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Abstract

Although many benchmarks have been re-
cently proposed to test the compositional abil-
ities of vision and language models, there has
been little systematic review or comparison be-
tween them. Our study classifies such datasets,
their benefits, and shortcomings. Addition-
ally, we expand the VALSE benchmark with
two large datasets of the active/passive and di-
transitive/dative constructions, on which CLIP,
Flava, and LiT were tested. We show models
achieve roughly random-chance performance
in differentiating captions from foils. We pro-
vide evidence suggesting that the linguistic con-
structions or the order of thematic arguments
in captions or foils do not change the models’
performance. However, their grammaticality,
simplicity, and origin dataset seem to do so.

1 Introduction

Compositionality is constructing the meaning
of a structure by its elements and their combina-
tion (Partee, 2004). General compositional abilities
are important for models to generalize well on new
tasks or data, especially in retrieval, text-to-image
generation (Ma et al., 2023), and general artificial
intelligence (Xu et al. 2022).

This definition of compositionality presupposes
that models have robust representations of basic
linguistic phenomena, enabling them to decode
their combinations. However, Vision and Language
Models (VLMs) seem to lack such robustness, as
they struggle with syntax (Nikolaus et al., 2022),
store less information about grammar than lan-
guage models (Milewski et al., 2022), and poorly
identify the correct word order of sentences (Yuk-
sekgonul et al., 2023). They also struggle to iden-
tify primitive concepts, such as color or shape (Yun
et al., 2023), attributes of objects, and the spatial
relationships between them (Clark and Jaini, 2023;
Lewis et al., 2023). Such results generated doubts
not only about their compositional abilities (Doveh

et al., 2023a; Sinha et al., 2021; Ettinger, 2020),
but the possibility of developing them (Trager et al.,
2024). However, other studies suggest models en-
code separately minimally different captions (Di-
wan et al., 2022), and that entity or relationship
recognition is done by special attention heads, hint-
ing at the presence of compositional abilities (Li
et al., 2020).

Amid such debates, several image-to-text bench-
marks testing compositional abilities of VLMs have
been made available (Parcalabescu et al., 2022;
Thrush et al., 2022; Yuksekgonul et al., 2023; Ma
et al., 2023; Hsieh et al., 2023; Burapacheep et al.,
2024; Nikolaus et al., 2022). They evaluate models
on whether they can differentiate a foil — a cap-
tion minimally modified to no longer match the
image — from the correct original caption, and,
sometimes, a hard positive — a minimally modi-
fied caption that still correctly describes the image
(Kamath et al., 2024). This assumes that composi-
tional abilities help models differentiate sentences
only similar in form (i.e., using the same words)
by their meanings. These benchmarks (i) have
diverse stimuli; (ii) show models score around ran-
dom chance, despite their good performance in
more traditional downstream vision-and-language
tasks (Parcalabescu et al., 2022; Thrush et al., 2022,
among others); and (iii) investigate the interaction
between model size, training data, and simplicity
of the captions and models’ performance.

Despite the strengths mentioned above, previ-
ous benchmarks (i) have not been reviewed on the
alignment of their definitions of compositionality,
making it unclear if they test basic linguistic phe-
nomena, or combinations thereof; and (ii) have not
tested if grammaticality of captions or the order of
their thematic arguments interact with models’ per-
formance, despite prior evidence of models lever-
aging grammatical cues for improved performance
(Hsieh et al., 2023), and the debate about their
(in)sensitivity to word order (Sinha et al., 2021;
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Pham et al., 2021; Ettinger, 2020; Yuksekgonul
et al., 2023).

To bridge these gaps, we review previous
compositional benchmarks and extend the VALSE
benchmark (Parcalabescu et al., 2022) with the
active/passive and the dative/ditransitive construc-
tions. In contrast to the BLA benchmark (Chen
et al., 2023), our active/passive dataset is larger,
and we introduce a new ditransitive/dative dataset.
Both datasets also contain simpler and complex
versions of the same captions and foils. Besides
these datasets, we analyzed how various factors,
such as the linguistic structure, argument order,
origin dataset, and grammaticality of sentences,
interact with models’ choices. Thus, the research
question of this paper is the following:

Does linguistic structure, argument order, or
origin dataset influence VLMs’ choice of the
correct caption?

