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Abstract

Analyzing unstructured patient data from elec-
tronic health records can improve clinical
decision-making. However, the standard ap-
proach for medical information extraction (IE)
that relies on fine-tuning foundation models for
specific tasks faces several challenges, espe-
cially in German where training data availabil-
ity is very scarce. This work investigates the
feasibility of large language models (LLMs)
equipped with 7 billion parameters for clini-
cal IE in the German medical domain, evalu-
ating their performance on all three publicly
available German gold-standard datasets. The
results show that LLMs achieve strong per-
formance in drug extraction (F1: 0.71-0.87)
but struggle with diagnoses and treatments (F1:
0.44-0.71). Instruction tuning with QLoRA im-
proves performance and reduces hallucinations.
While baseline models outperform LLMs on
dataset-specific tasks, instruction-tuned LL.Ms
excel on out-of-distribution data, making them
a viable option when training data is scarce and
detailed accuracy is less critical.

1 Introduction

The widespread adoption of electronic health
records has led to the collection of extensive patient
data, including family history, symptoms, diagnos-
tic results, and treatments. Effectively analyzing
this vast amount of data has the potential to enhance
clinical care and support clinical decision-making
(Jensen et al., 2012). As most documentation ex-
ists in text form, automated information extraction
(IE) plays a crucial role in enabling comprehensive
analysis of healthcare data (Lentzen et al., 2022).
The potential applications are manifold, one
plausible area of application for IE from free writ-
ten text is premedication in anesthesia. Each pa-
tient is examined and assessed preoperatively by an
anesthetist to minimize perioperative risk and pre-
pare the patient medically and psychologically for
anesthesia (Larsen, 2016). Before the preoperative

visit, the anesthetist reviews the patients medical
history, focusing on prior diseases, surgeries, aller-
gies, medications, and lab results. This typically
involves manually examining physician notes from
various sources, such as hospital units or external
providers, without any tool to assist in generating
premedication reports. This time-consuming pro-
cess is further complicated by duplicated text in
clinical notes (Steinkamp et al., 2022).

Physicians can leverage natural language process-
ing (NLP) methods, such as fine-tuning founda-
tion models, to analyze clinical notes. While
current state-of-the-art (SOTA) fine-tuned trans-
former models achieve remarkable results in clini-
cal named entity recognition (NER), their perfor-
mance often declines significantly when applied to
other datasets (Kiihnel and Fluck, 2022). Further-
more, medical IE in Germany faces challenges due
to data protection laws, limited annotated datasets,
and less research activity in German compared to
English (Lentzen et al., 2022; Roller et al., 2022;
Richter-Pechanski et al., 2023). Generative large
language models (LLMs) offer a promising so-
lution, achieving strong results in various NLP
tasks without task-specific fine-tuning (Touvron
et al., 2023; Jiang et al., 2024). This paper aims
to answer the following research questions: (RQ1)
Which LLM performs best for medical informa-
tion extraction in German? (RQ2) Which approach
yields the highest performance for medical IE: few-
shot prompting, instruction fine-tuning or retrieval-
augmented generation (RAG)? (RQ3) Can genera-
tive LLMs with 7 billion parameters compete with
smaller task specific fine-tuned models (SLMs) in
German clinical IE?

The main Contributions of this work include:
(1) We present a comprehensive analysis of 7B
LLMs for IE in the German medical domain, eval-
uating their strengths and limitations across multi-
ple datasets. (2) We assess the generalizability of
transformer-based NER models by testing models
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on several datasets. (3) We establish a benchmark
for LLM performance in German clinical IE.

2 Related Works

2.1 Medical Information Extraction

With the rise of electronic health records, extract-
ing structured information from clinical text has
become a key research area (Jensen et al., 2012).
NER and relation extraction (RE) are central to
this task (Landolsi et al., 2023), with early rule-
based methods achieving strong results but requir-
ing extensive manual effort. The introduction
of transformer-based models like BERT (Devlin
et al., 2019) shifted the focus toward machine learn-
ing approaches, leading to specialized biomedi-
cal models such as BioBERT and Clinical BERT
(Lee et al., 2020; Huang et al., 2020). While these
models achieve SOTA performance in shared tasks
like CLEF eHealth and n2c2 (Henry et al., 2020),
their success relies on well-annotated training data,
which is costly to produce and limits generaliz-
ability across datasets (Kiihnel and Fluck, 2022;
Lentzen et al., 2022; Llorca et al., 2023).

