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Abstract

We present a model for predicting the Qual-
ity of Experience (QoE) of German machine-
generated text from Automatic Text Summa-
rization (ATS) and Machine Translation (MT).
Based on previously established quality dimen-
sions, we fine-tuned BERT for ATS and ELEC-
TRA for MT, which performed best per task.
Adding linguistic features further improved ac-
curacy. For ATS, BERT excelled as a multi-
target regressor; for MT, separate ELECTRA
models performed best. Our results show that
combining linguistic features with language
models enables robust QoE prediction.

1 Introduction

The Quality of Experience (QoE) framework is
well established in domains like video streaming,
gaming, or cloud computing, but it remains under-
explored for evaluating machine-generated text. As
tools for automatically generated text become in-
creasingly widespread, understanding how users
perceive output quality gains importance. QoE
can be described as the user’s subjective degree
of delight or annoyance when consuming a ser-
vice, determined by how well the delivered content
meets their expectations for utility or enjoyment in
a given context (Le Callet et al., 2012). Modeling
QoE for machine-generated text lets developers op-
timize and monitor the perceived quality of transla-
tion and summarization systems without repeatedly
relying on expensive human tests.

This study adapts the QoE framework to assess
perceived quality in German machine-generated
text for two key tasks: Machine Translation (MT)
and Automatic Text Summarization (ATS). Build-
ing on our previous work that identified relevant
perceptual dimensions and produced high-quality
human ratings (Manakhimova et al., 2025), we train
machine learning models to predict these ratings.
Since human evaluations are reliable but costly and

hard to scale, we propose an automated prediction
approach that combines neural language models
with linguistic features.

We fine-tune pre-trained German language mod-
els (BERT and ELECTRA) for regression and en-
hance their [CLS] token embeddings with a 17-
dimensional vector of linguistic features capturing
readability, lexical diversity, and structural aspects.
The [CLS] token is a special classification token
automatically prepended to each input sequence.
After transformer encoding, its corresponding final
hidden state serves as a fixed-size summary repre-
sentation of the entire sequence. This representa-
tion, concatenated with the linguistic feature vector,
forms the basis for our regression predictions.

Our main contributions are threefold. First, we
formalize QoE prediction for machine-generated
text as a multivariate regression problem. Sec-
ond, we compare multiple multi-output regression
strategies (including single-target, multi-target, and
multi-task learning) to identify the most effective
approach for each task. Third, we demonstrate
that integrating linguistic features significantly en-
hances performance, even in low-resource settings.

Our results offer insights into modeling user-
perceived quality in natural language generation,
highlighting the benefits of combining neural rep-
resentations with linguistically motivated features
for scalable QoE prediction.

2 Related Work

2.1 Automatic Quality Assessment

Traditional text quality assessment typically mea-
sures adherence to formal standards, whereas Qual-
ity of Experience (QoE) emphasizes user percep-
tion, as established in multimedia research. Subjec-
tive evaluation methods like Semantic Differential
(SD) scaling (Osgood, 1957) commonly used to
capture these perceptions. SD scaling presents re-
spondents with pairs of opposing adjectives and
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asks them to rate a concept or stimulus along a
Likert-like scale anchored by these terms.

Readability and text complexity have been re-
searched extensively. Some studies have leveraged
language models alone for these tasks, such as
(Martinc et al., 2021), while others have focused on
linguistic feature-based approaches to readability
and complexity across languages, e.g., (Santucci
et al., 2020; Štajner and Hulpus, 2020; Seiffe et al.,
2022). These studies demonstrate that linguistic
features remain highly relevant for evaluating tex-
tual properties, even in the era of neural language
models.

A study particularly relevant to our approach is
Anschütz and Groh (2022), which also integrates
a language model with linguistic features for com-
plexity prediction. Their method aligns with our
goal of combining automatically extractable lin-
guistic properties with deep learning models to
enhance prediction performance.

For German, Naderi et al. (2019) used subjec-
tive judgments to train a readability model, under-
scoring the value of perception-based assessment.
More recently, studies explore large language mod-
els (LLMs) for reference-free quality evaluation
(Chen et al., 2023; Huang et al., 2023) and text sim-
plification quality estimation (Kriz et al., 2020).

