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BioNLP 2025: new solutions to perennial and emerging problems

Dina Demner-Fushman, Sophia Ananiadou, Makoto Miwa and Jun-ichi Tsujii

Large Language Models (LLMs) continue to be the mainstay of Biomedical Language Processing, while
the scope of BioNLP research continues to expand across foundational tasks, applications, languages and
modalities. In 2025, we see increasing efforts to integrate textual features with visual and sequencing
data; new approaches to named entity recognition and linking; work in several languages other than En-
glish; and applications ranging from drug discovery and gene editing to veterinary and clinical studies.
Complex language technology tasks, such as question answering and summarization, as well as data
generation and text mining are also strongly represented. Concerns about potential harms and irresponsi-
ble use of Al applications are being addressed through growing research into evaluation, debiasing, and
understanding of models’ behavior.

The submissions to the BioNLP 2025 workshop and the Shared Tasks demonstrated once again that the
workshop sponsored by the ACL Special Interest Group on Biomedical Natural Language Processing (SI-
GBIOMED) is the preferred venue for the groundbreaking research and applications in Biomedical Lan-
guage Processing, which encompasses biological, clinical and non-professional medical sub-languages,
among others. BioNLP remains the flagship and the generalist in biomedical language processing, accep-
ting all noteworthy work independently of the tasks and languages studied. The quality of submissions
continues to impress the program committee and the organizers.

BioNLP 2025 received 61 submissions, of which eight were accepted for oral presentation and 22 as
poster presentations. The selected works span foundational research, biomedical language processing,
clinical applications, and generation of new datasets and benchmarks.

Four Shared Tasks were collocated with BioNLP 2025:
SMAFIRA: annotating the literature for finding methods alternative to animal experiments.

ClinIQLink 2025: LLM Lie Detector Test: evaluating the effectiveness of generative models in pro-
ducing factually accurate information, using a benchmark dataset specifically curated to align with the
knowledge level of a General Practitioner (GP) .

ArchEHR-QA 2025: Grounded Electronic Health Record Question Answering: automatically genera-
ting answers to patients’ health-related questions that are grounded in the evidence from patients’ clinical
notes.

BioLaySumm 2025: Now, in its third edition, this year’s BioLaySumm, introduces a new task: radiology
report generation in layman’s terms, extending the shared task to a new multimodal domain.

The overviews of the tasks and short presentations of the best performing approaches are included in the
workshop program. The participants in all Shared Tasks present their work in a dedicated poster session.

The keynote by Wojciech Kusa is titled: Incorporating Changes in Review Outcomes in the Evaluation
of Systematic Review Automation.

Current evaluations of automation methods in systematic literature reviews often treat all included stu-
dies as equally important, ignoring their varying influence on review outcomes. This can misrepresent
the effectiveness of search strategies, as not all relevant studies contribute equally to the conclusions
of the review. To address this limitation, we propose a new evaluation framework that incorporates the
differential impact of individual studies on review outcomes. Using data from the CLEF 2019 TAR task,
we applied this framework to assess 74 automation models, leveraging meta-analysis effect estimates to
weigh the influence of each study. Compared to conventional binary relevance metrics, our approach pro-
vided a more nuanced assessment, emphasizing the importance of retrieving high-impact studies. Results
showed significant differences in model rankings, underscoring the value of outcome-based evaluation.
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This framework offers researchers a more precise method for evaluating systematic review automation
tools, ultimately supporting higher-quality evidence synthesis and better-informed clinical decisions.

Woijciech is a Senior Researcher at the NASK National Research Institute in Poland, where he leads
the Linguistic Engineering and Text Analysis Department. He holds a PhD in NLP from TU Wien,
with a focus on applying and evaluating neural methods for domain-specific data. His research interests
include the safety and evaluation of large language models, clinical and biomedical NLP, and Al-driven
scientific discovery. Wojciech was a Marie Sktodowska-Curie Fellow in the EU Horizon 2020 project
DoSSIER, specialising in biomedical information retrieval and NLP. He has industry experience from
roles at Samsung and Allegro, and has completed research internships at Sony, UNINOVA, and the
Polish Academy of Sciences.

We are pleased to announce that the Chen Institute is co-organizing the BioNLP 2025 Workshop. Foun-
ded in 2016 by Tianqgiao Chen and Chrissy Luo, the Chen Institute is driven by a bold vision to improve
the human experience by understanding how our brains perceive, learn, and interact with the world.
Their global platform includes the Tiangiao and Chrissy Chen Institute for Neuroscience at Caltech,
the Tianqgiao Chen Institute for Translational Research in Shanghai, the Chen Frontier Lab for Applied
Neurotechnology, and the Chen Frontier Lab for Al and Mental Health. The Chen Scholars program
supports early- to mid-career scientists, and the recently launched Chen Institute and Science Prize for
Al Accelerated Research highlights their deep commitment to innovation. At this year’s BioNLP Wor-
kshop, the Chen Institute is interested in exploring how artificial intelligence can accelerate the pace of
scientific discovery. We believe there are vast, untapped opportunities to make groundbreaking advances
by leveraging the power of Al. The hope is that this meeting will serve as the beginning of an ongoing
dialogue—focused on new developments, transformative successes, and emerging thinking at the inter-
section of Al and science. Through this collaboration, the Chen Institute aims to identify and support
promising approaches with the potential to meaningfully change the world.

As always, we are deeply grateful to the authors of the submitted papers and to the reviewers (listed
elsewhere in this volume) who produced three thorough and thoughtful reviews for each paper in a
fairly short review period. The quality of submitted work continues to grow, and the organizers are
truly grateful to the members of our amazing Program Committee, who helped us to determine which
work was ready to be presented, and which would benefit from the additional experiments and analyses
suggested by the reviewers.

As in years past, we are looking forward to a productive workshop and hoping it will foster new colla-
borations and research. This will enable our community to continue making valuable contributions to
public health and well-being, as well as to basic and clinical research.
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Keynote Talk
Incorporating Changes in Review Outcomes in the Evaluation
of Systematic Review Automation

Wojciech Kusa
NASK National Research Institute, Poland
2025-08-01 12:00:00 — Room: Room 2.15

Abstract: Current evaluations of automation methods in systematic literature reviews often treat all
included studies as equally important, ignoring their varying influence on review outcomes. This can
misrepresent the effectiveness of search strategies, as not all relevant studies contribute equally to the
conclusions of the review. To address this limitation, we propose a new evaluation framework that incor-
porates the differential impact of individual studies on review outcomes. Using data from the CLEF 2019
TAR task, we applied this framework to assess 74 automation models, leveraging meta-analysis effect
estimates to weigh the influence of each study. Compared to conventional binary relevance metrics, our
approach provided a more nuanced assessment, emphasizing the importance of retrieving high-impact
studies. Results showed significant differences in model rankings, underscoring the value of outcome-
based evaluation. This framework offers researchers a more precise method for evaluating systematic
review automation tools, ultimately supporting higher-quality evidence synthesis and better-informed
clinical decisions.

Bio: Wojciech is a Senior Researcher at the NASK National Research Institute in Poland, where he
leads the Linguistic Engineering and Text Analysis Department. He holds a PhD in NLP from TU Wien,
with a focus on applying and evaluating neural methods for domain-specific data. His research interests
include the safety and evaluation of large language models, clinical and biomedical NLP, and Al-driven
scientific discovery. Wojciech was a Marie Sktodowska-Curie Fellow in the EU Horizon 2020 project
DoSSIER, specialising in biomedical information retrieval and NLP. He has industry experience from
roles at Samsung and Allegro, and has completed research internships at Sony, UNINOVA, and the
Polish Academy of Sciences.
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Understanding the Impact of Confidence in Retrieval Augmented
Generation: A Case Study in the Medical Domain

Shintaro Ozaki®* Yuta Kato® Siyuan Feng® Masayo Tomita® Kazuki Hayashi®
Wataru Hashimoto® Ryoma Obara® Masafumi Oyamada®
Katsuhiko Hayashi® Hidetaka Kamigaito® Taro Watanabe®
*Nara Institute of Science and Technology (NAIST)
#The University of Tokyo ¢NEC Corporation
{ozaki.shintaro.ou6, kamigaito.h, taro.watanabe}@naist.ac.jp

Abstract

Retrieval Augmented Generation (RAG) com-
plements the knowledge of Large Language
Models (LLMs) by leveraging external informa-
tion to enhance response accuracy for queries.
This approach is widely applied in several fields
by taking its advantage of injecting the most
up-to-date information, and researchers are fo-
cusing on understanding and improving this as-
pect to unlock the full potential of RAG in such
high-stakes applications. However, despite the
potential of RAG to address these needs, the
mechanisms behind the confidence levels of its
outputs remain underexplored. Our study fo-
cuses on the impact of RAG, specifically exam-
ining whether RAG improves the confidence
of LLM outputs in the medical domain. We
conduct this analysis across various configu-
rations and models. We evaluate confidence
by treating the model’s predicted probability
as its output and calculating several evaluation
metrics which include calibration error method,
entropy, the best probability, and accuracy. Ex-
perimental results across multiple datasets con-
firmed that certain models possess the capa-
bility to judge for themselves whether an in-
serted document relates to the correct answer.
These results suggest that evaluating models
based on their output probabilities determine
whether they function as generators in the RAG
framework. Our approach allows us to evalu-
ate whether the models handle retrieved docu-
ments.'

1 Introduction

Retrieval Augmented Generation (RAG) (Lewis
et al., 2020) serves as a method to not only mitigate
hallucinations but also supplement the knowledge
of Large Language Models (LLMs) (Achiam et al.,
2023; Dubey et al., 2024; Aizawa et al., 2024). By
leveraging external information, RAG enhances re-
sponse accuracy and alignment with queries, mak-

"The code is
naist-nlp/CC_RAG.

available at https://github.com/

1

Prompt

p
Relevant documents:

{Documents}

Which of the following

structures is derived from

Confidence
Calibration?

ectomesenchyme?

Choices P HR

A: Motor neurons Q rObablhTY

B: Skeletal muscles w/ RAG

C: Melanocytes A: 0.04123 A: 0.0024

D: Sweat & B:0.014933
c:011383  C: 092317/

Answer: B -> € D: 0.04493  D: 0.0031

Figure 1: The focus of our research is to analyze whether
RAG improves the confidence of the model response.

ing it widely applicable in industries. Notable do-
mains include finance (Yepes et al., 2024; Setty
et al., 2024) and healthcare (Xiong et al., 2024),
where the reliability of information is critical. This
study focuses on the medical domain, which has
relatively more text data than other fields and in-
volves complex factors directly related to the hu-
man body. (Sohn et al., 2024; Jeong et al., 2024)

While researchers explore performance improve-
ments for LLMs using RAG, as illustrated in Fig-
ure 1, analyses focusing on prediction confidence
remain limited. Although RAG enhances answer
accuracy, it may lead to overconfidence, where
models exhibit unwarranted self-assurance (Chen
et al., 2024). We hypothesize that retrieving docu-
ments to support the correct answer through RAG
improve the model’s confidence, potentially lead-
ing to errors in confidence calibration. Based on
this, we pose a research question: Do LLMs im-
prove the confidence for outputs with RAG?

To address this question, we conduct a system-
atic analysis of multiple tasks and models in the
medical domain, exploring diverse scenarios using
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Dataset Size  Option
PubMedQA 1,000 3
MedMCQA (Extract) 2,206 4

Table 1: The dataset used in our study. We select
datasets that not only contain QA pairs but also include
explanatory passages that justify the answers.

PubMedQA (Jin et al., 2019) and MedMCQA (Pal
et al., 2022). In particular, we create pseudo-RAG
to manipulate document content — such as adding
irrelevant documents deliberately or including only
those directly related to the answer — to simulate
the range of situations RAG encounter.

Our result shows that inserting documents delib-
erately containing answer-supporting information
improve confidence in many models, aligning with
expectations, although some models exhibited be-
havior contrary to this prediction. Additionally,
inserting documents unrelated to the correct an-
swer rarely improve the confidence, suggesting that
LLMs can discriminate whether an inserted docu-
ment relates to the answer. These results indicate
that evaluating models based on output probabili-
ties can lead to reveal the suitable generator model.

2 Related Work

2.1 Confidence of LLMs

Research on confidence has been prevalent since
before the era of LLMs (Jiang et al., 2021) and
continues to be extensively explored (Geng et al.,
2024). Becker and Soatto (2024) proposed a
framework that measures confidence by leverag-
ing explanation-generating text produced by LLMs.
Zhao et al. (2021) identified the issue that few-
shot prompting significantly impacts model confi-
dence and alters its inherent performance, and they
proposed methods to address this problem. Confi-
dence estimation is used as a technique to suppress
hallucinations, where models generate false infor-
mation (Zhang et al., 2023). Cole et al. (2023)
demonstrated that by utilizing model confidence,
it is possible to suppress outputs for ambiguous
questions. Our study contributes to this body of
research by specifically analyzing how RAG influ-
ences confidence calibration in LLM outputs. Un-
like prior works that primarily optimize retrieval
mechanisms, we directly investigate confidence cal-
ibration dynamics.

2.2 Boosting RAG with Confidence

Recent advances in RAG have leveraged model
confidence (e.g., output probability) to optimize
retrieval and generation processes. For instance,
Jiang et al. (2023) introduced FLARE, which dy-
namically decides whether to retrieve additional in-
formation based on token-level confidence during
generation, ensuring efficient retrieval by minimiz-
ing unnecessary searches. Similarly, query rewrit-
ing techniques using reinforcement learning (Ma
et al., 2023) and strategies such as Recitation-
Augmented Generation (Sun et al., 2023), which
searches for text resembling hypothetical answers,
have shown promise in enhancing retrieval accu-
racy. Moreover, recent studies like Self-RAG (Asai
et al., 2024) integrate retrieval into the generation
process itself. In many of these approaches, confi-
dence plays a crucial role either in deciding when
to retrieve or in re-ranking retrieved documents
based on their relevance. However, these studies
focus on improving RAG performance without an-
alyzing how confidence itself is influenced by the
RAG. Specifically, while confidence thresholds and
re-ranking mechanisms are employed to optimize
retrieval and generation, the underlying dynamics
of confidence calibration within the RAG pipeline
remain underexplored. Our study analyzes confi-
dence calibration with and without RAG to address
this gap, verify the implicit assumptions of prior
works, and contribute to a deeper understanding of
confidence-based mechanisms in RAG.

3 Methods

Our study analyzes whether the confidence im-
proves through RAG by calculating the model’s
confidence or entropy from the predicted proba-
bility by the model. Each input is formatted by
concatenating a system prompt, a question prompt,
and its answer options (e.g., a four-choice ques-
tion), following the design of Medical Information
Retrieval Augmented Generation Evaluation (MI-
RAGE) (Xiong et al., 2024). We also analyze the
optimal position for inserting documents retrieved
via pseudo-RAG, i.e., inserting a document directly
relevant to the answer or irrelevant deliberately into
the model input prompt. Specifically, we evaluate
three insertion patterns: before the question (Pre-
Question, denoted as Pre-Q), between the question
and the answer choices (After-Question, denoted as
Aft-Q), and after the answer choices (After-Choice,
denoted as Aft-C). This setup allows us to exam-



ine the Lost-in-the-Middle phenomenon (Liu et al.,
2024), where models tend to overlook intermedi-
ate content when processing long-context inputs.
Moreover, in order to focus on the impact of re-
trieved document positions, we use documents that
contain the correct answer to the question. We
validate our research question under three scenar-
ios: (1): inserting only the explanation related to
the answer (denoted as Ans1). (2): combining the
correct explanation with two irrelevant documents
(denoted as Ans1-Oth2). (3): inserting three irrele-
vant documents (denoted as Oth3). The irrelevant
documents are selected from unrelated questions,
ensuring that they do not contain the correct answer
or semantically similar content.

Directly generating the choice answer by the
model complicates evaluation, because differences
in reported metrics arise even under identical con-
ditions across studies (Xiong et al., 2024; Chen
et al., 2023; Wu et al., 2024). In some studies, re-
searchers select the final candidate using regular
expressions, while in others, they treat the output
of a specific word (such as Yes or No) as the correct
answer. Thus, evaluation methods are not uniquely
defined if the sentence generated. In our study, we
predict the most plausible option from the given
choices as follows:

v; = log P(x; | prompt)
exp(v;)

J
> j=1 exp(v;)

where v; represents the log probability corre-
sponding to each choice x; and the prompt refers
to the provided question or context. P(z;) denotes
the probability that the choice x; is the correct an-
swer, normalized by dividing the exponential of v;

by the sum of exponentials of all v; values, while
J is the number of options, which is 3 or 4.

P(l’z) =

4 Experimental Setup

4.1 Datasets

We focus on the application of RAG in the medical
domain. For the dataset, we select PubMedQA (Jin
et al., 2019) and MedMCQA (Pal et al., 2022),
both of which include multiple-choices QA data
along with explanatory passages that justify the
answers. These datasets follow the experimental
setup of MIRAGE (Xiong et al., 2024), as shown
in Table 1. For MedMCQA, we extract only the
questions that include supporting evidence for the
answer, resulting in a total of 2,206 instances.

[You are a helpful medical

expert, and your task is to Here are the relevant

answer a multi-choice medical g:::gi:;s: Pre-

question using the relevant +i

documents. Please first think HER ngs on

step-by-step and then choose erefisiinelquesiion
{question}

the answer from the provided
options.

Your responses will be used for |[Here are the relevant

research purposes only, so documents: After-
kplease have a definite answer. | [fcontext} Question
Here are the potential choices:
System Prompt A (option.1)
Here is the question: B. {option_2}
{question} C. {option_3}
D. {option_4}

Here are the potential choices:

A. {option_1} Here are the relevant

B. {option_2} documents:

C. {option_3} {context} After-

D. {option_4 .
R Answer: Choice

Answer:

Prompt w/o RAG Prompt w/ RAG

Figure 2: Prompts used in our research. Each prompt
begins with a concatenated of the system prompt. Fol-
lowing MIRAGE (Xiong et al., 2024), we design the
templates to enable the calculation of probabilities.

4.2 Inference Models

Following prior research (Xiong et al., 2024), we
select the following models for evaluation: Phi-3.5
(3.8B) (Abdin et al., 2024), PMC-Llama (13B) (Wu
et al., 2024), Llama2 (70B) (Touvron et al., 2023b),
LLaMA3.1 (8B / 70B) (Dubey et al., 2024), and
Meditron (70B) (Chen et al., 2023). To ensure
fair evaluation across models with different ar-
chitectures and parameter sizes, we also include
Gemma?2 (2B) (Team et al., 2024) and Qwen2.5
(14B /70B) (Yang et al., 2024), bringing the total
to nine models. PMC-Llama is fine-tuned on medi-
cal domain documents based on Llama (Touvron
et al., 2023a), while Meditron undergoes continual
pretraining on Llama2 (Touvron et al., 2023b). For
70B models, we apply 4-bit quantization, and for
PMC-Llama, we use half-precision quantization to
compute probabilities. Detailed model configura-
tions are provided in Appendix A.1.

4.3 Templates

Our study modifies the approach based on the MI-
RAGE paper (Xiong et al., 2024) by excluding
Chain of Thought (CoT) (Wei et al., 2022), al-
lowing direct probability computation. (In other
words, when using CoT, the model must generate
responses, which, as discussed in Section 3, pre-
vents a valid evaluation.) Figure 2 presents the
prompts used in our study. Each prompt incorpo-



rates system prompts from prior research (Xiong
et al., 2024) at the beginning of the input prompt.
To investigate whether the Lost-in-the-Middle phe-
nomenon (Liu et al., 2024), also occurs in RAG, our
study inserts retrieved documents at three positions:
before the question (Pre-Q), after the question (Aft-
Q), and after the answer choices (Aft-C).

4.4 Evaluation Metrics

We evaluate if RAG boosts LLM confidence using
entropy, best probability, accuracy, and Adaptive
Calibration Error. In our multiple-choice QA task,
each question has one correct answer, and output
probabilities classify responses as correct or not.

Entropy. We examine how entropy changes for
candidate answer choices under the influence of
RAG, calculating an entropy. Ideally, inserting an
answer-containing document should decrease en-
tropy (indicating a more confident selection of the
correct choice), while inserting entirely unrelated
documents should improve entropy. The entropy is
computed as:

J
H(P) == P(x;)log P(x;)
i=1
exp(v;)

3251 exp(v))

Here, x; represents a candidate answer among
J total options, and v; denotes the logit score (i.e.,
the unnormalized log-probability) assigned to x;.
The softmax function transforms these logits into
a probability distribution P(z;), from which the
entropy H(P) is calculated. Lower entropy in-
dicates higher model confidence in a particular
choice, while higher entropy implies uncertainty.

P(:L’l) =

Best Probability. We define “Best Probability”
as the highest output probability among the candi-
date choices given to the model. In our study, we
evaluate this metric as confidence. A high output
probability shows strong confidence for correct an-
swers, while a low output probability is preferred
for incorrect answers (we want irrelevant docu-
ments to lower the model’s confidence).
The notation of best probability is as follows:

x* = arg max (log P(x; | prompt))

exp(v;)

P XT;) =— ———
() STy exp(v))

Settings Options
QA PubMedQA, MedMCQA
Model Gemma?2, Phi3.5, Llama2, LlamaS.l
Qwen2.5, PMC-Llama, Meditron
Template w/o RAG, Pre-Q, Aft-Q, Aft-C
Evaluation  Entropy, Best Prob, Accuracy, ACE

Table 2: Experimental settings used in our research.

Here, X is the set of all candidate answer
choices, and z* denotes the choice with the high-
est log-probability. Each v; represents the model’s
logit for the candidate x;, and the softmax function
converts these logits into a probability distribution
over all choices. The selected x* corresponds to the
most confident prediction the model makes under
the given prompt. This Best Probability reflects
how strongly the model favors its top prediction,
and it serves as an interpretable confidence score
in our evaluations.

Adaptive Calibration Error (ACE). Adaptive
Calibration Error (ACE) (Nixon et al., 2019) is a
metric proposed to address the shortcomings of Ex-
pected Calibration Error (ECE) (Naeini et al., 2015;
Guo et al., 2017), specifically aiming to reduce
the risk of bins with a small number of samples.
Proskurina et al. (2024) and Ulmer et al. (2022)
have pointed out that ACE is a more suitable cal-
ibration error metric for multi-class classification
problems. Based on these findings, we adopt ACE
in our evaluation. Table 2 provides a complete list
of all combinations and Appendix A.6 the details
of evaluation metrics.

5 Results

Table 3 presents the experimental results using
MedMCQA, while Table 4 shows the results for
PubMedQA. When distinguishing between cor-
rectly answered and incorrectly answered ques-
tions, Phi and Qwen exhibited ideal behavior from
an entropy perspective. Specifically, inserting sup-
porting documents for the correct answers led
to higher entropy, whereas inserting only unre-
lated documents resulted in lower entropy. In con-
trast, other models, e.g., Llama2, Llama3.1, and
Gemma2, produced unexpected results, suggest-
ing that Llama and Gemma may struggle to pro-
cess inserted documents effectively. Furthermore,
Qwen and Phi demonstrated the ability to deter-
mine whether an inserted document was relevant
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Figure 3: The transition of experimental results using MedMCQA. The figure classifies correctly answered and
incorrectly answered questions, illustrating how their distributions shift. This visualization corresponds to the Ansl

setting, with plots for all three conditions: Pre-Q, Aft-Q, and Aft-C.

