
Automatic Creation of Marginalia

Aaron Lang and Robin Jegan and Andreas Henrich
Otto-Friedrich-Universität Bamberg

Chair of Media Informatics
{aaron.lang,robin.jegan,andreas.henrich}@uni-bamberg.de

Abstract

In contrast to similar tasks such as keyphrase
prediction or text summarization, the automatic
creation of marginalia has not been explored
yet. This paper takes the first steps to advance
research in this area. For our experiments, we
used marginalia data extracted from German
computer science textbooks and analyzed the
marginalia’s properties. We utilized methods
from the similar task of keyphrase prediction
to test how suitable they are for the creation
of marginalia and adapted the methods accord-
ing to the observed marginalia properties and
for the use with the German language. The
results are evaluated quantitatively and quali-
tatively. We also highlight limitations of fre-
quently used measures such as F1 and describe
why it is desirable to advance research on suit-
able evaluation measures. We find that GPT-4o
and mT5 perform best while for the non-LLM-
based methods, SIFRank+ and TF-IDF show
promising results.

1 Introduction

Problems in Natural Language Processing (NLP)
that focus on producing a shorter version of a text
while keeping relevant information – keyphrase
prediction and text summarization – are popular
research topics due to their practical applicability
among other factors. They can lead to time savings
as shorter texts can be read faster and search opera-
tions can be enhanced by including keyphrases1.

However, to the best of our knowledge, this work
is the first to explore a similar problem: the auto-
matic creation of marginalia. Marginalia are notes
on the margin of a text document, often found in
textbooks. While any such note regardless of their
content fulfills the definition of marginalia, they
usually serve as a descriptor of the text section

1In some works keyword and keyphrase are used synony-
mously. In this work, we use the definition that keyphrases
consist of one or more words while keywords consist of only
a single word.

they are adjacent to. For examples taken from Ger-
man textbooks, see A.4-A.6. We look at present
marginalia that are taken from the input paragraph
as well as absent marginalia that do not appear in
that order in the source text.

Marginalia can have significant benefits to the
reader: They can structure the text document fur-
ther beyond chapters and subchapters and prime
the reader of what the text section will cover. Addi-
tionally, they can help the reader save time when
skimming the text, searching for a specific text
section, or skipping parts that are not relevant. In-
formation retrieval could also be improved when
marginalia are available: E.g., if a reader wants to
find a text section that describes what algorithms
are, the full-text search for “algorithm” will find all
text locations of this term which can be plenty in
a computer science textbook. If marginalia are in-
corporated into the search, the text section with the
marginalia “algorithm”, that is actually concerned
with this term, could be returned instead.

We present first steps of research in this domain
by analyzing the properties of a marginalia dataset
extracted from German computer science textbooks
(Section 3), the selection, adaptation and applica-
tion of existing methods from similar NLP tasks
(Sections 4 and 5) and a quantitative and qualitative
evaluation of the results (Section 6).

2 Related Work

Automatic creation of marginalia is yet an unex-
plored task to the best of our knowledge. Hence, a
short overview of the similar tasks of text summa-
rization (TS) and keyphrase prediction (KP) will in-
stead be given. However, after creating the margina-
lia dataset in Section 3 and subsequent analysis of
the marginalia therein, it became apparent that for
most marginalia, the task of KP is much more sim-
ilar to the creation of marginalia than TS is. As
a consequence, coverage of TS will be kept to a
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minimum.
Whereas TS and KP tasks are inherently similar

in reducing a long document into a shorter docu-
ment while preserving key information, they differ
in the precise characteristics of their output. TS
creates full-sentence summaries of the original doc-
ument as a continuous text. KP on the other hand
produces a list of one or more keyphrases, which
are terms or concepts relevant to the document.

Since TS has many useful practical applications,
it is a major research topic in NLP with a multitude
of TS methods ranging from simple heuristic meth-
ods all the way to employing Deep Learning and
Large Language Models (LLMs).

TextRank is an example for a TS method and was
the first approach to model documents as graphs
with sentences as vertices and their relations to each
other as edges (Mihalcea and Tarau, 2004). The ap-
proach connects those edges (sentences) that have
overlapping content and are thus considered sim-
ilar. TextRank employs a similarity measure that
is dependent on the number of overlapping words
that appear in both sentences which is then used for
edge-weighting. A ranking algorithm finds the n
highest-ranked sentences and concatenates them to
a single summary. In addition, TextRank can also
be applied to operate on a word-level instead of a
sentence-level basis, which transforms it into a KP
method.

While this is an extractive method, i.e., it can
only create summaries from sentences that appear
verbatim in the original document, there are also
abstractive methods able to create summaries by
generating new text that paraphrases the input.
These include various approaches such as the use
of sequence-to-sequence architectures (e.g., Chen
et al. (2021)) or reinforcement learning techniques
(e.g., Gunasekara et al. (2021)).

A similar distinction between extractive and ab-
stractive summarization can be made for KP meth-
ods where keyphrase extraction (KE) methods iden-
tify which phrases in the original text are suitable
keyphrases (present keyphrases) and keyphrase
generation (KG) methods can additionally create
phrases not present in the original text (absent
keyphrases).

YAKE! (Campos et al., 2018) is a statistical KE
method and a commonly used baseline. It incorpo-
rates several features of the tokenized input docu-
ment, such as the word frequency or the position
of the sentence the word appears in. To extend this
to keyphrases of up to three words, keyword com-

ponents are multiplied, normalization by length to
avoid bias towards longer keyphrases is applied
and the term frequency of the keyphrase is used
so that more frequent candidates get a better (i.e.
lower) score.

