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Abstract
Reliably detecting AI-generated text is crucial
but challenged by AI evolution and evasion
techniques. We introduce a set of linguistic fea-
tures designed to discriminate between human
and AI-generated text, and propose a hybrid
detection model combining features with Dis-
tilBERT embeddings at the input level. This hy-
brid approach is evaluated against feature-only
(XGBoost) and fine-tuned transformer (Distil-
BERT) methods. Furthermore, we contribute
a challenging evasive test set, generated using
an LLM unseen in the training data (Llama-
3-8B), to evaluate performance across LLM
domains and evasion techniques. While Dis-
tilBERT leads on the standard test set, our hy-
brid model demonstrates improved robustness
against evasion, maintaining high precision on
evasive texts. Hybrid feature-embedding mod-
els offer a promising approach towards building
more resilient AI text detectors.

1 Introduction

Modern large language models (LLMs) gener-
ate human-like text, creating risks of misuse in
academia, phishing, and disinformation, necessi-
tating reliable AI text detection. Common classifi-
cation methods include feature-based approaches,
leveraging quantifiable linguistic features like term
frequencies and syntactic patterns, and fine-tuned
transformers, which capture deep contextual nu-
ances. The rapid evolution of LLMs demands rig-
orous evaluation of detector robustness against out-
of-distribution LLMs and evasive text generation.

Addressing this, we introduce novel linguistic
features shown to improve the performance of
feature-only classifiers in this domain. We also
propose and evaluate a novel hybrid model con-
catenating our extensive collection of features with
DistilBERT (Sanh et al., 2020) embeddings at the
input level. The rationale is to combine the explicit
pattern recognition of features with the deep se-
mantic understanding of embeddings, potentially

yielding a detector that is both high-performing and
robust. We conduct a comparative analysis of our
hybrid model against multiple baselines, including
feature-only XGBoost (Chen and Guestrin, 2016)
variations and a fine-tuned DistilBERT classifier.
Evaluation focuses on performance against chal-
lenging texts generated by an LLM unseen during
training (Llama-3-8B; Grattafiori et al., 2024), in-
cluding outputs prompted to evade detection, to
assess practical robustness.

2 Related Work

Research in AI text detection encompasses var-
ious approaches. Feature-based methods utilize
linguistic cues, comparing strategies such as TF-
IDF versus detailed handcrafted feature sets with
classifiers like XGBoost (Schaaff et al., 2023; Shi-
jaku and Canhasi, 2023). Concurrently, fine-tuned
transformer models serve as powerful AI text de-
tectors (Wang et al., 2024a). Relevant alternative
techniques leverage AI model information differ-
ently, for instance through sentence-level analysis
using LLM log probabilities (Wang et al., 2023) or
via ensembles combining predictions from multiple
detectors (Abburi et al., 2023; Zhang et al., 2024).
A critical challenge across methods, however, is de-
tector robustness against evasion; some studies de-
velop adversarial generation techniques (Kumarage
et al., 2023), while others note the limitations of
current tools (Weber-Wulff et al., 2023). Our work
focuses on document-level detection, investigat-
ing novel features, proposing an input-level hybrid
feature-embedding model, and rigorously evaluat-
ing its robustness alongside established methods
on challenging, evasive texts.

3 Methodology

This section details the dataset, the AI text detec-
tion classifiers implemented, and the methodology
for evaluating robustness against evasive text.
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3.1 Dataset
We utilize the ai_text_detection_pile dataset
from Hugging Face (artem9k, 2023), a large-
scale collection of long-form human essays (from
sources like Reddit, Q&A sites) and AI-generated
texts generated by GPT models (GPT-2, GPT-3,
GPT-J, ChatGPT). To ensure class balance for train-
ing and evaluation, we created a working subset
of approximately 680,000 samples by sampling
human texts to match the AI text count. Each sam-
ple includes the text (up to 1024 characters) and a
binary ai_generated label.

3.2 Detection Approaches
We implement and compare three distinct detection
strategies: feature-based models, a fine-tuned trans-
former model, and a novel hybrid model combining
features and embeddings.

3.2.1 Feature-Based Detectors
We explored feature engineering using XGBoost
classifiers trained on different feature sets. XG-
Boost models for each of these three feature con-
figurations were independently optimized using
randomized search with 3-fold cross-validation.