Our main contributions and results are:

1. A categorization of VLMs benchmarks test-
ing (pre)compositional abilities, their results,
trends, and shortcomings.

2. Two datasets summing up to 9145 pairs of
captions-foils.

3. Evidence showing that the linguistic structure
and argument order do not influence models’
results. Grammaticality, complexity, and nois-
iness of the origin dataset seem to do so, how-
ever.

Section 2 delves into previous literature on com-
positional abilities, by reviewing benchmarks and
their limitations. Section 3 outlines the evaluation
procedure, covering the selection of linguistic con-
structions and models, dataset construction, and
statistical tests. Following this, Section 4 presents
the results, which are then discussed in Section 5.
The paper concludes with Section 6, with limita-
tions addressed in Section 7.

2 Background

2.1 (Pre)Compositional Benchmarks

Current Benchmarks: Text-to-image bench-
marks testing compositionality use compositional
aspects (compositional benchmarks) or representa-
tions of linguistics phenomena required for them
(precompositional benchmarks): VALSE (Par-
calabescu et al., 2022), Winoground (Thrush
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et al., 2022), ARO (Yuksekgonul et al., 2023),
CREPE (Ma et al., 2023), SugarCrepe (Hsieh et al.,
2023), Colorswap (Burapacheep et al., 2024), Niko-
laus et al. (2022), Kamath et al. (2024), VL-
CheckList (Zhao et al., 2023), and BLA (Chen
et al., 2023). We will now describe several aspects
by which these benchmarks can be categorized.

Minimally Modfied Captions: Foils or hard pos-
itives can be created by (i) swapping words, e.g.
going from ‘a white chair and black blackboard’
to ‘a black chair and white blackboard’ by chang-
ing attributes of objects in ColorSwap; (ii) replac-
ing words with ones from other word classes; (iii)
adding elements to the original captions, i.e. nega-
tion (see SugarCrepe); (iv) by mixing and combin-
ing multiple strategies systematically, e.g. using
both swap and replace, such as VALSE. Their ef-
fect on whether they do or do not match the im-
age depends on if the benchmark is intended to
contain only foils, hard positives, or both. The
column ‘Minimal Differences’ from Table 1 offers
a complete overview of strategies for creating these
captions.

Targeted phenomena: The benchmarks target
visual or linguistic phenomena, where the latter are
generally textual aspects reflected visually, while
the former are more image-dependent, i.e., sym-
bolic images of captions (Winoground), or re-
lationships traced back to the image (CREPE).
Concerning their coverage, linguistic phenomena
can be a) specific, such as existence, plurality
(VALSE), or negation (CREPE); or b) general, such
as verbs, adverbs, or prepositions, named ‘relations’
in Winoground and ‘attributes’ in ColorSwap. See
columns ‘“Type Properties’ and ‘Phenomena Cov-
ered’ of Table 1 for an inventory of them.

Compositional property tested: The bench-
marks can test (i) a prerequisite of compositional
abilities, such as identifying the correct word order
(Winoground); (ii) a compositional ability, such as
systematicity; or (iii) an effect of compositional-
ity, such as differentiating between two minimally
different sentences. Note that some benchmarks
might test several such aspects, see column ‘Com-
positionality’ for a full breakdown of the bench-
marks’ tests.

Fine-tuning: Models’ performance can be neg-
atively influenced by their training data, such as
noisy, partial, or simplistic captions (Yuksekgonul
et al., 2023; Doveh et al., 2023a); their training



method, i.e. textual alignment, (Ossowski et al.,
2024; Doveh et al., 2023a); or their textual en-
coder (Yuksekgonul et al., 2023; Li et al., 2023;
Kamath et al., 2023; Clark and Jaini, 2023). Given
compositional benchmarks have been systemati-
cally and carefully modified, they have been used
for fine-tuning models, resulting in greatly im-
proved performance, i.e. ARO, ColorSwap, or
BLA (Doveh et al., 2023a). However, artifacts
can influence such results, as models show smaller
improvements — under 10%— on carefully con-
trolled benchmarks such as SugarCrepe. See the
column ‘Tests’ for an overview of benchmarks used
previously for fine-tuning.

2.2 Previous results of the benchmarks

General results: Generally, results on VALSE,
Winoground, SugarCrepe, ColorSwap, VL-
CheckList, BLA, and ARO suggest poor
compositional abilities.  Specifically, models
perform around or below the random chance
threshold of 50%, with some exceptions, a good
example being Winogrund, where model scores on
text-to-image matching are as much as 70% lower
than those of humans. Even though fine-tuning on
foils can improve models’ scores up until 70%,
they still drop by 20% when confronted with
another type of nominally different captions, the
hard positives in Kamath et al. (2024).