German medical IE research lags behind English
due to commercialization and data protection con-
straints (Lentzen et al., 2022; Roller et al., 2022;
Richter-Pechanski et al., 2023). Despite these chal-
lenges, five annotated German NER datasets have
been released: BRONCO (Kittner et al., 2021),
CARDIO:DE (Richter-Pechanski et al., 2023), GG-
PONC2 (Borchert et al., 2022), GERNERMED
(Frei and Kramer, 2023) and GPTNERMED (Frei
and Kramer, 2023). Note that the latter two are
not gold-standard, GERNERMED is an automat-
ically translated subset of n2c2 2018, while GPT-
NERMED is a synthetic dataset created with GPT
NeoX (Black et al., 2022). Studies on token classi-
fication models highlight performance disparities
across entity types. Early baselines, such as CRF
and LSTM on BRONCO (Kittner et al., 2021),
showed moderate results (F1: 0.71-0.90), with
dictionary-based normalization yielding inconsis-
tent scores. Transformer-based models, including
fine-tuned BERT variants on GGPONC?2 and CAR-
DIO:DE (Borchert et al., 2022; Richter-Pechanski
et al., 2023), consistently outperformed CREF, espe-
cially in drug extraction. The work by Frei et al.,
2022 demonstrated advancements from CNNs (F1:
0.67) to transformers (F1: 0.91) on GERNERMED,
though generalizability remained an issue. Recent
efforts, like GPTNERMED (Frei and Frank, 2023),
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leveraged synthetic data to enhance entity recog-
nition but struggled on external datasets. While
progress has been made, the field remains focused
on dataset creation and model improvements, with
gaps in generalization and broader application.
Beyond pre-trained language models, NLP frame-
works like Apache cTakes (Savova et al., 2010)
and MetaMap (Aronson, 2001) provide medical IE
tools but are optimized for English. Attempts to
adapt them to German, such as mapping UMLS
concepts from translated clinical notes, resulted in
low F1 scores due to linguistic and dataset limita-
tions (Becker and Bockmann, 2016). This high-
lights a major challenge in clinical NLP: the domi-
nance of English resources, which restricts research
in other languages.

2.2 Usage of LLMs for Information
Extraction

With the public release of models like LLAMA?2
(Touvron et al., 2023), researchers began adapt-
ing LLMs for medical tasks, primarily focusing
on text summarization and question answering
(QA) (Li et al., 2023; Singhal et al., 2023). No-
table advancements include Med-PalLM 2, which
achieved 86.5% on USMLE-style questions and
outperformed physician-written answers on con-
sumer medical questions (Singhal et al., 2023).
Similarly, LLMs have shown promise in clinical
text summarization and outperforming baseline
models in various NLP tasks, such as ICD-9 classi-
fication and entity normalization (Van Veen et al.,
2023; Gema et al., 2023). Studies also highlight
their robustness in low-resource scenarios and gen-
eralizability to unseen entities (Wang et al., 2025;
Peeters and Bizer, 2024). However, challenges
remain in using generative LLMs for token-level
tasks like NER, as their architectures are optimized
for text generation (Wang et al., 2025).

While initial studies explore LLMs for IE (Agrawal
et al., 2022; Wang et al., 2025; Wu et al., 2023),
their performance on German medical text remains
unexplored. Furthermore, existing research pre-
dominantly utilizes LLMs exceeding 70B param-
eters, making them impractical for users lacking
specialized hardware or substantial computational
resources.

3 Methods

In this work a mixed method approach is used to
explore the applicability of generative LLMs in



the realm of German clinical IE tasks. Traditional
NER treats entity recognition as a multiclass classi-
fication task, where token classifiers assign labels
(e.g., drug, diagnosis, treatment or none often de-
fined as O) to each token. In contrast, generative
LLMs are designed to generate text based on a
given input, which adds an additional layer of com-
plexity to the task, as the model must not only rec-
ognize entities but also generate them correctly in
a structured format, ensuring that the output can be
processed automatically (Wang et al., 2025). Our
study evaluates chat and further instruction-tuned
versions of the following LLMs to baseline NER
token-classifiers: LLAMA2 7B (Touvron et al.,
2023), Mistral 7B (Jiang et al., 2023), Meditron 7B
(Chen et al., 2023), Leo hessianai 7B and Leo hes-
sianai Mistral 7B (Pliister, 2023). While Meditron
is specifically trained for the medical domain, the
latter two are trained for German.

3.1 Few-shot Prompting

When given a few demonstrations, a generative
LLM can achieve performance comparable to
fine-tuned models specifically trained on one task
(Brown et al., 2020). To standardize output and re-
duce post-processing, we use a few-shot approach,
as shown in Figure 1. The LLM is guided to pro-
duce structured lists for each entity class. Spe-
cial instruction tokens [INST] within the prompt,
used in Mistral 7B Instruct, help distinguish user
input from generated content. These tokens vary
across models. Following Agrawal et al., 2022, our

Instruction| + Few-shot Examples + Input

<s>[INST] Extrahiere die Medikamente, Behandlung und Diagnosen aus
dem folgenden Text. Gib die gefundenen Entitdten als Liste aus.