Building on these efforts, our work integrates
perceptual evaluation with linguistic and neural
predictors. Unlike prior research focused on sin-
gle dimensions (e.g., readability), we model multi-
ple quality dimensions per task, providing a more
comprehensive view of user-perceived quality in
machine-generated text.

2.2 Linguistic Text Features
Our approach incorporates a targeted set of lin-
guistic features that influence readability, complex-
ity, and overall textual perception. Classic indi-
cators include average sentence length (Pitler and
Nenkova, 2008) and word length (McNamara et al.,
2014), with longer sentences and words generally
signaling increased difficulty. We use established
readability metrics: Flesch Reading Ease (Flesch,
1948), Wiener Sachtextformel (Bamberger and Ra-
bin, 1984) (German-specific), Coleman-Liau index
(Coleman and Liau, 1975), Gunning Fog (Gunning,
1952), and SMOG (Mc Laughlin, 1969). These
assess text difficulty via sentence and word charac-
teristics. To measure lexical variation, we include
Type-Token Ratio (TTR) (Richards, 1987) and lex-
ical density (McNamara et al., 2014), defined as

the ratio of content words (nouns, verbs, adjectives,
adverbs) to the total number of words. Higher
values suggest richer, denser language impacting
perceived informativeness and complexity.

Together, these features provide insights into
multiple dimensions of text quality and comple-
ment neural methods in modeling user-perceived
QoE.

3 Methodology

3.1 Data

Our experiments build on our prior work (Macke-
tanz et al., 2022; Manakhimova et al., 2025) that
examined human perception of machine-generated
German text quality using crowdsourced SD sur-
veys to identify subjective quality dimensions in
ATS and MT.1

Automatic Text Summarization (ATS). The
ATS data is based on the GeWiki corpus, which
contains preprocessed German Wikipedia articles
across domains such as people, science, and poli-
tics (Frefel, 2020). Summaries were obtained both
from the SwissText & KONVENS 2020 shared task
and generated internally using a range of extractive
and abstractive methods, such as Lead-3 (Dohare
and Karnick, 2017), TextRank (Mihalcea and Tarau,
2004), Pointer-Generator (See et al., 2017), Trans-
former (Vaswani et al., 2017), Convolutional Self-
Attention Transformer (Li et al., 2019), and BERT-
Transformer (Devlin et al., 2019). The resulting
summaries typically average 37 words (about 2–3
sentences). To ensure a diverse quality range, all
summaries underwent an error-type annotation to
include various error types and error severities. We
further made sure to include different summary
lengths.

Machine Translation (MT). For the MT cor-
pus, we selected English–German translations from
top-, middle-, and bottom-ranked systems in the
WMT19 News Translation task (Barrault et al.,
2019), aiming to create a dataset that spans a range
of translation quality.2 Analogously to the ATS cor-
pus, we then performed an error-type annotation to
include data points with various translation error
types and severities.

1Note that this paper highlights only key aspects of our
foundational research regarding the dataset creation and qual-
ity dimensions identification. For a detailed description of di-
mension identification and human ratings, see the cited work.

2http://www.statmt.org/wmt19/index.html
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3.2 Human Ratings and Quality Dimensions

For each text type, we created tailored adjective
pairs (e.g., grammatical–ungrammatical) and had
German native speakers rate texts on 7-point Likert
scales (0–6). The survey ran on the Crowdee plat-
form3. Raters were native German speakers from
the DACH region (Germany, Austria, Switzerland)
and were compensated at a rate of 2 Euro per 10-
minute task, in line with minimum wage require-
ments. Annotators were provided with the texts
(each text type separately) and instructed to judge
each one using the adjective pair scales, focusing
on the language quality while disregarding the con-
tent of the sentences to the best of their ability. To
ensure data quality, we applied pre-task qualifica-
tions and filtered results using the Inconsistency
Score (Naderi, 2018) among other criteria. The
cleaned datasets comprise 91 ATS and 106 MT
texts4, each rated by 10–20 annotators, prioritizing
rating reliability over quantity.