Baseline Features: We first established a com-
prehensive baseline of handcrafted features by
replicating the work of Schaaff et al. (2023), ex-
cluding inapplicable dataset-specific features. This
baseline includes 32 linguistic and statistical fea-
tures, covering aspects like perplexity, semantics,
document statistics, and readability, as well as text
vector representations derived from TF-IDF (top
500 uni/bigrams) and Sentence-BERT (384-dim
embeddings + average cosine distance). In total,
this replicated baseline feature set comprises 917
features.

Extended Features: Our proposed contribu-
tion extends this baseline set by adding 8 new fea-
tures. We hypothesized that AI text often exhibits
an overly formal linguistic style that can feel dis-
tinct from typical human writing. To capture this
complexity, we introduced these features: average
dependent clauses, passive voice count, and aver-
age syntactic tree depth. Furthermore, observing
AI’s tendency to reuse specific words or phrases,
we targeted repetition with the following features:
n-gram entropy (uni, bi, and tri-grams), burstiness
(indicates word clustering), and count of list items.
A complete list of the extended features (which con-
sists of the baseline features and our 8 proposed
additions) is available in Appendix A, as well as

mathematical definitions for select proposed fea-
tures in Appendix B.

TF-IDF Model: As a much simpler baseline, we
separately trained an XGBoost model using only
the top 500 TF-IDF unigram and bigram features,
replicating the work of Shijaku and Canhasi (2023).

3.2.2 Transformer-Based Detector
Representing a pure transformer approach, we fine-
tuned DistilBERT (distilbert-base-uncased),
a 66M parameter transformer, for binary text clas-
sification following guidelines from Hugging Face
(2024). This approach leverages deep contextual
understanding learned during pre-training. Input
texts were lowercased and then tokenized to a fixed
length of 512 tokens. Hyperparameters were opti-
mized using Optuna (Akiba et al., 2019) over 10
trials based on validation performance, using mixed
precision for efficiency.

3.2.3 Hybrid Feature-Embedding Detector
To investigate the synergy between linguistic pat-
terns and contextual embeddings, we propose a hy-
brid model. This model combines our extended fea-
ture set, with sequence embeddings derived from
a pre-trained (not fine-tuned) DistilBERT model.
Specifically, we concatenate the feature vector with
the embedding vector obtained via first token pool-
ing (using the hidden state of the initial token as
the sequence representation) from DistilBERT for
each text sample. This combined vector feeds into
a Feed-Forward Neural Network (FFNN) classi-
fier, trained with the Adam optimizer (Kingma and
Ba, 2015) and binary cross-entropy loss, and tuned
using grid search.

Figure 1: Hybrid FFNN Model Architecture
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3.3 Evasive Text Generation

To assess practical robustness against out-of-
distribution LLM behaviours and intentional
evasion, we generated a challenging test set.
We prompted an unseen LLM (Llama-3-8B) to
rephrase 5,000 AI-generated texts from the origi-
nal test set using three prompt strategies: control
(rewrite in own style, a baseline for domain shift),
basic evasion (rewrite to avoid detection), and ad-
vanced evasion (rewrite considering specific AI
traits like repetition/formality to avoid detection)
(see full prompts in Appendix C). Each set of 5,000
rephrased texts was combined with 5,000 human
texts from the original test set, creating three bal-
anced evasive evaluation datasets. All developed
detectors were evaluated on these datasets to mea-
sure performance degradation and resilience.

4 Results

We evaluated the performance of the optimized
detection models: feature-based XGBoost (base-
line, extended, TF-IDF), fine-tuned DistilBERT,
and our proposed hybrid FFNN. Performance was
measured using accuracy, precision, recall, and F1-
score on the standard test set (a 10% split of the
dataset), and three evasive test sets generated using
an unseen LLM (Llama-3-8B). Full result tables
are available in Appendix D.