MedMCQA (Entropy and Best Probability)

Model P Entropy (Correct) | Best Prob (Correct) T Entropy (Incorrect) | Best Prob (Incorrect) |
odel attern
None Ansl Ans1-Oth2 Oth3 None Ansl Ans1-Oth2 Oth3 None Ansl Ansl-Oth2  Oth3 None Ansl Ansl1-Oth2 Oth3
w/oRAG 1.2441 1) - - - 0424055 - - - 1.2841.07 - - - 0.3840.38 - - -
LI 2-70b-chat-hf Pre-Q - L12+016 1124006 1.2720.10 - 0544012 0541012 0414000 - 1272008 1284008 131006 - 0414007 0401008  0.38+007
ama-2-70b-chat-ht A - Lllio16  L154016  1.29:0.10 - 0554012 0524013 0.4010.00 - 1271000 1294008  1.3li0.06 - 0414008 040:008  0.3810.07
Aft-C - 1155006 1233002 1.30x0.0 - 0514013 0461011 0.394+0.00 - 1281000 1.31x007  1.31x0.07 - 0404008  0.38:008  0.3840.08
WORAG 1244101 - - 0420 - - - 13lg - - 035w - - N
Llama-3.1-70B Pre-Q - 1355007 1354007 1.35:0.07 - 0321003 0332003 0.3310.03 - 1355002 1354002 1.35:0.02 - 0324001 0324001 0.334001
- Aft-Q - 1352007 1354007 1.35:007 - 0.333003 0331003 0.331003 - 1352002 1351002 1.35:002 - 0.323001 0332001 0331001
Aft-C - 1351007 1354007 1354007 - 0331003 0334003 0334003 - 1351002 1354002 1351002 - 0324001 0331001 0334001
WORAG 1381138 - _ 028102 - N _ 1385138 - - 0270 - N -
Llama-3.1-8B Pre-Q - 138007 1381007 1.381007 - 0284003  0.282003  0.28:003 - 138002 1384002 1382002 - 0274001 02720010 0272001
- Aft-Q - 138007 1383007 1.3820.06 - 0284003 0284003  0.2810.03 - 1382002 1381002 1.38:0.02 - 0271001 0272001 027:x0m
Aft-C - 1381007 1384007 1.38:4007 - 0284003  0.28:003  0.2810.03 - 1381002 1384002 1.38:0.02 - 0274001 0271001 0271001
w/oRAG  1.2341.05 - - - 042057 - - - 1.255109 - - - 0.40.0.40 - - -
meditron-70b Pre-Q - Lllgoa7r 1054019 1235011 - 0541013 0.57:014 047000 - 1245010 1194011 1272008 - 0431008 047:008 043008
Aft-Q - L10x017  1.0940a7  1.21:omn - 0541013 0.55:013 0481000 - 1232010 1201000 1.23:0.0 - 0441008 0472008 0471000
Aft-C - 1155007 1284010 130008 - 051:003 0432000 0411007 - 1272008 1312006 1312006 - 041s007 040007 041:007
WIoRAG  1.0041.00 _ _ _ 0561056 _ _ _ 1054105 _ 7 _ 0.53201 _ _ _
PMCILaMA-138  TQ - 1361005 1361006 1362006 - 0334005 0324005 0.324005 - 1371003 1374002 1.37:0.02 - 0314001 031903 0314003
Aft-Q - 1361006 1.364006  1.36:40.06 - 0334005 0321005  0.3110.05 - 1361003 1.374003  1.3720.03 - 03240014 0.31:003  0.3110.04
AfLC — 136s0  135i00r 13600 - 033i00s 033005 033005 - 136005 136:0as  136s005 -~ 0324001 032:001  032400s
w/ORAG 1174111 - - - 0.5240.56 - - - 1184113 - - - 0.5240.51 - - -
Gommaa.ah Pre-Q — Lluggs LBiger LSie - 085im O4ige 052 - LlTaggs Llbsge  Ll6igos  —  08Lie  0Sligm  052i00
Af-Q - 1132007 Ll4soos 1152006 - 0.55:005  0.53001  0.52:004 - 1172005 1162004 1152004 - 0.51:004 051001 0.52:003
Aft-C - Llligos 1124007 1131006 - 056005 0551005 0544004 - 1162005 1.14s005s 113005 - 0531004 0540010 0544004
WORAG 0931005 - - - 0.6210.05 - - - 1.0940.30 - - - 0511051 - - B
Phi-3.5 Pre-Q - 0.06:0.17  0.071018  0.24:0.32 - 0.98:008 098005  0.90:015 - 0391031 0431035 049038 - 0841015 0.824015  0.8040.19
- Aft-Q - 0.05:016 0071015 0344036 - 098007 0971008 0874017 - 045:035 0461035  0.50:037 - 0811015 08lipis 0804019
Aft-C - 0.09:0.19  0.144022  0.2710.32 - 0974009 095010  0.9010.15 - 0452030 0444036 0.42+0.35 - 0814018 0824019  0.8410.17
w/o RAG  0.86.40.48 - - - 0.67410.85 - - - 1.06.41.03 - - - 0.5540.49 - - -
Owen25-148 PreQ © 0520w 03igwm  O089cm - O084igs  O08i0u 065w - M03s;  105im  107m0m - 0361015 05515 054k
i Aft-Q - 048:032 0514033 0924029 - 0.85:014 0842016 0.63+0.17 - 1041024 1.054023  1.0620.21 - 0.56:0.15  0.55:015  0.55:0.14
Aft-C - 0.66:035 0801032  1.004024 - 0771017 0.71s0as 0594016 - 1125020 1124020 115007 - 0511013 05lipaa 0494012
WORAG 082:044 - - - 0690 - - - 1090 - - 033, - - -
Qwen2.5-72B Pre-Q - 0524031 0561032 0.75:032 - 0831014 0801015 0714018 - 091:026  0.871024 0941024 - 0611016 0.63:015  0.62:40.15
- Aft-Q - 0442030 0544031 0.83:0m - 0.86:013 0821015  0.68:017 - 0.99+027 0971024 0.99:0.22 - 0.57+016  0.592015  0.60015
Aft-C 0.53:032  0.651032  0.85+0.28 - 0.82+015  0.77:0.16  0.67+0.17 1001025 1.024021  0.99:0.22 - 0574015  0.57+01a  0.61+0.14

Table 3: Experimental result on MedMCQA. Bold indicates the best value among the models. Specifically, the
lowest entropy and the highest best probability (Correct case) are highlighted. This table has numerical values and

their standard deviations.

to the answer, leading to provide strong evidence
that they function as suitable generators.

6 Analysis & Discussion

How Does RAG Affect Prediction Probabilities?
Figure 3 presents partial experimental results us-
ing MedMCQA, while Figure 4 shows results from
PubMedQA. These figures correspond to the Ansl
setting, where all three phases—Pre-Q, Aft-Q, and
Aft-C—are plotted. A detailed analysis focuses
on Phi and Qwen, which exhibited ideal behavior.
When RAG was not applied, i.e., evaluating the
models’ intrinsic accuracy, the output probabili-

ties were evenly distributed across both datasets.
Furthermore, the results of Phi-3.5 on PubMedQA
reveal that the incorrect predictions tend to con-
centrate at the upper end, i.e., where output prob-
abilities are high. This pattern suggests that the
model exhibits overconfidence, making incorrect
predictions despite assigning high probabilities.
When solving a QA task under a deliberate set-
ting that includes supporting documents for correct
answers (similar to pseudo-RAG), all models (Phi
and Qwen) showed improved output probabilities.
This suggests that the models can assess whether
retrieved documents contain useful information.
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PubMedQA (Entropy and Best Probability)

Entropy (Correct) | Best Prob (Correct) Entropy (Incorrect) | Best Prob (Incorrect) |
Model Pattern
None Ansl Ans1-Oth2 Oth3 None Ansl Ans1-Oth2 Oth3 None Ansl Ans1-Oth2 Oth3 None Ansl Ans1-Oth2 Oth3

wloRAG 0834053 - - - 0.62+0.62 - - - 0.930.03 - - - 0.55:0.35 - - -
Llama-2-70b-chat-hf Pre-Q - L12:006 1125016 1.2720.0 - 0541012 054:012 0411000 - 1272008 1281008  1.31z0.06 - 041x007  040:008  0.381007
Aft-Q Ll L1Sies 1290000 - 0555012 052:013  040snpe - 127:000 1295005 13ligos - 0d4liges  040:00s 0384007
Aft-C - 1152006 1234012 130200 - 0514013 0465011 0.39:000 - 1282000 13lsoor  1.3lx007 - 0401008 0381008 0381008

WIORAG  0.861056 - - - 0.591050 B - N 0.871057 - B - 0572032 B - B
Liama-3.1.708 Pre-Q - 1352007 1351007 1.35z007 - 0.324003 0331003 0.331003 - 1352000 1354002 1.35z002 - 0324001 032:000 0331001
R Aft-Q - 1.35.4 1354007 13 7 - 0334003 0.332003  0.331003 - 1355002 1354002 1352002 - 0324001 0332000 0331001
Aft-C - 1352007 1353007 1352007 - 0.33:003  0.332003  0.33:003 - 1352002 1353002 135002 - 0324001 0331001 0.331001

WIoRAG  1.09:109 _ _ _ 036404 _ _ _ 1094109 _ _ _ 0361027 _ _ _
Liama-3.1-8B Pre-Q - 1382007 1384007 1.3840.07 - 0.28+0.03 0282003  0.2810.03 - 1382002 1384002 1.3840.02 - 0274001 027200 0274001
. Aft-Q - 1382007 1381007 1.38x0.06 - 0281003 0281003  0.281003 - 1382002 1381002 1.38z002 - 027x001 0272001 0272001
Aft-C - 1381007 1384007 1.38:0.07 - 028003 0282003  0.281003 - 1381002 1384002 1.38:0.02 - 0271001 0272001 0271001

w/oORAG  0.9410.04 - - - 0.54.40.57 - - - 0.9410.04 - - - 0.52£0.40 - - -
meditron-70b Pre-Q - Lllioa7r 1054019 1232011 - 0541013 0575014 0471000 - 1245010 L1901 1.27:008 - 0434008 0472008 0431008
Aft-Q - 1104007 1092017 1.21:0m - 0541013 0.55:013 0481009 - 1232010 1200010 1232010 - 0441008 047008 0471009
Aft-C - 1152007 1284010 1.30x008 - 0511013 0431000 0411007 - 1272008 13ls006  1.31x0.06 - 041x007 0405007 0413007

w/oRAG  1.08+1 08 - - - 0.404+0.40 - - - 1.08+1.08 - - - 0.40+0.31 - - -
PMC.LLaMA-13B Pre-Q - 1362006 1361006  1.36:0.06 - 0331005 0321005 0324005 - 1372003 1374002 1372002 - 0311001 031003 031003
} : Aft-Q - 1361006 1364006 1.36:0.06 - 0331005 0322005 0.3110.05 - 1361003 1374003 1.3720.03 - 0.32:004  0.31:003 0314004
Aft-C - 1362006 1354007 1.36z007 - 0333005 0332005 0331005 - 1362003 1364003 1.36:003 - 0324001 0325004 0323004

w/oRAG 0931003 - - - 0.61+0.61 - - - 0.9310.03 - - - 0.61+0.51 - - -
Gemma-2-2b Pre-Q - 1122008 1134007 1152006 - 0551005 0.54x001  0.52:004 - 1172005 1164001 1162004 - 0514004 05lio0s  0.5240.03
: Aft-Q - LBs007r  Ll4soos 1152006 - 0.554005  0.53:001  0.52:004 - 1175005 1161001 1152004 - 051004 0.5ls001  0.521003
Aft-C - Illsoos 1123007 1132006 - 0.564005  0.55:005  0.54+0.04 - 1161005 1144005 1.1320.05 - 0531004 0.54:000  0.541004

w/oRAG  0.40+0.05 - - - 0.81+0.98 - - - 0.4110.39 - - - 0.82+0.50 - - -
Phi-3.5 Pre-Q - 0.06:017  0.07101s - 0981005 0981008 0904015 - 0391031 0431035 049:03s - 0841015 082015 0804019
o Aft-Q - 005006 0.07+0.18 - 098007 0972008  0.8710a7 - 0452035 0461035  0.500.37 - 0811018 0.8l:oas  0.8010.19
Aft-C - 0.09:019  0.141022 - 0974000 0955010 0901015 - 0452031 0445036 0.42:035 - 0811018 0824019 0841017

w/oRAG  0.90+0.48 - - - 0.59+0.85 - - - 0.9240.92 - - - 0.5840.19 - - -
Quwen2.5-14B Pre-Q - 0.52:033 0531035  0.89:0.30 - 0.84:015 083016 0.65:015 - 1031023 1054023  1.07:0.22 - 0.56+015 055015  0.5410.15
- Aft-Q - 048.032 05ligss 0924029 - 085014 084:016  0.634017 - 1.042024 1054023  1.06:021 - 0561015 0551015 0554014
Aft-C - 0.66+0.35  0.801032  1.00+0.24 - 077007 0.71x018  0.59:016 - 1122000 1123020 1152007 - 0514013 0.51:00a 0491012

w/oRAG  0.9710.44 - - - 0.5340.86 - - - 1.0040.87 - - - 0.4940.49 - - -
Quen25-72B Pre-Q - 052:m  056i0m O075:0m - 083w 080s015 O7ligis - 090s0a5  08Taoar 0902 - 06lagas 063015 062401
- Aft-Q - 04403 054031 08303 - 0861013 0821015  0.681017 - 0.99:027 0971021 0.99:022 - 0.57+016 0592015  0.60+0.15
Aft-C - 0.534032  0.651032  0.85402s - 0.824015 0772016 0.674017 - 1024021 0.9940.22 - 0.574015 0571014 0.61i014

Table 4: Experimental results using PubMedQA. Bold indicates the best value among the models. Specifically, the
lowest entropy and the highest best probability (Correct case) are highlighted. This table has numerical values and

their standard deviations.

Model Behavior When Inserting Answer-
Containing Documents. When explicitly insert-
ing documents that contain the correct answers,
Phi and Qwen demonstrated ideal behavior. For
instance, from a correct entropy perspective in Ta-
ble 3, Phi had a value of 0.933 under the w/o RAG
setting, which dropped to 0.051 after document
insertion. Similarly, for Qwen2.5 (72B), entropy
decreased from 0.819 to 0.444. This observation
indicates that the models can assess whether an in-
serted document is relevant to the question. More-
over, when they determine that the document is
unnecessary, they attempt to answer using their

own knowledge. Further evidence supporting this
conclusion comes from cases where inserting un-
related documents did not improve accuracy. This
suggests that the models selectively utilize external
information only when it is deemed useful.

Behavior of Calibration Error. Table 5 presents
the evaluation result of ACE using MedMCQA,
while Table 6 shows the results for PubMedQA.
A detailed analysis of Llama and Gemma reveals
substantial differences in behavior depending on
the model. Notably, even when inserting entirely
correct documents (Ansl), Llama3.1 (70B) experi-



ACE | Accuracy 1
Model Pattern

None Ansl Ans1-Oth2 Oth3 None Ansl Ans1-Oth2 Oth3

w/oRAG 2208 _ _ _ 38322 _ _ _
Ljama (708 Pre-Q - 22359 25.113 7.181 - 72575 75.340 32.094
ama Aft-Q - 23912 21.132 10.781 - 75.567 69.628 28.105
Aft-C - 19.653 17.514 9.803 - 67.498 60.743 28.876

wloRAG 19582 _ _ _ 58.977 _ _ _
Llama3.1 (708) Pre-Q - 11.496 11.580 11.658 - 20.898 20.943 20.943
amas. Aft-Q - 11.518 11.671 11.714 - 20.898 20.898 20.943
Aft-C - 11.504 11.707 11.795 - 20.943 20.943 20.943

WloRAG 5423 _ - _ 22209 _ _ _
Llama3 1 (8B) Pre-Q - 4701 4254 3.644 - 23.345 23.209 23.799
amas. Aft-Q - 4473 4.632 3.892 - 23.028 23.209 24.025
Aft-C - 4476 4746 4.990 - 23.209 23.255 23.663

wloRAG 6412 - - - 35.525 - _ -
Meditron (108 Pre-Q - 17.684 7.652 8.665 - 67.724 54.034 36.038
editron (70B) Aft-Q - 15.894 9.467 15.334 - 66.682 47.144 31.958
Aft-C - 15.101 6.946 9.006 - 62.829 34.180 31.913

wloRAG  15.671 _ _ _ 38.107 _ _ _
pMC-Liama (133) 70 - 4943 4367 4357 - 32.729 31.641 26.972
“ama Aft-Q - 4.003 2.550 5.032 - 32.910 30.009 26.972
Aft-C - 3.496 3.780 4397 - 33.454 28.740 28.060

wloRAG  19.568 _ _ _ 32297 _ _ _
Gemma2 (2B Pre-Q - 25511 23.160 20.520 - 31.233 31.278 31.278
emma2 (2B) Aft-Q - 24.160 21.072 20.618 - 31.188 31.278 31.278
Aft-C - 24814 23.118 22916 - 31.324 31.324 31.324

WwloRAG  5.624 - - - 51518 - _ -
Phi3S (3.85) Pre-Q - 9.786 10.378 33.709 - 86.083 84.950 51.813
1990 Aft-Q - 7.636 9.270 43.415 - 88.486 85.947 39.393
Aft-C - 7.682 15.952 42.476 - 87.353 76.111 44334

wloRAG  12.125 _ _ _ 49.151 _ _ _
Qwen2.5 (14B) Pre-Q - 8.646 8.740 11.892 - 89.483 88.441 47.280
wens. Aft-Q - 7.013 7257 17.592 - 89.121 87.534 40.798
Aft-C - 7.746 9.778 8.531 - 79.329 75.884 45.014

wloRAG  4.030 _ — _ 60.483 _ _ _
25 (12m) Pre-Q - 9.393 7.896 20412 - 89.982 85.766 45739
Qwen2.5( Aft-Q - 8.782 9.781 18.652 - 93.246 89.574 44.696
Aft-C - 9.270 5.990 23.564 - 88.622 79.284 39.483

Table 5: Evaluation results with MedMCQA. Red highlights areas where performance improved compared to the

non-RAG setting, while Blue indicates areas where performance deteriorated.

ences a drop in accuracy, whereas Llama3.1 (8B)
shows improved accuracy even when inserting com-
pletely unrelated documents (Oth3). This stark
contrast indicates that even within the same model
family, behavior can vary largely. Moreover, a com-
parison between Llama2, Meditron, and Llama3.1
shows considerable differences in behavior, ruling
out parameter size as the primary cause. These
findings suggest that while the Llama series per-
forms well under specific instruction formats, it
may negatively impact performance in other cases.
On the other hand, Qwen and Phi exhibit a clear pat-

tern: inserting entirely unrelated documents (Oth3)
worsens ACE, while inserting answer-containing
documents (Ans1 or Ans1-Oth2) leads to improve-
ments. This tendency implies that Phi and Qwen
possess the ability to assess whether retrieved doc-
uments provide useful information. These results
show that analyzing LLM confidence through pre-
dicted probabilities effectively reveals the model’s
ability to identify meaningful documents.

Did “Lost in the Middle” Phenomenon Occur?
Our study also examined the “Lost in the Middle”
phenomenon (Liu et al., 2024) by evaluating the



ACE | Accuracy 1
Model Pattern

None Ansl Ans1-Oth2 Oth3 None Ansl Ans1-Oth2 Oth3

WloRAG 12107 _ _ _ 46.400 _ _ _
Ljama (708 Pre-Q - 29.791 30.422 14.146 - 82.200 79.800 56.500
ama Aft-Q - 30.380 31.220 13.234 - 81.600 74.100 53.000
Aft-C - 13.494 13.430 11322 - 57.200 53.100 50.700

wloRAG  6.091 - _ - 58.600 - _ -
Ljama.1 (708) Pre-Q - 11.329 11513 11.521 - 55.200 55.200 55.200
amas. Aft-Q - 11.343 11.532 11.539 - 55.200 55.200 55.200
Aft-C - 11.370 11.534 11.543 - 55.200 55.200 55.200

w/oRAG 24939 _ _ _ 11.000 _ _ _
Llama3 1 (88) Pre-Q - 23.683 23.368 23.975 - 12.200 12.600 12.000
amas-. Aft-Q - 23.085 23.576 23.988 - 12.800 12.400 12.000
Aft-C - 23.930 23.854 24.370 - 11.900 12.100 11.600

wioRAG  18.115 _ _ _ 34.800 _ _ _
Meditron (108 Pre-Q - 11.540 18.483 8.365 - 57.300 69.800 57.200
editron (70B) Aft-Q - 9.159 6.645 6.270 - 56.700 55.600 54.800
Aft-C - 4171 5.050 7915 - 54.700 54.800 55.100

WwloRAG  17.261 - - - 22.800 - _ -
N - 10.462 4.650 3387 - 28.800 37.900 36.600
Llama (138) ¢ - 10.322 4.000 3.985 - 28.900 39.200 40.000
Aft-C - 4169 5.421 7.250 - 41.200 44.500 46.100

w/oRAG 6387 _ _ _ 55.200 _ _ _
Gomma (OB Pre-Q - 5.794 5.409 5.394 - 55300 55.200 55.200
emma2 (2B) Aft-Q - 6.159 5.098 4.188 - 55.200 55.200 55.200
Aft-C - 9.081 6.161 6.376 - 55.200 55.200 55.200

wloRAG  48.176 _ _ _ 33.400 _ _ _
Pre- - 14.640 14.777 57.831 - 81.600 81.200 21.900

Phi3.5 (3.8B) re-Q

Aft-Q - 13.677 31.960 52.083 - 82.300 62.700 41300
Aft-C - 16.771 33.297 47.123 - 73.700 52.300 33.800

wloRAG  15.874 _ _ _ 42.800 _ _ _
Qwen2.5 (14B) Pre-Q - 4746 4816 18.425 - 83.400 83.200 32.600
wens. Aft-Q - 3.460 5013 26.783 - 82.800 76.100 33.900
Aft-C - 7.616 3.088 23.229 - 74.500 63.900 32.100

wloRAG 7205 _ — _ 46.400 _ _ _
25 (12m) Pre-Q - 10.477 3.801 25.283 - 74.900 78.100 33.000
Qwen2.5( Aft-Q - 8.024 10.931 17.828 - 80.300 71.200 34.300
Aft-C - 8.877 6.995 13.543 - 76.800 71.000 42500

Table 6: Evaluation results on PubMedQA. Red highlights areas where performance improved compared to the

non-RAG setting, while Blue indicates areas where performance deteriorated.

impact of document placement within the template
across multiple positions (Pre-Q, Aft-Q, and Aft-
C). Focusing on Phi and Qwen, which exhibited
expected behavior in terms of entropy and accu-
racy, an intriguing pattern emerged. From an en-
tropy perspective, inserting the document after the
answer choices yielded the best results, while from
an accuracy perspective, placing it before the an-
swer choices was optimal. These findings suggest
that when prioritizing the reliability of information,
entropy should be the primary metric.

Error Analysis. Appendix B.1 presents the re-
sults of the error analysis, which examines how
the model makes mistakes. PubMedQA consists
of three answer choices: yes, no, and maybe, al-
lowing us to analyze the types of errors the model
makes. For Llama3.1 (8B, 70B), PMC-Llama, and
Gemma2, the bin colors remain unchanged, indicat-
ing that these models do not incorporate arbitrarily
inserted supporting documents (Ans1, Ans1-Oth2).
Meditron, w/o RAG, outputs “No” for all incorrect
answers. However, when a document is provided,
it changes all responses to “Yes,” revealing an ex-



tremely sensitive behavior.

7 Conclusion

Our research explored the impact of Retrieval Aug-
mented Generation (RAG) on model confidence in
the medical domain where information reliability
is crucial. We found that when models retrieve rel-
evant documents, they not only boost accuracy but
also show higher confidence scores. In contrast, ir-
relevant documents have little effect on improving
confidence. Several models demonstrate the ability
to judge if the retrieved documents connect to the
correct answer, indicating a more discerning use
of external information than we anticipated. Our
evaluation metrics provide a clear framework for
spotting the best generator models within RAG sys-
tems. The findings reveal that models adjust their
output probabilities in response to the quality of the
retrieved documents, which opens up new ways to
measure and improve model performance. These
insights help refine RAG methods, making them
more reliable for high-stakes applications.

8 Limitations

8.1 The Experiments of the Other Domain

Our study prioritizes domains where RAG is ap-
plied, focusing specifically on the medical domain
to analyze confidence. To advance further, it be-
comes necessary to validate RAG in domains such
as finance and analyze its confidence in contexts
requiring highly reliable information.