Beyond statistical methods, KE encompasses
a wide range of other methods following various
techniques including graph-based approaches such
as SingleRank (Wan and Xiao, 2008) (an exten-
sion of TextRank) or PositionRank (Florescu and
Caragea, 2017). Topic-based methods aimed at ex-
tracting representative keyphrases for a document’s
topic, e.g. by using Latent Dirichlet Allocation
(LDA), such as TopicRank (Bougouin et al., 2013)
or MultipartiteRank (hereafter: MPRank) (Boudin,
2018) are similarly in use, while embedding-based
approaches such as EmbedRank (Bennani-Smires
et al., 2018) or SIFRank+ (Sun et al., 2020) utilize
sentence embeddings like Doc2Vec or others.

In addition to present keyphrases found in the
input document, KG methods can create absent
keyphrases that do not appear verbatim in the in-
put document. Again, there exist a multitude of
approaches and methods, many of which are based
on an encoder-decoder framework. The training
strategies are diverse and include reinforcement
learning (Chan et al., 2019) or application of multi-
task models (Ahmad et al., 2021) among others.

Wu et al. describe a prompt-based learning KG
method that uses predefined input prompts to pur-
posefully control the creation of absent keyphrases
(Wu et al., 2022). While some other approaches
do not handle present and absent keyphrases sep-
arately (e.g. in Meng et al. (2017)), Wu et al. ar-
gue that this can create absent keyphrases that are
not relevant for the input document. As a first
step, overlapping words between the input docu-
ment and absent keyphrases in the ground truth
are extracted as Wu et al. notice that many absent
keyphrases contain words that are present in the
input document (Wu et al., 2022). Those overlap-
ping keywords kw are used to create prompts of
the form “phrase of kw is [MASK] [MASK] kw
[MASK] [MASK]” or “other phrases are [MASK]
[MASK] [MASK] [MASK]” with special [MASK]-
tokens getting concatenated to create a common ab-
sent keyphrase. While the former prompt enforces
the inclusion of the keyword kw in the keyphrase,
the latter also accounts for keyphrases that do not
contain overlapping keywords. The application
of multi-task-training makes the training of over-
lapping keyword extraction, the identification of
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present keyphrases, and the generation of absent
keyphrases possible simultaneously.

While there are similarities between the cre-
ation of marginalia and KP, KP differs in so far
that it produces a list of keyphrases that can cover
multiple aspects of the corresponding document.
As an example, the author keywords for Sun
et al. (2020) are “keyphrase extraction, pre-trained
language model, sentence embeddings, position-
biased weight, SIFRank” which encompass var-
ious aspects at different granularity such as the
name of the broad NLP task, the specific name
of the proposed model and the utilized technolo-
gies. Marginalia creation on the other hand works
on smaller parts of a coherent document and pro-
duces only a single marginalia for each document
part. Thus, marginalia can depend on the context of
prior or later document parts. In a chapter about the
programming language Java for example, one para-
graph could present its history and another para-
graph its installation. “Java” could be a fitting
keyphrase for both but too generic as marginalia
for either, since the whole chapter is about Java.

3 Data

Due to the lack of publicly available marginalia
datasets, we created a dataset by automatically ex-
tracting marginalia and their corresponding text
section from German computer science textbooks
using Python scripts. The textbooks are published
by dpunkt.verlag GmbH and are accessible via
O’Reilly’s online library2. Since they are viewed in
the browser, the textbooks’ HTML can be used for
extraction. Having the same publisher also makes
their HTML structure more homogeneous. Still,
some adaptations must be made manually for each
book, which – along with finding books containing
marginalia – makes creating a large dataset costly.
Hence, our dataset is limited to 39 textbooks result-
ing in 11,808 data tuples.

Each tuple contains a text section, the corre-
sponding marginalia and metadata such as the
book’s title, chapter name, ISBN and also the text
of the surrounding (sub)chapter. Since it cannot
be derived from the HTML which text sections
exactly correspond to which marginalia, it is as-
sumed that the text section a marginalia belongs to

2See https://learning.oreilly.com/home/ for
the main search page. For a concrete example, see
https://learning.oreilly.com/library/view/
react-2nd-edition/9781098123857/ (all web resources
last accessed on: 07.05.2025)

is all the text following the marginalia until the next
marginalia or until a new chapter is encountered.

Following extraction, data cleaning steps are
performed, such as the removal of full sentences.
Marginalia that are full sentences most often act as
a summary of the corresponding text section, which
is not regarded typical for marginalia and thus is
not desired in our case. From initially 13,118 tu-
ples, approximately 8% (1,057) are detected as full
sentences. However, this depends on the included
textbooks and on the precision of the mechanism
used for full sentence detection.

Figure 1: Relative frequency of all marginalia (orange)
and present marginalia (blue) in words.

Figure 1 shows the length distribution of all ex-
tracted marginalia in orange, while the blue bars
are constrained to present marginalia only. It can be
seen that marginalia in the dataset usually consist
of only a few words, while present marginalia are
on average even shorter and consist of just a single
word approximately twice as often. However, since
checking for the presence of marginalia involves
finding the marginalia string as a whole in the text
section, shorter marginalia are more likely to be
present. Text sections that have marginalia are on
average 133.32 words long with a median of 100
words.

Figure 2: Normalized position of present marginalia in
the text sections.

In the marginalia dataset 34% of marginalia are
present while 66% are absent. This was deter-
mined by searching for the lemmatized string of the
marginalia inside the corresponding lemmatized
text section.
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Some KP methods use the word position in the
text section to rank keyphrase candidates. Figure
2 shows the frequency of present marginalia’s po-
sition in the text sections. It shows that present
marginalia occur especially frequently in the first
5% of the text sections.