Hier sind ein paar Beispiele:

Ibuprofen 400 mg - bei Kopfschmerzen [/INST]

Medikamente: Ibuprofen

Diagnose: Kopfschmerzen

Behandlung:

[...] </s>

[INST] Seit 14.09.2022 palliative Systemtherapie mit Sorafenib [/INST]

Figure 1: Few-shot approach to extract named entities
from input

prompt includes all entity classes, with eight ex-
amples covering different entity combinations and
a negative case resulting in 8 few-shot examples.
To enhance consistency, the inference temperature
is set to 0.1. Entity span boundaries are excluded,
as even SOTA models like ChatGPT struggle with
accurate character counts (OpenAl, 2022).
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3.2 QLoRA Instruction Fine-tuning

To enhance LLMs ability to extract instructed med-
ical entities from clinical text, we fine-tune the
models on a custom instruction-tuning dataset.
The training data comprises four NER datasets
described in Section 4. The heterogeneous data
formats were harmonized to the Alpaca instruction
template (Taori et al., 2023) as illustrated in Figure
2. Each of the 34,096 training records includes an

### Instruction:

Extract all medications and diagnoses from the
following text.

Output the found entities as a list.

### Input:

0.4 Diuretics 0.25 1x/week

### Output:

Medication: Diuretics

Diagnosis:

Figure 2: Alpaca based schema for instruction fine-
tuning.

instruction, input, and output. The instruction spec-
ifies dataset-specific entities in either German or
English. The input contains the clinical sentence,
and the output lists extracted entities by type. Given
the LLMs 7B parameters, full fine-tuning is infea-
sible within this work. Instead, we employ QLoRA
(Dettmers et al., 2023), a parameter-efficient fine-
tuning (peft) method. The model is first quantized,
after which the LoRA adapter is added, freezing the
base model while enabling fine-tuning. The LoRA
configuration follows Dettmers et al., 2023 with
(r=64) and (lora_alpha=16). Fine-tuning is con-
ducted using the Supervised Fine-tuning Trainer
(Wolf et al., 2020), optimizing the model to predict
training records.

3.3 RAG Enhanced Information Extraction

Researchers have shown that Retrieval-Augmented
Generation (RAG) improves LLM performance by
incorporating relevant information from domain-
specific knowledge bases (Lewis et al., 2020; Jad-
hav et al., 2024). Given that BRONCOs diagnosis
annotations are based on the German-modified In-
ternational Statistical Classification Of Diseases
(ICD-10-GM) and treatment annotations originate
from the German procedure classification (OPS),
this approach aims to enrich few-shot prompts with
relevant domain knowledge. The retriever model is
designed to suggest relevant ICD-10-GM diagnoses
for a given input text. To achieve this, a vector
database of the ICD-10-GM classification catalog



is constructed using the danielheinz/e5-base-sts-en-
de! model, which is trained for German semantic
textual similarity. Similarly, the model is used to
generate a vector database from the OPS procedure
catalog to retrieve matching treatments. We chunk
the ICD-10-GM data at the category level, includ-
ing all associated subcategories, ensuring seam-
less integration of the retriever models output into
the few-shot prompt. Notably, all code IDs are
removed from the chunks before embedding, en-
hancing similarity between the vector embeddings
and input text, as clinical documents rarely contain
ICD-10-GM codes. The Mistral 7B Instruct LLM
acts as the generator model, which processes the
input sentence with instructions to extract medical
entities while incorporating contextual information
from the retriever model in the form of ICD-10-GM
diagnoses or OPS procedures.

3.4 Information Extraction Evaluation

To compare the NER performance of generative
LLMs with SLMs, this study uses three gold-
standard annotated German datasets: BRONCO
(Kittner et al., 2021), GGPONC2 (Borchert et al.,
2022) and CARDIO:DE (Richter-Pechanski
et al.,, 2023). Drug, diagnosis, and treatment
extraction is evaluated using SemEval’ 13 metrics
(Segura-Bedmar et al., 2013) on single runs, which
also account for partial entity matches, relevant
for multi-token entities like diagnoses, where
annotation guidelines vary. Following Dror et al.,
2018, we assess statistical significance using
McNemar’s test (McNemar, 1947). The SLMs are
fine-tuned versions of medBert.de (Bressem et al.,
2024), a SOTA 109M-parameter German medical
language model. The different LLMs, in contrast,
are tested without prior exposure to the datasets
to assess their generalizability. Reference models
include GERNERMED by Frei et al., 2022 for
drug extraction, and GPTNERMED by Frei and
Frank, 2023.