8.2 Further Analyzing New RAG Architecture

Our study focused exclusively on analyzing the
basic RAG architecture. While the standard RAG
framework directly utilizes retrieved documents
within the LLM, newer RAG architectures incorpo-
rate various control mechanisms. Moving forward,
it is essential to analyze these advanced architec-
tures from the perspective of confidence as well.

8.3 Other Metrics for Evaluation

The evaluation metrics used in this study, ACE,
may have some drawbacks. (Kull et al., 2019; Ku-
mar et al., 2019; Baan et al., 2022). Since LLMs
outputs are not always strictly correct or incorrect,
researchers often use Prediction Rejection Ratio
(PRR), which measures the correlation between
confidence scores and output quality. (Fadeeva
et al., 2023; Vashurin et al., 2025; He et al., 2024;
Ozaki et al., 2025b). However, our study focuses

on a multiple-QA task, where each question has
a uniquely defined correct answer. Additionally,
the models were evaluated using force decoding.
Given these conditions, ACE serves as appropriate
evaluation metrics.

8.4 Methods for Generating Model Outputs

This study deliberately avoids generating free-text
responses from models. Instead, it retrieves an-
swer candidates using force decoding This de-
cision stems from an observation in prior re-
search: many studies rely heavily on regular ex-
pressions to extract correct answers, leading to
substantial accuracy variations even when using
the same QA task and model. (https://github.
com/Teddy-XiongGZ/MedRAG, https://github.
com/epfLLM/meditron, https://github.com/
chaoyi-wu/PMC-LLaMA.) To address this issue, we
select answer choices based on the model’s inherent
output probabilities. This approach avoids intro-
ducing dependencies on specific evaluation metrics,
which would otherwise occur if the model were
required to generate explanations using Chain-of-
Thought (CoT) or produce confidence scores.

9 [Ethical Considerations

9.1 The Possibility of Dataset Bias

The datasets and retrieval mechanisms employed in
our study may carry inherent biases, which could
influence the model’s predictions and potentially
affect fairness in decision-making. Recognizing
these biases, we advocate for the use of diverse and
representative datasets to minimize their impact.
Additionally, we uphold transparency by analyzing
the interplay between confidence and accuracy, pro-
viding users with clearer insights into the system’s
limitations and confidence. However, we empha-
size the need for human oversight, as no automated
system can guarantee infallibility.

9.2 Al Assistant Tools

We used ChatGPT 2 and DeepL * to translate sen-
tences to English and accelerate our research.

References

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed
Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat

2ht’cps: //chatgpt.com/
Shttps://www.deepl.com/ja/translator


https://github.com/Teddy-XiongGZ/MedRAG
https://github.com/Teddy-XiongGZ/MedRAG
https://github.com/epfLLM/meditron
https://github.com/epfLLM/meditron
https://github.com/chaoyi-wu/PMC-LLaMA
https://github.com/chaoyi-wu/PMC-LLaMA
https://chatgpt.com/
https://www.deepl.com/ja/translator

Behl, et al. 2024. Phi-3 technical report: A highly ca-
pable language model locally on your phone. arXiv
preprint arXiv:2404.14219.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Akiko Aizawa, Eiji Aramaki, Bowen Chen, Fei Cheng,
Hiroyuki Deguchi, Rintaro Enomoto, Kazuki Fujii,
Kensuke Fukumoto, Takuya Fukushima, Namgi Han,
et al. 2024. Llm-jp: A cross-organizational project
for the research and development of fully open
japanese llms. arXiv preprint arXiv:2407.03963.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2024. Self-RAG: Learning to
retrieve, generate, and critique through self-reflection.
In The Twelfth International Conference on Learning
Representations.

Joris Baan, Wilker Aziz, Barbara Plank, and Raquel
Fernandez. 2022. Stop measuring calibration when
humans disagree. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1892-1915, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Evan Becker and Stefano Soatto. 2024. Cycles of
thought: Measuring llm confidence through stable
explanations. Preprint, arXiv:2406.03441.

Lu Chen, Ruqing Zhang, Jiafeng Guo, Yixing Fan, and
Xueqi Cheng. 2024. Controlling risk of retrieval-
augmented generation: A counterfactual prompting
framework. In Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pages 2380—
2393, Miami, Florida, USA. Association for Compu-
tational Linguistics.

Zeming Chen, Alejandro Herndandez Cano, Angelika
Romanou, Antoine Bonnet, Kyle Matoba, Francesco
Salvi, Matteo Pagliardini, Simin Fan, Andreas
Kopf, Amirkeivan Mohtashami, Alexandre Sallinen,
Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk,
Deniz Bayazit, Axel Marmet, Syrielle Montariol,
Mary-Anne Hartley, Martin Jaggi, and Antoine
Bosselut. 2023. Meditron-70b: Scaling medical
pretraining for large language models. Preprint,
arXiv:2311.16079.

Jeremy Cole, Michael Zhang, Daniel Gillick, Julian
Eisenschlos, Bhuwan Dhingra, and Jacob Eisenstein.
2023. Selectively answering ambiguous questions.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
530-543, Singapore. Association for Computational
Linguistics.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gpt3. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. Advances in
Neural Information Processing Systems, 35:30318-
30332.

10

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Ekaterina Fadeeva, Roman Vashurin, Akim Tsvigun,
Artem Vazhentsev, Sergey Petrakov, Kirill Fedyanin,
Daniil Vasilev, Elizaveta Goncharova, Alexander
Panchenko, Maxim Panov, Timothy Baldwin, and
Artem Shelmanov. 2023. LM-polygraph: Uncer-
tainty estimation for language models. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing: System Demon-
strations, pages 446—461, Singapore. Association for
Computational Linguistics.

Jiahui Geng, Fengyu Cai, Yuxia Wang, Heinz Koeppl,
Preslav Nakov, and Iryna Gurevych. 2024. A sur-
vey of confidence estimation and calibration in large
language models. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
6577-6595, Mexico City, Mexico. Association for
Computational Linguistics.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. In International Conference on Machine
Learning, pages 1321-1330. PMLR.

Kazuki Hayashi, Yusuke Sakai, Hidetaka Kamigaito,
Katsuhiko Hayashi, and Taro Watanabe. 2024. To-
wards artwork explanation in large-scale vision lan-
guage models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 705-729,
Bangkok, Thailand. Association for Computational
Linguistics.

Jianfeng He, Runing Yang, Linlin Yu, Changbin Li,
Ruoxi Jia, Feng Chen, Ming Jin, and Chang-Tien Lu.
2024. Can we trust the performance evaluation of un-
certainty estimation methods in text summarization?
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
16514-16575, Miami, Florida, USA. Association for
Computational Linguistics.

Minbyul Jeong, Jiwoong Sohn, Mujeen Sung, and Jae-
woo Kang. 2024. Improving medical reasoning
through retrieval and self-reflection with retrieval-
augmented large language models. Bioinformatics,
40(Supplement_1):i119-i129.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham
Neubig. 2021. How can we know when language
models know? on the calibration of language models
for question answering. Transactions of the Associa-
tion for Computational Linguistics, 9:962-977.

Zhengbao Jiang, Frank Xu, Luyu Gao, Zhiqing Sun,
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie
Callan, and Graham Neubig. 2023. Active retrieval


https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8
https://doi.org/10.18653/v1/2022.emnlp-main.124
https://doi.org/10.18653/v1/2022.emnlp-main.124
https://arxiv.org/abs/2406.03441
https://arxiv.org/abs/2406.03441
https://arxiv.org/abs/2406.03441
https://doi.org/10.18653/v1/2024.findings-emnlp.133
https://doi.org/10.18653/v1/2024.findings-emnlp.133
https://doi.org/10.18653/v1/2024.findings-emnlp.133
https://arxiv.org/abs/2311.16079
https://arxiv.org/abs/2311.16079
https://doi.org/10.18653/v1/2023.emnlp-main.35
https://doi.org/10.18653/v1/2023.emnlp-demo.41
https://doi.org/10.18653/v1/2023.emnlp-demo.41
https://doi.org/10.18653/v1/2024.naacl-long.366
https://doi.org/10.18653/v1/2024.naacl-long.366
https://doi.org/10.18653/v1/2024.naacl-long.366
https://doi.org/10.18653/v1/2024.acl-short.65
https://doi.org/10.18653/v1/2024.acl-short.65
https://doi.org/10.18653/v1/2024.acl-short.65
https://doi.org/10.18653/v1/2024.emnlp-main.923
https://doi.org/10.18653/v1/2024.emnlp-main.923
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.18653/v1/2023.emnlp-main.495

augmented generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7969-7992, Singapore. As-
sociation for Computational Linguistics.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William
Cohen, and Xinghua Lu. 2019. PubMedQA: A
dataset for biomedical research question answering.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2567—
2577, Hong Kong, China. Association for Computa-
tional Linguistics.

Meelis Kull, Miquel Perello Nieto, Markus Kéngsepp,
Telmo Silva Filho, Hao Song, and Peter Flach.
2019. Beyond temperature scaling: Obtaining well-
calibrated multi-class probabilities with dirichlet cal-
ibration. Advances in neural information processing
systems, 32.

Ananya Kumar, Percy S Liang, and Tengyu Ma. 2019.
Verified uncertainty calibration. Advances in Neural
Information Processing Systems, 32.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157-173.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting in retrieval-
augmented large language models. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5303-5315, Singa-
pore. Association for Computational Linguistics.

Mahdi Pakdaman Naeini, Gregory F Cooper, and Milos
Hauskrecht. 2015. Obtaining well calibrated prob-
abilities using bayesian binning. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages
2901-2907.

Jeremy Nixon, Michael W. Dusenberry, Linchuan
Zhang, Ghassen Jerfel, and Dustin Tran. 2019. Mea-
suring calibration in deep learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops.

Shintaro Ozaki, Kazuki Hayashi, Miyu Oba, Yusuke
Sakai, Hidetaka Kamigaito, and Taro Watanabe. 2024.
Bqga: Body language question answering dataset
for video large language models. arXiv preprint
arXiv:2410.13206.

11

Shintaro Ozaki, Kazuki Hayashi, Yusuke Sakai, Hide-
taka Kamigaito, Katsuhiko Hayashi, and Taro Watan-
abe. 2025a. Towards cross-lingual explanation of art-
work in large-scale vision language models. In Find-
ings of the Association for Computational Linguistics:
NAACL 2025, pages 3773-3809, Albuquerque, New
Mexico. Association for Computational Linguistics.

Shintaro Ozaki, Kazuki Hayashi, Yusuke Sakai, Jin-
gun Kwon, Hidetaka Kamigaito, Katsuhiko Hayashi,
Manabu Okumura, and Taro Watanabe. 2025b. Text-
tiger: Text-based intelligent generation with en-
tity prompt refinement for text-to-image generation.
arXiv preprint arXiv:2504.18269.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan
Sankarasubbu. 2022. Medmcqa: A large-scale multi-
subject multi-choice dataset for medical domain ques-
tion answering. In Proceedings of the Conference
on Health, Inference, and Learning, volume 174 of
Proceedings of Machine Learning Research, pages
248-260. PMLR.

Irina Proskurina, Luc Brun, Guillaume Metzler, and
Julien Velcin. 2024. When quantization affects confi-
dence of large language models? In Findings of the
Association for Computational Linguistics: NAACL
2024, pages 1918-1928, Mexico City, Mexico. Asso-
ciation for Computational Linguistics.

Yusuke Sakai, Hidetaka Kamigaito, and Taro Watanabe.
2024. mCSQA: Multilingual commonsense reason-
ing dataset with unified creation strategy by language
models and humans. In Findings of the Association
for Computational Linguistics: ACL 2024, pages
14182-14214, Bangkok, Thailand. Association for
Computational Linguistics.

Spurthi Setty, Harsh Thakkar, Alyssa Lee, Eden Chung,
and Natan Vidra. 2024. Improving retrieval for rag
based question answering models on financial docu-
ments. arXiv preprint arXiv:2404.07221.

Jiwoong Sohn, Yein Park, Chanwoong Yoon, Sihyeon
Park, Hyeon Hwang, Mujeen Sung, Hyunjae Kim,
and Jaewoo Kang. 2024. Rationale-guided retrieval
augmented generation for medical question answer-
ing. arXiv preprint arXiv:2411.00300.

Zhiqing Sun, Xuezhi Wang, Yi Tay, Yiming Yang, and
Denny Zhou. 2023. Recitation-augmented language
models. In International Conference on Learning
Representations.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.


https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://aclanthology.org/2025.findings-naacl.209/
https://aclanthology.org/2025.findings-naacl.209/
https://proceedings.mlr.press/v174/pal22a.html
https://proceedings.mlr.press/v174/pal22a.html
https://proceedings.mlr.press/v174/pal22a.html
https://doi.org/10.18653/v1/2024.findings-naacl.124
https://doi.org/10.18653/v1/2024.findings-naacl.124
https://doi.org/10.18653/v1/2024.findings-acl.844
https://doi.org/10.18653/v1/2024.findings-acl.844
https://doi.org/10.18653/v1/2024.findings-acl.844
https://openreview.net/forum?id=-cqvvvb-NkI
https://openreview.net/forum?id=-cqvvvb-NkI

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Dennis Ulmer, Jes Frellsen, and Christian Hardmeier.
2022. Exploring predictive uncertainty and calibra-
tion in NLP: A study on the impact of method & data
scarcity. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 2707-2735,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Roman Vashurin, Ekaterina Fadeeva, Artem Vazhentsev,
Lyudmila Rvanova, Akim Tsvigun, Daniil Vasilev,
Rui Xing, Abdelrahman Boda Sadallah, Kirill Gr-
ishchenkov, Sergey Petrakov, Alexander Panchenko,
Timothy Baldwin, Preslav Nakov, Maxim Panov, and
Artem Shelmanov. 2025. Benchmarking uncertainty
quantification methods for large language models
with Im-polygraph. Preprint, arXiv:2406.15627.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Chaoyi Wu, Weixiong Lin, Xiaoman Zhang, Ya Zhang,
Weidi Xie, and Yanfeng Wang. 2024. Pmc-llama:
toward building open-source language models for
medicine.

Guangzhi Xiong, Qiao Jin, Zhiyong Lu, and Aidong
Zhang. 2024. Benchmarking retrieval-augmented
generation for medicine. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2024,
pages 6233-6251, Bangkok, Thailand. Association
for Computational Linguistics.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Antonio Jimeno Yepes, Yao You, Jan Milczek, Sebas-
tian Laverde, and Renyu Li. 2024. Financial report
chunking for effective retrieval augmented genera-
tion. arXiv preprint arXiv:2402.05131.

12

Jiaxin Zhang, Zhuohang Li, Kamalika Das, Bradley
Malin, and Sricharan Kumar. 2023. SAC?: Reliable
hallucination detection in black-box language models
via semantic-aware cross-check consistency. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 15445-15458, Singapore.
Association for Computational Linguistics.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
International conference on machine learning, pages

12697-12706. PMLR.

A Example Appendix

A.1 Detailed Model Settings

The PMC-Llama model was quantized to half-
precision, while the 70B / 72B models were
quantized to 4-bit precision for experimenta-
tion. The implementation relied on the Trans-
formers library (Wolf et al., 2020) and bitsand-
bytes (Dettmers et al., 2022).

Model Params HuggingFace Name

Phi-3.5 3.8B microsoft/Phi-3.5-mini-instruct
PMC-Llama 13B axiong/PMC_LLaMA_13B

LLama2 70B meta-llama/Llama-2-7@b-chat-hf
Meditron 70B epfl-11m/meditron-70b

Llama3.1 8B meta-llama/Llama-3.1-8B
Llama3.1 70B meta-llama/Llama-3.1-70B
Gemma?2 2B google/gemma-2-2b

Qwen2.5 14B  Qwen/Qwen2.5-14B

Qwen2.5 72B  Qwen/Qwen2.5-72B

Table 7: Detailed name of models.

A.2 Dataset Selection

The dataset selection is based on prior research
by Xiong et al. (2024). From the datasets they
used, we select those that include both QA pairs
and explanatory passages that justify the answers
(MedMCQA and PubMedQA) for this study.

Since the test set for MedMCQA is not publicly
available, our study used the dev set as the test
set, following the approach adopted in MIRAGE.*.
We used the datasets, especially MedMCQA?, Pub-
MedQA®.

A.3 Details of the Input Format

As described in Section 3, we determine the se-
lected choice based on the output probabilities as-

*https://huggingface.co/datasets/
openlifescienceai/medmcga

Shttps://github.com/MedMCQA/MedMCQA

https://github.com/pubmedqa/pubmedqa
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signed by LLMs to the given candidates. To pre-
vent answer choices from being split into multiple
tokens by the tokenizer, we replace them with A, B,
C, and D before feeding them into the model. This
approach ensures a fair comparison across models,
even for answer choices that would otherwise span
multiple tokens.

A.4 Inference Settings

In this study, as far as inference which needs to use
GPUs, all experiments were conducted on a single
NVIDIA RTX A6000 and NVIDIA GeForce RTX
3090 GPU.

A.5 Why Do We Focus on the Medical
Domain?

Among the various domains where information re-
liability is crucial (e.g., finance, law, autonomous
driving, and healthcare), we chose to focus on
healthcare for the following reasons:

* Complexity and Scale of Medical Texts: Med-
ical documents are inherently complex and
vast in scope, making them particularly suit-
able for RAG-based approaches. Combined
with the critical importance of information re-
liability in this field, focusing on healthcare
becomes a highly significant choice.

Challenges in Real-World Applications: Ques-
tions involving detailed patient information,
such as medical histories and symptoms, of-
ten overwhelm retrieval systems, making it
difficult to identify crucial diagnostic clues.
Furthermore, in practical applications, patient
conditions and individual characteristics vary
widely. Differences in age, medical history,
genetic factors, and lifestyle often lead to vari-
ations in treatment for the same disease. Pro-
viding inaccurate information in such scenar-
ios can result in severe consequences. (Sohn
et al., 2024)

Established Significance of BioNLP: The
prominence of the healthcare domain is ev-
ident from the long-standing “BioNLP” work-
shop, which has been held for over two
decades.’

Emerging Trends in Healthcare RAG: Efforts
to improve RAG performance in the medical

"https://aclweb.org/aclwiki/BioNLP_Workshop
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domain have led to developments like Self-
BioRAG, which leverages confidence scores.
Its popularity and significant citation count
highlight this field as a trending area of re-
search. (Jeong et al., 2024) These points
illustrate the rationale behind our focus on the
healthcare domain.

A.6 Details of Evaluation Metrics

Expected Calibration Error (ECE) Calibration
error metrics evaluate whether a model’s predicted
probabilities align with actual accuracy in QA tasks.
For instance, if a model assigns a 90% probabil-
ity to an answer, the accuracy of such predictions
should also be 90% for optimal calibration. Ex-
pected Calibration Error (ECE) (Naeini et al., 2015;
Guo et al., 2017) quantifies this discrepancy by seg-
menting the predicted probability range into mul-
tiple bins and computing the difference between
the predicted probability and the observed accuracy
within each bin as follows:

o~ 1Bl
ECE= ) Tm lacc(By) — conf(Bp,)| (1)

m=1

Here, M denotes the number of bins, B,, rep-
B,| is
the number of samples in bin m, and n is the total
number of samples. acc(B,,) refers to the accu-
racy within bin B,,, while conf(B,,) indicates the
average confidence of predictions in bin m. ECE is
computed as the weighted average of the absolute
differences between the accuracy and confidence
across bins, where the weights correspond to the
proportion of samples in each bin.

Adaptive Calibration Error (ACE) ACE per-
forms binning so that the number of samples in
each bin remains constant. This approach ensures
a more stable evaluation within each bin:

K R
1
ACE = K;Z acc(r, k) — conf(r, k)| (2)

Here, K denotes the number of classes, R repre-
sents the number of bins, acc(r, k) indicates the
accuracy in bin r for class k, and conf(r, k) de-
notes the confidence of predictions in the same bin
and class.


https://aclweb.org/aclwiki/BioNLP_Workshop

A.7 The results using Expected Calibration
Error (ECE)

The results using ECE are presented in Table 8
and Table 9. As discussed in Section 4.4, Prosku-
rina et al. (2024) and Ulmer et al. (2022) have
pointed out that ACE is a more suitable calibration
error metric for multi-class classification problems,
while ECE is better suited for binary classification.
Nevertheless, we include ECE results for complete-
ness and additional verification.

A.8 YViolin plot

Figures 5a and 5b present the violin plot results for
Llama3.1 (8B), while Figures 5c¢ and 5d show the
results for Llama3.1 (70B). The Llama models ex-
hibit notably low output probabilities for candidate
answer choices when no supporting documents are
inserted. Furthermore, even when explicitly insert-
ing documents containing supporting evidence, the
output probabilities do not improve significantly.
This suggests that these models may strictly adhere
to predefined instructions and struggle to incorpo-
rate additional contextual information.

B Future Direction

In this study, we used a dataset containing correct
answer choices along with supporting rationale pas-
sages for QA tasks. In the future, it may be possible
to focus on non-medical domains by drawing on
previous work that semi-automatically generates
questions using LLMs (Ozaki et al., 2024; Sakai
et al., 2024). There are also studies on explana-
tion generation (Ozaki et al., 2025a; Hayashi et al.,
2024), which could inform the generation of sup-
porting rationales.
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ECE |
Model Pattern None Ansl Ansl-Oth2 Oth3
wioRAG _ 0.02 - _ -
Pre-Q - 02 0.25 0.08
Llama2 (70B) Aft-Q - 024 0.21 0.12
Aft-C - 020 0.17 0.10
w/o RAG 0.20 - - -
Pre-Q - 014 0.14 0.14
Llama3.1 (70B)  Af. - 014 0.14 0.14
Aft-C - 014 0.14 0.14
w/oRAG 003 — - -
Pre-Q - 00 0.02 0.01
Llama3.1 (8B) Aft-Q - 002 0.02 0.01
Aft-C - 00 0.02 0.01
wloRAG 007 — _ -
Pre-Q -~ 018 0.08 0.09
Meditron (70B)  Af.q 016 0.09 0.15
Aft-C NG 0.07 0.09
w/oRAG 016 — - -
Pre-Q - 001 0.01 0.04
PMC-Llama (I3B)  Af.q ~ 001 0.02 0.06
Aft-C - 00 0.05 0.05
w/o RAG  0.20 - - -
Pre-Q - 024 0.22 0.21
Gemma?2 (2B) Aft-Q - 023 021 0.21
Aft-C - 025 0.23 0.23
wloRAG 005 — _ -
Pre-Q - 006 0.07 0.32
Phi-3.5 (3.8B) Aft-Q - 004 0.06 0.42
Aft-C - 004 0.13 0.41
w/o RAG 0.12 - - -
Pre-Q - 009 0.09 0.12
Qwen2.5 (14B)  Ap - 007 0.07 0.18
Aft-C ~ 008 0.10 0.09
w/oRAG _ 0.04 - - -
Pre-Q - 010 0.08 0.20
Qwen2.5(72B)  AfQ - 009 0.10 0.19
Aft-C - 010 0.06 0.24

Table 8: The result of ECE using MedMCQA



ECE |
Model Pattern None Ansl Ansl-Oth2 Oth3
woRAG 012 — - -
Pre-Q - 030 031 0.14
Llama2 (70B) Aft-Q - 030 0.31 0.14
Aft-C - 014 0.14 0.12
w/o RAG 0.02 - - -
Pre-Q - 010 0.10 0.10
Llama3.1 (70B)  Af - 010 0.10 0.10
Aft-C - 010 0.10 0.10
w/o RAG 0.24 - - -
Pre-Q - 023 0.22 0.23
Llama3.1 (8B) Aft-Q - 022 0.23 023
Aft-C - 023 0.23 0.23
wioRAG 018 — - -
Pre-Q - 010 0.17 0.09
Meditron (70B)  Af.g - 0.08 0.07 0.06
Aft-C ~ 004 0.04 0.07
w/o RAG 0.17 - - -
Pre-Q - 009 0.01 0.01
PMC-Llama (13B)  Af - 009 0.01 0.02
Aft-C - 002 0.04 0.05
w/o RAG  0.07 - - -
Pre-Q ~ 004 0.02 0.02
Gemma2 (2B) Aft-Q - 002 0.01 0.01
Aft-C - 009 0.05 0.07
WORAG 048 — - -
Pre-Q - 011 0.11 0.58
Phi-3.5 (3.8B) Aft-Q - 010 0.28 0.49
Aft-C - 015 0.32 0.46
w/oRAG 0.16 - - -
Pre-Q - 004 0.05 0.18
Qwen2.5 (14B)  Af.Q - 003 0.05 0.27
Aft-C - 007 0.03 0.24
woRAG 006 - - -
Pre-Q - ol 0.03 0.25
Qwen2.5(72B)  Af.Q - 008 0.11 0.18
Aft-C - 009 0.07 0.14

Table 9: The result of ECE using PubMedQA
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Figure 5: Results from MedMCQA and PubMedQA
using Llama3.1.