Complexity of the caption, training datasets &
model size: Models generally perform worse on
longer, more complex or previously unseen cap-
tions (Winoground, CREPE). No interaction was
found between the training dataset (Hsieh et al.,
2023; Ma et al., 2023; Nikolaus et al., 2022) or the
model size (Ma et al., 2023) and models’ perfor-
mance.

2.2.1 Shortcomings of evaluation benchmarks

Size:  Yuksekgonul et al. (2023) argue that bench-
marks that are composed of around 400 data points
may not render significant statistical results. Many
benchmarks, such as Winground, Colorswap, and
each linguistic category from VALSE are not much
bigger, with no more than 1000 data points.

Uncontrolled Artifacts: Grammaticality or plau-
sibility artifacts (Hsieh et al., 2023) are not al-
ways controlled for, such as in ARO or CREPE,
which models could exploit if fine-tuned on them,
see Hsieh et al. (2023).
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Inconsistent Definitions: Definitions of linguis-
tic, visual properties, and minimal swapped units
vary across studies. A phenomenon like ‘prag-
matics’ is labeled as linguistic in Winoground and
as visual in ARO. The minimal sentence elements
swapped can be a singular visual concept (i.e. atom
Ma et al., 2023), or a part of speech (Thrush et al.,
2022). This can lead to a difficult comparison of
results across studies.

Abilities tested: Current compositionality tests
evaluate more effects than aspects of compositional
abilities, such as systematicity (CREPE). This can
lead to minimalization of the aspects tested and
over/underestimation of models’ abilities.

Targeted Phenomena: Visual and linguistic phe-
nomena are arbitrarily chosen. For example, Parcal-
abescu et al. (2022) chose the linguistic phenomena
of their benchmark based on their pervasiveness,
but provided no empirical evidence to support this
claim. This can lead to an over/underestimation
of models’ abilities, as the chosen phenomena can
prove less prevalent than assumed.

3 Methodology

3.1 Datasets

VALSE: We extended VALSE due to its focus on
linguistic constructions, control for unimodal col-
lapse (Parcalabescu et al., 2022), grammaticality,
and plausibility of actant swapping.

Actant Swap Category: We chose the actant
swap category, which in Parcalabescu et al. (2022)
was obtained by generating image captions from
the SWiG dataset, and by swapping their thematic
arguments to create foils. For illustration, consid-
ering the caption in (la): its corresponding foil,
shown in (2a), is obtained by swapping the subject
and object, thus by actant swapping. Swapping
might be a more difficult test than replacing/adding
words (see Hsieh et al., 2023), as small syntactical
changes might go unnoticed in models with less
syntactic information (Milewski et al., 2022).

Added constructions: We extended the actant
swap category by firstly creating passive and
ditransitive versions of active captions, thereby
introducing the active/passive construction,
e.g. (la) and (1b), and the dative/ditransitive
construction, e.g. (Ic) and (1d). Afterwards, we
generate corresponding foils for them, illustrated
with examples in (2), which were generated



Benct k Compositi Minimal Differ- | Type Properties Phenomena Cov- | Size Tests
lity ences ered
VALSE  (Parcal- Effect (Differentia- Mixed (foils) Linguistic Existence, Plural- 8782 No
abescu et al., 2022) tion) ity, Counting, Spa-
tial Relations, Ac-
tions, Coreference
Winoground (Yuk- Prerequisite (Word Swap (foils) Mixed Object (1), Relation 897 No
sekgonul et al., order); Effect (Dif- (1), Symbolic (v),
2023) ferentiation) Pragmatics (v), Se-
ries (V)
ColorSwap  (Bu- | Effect (Differentia- | Swap (foils) Linguistic Color Attributes 1000 Yes
rapacheep et al., tion)
2024)
CREPE (Maet al., | Ability (Sys- | Mixed (foils/hard | Linguistic Negatives, Atomic 100200 No
2023) tematicity, negatives) Swaps
Productivity);
Effect (Differentia-
tion)
SugarCrepe (Hsieh Effect (Differentia- | Mixed (foils/hard | Linguistic Objects, Attributes, | 7512 Yes
etal., 2023) tion) negatives) Relations
ARO (Yuksek- | Prerequisite (Word Mixed (foils) Linguistic Relations, At- | 52685 Yes
gonul et al., 2023) order); Effect (Dif- tributes
ferentiation)
VL- Effect (Differentia- | Replace (foils) Linguistic Object, Attribute, | 410000 No
CheckList (Zhao tion) Verb Replacements
etal., 2023)
BLA (Chen et al., Effect (Differentia- Swap (foils) Linguistic Actants, Predicates 1939 Yes
2023) tion) and Clauses Swaps
Kamath et al. Effect (Differentia- Mixed (hard posi- Linguistic Attributes, Rela- 55191 Yes
(2024) tion) tives) tions and Word
Order