4 Datasets

Instruction Tuning Data. The custom instruc-
tion tuning dataset is a collection of the following
four NER datasets: GERNERMED (Frei et al.,
2022), GFTNERMED (Frei and Frank, 2023), i2b2
(Uzuner et al., 2011), and n2¢c2 (Henry et al., 2020).

1https://huggingface.co/danielheinz/
e5-base-sts-en-de
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Dataset Train Validation Test

BRONCO 6,279 1,346 1,346
GGPONC2 59,515 12,770 3,000
CARDIO:DE 67,062 14,370 8,969

Table 1: Dataset splits used to train baseline NER tagger
and compare LLMs to baseline.

A detailed overview of the datasets and their medi-
cal entities can be found in the Appendix A Table
5.

Evaluation Data. We evaluate our approach us-
ing the BRONCO, GGPONC2, and CARDIO:DE
gold-standard datasets. While BRONCO and CAR-
DIO:DE consist of pseudonymized clinical doc-
uments, GGPONC?2 is a collection of annotated
guidelines, resulting in a larger corpus. As shown
in Table 5 in Appendix A, the annotated entity
types vary greatly across these datasets. Since the
CARDIO:DE annotations do not follow the IOB
schema, this test split cannot be evaluated on entity
type level but on strict spans only. The dataset splits
used for training the baseline model medBert.de
are detailed in Table 1, with the test split serving as
the evaluation set.

5 Experimentation

All experiments were executed on the same server
with the following specifications: NVIDIA RTX
A5000 with 24564MiB, Cuda version 11. The
source code to reproduce the experiments is avail-
able online?.

5.1 LLM Comparison

Before turning to the LLM comparison to baseline
token classifiers, Figure 3 shows the evaluation of
instruction-tuned LLMs on the BRONCO test set
to answer RQ1 and explore RQ2. All models per-
formed best on medication extraction and worst
on identifying treatments, with F1 ranging from
0.88 for medication to 0.14 for treatments. The
QLoRA instruction-tuning consistently improved
performance, especially for Meditron, while Mis-
tral LLMs outperformed other models across all
entity types. We also observed a drastic decline in
hallucinations for our instruction fine-tuned LLMs.
While the chat-based LLMs generated up to 156 en-
tities that could not be matched to the input text, the
instruction-tuned models produced only O to 3 hal-
lucinated entities on the BRONCO test sample (Ap-

2https://github.com/IAMspiegel/LLMGerMedIE
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Figure 3: NER results for the BRONCO test sample on entity type level for different versions of LLMs. Compared
is the publicly available chat version with instruction tuned (peft) models. Note that the Meditron 7B chat version is

not publicly available, thus the base version was used.

. Medication Diagnosis Treatment Micro Avg.
Level Model (Train Data) P R Fl P R Fl P R Fl Fl
medBert.de (BRONCO) 95 96 96 | 84 94 89| 86 94 .90 90
medBert.de (GGPONC2) 75 8 80| .63 84 72| 44 88 .59 .69
medBert.de (CARDIO:DE) 81 81 81| .0 .0 .0 0 .0 .0 27
Entity Type = GermanBERT (GERNERMED) 39 92 55| 0 .0 .0 .0 .0 .0 28
GermanMedBERT (GPTNERMED) | .51 .88 .64 | 44 62 51| 0 .0 .0 .55
Mistral 7B Instruct (8-shot) 86 82 84| .70 .64 .67 | 48 71 .57 .66
peft Mistral 7B 86 88 87| .67 77 71| .61 41 49 .69
medBert.de (BRONCO) 90 91 91 (.73 81 J7[.75 82 .79 .80
medBert.de (GGPONC2) 70 80 751 38 51 44| 33 64 43 48
medBert.de (CARDIO:DE) 81 81 81| .0 0 0 0 .0 .0 27
Token GermanBERT (GERNERMED) 37 92 521 .0 .0 .0 .0 .0 .0 .26
GermanMedBERT (GPTNERMED) | 48 85 .62 | .29 41 34| 0 .0 .0 .55
Mistral 7B Instruct (8-shot) 83 80 .81 | 43 39 41| .30 45 36 46
peft Mistral 7B 83 85 84| 45 52 49| 41 27 .33 Sl

Table 2: Results (precision, recall, F1) of BRONCO test sample. Comparison of best fine-tuned LLM, chat
Mistral-7B to the BRONCO baseline model and BERT based models trained on other datasets. The displayed
scores are calculated on entity type basis and strict span evaluation (token). The reported scores for medBert.de
(GGPONC?2) follow the mapping: Clinical_Drug — Medication, Diagnosis_or_Pathology — Diagnosis, Therapeutic
and Diagnostic — Treatment. Alternative mappings result in a lower performance.

