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BioNLP 2025: new solutions to perennial and emerging problems

Dina Demner-Fushman, Sophia Ananiadou, Makoto Miwa and Jun-ichi Tsujii

Large Language Models (LLMs) continue to be the mainstay of Biomedical Language Processing, while
the scope of BioNLP research continues to expand across foundational tasks, applications, languages and
modalities. In 2025, we see increasing efforts to integrate textual features with visual and sequencing
data; new approaches to named entity recognition and linking; work in several languages other than En-
glish; and applications ranging from drug discovery and gene editing to veterinary and clinical studies.
Complex language technology tasks, such as question answering and summarization, as well as data
generation and text mining are also strongly represented. Concerns about potential harms and irresponsi-
ble use of AI applications are being addressed through growing research into evaluation, debiasing, and
understanding of models’ behavior.

The submissions to the BioNLP 2025 workshop and the Shared Tasks demonstrated once again that the
workshop sponsored by the ACL Special Interest Group on Biomedical Natural Language Processing (SI-
GBIOMED) is the preferred venue for the groundbreaking research and applications in Biomedical Lan-
guage Processing, which encompasses biological, clinical and non-professional medical sub-languages,
among others. BioNLP remains the flagship and the generalist in biomedical language processing, accep-
ting all noteworthy work independently of the tasks and languages studied. The quality of submissions
continues to impress the program committee and the organizers.

BioNLP 2025 received 61 submissions, of which eight were accepted for oral presentation and 22 as
poster presentations. The selected works span foundational research, biomedical language processing,
clinical applications, and generation of new datasets and benchmarks.

Four Shared Tasks were collocated with BioNLP 2025:

SMAFIRA: annotating the literature for finding methods alternative to animal experiments.

ClinIQLink 2025: LLM Lie Detector Test: evaluating the effectiveness of generative models in pro-
ducing factually accurate information, using a benchmark dataset specifically curated to align with the
knowledge level of a General Practitioner (GP) .

ArchEHR-QA 2025: Grounded Electronic Health Record Question Answering: automatically genera-
ting answers to patients’ health-related questions that are grounded in the evidence from patients’ clinical
notes.

BioLaySumm 2025: Now, in its third edition, this year’s BioLaySumm, introduces a new task: radiology
report generation in layman’s terms, extending the shared task to a new multimodal domain.

The overviews of the tasks and short presentations of the best performing approaches are included in the
workshop program. The participants in all Shared Tasks present their work in a dedicated poster session.

The keynote by Wojciech Kusa is titled: Incorporating Changes in Review Outcomes in the Evaluation
of Systematic Review Automation.
Current evaluations of automation methods in systematic literature reviews often treat all included stu-
dies as equally important, ignoring their varying influence on review outcomes. This can misrepresent
the effectiveness of search strategies, as not all relevant studies contribute equally to the conclusions
of the review. To address this limitation, we propose a new evaluation framework that incorporates the
differential impact of individual studies on review outcomes. Using data from the CLEF 2019 TAR task,
we applied this framework to assess 74 automation models, leveraging meta-analysis effect estimates to
weigh the influence of each study. Compared to conventional binary relevance metrics, our approach pro-
vided a more nuanced assessment, emphasizing the importance of retrieving high-impact studies. Results
showed significant differences in model rankings, underscoring the value of outcome-based evaluation.
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This framework offers researchers a more precise method for evaluating systematic review automation
tools, ultimately supporting higher-quality evidence synthesis and better-informed clinical decisions.

Wojciech is a Senior Researcher at the NASK National Research Institute in Poland, where he leads
the Linguistic Engineering and Text Analysis Department. He holds a PhD in NLP from TU Wien,
with a focus on applying and evaluating neural methods for domain-specific data. His research interests
include the safety and evaluation of large language models, clinical and biomedical NLP, and AI-driven
scientific discovery. Wojciech was a Marie Skłodowska-Curie Fellow in the EU Horizon 2020 project
DoSSIER, specialising in biomedical information retrieval and NLP. He has industry experience from
roles at Samsung and Allegro, and has completed research internships at Sony, UNINOVA, and the
Polish Academy of Sciences.