B.1 Error Analysis

Figure 6 presents a plot illustrating the types of errors made on incorrectly answered questions. In
PubMedQA, the answer choices consist of three options: yes, no, and maybe, allowing for detailed
error analysis. Each bin represents the gold answer, and the plot visualizes the distribution of incorrect
predictions for each question. The colors within the plot indicate how the model misclassified the answers.

Llama-2-70b-chat-hf Llama-3.1-70B Llama-3.1-8B PMC_LLaMA 13B  Phi-3.5-mini-instruct Qwen2.5-14B Qwen2.5-72B
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(a) When not inserting anything (w/o RAG).
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(b) When inserting a document containing the correct answer (Ansl).
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w I l I
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(c) When inserting one relevant document containing the correct answer and two unrelated documents (Ans1-Oth2).
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(d) When inserting three unrelated documents (Oth3).

Figure 6: Error analysis on PubMedQA: This figure illustrates how the model misclassified answers in relation to

the correct ones. We gather the questions the model got wrong, group the items that actually had the correct answer
(gold answer) into bins, and use colors to show how the model erred.



B.2 Prompts

Below are examples of prompts with and without RAG. When RAG is applied, three patterns-Pre-Question,
After-Question, and After-Choice—are used in our study.

Prompt without RAG

You are a helpful medical expert, and your task is to answer a multi-choice medical question
using the relevant documents. Please first think step-by-step and then choose the answer from
the provided options. Your responses will be used for research purposes only, so please have a
definite answer.

Here is the question:
{question}

Here are the potential choices:
{choice0}
{choicel}
{choice2}
{choice3}

Answer:

\

\

Prompt with RAG

Here are the relevant documents: (Pre-Question)
{context}

You are a helpful medical expert, and your task is to answer a multi-choice medical question
using the relevant documents. Please first think step-by-step and then choose the answer from
the provided options. Your responses will be used for research purposes only, so please have a
definite answer.

Here are the relevant documents: (After-Question)
{context}

Here is the question:
{question}

Here are the relevant documents: (After-Choice)
{context}

Here are the potential choices:
{choice0@}
{choicel}
{choice2}
{choice3}

Answer:

r
\
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Abstract

Continual Pre-training (CPT) can help pre-
trained large language models (LLMs) effec-
tively adapt to new or under-trained domains
or low-resource languages without re-training
from scratch. Nevertheless, during CPT, the
model’s few-shot transfer ability is known to
be affected for emergent tasks. We verified
this by comparing the performance between the
few-shot and fine-tuning settings on the same
tasks. We used Llama3-ELAINE-medLLM,
which was continually pre-trained on Llama3-
8B, targeted for the biomedical domain, and
adapted for multilingual languages (English,
Japanese, and Chinese). We compared the per-
formance of Llama3-ELAINE-medLLM and
Llama3-8B in three emergent tasks: two related
domain tasks, entity recognition (NER) and ma-
chine translation (MT), and one out-of-domain
task, summarization (SUM). Our experimen-
tal results show that degradation in few-shot
transfer ability does not necessarily indicate
the model’s underlying potential on the same
task after fine-tuning.

1 Introduction

Continual Pre-training (CPT) can help pre-trained
large language models (LLMs) effectively adapt
to new or under-trained domains or low-resource
languages without re-training from scratch.

Because open-source foundation LLMs such as
the Llama series (Touvron et al., 2023a,b) are under-
trained for the biomedical domain and non-English
languages, many studies have been conducted to
adapt such base LLMs to the biomedical domain in
bilingual and multilingual settings (Singhal et al.,
2022; Li et al., 2023; Singhal et al., 2023; Chen
et al., 2023). Such LLMs are reported to perform
better than the base model on downstream tasks in
the target domains and languages.

However, CPT from a base model to endow non-
English capability or to adapt to specific domains
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comes with the issue of degradation of the capa-
bilities of the base model (Scialom et al., 2022;
Fujii et al., 2024; Ankit Pal, 2024). Although many
previous studies have shown that the incorporation
of training datasets that the base model used during
CPT significantly mitigates this forgetting (Rol-
nick et al., 2019; Chen et al., 2023; Lewkowycz
et al., 2022; Yano et al., 2025), further analysis is
needed to quantify these effects because such train-
ing datasets might be inaccessible and private and
to determine whether these methods will be valid
for a wide range of tasks.

In this work, we conducted experiments on three
NLP tasks that were not primarily targeted dur-
ing CPT. Specifically, we used Llama3-ELAINE-
medLLM (Yano et al., 2025), which was adapted
from Llama3-8B to the biomedical domain and has
trilingual ability, including English (EN), Japanese
(JA), and Chinese (ZH). Llama3-ELAINE is a pre-
trained model without fine-tuning with instruction
datasets.

For the emergent NLP tasks, we selected named
entity recognition (NER) and machine translation
(MT) tasks in a domain similar to the biomedical
domain, and a summarization (SUM) task in the
general domain, which were not targeted during
CPT. Our experiments found that compared with
Llama3-8B, Llama3-ELAINE due to CPT shows
some forgetting phenomena that affect the model’s
promptability even in new tasks in similar domains
where the model was trained during CPT.

However, our results also show that after fine-
tuning Llama3-ELAINE-medLLM on the same
downstream task, the model performs competi-
tively or better than the base model. These results
indicate that even though the adapted models’ few-
shot prompt ability may degrade in an emerging
task, even in the relevant domains, the model will
perform better after fine-tuning, as it has acquired
more in-depth domain knowledge than the base
model.

Proceedings of the 24th Workshop on Biomedical Language Processing (BioNLP 2025), pages 18-26
August 1, 2025 ©2025 Association for Computational Linguistics



Model EN JA ZH

Llama3-8B 61.68 25.83 4547
59.56 3196 52.25

Llama3-ELAINE (21) (+6.1) (+6.8)

Table 1: Comparison of average scores of medical QA
benchmarks in English, Japanese, and Chinese between
ELAINE-medLLM and the base Llama3-8B

2 Related work

Numerous medLLMs (Singhal et al., 2022; Li
et al., 2023; Singhal et al., 2023; Chen et al.,
2023) have been proposed using CPT, adapted
from open-source LLLMs such as Llama (Touvron
et al., 2023a,b). However, CPT can potentially
degrade few-shot learning performance, hindering
its ability to adapt to new tasks quickly. There
have been many studies to prevent this issue, such
as replaying pre-trained data and careful selection
of the training dataset during CPT (Chen et al.,
2023; Lewkowycz et al., 2022; Yano et al., 2025).
The negative impact of CPT can be addressed in
post-processing, such as task-specific pre-training,
which involves further fine-tuning the pre-trained
model on a small dataset related to the target few-
shot task (Ke et al., 2022). Prompt engineering is
another solution, involving the design of prompts
during fine-tuning to guide the model toward the
desired task with few-shot examples (Radford et al.,
2019).

3 Experiments

To evaluate the effect of multilingual and domain-
adapted continual pre-training on few-shot prompt-
ability for NLP tasks, we used Llama3-ELAINE-
medLLM (Yano et al., 2025), which was contin-
ually pre-trained without instruction fine-tuning
on Llama3-8B, targeted for the biomedical do-
main, and adapted for multiple languages (English,
Japanese, and Chinese). Table 1 shows the aver-
age scores on several medical QA benchmarks in
English, Japanese, and Chinese. We can see that
Llama3-ELAINE-medLLM shows much better in-
context learning (ICL) capabilities for medical QA
tasks than Llama3-8B for Japanese and Chinese
while slightly sacrificing English capability.

In this work, we used named entity recognition
(NER) and machine translation (MT) tasks related
to the biomedical domain and a summarization task
in the general domain as the emergent tasks for our
experiments.
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Training  Validation Testing lang
BC5CDR 500 500 500 EN
MedTxt-CR 128 10 10 JA
CMEeEE-V2 19,600 400 400 ZH

Table 2: Statistics of NER datasets (# of documents).
BCS5CDR (en), MedTxt-CR (ja), and CMeEE-V2 (zh)

Train Validation  Test
JA-EN 1,000,000 1,790 1,812
JA-ZH 672,315 2,000 2,107

Table 3: Statistics of ASPEC parallel corpora (# of
sentence pairs)

3.1 Datasets

3.1.1 NER dataset

We used BCSCDR (Li et al., 2016) for the English
NER dataset, which defines “Disease” and “Chem-
ical” entities. For the Japanese NER dataset, we
used MedTxt-CR (Yada et al., 2022), which anno-
tates various medical expression entities such as
“disease”, “anatomical part”, etc. This experiment
only used the “disease/symptoms” entity labeled as
d in the corpus. Note that their annotation method
does not delineate adjacent entity mentions, such as
MEIREZ, =E. TERIZE(dyspnea, jaundice,
leg edema), which were labeled as one single, con-
tinuous entity rather than three independent entities
as seen in other corpora.

For the Chinese NER dataset, we used CMeEE-
V2 (Du et al., 2024), which annotates nine medical
entity types, such as “disease”, “clinical manifesta-
tions”, “drugs”, etc. This work used only disease
and clinical symptoms labeled as “dis” and “sim’
in the corpus, respectively. Table 2 summarizes the
number of samples (documents) for each split of
the corpus. Note that we randomly split the training
datasets for the Japanese and Chinese datasets.

l

3.1.2 MT dataset

We used ASPEC (Nakazawa et al., 2016), consist-
ing of two corpora from scientific paper abstracts:
Japanese-English and Japanese-Chinese parallel
corpora. Table 3 summarizes the number of sam-
ples (sentence pairs) for each split of the corpus.
We used a four-way language pair for evaluation
by reversing the source and target languages.

3.1.3 Summarization dataset

We used XLSum (Hasan et al., 2021), a diverse
dataset of professionally annotated news article



Train Validation  Test
EN 306,522 11,535 11,535
JA 7,113 889 889
ZH 37,362 4,670 4,670

Table 4: Statistics of XLSum summarization dataset (#
of text and summarization pairs) for English, Japanese,
and Chinese

summary pairs from BBC that cover 45 languages.
We used the English, Japanese, and Chinese splits
of the dataset for evaluation. Table 4 summarizes
the number of samples (text and summarization
pairs) for each language dataset.

3.2 Evaluation

For each task, we evaluate the performance of
ELAINE-medLLM and Llama-8B in the zero- or
few-shot and fine-tuning settings. A sample of the
instruction format for the training dataset for each
task is described in Appendix A. The details of the
settings are as follows.

3.2.1 Zero or few-shot settings

We used in-context learning (ICL) to evaluate each
task’s performance in the zero- or few-shot set-
tings. For the few-shot settings, we evaluated one-
shot, three-shot, five-shot, and ten-shot scenarios.
ICL samples were selected from the training split,
with the top N most similar to the input, where
N is the number of few-shot samples. We used
the text embeddings calculated by SentenceTrans-
former (Reimers and Gurevych, 2019) to compute
similarity.

3.2.2 Fine-tuning settings

For each task, we fine-tuned the model by using
the training split of each dataset. We used full-
parameter tuning using DeepSpeed stage-3 and
trained the model for 6, 3, and 3 epochs for NER,
MT, and Summarization, respectively. We used the
following training parameters:

* per_device_batch_size: 6

* gradient_accumulation_steps: 2
* learning_rate: le-6

» weight_decay: 0.001

e warmup_ratio: 0.1

* Ir_scheduler_type: cosine
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Figure 1: NER: few-shots performance in F1 (EN:
BCS5CDR, JA: MedTxt-CR, ZH: CMeEE-V2

| | Precision  Recall F1
EN Llama3-ELAINE 0.825 0.802 0.813
Llama3-8B 0.833 0.831 0.832
JA Llama3-ELAINE 0.678 0.701  0.689
Llama3-8B 0.682 0.667 0.674
7H Llama3-ELAINE 0.766 0.792  0.779
Llama3-8B 0.764 0.789  0.776

Table 5: NER: fine-tuning performance (EN: BC5CDR,
JA: MedTxt-CR, ZH: CMeEE-V2

4 Results

4.1 Named entity recognition (NER)

We adopt the TANL format (Paolini et al., 2021) to
solve NER by LLM. In this format, the input text is
copied to the output by annotating entity names and
enclosing them in brackets by suffixing the detected
entity type (see Appendix A). Figures 1 show the
performance of language-dependent NER tasks in
few-shot and Table 5 shows the performance of
these NER tasks under the fine-tuning settings. The
scores were computed by converting from TANL to
IOB format (Ramshaw and Marcus, 1995). During
conversion, we regulated the output by removing
all parts that did not conform to our defined format,
which made the zero-shot scores zero in all cases.

For few-shot settings, Llama performs better
than Llama3-ELAINE-medLLM in all cases. This
indicates the adverse effects of continual pre-
training on the promptability of the base model.
However, in fine-tuning settings, Llama3-ELAINE
performs competitively with LLama in Japanese
and Chinese. This result suggests that the degrada-
tion of promptability by CPT may not reveal the
model’s latent performance when the same task is
fine-tuned.

4.2 Machine translation (MT)

Figures 2 and 3 show the few-shot performance
of the MT task between Japanese and English and



—e— JA->EN (Llama3-ELAINE)
=¥ JA->EN (Llama3-8B)
—e— EN->JA (Llama3-ELAINE)
=% EN->JA (Llama3-8B)

Figure 2: Machine Translation: few-shots (JA—EN,
EN—JA) performance in BLEU (ASPEC)

20.0 - —®— JA->ZH (Llama3-ELAINE)
¥ JA->ZH (Llama3-88)

17.5 - —®— ZH->JA (Llama3-ELAINE)
=¥ ZH->JA (Llama3-8B)

15.0 -

125-

BLEU

10.0 -

5.0-

25-

0.0=

Figure 3: Machine Translation: few-shots (JA—ZH,
ZH—JA) performance in BLEU (ASPEC)

‘ JA—EN EN—=JA
Llama3-ELAINE 28.10 45.20
Llama3-8B 27.92 44.36

‘ JA—ZH ZH—JA
Llama3-ELAINE 34.25 49.55
Llama3-8B 34.28 48.67

Table 6: Machine Translation: fine-tuning performance
in BLEU (ASPEC)

Japanese and Chinese, and Table 6 shows the fine-
tuning performance of the same MT task mea-
sured in BLEU (Papineni et al., 2002). Unlike
the performance of NER tasks, the performance of
MT tasks, both in few-shot and fine-tuning, shows
that ELAINE-medLLM is similar or superior to
Llama3-8B.

This result indicates that continual pre-training
does not always hurt the promptability of the base
model for NLP tasks. We hypothesize that the de-
gree of the effect depends on the novelty of the new
task and its affinity to the training datasets used
during CPT. Since ELAINE-medLLM is trained
to harness multilingual ability, it works effectively
in MT tasks for the same languages. On the other
hand, although the domains of the previous NER
tasks are highly aligned to those of the training
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Figure 4: Summarization: few-shot performance in
Rouge-L (RL) (XLSum)

| | R R2 RL
N | Dlama3-ELAINE | 0.418  0.192  0.349
Llama3-8B | 0421 0.194 0352
ja | Llama3-ELAINE | 0.570 0.286 0.454
Llama3-8B | 0.564 0.282 0.450
sy | Dama3-ELAINE | 0368 0.171 0319
Llama3-8B | 0.371 0.173 0322

Table 7: Summarization: fine-tuning performance in
Rouge-1 (R-1), Rouge-2 (R-2), Rouge-L (R-L) (XL-
Sum)

dataset for ELAINE-medLLM, we assume that the
novelty of the TANL output format affects its per-
formance in the few-shot setting.

4.3 Summarization (SUM)

Figure 4 shows the results of the summarization
task in few-shot settings measured in ROUGE-
L (Lin, 2004). Table 7 shows the performance
of the same summarization task in the fine-tuning
setting in ROUGE-1, ROUGE-2, and ROUGE-L.
Unlike previous NER and MT tasks, the SUM task
is in the general domain for each of the three lan-
guages.

Unlike the previous two tasks (NER, MT), which
can be considered related to the biomedical field,
we could not observe noticeable performance dif-
ferences in the fine-tuning setting. This is proba-
bly because the summarization task is in the gen-
eral domain. We assume that CPT targeted for the
biomedical domain does not affect fine-tuning per-
formance in the general domain, though it shows
a slight advantage for Llama3-8B for the few-shot
setting.



| Precision Recall F1
Meditron-7B 0.824 0.744  0.783
Llama2-7B 0.808 0.774 0.791

Table 8: NER: fine-tuning performance (BC5CDR)

| R R2 RL
Meditron-7B | 0.402 0.182 0.334
Llama2-7B | 0397 0.172  0.330

Table 9: Summarization: fine-tuning performance in
Rouge-1 (R-1), Rouge-2 (R-2), Rouge-L (R-L) (XL-
Sum)

5 Analysis

This section analyzes whether the phenomenon we
found in the previous experiments can be observed
in a different experimental setting.

5.1 Experimental Setting

We use Meditron-7B (Chen et al., 2023), an English
medical LLM adapted from Llama2-7B (Touvron
et al., 2023c), as the baseline. We selected the
monolingual model because we aim to remove the
effects of multilingualism on the results. For this
experiment, we evaluate performance in few-shot
and fine-tuning settings using the same NER task
using BC5CDR and SUM task using English XL-
Sum as in the previous experiments.

5.2 Results

Fig. 5 and Table 8 show the few-shot and fine-
tuning NER results using BCSCDR. These results
indicate that domain-adapted training does not ben-
efit the performance of few-shot and fine-tuning
results. Especially, Meditron-7B lags far behind
Llama2-7B in a few-shot setting. Fig. 6 and Table 9
show the few-shot and fine-tuning Summarization
results for English XLSum. In the few-shot setting,
Meditron-7B lags far behind Llama2-7B, as in the
NER task. However, the model shows competence
against the baseline model in the fine-tuning set-
ting.

These results confirm that the performance of
the few-shot setting does not always show the
model’s potential in the fine-tuning setting of the
same task. Nonetheless, we do not observe a sim-
ilar trend in the comparative results between the
domain-adapted and the base models. To summa-
rize, domain adaptation works negatively for some
tasks that do not depend clearly on acquired domain
knowledge in few-shot settings, such as NER, and
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Figure 6: Summarization: few-shots performance in
Rouge-1 (R-1) (XLSum)

out-of-domain tasks, such as summarization. How-
ever, this degradation does not necessarily indicate
the model’s potential in fine-tuning settings.

6 Conclusion

CPT can help pre-trained large language models
(LLMs) effectively adapt to new, under-trained do-
mains or low-resourced languages without requir-
ing retraining from scratch. Nevertheless, during
CPT, the model’s few-shot transfer ability is af-
fected for emergent tasks. This also applies to
new tasks, even in the relevant domains targeted
during CPT. However, our experimental results
show that degradation in few-shot transfer ability
does not necessarily indicate the model’s under-
lying potential in the same downstream task af-
ter fine-tuning. In our experiments, we observe
that ELAINE-medLLLM, which is adapted to the
biomedical domain and endowed with trilingual
ability (English, Japanese, and Chinese) by CPT
from Llama3-8B, performs competitively with or
better than the base model in all emergent tasks
after fine-tuning, even though it shows some degra-
dation in some few-shot settings.



Limitations

The prompt inputs used for few-shot evaluations
were not optimized, suggesting that an optimal
prompt might produce better results, such as
prompt tuning or adopting a chain of thoughts. In
this work, we only conducted performance analysis
of Llama3-ELAINE and Meditron, adapted to the
biomedical domain, against their base LLMs on
three NLP tasks (NER, machine translation, and
summarization). Hence, further experiments will
be desired to evaluate the results we found in this
study.
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A Instruction format for tasks

A.1 Name entity recognition (NER)

We adopt the TANL format (Paolini et al., 2021) to solve NER by LLM. In this format, the LLM
expected to copy the source context to the target by annotating detected entity mentions, enclosing the

is
m

in brackets, and suffixing them with the detected entity type. The descriptions of valid entity types and
their labels are specified after the task description. The following shows a sample instruction format for

the NER task in the case of BC5CDR (Li et al., 2016).

s Instruction for NER task

##Task##

You are an Al language model trained to extract entities from sentences. See all possible labels and
their descriptions below.

Hit

Description: Disease name

Label: Disease

#HitH

Description: Chemical name

Label: Chemical

it

<leot_idI>##Text##

Famotidine-associated delirium. A series of six cases.

Famotidine is a histamine H2-receptor antagonist used in inpatient settings for prevention of stress
ulcers and is showing increasing popularity because of its low cost. Although all of the currently
available H2-receptor antagonists have shown the propensity to cause delirium, only two previously
reported c ases have been associated with famotidine. The authors report on six cases of famotidine-
associated delirium in hospitalized pa tients who cleared completely upon removal of famotidine.
The pharmacokinetics of famotidine are reviewed, with no change in its metabolism in the elderly
population seen. The implications of using famotidine in elderly persons are discussed.
<leot_idI>##Result##

[FamotidinelChemical]-associated [delirium|Disease]. A series of six cases.

[FamotidinelChemical] is a histami ne H2-receptor antagonist used in inpatient settings for prevention
of stress [ulcersIDisease] and is showing increasing popula rity because of its low cost. Although
all of the currently available H2-receptor antagonists have shown the propensity to caus e [delir-
iumlDisease], only two previously reported cases have been associated with [famotidinelChemical].
The authors report on six cases of [famotidinelChemical]-associated [deliriuml|Disease] in hospitalized
patients who cleared completely upon removal of [famotidinelChemical]. The pharmacokinetics of
[famotidinelChemical] are reviewed, with no change in its metabolism in the e Iderly population seen.
The implications of using [famotidinelChemical] in elderly persons are discussed. <leot_idI>

~

A.2 Machine translation (MT)

The following shows a sample instruction format for the MT task in the case of ASPEC (Nakazawa et al.,

2016).
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. Instruction for MT task ~

##Task##
Translate the following sentences from English to Japanese.
<leot_idI>##Source##
Lattice images were not obtained by high resolution power image observation.
<leot_idI>##Target##

L BOMREGBERTORTFRIIBONAD o7, <leot_id>

A.3 Summarization (SUM)

The following shows a sample instruction format for the SUM task in the case of XLSum (Hasan et al.,
2021).
s Instruction for SUM task ~

##Task##

Summarize the following paragraph.

<leot_idI>##Source##

Lewis Williams, 20, died on 11 January from a shotgun wound suffered in Wath Road, Mexborough.
South Yorkshire Police said two men aged 20 and 49 were arrested on Friday in connection with his
death, bringing the total number of arrests to eight. Two boys, aged 16 and 17, have been charged
with Mr Williams” murder and are next due to appear in court on 1 February. Police said one of the
men arrested on Friday, a 20-year-old from Barnsley, was arrested on suspicion of murder, while a
49-year-old man from Doncaster was arrested on suspicion of assisting an offender and possession of
ammunition. Both are being held in police custody. Four other men, aged between 20 and 32, who
have been arrested in connection with Mr Williams’death have been released on bail. Follow BBC
Yorkshire on Facebook, Twitter and Instagram. Send your story ideas to yorkslincs.news@bbc.co.uk
or send video here.