We performed an exploratory factor analysis
(EFA) of human ratings, which revealed four la-
tent quality dimensions per task, and validated the
structure in a follow-up study using four adjective
pairs per text type; the reduced instruments repro-
duced the original factors with strong correlations
to the full scales. For ATS, the dominant factor is
linguistic logic (≈ coherence/consistency), captur-
ing internal cohesion and semantic plausibility; the
remaining factors are complexity (syntactic/lexical
richness and associated reading effort), clarity
(readability and focus), and predictability (dis-
course flow and logical progression). For MT, the
factors are precision (≈ adequacy/completeness),
complexity (as above), grammaticality (≈ flu-
ency/surface well-formedness, including spelling
and punctuation), and transparency (≈ coher-
ence/naturalness). We retain the inductive labels
but provide these parenthetical alignments to es-
tablished constructs to facilitate interpretation and
comparison with prior work. The resulting human-
derived dimensions serve as ground-truth targets
for our predictive modeling.

For the model training, we use the mean rating
per dimension per text. Each dataset includes the
text plus four columns for the dimension ratings
(see Tables 1 and 2). Ratings range from 0 to 6 (0
being the lowest perceived quality, and 6 the high-

3https://www.crowdee.com/
4You can find the ATS and MT datasets without the ratings

here: https://github.com/DFKI-NLP/TextQ

Table 1: Excerpt from the ATS dataset illustrating its
structure, with Mean Opinion Scores per test item and
quality dimension. Text samples were shortened.

Text
Sample

Logic
Compl-

exity
Cla-
rity

Predict-
ability

"35,2 Vol. ist ein
deutscher Kriminalfilm
aus dem Jahr 2012 [...]."

2.2692 4.1923 3.0962 2.4615

"Bansin ist ein Ortsteil
der Gemeinde Herings-
dorf im Landkreis [...]."

4.8125 4.0000 5.1875 3.3750

"Veikko Lahti war ein
finnischer Ringer. Er war
Olympiasieger [...]"

2.0909 1.8182 3.0909 2.6364

Table 2: Excerpt from the MT dataset illustrating its
structure, with Mean Opinion Scores per test item and
quality dimension. Text samples were shortened.

Text
Sample

Preci-
sion

Compl-
exity

Trans-
parency

Gramm-
aticality

"Ihre Zurückhaltung ist
alles auf das Timing
zurückzuführen."

3.0345 1.8966 3.0862 3.6207

"Seine Nachrichten
führten jedoch nur zu
einem grauen [...]."

2.6842 2.1579 2.7368 1.7368

"Sicher ist, dass der Kon-
flikt der Mitte des 17.
Jahrhunderts [...]."

3.4118 4.1765 3.8235 2.8235

est), framing this as a multi-output regression task
with four targets. Each test item has a correspond-
ing Mean Opinion Score (MOS) per dimension,
calculated as the arithmetic mean of individual hu-
man ratings. MOS is a standard practice in QoE
research (ITU-T, 2016).

3.3 Model Selection

Given the limited size of our datasets and the
resource-intensive demands of further data collec-
tion, we leveraged pre-trained German language
models for training and evaluation to capitalize on
their existing knowledge.

We first evaluated five pre-trained models
to select the best performer for further exper-
iments: the BERT variants "bert-base-german-
uncased" (Bayerische Staatsbibliothek, 2025b),
"bert-base-german-cased" (Bayerische Staatsbib-
liothek, 2025a), "gbert-base," "gbert-large," and
the ELECTRA model "gelectra-large" (Chan et al.,
2020), all sourced from Huggingface5. For each,
we replaced the output layer with a linear layer of
size 4 to predict all four quality dimensions simul-
taneously in a multi-target regression framework.

5https://huggingface.co/
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Figure 1: Model architectures with the MT labels for
(A) fine-tuned language model, (B) multi-task learning
model and (C) textual feature integration.

3.4 Multi-Label Regression Approach
Continuing with the best-performing pre-trained
model for each dataset, we explored different ap-
proaches for the four-label regression task. The
baseline models (from Section 3.3) output all four
labels simultaneously in a multi-target regression
setup. In addition, we trained separate single-target
models (one per quality dimension) and evaluated
their performance individually.