Table 1: Overview of (Pre)Compositional Benchmarks. Compositionality: (pre)compositional aspects tested, i.e. prerequisite,
ability or effect, with phenomena specified in parenthesis; Minimal differences: foils/hard positives formed by mixed methods
(‘add’, ‘swap’, ‘replace’), or singular methods (‘add’/‘swap’/‘replace’); Type properties: the type of properties measured,
i.e. linguistic or mixed (linguistic and visual); Phenomena Covered: the specific phenomena covered, with types specified in
parenthesis for mixed properties (visual, v; linguistic, 1); Tests: fine-tuned models on the datasets presented in the original papers.

by swapping nouns in (1). We chose these
two constructions because their variants allow
isolating the effect of the construction itself from
the order of thematic arguments. For example,
when compared, (2a) and (1b) still have thematic
arguments in similar positions in the sentence,
having only the construction as the only difference
between the foil and the caption. Depending if a
sentence is a foil or caption it will be referred to
as active caption (1a) or foil (2a), dative caption
(1¢) or foil (2¢), and so on. See Appendix A for
example images for the captions.

1. Captions

a) A player hits a ball.
b) A ball is hit by a player.
¢) A woman gives a book to the girl.

d) A woman gives the girl a book.

2. Foils

a) A ball hits a player.

b) A player is hit by a ball.

¢) A woman gives the girl to a book.
d) A woman gives a book the girl.
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Dataset construction: We obtained each type
of construction and its corresponding foils, by
adapting the code of Raam (2022) to use spaCy
en_core_web_trf parsers, chosen for its higher
accuracy in part-of-speech (POS) tagging. Passive
captions were obtained by changing the active verb
inflections of sentences that had a subject and an
object, while dative sentences were created by al-
ternating sentences that had a subject, object, and
beneficiary. Foils were obtained by swapping the
object and subject in active/passive sentences, or
the beneficiary and the object in ditransitive/dative
ones. For each construction, only sentences that
could have an alternation and an existing image
were selected. Thus, each image has 2 captions and
2 foils, regardless of the linguistic construction.

We parsed (i) 1 million sentences from Con-
ceptual Captions (CC, Sharma et al., 2018) and
the actant swap dataset from VALSE for the ac-
tive/passive construction; (ii) 2 million CC sen-
tences for the ditransitive construction, double the
amount of active sentences parsed given the rar-
ity of the construction. All the code and datasets
obtained will be made available upon request, simi-
larly to Koplenig et al. (2017).

Simplified Datasets and Grammaticality: Each
obtained dataset was further simplified to test po-



tential artifacts of sentence length, by re-parsing
all sentences to keep only the head of noun phrases
for the thematic arguments involved in the swap.
For example, we omitted extra descriptions of ob-
jects or datives containing embedded sentences (i.e.
from ‘the girl whom I met yesterday’ to ‘the girl’).
To test the efficiency of our method of simplifi-
cation, we randomly sampled 100 simplified ac-
tive/passive sentences — 400 captions and foils —
and observed that 12% of them were not completely
simplified. See Table 2 for a complete breakdown
of the numbers of each dataset.

To also statistically test if models exploit the
grammaticality of sentences for their answers, we
used GRUEN (Zhu and Bhat, 2020) to obtain a
grammaticality score for all our sentences. Un-
like Parcalabescu et al. (2022), we do not select
sentences with a certain grammaticality threshold,
to observe overall if more ungrammaticality has a
bigger effect on models’ choices.