<leot_idI>##Target##

Two more people have been arrested in connection with a fatal shooting. <leot_idI>
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Abstract

Medical text summarization faces significant
challenges due to the complexity and domain-
specific nature of the language. Although large
language models have achieved significant suc-
cess in general domains, their effectiveness in
the medical domain remains limited. This limi-
tation stems from their insufficient understand-
ing of domain-specific terminology and diffi-
culty in interpreting complex medical relation-
ships, which often results in suboptimal sum-
marization quality. To address these challenges,
we propose MedSummRAG, a novel retrieval-
augmented generation (RAG) framework that
integrates external knowledge to enhance sum-
marization. Our approach employs a fine-tuned
dense retriever, trained with contrastive learn-
ing, to retrieve relevant documents for medical
summarization. The retrieved documents are
then integrated with the input text to gener-
ate high-quality summaries. Experimental re-
sults show that MedSummRAG achieves signif-
icant improvements in ROUGE scores on both
zero/few-shot and fine-tuned language models,
outperforming baseline methods. These find-
ings underscore the importance of RAG and
domain adaptation of the retriever for med-
ical text summarization. The source code
of this paper can be obtained from: https:
//github.com/guantingluo98/MedSummRAG

1 Introduction

Medical text summarization is a crucial task for
helping medical practitioners and patients, aiming
to distill complex and information-dense medical
documents into concise, accurate, and clinically
useful summaries (Xie et al., 2023). This task is par-
ticularly challenging due to the specialized nature
of medical language and the presence of domain-
specific terminologies (Chaves et al., 2022). Tradi-
tional summarization models often struggle in this
domain, as they may fail to generate satisfactory
summaries.
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With the rise of large language models (LLMs),
significant advancements have been made in
general-domain summarization (Pu et al., 2023).
However, medical summarization presents unique
challenges, such as domain-specific terminology
and complex relationships, which generic LLMs
struggle to address effectively. LLMs trained on
broad-domain corpora tend to overlook key med-
ical concepts, misinterpret medical abbreviations,
and produce hallucinated content that could mis-
lead practitioners and researchers (Li et al., 2024;
Hosseini et al., 2024). These limitations highlight
the need for models that can effectively incorpo-
rate external domain knowledge. By leveraging
external knowledge documents, such as healthcare
question-answer pairs, models can better under-
stand domain-specific concepts, reduce errors, and
generate high-quality summaries.

In this work, we propose MedSummRAG (Medi-
cal Summarization with Retrieval-Augmented Gen-
eration), a novel retrieval-augmented generation
(RAG) framework designed specifically for med-
ical text summarization. By leveraging external
medical knowledge, MedSummRAG enhances the
quality of generated summaries. Our approach em-
ploys a fine-tuned dense retriever, trained using
contrastive learning (van den Oord et al., 2019), to
effectively identify domain-relevant documents.

The key contribution of our work is the novel
RAG framework for medical text summarization.
Our approach improves retrieval quality by lever-
aging contrastive learning that employs synthetic
positive samples generated using an LLM. This en-
ables the framework to effectively identify domain-
relevant documents, improving the overall quality
of generated summaries. We conduct experiments
to investigate the effectiveness of MedSummRAG.
Our results demonstrate consistent improvements
measured by ROUGE scores in multiple configu-
rations: both on zero/few-shot and fine-tuned lan-
guage models.

Proceedings of the 24th Workshop on Biomedical Language Processing (BioNLP 2025), pages 27-33
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Figure 1: Overview of our MedSummRAG framework. Black arrows indicate retrieving relevant documents by
sparse and dense retrievers. Blue dashed arrow represents the negative sample extraction, while solid blue arrows
show the generation of synthetic positive samples. Both positive and negative samples are used to fine-tune the
dense retriever. Orange arrows show the concatenation of medical text and the retrieved document as input to the

summary generator, producing the summary.

2 Related Work

Medical summarization has been a long-standing
research problem due to its critical role in sup-
porting clinical decision-making and healthcare
planning. With the rise of pre-trained language
models, significant progress has been made in med-
ical summarization. Pre-trained language models
have demonstrated the ability to generate medi-
cal summaries, such as doctor-patient conversation
summaries, by utilizing knowledge derived from
pretrained models (Zhang et al., 2021). Balde et al.
(2024) proposed MEDVOC, a dynamic vocabu-
lary adaptation strategy that optimizes pre-trained
language models’ vocabulary for medical text sum-
marization, achieving improvements in high Out-
Of-Vocabulary settings.

Despite the progress enabled by pre-trained mod-
els in medical summarization, their pre-trained
knowledge may be insufficient for handling specific
downstream tasks. RAG offers a promising solu-
tion by integrating external knowledge to enhance
the overall quality of generations (Fan et al., 2024).
Recent studies have demonstrated the potential of
RAG in various domains, such as decision-making
tasks (Lee et al., 2024); question answering (Jeong
et al., 2024); and radiology report generation (Xia
et al., 2024). Although RAG has demonstrated
success in various domains, its application to med-
ical summarization remains underexplored. Our
work aims to propose a RAG framework specifi-
cally adapted for medical summarization to gener-
ate high-quality summaries.

28

3 Proposed Method

The overall workflow of our approach is illustrated
in Figure 1. The proposed method consists of doc-
ument retrieval (Section 3.1) and summary genera-
tion (Section 3.2). For improving the retrieval step
to adapt to the medical domain, we employ con-
trastive learning with synthetic data (Section 3.3).

3.1 Document Retrieval

We employ the BM25 (Robertson et al., 2009; Lu,
2024) ranking function to retrieve an initial set of
candidate documents based on lexical similarity to
the input text. This sparse retrieval method serves
to reduce the computational cost of subsequent
dense retrieval by narrowing down the search space
to a manageable set of candidate documents.

A dense retriever then re-ranks the highly-ranked
documents retrieved by the sparse retriever and
selects the most relevant document for the gen-
eration stage. This step should ensure that the
retrieved document is lexically and semantically
aligned with the input text to provide useful knowl-
edge for summarization.

3.2 Generation

The generation stage produces summaries based on
the input text and the retrieved document. Follow-
ing the approach of Lewis et al. (2020), we simply
concatenate the retrieved document with the input
text and feed the combined input into a language
model. The generator is expected to produce coher-
ent and factually accurate summaries, leveraging
both the input text and the external knowledge pro-
vided by the retrieved document.



You’re a retrieval augmented generation as-
sistant, skilled in generating retrieval targets
for auto summarization via RAG. Here is the
input-summary pair from a training set:
INPUT: {Train set input text}

SUMMARY: {Train set summary }

Please help me with generating one fake re-
trieved question-answer document that would
be useful for training a dense retrieval model
for automatic summarization via retrieval aug-
mented generation. The fake retrieved docu-
ment should have this kind of format:
QUESTION:

ANSWER:

Table 1: Promt for synthetic sample generation

3.3 Domain Adaptation of Retriever

The retrieval stage aims to identify the most rel-
evant document from a knowledge base to en-
hance the summarization process. Although ex-
isting RAG methods have shown great success in
question-answering tasks (Asai et al., 2023; Xiong
et al., 2024), they often struggle to identify docu-
ments that are truly useful for medical text summa-
rization. This is because pre-trained dense retriev-
ers lack the ability to understand what document
structures and content are beneficial for enhancing
summarization in the medical domain.

The key challenge in fine-tuning retrievers for
medical summarization is the lack of training data.
To address this challenge, we leverage an LLM to
generate synthetic positive samples that capture the
structural and contextual patterns useful for sum-
marization. Specifically, for each text-summary
pair in a training set of summarization, we prompt
the LLLM to generate a synthetic pair that may en-
hance medical summarization. Table 1 shows the
prompt we used.

We then fine-tune the dense retriever using con-
trastive learning, inspired by the work of Huang
et al. (2023), which improves its ability to retrieve
documents relevant to medical summarization. For
negative samples, we randomly select low-ranked
documents by the sparse retriever that should be
less relevant to the input text. We optimize the
retrieval model using the InfoNCE loss (van den
Oord et al., 2019).
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4 Experiments

4.1 Evaluation Dataset & Knowledge Base

Evaluation Dataset: We use the CHQ-Summ
dataset (Yadav et al., 2022), which consists of con-
sumer health questions formulated by non-experts,
paired with brief summaries of the corresponding
questions. The questions are sourced from Yahoo!
Answers L6 corpus'. The dataset contains 1,000
training samples, 107 validation samples, and 400
test samples. We evaluate the performance of our
method using ROUGE (Lin, 2004) scores, includ-
ing ROUGE-1, ROUGE-2, and ROUGE-L.
Knowledge Base: We construct the knowledge
base using Yahoo! Answers L6 corpus, which con-
tains more than 4 million question-answer pairs.
Each document in the knowledge base represents
a single question-answer pair. The content cov-
ered in this corpus extends far beyond the scope
of healthcare and medicine, encompassing a wide
range of topics. To prevent data leakage, we ex-
clude all question-answer pairs that overlap with
the CHQ-Summ dataset.

4.2 Implementation Details

We employed BM25 for sparse retrieval, which
retrieved the top 150 documents for each input text.
We employed the BGE-M3 (Chen et al., 2024)
model as the base dense retriever. For contrastive
learning, the positive samples were generated by
a frozen Qwen-2.5-7B-Instruct model?, while the
negative samples were constructed by randomly
sampling 3 documents from the BM25-ranked
documents in the range of positions 101 to 150 for
each training sample. The BGE-M3 model was
fine-tuned for 5 epochs with a total batch size of 8.
After fine-tuning, the BGE-M3 model re-ranked
the top 20 documents retrieved by BM25 and
selected the top 1 document for the generator.

4.3 Experiment Settings

To evaluate the effectiveness of our MedSumm-
RAG approach, we conducted four sets of experi-
ments with different generator settings: standard
fine-tuning, few-shot prompting, and Low Rank
Adapters (LoRA) (Hu et al., 2022) fine-tuning on
different language models. Specifically, we em-
ployed (1) BioBART-large (Yuan et al., 2022): the

1https: //webscope. sandbox. yahoo.com/catalog.
php?datatype=1&did=11
Zhttps://qwenlm.github.io/blog/qwen2.5/
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Base Model | Setting | ROUGE-1 ROUGE-2 ROUGE-L
. Baseline 41.22 23.17 38.79
(StBlgB?};.T la:ge g | +Naive RAG 42.19 22.95 38.79
andard Fne-tuned) |, pine tuned RAG 44.50 24.58 41.19
Baseline 34.97 13.85 32.82

-2.5-7B-In

Q("fs“ho t5Pr70m rg:‘;“ + Naive RAG 38.53 16.42 33.61
PUNg) | | Fine-tuned RAG 39.45 17.59 34.60
Baseline 38.15 16.34 33.82
Qéinl;iséffn;“iffuft + Naive RAG 39.89 18.00 35.28
PUNg) 1 | Fine-tuned RAG 40.27 18.30 35.95
Baseline 42.21 21.99 38.84
Q(Vﬁzrlgi%’; Ej;l;gg)“ + Naive RAG 42.56 21.80 39.32
+ Fine-tuned RAG 42.95 22.82 40.03

Table 2: Performance comparison of different base models on the CHQ-Summ dataset. Results demonstrate the
effectiveness of our method across various models, few-shot scenarios, and fine-tuning strategies.

model has shown its strong performance in medi-
cal text generation tasks. BioBART-large was first
fine-tuned using the training set without RAG, fol-
lowed by the second stage of fine-tuning with RAG.
Each fine-tuning consisted of 20 epochs with a
batch size of 8. We also experimented with (2)
Qwen-2.5-7B-Instruct with One-Shot Prompting,
(3) Qwen-2.5-7B-Instruct with Two-Shot Prompt-
ing, and (4) Qwen-2.5-7B-Instruct with LoRA Fine-
Tuning (Hu et al., 2022): the model was fine-tuned
using LoRA for 10 epochs with a batch size of 8.
LoRA fine-tuning was performed with a rank of
8, alpha of 16, and no dropout. The details of the
prompts are described in example A.1 and exam-
ple A.2

In all settings, the baseline is the corresponding
fine-tuned model or a few-shot prompted models
without RAG. In addition, we also compared to a
naive RAG where the retriever has not been fine-
tuned, i.e., without domain adaptation. All the
experiment was conducted on a single NVIDIA
A6000 48G GPU.

4.4 Results

In this section, we highlight the key contribution
of our RAG-enhanced approach, demonstrating
its effectiveness across different models, few-shot
settings, and fine-tuning strategies. A consistent
performance gap between naive RAG and fine-
tuned RAG underscores the importance of domain-
adaptive retrieval. This contrast suggests that syn-
thetic examples play a key role in improving the
relevance of the retrieval and the overall quality of
the summary.

For the standard fine-tuned BioBART-large
model, our method significantly improves perfor-
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mance. With naive RAG, only the ROUGE-1 score
shows a marginal improvement, while the ROUGE-
2 score slightly decreases, and the ROUGE-L score
remains unchanged. However, with MedSumm-
RAG, the BioBART-large model achieves a notable
increase in ROUGE scores, highlighting the effec-
tiveness of integrating external knowledge through
domain-adapted retriever.

For the Qwen-2.5-7B-Instruct model in few-
shot prompt settings, our method consistently en-
hances performance without fine-tuning the gen-
erator. Even with naive RAG, we observe mod-
est improvements in ROUGE scores. Fine-tuning
the RAG component further boosts performance,
demonstrating the effectiveness of our method even
when the generator is frozen. Additional prompt
examples also contribute to improved results.

For the LoRA fine-tuned Qwen-2.5-7B-Instruct
model, integrating naive RAG yields marginal im-
provements in ROUGE-1 and ROUGE-L, while
ROUGE-2 experiences a slight decline compared to
the baseline. In contrast, our domain-adapted RAG
enhances performance across all ROUGE metrics,
demonstrating the importance of optimizing the
retrieval process to effectively leverage external
knowledge in the LoRA fine-tuning setting.

5 Conclusion

Our experimental results highlight the effective-
ness of leveraging external knowledge for adapting
language models to medical summarization tasks,
addressing the challenge of domain adaptation in
specialized medical contexts. Future work includes
extending our approach to a larger-scale knowl-
edge base to further enhance retrieval effectiveness.
Additionally, beyond ROUGE-based evaluation, in-



corporating human evaluation could provide deeper
insights into the quality of generated summaries.
Furthermore, exploring the application of our fine-
tuned RAG framework to other medical summariza-
tion tasks, such as radiology report summarization,
is another promising direction for advancing our
work.

Limitations

While our proposed method demonstrates promis-
ing results in improving medical text summariza-
tion, its generalizability remains to be validated.
Our experiments are conducted exclusively on the
CHQ-Summ dataset, which focuses on summariz-
ing customer health questions. While this dataset
provides a valuable benchmark for medical ques-
tion summarization, it does not fully represent the
diversity of medical texts, such as clinical notes, or
discharge summaries. In addition, while the Yahoo!
Answers L6 corpus offers broad coverage, it may
contain content of varying accuracy, which moti-
vates future exploration of more medically curated
sources to further reduce hallucination risks.
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A Appendix

This appendix shows the prompts used for sum-
mary generation methods described in this paper.

For few-shot learning setting we randomly select
samples from the training set. The example A.1
shows the prompt template we use for generating
medical summaries in one-shot setting.

Example A.1. You are a helpful assistant. Your
task is to summarize the given question based
on the provided question and possibly helpful re-
trieved document. The retrieved document may or
may not be useful for summarization.

Example:

QUESTION: {Example input text}

RETRIEVED DOCUMENT: {Example retrieved
document}

SUMMARY: {Example summary }

QUESTION: {Test set input text}

RETRIEVED DOCUMENT: {Test set retrieved
document }

SUMMARY:

The example A.2 shows the prompt template we
use for generating medical summaries in two-shot
setting.

Example A.2. You are a helpful assistant. Your
task is to summarize the given question based
on the provided question and possibly helpful re-
trieved document. The retrieved document may or
may not be useful for summarization.

Examples:

QUESTION: {Example input text}

RETRIEVED DOCUMENT: { Example retrieved
document }

SUMMARY: {Example summary }

QUESTION: {Example input text}

RETRIEVED DOCUMENT: { Example retrieved
document }

SUMMARY: {Example summary}

QUESTION: {Test set input text}

RETRIEVED DOCUMENT: {Test set retrieved
document }

SUMMARY:
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Abstract

Social media platforms generate an enormous
volume of multi-modal data, yet stress detec-
tion research has predominantly relied on text-
based analysis. In this work, we propose a
novel framework that integrates textual content
with synthesized visual cues to enhance stress
detection. Using the generative model DALL-E,
we synthesize images from social media posts,
which are then fused with text through the
multi-modal capabilities of a pre-trained CLIP
model, which encodes both text and image data
into a shared semantic space. Our approach is
evaluated on the Dreaddit dataset, where a clas-
sifier trained on frozen CLIP features achieves
94.90% accuracy, and full fine-tuning further
improves performance to 98.41%. These re-
sults underscore the integration of synthesized
visuals with textual data not only enhances
stress detection but also offers a robust method
over traditional text-only methods, paving the
way for innovative approaches in mental health
monitoring and social media analytics.

1 Introduction

Social media has emerged as a pervasive platform
for personal expression, generating enormous vol-
umes of data that encompass both textual and visual
modalities (Baltrusaitis et al., 2018; Mouzannar
et al., 2018; Abousaleh et al., 2020). This rich,
heterogeneous data offers unprecedented opportu-
nities for understanding human behavior and men-
tal health. However, prevailing stress detection
research has largely focused on text-based analy-
sis, overlooking the potential for complementary
affective cues that can be inferred or synthesized
into visual representations.

Recent advances in multi-modal machine learn-
ing have shown that integrating diverse data sources
can significantly enhance performance on affec-
tive and behavioral tasks (Song et al., 2024; lerac-
itano et al., 2020; Amal et al., 2022; Zhang et al.,
2020). At the same time, generative models such
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as DALL-E have opened new avenues for synthe-
sizing high-quality visuals from textual descrip-
tions (Ramesh et al., 2021; Khachatryan et al.,
2023; Tewel et al., 2022). This proliferation of
data prompts an essential question: How can the
fusion of synthesized visual data with traditional
text data improve the accuracy and effectiveness of
stress detection algorithms?

In this work, we introduce a novel multi-modal
framework that leverages both text and synthesized
images for stress detection. Specifically, we gener-
ate images from social media posts using DALL-E
(Ramesh et al., 2021) and integrate these visuals
with text via the robust joint embedding space pro-
vided by a pre-trained CLIP model (Radford et al.,
2021). We evaluate our approach on the Dreaddit
dataset (Turcan and McKeown, 2019), a collection
of social media posts annotated to indicate whether
the person who wrote the post suffers from stress or
not. Our experiments demonstrate that a classifier
trained on frozen CLIP features achieves 94.90%
accuracy, while full fine-tuning further elevates per-
formance to 98.41%. These results indicate that
synthesized visuals capture subtle emotional and
contextual cues that are absent from text alone,
thereby significantly enhancing detection accuracy.

Our contributions are threefold:

1. We propose a novel multi-modal framework
that fuses text and synthesized visuals to ad-
dress the limitations of traditional text-only
stress detection methods.

We demonstrate the effectiveness of our ap-
proach on the Dreaddit dataset (Turcan and
McKeown, 2019), achieving state-of-the-art
performance through both classifier-only train-
ing and full fine-tuning strategies.

We provide an in-depth analysis of the impact
of multi-modal fusion on capturing nuanced
affective signals, laying the groundwork for
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future research in mental health monitoring
using social media data.

2 Related Work

Stress detection on social media has tradition-
ally been approached using text-based methods.
Early studies primarily relied on lexicon-based
techniques and classical machine learning algo-
rithms to identify linguistic markers of stress and
anxiety in user-generated content (De Choudhury
et al., 2013; Aldarwish and Ahmad, 2017; Biswas
and Hasija, 2022). More recent approaches have
employed deep learning architectures, such as re-
current neural networks (Salehinejad et al., 2017)
and transformer-based architectures (Vaswani et al.,
2017; Ji et al., 2022; Yang et al., 2024; Shi et al.,
2024), to capture complex syntactic and semantic
patterns from text. Despite these advancements,
text-only methods may fail to capture affective
or contextual information that can be made more
salient through synthesized visual representations.

The growing interest in multi-modal learning
has spurred research into integrating multiple data
sources to improve performance on affective and
behavioral tasks. Several studies have demon-
strated that fusing textual and visual information
can enhance emotion recognition (Kosti et al.,
2017; Cowie et al., 2001; Zhu et al., 2025) and sen-
timent analysis (Baltrusaitis et al., 2018; Wankhade
et al., 2022). For instance, multi-modal architec-
tures that combine convolutional neural networks
(Li et al., 2021) for image analysis with language
models for text have shown improved accuracy over
single-modality approaches (Mittal et al., 2018;
You et al., 2015; Feng et al., 2025; Devlin et al.,
2018; Liu et al., 2019). However, the application of
multi-modal techniques to stress detection remains
relatively underexplored.

Generative models have further broadened the
horizons of multi-modal research. Models such as
DALL.-E have shown impressive capabilities in syn-
thesizing high-quality images from textual prompts
(Ramesh et al., 2021; Zhou et al., 2023), thereby
providing a novel means to augment datasets that
lack explicit visual content. Concurrently, models
like CLIP have established robust joint embedding
spaces that effectively capture the semantic rela-
tionships between images and text (Radford et al.,
2021; Qiao et al., 2019; Wang et al., 2023; Zhong
et al., 2021; Gu et al., 2023; Wang et al., 2021).
These innovations have paved the way for leverag-
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ing synthesized visuals to complement textual data,
offering new insights into affective states that may
not be fully captured by text alone.

Prior work in mental health has shown that lin-
guistic patterns in social media (e.g., first-person
pronouns, hopelessness, negative tone) indicate
stress, anxiety, or depression (De Choudhury et al.,
2013; Cohan et al., 2018), and visual cues (e.g.,
expressions, colors, context) also reflect affective
states (Abousaleh et al., 2020). Building on this, we
hypothesize that even synthesized images—when
guided by affect-sensitive prompts—can offer com-
plementary signals for stress detection.

Our work builds on these lines of research by in-
tegrating synthesized visuals with text-based analy-
sis for stress detection. Our work employs gener-
ative image synthesis in conjunction with a multi-
modal representation framework for this task. By
fusing the complementary strengths of DALL-E
and CLIP, we aim to address the limitations of tra-
ditional text-only approaches and provide a more
holistic understanding of stress as expressed on
social media.

3 Methodology

In this section, we describe our multi-modal frame-
work for stress detection, which integrates synthe-
sized visual cues with textual information. Our
approach consists of two stages: image generation,
and multi-modal representation with CLIP.

3.1 Image Generation

To enrich textual data, we use the generative capa-
bilities of DALL-E 3, an advanced version of the
DALL-E model (Ramesh et al., 2021). This model
synthesizes images closely aligned with textual de-
scriptions. The process begins with the input of a
text prompt into a specialized text encoder. This
text encoder is adept at converting the textual in-
formation into a high-dimensional representation
space (text encoding), aiming to capture the core
semantic content of the prompt (Figure 1).

Following this, a component known as the diffu-
sion prior takes over, which is a crucial part of the
model’s architecture. The prior is responsible for
mapping the text-encoded semantic representation
to a corresponding image encoding. This image
encoding is designed to retain the semantic content
conveyed by the text, ensuring that the generated
images reflect the intended themes and elements of
the input prompt.
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Figure 1: Methodology overview. (1) image generation: the posts (text) and the corresponding prompt are converted
into images that visually represent the text’s semantic content, (2) multi-modal representation with CLIP: the images,
alongside the original text, are processed through CLIP to form a joint embedding space, used for stress detection.
The CLIP Classifier-Only Training strategy fine-tunes the classifier (fully connected layers) while keeping the CLIP
base model (text and image encoder) frozen. The CLIP Full Fine-Tuning strategy fine-tunes both the classifier and
the CLIP base model. This process leverages both textual and visual data to enhance detection accuracy.