We are pleased to announce that the Chen Institute is co-organizing the BioNLP 2025 Workshop. Foun-
ded in 2016 by Tianqiao Chen and Chrissy Luo, the Chen Institute is driven by a bold vision to improve
the human experience by understanding how our brains perceive, learn, and interact with the world.
Their global platform includes the Tianqiao and Chrissy Chen Institute for Neuroscience at Caltech,
the Tianqiao Chen Institute for Translational Research in Shanghai, the Chen Frontier Lab for Applied
Neurotechnology, and the Chen Frontier Lab for AI and Mental Health. The Chen Scholars program
supports early- to mid-career scientists, and the recently launched Chen Institute and Science Prize for
AI Accelerated Research highlights their deep commitment to innovation. At this year’s BioNLP Wor-
kshop, the Chen Institute is interested in exploring how artificial intelligence can accelerate the pace of
scientific discovery. We believe there are vast, untapped opportunities to make groundbreaking advances
by leveraging the power of AI. The hope is that this meeting will serve as the beginning of an ongoing
dialogue—focused on new developments, transformative successes, and emerging thinking at the inter-
section of AI and science. Through this collaboration, the Chen Institute aims to identify and support
promising approaches with the potential to meaningfully change the world.
As always, we are deeply grateful to the authors of the submitted papers and to the reviewers (listed
elsewhere in this volume) who produced three thorough and thoughtful reviews for each paper in a
fairly short review period. The quality of submitted work continues to grow, and the organizers are
truly grateful to the members of our amazing Program Committee, who helped us to determine which
work was ready to be presented, and which would benefit from the additional experiments and analyses
suggested by the reviewers.
As in years past, we are looking forward to a productive workshop and hoping it will foster new colla-
borations and research. This will enable our community to continue making valuable contributions to
public health and well-being, as well as to basic and clinical research.
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Keynote Talk
Incorporating Changes in Review Outcomes in the Evaluation

of Systematic Review Automation
Wojciech Kusa

NASK National Research Institute, Poland
2025-08-01 12:00:00 – Room: Room 2.15

Abstract: Current evaluations of automation methods in systematic literature reviews often treat all
included studies as equally important, ignoring their varying influence on review outcomes. This can
misrepresent the effectiveness of search strategies, as not all relevant studies contribute equally to the
conclusions of the review. To address this limitation, we propose a new evaluation framework that incor-
porates the differential impact of individual studies on review outcomes. Using data from the CLEF 2019
TAR task, we applied this framework to assess 74 automation models, leveraging meta-analysis effect
estimates to weigh the influence of each study. Compared to conventional binary relevance metrics, our
approach provided a more nuanced assessment, emphasizing the importance of retrieving high-impact
studies. Results showed significant differences in model rankings, underscoring the value of outcome-
based evaluation. This framework offers researchers a more precise method for evaluating systematic
review automation tools, ultimately supporting higher-quality evidence synthesis and better-informed
clinical decisions.

Bio: Wojciech is a Senior Researcher at the NASK National Research Institute in Poland, where he
leads the Linguistic Engineering and Text Analysis Department. He holds a PhD in NLP from TU Wien,
with a focus on applying and evaluating neural methods for domain-specific data. His research interests
include the safety and evaluation of large language models, clinical and biomedical NLP, and AI-driven
scientific discovery. Wojciech was a Marie Skłodowska-Curie Fellow in the EU Horizon 2020 project
DoSSIER, specialising in biomedical information retrieval and NLP. He has industry experience from
roles at Samsung and Allegro, and has completed research internships at Sony, UNINOVA, and the
Polish Academy of Sciences.
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David Brüschweiler, Gerold Schneider, Tilia Ellendorff and Benjamin Ineichen . . . . . . . . . . . . . . . . . . 74

Benchmarking zero-shot biomedical relation triplet extraction across language model architectures
Frederik Gade, Ole Lund and Marie Lisandra Mendoza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