pendix B.1 Table 6). LLMs tended to over-tag di-
agnoses, likely due to broader concept recognition
beyond ICD-10-GM. In contrast, they struggled
with identifying cancer-related treatments, show-
ing high precision but low recall. Overall, LLMs
excelled in drug extraction but underperformed in
recognizing OPS treatments. An additional anal-
ysis of medical abbreviations further confirmed a
performance drop for previously unseen diagnosis
and treatment phrases, highlighting the models lim-
itations in generalizing to less common or implic-
itly expressed entities. Since both Mistral versions
perform best in their category, we use these LLMs
in the following comparison to baseline NER mod-
els.
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5.2 LLMs Compared to Baseline

5.2.1 BRONCO

The results of the baseline SLMs and top-
performing LLLMs on the BRONCO test set to
answer RQ2 and RQ3 are shown in Table 2. As
expected, medBert.de fine-tuned on BRONCO
achieves the best overall F1 (0.9). Its performance
surpasses the baseline of Kittner et al., 2021
but remains below the top-performing model on
the BRONCO leaderboard®. Notably, GERN-
ERMED and GPTNERMED perform poorly,
over-generating medication entities with low
precision and failing to capture treatments.

Our fine-tuned peft Mistral 7B model achieves
the best F1 for medication and diagnosis second

3https: //www2.informatik.hu-berlin.de/~leser/
bronco/index.html
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to medBert.de (BRONCO). However, not signifi-
antly better than medBert.de (GGPONC?2), which
outperforms the LLMs in identifying treatments,
although its performance remains significantly be-
low the BRONCO-trained baseline as illustrated in
Appendix B.3. Interestingly, Mistral-7B Instruct
achieves slightly better results in extracting medi-
cations compared to most NER models, reinforcing
the strengths of LLM transfer learning over dataset-
specific fine-tuning.

5.2.2 GGPONC2

The NER results for the GGPONC?2 test sample
are presented in Table 3. Its annotation guidelines
differ from BRONCO, leading to variations in en-
tity types. The diagnosis class includes pathology
related entities, and previous analysis found that
mapping GGPONC?2s therapeutic class to BRON-
COs treatment class yields the highest extraction
scores. Since therapeutic entities dominate this
category, it serves as the test datasets equivalent
to the treatment entity type. As expected, med-
Bert.de (GGPONC?2) achieves the highest F1 (0.92)
across all entities, slightly surpassing the perfor-
mance of the BERT based NER model reported
by Borchert et al., 2022. While medBert.de (CAR-
DIO:DE) performed reasonably well on BRONCO
medications, it struggles on GGPONC?2 drugs (F1:
0.57). Both Mistral 7B Instruct and our instruction-
tuned peft variant outperform three reference token
classifiers across all entities, excelling in the drug
class but performing worst in therapeutic. A closer
look reveals that medBert.de (BRONCO) and both
Mistral LLMs exhibit higher precision than recall
for the diagnosis/pathology class, likely because
the token classifier was trained for diagnoses only,
while the LLMs were prompted for diagnoses but
not pathology or symptoms. Our fine-tuned peft
Mistral 7B LLM outperforms Mistral-7B Instruct
across all entities, with the largest gap in the di-
agnosis/pathology class. However, it marginally
surpasses medBert.de (BRONCO) only in the drug
category. While the F1 difference for diagnosis/-
pathology is notable, results for therapeutic are
comparable.

5.2.3 CARDIO:DE

As the CARDIO:DE annotations distinguish be-
tween active ingredients and drug entities but
BRONCO and GGPONC?2 do not, the entity classes
were combined into one single class. The results
in Table 4 show that the medBert.de model trained
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on CARDIO:DE achieves the highest F1 score,
with a notable gap between recall and precision.
Its performance also exceeds that of the BERT
transformer presented in the original CARDIO:DE
study by Richter-Pechanski et al., 2023. Other mod-
els exhibit comparable trends, while medBert.de
(BRONCO) and our peft Mistral 7B have recall
scores close to medBert.de (CARDIO:DE), their
precision is noticeably lower. GERNERMED and
GPTNERMED again show strikingly low preci-
sion, suggesting excessive entity tagging. The in-
struction fine-tuned Mistral 7B achieves the second-
best F1 score, outperforming medBert.de models
trained on BRONCO and GGPONC2. Notably,
Mistral 7B Instruct, with just eight few-shot ex-
amples, surpasses medBert.de (BRONCO) in F1,
making it the only model with higher precision
than recall. Its precision matches the best baseline
model, likely because it was not influenced by fine-
tuning on datasets where active ingredients were
tagged as drugs.