4 Methods

The distribution of present (34%) vs. absent (66%)
marginalia observed in the marginalia dataset calls
for the use of KP methods that are capable of find-
ing both present and absent keyphrases. However,
this does not necessarily mean that extractive meth-
ods can only be successful (i.e., find a marginalia
identical to the reference) in the marginalia dataset
in 34% of the cases. It is possible that while the
reference (ground-truth) marginalia is absent, there
is a similarly fitting present marginalia in the text
which can be extracted. To test this assumption, we
used not only generative but also extractive meth-
ods for creating marginalia.

For KE, we employed several statistical methods
as baselines: TF-IDF (Luhn, 1957; Sparck Jones,
1972), YAKE! (Campos et al., 2018), PositionRank
(Florescu and Caragea, 2017) and MultipartiteRank
(Boudin, 2018). In a 2023 survey of KP methods,
Xie et al. found that SIFRank+ is the best unsuper-
vised deep learning KE method (Xie et al., 2023).

SIFRank+ combines smooth inverse frequency
(SIF) (Arora et al., 2017) as sentence embedding
model and ELMo (Peters et al., 2018) as pre-trained
language model. SIFRank+ creates word embed-
dings of candidate keyphrases and the input doc-
ument using ELMo and aggregates them into sen-
tence embeddings using SIF (Sun et al., 2020). The
sentence embeddings of each candidate keyphrase
and the input document are subsequently compared
by cosine similarity. The higher the similarity, the
more fitting the candidate keyphrase is considered
to be. Eventually, the scores of each candidate
keyphrase are weighted by their first occurrence
position in the input document.

Due to the increasing capabilities of LLMs
throughout various NLP tasks, we employed mT5
(Xue et al., 2021) fine-tuned on the margina-
lia dataset. Furthermore, we experimented with
GPT-4o (Hurst et al., 2024) using naive retrieval-
augmented generation to add more context to the
input documents. For all methods except GPT-4o,
each input document consists of a text section for
which a marginalia should be created. Thereby,

context in the sense of previous and succeeding
text sections is not used and cannot be utilized as it
is not supported by the KP methods. For GPT-4o,
we enrich the input document by its previous text
paragraph and its marginalia, if available, as well
as the succeeding text paragraph to experiment if
additional context is helpful in creating marginalia.

5 Implementation

To use the aforementioned methods for the auto-
matic creation of marginalia, some adjustments
must be made, especially to adapt for the German
language and the characteristics of marginalia in
the dataset. Aside from the necessary adjustments
all methods are already implemented and can be
used as part of the Python library pke3 or are pro-
vided by the respective authors.

Adjustments for the different baseline methods
include the use of a German stopword list provided
by pke, specification of German as language param-
eter and – depending on the method – restriction of
candidate selection based on word length or based
on most frequent POS combinations in the margina-
lia dataset in the form of a list or grammar.

To use SIFRank+, German ELMo options- and
weights-files need to be employed. German lemma-
tization is done via spaCy and a German stopword
list is used. For word weighting, a domain-specific
word frequency list is created from the marginalia
dataset plus a generic word frequency list that uses
the most frequent words of German Wikipedia4.
Finally, the most frequent POS combinations in the
marginalia dataset are used for candidate selection.

For mT5, a checkpoint that is pre-trained on
German TS is needed in order to subsequently fine-
tune for creation of marginalia on the marginalia
dataset. Several checkpoints are available on Hug-
gingFace5. After experiments on a sample basis,
we deemed mt5-small-finetuned-amazon-en-de6 as
the best suited checkpoint for marginalia creation.
However, this needs to be evaluated further. A
checkpoint pre-trained on German KP would have
been preferable but was not available.

Prompts for GPT-4o were designed to include
preceding and succeeding text sections as context
for marginalia creation. GPT-4o is directly and ex-

3https://github.com/boudinfl/pke
4https://github.com/IlyaSemenov/

wikipedia-word-frequency
5https://huggingface.co/
6https://huggingface.co/anibahug/

mt5-small-finetuned-amazon-en-de

231

https://github.com/boudinfl/pke
https://github.com/IlyaSemenov/wikipedia-word-frequency
https://github.com/IlyaSemenov/wikipedia-word-frequency
https://huggingface.co/
https://huggingface.co/anibahug/mt5-small-finetuned-amazon-en-de
https://huggingface.co/anibahug/mt5-small-finetuned-amazon-en-de


plicitly asked to produce marginalia instead of pro-
ducing keyphrases or learning to produce margina-
lia (see A.3). Prompts were processed via Ope-
nAI’s Batch API7 which lead to costs of $13.23
for all 10,075,771 input-tokens and $0.38 for the
output-tokens including initial tests.

6 Evaluation

We quantitatively evaluated all methods using the
F1 measure, Mean Reciprocal Rank (MRR) and
MoverScore while also qualitatively evaluating the
selected methods in the form of a survey. Quan-
titative evaluation took place on the marginalia
dataset’s test split containing 1182 instances. Qual-
itative evaluation was limited to 100 randomly sam-
pled instances.

6.1 Quantitative Evaluation

Most papers on KP employ the F1 measure, among
others, to evaluate their approach, many of them ex-
clusively. The F1 measure only lexically measures
if system keyphrases (produced by the method un-
der consideration) agree with reference keyphrases
(ground-truth keyphrases), thereby not considering
semantically equivalent or similar keyphrases. Still,
we decided to include it for easier comparison with
other approaches on one hand, and on the other
hand for comparison of the same method between
the task of KP in other works and the creation of
marginalia in our work.