Dataset SWiG CC Total
Active/Passive 683 5450 | 6133
Ditransitive 0 3012 | 3012
Simplified Datasets
Active/Passive 683 4737 | 5420
Ditransitive 0 2998 | 2998

Table 2: Datasets. First table: captions after the first round
of parsing for both types of constructions; Second table: re-
maining simplified data points. Note the SWiG dataset only
contained 7 ditransitive sentences, which were excluded, given
they were not sufficient for the statistical analysis.

3.2 Models

For evaluation, we chose three contrastive-
learning models, namely CLIP-ViT 32, Flava, and
LiT-ViT B16B (Zhai et al., 2022), which have a
stronger alignment between their textual and image
embeddings, given their training to align the two
modalities.

CLIP-ViT 32: CLIP is a dual-stream model
with a vision (Dosovitskiy et al., 2021) and
text (Vaswani et al., 2023) transformer as back-
bones, trained on WIT, a 400 million image-text
pairs dataset scraped from multiple online sources.
We chose CLIP given it has the best results on the
actant swap category from VALSE and we wanted
to investigate if this generalizes on our dataset,
where actant swapping is one of the alternations
made.

Flava: Flava is a dual-stream model with the
same ViT image encoder and a ViT-b/16 textual

encoder. It was trained on PMD, a public dataset
of 70 million pairs containing, among others, CC
sentences. Flava is also trained to perform well in
unimodal language tasks, scoring 20% more than
CLIP (Singh et al., 2022). Thus, Flava was selected
for its unimodal performance, and for improved
performance in multimodal (Singh et al., 2022),
and even compositional tasks, such as ColorSwap,
when compared to CLIP.

LiT-ViT B16B: LiT uses a ViT image encoder
and a BERT textual encoder, using contrast-tuning
during training. Previous studies argued for the
importance of the textual modality in VLMs (Wu
et al., 2023). Instead of fine-tuning both image
and text encoders, LiT only fine-tunes the textual
encoder, obtaining better zero-shot image classifi-
cation performance than CLIP (Zhai et al., 2022).
LiT is trained on a dataset containing 4 billion
image-text pairs, some originating from CC.

3.3 Statistical tests

Two Linear Mixed Models (Imer, Bates et al.,
2015) were conducted in RStudio (RStudio Team,
2020)".

The First Lmer We tested if the following fac-
tors had any significant effects on models’ choices:
(i) the higher grammaticality of either the caption
or foil; (ii) the simplification of the caption or foil;
(ii1) the linguistic construction, i.e. passive or di-
transitive, as opposed to the active; (iv) the origin
dataset; (v) the model; (vi) and model size. Note
that we ran two tests with respect to the linguis-
tic constructions (active vs. passive or active vs.
ditransitive), for all models directly, and for each
model separately.

The second Imer We tested if captions or foils
are chosen more by models if the order of thematic
arguments in the compared sentences is different
(active caption vs. active foil) or similar (passive
caption vs. active foil). Grammaticality, simplifi-
cation, the origin dataset, model, and model sizes
were also investigated alongside word order. Con-
trasts and random effects. All tests had random
effects for images, and binary or ternary orthogo-
nal contrasts for all factors, corresponding to their
levels. Note that models were introduced as fixed
factors, due to the small sample of VLLMs tested.

'For a review of linear mixed models see Gatecki and
Burzykowski (2012).
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4 Results

Accuracy ratios For overall visualization, Ta-
ble 3 presents the accuracy ratios of models for
SWiG, and Table 4 presents the accuracy ratio for
models, tested on both constructions from CC.

First Imer Our results did not show any signifi-
cant effect of the linguistic construction. Regard-
less of the model, the chances of choosing captions
go down by almost half if foils are equally gram-
matical to captions, and slightly down if foils are
more grammatical than captions. The same gram-
maticality value for captions and foils, and bigger
foil grammaticality have a lower effect on ditransi-
tive sentences, refer to Figure 1 for an illustration.
The chance of choosing a caption is slightly in-
creased by simplified sentences, and by their origin
from SWiG, a cleaner dataset. For FLAVA or LiT,
foils become more preferred, as also seen in the
ratios. Models Subsamples. For all models cap-
tions were chosen more when comparing simplified
sentences.

Second lmer No significant effect of word or-
der was found. The trends of the first Imer test in
grammaticality, models, and simplification are sim-
ilar. Equally grammatical foils and captions have
a smaller effect on sentences with different argu-
ment structures, while higher foil grammaticality
has a bigger effect on them. For an illustration, see
Figure 2. See Appendix C for detailed significance
values.