5.3 RAG Information Extraction

To further investigate RQ2 and to enhance the IE
performance of LLMs for diagnosis and treatment
entities, we tested a RAG approach, which provides
the LLM with additional context, including relevant
ICD-10-GM codes or OPS procedures. However,
our experiment did not result in an improvement
in NER scores on the BRONCO test sample. The
embedding model evaluation, shown in Figure 4,
reveals that diagnoses were better recognized, with
higher similarity scores between the retrieved code
categories and input sentences. In contrast, treat-
ment entities did not exhibit the same clear pattern.
Despite using optimized prompts, the F1 scores
for both diagnosis and treatment entities decreased
drastically, as shown in Figure 6 in Appendix B.2,
with treatment entities experiencing a more sub-
stantial decline due to insufficient context genera-
tion and limitations of the OPS knowledge source.
Several factors likely contributed to this decline in
performance. First, the OPS catalog proved subop-
timal for retrieval, often returning context with high
lexical similarity but low semantic relevance. Sec-
ond, the German embedding model may luck suffi-
cient domain coverage, reducing retrieval accuracy.
Third, the Mistral 7B chat model struggled to pro-
cess single-phrase inputs effectively, highlighting
limitations in contextual understanding compared
to larger models.



. Drug Diagnosis/Pathology Therapeutic Micro Avg.
Level Model (Train Data) P R FI P R F1 P R F1 F1
medBert.de (BRONCO) g7 70 74 | 84 .59 .69 .65 38 48 .62
medBert.de (GGPONC2) 91 94 93 | 91 94 92 91 93 .92 92
medBert.de (CARDIO:DE) S8 55 5710 .0 .0 .0 .0 .0 .19
Entity Type = GermanBERT (GERNERMED) 45 70 551 0 .0 .0 .0 .0 .0 12
GermanMedBERT (GPTNERMED) | .35 .69 47 | .39 46 42 .0 .0 .0 32
Mistral 7B Instruct (8-shot) 78 .62 70 | 71 34 46 520 37 43 48
peft Mistral 7B g7 73 75| .73 48 .58 65 33 44 .55
medBert.de (BRONCO) 73 .67 70 | .64 45 53 47 27 35 48
medBert.de (GGPONC2) .88 90 .89 | 90 .92 91 90 92 91 91
medBert.de (CARDIO:DE) 58 55 5710 .0 .0 .0 .0 .0 .19
Token GermanBERT (GERNERMED) 41 64 50| 0 .0 .0 .0 .0 .0 11
GermanMedBERT (GPTNERMED) | .34 .67 45 | 31 .37 34 .0 .0 .0 27
Mistral 7B Instruct (8-shot) 73 .58 .65 | .58 .28 37 42 30 .35 .40
peft Mistral 7B J1 .68 70 | 51 34 41 45 23 31 41

Table 3: Results (precision, recall, F1) of GGPONC?2 test sample. Comparison of best fine-tuned LLM, chat Mistral
7B to the baseline model and BERT based models trained on other datasets. The displayed scores are calculated on

entity type basis and strict span evaluation (token).

Model (Train Data) Precision Recall F1
medBert.de

- (BRONCO) 43 .89 .58
- (GGPONC2) .61 .83 .70
- (CARDIO:DE) .84 .93 .88
GermanBERT

- (GERNERMED) .20 .89 32
GermanMedBERT

- (GPTNERMED) 24 .85 37
Mistral 7B Instruct

(8-shot) .81 54 .64
peft Mistral 7B .59 .88 71

Table 4: Results of CARDIO:DE test sample. Com-
parison of best fine-tuned LLM, chat Mistral-7B to the
baseline models. The displayed scores are calculated on
token level.

5.4 Out-of-Distribution Analysis

To address RQ3 and assess generalizability, an ad-
ditional analysis of the datasets reveals that the
strong performance of medBert.de (GGPONC?2)
across all three evaluation datasets, including
BRONCO, can be attributed to a high proportion
of shared entities between the GGPONC?2 train-
ing and BRONCO test data. 58% of BRONCOs
test treatment entities and 51% of diagnoses ap-
pear in GGPONC?2, while the overlap with LLM
instruction data is remarkably lower (31% for diag-
noses, 28% for treatments). Figure 5 further illus-
trates how models perform on out-of-distribution
(OOD) entities. medBert.de (GGPONC?2) exhibits
a sharp performance drop in the OOD (GGPONC2)
dataset, in which all overlapping entities between
BRONCO and GGPONC2 were removed. This
highlights the models strong reliance training data.
Conversely, our instruction fine-tuned peft Mistral
7B maintains more stable performance across OOD
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Figure 4: Textual similarity between BRONCO test
data and vector databases. (A) Similarity distribution
between BRONCO test sentences and the ICD-10-GM
vector database (VDB), categorized by whether the sen-
tence contains a diagnosis entity. (B) Similarity distri-
bution between BRONCO test sentences and the OPS
VDB, categorized by whether the sentence includes a
treatment entity.

datasets, even surpassing medBert.de (GGPONC?2)
on OOD drugs and diagnoses. Additionally, Mis-
tral 7B Instruct achieves an F1 score for treatment
concepts comparable to medBert.de (GGPONC2).