Table 1 shows the F1 score for all methods. It
is calculated by first determining the F1 score for
each individual instance, then averaging these indi-
vidual scores to a single (macro) F1 score. Since
all methods except mT5 and GPT-4o return multi-
ple marginalia, we consider the F1 scores at rank
1 for better comparability. This is also a more
realistic approach since in a real-world scenario,
we are only interested in one marginalia per text
section. It can be observed that both LLM-based
methods – mT5 and GPT-4o – achieve the best
F1 scores by a large margin. When only absent
marginalia are considered for the calculation of
F1, GPT-4o (0.0274) performs considerably better
than mT5 (0.0008) in generating absent marginalia
(not shown in Table 1). Among the other methods,
SIFRank+ performs best. In addition, it can be seen
that the position-based weighting of SIFRank+,
which SIFRank lacks, appears to have a significant
positive effect on marginalia extraction. SIFRank+

7https://platform.openai.com/docs/guides/batch

Method F1 MRR MoverScore
TF-IDF 0.0431 0.0750 0.5626
YAKE! 0.0085 0.0324 0.5732
SingleRank 0.0000 0.0060 0.5193
TextRank 0.0008 0.0095 0.5350
PositionRank 0.0161 0.0517 0.5463
TopicRank 0.0228 0.0376 0.5569
MPRank 0.0245 0.0386 0.5573
SIFRank 0.0161 0.0405 0.5492
SIFRank+ 0.0668 0.1050 0.5580
mT5 0.1320 0.1320 0.6376
GPT-4o 0.1299 0.1299 0.6543

Table 1: For both, F1 and MoverScore, values are calcu-
lated for the first generated marginalia only. For MRR,
all generated marginalia are scored, but note that mT5
and GPT-4o only produce a single marginalia instead of
a list of marginalia as the other methods do.

was originally designed for longer documents (Sun
et al., 2020) but in this case performs better even
for short documents. Although it is the simplest
method, TF-IDF achieves the fourth-best F1 score
by a significant margin. F1 scores at rank M (con-
sidering all produced keyphrases) paint a similar
picture and are given in the appendix in Table 4.

For those methods that produce multiple
marginalia, we used the MRR to evaluate how early
in the result list methods are able to rank matches.
A match denotes the system and reference margina-
lia being identical after stemming. Table 1 shows
the MRR for all methods. Here, SIFRank+ and TF-
IDF show the highest MRR after the LLM-based
methods, thus their matches appear earlier on aver-
age in the result list compared to other methods.

Without further adaptation, these measures – F1
and MRR – only consider system and reference
keyphrases to match when they are identical (usu-
ally after stemming as done in this work) which
neglects alternate wordings, synonyms or grammat-
ical variance.

In contrast to the aforementioned measures that
work solely lexically and to tackle the problem
of the need for exact matches, MoverScore (Zhao
et al., 2019) is an example of a semantic similarity
measure that compares the system and reference
marginalia. MoverScore is typically used for the
evaluation of automatic text summarization meth-
ods, where the similarity between the summary
created by the system and the ground-truth sum-
maries is quantified. This means system and refer-
ence marginalia do not necessarily have to be exact
matches. Unlike summaries, however, margina-
lia are usually much shorter, which could reduce
MoverScore’s expressiveness. Table 1 shows the
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MoverScore values for all methods at rank 1 be-
tween system marginalia and reference margina-
lia. Again, LLM-based methods perform best,
whereas the other methods are closer together than
in the previous measures. Unlike TF-IDF, YAKE!
achieves a much lower F1@1 score compared to
SIFRank+, but a moderately higher MoverScore.

6.2 Qualitative Evaluation
To mitigate said limitations of both lexical and
semantic measures (see Limitations) and to see
how well quantitative and qualitative results agree,
we conduct an online survey with 100 questions
containing marginalia and text sections randomly
sampled from the marginalia dataset. Each par-
ticipant answers as many questions as they like,
which consist of a text section and two randomly
selected system marginalia for that text section.
The participant has to choose which of the two
marginalia is better fitting to the text section or if
both are equally fitting, hereafter called “rating” the
text section. The marginalia for each text section
are produced by five different KP methods (GPT-
4o, mT5, SIFRank+, PositionRank and YAKE!),
two of which are randomly selected for each ques-
tion. Hence, different participants can have differ-
ent marginalia to choose from for the same text
section. This comparison between two alternatives
was deemed to be easier and also faster than rank-
ing or scoring all five methods for each text section.
To increase the likelihood of the same text section
being rated by multiple participants with different
marginalia alternatives, the number of KP methods
for this survey was limited to five.

During the course of the survey, 412 questions
were answered by 38 participants. Consistent with
the quantitative findings, GPT-4o and mT5 are
the two most preferred methods with a relative
frequency of 24.46% and 21.84%, respectively.
SIFRank+ (14.32%) and PositionRank (13.35%)
are both on a similar level, while YAKE! (7.28%)
is far less often preferred than the other methods.
SIFRank+ being more often preferred than YAKE!
is in congruence with the respective F1@1 scores
in Table 1. While this also holds for PositionRank,
the difference to YAKE! is much smaller. In con-
trast, the MoverScore of YAKE! is higher than that
of SIFRank+ and PositionRank, which does not
agree with the qualitative findings, while it does
agree with GPT-4o’s and mT5’s MoverScores. No-
tably, in 16.75% of the ratings both given methods
were judged as equally good.