4.1 Performance on Standard Test Data

On the standard test set (Table 1), the fine-tuned
DistilBERT model achieved the highest perfor-
mance (98.3% F1). The baseline and extended
feature-based XGBoost models also performed
strongly; notably, the extended feature model
achieved a small but consistent improvement of
0.1 percentage points over the baseline across all
metrics (e.g., 96.6% vs. 96.5% F1). While this
margin is slight, it suggests a positive contribu-
tion from our proposed linguistic features. Our
hybrid FFNN model achieved a competitive 94.1%
F1 score, while the TF-IDF XGBoost model lagged
significantly (86.2% F1). This establishes strong
performance baselines and supports the utility of
feature engineering as a competitive detection strat-
egy.

4.2 Robustness Against Evasive Texts

Evaluating models on the evasive datasets revealed
varying degrees of robustness (Tables 2-4). While
most detectors experienced severe performance

degradation compared to the standard test set,
the hybrid FFNN model demonstrated notable re-
silience. It exhibited comparatively slight F1 score
degradation on the basic and advanced evasion texts
and even improved performance on the control
texts (Table 2). This observed variability across
models and conditions underscores the necessity
of evaluating detectors on diverse data, including
outputs from unseen LLMs and text designed to
evade detection, to assess practical resilience be-
yond potentially biased training distributions.

Regarding the feature-based detectors, the ex-
tended XGBoost consistently improved upon the
baseline XGBoost across all evasive sets by at least
1% on F1-scores, further supporting the utility of
the novel features against both domain shift and
evasion attempts. However, both feature-based ap-
proaches showed vulnerability to the more targeted
evasion strategies. Interestingly, the TF-IDF model
substantially outperformed the baseline and ex-
tended XGBoost models on the basic and advanced
evasion sets (e.g., 8.5% improvement on advanced
evasion). This implies the handcrafted features
were more susceptible to the prompt-based manip-
ulations, while the TF-IDF representation proved
more resilient, possibly due to the handcrafted set’s
complexity introducing noise or less robust pat-
terns, indicating that more careful feature selection
may be beneficial within such approaches.

Comparing the top-performing approaches on
the evasive sets highlights the strengths of the
hybrid FFNN relative to the fine-tuned Distil-
BERT. While DistilBERT mostly achieved higher
F1 scores, the hybrid model demonstrated greater
stability on evasive texts, evidenced by its signif-
icantly smaller F1 score degradation between the
standard and advanced evasion test sets (a drop
of only 4.9% vs. DistilBERT’s 8.5%). Further-
more, the hybrid model outperformed DistilBERT
on the control evasive set (F1: 94.6% vs 86.7%) and
achieved F1 scores that were highly comparable
on the basic and advanced evasion sets, 0.6-0.7%
lower than DistilBERT. Critically, the hybrid model
consistently maintained higher precision across all
three evasive datasets, ranging from a 0.8% to 1.3%
increase, indicating its positive classifications (AI)
are more reliable against challenging and out-of-
distribution text generation patterns.

4.3 Feature Importance Analysis
To interpret feature contributions, we applied
SHAP (Lundberg and Lee, 2017) analysis to the
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XGBoost extended feature model. Given its ex-
tensive feature space, it is significant that several
of our novel handcrafted features ranked within
the top 20 most impactful predictors globally (see
Figure 2 in Appendix). Notably, unigram entropy
ranked 3rd, burstiness ranked 11th, and average
dependent clauses ranked 16th, with SHAP indicat-
ing higher values generally correlated with human
predictions in this dataset. Their high importance
confirms the contribution of these novel features to
the detection model.

4.4 Impact of Evasion on Text Features

Analysis of mean values of features across la-
bels and evasive texts (selected features shown
in Table 5) reveals insights into model robust-
ness challenges. Inherent differences existed be-
tween the training AI (GPT-family) and the un-
seen Llama-3 model (e.g., Llama-3 showed lower
burstiness and passive_voice_count). Fur-
thermore, evasive prompts manipulated features, re-
ducing complexity (dep_clauses_avg) but some-
times yielded counter-intuitive results (e.g., re-
duced error_count, despite instructions to in-
crease them). Averages for some novel features
also appeared contradictory to model directionality
learned via SHAP (Section 4.3). This discrepancy
suggests that the model likely captures complex in-
teractions or distributional nuances beyond simple
averages. This combination of LLM differences
and manipulated feature patterns explains the vul-
nerability of the feature-only XGBoost models to
these challenging datasets.