RadQA-DPO: A Radiology Question Answering System with Encoder-Decoder Models Enhanced by
Direct Preference Optimization

Md Sultan Al Nahian and Ramakanth Kavuluru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Gender-Neutral Large Language Models for Medical Applications: Reducing Bias in PubMed Abstracts
Elizabeth Schaefer and Kirk Roberts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Error Detection in Medical Note through Multi Agent Debate
Abdine Maiga, Anoop Shah and Emine Yilmaz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Accelerating Cross-Encoders in Biomedical Entity Linking
Javier Sanz-Cruzado and Jake Lever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Advancing Biomedical Claim Verification by Using Large Language Models with Better Structured
Prompting Strategies

Siting Liang and Daniel Sonntag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148

A Retrieval-Based Approach to Medical Procedure Matching in Romanian
Andrei Niculae, Adrian Cosma and Emilian Radoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Improving Barrett’s Oesophagus Surveillance Scheduling with Large Language Models: A Structured
Extraction Approach

Xinyue Zhang, Agathe Zecevic, Sebastian Zeki and Angus Roberts . . . . . . . . . . . . . . . . . . . . . . . .176

x



Prompting Large Language Models for Italian Clinical Reports: A Benchmark Study
Livia Lilli, Carlotta Masciocchi, Antonio Marchetti, Giovanni Arcuri and Stefano Patarnello .190

QoLAS: A Reddit Corpus of Health-Related Quality of Life Aspects of Mental Disorders
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Abstract

Retrieval Augmented Generation (RAG) com-
plements the knowledge of Large Language
Models (LLMs) by leveraging external informa-
tion to enhance response accuracy for queries.
This approach is widely applied in several fields
by taking its advantage of injecting the most
up-to-date information, and researchers are fo-
cusing on understanding and improving this as-
pect to unlock the full potential of RAG in such
high-stakes applications. However, despite the
potential of RAG to address these needs, the
mechanisms behind the confidence levels of its
outputs remain underexplored. Our study fo-
cuses on the impact of RAG, specifically exam-
ining whether RAG improves the confidence
of LLM outputs in the medical domain. We
conduct this analysis across various configu-
rations and models. We evaluate confidence
by treating the model’s predicted probability
as its output and calculating several evaluation
metrics which include calibration error method,
entropy, the best probability, and accuracy. Ex-
perimental results across multiple datasets con-
firmed that certain models possess the capa-
bility to judge for themselves whether an in-
serted document relates to the correct answer.
These results suggest that evaluating models
based on their output probabilities determine
whether they function as generators in the RAG
framework. Our approach allows us to evalu-
ate whether the models handle retrieved docu-
ments.1

1 Introduction

Retrieval Augmented Generation (RAG) (Lewis
et al., 2020) serves as a method to not only mitigate
hallucinations but also supplement the knowledge
of Large Language Models (LLMs) (Achiam et al.,
2023; Dubey et al., 2024; Aizawa et al., 2024). By
leveraging external information, RAG enhances re-
sponse accuracy and alignment with queries, mak-

1The code is available at https://github.com/
naist-nlp/CC_RAG.

Relevant documents:

{Documents}

Which of the following 

structures is derived from 

ectomesenchyme?

Choices
A: Motor neurons
B: Skeletal muscles
C: Melanocytes
D: Sweat

Answer: B -> C

Probability
w/o RAG
A: 0.04123
B: 0.8421
C: 0.11383
D: 0.04493

w/ RAG
A: 0.0024
B: 0.014933
C: 0.92317
D: 0.0031

Prompt

Does RAG affect 
Confidence 
Calibration?