The final step in the image generation process
involves an image decoder. This decoder uses the
image encoding to stochastically generate the final
visual output. The resulting image is a visual rep-
resentation of the semantic information encoded
from the initial text prompt, materializing as a syn-
thetic image that complements the textual data in
our multi-modal stress detection framework. By
leveraging this advanced image synthesis process,
we ensure that the generated visuals are both seman-
tically relevant and visually coherent, providing a
robust foundation for further multi-modal analysis.

3.2 Multi-modal Representation with CLIP

We employ the pre-trained CLIP model (Radford
et al., 2021) to facilitate a robust multi-modal rep-
resentation, leveraging its capacity to encode both
text and images into a shared joint embedding
space. Each text sample is processed by the text
encoder to extract textual features, while corre-
sponding synthesized images are preprocessed and
passed through the image encoder. The features
from both modalities are normalized and concate-
nated to form a joint representation (Figure 1). This
embedding captures complementary affective cues
from both textual and visual data, enhancing our
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ability to detect stress signals on social media.
To effectively train our model, we adopt two
training strategies:

1. CLIP Classifier-Only Training: In this ap-
proach, we keep the pre-trained CLIP base
frozen, focusing training efforts solely on the
attached classifier. This method benefits from
the robustness of the existing multi-modal em-
beddings, avoiding alterations to the underly-
ing representations and ensuring stability.

. CLIP Full Fine-Tuning: Alternatively, we
engage in full fine-tuning of both the CLIP
model and the classifier. This strategy allows
the entire network to adapt more comprehen-
sively to the domain-specific nuances of stress-
related content, improving detection accuracy
by refining the joint embedding space to better
capture subtle emotional nuances.

This integrated methodology not only leverages
generative image synthesis to augment textual in-
formation but also strategically fuses these modal-
ities in a joint embedding space. The approach is
designed to enhance the detection of nuanced af-
fective signals that are pivotal for accurate stress
detection on social media platforms.



Model Accuracy (%) Weighted F1 (%)
MentalRoBERTa 96.14 94.24
MentalBERT 69.32 78.75
RoBERTa-base 96.14 94.24
BERT-base 96.14 94.67

92.42
98.27

94.90
98.41

CLIP Classifier-Only Training (Ours)
CLIP Full Fine-Tuning (Ours)

Table 1: Performance comparison of our approach with
general-purpose and mental health-specific models on
the Dreaddit dataset.

4 Experiments and Results

In this section, we outline our experimental setup,
present results, and discuss findings.

4.1 Experimental Setup

The Dreaddit dataset (Turcan and McKeown, 2019)
comprises 2,837 training samples and 414 test-
ing samples, where each sample is a social me-
dia post accompanied by a binary label indicat-
ing the presence or absence of stress. The posts
are drawn from mental health-related subreddits
such as r/depression, r/anxiety, and r/relationships.
Each post was annotated through crowdsourced
judgments, with three annotators per instance and
majority voting used to determine the final label.
The dataset is approximately balanced across the
two classes. For each post, we generate a corre-
sponding synthetic image using DALL-E 3. The
hyperparameters reported in the Appendix. Our
experiments compare the following models:

e CLIP C(lassifier-Only Training (Ours):
Classifier-only training where the pre-trained
CLIP model is kept frozen while only the clas-
sifier is trained.

CLIP Full Fine-Tuning (Ours): Full fine-
tuning of both the CLIP model and the classi-
fier on the Dreaddit dataset.

Text-Only Baselines: Pre-trained discrimina-
tive language models which are either general
purpose (RoBERTa-base, BERT-base (Devlin
et al., 2018; Liu et al., 2019)) or finetuned for
mental health applications (MentalRoBERTa,
Mental BERT (Ji et al., 2022)).

4.2 Results

Table 1 reports the accuracy and weighted F1
scores for our proposed models and the text-only
baselines. Our CLIP Classifier-Only Training
model achieves an accuracy of 94.90% with a
weighted F1 score of 92.42%, while the CLIP Full
Fine-Tuning model reaches 98.41% accuracy and

37

Modality Accuracy (%) Weighted F1 (%)
Image-Only 95.22 93.17
Text-Only 96.82 96.31
Image + Text 98.41 98.27

Table 2: Ablation study of our method comparing image-
only, text-only, and combined multi-modal model.

98.27% weighted F1 score. In comparison, the
text-only models yield competitive performance for
MentalRoBERTa, RoBERTa-base, and BERT-base
(accuracy around 96.14% and weighted F1 around
94%), whereas Mental BERT underperforms. The
results demonstrate that full fine-tuning of our
multi-modal framework (CLIP Full Fine-Tuning)
leads to a substantial improvement in performance
over classifier-only training, highlighting the bene-
fit of adapting the joint image-text representations
to stress detection. Furthermore, our approach
achieves competitive performance compared to
strong text-only baselines, while offering the added
advantage of leveraging synthesized visual cues.
Even though our results demonstrate strong perfor-
mance gains, we acknowledge that we have not con-
ducted statistical significance testing across mul-
tiple random seeds. Future work will incorporate
such evaluations to better assess the robustness of
our findings.

4.3 Ablation Study: Modality Contributions

To better understand the contribution of each
modality, we performed an ablation study by evalu-
ating our model trained using only the synthesized
images, only the textual data, and the fusion of both
modalities Table 2. The image-only model, which
relies solely on visual cues extracted from gener-
ated images, achieved an accuracy of 95.22% and a
validation weighted F1 score of 93.17%. The text-
only model, using only the original social media
posts, reached an accuracy of 96.82% and a valida-
tion weighted F1 score of 96.31%. Notably, when
both modalities are integrated, our multi-modal
framework achieves significantly improved perfor-
mance, with an accuracy of 98.41% and a valida-
tion weighted F1 score of 98.27%. These findings
indicate that while the text-only model is already
highly effective, the addition of synthesized visual
information provides complementary affective cues
that further enhance stress detection performance.

4.4 Discussion

Our experiments validate the hypothesis that in-
tegrating synthesized visuals with text enhances



stress detection on social media. The significant
performance improvement observed with full fine-
tuning suggests that adapting the multi-modal em-
beddings to the domain-specific nuances of stress-
related content is critical. Moreover, the ablation
study confirms that although text-only models per-
form strongly, the incorporation of visual cues
further improves the detection of subtle affective
signals. These findings underscore the potential
of multi-modal data fusion for advancing men-
tal health monitoring applications. We hypothe-
size that the generated visuals act as implicit emo-
tion amplifiers, translating latent affective states
into more explicit signals that the model can learn
from. The shared embedding space enables the
model to reinforce weak cues in one modality us-
ing complementary information from the other,
thereby improving the robustness of stress detec-
tion. While this method shows strong results on
the Dreaddit dataset, its generalizability to other
mental health tasks or platforms—such as Twitter
or Instagram—remains an open question. Future
work should explore how this approach adapts to
different linguistic styles, content structures, and
user populations across platforms.

5 Conclusion

In this work, we introduced a novel multi-modal
framework for stress detection using both textual
content and synthesized visuals from DALL-E.
Leveraging the CLIP model’s robust joint em-
bedding capabilities, our method captures subtle
emotional cues missed by text-only approaches.
Tested on the Dreaddit dataset, our model achieved
94.90% accuracy with classifier-only training,
while full fine-tuning increased performance to
98.41%. These results highlight the significant
potential of combining generative image synthe-
sis with multi-modal representation learning for
affective computing and mental health monitoring.

Limitations

Despite the promising results of our multi-modal
framework, several limitations remain. First, our
approach relies on synthesized images generated
by DALL-E, which may introduce biases or incon-
sistencies; the quality and representativeness of the
generated visuals can vary depending on the input
text. Second, our experiments have been conducted
solely on the Dreaddit dataset, and it is unclear
whether the observed performance improvements
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will generalize to other social media platforms or
stress-related domains (Cohan et al., 2018; Mau-
riello et al., 2021; Garg et al., 2022; Sathvik and
Garg, 2023; Chim et al., 2024). Furthermore, while
results on the Dreaddit dataset are promising, fur-
ther research is needed to determine the generaliz-
ability of our model across different social media
platforms and diverse demographic groups. Finally,
even though the fusion of text and visuals enhances
stress detection, the interpretability (Jeon et al.,
2024) of the resulting multi-modal representations
remains an open challenge. Future work should
focus on addressing these limitations by explor-
ing more robust image synthesis techniques and
developing methods to improve the transparency
and interpretability of multi-modal models. One
limitation is the lack of systematic evaluation of
the generated images. We do not assess whether
they reflect the intended affective state or which
visual features (e.g., color, composition, expres-
sions) contribute to stress detection. Future work
will examine prompt design and affective feature
attribution.

Ethical Considerations

Our work involves the analysis of social media data
for stress detection, raising important ethical con-
siderations. The use of such data requires strict ad-
herence to privacy protocols and the anonymization
of user information. Additionally, generative mod-
els like DALL-E can inadvertently propagate biases
present in their training data, potentially affecting
the fairness and reliability of our system. Care must
be taken to ensure that the technology is not mis-
used for surveillance or discriminatory practices.
We advocate for responsible usage, transparent re-
porting of model decisions, and the integration of
fairness-aware techniques in future work. As our
study uses only anonymized Dreaddit data without
new collection or user interaction, ethics approval
was not required. Still, using DALL-E to generate
images from user content raises concerns. We take
precautions against misuse, but future work should
pursue consent-driven, transparent frameworks for
generative modeling in mental health.
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A Appendix

In the appendix, we provide further details regard-
ing our experimental setup, hyperparameter set-
tings, and examples of synthesized images. These
supplementary materials aim to enhance the repro-
ducibility of our work and offer deeper insights into
the performance of our multi-modal framework.

A.1 Hyperparameters for Generating Images
with DALL-E

As shown in Table 3, we employed the DALL-E
3 model to synthesize images from social media
posts. Our prompt was carefully designed to en-
sure that the generated visuals consistently capture
stress-related cues. For each post, the prompt in-
structs DALL-E 3 to produce a consistent, struc-
tured image that visually represents a state of
stress or anxiety. This image is expected to in-
clude a tense or overwhelming environment (e.g.,
dim lighting, clutter, urban stress), facial expres-
sions that convey worry, exhaustion, or distress
(when humans are depicted), and a darker, cooler
color palette to evoke a stressed mood. The images
are generated at a resolution of 1024x1024 with
standard quality, and one image is produced per
post.

A.2 Hyperparameters and Training Setup for
CLIP

Table 4 summarizes the hyperparameters and train-
ing configurations used in our experiments for both
the CLIP Classifier-Only Training and the CLIP
Full Fine-Tuning approaches.

In our experiments, the CLIP Classifier-Only
Training approach involves freezing the CLIP base
and training only the classifier with the AdamW
optimizer (Zhou et al., 2024) at a learning rate of
5x1074, a weight decay of 1 x10™%, and a StepLR
scheduler (step size of 5 epochs and v = 0.5).
Training is conducted for up to 10 epochs with
early stopping after 3 epochs of no improvement.
For the CLIP Full Fine-Tuning approach, both the
CLIP base and the classifier are updated. We em-
ploy a dual learning rate strategy where the CLIP
parameters are optimized at 5 x 1075 and the clas-
sifier at 5 x 10, using the same weight decay and
scheduler settings. This configuration runs for up
to 15 epochs, with gradient clipping (max norm =
1.0) applied to stabilize training. These hyperpa-
rameter choices enable a balanced adaptation of the
pre-trained CLIP representations while effectively
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learning task-specific features for stress detection.

A.3 Tllustrative Examples of Synthesized
Visuals from Social Media Posts

In this section, we generate images from social
media posts using DALL-E. We provide exam-
ples from the Dreaddit dataset alongside their
corresponding synthesized images (see Figure 2).
Each image is generated based on the text of the
post, capturing the key emotional and contextual
cues embedded within the content. Our approach
translates linguistic elements—such as tone, word
choice, and contextual details—into visual features,
including the color palette, environmental cues, and
facial expressions that are indicative of stress. By
presenting these paired examples, we illustrate how
our multi-modal framework leverages both textual
and visual modalities to enhance stress detection,
offering a more comprehensive perspective on the
underlying affective signals present in social media
data.

A.4 Code Availability

The source code for all experiments, includ-
ing data preprocessing, model training, and
evaluation scripts, is available on GitHub:
https://github.com/Efstathia-Soufleri/

Stress-Detection-CLIP. This repository is
designed to facilitate the reproducibility of our
results and to support further research in this field.


https://github.com/Efstathia-Soufleri/Stress-Detection-CLIP
https://github.com/Efstathia-Soufleri/Stress-Detection-CLIP

Parameter Value / Description

Model dall-e-3

Prompt Based on the text "{post}", generate a consistent, structured image
that visually represents a state of stress or anxiety. The image must
include:

* A tense or overwhelming environment (e.g., dim lighting, clutter,
urban stress).

* Facial expressions showing worry, exhaustion, or distress (if
humans are depicted).

* A darker, cooler color palette to evoke a stressed mood.

Size 1024x1024
Quality Standard
Number of Images 1

Table 3: Summary of DALL-E 3 image generation parameters and prompt design used for synthesizing visuals that
capture stress-related cues.

Parameter Classifier-Only Training Full Fine-Tuning

Epochs 10 15

Batch Size 32 32

Optimizer AdamW (classifier only) AdamW (dual groups)
Learning Rate (Classifier) 5x 1074 5x 1074

Learning Rate (CLIP Base) — 5x 1076

Weight Decay 1x107* 1x1074

LR Scheduler StepLR (step=5, v=0.5) StepLR (step=5, v=0.5)

Early Stopping Patience 3 epochs 3 epochs

Additional Techniques — Gradient Clipping (max norm = 1.0)

Table 4: Hyperparameters and training configurations for Classifier-Only Training and Full Fine-Tuning of our
proposal.
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Post \

Especially the power of healing brought upon by service animals.
I too, have a service dog named Luna. This wonderful man was
nice enough to bring the book back in while I was off yesterday
with a note with his name and number telling me to call him when
I finish the book. This just made my day, it really did. There’s so
much negativity in the world today and it seems not many people
will stop to do something nice for someone or help them by
doing a random act of kindness.

Post

These past couple of months have been the worst. My anxiety has
gotten so bad it’s effecting my sleep and relationship. I’ve become
so paranoid about my health as well. I don’t feel like me anymore
and I just feel scared all the time now over every little thing. I
don’t have money to see a therapist either...

/

Figure 2: Illustrative examples from the Dreaddit dataset. A social media post and the corresponding synthesized
image generated from the post text. These examples demonstrate how our multi-modal framework leverages both
textual and visual modalities to capture emotional and contextual cues for enhanced stress detection. The top image
and post pair indicate absence of stress and the below pair indicate stress.
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Abstract

We developed a new methodology of
extracting the frequency of a patient’s
epilepsy seizures from unstructured, free-
text outpatient clinic letters by: first,
devising a singular unit of measurement for
seizure frequency; and second, fine-tuning
agenerative Large Language Model (LLM)
on our bespoke annotated dataset. We
measured frequency by the number of
seizures per month: one seizure or more
requires an integer; and less than one a
decimal. This approach enables us to track
whether a patient’s seizures are improving
or not over time. We found fine-tuning
improves the F1 score of our best-
performing LLM, Ministral-8B-Instruct-
2410, byaroundthree times compared toan
untrained model. We also found Ministral
demonstrated an impressive ability for
mathematical reasoning.

1 Introduction

Extracting key patient data from longitudinal
Electronic Health Records (EHRs) is critical to
developing Al models that help improve patient
treatments. Yet unstructured, free-text narratives
are typically not suited to computational models
that require structured data, and so medical
researchers are increasingly utilizing Natural
Language Processing (NLP) tools to enable clinical
Al models to understand medical terminology and
concepts (Yang et al., 2022).

In recent years, much clinical NLP research has
focused on generative Large Language Models
(LLMs). On the one hand, this has involved the
development of LLMs with some degree of clinical
expertise, such as ClinicalBERT (Huang et al.,
2019), GatorTron (Yang et al., 2022), and
ClinicalMamba (Yang et al., 2024). On the other
hand, researchers have applied general knowledge
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LLMs to extract data from clinical texts (for
example, Agrawal et al., 2022; Thirunavukarasu et
al., 2023; and Zhou et al., 2023). In turn, this field
of research has led to the creation of a benchmark,
ClinicBench, to evaluate the performance of 22
LLMs in a clinical setting (Liu et al., 2024).

Yet the application of LLMs to epilepsy research
is still relatively uncommon, although it is expected
that this field will increase significantly in future
(van Diessen et al., 2024). Epilepsy affects about
1% of the general population (Fiestetal., 2017) and
contributes to an estimated half a percent of the
global disease burden (WHO. Epilepsy. 2019).
About 30% of people with epilepsy do not respond
to anti-seizure medications (ASMs) and are
therefore regarded as refractory to treatment (Kwan
and Brodie, 2000). In the United Kingdom over the
last decade, more than 30 individual ASMs have
been available to prescribe and the number of
possible combinations of ASMs taken as
polytherapy is much larger. Consequently, it is not
feasible to try all possible monotherapy and
polytherapy options in every refractory patient.
This underlines the importance of research in
predicting which ASMs would have the greatest
impact on epileptic seizures for individual patients.

The most extensive relevant research on LLMs
and epilepsy remains a long-term study (Xie et al.,
2022a; Xie et al., 2022b; Xie et al., 2023; and Xie
atal., 2024) that used a different methodology from
ours to extract seizure frequency information from
Electronic Health Records (EHRs). In their
2022-23 papers, the University of Pennsylvania
researchers applied the pre-trained Transformers
Bio ClinicalBERT (for text classification),
RoBERTa (for text extraction), and a T-5 model (to
summarize sentences with seizure frequency data)
to free-text EHRs to determine the seizure
frequency of a person with epilepsy or whether that
person was seizure free. They declared an “overall
accuracy” score of 0.88 for seizure frequency. In
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their 2024 paper, the team tested for bias (race,
ethnicity, sex, income, and health insurance) in a
ClinicalBERT model that they had fine-tuned on
700 manually annotated epileptologist notes and
which classified whether a clinic note specified ifa
patient was seizure free or had recent seizures.
They found no evidence of bias in the model.

Our previous, 2024 study was the first published
paper to use a generative LLM to determine seizure
frequency for people with epilepsy from
unstructured, free-text EHRs (Holgate et al., 2024).
We utilized Llama 2 13B (Touvron et al., 2023) to
classify seizure frequency within eight temporal
categories — ranging from once a year at one end of
the spectrum to one or more per day at the other
end — and in our analysis grouped the temporal
categories into a binary split between infrequent
and frequent seizures. We achieved an overall F1
score of 0.73 with Llama 2 13B.

An even more recent epilepsy study (Goldenholz
et al., 2025) utilizes three different LLMs for
different purposes: 1) Meta’s Llama 2 13B to
generate a randomized clinical trial for the ASM
Cenobamate and generate 480 synthetic clinical
notes; 2) Mistral’s Mistral 7B v0.1 to summarize
the clinical notes, specifically in regard to the
number of seizures during the observation period
and any symptoms associated with the ASM; and
3) Anthropic’s Claude 2 to improve on the
formatting and results of the data table. They used
LLMs from different Al companies to ensure
separation of technologies for the discrete tasks.
Importantly, none of the LLMs were specially
trained in medical language. The researchers
concluded that their methodology demonstrated a
capacity for inductive reasoning “from large sets of
unstructured clinical encounters.” Consequently,
they recommended ““a paradigm shift away from
perfectly understanding the individual patient
towards generalizable knowledge extracted from
groups of patients. This new paradigm capitalizes
on the strengths of LLMs [while]
acknowledging their weakness at high precision.”

While we agree that LLMs hallucinate at
individual patient level for seizure frequency,
based on our experience, we disagree that they are
not useful for micro analysis. On the contrary, our
study demonstrates that some of the latest
generative LLMs are, in fact, very good at
estimating seizure frequency in unstructured, free-

! https://cogstack.org/
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text EHRs based on our new methodology that
incorporates a singular unit of measurement and
fine-tuning.

2 Data and Methods

2.1 Data Collection

We selected 51,760 EHRs from King’s College
Hospital NHS Foundation Trust (KCH) that relate
to 5,767 unique adult people with epilepsy being
treated at KCH. The data spans more than a decade,
from 1 January 2013 to 30 September 2023. The
vast majority of the records comprise doctors’ and
nurses’ reports of outpatients’ ambulatory visits.
We defined a person with epilepsy as someone who
has at least one record of an epilepsy diagnosis.

The selection was done via CogStack, an open-
source information retrieval and extraction
platform for EHRs developed by researchers at the
NIHR Maudsley Biomedical Research Centre in
London.! CogStack integrates with KCH’s EHRs.
We defined a set of epilepsy-related keywords and
medical codes, and then used CogStack's search
functionality to filter out EHRs that matched these
definitions.

We then used stratified random sampling to
select 3,000 EHRs to create an annotated dataset,
which ensured proportional distribution across the
original dataset in regard to age, gender, and
ethnicity to minimize bias (see below for further
annotation details).

2.2 Seizure Frequency Measurement

We followed the logic of the U Penn team to create
a standardized format to denote seizure frequency
in a given EHR. However, our methodology
differed in two ways. First, the U Penn researchers
used three language model pipelines with three
different language models — for text classification,
text extraction, and summarization of sentences
with seizure frequency data — whereas we used
only one generative LLM for all classification,
extraction, and calculation tasks, largely because
the newest LLMs are much more powerful than the
ones they used. Second, the U Penn researchers
initially used different time periods — day, month,
year, or visit —depending on the period specified in
the text, and then converted that by a rules-based
quantifier into a standardized format of the number
of seizures per month, whereas we required only



one step by fine-tuning an LLM on our annotated
dataset that denoted the text’s data as the number of
seizures per month.

Our project’s lead data scientist annotated 1,480
EHRs in accordance with our singular unit of
measurement for seizure frequency — that is, the
number of seizures per month. The EHRs had
previously undergone an initial annotation process.
In our previous study (Holgate et al., 2024), we
used stratified random sampling to select 3,000
EHRs to create an annotated dataset, which
ensured proportional distribution across the
original dataset for age, gender, and ethnicity to
minimize bias. Subsequently, a team of six
annotators, comprising four neuroscience
clinicians (including two epileptologists) and two
data scientists, manually annotated the 3,000 EHRs
for key data categories of the project, in particular
seizure frequency, as well as seizure freedom,
current anti-epilepsy medication, epilepsy type,
seizure  type, associated symptoms, and
comorbidities. The annotators categorized seizure
frequency into eight temporal frequencies -
ranging from one seizure per year to one or more
per day —plus ‘unknown.’ Due to time and resource
limitations, the annotators worked on separate
batches of the 3,000 EHRs, rather than having two
annotators work on the same batch for moderation.
However, the two epileptologists reconvened to
create a ‘gold standard’ annotated dataset of 300
EHRs; their inter-annotator agreement was a
Cohen’s kappa score of 0.84, which signified near
perfect agreement.

In turn, the lead data scientist used the 300 EHRs
from this ‘gold standard’ annotated dataset plus a
further 1,180 annotated EHRs to create a training
and testing dataset to fine-tune LLMs on seizure
frequency. The reason why the training / testing
dataset was about half the size of the original
annotated dataset was that about the same
proportion of the KCH EHRs extracted contained
information about a patient’s seizure frequency.
The lead data scientist converted the annotator’s
original annotation for seizure frequency to our
new measurement system, in which one seizure or
more per month required an integer, and less than
one seizure per month a decimal (see Table 1). Two
other categories were required for notation. If an
EHR contained reference to seizures but the
duration was unspecified or unclear, the number

2 https://www.langchain.com
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‘1000’ was used (essentially a proxy figure to
denote incomplete information). Or if an EHR
contained no reference to seizures, a ‘0’ was used.

This methodology provided three key
advantages: first, a single numerical metric makes
it easy to track a patient’s seizure trajectory over
time (a declining number means the frequency of
their seizures is reducing, while an increasing
number means the frequency of their seizures is
rising); second, a single numerical metric is easier
to understand than eight, discrete temporal
categories to record seizure frequency; and third, a
single numerical metric is a more accurate and
reliable input to feed into a seizure prediction
model that we are developing as part of our wider
epilepsy research project.