Additionally, the left side of Figure 3 shows
how often methods were preferred depending on
pairwise combinations. This means that if, e.g.,
GPT-4o and YAKE! are presented to participants,
it shows how often each alternative was preferred
over the other. Since the possible pairwise com-
binations are not equally distributed, each value
in Figure 3 is normalized by the number of occur-
rences of the respective combination. The matrix
can be read in a row-wise manner: As an exam-
ple, the row for GPT-4o shows the probabilities
that when paired with some other method, a par-
ticipant will prefer GPT-4o. Given GPT-4o and
YAKE!, participants choose GPT-4o over YAKE!
with a probability of 0.78, while the reverse has a
probability of 0.11. Since participants can also rate
two methods as equally good, the probabilities do
not necessarily add up to 1. At a glance, the green
coloring of GPT-4o’s row indicates that it is pre-
dominantly preferred over any other method. The
same holds for mT5 with the exception that it is less
frequently preferred over GPT-4o. The red color of
the row for YAKE! shows the low probability that
YAKE! is preferred over any other method. For
the rows of SIFRank+ and PositionRank, such a
uniform pattern of preference is less clearly visible.
Again, GPT-4o and mT5 take the lead in concor-
dance with F1@1 and MoverScore values, while
YAKE! comes in last. As before for the relative
frequency of preference, SIFRank+ and Position-
Rank are close together, whereas their F1@1 scores
indicate a significantly higher difference.

The similarity regarding the preference towards
SIFRank+ and PositionRank can also be seen on
the right in Figure 3, which shows how frequently
two methods were regarded as equally good. Here,
SIFRank+ and PositionRank are especially often
regarded as equally good. Surprisingly, SIFRank+
and mT5 are similarly often regarded as equally
good, which was less apparent in the quantitative
results.

Due to the restriction on pairwise comparisons,
the survey did not yield a direct ranking of meth-
ods. One way to derive a ranking from the sur-
vey results is the use of the Elo rating (Elo, 2008).
Originally designed for the rating of chess play-
ers, the Elo rating assigns a rating to every player.
With each match between two players, a defeat
decreases, while a victory increases the player’s
rating. When treating the pairwise comparison of
methods (questions) as matches between the meth-
ods with the preferred method as the winner and

233



Figure 3: The values in the cells show the normalized probabilities of participants preferring a method (row) over
another method (column) in the left part of the figure and the normalized probabilities of participants judging two
methods as equally good in the right side of the figure.

Figure 4: Development of Elo ratings throughout the
survey questions. If marginalia were deemed equally
good, they were excluded for the computation of the
Elo rating.

the other method as the loser, we can apply the
Elo rating to derive a rating for each method and
subsequently create a ranking.

The development of the Elo ratings throughout
all questions can be seen in Figure 4. GPT-4o
has the highest rating, while YAKE! has the low-
est. Both are clearly separated from the rest of the
methods. SIFRank+ and PositionRank are close
together and change their ranking throughout the
questions multiple times. mT5 is separated from
both but with less distance than GPT-4o or YAKE!.

Through manually reviewing text sections as
well as the created marginalia and the reference
marginalia, cases can be observed where the results
produced by KP methods are fitting keyphrases
but not fitting marginalia. E.g., for a text section

(see Section A.1) that describes how from usage
profiles so-called load profiles are generated us-
ing an appropriate tool, SIFRank+ extracts the
phrase “nutzungsprofilen”8 (usage profiles) which
can be considered an appropriate part of a set of
keyphrases for the text section. However, as a
marginalia, this would be misleading since the
text section does not describe usage profiles but
load profiles instead. As the task of KP is not con-
strained to produce only a single result, it can be
assumed that this problem is less relevant for KP
but important for marginalia creation. However,
as checking for this issue is a manual review pro-
cess, due to time constraints, we cannot quantify
the scope of the issue.

Finally, despite the limitations of quantitative
and qualitative evaluation (see Limitations), based
on consistent tendencies for F1 score, MRR,
MoverScore and survey results, it can be concluded
that GPT-4o and mT5 create the best marginalia
out of the considered methods.9 SIFRank+ is the
third-best method concerning F1 score and MRR
and surpasses PositionRank in those measures by a
large margin, but according to survey results is on
a similar level to PositionRank.

Among the baseline methods, TF-IDF performs
best despite its simplicity. In contrast to the other
baselines whose information is constrained on the
current document, TF-IDF incorporates corpus-
wide document frequency information, which

8This example, however, is grammatically incorrect in
German as a stand-alone marginalia. See Limitations for a
brief discussion of this problem.

9Admittedly, the scores are rather low overall, which is
however to be expected for this limited quantitative evaluation.
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might be one of the reasons for its success in cre-
ating marginalia. It seems worthwhile to include
TF-IDF as a baseline in future research and exam-
ine how it performs in qualitative evaluation.

7 Discussion/Conclusion

In this paper, we have, to the best of our knowledge,
presented the first analysis, implementation and
evaluation of automatically generating margina-
lia. In order to accomplish this task, a dataset was
compiled by extracting marginalia from German
computer science textbooks. The automatic ex-
traction of marginalia was tested with techniques
from different NLP-tasks, i.e., text summariza-
tion, keyphrase extraction and keyphrase gener-
ation. During implementation, the production of
keyphrases – both extractive and generative – were
identified as more applicable for the use-case pre-
sented in this paper. Thus, various extractive statis-
tical methods such as TF-IDF and SIFRank+ and
the generative methods mT5 and GPT-4o were ap-
plied.

Evaluation was conducted purely on the dataset
produced for this paper, hence a comparison with
other datasets or other systems was not possible.
While no single method led in all metrics, a strong
preference for generative methods such as GPT-4o
and mT5 compared to other methods, including
all extractive methods, was noticed in most exper-
iments. A qualitative evaluation was furthermore
conducted through a user study, which showed a
commanding lead for the marginalia produced by
GPT-4o compared to all other methods. Extrac-
tive methods lag behind generative models, how-
ever, of the extractive methods, SIFRank+ and TF-
IDF, which was only included as a baseline, show
promising results.