LLMs

Figure 1: The focus of our research is to analyze whether
RAG improves the confidence of the model response.

ing it widely applicable in industries. Notable do-
mains include finance (Yepes et al., 2024; Setty
et al., 2024) and healthcare (Xiong et al., 2024),
where the reliability of information is critical. This
study focuses on the medical domain, which has
relatively more text data than other fields and in-
volves complex factors directly related to the hu-
man body. (Sohn et al., 2024; Jeong et al., 2024)

While researchers explore performance improve-
ments for LLMs using RAG, as illustrated in Fig-
ure 1, analyses focusing on prediction confidence
remain limited. Although RAG enhances answer
accuracy, it may lead to overconfidence, where
models exhibit unwarranted self-assurance (Chen
et al., 2024). We hypothesize that retrieving docu-
ments to support the correct answer through RAG
improve the model’s confidence, potentially lead-
ing to errors in confidence calibration. Based on
this, we pose a research question: Do LLMs im-
prove the confidence for outputs with RAG?

To address this question, we conduct a system-
atic analysis of multiple tasks and models in the
medical domain, exploring diverse scenarios using
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Dataset Size Option

PubMedQA 1,000 3
MedMCQA (Extract) 2,206 4

Table 1: The dataset used in our study. We select
datasets that not only contain QA pairs but also include
explanatory passages that justify the answers.

PubMedQA (Jin et al., 2019) and MedMCQA (Pal
et al., 2022). In particular, we create pseudo-RAG
to manipulate document content – such as adding
irrelevant documents deliberately or including only
those directly related to the answer – to simulate
the range of situations RAG encounter.

Our result shows that inserting documents delib-
erately containing answer-supporting information
improve confidence in many models, aligning with
expectations, although some models exhibited be-
havior contrary to this prediction. Additionally,
inserting documents unrelated to the correct an-
swer rarely improve the confidence, suggesting that
LLMs can discriminate whether an inserted docu-
ment relates to the answer. These results indicate
that evaluating models based on output probabili-
ties can lead to reveal the suitable generator model.

2 Related Work

2.1 Confidence of LLMs

Research on confidence has been prevalent since
before the era of LLMs (Jiang et al., 2021) and
continues to be extensively explored (Geng et al.,
2024). Becker and Soatto (2024) proposed a
framework that measures confidence by leverag-
ing explanation-generating text produced by LLMs.
Zhao et al. (2021) identified the issue that few-
shot prompting significantly impacts model confi-
dence and alters its inherent performance, and they
proposed methods to address this problem. Confi-
dence estimation is used as a technique to suppress
hallucinations, where models generate false infor-
mation (Zhang et al., 2023). Cole et al. (2023)
demonstrated that by utilizing model confidence,
it is possible to suppress outputs for ambiguous
questions. Our study contributes to this body of
research by specifically analyzing how RAG influ-
ences confidence calibration in LLM outputs. Un-
like prior works that primarily optimize retrieval
mechanisms, we directly investigate confidence cal-
ibration dynamics.

2.2 Boosting RAG with Confidence

Recent advances in RAG have leveraged model
confidence (e.g., output probability) to optimize
retrieval and generation processes. For instance,
Jiang et al. (2023) introduced FLARE, which dy-
namically decides whether to retrieve additional in-
formation based on token-level confidence during
generation, ensuring efficient retrieval by minimiz-
ing unnecessary searches. Similarly, query rewrit-
ing techniques using reinforcement learning (Ma
et al., 2023) and strategies such as Recitation-
Augmented Generation (Sun et al., 2023), which
searches for text resembling hypothetical answers,
have shown promise in enhancing retrieval accu-
racy. Moreover, recent studies like Self-RAG (Asai
et al., 2024) integrate retrieval into the generation
process itself. In many of these approaches, confi-
dence plays a crucial role either in deciding when
to retrieve or in re-ranking retrieved documents
based on their relevance. However, these studies
focus on improving RAG performance without an-
alyzing how confidence itself is influenced by the
RAG. Specifically, while confidence thresholds and
re-ranking mechanisms are employed to optimize
retrieval and generation, the underlying dynamics
of confidence calibration within the RAG pipeline
remain underexplored. Our study analyzes confi-
dence calibration with and without RAG to address
this gap, verify the implicit assumptions of prior
works, and contribute to a deeper understanding of
confidence-based mechanisms in RAG.