5 Discussion

The performance degradation observed across all
models when tested against our challenging eva-
sive texts highlights the need for such datasets to
provide a realistic assessment of resilience against
evolving LLMs and adversarial tactics. The contri-
bution of our extended features was most apparent
on these challenging datasets, where they provided
a clear improvement over the XGBoost baseline.
Moreover, the hybrid model, which incorporates
these same features, also exhibited notable robust-
ness on these datasets. These findings demonstrate
that feature engineering remains a valuable compo-
nent in developing competitive and robust detection
systems.

Our results also reveal a trade-off between per-
formance on familiar data and robust generaliza-

tion. While our fine-tuned transformer achieved the
highest F1 scores on the standard test set, a finding
consistent with similar benchmarks (Wang et al.,
2024b), we argue its larger performance drop on
evasive texts is the more critical result, suggesting
potential sensitivity to distribution shift. In con-
trast, our novel hybrid FFNN model demonstrated
superior resilience, evidenced by its minimal F1
degradation and consistently high precision on chal-
lenging evasive sets generated by an unseen LLM.
This suggests combining linguistic features with
contextual embeddings offers more stable detection
against out-of-distribution patterns. The hybrid’s
high precision is particularly valuable for applica-
tions demanding low false positives. Although its
peak performance didn’t match DistilBERT here,
its robustness profile suggests strong potential, pos-
sibly enhanced further via feature selection, embed-
dings from more powerful models, and expanded
tuning.

However, even robust detectors like the hybrid
model have inherent limitations and cannot serve
as sole proof of misconduct (Weber-Wulff et al.,
2023). We propose that practical systems, espe-
cially in academia, should integrate detection with
verification techniques, for instance, analyzing a
document’s edit history via platform logs could
reveal non-human generation patterns (e.g., large
copy-pastes), though deliberate manual input might
circumvent simple checks. Additionally, verifying
reference validity could counteract LLM hallucina-
tion tendencies and outdated sources, providing a
strong signal independent of writing style. Combin-
ing robust detectors with such verification checks,
potentially programmatically, could create a more
comprehensive system.

6 Conclusion

This research addressed the critical need for ro-
bust AI text detection by introducing linguistic fea-
tures designed for this domain and proposing a
novel hybrid model combining features with trans-
former embeddings. Through comparative anal-
ysis against strong feature-based (XGBoost) and
fine-tuned transformer (DistilBERT) baselines, we
evaluated performance on standard datasets and
our challenging evasive datasets, which effectively
exposed detector vulnerabilities. Our findings con-
firm that while fine-tuned transformers excel on
in-distribution LLM data, the proposed hybrid
model offers a compelling alternative, demonstrat-
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ing greater robustness and stability against evasive
texts while maintaining high precision. This perfor-
mance is particularly advantageous for real-world
scenarios requiring generalization to new text gen-
eration patterns and the minimization of costly mis-
classifications. Our proposed novel features also
showed incremental benefits for feature-only mod-
els, particularly on evasive texts, confirming their
value as discriminators of human and AI-generated
text, and highlighting the necessity of robust evalu-
ation against diverse data. Our results demonstrate
that hybrid feature-embedding models serve as re-
silient and practically reliable AI text detection
systems in the face of rapidly evolving AI capabili-
ties.

7 Limitations

The generalizability of our findings is limited by
our choice of data and models. Our training data
consists of text from older AI models (GPT-2/3)
and specific human genres (online essays). Simi-
larly, our selection of DistilBERT for the fine-tuned
and hybrid models constrained their potential per-
formance. Employing larger, more contemporary
transformers (such as ModernBERT (Warner et al.,
2025)) was beyond our computational resources,
but would likely yield stronger results and fur-
ther widen the performance gap to non-transformer
methods. Future work should incorporate more
powerful models alongside datasets that are diverse
and representative of the current AI landscape.

Furthermore, our experimental design limits the
practical applicability of our findings. While this
study focused on document-level detection, future
work could extend our approach to incorporate
sentence-level techniques for finer-grained analysis
of potentially mixed human-AI texts, a common
real-world scenario. Additionally, our use of a bal-
anced dataset, while ensuring a fair comparison,
does not reflect skewed distributions often found
in practice. The relatively simple LLM rewriting
prompts used for evasion also call for future work;
more sophisticated evasive generation is needed for
a thorough robustness assessment.