Normal Captions
Comparison | CLIP | Flava LiT
1 69.38 | 46.25 | 64.01
2 45.17 | 40.11 | 43.12
3 64.32 | 56.51 | 62.42
4 45.96 | 57.64 | 49.08
5 5248 | 43.77 | 45.17

Simplified Captions
Comparison | CLIP | Flava LiT
1 69.38 | 46.25 | 64.01
2 45.09 | 40.17 | 43.04
3 64.27 | 56.74 | 62.37
4 45.96 | 57.80 | 49.08
5 5241 | 43.84 | 45.09

Table 3: Ratios on SWiG. Comparison 1: Active cap-
tion vs. foil; Comparison 2: Passive caption vs. foil;
Comparison 3: Active vs. Passive captions; Compari-
son 4: Active vs. Passive foils; Comparison 5: Passive
caption vs. Active foil. For each comparison, the value
represents the preference of the the first term over the
second.
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Normal Captions

Comparison CLIP Flava  LiT
Act/pass 1 6420 2493 5233
Act/pass 2 54.46 4249 44.50
Act/pass 3 64.81 29.00 59.59
Act/pass4  44.01 56.54 46.20
Act/pass 5 48.14 5326 35.85
Dit/Dat 1 63.44 2722 49.71
Dit/Dat 2 55.84 3550 41.92
Dit/Dat 3 64.87 3635 47.12
Dit/Dat 4 4524 5291 46.37
Dit/Dat 5 50.31 37.04 42.12
Simplified Captions
Comparison CLIP Flava  LiT
Act/pass1  65.78 3696 62.17
Act/pass2 5332 4555 4592
Act/pass 3 52.56 41.05 55.75
Act/pass 4 4228 5352 41.15
Act/pass 5 64.41 48.00 53.75
Dit/Dat 1 61.44 36.72 53.65
Dit/Dat 2 62.05 37.76 51.60
Dit/Dat 3 60.20 46.19 4647
Dit/Dat 4 51.38 50.25 48.88
Dit/Dat 5 54.60 40.12 49.63

Table 4: Ratios for CC. Each *Comparison’ number
indicates a different pairing of captions or foils between
the active/passive construction (Act/pass) and the ditran-
sitive one (Dit/Dat). Note that comparisons are only
performed within the same construction. Comparison
1: Active (or Ditransitive) caption vs. foil; Comparison
2: Passive (or Dative) caption vs. foil; Comparison 3:
Active (or Ditransitive) vs. Passive (or Dative) captions;
Comparison 4: Active (or Ditransitive) vs. Passive (or
Dative) foils; Comparison 5: Passive (or Dative) caption
vs. Active (or Dative) foil. For each comparison, the
value represents how much the first term of comparison
is preferred over the second.

5 Discussion

General results Our overall random-chance per-
formance indicates poor compositional abilities, in
line with results obtained on VALSE, SugarCrepe,
or Winoground. Our general results also provide
evidence that models might be influenced by many
factors, such as the simplicity, noisiness, and gram-
maticality of the compared sentences, where by
noisiness we mean how clean the original dataset of
sentences is. All aspects point to a lack of compo-
sitional ability, as such factors should not influence
models’ choices.

Linguistic Constructions and Argument Struc-
ture Our results do not offer evidence that spe-
cific linguistic constructions or word order of se-
mantic arguments influence models’ choices.



Interaction between Type & Gramaticality
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Figure 1: Plotted interaction between Type, with levels
‘active’ and ‘ditransitive’, and Grammaticality, with
levels ‘caption’, “foil’, and ‘equal’. Note that a bigger
grammatical value between a caption or foil is assigned

to the one with a bigger GRUEN grammaticality score.

The pink line is the ‘active’, while the blue one is the
‘ditransitive’ construction.

Interaction between Type & Gramaticality

type
s o et

T T T
caption equal ol
Gramaticality

Figure 2: Plotted interaction between Type, with levels
‘alike’ and ‘different’, and Grammaticality, with levels
‘caption’, ‘foil’, and ‘equal’. The pink line is ‘alike’, the
blue one is ‘different’

Grammaticality Our results suggest captions are
chosen slightly less when a foil is grammatical
but significantly less when captions and foils are
equally grammatical. Thus, our results indicate
that models favor foils, shown by the intercept of
our first test (i.e. 3 = 0.37), but also that they
might leverage grammatical cues in their decisions,
in line with Hsieh et al. (2023). Tests done for
each model show grammaticality affects types of
constructions unevenly, i.e. passive or alternation
more. This might be because our methods might
introduce more ungrammaticality, or complexity
to one of the structures, aspects previously shown
to decrease performance (Thrush et al., 2022; Ma
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et al., 2023).