Given evidence that multi-task learning (MTL)
can outperform single-task models in similar multi-
target regression settings (Mohtaj et al., 2023), we
also implemented an MTL model for each dataset.
Our MTL architecture shares a single pre-trained
backbone (BERT or ELECTRA, as chosen in Sec-
tion 3.3) across all tasks but uses separate task-
specific linear regression heads. Each dimension
is predicted by an independent 1D regression head
that processes the pooled [CLS] token embedding
from the shared backbone. The overall loss is the
sum of all task losses with equal weighting, treating
all dimensions as equally important.

3.5 Linguistic Feature Integration
Lastly, we evaluated the benefit of combining sta-
tistical and linguistic text features with language

model embeddings, leveraging both transformer
architectures and features in a hybrid approach.
We extracted 17 features, grouped into four main
categories. The first category, structural metrics,
includes average sentence length, the percentage
of words with six or more letters, and the average
number of characters per word. The second cat-
egory covers syllabic properties, such as average
syllables per word, the percentage of monosyllabic
words, and the percentage of words with three or
more syllables. Third, we incorporated readability
formulas, including the Flesch Reading Ease, all
four variants of the Wiener Sachtextformel, as well
as the SMOG, Coleman-Liau, and Gunning Fog
indices. Finally, the fourth category captures lex-
ical diversity through measures like TTR, lexical
density, and the number of unique tokens.

These features were min-max normalized to
[0,1] per dataset split, with scaling parameters ap-
plied consistently to validation and test sets to avoid
data leakage (see Section 3.6). The normalized fea-
tures were concatenated with the [CLS] embedding
from the selected model and fed into the regres-
sion head according to the multi-target regression
method chosen. Figure 1 illustrates the model ar-
chitectures for MT.

3.6 Experimental Setup

We used consistent hyperparameters and data splits
across all experiments for fair comparison: learning
rate 2× 10−5, MSE loss, 30 epochs, batch size 16,
and AdamW optimizer with weight decay 0.01.

Due to the small dataset size, we employed
a 7-fold cross-validation. Each dataset was ran-
domly shuffled and split into seven equal folds
F = f1, ..., f7. For each round, fold fi served as
test set, fold fi−1 (or f7 if i = 1) as validation, and
the remaining five folds for training. Thus, each
fold was used once as validation and once as test.
During training, we monitored validation RMSE
per epoch and saved the best checkpoint for final
evaluation on the test fold. Reported metrics are
the average over the seven test folds.

4 Results and Discussion

We primarily use RMSE to evaluate model perfor-
mance, as it is a standard regression metric that
penalizes outliers quadratically and measures error
on the original rating scale.
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Table 3: The performance of the fine-tuned language
models on ATS.

Model MAE RMSE R2

bert-base-german-
uncased

0.7965 0.9670 0.1026

bert-base-german-
cased

0.7696 0.9390 0.1510

gbert-base 0.8448 1.0248 -0.0076
gbert-large 0.6958 0.8588 0.2939
gelectra-large 0.7780 0.9356 0.1683

Table 4: The performance of the fine-tuned language
models on MT.

Model MAE RMSE R2

bert-base-german-
uncased

0.9911 1.1877 0.1085

bert-base-german-
cased

1.0066 1.2295 0.0476

gbert-base 0.9966 1.2292 0.0613
gbert-large 0.8961 1.0669 0.2719
gelectra-large 0.8500 1.0133 0.3727

RMSE =

√√√√ 1

n

n∑

i=1

(yi − ŷi)2 (1)

where yi is the true value, ŷi is the predicted value,
and n is the number of samples. Additionally, we
report mean absolute error (MAE) and the coeffi-
cient of determination (R2) as supplementary met-
rics. For each model, we average RMSE, MAE,
and R2 scores across all four quality dimensions.

The fine-tuning results of pre-trained language
models on our datasets are shown in Tables 3 and
4. For ATS, gbert-large performed best, while
gelectra-large was top for MT.