Finally, the proposed hybrid model has limita-
tions regarding architecture and efficiency. The
model has considerable inference overhead from
dual feature extraction and embedding generation
per input, contrasted with the potentially faster stan-
dalone fine-tuned model. Fast inference is partic-
ularly important for resource-constrained or real-

time scenarios. Moreover, the hybrid’s specific
FFNN architecture, chosen feature set, and trans-
former embedding source represent just one pos-
sible implementation; exploration of alternative
configurations may yield improved results.

8 Ethical Considerations

Our work aims to contribute positively to the chal-
lenge of identifying AI-generated text, with appli-
cations in supporting academic integrity and com-
bating misinformation. However, we acknowledge
the potential for misuse and the inherent risks of AI
detection technology. As shown in our robustness
evaluation, no detector is perfect, and performance
can worsen on out-of-distribution or evasive text.
Therefore, we argue that these tools should not
be used as the sole basis for high-stakes decisions
(e.g., determining academic misconduct). There
is a significant risk of false positives, which could
have serious negative consequences for individuals.
We advocate for their use as an assistive tool for
human-led evaluation, as discussed in Section 5.
Finally, while the analysis of model weaknesses
is necessary for improving detectors, we also rec-
ognize it could be used by adversaries to develop
more effective evasion techniques.

9 Reproducibility

This study used the publicly available ai_text_
detection_pile dataset (artem9k, 2023), which
is compiled from various public online sources. To
further support the reproducibility of our findings
and to facilitate future research, all code and data
created for this study are publicly available in a
GitHub repository.1 This includes the source code
for all stages of our research, including feature
extraction, model training, and evaluation, as well
as the generated evasive text datasets.

The experiments were computationally intensive
and conducted on high-performance computing
(HPC) resources. Feature extraction and XGBoost
model training were performed on multi-core CPUs
(up to 64 cores), with system RAM requirements
approaching 1000 GB for loading pre-computed
embeddings. The fine-tuning of DistilBERT and
the training of our hybrid FFNN model utilized
NVIDIA A100 GPUs (40-80 GB VRAM).

1https://github.com/kakn/ai-text-detection
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A Extended Collection of Features
Group Feature

Sentiment Polarity
Subjectivity

Semantics

Stop Word Count
Special Character Count
Punctuation Count
Quotation Count
Uppercase Words Relative
Personal Pronoun Count
Personal Pronoun Relative
POS Per Sentence Mean
Discourse Marker Count

Structure

Character Count
Word Count
Sentence Count
Paragraph Count
Words Per Sentence Mean
Words Per Sentence Std
Words Per Paragraph Mean
Words Per Paragraph Std
Sentences Per Paragraph Mean
Sentences Per Paragraph Std

Lexicon

Unique Word Count
Unique Words Per Sentence Mean
Unique Words Per Sentence Std
Unique Words Relative

Readability Flesch Reading Ease
Flesch Kincaid Grade

Complexity*
Passive Voice Count
Syntactic Tree Depth Per Sentence Mean
Dependent Clauses Per Sentence Mean

Repetition*

Burstiness
Unigram Entropy
Bigram Entropy
Trigram Entropy
List Item Count

Errors Error Count
Multi Blank Count

Text Vectors
500-dim TF-IDF Vector (Uni/Bigram)
Sentence-BERT Vector
Average Sentence-BERT Distance

LLM-based
Max Perplexity
Mean Perplexity
Zero-Shot LLM Prediction

*Groups containing our proposed features

B Formulations of Select Features

This section provides mathematical details for pro-
posed features whose implementation is not self-
evident from their names:

• Average Syntactic Tree Depth: The average depth of
syntactic parse trees across all sentences in a text.

ASTD =
1

N

N∑

i=1

di

Where N is the number of sentences and di is the depth
of the syntactic tree for the i-th sentence.

• N-gram Entropy: Measures the entropy of n-gram dis-
tributions, with higher entropy indicating more variety.

H(X) = −
∑

x∈X

p(x) log p(x)

Where X is the set of n-grams and p(x) is the probabil-
ity of n-gram x, calculated from its frequency.