Simplification and Noisiness Noisier datasets
lower the performance of VLMs (Thrush et al.,
2022; Ma et al., 2023), which was also shown by
our improved results on SWiG. Our results also
show that simplifying the compared caption and
foil makes models perform better (Ma et al., 2023).
Simplicity and low complexity of the sentences
compared might improve performance because the
more complex the text is, the more actors might
be in it. In such cases, models insensitive to word
order will regard many more sentences as likely to
match the image, thereby lowering the chance of
choosing the actual caption.

Models As shown by our ratios, Flava performs
the worst, followed by LiT and CLIP. All models
obtain mostly chance-like performance, in line with
results on ARO, Winoground, or VALSE. Note that
both Flava and LiT were found previously to per-
form better than CLIP on other tasks. This differ-
ence in performance further reinforces the fact that
traditional benchmarks do not focus on testing com-
positional aspects. Our results seem to suggest all
models perform better on simpler sentences, unlike
what was shown in Wingorund or CREPE where
CLIP did better on lengthier captions. Our results
could differ from those of previous studies, given
that we specifically controlled for certain artifacts,
for example, by comparing the same sentences in
their original or simplified form, which was not pre-
viously done. All models also performed better on
SWiG, a less noisy dataset, suggesting that cleaner
foils and captions improve performance (Doveh
et al., 2023b). This is interesting considering Flava
and LiT were trained on datasets containing CC.
Flava. Flava performs significantly worse than
CLIP, unlike in benchmarks such as Winoground,
and ColorSwap. This might be because Flava is
worse than CLIP at recognizing good word order,
as shown by ARO. LiT. Compared to Flava, LiT
might obtain an improved performance due to its in-
creased training dataset size, which could result in
the model seeing more minimal differences in the
sentences. LiT might also perform better due to its
textual encoder, as Zhai et al. (2022) showed that
the BERT textual encoder improves performance.
CLIP. The performance of CLIP and its relation-
ship to its training dataset is hard to indicate.



6 Conclusions

We reviewed previous studies about the compo-
sitional abilities of VLMs, classifying them and
their downsides. The current study introduced two
new VALSE datasets of 9145 pairs of captions and
foils, almost doubling the VALSE benchmark.

Our tests also indicate that many aspects could
influence models’ performance, such as the gram-
maticality of the compared sentences, and their sim-
plicity or noisiness, further reinforcing the results
of previous studies. We offered evidence that these
aspects affect models uniformly, unlike previous
studies (Thrush et al., 2022; Ma et al., 2023). We
also offered evidence that in terms of performance,
CLIP is followed by LiT and then Flava. Our re-
sults indicate that Flava performs much worse than
the other models.

7 Future research and limitations

One-stream models could be considered for test-
ing in the future, given that we only evaluated dual-
stream ones. One of the other shortcomings of
the current paper is that it tests only three models.
Thus, the methodology for the current paper could
be used and easily adapted to test new models fine-
tuned for better compositional performance, such
as X-VLM (shown to reach the highest accuracy on
relations in ARO), SigCLIP, or MosaiCLIP (Singh
et al., 2023).

The current datasets could be made more bal-
anced. For example, the SWiG dataset could be bet-
ter represented, since most parsed sentences were
taken from CC. A possible future research direction
is to generate active constructions from captions
that were originally passive. We only created pas-
sive constructions by modifying the active ones,
and not the reverse. This created an imbalance, as
for the ditransitive/dative construction, we created
examples from both types of original constructions,
i.e. ditransitive or dative. Along similar lines, one
of the limitations of the current study is that we did
not investigate if any of the generated foils were
incorrectly generated, and whether the sentences
that remained non-simplified, after simplification,
influenced results. Follow-up studies could test
these aspects. Generating images from the foils to
see if preferences change, as in ColorSwap, could
also make an interesting follow-up to the current
study. We also built a parser for the ‘with/against’
construction that could be used for new datasets,
see Appendix B, which will also be available upon
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request. Future studies might also consider trying
to account for inconsistencies in definitions of com-
position ality, to enlarge the current compositional
aspects tested, or to apply our methodology for
languages other than English.
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A Examples of captions and foils
1. Captions
a) A player hits a ball.
b) A ball is hit by a player.
¢) A woman gives a book to the girl.
d) A woman gives the girl a book.