MAE values are lower than RMSE, as expected
(Willmott and Matsuura, 2005). The ratio between
RMSE and MAE can provide additional insight
into the shape of the error distribution (Karunas-
ingha, 2022). Specifically, a lower ratio indicates a
platykurtic distribution, which has lighter tails and
fewer extreme errors than a normal distribution,
while a higher ratio would point to a leptokurtic
distribution with heavier tails and more outliers.
The RMSE/MAE ratios of our best models (ATS:
1.23, MT: 1.19) are less than 1.25, which is shown
to be consistent with a platykurtic error distribution
(Karunasingha, 2022). In such cases, RMSE was
demonstrated to be a more reliable performance
measure than MAE (Karunasingha, 2022), support-
ing RMSE as a suitable metric for our experiments.
Moreover, according to (Inagata et al., 2025), ratios

Table 5: The performance of the multi-label regression
approaches and textual feature integration for ATS.

Model MAE RMSE R2

Multi-target regression 0.6958 0.8588 0.2939
Single-target regression 0.7408 0.8990 0.1895
Multi-task learning 0.7525 0.9092 0.2001
Multi-target regression
+ textual features

0.6764 0.8308 0.3225

Table 6: The performance of the multi-label regression
approaches and textual feature integration for MT.

Model MAE RMSE R2

Multi-target regression 0.8500 1.0133 0.3727
Single-target regression 0.8207 0.9785 0.3867
Multi-task learning 0.8661 1.0208 0.2898
Single-target regression
+ textual features

0.7885 0.9259 0.4510

between approx. 1.14 and 1.25 indicate good fore-
casting performance. Our models’ ratios fall within
this range, confirming their robustness. Based on
these findings, we selected gbert-large for ATS and
gelectra-large for MT for further experiments.

The results of the multi-label regression ap-
proaches and integration of textual features are
shown in Tables 5 and 6. For both text types, the
multi-task model performed worst, though with
only slightly higher errors. This may be due to
limited training data restricting model complex-
ity, which is currently limited to a linear layer
over language model embeddings. Larger datasets
could enable more complex architectures (e.g.,
LSTM/GRU) and better leverage MTL. The multi-
target regression model achieved the lowest RMSE
for ATS, while single-target regression was best for
MT. Adding textual features to these models signif-
icantly improved performance across all metrics.

These findings highlight the advantage of com-
bining neural embeddings with linguistic features.
While BERT and ELECTRA embeddings capture
semantic information, textual statistics add comple-
mentary insights not fully captured by the language
models. Our hybrid models achieved RMSEs of
0.8308 (ATS) and 0.9259 (MT), with MAEs of
0.6764 and 0.7885, corresponding to average de-
viations of 11.27% and 13.14% on the 0–6 scale.
This confirms the effectiveness of our approach
in predicting human-annotated quality dimensions
and validates modeling QoE through these identi-
fied dimensions.
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5 Conclusion and Future Work

We present an approach to modeling QoE for
machine-generated German text, focusing on ATS
and MT. By fine-tuning pre-trained language mod-
els and integrating linguistic features, we signifi-
cantly improved the prediction of perceptual qual-
ity dimensions for both text types. Our experiments
showed gbert-large performed best for ATS, and
gelectra-large for MT. Conducted in a low-resource
setting, these results deepen understanding of QoE
in NLP and highlight the value of combining neural
and linguistic features for quality estimation.

To advance this work, we plan to expand
our datasets with LLM-generated items rated via
crowdsourcing. As initial variance analyses show
no significant differences, we will integrate these
with the original data. We are also developing a
set of ~100 automatically extractable linguistic fea-
tures to enhance model inputs and to train linear
regression models for feature selection to identify
the most predictive features per dimension, improv-
ing interpretability and robustness.

Limitations

We acknowledge several limitations of our study.
First, the dataset of human ratings is relatively
small. However, to ensure rating reliability and
mitigate common issues in crowdsourced data, we
prioritized collecting more ratings per item over a
larger number of texts. We are currently address-
ing the dataset size by augmenting it with LLM-
generated items, which will also help align the data
with recent advances in text generation.

Second, our research is limited to the German
language, so generalizability to other languages
remains uncertain. Nonetheless, we help fill a gap,
as most prior work in this area has focused on
English.

Finally, our models have only been evaluated on
MT and ATS outputs. It remains an open question
how well they generalize to other types of machine-
generated text; a direction we plan to explore in
future studies.
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