• Burstiness: Measures the variability in word frequen-
cies, with higher values indicating more word clustering.

B =
σw

µw

Where σw is the standard deviation and µw is the mean
of word frequencies.

C Evasive Text Generation Prompts

To generate the evasive text datasets, we prompted
Llama-3-8B (Grattafiori et al., 2024) to rewrite AI-
generated texts using the following instructions.
An instruction to "Respond with only the rewritten
text." followed each prompt request:

• Control Prompt (AI-rephrased): "Rewrite the follow-
ing text in your own style and tone."

• Basic Evasion Prompt: "Rewrite the following text so
it won’t be detected by AI detection tools."

• Advanced Evasion Prompt: "Considering typical AI
text traits like repetitive phrasing, overly formal lan-
guage, and minimal errors, rewrite the following text so
it won’t be detected by AI detection tools."

D Classification Results

Model Accuracy Precision Recall F1
DistilBERT (Fine-tuned) 98.3% 97.0% 99.7% 98.3%
FFNN (Hybrid) 94.1% 92.8% 95.4% 94.1%
XGBoost (Baseline) 96.4% 95.6% 97.3% 96.5%
XGBoost (Extended) 96.5% 95.7% 97.4% 96.6%
XGBoost (TF-IDF) 85.7% 83.0% 89.7% 86.2%

Table 1: Performance metrics on 34,000 AI + 34,000 human texts

Model Accuracy Precision Recall F1
DistilBERT (Fine-tuned) 87.8% 95.9% 79.1% 86.7%
FFNN (Hybrid) 92.1% 97.2% 92.1% 94.6%
XGBoost (Baseline) 71.5% 63.9% 98.8% 77.6%
XGBoost (Extended) 73.2% 56.4% 98.7% 78.7%
XGBoost (TF-IDF) 72.3% 77.2% 63.2% 69.5%

Table 2: Performance metrics on 5000 AI-rephrased + 5000 human texts

Model Accuracy Precision Recall F1
DistilBERT (Fine-tuned) 91.5% 96.2% 86.4% 91.0%
FFNN (Hybrid) 86.5% 97.0% 84.5% 90.3%
XGBoost (Baseline) 68.1% 61.4% 97.6% 75.4%
XGBoost (Extended) 69.8% 62.7% 97.8% 76.4%
XGBoost (TF-IDF) 81.4% 81.3% 81.5% 81.4%

Table 3: Performance metrics on 5000 basic evasive AI + 5000 human texts

Model Accuracy Precision Recall F1
DistilBERT (Fine-tuned) 90.4% 96.1% 84.2% 89.8%
FFNN (Hybrid) 85.0% 96.9% 82.6% 89.2%
XGBoost (Baseline) 57.7% 54.2% 98.5% 70.0%
XGBoost (Extended) 60.3% 55.8% 98.5% 71.3%
XGBoost (TF-IDF) 80.0% 80.8% 78.8% 79.8%

Table 4: Performance metrics on 5000 advanced evasive AI + 5000 human texts
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E SHAP Visualization

Figure 2: SHAP summary plot for the extended feature model

F Feature Means Across Labels

Feature Human AI Control Basic Advanced

quotation_count 1.85 6.85 2.08 2.71 2.70
list_item_count 0.22 0.38 0.41 0.57 0.53
passive_voice_count 1.47 2.41 1.37 1.54 1.47
words_per_par_std 31.34 21.41 10.29 12.00 11.46
stop_word_count 128.72 184.00 104.24 102.23 99.17
discourse_count 22.70 32.30 20.63 18.85 19.27
dep_clauses_avg 1.17 1.65 1.53 1.34 1.33
error_count 8.40 6.01 1.93 2.28 2.45
burstiness 3.57 4.67 2.90 3.00 2.93
uniq_words_per_sent 17.08 21.87 21.01 20.44 20.45
syntactic_depth_avg 5.53 6.95 6.89 6.93 6.86
flesch_reading_ease 73.57 62.77 61.22 49.20 50.17
unigram_entropy 6.52 6.40 6.38 6.20 6.31

Table 5: Mean values of select features for human and AI texts (340k texts each)
and various evasive texts (5k texts each, only AI label).
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