Future work in this field of research is possi-
ble in different aspects. The dataset is one such
aspect, which can be extended, both in size and
by incorporating different textbooks or other texts
with marginalia apart from computer science books.
Thus, more training data would be available and
the applicability to different domains could be ex-
plored. Additionally, making such a dataset pub-
licly available would be highly desirable to drive
research in this area forward and make reproduc-
ing research results easier. More experiments with
other techniques, e.g., by parameter-tuning or up-
dated fine-tuning, or incorporating larger context-
windows for the methods are further logical next

steps. Dedicated approaches for marginalia genera-
tion can also be conceived, e.g., by incorporating
not only more text as contextual information but
also previously produced marginalia for prior sec-
tions of the same text.

Also, as discussed in Limitations, none of the
applied metrics are entirely fitting for the use-case
presented here. Reference-based metrics are nat-
urally bound to the reference marginalia used in
the dataset, while more complex metrics such as
MoverScore are more suited to other task areas
such as summarization approaches. Still, quantita-
tive evaluation as well as qualitative discussion of
the results are necessary and need further research.

Limitations

Regarding the construction of the marginalia
dataset, the automatic extraction can on the one
hand introduce noise or errors into the dataset and
on the other hand, is dependent on the consistency
and lack of uniformity of the book’s HTML struc-
ture. The simplifying assumption mentioned in
Section 3 regarding the mapping of text sections to
marginalia can further introduce noise and impair
the performance of the utilized methods.

But even if the extraction would yield perfect
results, data quality would still be an issue as only
a certain type of marginalia is desired for our pur-
pose: marginalia that describe what their text sec-
tion is about. Although data quality is checked
on a sample basis, not all 11,808 tuples can be
checked by hand. Thus, during data cleaning, the
first 500 marginalia with the shortest text sections
were manually examined. Here, the aim was to re-
move marginalia that are considered atypical – such
as summaries or marginalia that describe the pur-
pose rather than the content of their text section, e.g.
"Einführung" (introduction) – and especially those
that could only be created using external informa-
tion, as they are likely to impact training. Of those
checked, 89 were removed. While this proportion
may seem high, this does not necessarily reflect the
rest of the dataset. Assuming that the shorter text
sections are, the less likely it is that marginalia can
be derived from them, the percentage of problem-
atic marginalia is expected to be lower in the rest
of the dataset. However, it could still be significant
enough to impact model training and evaluation.
Due to the heterogeneity of atypical marginalia
– some are comments, others are summaries and
some rely on external information – rigorous au-
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tomatic checking of the whole dataset is difficult
to implement. Despite efforts during data cleaning
and post-processing, it is likely that the margina-
lia dataset still contains an unknown percentage of
atypical marginalia. Apart from the quality of the
marginalia dataset which deserves further investi-
gation, the evaluation results are still relevant since
all methods are evaluated on the same data and can
thus be compared with each other.

Since the marginalia dataset contains copy-
righted material, we unfortunately cannot distribute
it. However, we provide the steps and scripts we
used for extraction in our GitHub repository10.

In a 2023 survey of KP methods, Xie et al. found
that while SIFRank+ is the best unsupervised deep
learning KE method, WR-SetTrans is among the
best (supervised) generative methods (Xie et al.,
2023). Hence, we originally planned to include
WR-SetTrans in our work. However, after training,
WR-SetTrans did not produce any marginalia and
we were unable to find the cause within time. Its
predecessor SetTrans (Ye et al., 2021) did produce
results, but only for some instances. Therefore,
we excluded WR-SetTrans and SetTrans for this
work. Making WR-SetTrans work correctly de-
serves further investigation as it might be capable
of producing good marginalia.

Concerning quantitative evaluation, while the
measures discussed are commonly used for evalu-
ating KP methods, they have several limitations.
Firstly, they consider the reference keyphrases
to be the only correct keyphrase while in reality
there may be other similarly or equivalently fitting
keyphrases, e.g. synonyms. Applied to marginalia,
this could prove even more true: With only a single
marginalia as a target for a specific text section, the
chance is higher that an alternative keyphrase is
erroneously deemed incorrect.

Also, when checking whether system margina-
lia agree with reference marginalia, we used exact
matching. This means both need to be identical
after stemming to be considered matching. We
conducted further experiments using approximate
matching (Zesch and Gurevych, 2009), which due
to size constraints could not be included and dis-
cussed in Section 6. However, the results were not
surprising and are shown in the appendix in Table
2. Other forms of less strict matching could yield
different results and are worth exploring.

10https://github.com/aaronlba/
marginalia-creation

For languages such as German with a multitude
of grammatical forms for nouns as well as verbs,
while extractive methods might identify the cor-
rect marginalia in the text section, due to their
grammatical form, the marginalia could be gram-
matically incorrect as a stand-alone word. As an
example, “nutzungsprofilen” in the text given in
the appendix in Section A.1 is in dative plural in
German. For a stand-alone marginalia, it would
need to be “nutzungsprofil” or “nutzungsprofile”
(nominative singular or plural). Furthermore, the
marginalia should be upper-case to represent the
grammatically correct German noun “Nutzungspro-
file”.

For MoverScore in particular, the brevity of
marginalia, which often consist of only a few
words, gives MoverScore little context to work
with. Also, the comparison is still constrained
to the reference marginalia as the only correct so-
lution, while there may be other valid margina-
lia. To counteract this restriction, we experimented
with calculating the MoverScore between system
marginalia and their respective text sections instead.
However, this approach did not yield meaningful
results for the extractive methods since it is de-
pendent on the average marginalia length of those
methods. This means that the longer the extracted
marginalia, the higher the similarity to the respec-
tive text section is considered to be.