3 Methods

Our study analyzes whether the confidence im-
proves through RAG by calculating the model’s
confidence or entropy from the predicted proba-
bility by the model. Each input is formatted by
concatenating a system prompt, a question prompt,
and its answer options (e.g., a four-choice ques-
tion), following the design of Medical Information
Retrieval Augmented Generation Evaluation (MI-
RAGE) (Xiong et al., 2024). We also analyze the
optimal position for inserting documents retrieved
via pseudo-RAG, i.e., inserting a document directly
relevant to the answer or irrelevant deliberately into
the model input prompt. Specifically, we evaluate
three insertion patterns: before the question (Pre-
Question, denoted as Pre-Q), between the question
and the answer choices (After-Question, denoted as
Aft-Q), and after the answer choices (After-Choice,
denoted as Aft-C). This setup allows us to exam-
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ine the Lost-in-the-Middle phenomenon (Liu et al.,
2024), where models tend to overlook intermedi-
ate content when processing long-context inputs.
Moreover, in order to focus on the impact of re-
trieved document positions, we use documents that
contain the correct answer to the question. We
validate our research question under three scenar-
ios: (1): inserting only the explanation related to
the answer (denoted as Ans1). (2): combining the
correct explanation with two irrelevant documents
(denoted as Ans1-Oth2). (3): inserting three irrele-
vant documents (denoted as Oth3). The irrelevant
documents are selected from unrelated questions,
ensuring that they do not contain the correct answer
or semantically similar content.

Directly generating the choice answer by the
model complicates evaluation, because differences
in reported metrics arise even under identical con-
ditions across studies (Xiong et al., 2024; Chen
et al., 2023; Wu et al., 2024). In some studies, re-
searchers select the final candidate using regular
expressions, while in others, they treat the output
of a specific word (such as Yes or No) as the correct
answer. Thus, evaluation methods are not uniquely
defined if the sentence generated. In our study, we
predict the most plausible option from the given
choices as follows:

vi = logP (xi | prompt)

P (xi) =
exp(vi)∑J
j=1 exp(vj)

where vi represents the log probability corre-
sponding to each choice xi and the prompt refers
to the provided question or context. P (xi) denotes
the probability that the choice xi is the correct an-
swer, normalized by dividing the exponential of vi
by the sum of exponentials of all vj values, while
J is the number of options, which is 3 or 4.

4 Experimental Setup

4.1 Datasets
We focus on the application of RAG in the medical
domain. For the dataset, we select PubMedQA (Jin
et al., 2019) and MedMCQA (Pal et al., 2022),
both of which include multiple-choices QA data
along with explanatory passages that justify the
answers. These datasets follow the experimental
setup of MIRAGE (Xiong et al., 2024), as shown
in Table 1. For MedMCQA, we extract only the
questions that include supporting evidence for the
answer, resulting in a total of 2,206 instances.

You are a helpful medical 
expert, and your task is to 
answer a multi-choice medical 
question using the relevant 
documents. Please first think 
step-by-step and then choose 
the answer from the provided 
options. 
Your responses will be used for 
research purposes only, so 
please have a definite answer.

Here is the question:
{question}

Here are the potential choices:
A. {option_1}
B. {option_2}
C. {option_3}
D. {option_4}

Answer:

System Prompt

Prompt w/o RAG Prompt w/ RAG

Here are the relevant 
documents:
{context}

Here is the question:
{question}

Here are the relevant 
documents:
{context}

Here are the potential choices:
A. {option_1}
B. {option_2}
C. {option_3}
D. {option_4}

Here are the relevant 
documents:
{context}

Answer:

Pre-
Question

After-
Question

After-
Choice

pre-question
after-question
after-choice

Figure 2: Prompts used in our research. Each prompt
begins with a concatenated of the system prompt. Fol-
lowing MIRAGE (Xiong et al., 2024), we design the
templates to enable the calculation of probabilities.