These findings underscore the advantages of do-
main overlap in training data for token classifiers
while demonstrating LLMs greater adaptability to
unseen entities.

6 Discussion

The presented work was designed to test 7B LLMs
for German medical IE on unseen datasets and com-
pare their performance with the baseline SLMs.
We found that LLMs exhibit strong generalizability
on unseen data due to their extensive pre-training
on large corpora and vast parameter size. How-
ever, their limited domain-specific knowledge pre-
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Figure 5: F1 scores for entity type classification on different subsets of the BRONCO test dataset. Each model
is evaluated on the full test set (Test) and two OOD subsets: (1) OOD (GGPONC?2), where entities present in
the GGPONC?2 training data are removed, and (2) OOD (Instr), where entities overlapping with the instruction
fine-tuning dataset are excluded.

vents them from reaching the F1 scores above 0.90  thousand samples, underscoring the importance of
needed for reliable, production-level applications.  frameworks like vLLM for optimizing LLM per-
While QLoRA instruction tuning enables effec- formance and managing resource demands.

tive 7B LLM fine-tuning on a single GPU and has ~ Future Work. This paper shows that 7B LLMs
demonstrated strong IE performance, this study  lack the medical expertise needed for accurate di-
also identified drawbacks. The trained adapters  agnosis and treatment extraction. To address this,
can reduce generalizability and multitask ability, future work could explore larger LLLMs, such as
as noted by Van Veen et al., 2023, who observed  the Mixtral 8x7B, which has 47 billion parameters
worsened text summarization after QLoRA fine-  and outperforms 70B models while being manage-
tuning. Similarly, our findings show a considerable = able during inference. Although our RAG setup
drop in treatment extraction performance, likely  did not improve IE performance for several factors,
due to the instruction datasets lack of treatment ex- it remains a promising strategy for boosting LLMs
amples. Despite this, LLMs offer greater flexibility,  capabilities in extracting information (Vithanage
making them more adaptable to various tasks and et al., 2025; Bartels and Carus, 2025). Another po-
domains than SLMs. However, post-processing tential approach is integrating medical knowledge
may be more challenging. As a result, they can be  via knowledge graphs, as outlined by Pan et al.,
a viable option for extracting medical information ~ 2024.

from unstructured text when top-tier performance  Instead of solely adapting LL.Ms, future research
is not essential. could focus on disambiguating clinical text to en-
While SOTA commercial LLMs, such as GPT-4, hance model understanding, as demonstrated by
perform well on multilingual clinical tasks (Qiu  Agrawal et al., 2022.

et al., 2024), we observe that this is not the case

for smaller 7B models like Meditron. Despite ad- 7 Conclusion

ditional training in the medical domain on English

data, Meditron failed to reliably extract German  This work explored the ability of 7B LLMs for
medical terms. Domain-specific terminology and German medical IE across multiple datasets. Key
abbreviations may therefore pose a greater chal-  findings include: (1) Mistral 7B outperforms other
lenge for cross-lingual transfer in smaller LLMs. LLMs, including German trained models, in ex-
Computational Resources. LLMs incur higher  tracting medications, diagnoses and treatments. (2)
CPU and GPU costs compared to baseline SLMs, ~ Instruction tuning via QLoRA improves IE perfor-
but using the vLLM package (Kwon et al., 2023) ~ mance but may reduce treatment recognition due to
significantly reduces inference time, making it com- ~ imbalanced training data. (3) While LLMs do not
parable to that of baseline SLMs, despite requiring ~ Surpass SLMs on their domain, they achieve strong
around 24GB of VRAM. Without vLLM, infer- medication extraction results (F1: 0.87-0.71) and

ence times can stretch for hours with just a few ~ remain competitive in diagnosis and treatment ex-
traction. (4) When comparing LLMs to baseline
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SLMs on out-of-domain datasets, the instruction-
tuned peft Mistral 7B outperformed four of the
five baseline models. Additionally, the Mistral
LLMs surpassed the baseline models on out-of-
distribution data.