2.3  Model Development
Implementation

and

Environments and Models: We used LangChain
as our development framework because it provides
convenience and flexibility for building
applications powered by LLMs. 2 First, we
deployed LangChain in our local environment,
then we downloaded the four LLMs we
experimented with in this study from Hugging Face
and loaded the models into LangChain, which
allowed us to perform multiple LLM operations in
the local environment.?> LangChain offers simple
interfaces for loading and initializing LLMs.

We also employed parameter-efficient fine-
tuning techniques, or PEFT, in particular parameter
updates by low-rank adaptation, or LoRA. The
latter hacks the regular backpropagation updates by
splitting the update matrix into two smaller
matrices which, when multiplied together, can give
back the original update matrix. LoRA can
accelerate  training  while  reducing  the
computational demands.

We experimented with four LLMs that were
released in 2024 or 2025 and developed by three
different AI companies: US-based Meta’s Llama
3.1 8B Instruct (Grattafiori et al., 2024); France-
based Mistral’s Mistral Nemo Instruct 2417
(Mistral Al Team, 2024a) and Ministral 8B Instruct
2410 (Mistral Al Team, 2024b); and China-based
Alibaba’s Qwen 2.5 7B Instruct (Yang et al., 2025).
We were restricted to only using open-source
language models because we used confidential

3 https://huggingface.co



You are a professional neuroscientist.

Analyze the textand work through these
4 steps:

1. Determine whether the text has any
information about the frequency of the
patient's epilepsy seizures.

2. If the text does have information
about the frequency of the patient's
epilepsy seizures, then estimate the
frequency of the seizures, and return the
answer as the number of seizures per
month.

3. If the text does refer to seizures but
you cannot estimate the frequency of the
seizures, then return the answer '1000".

4. If the text does not have any
information about the patient's epilepsy
seizures, then return the answer '0'.

Figure 1: Prompt query structure.

medical data from the UK’s National Health
System (NHS) that had to remain within the
hospital’s secure IT network for regulatory reasons.
We ran the LLMs on up to eight Nvidia V100
GPUs.

Pre-processing: We implemented two pre-
processing elements. First, we found thatan LLM’s
performance was slightly improved by reducing
the length of each EHR, deleting non-relevant
administrative information at the top and bottom of
each clinic letter. As a result, this minimized noise
from the unstructured text. We deleted all text
before the clinic date at the top of the letter, and
removed all text after the letter writer (typically a
doctor or nurse) signed off “yours sincerely” (a UK
letter writing convention) towards the end. In the
event there was no specified date or sign-off, we set
a default deletion of the first 40 characters and final
500 characters of each letter.

Second, we created a balanced dataset from the
1,480 annotated EHRs to train, test, and validate
the LLMs. In each of the dataset’s 1,480
observations, the input consisted of the EHR text,
and the required output was the annotated decimal
or integer for the corresponding seizure frequency,
if stated in the document. A label for seizure
frequency was assigned to the entire clinical note,
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based on the frequency for the patient at the time of
the clinic visit. In other words. we fine-tuned the
LLM on the annotated output. The balanced dataset
was of various sizes, ranging from 375 to 813
EHRs in order to create training datasets ranging
from 300 to 650 EHRs in increments of 50. The
balanced dataset was structured by: taking a
specified number of EHRs annotated with seizure
frequency measurements of 0.1 to 999 (meaning
these letters contained a reference to seizures with
a specified frequency) and selected at random from
the 1,480 annotated EHRs; then taking 25% of the
number of the 0.1-999 category letters from the
‘1000’ category letters, selected at random; and
finally taking the same 25% portion from the ‘0’
category letters, again selected at random. For
example, 500 of the 0.1-999 letters were combined
with 125 of the ‘1000’ letters and 125 of the ‘0’
letters to make a balanced dataset of 750 EHRs in
total. The train/test/validation split was
80%/10%/10%. So in this example the training
dataset consisted of 600 letters, the testing dataset
75 letters, and the validation dataset 75 letters. We
use the term ‘balanced’ to mean that the dataset
used to fine-tune the LLM was not weighted too far
towards any of the three annotated categories.
During experiments we found that this ratio of 25%
of the total 0.1-999 letters for each of the ‘1000’
and ‘0’ letters worked best for adequately fine-
tuning the LLMs on our seizure frequency task.

A fundamental challenge for this project was
that the NHS EHRs used, mostly doctors’ and
nurses’ reports of outpatients’ ambulatory visits,
were unstructured and typically noisy. The reports
included a range of medical and administrative
information, such as the patient’s medication, other
therapies, and details disclosed during previous
clinic visits. Furthermore, the reports often did not
include any information about seizure frequency
and, if they did, the language was often imprecise,
so that the nature of the frequency was vague or
unclear. These factors make the application of
LLMs to EHRs to research seizure frequency
challenging.

Prompt Engineering: Although fine-tuning the
LLM on hundreds of examples was the primary
methodology in meeting this challenge, a
secondary methodology was prompt engineering.
We found that the structure of the prompt query
made a difference to the quality of an LLM’s
answers. After experimentation, we concluded the
optimal approach was Chain of Thought reasoning,



Seizure Frequency Performance Evaluation
Categories Measurement / Month  |Purist Method Pragmatic Method
1 per year 0.08 0<x=0.16
1 per 6 months 0.17 0.16<x=0.18
> 1 per 6 months, <1 permonth [>0.17 <1 0.18<=x=099
1 per month 1 099=x=11 0=x=11
= 1 per month, < 1 per week =1, =4 1.1=x=39
1 per week 4 39<x=41
> 1 per week, < 1 per day >4 <30 41<x=29
1 or more per day 30-999 290 <x =999 1.1=<x=999
Unknown frequency 1000 1000 1000
No seizure information 0 0 0

Table 1: Seizure frequency categories and measurements per month, performance evaluation methods.

asking the LLM to work through four logical steps,
each of which was numbered (see Figure 1). The
first step was to determine whether the EHR
contained any information about the frequency of a
patient’s seizures (because often the letters did not).
The second step asked the LLM to estimate the
frequency as the number of seizures per month.
The third step asked to return an answer of ‘1000’
if the frequency of seizures of was too difficult to
answer. The fourth and final step asked to return ‘0’
if there was no information about seizures. At the
start of the prompt, we asked the LLM to take on
the role of a professional neuroscientist, as we
found this slightly improved the quality of answers.
We hypothesize that contextualizing the reasoning
task for the LLM assists it in logically connecting
the prompt (question) and text (EHR) with the
relevant medical parts of the vast corpora that the
LLM was originally trained on.

Hyperparameters: We kept the temperature at
a very low 0.0001 (0 does not work for some
LLMs) because we wanted the LLMs to generate
typically fact-based answers and be consistent in
their answers across multiple runs. In addition, our
aim was to minimize both the LLMs’ ‘creativity’
and hallucinations.

Although we experimented with changing some
hyperparameters, such as the number of training
epochs, batch size, and learning rate, we found
none of these had any significant impact on the
quality of the LLMs’ answers. We set the number
of epochs at three, the batch size at one, and the
learning rate at 0.0002. In other words, the most
influential factor in improving output was the
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size of the training dataset, followed by the prompt
structure. For LoRA, we set the » value at 64, the
alpha at 16, and the dropout rate at 0.1.

Post-processing: Despite fine-tuning the LLMs
on our annotated dataset, the models’ raw answers
often needed to be cleaned up by a post-processing
algorithm. The raw answers from the original
model were typically variable, with a best-case
answer being exactly what was asked by the
prompt questions (e.g., ‘0’, ‘2°, or “1000”), a mixed
answer (e.g., ‘11 to 16 seizures per month’), to
outright nonsensical (e.g., ‘123456789 or ‘He also
showed some difficulties'). The raw answers from
the fine-tuned LLMs were, however, generally
more in line with what was required, typically
generating an answer as either a decimal or integer
with no (or little) text. Yet the LLM’s construction
— or attempt at construction — of a decimal was
often confused with more than one decimal point
(e.g., 2.00.0000’). As a consequence of the LLMs
not being able to generate an answer in exactly the
required format 100% of the time, we wrote a rules-
based algorithm that either corrected the answer
format where reasonably clear (e.g., ‘2.00.0000°
becomes ‘2°) or changed to a ‘0’ if completely
unclear (e.g., ‘123456789").

Model Selection: We began by running the four
LLMs that we tested on different sized balanced
datasets in order to create training datasets ranging
from 300 to 650 EHRs in increments of 50, as
outlined above. During fine-tuning each LLM was
trained on the training dataset and also given
separate evaluation and test datasets. At this stage
we identified Mistral’s two models as being the



best performing, followed by the Qwen 2.5 model,
and the Llama 3 model. Overall, the best
performing model was Ministral-8B-Instruct-2410.

We then tried various experiments to optimize
the output of Ministral-8B-Instruct-2410. The most
significant factors influencing the quality of the
LLM’s answers were the size of the training dataset
(in general, more observations improved the
answers) and the prompt structure. We determined
that when the training dataset consisted of about
550 EHRs or more, the F1 score on our preferred
method of evaluation reached about 0.80 or more.

3 Results

3.1 Performance Evaluation Methods

We used a confusion matrix to calculate recall,
precision, the F1 score, and accuracy to evaluate an
LLM’s performance. We used a test dataset that
each LLM had not seen during its training process.
However, we devised two different methods of
calculation, what we called the purist method and
the pragmatic method. In the first method we used
fuzzy logic, or the setting of soft (rather than hard)
numerical boundaries between each of the eight
temporal seizure frequency categories, on the basis
that the temporal distinctions are arbitrary and our
objective was to determine changes in a patient’s
seizure frequency over time.

The purist method set a high bar by calculating
how well the LLM performed on eight temporal
categories of seizure frequency. However, we
treated this method more as a theoretical (rather
than true) guide of performance, given the
inconsistency of seizure information written by
doctors and nurses in the outpatient letters, and the
often inherent ambiguity of their language. Under
this method, one seizure per year (specific target
0.08) equated to a range of 0 <x < 0.16, one seizure
per six months (specific target 0.17) was 0.16 < x <
0.18, more than one seizure per six months but less
than one per month (mid-point target = 0.33) was
0.18 <x < 0.99, one per month (specific target 1)
was 0.99 < x < 1.1, more than one seizure per
month but less than one per week was 1.1 <x < 3.9,
one per week (specific target 4) was 3.9 <x <4.1,
more than one per week but less than daily was 4.1
<x <29, and one or more per day was 29 <x <999
(999 being 1 below the ‘fudge’ figure of “1000’). In
addition, we tested the model strictly against the
other two categories: seizures with no information
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about frequency (‘1000’); and no information
about seizures (‘0°).

By contrast, the pragmatic method set a lower
bar and reflected our broader objective to
determine whether LLMs are good at extracting
information about a patient’s seizure frequency in
such a way to reveal if their seizures are improving
over time or not. In this method, we bifurcated the
output into two temporal categories, infrequent and
frequent seizures. Infrequent ranged from one
seizure per year to one per month, which equated
to a range of 0 < x < 1.1. While frequent ranged
from more than one per month to one or more per
day, which equated to 1.1 <x < 999. The two non-
temporal categories remained as above. The
threshold between infrequent and frequent had an
empirical (rather than clinical) justification, in that
our chosen demarcation line spread the number of
observations in both categories more evenly, to
avoid the frequent category significantly
outweighing the infrequent category.

3.2 Model Performance

As shown in Table 2, the best-performing LLM,
Ministral-8B-Instruct-2410, achieved its highest
F1 score on the pragmatic method of 0.81 (purist
method 0.68) with a training dataset of 650 EHRSs,
and a corresponding accuracy rate of 0.68 (0.52).
As Appendix A illustrates, the F1 score on the
pragmatic method rose beyond the 0.70 level once
the training dataset became greater than 500 EHRs.
While this might imply that the bigger the training
dataset, the more effective the fine-tuning and the
better the answers, this may not necessarily be the
case. The F1 score dipped at 600 training
observations but then rose to a new high at 650.
Further research is required with even larger
training datasets to investigate in more depth.

On the other hand, the results suggest that recall
is not dependent on the size of the training data.
Recall was consistently high, ranging from 0.86 to
1.00 on almost all training dataset sizes (with one
exception). In other words, this Ministral model
was proficient at correctly estimating seizure
frequency.

By contrast, the results imply that precision is
dependent on the size of the training dataset. The
Ministral model required more than 500 training
observations to improve precision — the same size
needed to trigger an uplift in the F1 score.
Nevertheless, precision remained the model’s weak
spot, achieving a best result of only 0.71 at 650



Fine-tuned LLM: Best F1 Scores

Purist Method Pragmatic Method
LLM recall precision F1 acccuracy| recall precision F1 acccuracy
Ministral-8B-Instruct-2410 091 0.54 0.68 0.52 0.93 0.71 0.81 0.68
Mistral-Nemo-Instruct-2407 1.00 048 0.65 048 1.00 0.64 0.78 0.64
Qwen2.5-7B-Instruct 0.60 031 0.47 032 0.71 0.62 0.66 051
Llama-3.1-8B-Instruct 0.20 0.35 0.26 0.22 0.22 0.39 0.28 023
Fine-tuned LLM: Mean Over 3 Runs and F1 Standard Deviation

Purist Method Pragmatic Method
LLM recall precision F1 (5D) acccuracy| recall precision F1 (SD) acccuracy
Ministral-8B-Instruct-2410 091 0.51 0.66(0.02) 049 0.93 0.69 0.79 (0.01) 0.66
Mistral-Nemo-Instruct-2407 0.99 045 0.62 (0.05) 045 0.99 0.62 0.76 (0.02) 0.61
Qwen2.5-7B-Instruct 0.38 0.38 0.38 (0.09) 0.26 0.48 0.63 0.53(0.12) 039
Llama-3.1-8B-Instruct 0.22 0.26 0.22(0.05) 0.19 022 027 0.23 (0.05) 0.20

Table 2: Comparative performance evaluation of fine-tuned LLMs with same training dataset of 650 EHRs.

training observations on the pragmatic method,
which was still comparatively low. This points to
the model still ‘hallucinating’ on too many
occasions, despite our attempts to minimize false
positives through various techniques, in particular,
fine-tuning, prompt engineering, setting a very low
temperature, and adjusting the proportions of the
balanced dataset.

The second-best performing LLM was the other
Mistral model, Mistral-Nemo-Instruct-2407,
which achieved a top F1 score of 0.78 on the
pragmatic method, followed by Qwen2.5-7B-
Instruct (0.66) and Llama-3.1-8B-Instruct (0.28)
(see Table 2). Appendix B shows the comparative
performance evaluation of the original LLMs --
that is, the non-fine-tuned models — which is much
lower.

4 Discussion

Fine-tuning improved the F1 score of our best-
performing LLM, Ministral-8B-Instruct-2410, by
at least three times based on a training dataset of
650 EHRs. The F1 score of the fine-tuned model
when evaluated by the purist method, 0.68, was
three times that of the F1 score of the untrained
model, 0.22. And the F1 score of the fine-tuned
model when evaluated by the pragmatic method,
0.81, was 3.7 times that of the original model, also
0.22. This demonstrates that fine-tuning is an
effective technique to improve the capacity of
LLMs to identify the frequency of a patient’s
seizures in unstructured, free-text EHRs.

Both Mistral models performed at a high
standard on this seizure frequency task, with only a
3 percentage points difference in their best F1
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scores. However, there was a significant drop-off
of 15 percentage points for the Qwen2.5 F1 score,
and a 53 percentage points slide for the Llama 3.1
model, which did not perform well at all on this
task.

Both Mistral models were also stable and
consistent across multiple fine-tuning runs: their
average F1 scores under the pragmatic method
across three runs were only 2 percentage points
below that of their respective top F1 scores; and the
standard deviation of their F1 scores across 3 runs
was only 1% or 2%. Stability is important in
medical research. By contrast, Qwen2.5’s F1 score
was highly variable with a standard deviation of
12%.

Our study also demonstrates that some of the
most recent LLMs have a capacity for
mathematical reasoning. The Ministral models, in
particular, were adept at identifying the frequency
of a patient’s seizures from the raw text, which
could be anything from annually to daily or more,
then converting that frequency to a standardized
time period of per month, both in terms of decimals
and integers. Indeed, Qwen2.5 was designed in part
specifically  to achieve “state-of-the-art
performance” in mathematical tasks (Yang et al.,
2025), and Llama 3’s design had a partial focus on
“mathematical reasoning performance”
(Grattafiori et al., 2024), while the Mistral Al Team
claims its Ministral 8B model achieves superior
results to Llama 3.1 8B on a mathematical
benchmark (Mistral Al Team, 2024b), which
accords with our experience.

We can also postulate whether the LLMs we
tested, especially the Ministral models, have some
in-depth knowledge of medicine in general and



epilepsy in particular in their original, non-fine-
tuned form. On the one hand, the comparatively
low F1 scores of the original models compared to
the much higher F1 scores of the fine-tuned models
imply that may not be the case. On the other hand,
the models’ ability to quickly pick up the logic from
the annotated training dataset to identify and
calculate seizure frequency in a standardized
format suggests it might be the case.

If the latter, it would support the findings of a
recent study that tested three well-known LLMs —
GPT-4, Bard, and Claude 2; admittedly not models
that we used — on epilepsy practice examinations
(Habib et al., 2024). These LLMs achieved mean
scores of 72%, 65%, and 67%, respectively,
compared to anecdotal reports suggesting the
passing score for the examinations was
approximately 70%.

“We found that LLMs scored well on the
epilepsy practice examinations, did not appear to
rely on memorization, and could logically explain
the reasons for a correct answer,” said the authors.
“However, they occasionally hallucinated logic for
incorrect answers.” Their latter point matched our
experience with too many false positives and a
comparatively lower precision, even with our best-
performing model and optimal training dataset.
Minimizing hallucinations in medical research is

common problem (Kim et al, 2025).
Hallucinations are defined as responses from
LLMs that are inaccurate or have fabricated
information. This could affect clinical decisions
and patient safety. Algorithms tend to hallucinate
when providing answers to questions that have a
high complexity, when there is insufficient or
biased training data for a topic, or when a dataset is
particularly noisy. All of these are common
problems in medical research, especially with data
collected from medical reports and diaries. Fine-
tuning a general LLM is one way to mitigate these
effects but it is not necessarily a complete solution
(Zuo and Jiang, 2025). As a result, hallucinations
may still occur after fine-tuning.

One possible solution is Retrieval Augmented
Generation (RAG), which has gained popularity in
medical contexts in recent years (Li et al., 2024;
Halamka 2023). RAG involves taking a pre-trained
LLM but not fine-tuning it. Instead, a prompt is
given to the algorithm which then uses its training
and augments it by looking up information from a
corpus of documents, either from a public or
private source. This can reduce the effect of

a
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hallucinations by essentially performing a cross-
check. RAG warrants investigation in further
research of our study.

5 Conclusion

Fine-tuning is an efficient method to optimize the
extraction of seizure frequency data from
unstructured, free-text medical records by LLMs.
Moreover, we found that some of the most recent
LLMs demonstrated an impressive ability for
mathematical reasoning, in this case not only
calculating the frequency of a patent’s epilepsy
seizures from a text, but also converting that
calculation into a standardized temporal format of
the number of seizures per month. Prompt
engineering is also critical to fine-tuning an LLM
for this task. However, hallucinations and the
associated problem of too many false positives
remain an issue, and further research is required
here. Nevertheless, this study, by achieving an F1
score of 0.81 from our best-performing model,
shows that fine-tuning an LLM provides a new and
innovative way of extracting seizure frequency
data from EHRs that in turn enables better analysis
of the effects of ASMs in the treatment of epilepsy
and therefore improved patient outcomes.

Limitations

This study has three main limitations. First, the
confidential nature of the medical records used for
the training dataset means the model outputs are
not reproduceable by research teams outside the
hospital where the authors worked. Second, the
confidential records meant we could not
experiment with LLMs such as OpenAl’s ChatGPT
that are only available via an API to an off-site
service due to privacy reasons. Third, we were
restricted in what sized LLMs we could use by the
computing power generated by our GPU platform
(eight Nvidia V100 GPUs).

Ethical Considerations

The confidential EHRs of patients had to remain
within the hospital’s secure IT network. As a
consequence, the study’s researchers could only
access the data and input it into LLMs via the
hospital’s IT network.
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Appendix A: Ministral-8 B-Instruct-2410 performance (pragmatic method) and size of training dataset.
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Appendix B

Non-fine-tuned LLM: Best F1 Scores

Purist Method Pragmatic Method
LLM recall precision F1 acccuracy| recall precision F1 acccuracy
Ministral-8B-Instruct-2410 0.20 024 22 0.20 0.20 024 22 0.20
Mistral-Nemo-Instruct-2407 0.08 0.15 0.10 011 0.09 0.19 013 0.13
Qwen2 5-7B-Instruct 0.02 025 0.04 011 0.02 025 0.04 0.11
Llama-3.1-8B-Instruct n'a n'a n/a n/a 0.01 0.33 0.03 0.11

Non-fine-tuned LLM: Mean Over 3 Runs and F1 Standard Deviation

Purist Method Pragmatic Method
LLM recall precision F1 (SD) acccuracy| recall precision F1 (SD) acccuracy
Ministral-8B-Instruct-2410 0.20 0.24 0.22(0.00) 0.20 0.20 0.24 0.22 (0.00) 0.20
Mistral-Nemo-Instruet-2407 0.08 0.15 0.10(0.00) 0.11 0.09 0.19 0.13 (0.00) 0.13
Qwen2.5-7B-Instruct 0.02 0.25 0.04 (0.00) 0.11 0.02 0.25 0.04 (0.00) 0.11
Llama-3.1-8B-Instruct n'a nfa n'a n'a 0.01 0.33 0.03 (0.00) 0.11

Appendix B: Comparative performance evaluation of non-fine-tuned LLMs with same training dataset of 650 EHRs.

Note: Llama-3.1-8B-Instruct ‘n/a’ due to lack of true positives under purist method.
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Abstract

Accurate identification and labeling of biomed-
ical entities, such as diseases, genes, chemical
and species, within scientific texts are crucial
for understanding complex relationships. We
propose Adaptive BERT or AdaBioBERT, a
robust named entity recognition (NER) model
that builds upon BioBERT (Biomedical Bidi-
rectional Encoded Representation from Trans-
formers) based on an adaptive loss function to
learn different types of biomedical token se-
quence. This adaptive loss function combines
the standard Cross Entropy (CE) loss and Con-
ditional Random Field (CRF) loss to optimize
both token level accuracy and sequence-level
coherence. AdaBioBERT captures rich seman-
tic nuances by leveraging pre-trained contex-
tual embeddings from BioBERT. On the other
hand, the CRF loss of AdaBioBERT ensures
proper identification of complex multi-token
biomedical entities in a sequence and the CE
loss can capture the simple unigram entities in
a sequence. The empirical analysis on multiple
standard biomedical coprora demonstrates that
AdaBioBERT performs better than the state of
the arts for most of the datasets in terms of
macro and micro averaged F1 score.

1 Introduction

The field of Biomedical Named Entity Recogni-
tion (NER) has evolved significantly, transitioning
from rule-based systems to advanced deep learning
methodologies. Early approaches relied heavily on
handcrafted rules, dictionaries, and regular expres-
sions to identify biomedical entities such as genes,
diseases, and proteins. For instance, He (He et al.,
2009) utilized domain-specific lexicons like UMLS
to recognize entities. While these rule-based meth-
ods provided moderate accuracy, they struggled
with the diversity and ambiguity of biomedical ter-
minology, particularly for multi-token entities or
novel terms. Their reliance on manual rule creation
and limited adaptability hindered scalability (Set-
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tles, 2004; Leaman et al., 2015). The advent of ma-
chine learning techniques, such as Conditional Ran-
dom Fields (CRF) (Sutton and McCallum, 2011)
and Support Vector Machines (SVM) (Joachims,
1998), marked a shift toward data-driven models.
CRF-based systems, like those developed by Set-
tles (Settles, 2004) and Tsai (Tsai et al., 2006),
leveraged labeled datasets to train classifiers that
captured contextual and sequential information.
These models demonstrated greater flexibility and
adaptability compared to rule-based approaches.
However, they still require extensive manual fea-
ture engineering, which limited their effectiveness
in handling the complexity of biomedical data. For
example, Leaman (Leaman et al., 2015) success-
fully applied CRF models to extract chemical and
disease entities from PubMed abstracts but noted
challenges in recognizing infrequent or context-
dependent terms.