For the qualitative results, while the survey re-
sults are mostly in accordance with quantitative re-
sults and also personal impressions from samples,
the significance is limited due to the low number
of questions and participants. Since only 100 text
sections out of 11,808 were randomly selected for
the survey questions, it is possible that for some
methods, a disproportionately high number of bad
marginalia or good marginalia are part of the sur-
vey, which can skew the results.

Additionally, each question received on average
only about 4 ratings. This is relatively low given
that each question has 10 possible answer pairings,
resulting in 1,000 possible combinations across the
100 questions.
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A Appendix

A.1 Example Paragraph

The following paragraph is taken from the text-
book Basiswissen Abnahmetest to show one of the
textbook paragraphs in the marginalia dataset:

“Aus Nutzungsprofilen werden dann mit einem
entsprechenden Werkzeug sogenannte Lastpro-
file erzeugt, also technische Abbilder der zuvor
spezifizierten Nutzungsprofile zum Zwecke der
Lasterzeugung. Lastprofile können dabei mehrere
Nutzungsprofile unterschiedlicher Benutzergrup-
pen oder Personas kombinieren, um ein möglichst
realistisches Abbild der zu erwartenden oder
üblicherweise anfallenden Last zu simulieren (da
es zu erwarten ist, dass nicht immer nur eine Be-
nutzergruppe mit dem Produkt zu jedem Zeitpunkt
interagiert).”11

A.2 Quantitative Evaluation

In addition to the F1 scores and MRR at rank 1
using exact matching shown in Table 1, Table 2
shows these values using approximate matching.

Method F1 MRR
TF-IDF 0.1168 0.6413
YAKE! 0.0829 0.4442
SingleRank 0.0606 0.3333
TextRank 0.0718 0.3858
PositionRank 0.0942 0.5694
TopicRank 0.1997 0.3553
MPRank 0.2010 0.3604
SIFRank 0.0857 0.4856
SIFRank+ 0.1161 0.6497
mT5 0.2750 0.2750
GPT-4o 0.2991 0.2991

Table 2: F1 scores and MRR for all considered methods
at rank 1 using approximate matching.

Table 3 and Table 4 show the precision and re-
call values for exact and approximate matching at
rank M. Values at rank 1 are omitted since they are
identical to their respective F1 scores.

A.3 Prompt

The original German prompt template is given
in the GitHub repository.12 The following
prompt template was translated from German via
DeepL. Text in curly braces is replaced by the
corresponding data.

11https://learning.oreilly.com/library/view/
basiswissen-abnahmetest/9781098129729/
Chapter 4.3.2 High-Level-Performanzabnahmetests

12https://github.com/aaronlba/
marginalia-creation.
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Method Precision Recall
TF-IDF 0.0175 0.1591
YAKE! 0.0119 0.1184
SingleRank 0.0045 0.0355
TextRank 0.0058 0.0423
PositionRank 0.0186 0.1591
TopicRank 0.0257 0.0668
MPRank 0.0251 0.0677
SIFRank 0.0148 0.1235
SIFRank+ 0.0219 0.1920
mT5 0.1320 0.1320
GPT-4o 0.1299 0.1299

Table 3: Precision and recall for all considered methods
at rank 1 using exact matching.

Method Precision Recall
TF-IDF 0.0313 0.1894
YAKE! 0.0216 0.1336
SingleRank 0.0079 0.0981
TextRank 0.0099 0.1159
PositionRank 0.0329 0.1557
TopicRank 0.0344 0.2311
MPRank 0.0340 0.2329
SIFRank 0.0261 0.1393
SIFRank+ 0.0389 0.1898
mT5 0.1320 0.2750
GPT-4o 0.1299 0.2991

Table 4: Precision and recall values at rank M with M
being the number of marginalia produced by a method,
using approximate matching.

The following paragraphs are taken from the
subchapter “{subchapter_name}” in the chapter

“{chapter_name}” in the textbook “{book_title}”.
Where available, the corresponding marginalia is
given for each paragraph:

Paragraph N-1 reads:
“{predecessor_paragraph}” This paragraph has
the marginalia “{predecessor_marginalia}”.

Paragraph N reads:
“{current_paragraph}”

Paragraph N+1 reads:
“{successor_paragraph}”

Task:
Create a marginalia for paragraph N. If available,
the previous paragraph N-1 and the following
paragraph N+1 may be helpful as context for creat-
ing consistent marginalia (e.g., uniform wording of
the marginalia). Important: The marginalia should
refer exclusively to the content of paragraph
N. The marginalia does not necessarily have to
summarize the content of the paragraph, but can
also simply indicate what the paragraph is about.

Notes on the length of the marginalia you
are looking for:
Most marginalia are between 1 and 4 words
long, with very few exceeding 6 words. Keep the
marginalia as short as possible.

Note on the output format:
Only output the generated marginalia without a
prefix such as “Marginalia:” or quotation marks.

A.4 Example Marginalia 1

In this example of a textbook paragraph and its
system marginalia, most methods match with the
reference.

“JSON (JavaScript Object Notation) ist eine
Darstellung von Daten, die vor allem für JavaScript
optimiert ist. Wie JavaScript auch, sind die Daten
dynamisch typisiert. Mittlerweile gibt es aber
eigentlich für alle Programmiersprachen passende
JSON-Bibliotheken. Es gibt außerdem Typsys-
teme wie JSON Schema [16], die für JSON eine
entsprechende Validierung ergänzen. Damit steht
JSON Datenformaten wie XML in nichts mehr
nach.”13

Method Marginalia
TF-IDF json
YAKE! JavaScript Object Notation
SingleRank für json eine entsprechende validierung
TextRank für json eine
PositionRank json datenformaten wie xml
TopicRank json
MPRank json
SIFRank json
SIFRank+ json
mT5 JSON
GPT-4o JSON
Reference JSON

Table 5: Reference marginalia given by the authors of
the source text and system marginalia at rank 1 created
by the various methods for A.4.