4.2 Inference Models

Following prior research (Xiong et al., 2024), we
select the following models for evaluation: Phi-3.5
(3.8B) (Abdin et al., 2024), PMC-Llama (13B) (Wu
et al., 2024), Llama2 (70B) (Touvron et al., 2023b),
LLaMA3.1 (8B / 70B) (Dubey et al., 2024), and
Meditron (70B) (Chen et al., 2023). To ensure
fair evaluation across models with different ar-
chitectures and parameter sizes, we also include
Gemma2 (2B) (Team et al., 2024) and Qwen2.5
(14B / 70B) (Yang et al., 2024), bringing the total
to nine models. PMC-Llama is fine-tuned on medi-
cal domain documents based on Llama (Touvron
et al., 2023a), while Meditron undergoes continual
pretraining on Llama2 (Touvron et al., 2023b). For
70B models, we apply 4-bit quantization, and for
PMC-Llama, we use half-precision quantization to
compute probabilities. Detailed model configura-
tions are provided in Appendix A.1.

4.3 Templates

Our study modifies the approach based on the MI-
RAGE paper (Xiong et al., 2024) by excluding
Chain of Thought (CoT) (Wei et al., 2022), al-
lowing direct probability computation. (In other
words, when using CoT, the model must generate
responses, which, as discussed in Section 3, pre-
vents a valid evaluation.) Figure 2 presents the
prompts used in our study. Each prompt incorpo-
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rates system prompts from prior research (Xiong
et al., 2024) at the beginning of the input prompt.
To investigate whether the Lost-in-the-Middle phe-
nomenon (Liu et al., 2024), also occurs in RAG, our
study inserts retrieved documents at three positions:
before the question (Pre-Q), after the question (Aft-
Q), and after the answer choices (Aft-C).

4.4 Evaluation Metrics
We evaluate if RAG boosts LLM confidence using
entropy, best probability, accuracy, and Adaptive
Calibration Error. In our multiple-choice QA task,
each question has one correct answer, and output
probabilities classify responses as correct or not.

Entropy. We examine how entropy changes for
candidate answer choices under the influence of
RAG, calculating an entropy. Ideally, inserting an
answer-containing document should decrease en-
tropy (indicating a more confident selection of the
correct choice), while inserting entirely unrelated
documents should improve entropy. The entropy is
computed as:

H(P ) = −
J∑

i=1

P (xi) logP (xi)

P (xi) =
exp(vi)∑J
j=1 exp(vj)

Here, xi represents a candidate answer among
J total options, and vi denotes the logit score (i.e.,
the unnormalized log-probability) assigned to xi.
The softmax function transforms these logits into
a probability distribution P (xi), from which the
entropy H(P ) is calculated. Lower entropy in-
dicates higher model confidence in a particular
choice, while higher entropy implies uncertainty.

Best Probability. We define “Best Probability”
as the highest output probability among the candi-
date choices given to the model. In our study, we
evaluate this metric as confidence. A high output
probability shows strong confidence for correct an-
swers, while a low output probability is preferred
for incorrect answers (we want irrelevant docu-
ments to lower the model’s confidence).

The notation of best probability is as follows:

x∗ = arg max
xi∈X

(logP (xi | prompt))

P (xi) =
exp(vi)∑J
j=1 exp(vj)

Settings Options

QA PubMedQA, MedMCQA

Model Gemma2, Phi3.5, Llama2, Llama3.1
Qwen2.5, PMC-Llama, Meditron

Template w/o RAG, Pre-Q, Aft-Q, Aft-C
Evaluation Entropy, Best Prob, Accuracy, ACE

Table 2: Experimental settings used in our research.

Here, X is the set of all candidate answer
choices, and x∗ denotes the choice with the high-
est log-probability. Each vi represents the model’s
logit for the candidate xi, and the softmax function
converts these logits into a probability distribution
over all choices. The selected x∗ corresponds to the
most confident prediction the model makes under
the given prompt. This Best Probability reflects
how strongly the model favors its top prediction,
and it serves as an interpretable confidence score
in our evaluations.