The introduction of Long Short-Term Memory
(LSTM) networks and Convolutional Neural Net-
works (CNNs) revolutionized the NER tasks. Lam-
ple introduced a BiILSTM-CRF framework (Lam-
ple et al., 2016), which set new benchmarks for
sequence labeling tasks, including NER. (Chiu
and Nichols, 2016) extended this approach to
biomedical texts, demonstrating the effectiveness
of deep learning in capturing sequential dependen-
cies and complex relationships. The emergence
of transformer-based models, such as BERT (De-
vlin et al., 2019) and its biomedical counterpart,
BioBERT (Lee et al., 2020), further advanced the
capabilities of NER systems. These models employ
self-attention mechanisms to capture the context
of each word within a sentence, making them par-
ticularly effective for complex biomedical texts.
BioBERT, which is pre-trained on biomedical cor-
pora, has been effective in recognizing domain-
specific entities (Lee et al., 2020). Unlike general-
domain models, BioBERT effectively captures in-
tricate relationships between biomedical terms, im-
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Figure 1: Proposed AdaBioBERT Architecture

proving NER performance in specialized datasets.
Despite their effectiveness, transformer-based mod-
els often struggle to properly identify the named
entities as they need large amount of data for fine-
tuning (Chalkidis et al., 2020; Beltagy et al., 2019).
Recent advancements have focused on combining
the strengths of different loss functions. For exam-
ple, Ma and Hovy (Ma and Hovy, 2016) introduced
a BILSTM-CRF model that used a fixed combina-
tion of CE and CRF loss functions for NER. Sim-
ilarly, Lample (Lample et al., 2016) employed a
fixed-weight combination of CE and CRF loss func-
tions in their BILSTM-CRF framework, which be-
came a standard approach for NER tasks. However,
these methods rely on fixed weighting scheme and
cannot distinguish the significance between regular
single token biomedical entities like Nucleolin and
Agyria, and rare but important multi-token entities
like lateral sinus thrombosis and parietal cortical
atrophy through the loss functions.

Therefore, there is room to improve the quality
of the existing methods to properly identify com-
plex multi-token biomedical entities. In this spirit,
this paper presents a transformer based Adaptive
BioBERT (i.e., AdaBioBERT) NER model, to iden-
tify the nuances of complex multi-token biomed-
ical entities by integrating a novel adaptive loss
function combining the standard cross entropy and
CREF loss functions in the pretrained Bio-BERT
model (Lee et al., 2020).

2 Proposed AdaBioBERT Method

AdaBioBERT architecture has two major compo-
nents: (1) Word2Vec embeddings (Kowsari et al.,
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2019), which capture semantic relationships be-
tween biomedical terms as shown in Fig 1(a) and
(2) pretrained BioBERT model to generate rich con-
textual embeddings using the proposed Adaptive
Token-Sequence Loss as shown in Fig 1(b), which
dynamically balances token-level and sequence-
level predictions.

2.1 Generate Word2Vec Embeddings of
PubMED Data

In the first stage, the proposed framework extracts
sentences from the freely available PubMED Cen-
tral(PMC) repository', which has mention of any
genes or diseases, based on frameworks proposed
by (Basu et al., 2021; Guetterman et al., 2018).
The objective is to build semantic embeddings of
all relevant genes and diseases which are men-
tioned in the current version of DisGeNET? (v24.4)
repository. It comprises 26,798 genes and 39,972
diseases and traits (Pifiero et al., 2019). Subse-
quently, we generated word embeddings for these
extracted sentences using Word2Vec model (Pen-
nington et al., 2014; Kowsari et al., 2019). Sen-
tences extracted from the PMC repository that build
the corpus are tokenized, and then the Word2Vec
algorithm generates embeddings for each word,
which is represented as a 128-dimensional vector.
The context window size of a word is set to 7, mean-
ing the model considers up to seven neighboring
words around a target word.

"https://pme.ncbi.nlm.nih.gov/
Zhttps://disgenet.com/DISGENET-Version-24-4-Whats-
New
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Table 1: Overview of biomedical datasets with training and testing splits

Dataset Entity Types Training Test
BC4CHEMD Chemical compounds, 6,000 abstracts | 2,000 abstracts
(Krallinger et al., 2015) drug names

LINNAEUS (Gerner et al., 2010)

Species names

80,000 sentences| 10,000 sentences

NCBI-disease (Dogan et al., 2014)

Disease names

793 abstracts 100 abstracts

BCSCDR (Li et al., 2015)

Chemical compounds, diseases

1,000 articles 250 articles

JNLPBA (Kim et al., 2004)

Proteins, DNA, RNA,
cell lines and types

2,000 abstracts | 204 abstracts

AnatEM (Pyysalo, 2014)

Anatomical entities

1,200 documents| 300 documents

BioNLP13GE (Kim et al., 2013)

Gene and gene product

1,500 sentences | 500 sentences

Species-800 (Pafilis et al., 2016)

Species mentions

800 abstracts 200 abstracts

2.2 Pretrained BioBERT with Adaptive Token
Sequence Loss (L 475s)

Let X = {xy,x9,...,zp} denote an input se-
quence of tokens and Y = {y1,v2,...,yr} rep-
resent the true labels of X, where y; is a one-
hot encoded vector and y; = [y}, v, - y}'] and
yi € {c1,c0,---cn}. Here ¢;,Vi = 1,2,..., N
are different classes of biomedical entities. Let us
consider Y = {71, 92,-..,yr} be the sequence
of predicted labels of the input sequence. The
predicted probability for the ¢-th token z; € ¢;
is denoted as P(z; € ¢;) , and S(y, x¢) is the
score of the true label sequence y; given x;. The
L g7s combines Cross-Entropy Loss (L¢cg) and
CRF Loss (Lcrp) as follows:

(1)

Lars =a-Leg+ (1 —a) - Logr,

where « is a learnable weight parameter to make a
trade-off between CE loss and CRF loss. Here

T N
1 .
Lcg = 7 ;;yz log (P(xt € cz))

is the Cross-Entropy Loss, which captures the se-
quence with a single biomedical entity and

Lopr = —(S(Y, X) ~ log 3" exp(S(V), X))
Y

is the CRF Loss, which is used to identify complex
multi-label entities in a sequence. L 47g dynam-
ically adjusts the importance of per-token accu-
racy and sequence coherence through the learnable
weight .. The adaptive weight parameter « is up-
dated iteratively after each training epoch using gra-
dient descent, as described in Algorithm 1. When
« is close to 1, the model prioritizes individual
token predictions, while a close to O emphasizes
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sequence-level coherence for handling multi-token
entities and domain-specific terminology. Eventu-
ally, the pretrained BioBERT model is fine-tuned
using the word embeddings of the genes and dis-
eases generated by the word2vec model in the first
stage followed by using L 47g.

Algorithm 1 Adaptive Token-Sequence Loss with
Learnable Weight «

1: 7'1"T}a

Input: Token sequence X = {x,...
true labels Y = {y1,...,yr}
Initialize: Model parameters 6, adaptive
weight « € [0, 1], learning rate n

Qutput: Updated 0, «, and loss L a7g

Compute token-level cross-entropy loss
T N .

Log < 7 Y Y yilog Pz € ¢;)
t=1i=1

Compute CRF sequence-level loss

7: Compute score of true sequence S(Y, X)

8: Compute partition function Z(X)

log 3 exp(S(Y, X))
Y
Lerp <+ —(S(Y, X) — Z(X))
: Compute adaptive loss
: Lars < a-Leg+ (1 —a) - Lerr
: Backpropagation and parameter updates
: Compute gradients: VgL ars, VoL ars

14: Update parameters:
15: 0+ 60—n-VoLars
16: a+—a—n-VoLlars

: Return: Final loss L 47g, updated 6, «

3 Experimental Evaluation

3.1 Datasets and Settings

Experimental evaluation was conducted on eight
widely used biomedical NER datasets as reported
in Table 1. All of these datasets are formatted



Table 2: Macro F1-Scores of AdaBioBERT and State of the Arts

Dataset SciSpacy Stanza Spark NLP PubMedBERT BioBERT AdaBioBERT
BC4CHEMD 71.98 83.25 90.09 91.43 91.72 95.40
Linnaeus 79.84 81.73 82.14 85.07 85.47 87.51
NCBI Disease  74.82 83.08 84.13 87.83 88.45 92.68
BCSCDR 74.47 83.13 83.25 88.67 85.37 89.83
JNLPBA 69.35 74.14 76.68 79.16 76.18 78.93
AnatEM 74.22 83.35 84.15 90.57 88.14 94.03
BioNLP13GE  73.70 82.93 83.24 80.24 84.91 85.36
Species800 73.67 81.04 83.14 82.79 81.93 87.63

in the IOB (Inside, Outside, Beginning) tagging
scheme, ensuring consistency in annotation and
format across different biomedical domains. Each
dataset is processed by extracting unique labels
and tokenized using the AutoTokenizer from Hug-
ging Face’s Transformers library, ensuring compat-
ibility with the pre-trained BioBERT model. The
Word2Vec embeddings, pre-trained on biomedical
literature, are integrated into the model as an addi-
tional feature to enhance entity recognition. Our
model architecture is based on BioBERT, extended
with a CRF layer for structured sequence prediction.
A fully connected classifier with dropout is applied
to the concatenated BioBERT and Word2Vec em-
beddings, projecting them onto the label space. The
loss function is a weighted combination of CE and
CREF loss, where the weight is a trainable parame-
ter optimized during training. The optimizer used
is AdamW with weight decay to improve gener-
alization. The model is fine-tuned for 5, 10, 20,
40 epochs with a batch size of 4, 8, 16, 32 us-
ing an initial learning rate of le-4, 2e-4, 3e-4>. A
NVIDIA A100 40 GP GPU server is used to im-
plement AdaBioBERT. Evaluation is performed on
an evaluation dataset after each epoch, saving the
best-performing checkpoint. The trainer relies on
mixed precision training and gradient accumulation
for efficient computation.

3.2 Results and Discussion

The performance of AdaBioBERT and the state
of the arts are reported in Table 2 in terms
of macro-averaged Fl-score. It can be seen
from Table 2 that AdaBioBERT recognizes the
biomedical entities better than the state of the

3Results are reported for 20 epochs, batch size of 32 and
learning rate of le-4.
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arts and it outperforms the other methods for all
datasets for macro-averaged F1 scores. Signifi-
cant improvement of the F1-score of our method
can be observed in BC4CHEMD (+3.68 over
BioBERT (Lee et al., 2020)), Linnaeus (+ 2.04 over
BioBERT), NCBI Disease (+4.23 over BioBERT
), BCS5CDR(+1.16 over PubMedBERT (Gu et al.,
2021)), AnatEM (+3.46 over PubMedBERT),
Species800 (+4.49 over SparkNLP) and marginally
exceeds BioNLP13GE (+0.45 over BioBERT).
Having JLNPBA as an exception where it lags
marginally (-0.23 by PubMedBERT) indicating
required improvement for recognition of protein,
cell line,, and cell type entities in biomedical data.
These results suggest that AdaBioBERT excels
in biomedical entity recognition tasks where con-
textual understanding is important. The perfor-
mance of AdaBioBERT on diverse biomedical en-
tity recognition datasets shows its adaptability and
robustness.

Notable improvements in micro F1-score are
also reported in Table 3, where AdaBioBERT sur-
passes the performance in BCACHEMD (+2.64
over PubMedBERT), Linnaeus (+5.07 over Pub-
MedBERT), NCBI Disease (+7.17 over BioBERT),
and AnatEM (+5.41 over PubMedBERT), demon-
strating AdaBioBERT’s recognition capability
in chemical and disease-related entities. Ad-
ditionally, AdaBioBERT surpasses BioBERT in
BioNLP13GE (+2.93), PubMedBERT in BC5SCDR
(+1.82), SparkNLP in INLPBA (+2.98), and Pub-
MedBERT on Species800 (+1.54).

The proposed AdaBioBERT model introduces a
novel approach to biomedical NER by integrating
Adaptive Token-Sequence Loss with pre-trained
contextual embeddings from BioBERT. One of
the key technical innovations of AdaBioBERT is



Table 3: Micro F1-Scores of AdaBioBERT and State of the Arts

Dataset SciSpacy Stanza Spark NLP PubMedBERT BioBERT AdaBioBERT
BC4CHEMD 84.55 89.65 93.72 95.17 92.36 97.81
Linnaeus 81.74 88.27 86.26 90.22 88.24 95.29
NCBI Disease  81.65 87.49 89.13 88.36 89.71 96.88
BCSCDR 83.92 88.08 89.73 92.88 90.61 94.70
JNLPBA 73.21 76.09 81.29 79.53 77.49 84.27
AnatEM 84.14 88.18 89.13 92.04 91.26 97.45
BioNLP13GE  77.60 84.34 85.58 89.47 92.66 95.59
Species800 74.06 83.35 84.91 86.76 85.31 88.30

Figure 2: Final and Average « Values for Biomedical
NER Datasets

its use of a learnable weight parameter () in
the L a7g loss function. This parameter enables
the model to dynamically adjust the trade-off be-
tween token-level and sequence-level objectives
during training, which ensures that our model can
effectively handle both short, unambiguous enti-
ties and longer and complex ones. This flexibil-
ity is a significant improvement over the state of
the arts that rely on fixed-weight combinations of
Lcg and Logp, which may not generalize well
across diverse biomedical texts. Additionally, the
integration of pre-trained Word2Vec embeddings
with BioBERT’s contextual embeddings provides
a multi-stage transfer learning framework, enhanc-
ing the model’s ability to capture both semantic
and contextual nuances in biomedical texts. The
effectiveness of AdaBioBERT for identifying regu-
lar single token and complex multi-token entities
has been demonstrated in the Table 2 and 3 for al-
most all datasets. The datasets like Species-800,
NCBI Disease, and BCSCDR, where AdaBioBERT
outperforms state-of-the-art by significant margins,
contain lots of multi-token entities.
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The different values of « in Figure 2 show how
entity types vary in recognition difficulty. Chem-
ical and gene entities (BC4CHEMD, JNLPBA)
have much higher values (>0.94) because they
use standard naming patterns that make individ-
ual words more important. Disease and anatomy
terms (BioNLP13GE, BC5CDR, AnatEM) have
lower values (0.56-0.66) because they need more
context to understand ambiguous and less consis-
tent names.

4 Conclusion

The potential of the proposed adaptive token-
sequence loss with BioBERT embeddings is
demonstrated through the extensive empirical
analysis. By dynamically adjusting token-level
and sequence-level learning through the learnable
weight parameter (), AdaBioBERT improves con-
textual understanding and multi-token entity recog-
nition. Additionally, the integration of pre-trained
Word2Vec embeddings further refines semantic rep-
resentation in biomedical text. Despite its effec-
tiveness, AdaBioBERT has high computational
costs and may struggle with highly specific hi-
erarchical entities. Future work will extend Ad-
aBioBERT to broader biomedical information ex-
traction tasks, including relation extraction, sen-
tence classification, and document classification, to
boost knowledge discovery in biomedical research.
Codes available at: https://github.com/sumit-
kumar-9297/AdaBioBERT-NER.git
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Abstract

The classification of medical statements in Ger-
man doctor-patient interactions presents signif-
icant challenges for automated medical infor-
mation extraction, particularly due to complex
domain-specific terminology and the limited
availability of specialized training data. To
address this, we introduce a manually anno-
tated dataset specifically designed for distin-
guishing medical from non-medical statements.
This dataset incorporates the nuances of Ger-
man medical terminology and provides a valu-
able foundation for further research in this do-
main. We systematically evaluate Transformer-
based models and multimodal embedding tech-
niques, comparing them against traditional
embedding-based machine learning (ML) ap-
proaches and domain-specific models such as
medBERT.de. Our empirical results show that
Transformer-based architectures, such as the
Sentence-BERT model combined with a sup-
port vector machine (SVM), achieve the highest
accuracy of 79.58% and a weighted F1-Score
of 78.81%, demonstrating an average perfor-
mance improvement of up to 10% over domain-
specific counterparts. Additionally, we high-
light the potential of lightweight ML-models
for resource-efficient deployment on mobile de-
vices, enabling real-time medical information
processing in practical settings. These findings
emphasize the importance of embedding selec-
tion for optimizing classification performance
in the medical domain and establish a robust
foundation for the development of advanced,
domain-adapted German language models.

1 Introduction

With the introduction of the Transformer architec-
ture by Vaswani et al. (2017), substantial progress
was achieved in many application areas, including
general natural language processing (NLP) tasks
and also in the field of medicine. However, models
based on the Bidirectional Encoder Representa-
tions from Transformers (BERT) architecture (De-
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vlin et al., 2018), initially trained on large-scale,
general-purpose datasets such as Wikipedia, have
struggled to accurately classify medical informa-
tion in German datasets due to the complex and
specialized vocabulary of medical language and the
scarcity of labeled domain-specific datasets (Idrissi-
Yaghir et al., 2024). To address these challenges,
specialized models for the medical domain have
been developed. An example is the German model
medBERT.de, which has been fine-tuned with med-
ical data and achieves an average Area Under the
Receiver Operating Characteristic (AUROC) score
of approximately 88% on various evaluated med-
ical benchmarks (Bressem et al., 2024). Domain-
specific models like medBERT.de can, for instance,
detect whether medically relevant information is
discussed in dialogues between doctors and pa-
tients. This capability is critical for extracting rele-
vant data for patient documentation and improving
the Electronic Health Record (EHR) system. Med-
ical documentation is a cornerstone of healthcare,
supporting patient care, legal accountability, and
research. Yet, the processing of German medi-
cal texts remains challenging due to the inherent
linguistic complexity and the limited availability
of annotated datasets. As our contribution in this
paper, we compare different Transformer-based
models fine-tuned for medical data with traditional
embedding-based methods. In particular, we fo-
cus on the analysis of German doctor-patient in-
terviews to determine the most effective approach
for classifying medical statements. Furthermore,
we introduce a manually labeled dataset of medical
statements to support future research in the pro-
cessing of German medical texts. In doing so, we
address two research questions:

* RQ1: How does the performance of Trans-
former models fine-tuned on medical data
compare to traditional embedding-based ap-
proaches in classifying German doctor-patient
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interviews?

* RQ2: How does the performance of fine-
tuned Transformer and machine learning
(ML)-models improve when evaluated on
dataset of medical statements for domain-
specific German medical texts?

2 Related Work

The classification of text in a medical context rep-
resents a fundamental challenge in the field of
NLP, particularly in the medical domain. Ac-
curate categorization of medical documents can
significantly improve information extraction and
decision-making processes (Kesiku et al., 2022).
The complex and specialized terminology in med-
ical texts poses a particular difficulty. Managing
synonyms, polysemy, and multi-word terms is es-
sential, as these can distort the true meaning of
a text (Shanavas et al., 2020). In addition, med-
ical text data often shows low density and high
dimensionality due to its special linguistic charac-
teristics, making its classification more challenging
compared to other domains (Zhou et al., 2021).

Several studies have shown that ML-models may
achieve high accuracy in medical text classification
when adapted to the specific language and struc-
ture of medical texts. These techniques include
support vector machines (SVMs), naive Bayes, lo-
gistic regression, and k-nearest neighbors (k-NNs).
These methods are often combined with word rep-
resentation models, such as term frequency-inverse
document frequency (TF-IDF) and Word2Vec, to
improve classification performance. (Mascio et al.,
2020; Almazaydeh et al., 2023)

Almazaydeh et al. (2023) used the mtsam-
ples.com dataset (MTSamples, 2025) to train ML-
models using TF-IDF, Bag-of-Words (BOW), and
Word2Vec as word representations. They were able
to classify 20 medical categories. The Word2Vec-
based k-NN classifier achieved an average accuracy
of 92%. However, the performance on German
medical datasets is unknown due to the challenges
posed by the strict regulatory framework of the
General Data Protection Regulation (GDPR).

Transformer-based models are gaining impor-
tance in medical NLP research. Idrissi-Yaghir
et al. (2024) compared different German BERT
architectures on medical datasets and evaluated
them on different downstream tasks such as named
entity recognition (NER), multi-label classifica-
tion, and extractive question answering. The re-
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sults show that models with medical or translation-
based pre-training typically outperform generic
language models, as they are better at captur-
ing complex medical terminology and medical
context. The language models achieved the fol-
lowing average F1-Scores: CLEF eHealth 2019
(Neves et al., 2019): 0.820, RadQA (Dada et al.,
2023): 0.816, GraSCCo (Modersohn et al., 2022):
0.673, BRONCO150 (Kittner et al., 2021): 0.844,
and GGPONC 2.0 (Borchert et al., 2022): 0.779.
Idrissi-Yaghir et al. (2024) showed that continued
pretraining can match or even surpass the perfor-
mance of medical models trained from scratch. Fur-
thermore, pretraining on medical data or leverag-
ing translated texts has proven to be an effective
approach for domain adaptation in medical NLP
tasks. In addition to medBERT.de, there is also
BioGottBERT by Lentzen et al. (2022), which was
fine-tuned specifically on medical data. They con-
ducted a comprehensive analysis of the suitabil-
ity of existing and new transformer-based models
for the German biomedical and clinical domain by
systematically comparing 8 general-purpose lan-
guage models and 3 newly trained models, includ-
ing BioGottBERT and two BioELECTRA versions.
The study showed that General-Purpose Language
Models (GPLMs) performed surprisingly well on
clinical NLP tasks, with a German variation of
BERT called GBERT (Chan et al., 2020) perform-
ing particularly well on document classification
tasks and BioGottBERT on NER tasks. Domain
adaptation of existing models proved to be more
effective than training new models from scratch,
which was mainly attributed to the limited size of
the pre-training corpus.

In recent years, several German medical datasets
have been published, such as GGPONC (Borchert
et al.,, 2020) and BRONCO150 (Kittner et al.,
2021), which include annotation information for
NER and part-of-speech (POS) tagging. Other Ger-
man datasets, such as those from Makowski and
Simko (2018) and Suominen et al. (2020), lack
such annotation. Datasets like CLEF eHealth 2019
(Neves et al., 2019) offer German medical queries
and documents for information retrieval and ques-
tion—answering (QA); RadQA (Dada et al., 2023)
comprises German radiology reports with questions
to support radiological reasoning and GraSCCo
(Modersohn et al., 2022) offers annotated social-
care correspondence for entity and relation extrac-
tion. A specific German dataset for intent recog-
nition in doctor-patient interviews was developed



by Rojowiec et al. (2020), consisting of 63 classes.
These classes represent various categories or inten-
tions of questions and statements that can occur
during doctor-patient conversations. The dataset
supports medical students in taking medical his-
tories by interacting with virtual patients, and the
doctors’ intentions were detected using BERT (Ro-
jowiec et al., 2020). Section 3 provides further
details on this dataset and its application in the
context of this paper.

While it has been shown that Transformer-based
models can perform well with domain adaptation,
their performance in German dialog-based context
recognition is not as well studied, and there is no
high-quality medical dataset available to classify
whether a statement contains medically relevant
information or not.

3 Data Acquisition

To develop a German contextualized ML-model for
classifying medical and non-medical statements,
we used the publicly available “Intent Recogni-
tion in Doctor-Patient Interview” (IntRec) dataset
(Rojowiec et al., 2020). This dataset consists of
German transcriptions of live doctor-patient in-
terviews conducted during university training ses-
sions, in which medical students interviewed actors
portraying patients, transcribing only the doctors’
statements. 80% of the entries in the dialogue se-
quence consist of statements in the form of ques-
tions directed at the patient, such as “When was
the surgery?” while 20% are normal statements,
such as “I think so, yes.”. For each entry, the cor-
responding class, its position within the sequence,
the previous statement, and the class of the preced-
ing statement are also provided. Table 1 shows the
corresponding metadata about the original dataset
before preprocessing.

Attribute