2. Foils
a) A ball hits a player.
b) A player is hit by a ball.
¢) A woman gives the girl to a book.

d) A woman gives a book the girl.

Figure 3: Image for active/passive construction, ob-
tained by Google-searching the caption. Correspond-
ing captions: (1a) and (1b). Corresponding foils: (2a),
(2b)

B With/against foil parser examples
1. Captions

a) The boy hits the stick against the fence.
b) The boy hits the fence with the stick.

2. Foils

a) The boy hits the fence against the stick.
b) The boy hits the stick with the fence.

C Statistical results

First Lmer Test Captions were coded as 1, and
foils as 0, thus any positive effects of a factor on the
intercept means improved performance (i.e. cap-
tions are chosen over foils). For the first Imer
test, the significant values for the fixed effects are
grammaticality equal (3 = -0.43, t-score = -27.63,
p-value < 0.05), grammaticality foil (3 = -0.03,
t-score = -10.08, p-value < 0.05), complexity sim-
plified (3 = 0.05, t-score = 18.14, p-value < 0.05),
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Figure 4: Image for the ditransitive/dative construction,
obtained by Google-searching the caption. Correspond-
ing captions: (1c) and (1d). Corresponding foils: (2c),
(2d)

dataset SWiG (f3 = 0.04, t-score = 7.38, p-value <
0.05), model FLAVA (3 = -0.18, t-score = -59.3,
p-value < 0.05), model LIT (f3 = -0.09, t-score =
-25.26, p-value < 0.05). Note that ternary factors
(i.e. grammaticality, model) calculate coefficients
of one level in comparison to the mean of the other
two. Significant interaction values were found for
type ditransitive and grammaticality equal (f3 =
-0.06, t-score = -2.22, p-value < 0.05), type ditran-
sitive and grammaticality foil (f3 = -0.05, t-score =
-8.39, p-value < 0.05).

Second Lmer Test Grammaticality equal (3 =
-0.44, t-score = -19.92, p-value < 0.05), grammat-
icality foil (3 =-0.03, t-score = -16.42, p-value <
0.05), complexity simplified (3 = 0.06, t-score =
25.14, p-value < 0.05), dataset SWiG (3 = -0.03,
t-score = -3.74, p-value < 0.05), model FLAVA (3
=-0.18, t-score = -60.17, p-value < 0.05), model
LIT (3 =-0.09, t-score = -31.54, p-value < 0.05)
had significant values. The significant interaction
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effects were type ditransitive and grammaticality
equal (3 =-0.02, t-score = -0.49, p-value < 0.05),
type ditransitive and grammaticality foil (/3 = 0.03,
t-score = 6.45, p-value < 0.05).

Models subsamples The subsamples on models
generally follow the trends of the first Imer model,
with some exceptions, which are explained for each
model. Note that simplifying captions improved
performance for all models, i.e. Flava (3 =0.07,
t-score = 15.16, p-value < 0.05), CLIP (3 =0.018,
t-score = 3.70, p-value < 0.05), LiT (3 = 0.06, t-
score = 3.44, p-value < 0.05).

Flava Grammaticality of the foils has a signif-
icant effect only for the ditransitive construction
subsample, slightly making captions more likely
(3 = 0.03, t-score = 3.44, p-value < 0.05). On
non-subsampled data, the effect of a grammatical
foil on ditransitive sentences is slightly bigger (3 =
0.05, t-score = 5.11, p-value < 0.05) than on active
ones.

CLIP On subsamples, only the grammaticality
of the foil has a slightly lower effect on passive
constructions than active ones in the active/passive
subsample (3 =-0.05, t-score =-3.89, p-value <
0.05).

LiT On subsampled data, a bigger grammatical-
ity score of the foil affects less passive structures
(3=0.03, t-score =-2.80, p-value < 0.05), and more
ditransitive captions (f3 =0.06, t-score =3,36, p-
value < 0.05). On both subsamples, no interactions
between grammaticality and type are significant.
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