These findings highlight the ongoing challenges
in German medical IE and emphasize the need
for diverse, high-quality, language-specific datasets
for fine-tuning models, particularly in specialized
domains like medical NLP. While 7B LLMs are
less suited for tasks requiring precise information
extraction, they can still be valuable in situations
where training data is limited, and the primary ob-
jective is to gain a broader understanding of un-
structured text rather than achieving excellent ac-
curacy.

8 Limitations

The scarcity of publicly available gold-standard
medical datasets in Germany hinders both NER
model development and cross-dataset validation.
The evaluation datasets BRONCO, GGPONC?2,
and CARDIO:DE differ in size, origin, document
type, and annotation style, making general con-
clusions about cross-domain performance difficult.
BRONCO and GGPONC?2 stem from oncology,
while CARDIO:DE, from cardiology, lacks an-
notated diagnoses and treatments. Annotation
inconsistencies further impact performance, as
BRONCO follows structured classification catalogs
(ATC, ICD-10-GM, OPS), whereas GGPONC2
does not. Document-level differences also intro-
duce ambiguity, affecting entity classification. Ad-
ditionally, BRONCOs shuffled sentence structure
disrupts context, potentially impairing LLM per-
formance. While the three German datasets used
for evaluation in this study are publicly available
only upon request and are stored in CoNLL-style
or other structured annotation formats, we cannot
rule out the possibility that portions of them were
included in the pretraining corpora of the evaluated
LLMs. Given that most LLM training data sources
are undisclosed, this remains a general limitation
in LLM evaluation.
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A Dataset Descriptions

Instruction Data

GPTNERMED GERNERMED i2b2 2010 n2c2 2018
(Frei and Frank, 2023) (Frei et al., 2022) (Uzuner et al., 2011)  (Henry et al., 2020)
Textual Elements
Language GER GER EN EN
Segments 18,683 24,091 16,701 19,276
Tokens 76,347 109,011 133,799 516,723
Entities
Diagnosis 4,756 - - -
ADE - - - 867
Drug 7,889 6,633 - 14,617
Problem - - 6,327 -
Reason for Drug - - - 3,457
Treatment - - 4,368 -
Evaluation Data
BRONCO GGPONC2 CARDIO:DE

(Kittner et al., 2021) (Borchert et al., 2022) (Richter-Pechanski et al., 2023)

Document Type Discharge Guidelines Doctor Letters
Summaries

Textual Elements
Documents 200 30 500
Sentences 11,434 78,090
Tokens 89,942 1877,100 993,143
Entities
Activelng - - 7,580
Diagnosis 5,245 -
Diagnostic - 27,829
Diagnosis|Pathology - 81,380 -
Drug 2,013 19,478 2,093
Other Finding - 51,376
Therapeutic - 61,034
Treatment 2,013 -

Table 5: Overview of datasets and entities used for
instruction fine-tuning, training baseline models and
evaluation. ADE is short for Adverse Drug Events.
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B Additional Analysis

B.1 Hallucinations

Model Match  Fuzzy Match  Hallucination
peft Mistral 7B 1178 2 0
peft LLAMA?2 7B 613 6 0
peft Meditron 7B 1248 6 1
peft Leo LLAMA?2 7B 1120 5 3
Leo LLAMAZ 7B chat 846 16 36
Mistral 7B Instruct 1186 27 76
LLAMA?2 7B chat 596 43 151
Table 6: Count of entities generated by the LLMs when
prompted to extract diagnoses, medications and treat-
ments for the BRONCO test samples. An entity is cat-
egorized as a match if it is identical to a phrase in the
input. If no exact match is found but the entity has a low
Levenshtein distance to an input phrase, it is counted as
a fuzzy match. Entities that cannot be matched to any
input phrase are categorized as hallucinations
B.2 RAG Information Extraction
Class = DIAG Class = TREAT

peft Mistral 7B

Mistral 7B Instruct 0.67 1 0.57

RAG Mistral 7B Instruct 4 0.55 1 0.31

00 01 02 03 04 05 06 07 00 01 02 03 04 05 06
F1 (entity type) F1 (entity type)

Figure 6: Results on the test BRONCO dataset for dif-
ferent versions of the Mistral 7B LLM. The chat ver-
sion Mistral 7B Instruct and the fine-tuned peft Mistral
7B are compared to the retrieval-augmented generation
approach RAG Mistral 7B Instruct. The F1 score is
presented on entity type level.

46

07



B.3 Significance Tests
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Figure 7: Pairwise McNemar significance heatmaps for
entity-level F1 scores across all test datasets and en-
tities, as well as micro-average. Each cell shows the
F1-score difference between model i (row) and model j
(column). Colors indicate statistical significance based
on McNemar’s test (p < 0.05) based on span-level en-
tity comparisons using strict matching criteria. Green:
model i significantly better than j, Red: model j signifi-
cantly better than i, Gray: no significant difference.
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