A.5 Example Marginalia 2

In this example, several methods overlap with the
reference, but do not match exactly. However, GPT-
4o’s marginalia can be seen as semantically equiva-
lent to the reference.

“Zu jedem Add-on gibt es eine Kurzbeschrei-
bung des Funktionsumfangs und auf welche An-
wendungsfälle es abzielt. Ein Add-on kann im

13https://learning.oreilly.com/library/view/
microservices-2nd-edition/9781492068686/
Chapter 9 Integration und Kommunikation
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Laufe der Zeit in unterschiedlichen Versionen zur
Verfügung gestellt werden, diese Versionen werden
mit entsprechenden Release-Notes dokumentiert.
Des Weiteren gibt es zusätzliche Informationen,
zu welcher Vaadin-Version ein Add-on kompatibel
ist oder mit welchen Browsern ein Add-on ver-
wendet werden kann, wenn es hier entsprechende
Einschränkungen geben sollte. Wir können uns
auch über das zugrunde liegende Lizenzmodell
informieren oder über weiterführende Links auf
z.B. eine Online-Demo, den Sourcecode oder eine
Ticketverwaltung zugreifen. Abb. 10-2 Detail-
seite Add-on am Beispiel Vaadin Calendar Über
die Anzahl der Downloads können wir einen gewis-
sen Eindruck über die Popularität eines Add-on
gewinnen. Jeder Nutzer hat zudem die Möglichkeit,
ein Add-on mit eins bis fünf Sternen zu bewerten.
Es kann optional ein Kommentar verfasst werden,
um dem Ersteller eines Add-on Rückmeldungen
zu geben. Weitere interessante Hinweise und Hil-
festellungen aus der Vaadin-Community finden wir
zusätzlich im Vaadin-Forum unter der Kategorie
Add-ons (siehe [ Vaadin-Forum ]).”14

Method Marginalia
TF-IDF add-on
YAKE! Kurzbeschreibung des Funktionsumfangs
SingleRank detailseite add-on am beispiel vaadin

calendar über die anzahl der downloads
TextRank ein add-on mit
PositionRank vaadin-version ein add-on
TopicRank entsprechende einschränkungen
MPRank entsprechende einschränkungen
SIFRank add-on rückmeldungen
SIFRank+ add-on
mT5 Anzahl der Downloads
GPT-4o Add-on Detailinformationen
Reference Detailinformationen zu einem Add-on

Table 6: Reference marginalia given by the authors of
the source text and system marginalia at rank 1 created
by the various methods for A.5.

A.6 Example Marginalia 3
In this example none of the methods match the
reference. However, some marginalia describe rele-
vant aspects of the text section, e.g., konflikte (con-
flicts) or überprüfung und abstimmung (review and
coordination). Furthermore, it can be argued that
GPT-4o’s marginalia is even more fitting than the
reference marginalia. Here, the reference margina-
lia is less a description of the content of the text
section and more a statement of its consequence.

14https://learning.oreilly.com/library/view/
vaadin/9781457188336/
Chapter 10 Add-Ons

“Die Überprüfung auf Widersprüche und Ab-
stimmung der Anforderungen muss fortlaufend
(in unterschiedlicher Intensität) über das gesamte
Requirements Engineering hinweg erfolgen. Die
Überprüfung und Abstimmung von Anforderungen
verursachen dabei zusätzlichen Aufwand und somit
zusätzliche Kosten. Der durch die Überprüfung
und Abstimmung der Anforderungen erzielte und
in den vorangegangenen Abschnitten beschriebene
Vorteil (Kostenersparnis, Erhöhung der Akzeptanz
des Systems, Unterstützung der Definition inno-
vativer Anforderungen) ist in der Regel jedoch
wesentlich höher als die durch die Überprüfung und
Abstimmung entstehenden Kosten. Zur Abstim-
mung der Anforderungen an ein zu entwickelndes
System ist es notwendig, Konflikte zu identifizieren
und die auftretenden Konflikte aufzulösen. Dies
geschieht im Rahmen eines systematischen Kon-
fliktmanagements. Das Konfliktmanagement im
Requirements Engineering umfasst die folgenden
vier Aufgaben:” 15

Method Marginalia
TF-IDF anforderungen
YAKE! Requirements Engineering hinweg erfolgen
SingleRank der durch die überprüfung und abstimmung

der anforderungen
TextRank durch die überprüfung und abstimmung

der anforderungen
PositionRank überprüfung und abstimmung
TopicRank konflikte
MPRank konflikte
SIFRank abstimmung von anforderungen
SIFRank+ überprüfung auf widersprüche
mT5 Überprüfung und Abstimmung
GPT-4o Kosten und Nutzen der Abstimmung
Reference Verringerung der Kosten und Risiken

in späteren Phasen

Table 7: Reference marginalia given by the authors of
the source text and system marginalia at rank 1 created
by the various methods for A.6.

15https://learning.oreilly.com/library/
view/basiswissen-requirements-engineering/
9781098129231/
Chapter 4 Praktiken für die Erarbeitung von Anforderungen

240

https://learning.oreilly.com/library/view/vaadin/9781457188336/
https://learning.oreilly.com/library/view/vaadin/9781457188336/
https://learning.oreilly.com/library/view/basiswissen-requirements-engineering/9781098129231/
https://learning.oreilly.com/library/view/basiswissen-requirements-engineering/9781098129231/
https://learning.oreilly.com/library/view/basiswissen-requirements-engineering/9781098129231/

