly selected female high school students in the district. They find that 66 females oppose the dress
code and 50 males oppose the dress code. Which of the following explains why a two-proportion z-test
is not appropriate?

Exploration The question is asking why a two-proportion z-test is not appropriate for the given scenario. A two-
proportion z-test is used to compare the proportions of two independent groups. In this case, the groups
are male and female students who oppose the new dress code.

Reasoning The sample sizes are 60 males and 70 females, and the number of successes (opposition) are 50 males
and 66 females. To determine if a two-proportion z-test is appropriate, we need to check the conditions
for the test. The conditions are: 1. The samples are independent. 2. The sample sizes are large enough,
which means that the number of successes and failures in each group should be at least 10. In this case,
the samples are independent because they are randomly selected male and female students. However, the
number of successes and failures in each group should be checked:- For males: 50 successes (opposition)
and 10 failures (not opposition) For females: 66 successes (opposition) and 4 failures (not opposition)The
number of failures for the female group is less than 10, which violates the condition for a two-proportion
z-test.

Conclusion Therefore, a two-proportion z-test is not appropriate for this scenario. #### The number of successes
and the number of failures for the two groups are not all large enough.

Table 24: Example chain routing output (from Qwen-32B on MMLU dataset).

E Example Responses From Qualitative Analysis

E.1 Example Correct CoT Response

Stage Output

Question If the money supply increases what happens in the money market (assuming
money demand is downward sloping)?

Gold Standard The nominal interest rates falls

Router Output CONCLUSION: The nominal interest rates falls

Table 25: An example of where the CoT response from the router was deemed to be correct from qualitative review.

272



E.2 Example Incorrect CoT Response

Stage Output

Prompt A farmer is buying feed for his horses. He buys a variety of oats, hay, carrots
and apples. Since apples are a rare treat, he only buys four 3-pound boxes of
them for the whole stable. He only wants enough carrots to feed the horses
while the vegetables are fresh, so he buys thirteen 9-pound bags. Oats are the
main diet of his horses, so he buys thirty four 44-pound packs. Hay are a staple
to supplement the oats, so he buys fifteen 19-pound sacks. Finally, he buys 43
pounds of grocery, and 27 pounds of tools. A farm truck can carry 220 pounds
at a time. How many trips does the farmer need to transport all the items, if he
has three trucks?

Gold Standard 3

Output 4

Table 26: An example of where the CoT response from the router was deemed to be incorrect from qualitative
review.

E.3 Example Correct Highest Similarity Score Response

Stage Output

Prompt Let1=11,2,3,4]. What is max(l) in Python3?
Gold Standard 4

Output 4

Similarity 1.00

Table 27: An example of where the response with the highest similarity score matched the gold standard output.

E.4 Example Incorrect Highest Similarity Score Response

Stage Output

Prompt Let a undirected graph G with edges E = <2,1>,<2,0>,<2,3>,<1,4>,<4,3>,
which <A,B> represent Node A is connected to Node B. What is the minimum
vertex cover of G? Represent the vertex cover in a list of ascending order.
Gold Standard [2, 4]

Output The final answer is boxed0 2 3 4

Similarity 0.8235

Table 28: An example of where the response with the highest similarity score did not match the gold standard
output.
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