Adaptive Calibration Error (ACE). Adaptive
Calibration Error (ACE) (Nixon et al., 2019) is a
metric proposed to address the shortcomings of Ex-
pected Calibration Error (ECE) (Naeini et al., 2015;
Guo et al., 2017), specifically aiming to reduce
the risk of bins with a small number of samples.
Proskurina et al. (2024) and Ulmer et al. (2022)
have pointed out that ACE is a more suitable cal-
ibration error metric for multi-class classification
problems. Based on these findings, we adopt ACE
in our evaluation. Table 2 provides a complete list
of all combinations and Appendix A.6 the details
of evaluation metrics.

5 Results

Table 3 presents the experimental results using
MedMCQA, while Table 4 shows the results for
PubMedQA. When distinguishing between cor-
rectly answered and incorrectly answered ques-
tions, Phi and Qwen exhibited ideal behavior from
an entropy perspective. Specifically, inserting sup-
porting documents for the correct answers led
to higher entropy, whereas inserting only unre-
lated documents resulted in lower entropy. In con-
trast, other models, e.g., Llama2, Llama3.1, and
Gemma2, produced unexpected results, suggest-
ing that Llama and Gemma may struggle to pro-
cess inserted documents effectively. Furthermore,
Qwen and Phi demonstrated the ability to deter-
mine whether an inserted document was relevant
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Figure 3: The transition of experimental results using MedMCQA. The figure classifies correctly answered and
incorrectly answered questions, illustrating how their distributions shift. This visualization corresponds to the Ans1
setting, with plots for all three conditions: Pre-Q, Aft-Q, and Aft-C.

MedMCQA (Entropy and Best Probability)

Model Pattern
Entropy (Correct) ↓ Best Prob (Correct) ↑ Entropy (Incorrect) ↓ Best Prob (Incorrect) ↓

None Ans1 Ans1-Oth2 Oth3 None Ans1 Ans1-Oth2 Oth3 None Ans1 Ans1-Oth2 Oth3 None Ans1 Ans1-Oth2 Oth3

Llama-2-70b-chat-hf

w/o RAG 1.24±1.11 – – – 0.42±0.55 – – – 1.28±1.27 – – – 0.38±0.38 – – –

Pre-Q – 1.12±0.16 1.12±0.16 1.27±0.10 – 0.54±0.12 0.54±0.12 0.41±0.09 – 1.27±0.08 1.28±0.08 1.31±0.06 – 0.41±0.07 0.40±0.08 0.38±0.07

Aft-Q – 1.11±0.16 1.15±0.16 1.29±0.10 – 0.55±0.12 0.52±0.13 0.40±0.09 – 1.27±0.09 1.29±0.08 1.31±0.06 – 0.41±0.08 0.40±0.08 0.38±0.07

Aft-C – 1.15±0.16 1.23±0.12 1.30±0.10 – 0.51±0.13 0.46±0.11 0.39±0.09 – 1.28±0.09 1.31±0.07 1.31±0.07 – 0.40±0.08 0.38±0.08 0.38±0.08

Llama-3.1-70B

w/o RAG 1.24±1.24 – – – 0.42±0.42 – – – 1.31±1.31 – – – 0.35±0.32 – – –

Pre-Q – 1.35±0.07 1.35±0.07 1.35±0.07 – 0.32±0.03 0.33±0.03 0.33±0.03 – 1.35±0.02 1.35±0.02 1.35±0.02 – 0.32±0.01 0.32±0.01 0.33±0.01

Aft-Q – 1.35±0.07 1.35±0.07 1.35±0.07 – 0.33±0.03 0.33±0.03 0.33±0.03 – 1.35±0.02 1.35±0.02 1.35±0.02 – 0.32±0.01 0.33±0.01 0.33±0.01

Aft-C – 1.35±0.07 1.35±0.07 1.35±0.07 – 0.33±0.03 0.33±0.03 0.33±0.03 – 1.35±0.02 1.35±0.02 1.35±0.02 – 0.32±0.01 0.33±0.01 0.33±0.01

Llama-3.1-8B

w/o RAG 1.38±1.38 – – – 0.28±0.28 – – – 1.38±1.38 – – – 0.27±0.27 – – –

Pre-Q – 1.38±0.07 1.38±0.07 1.38±0.07 – 0.28±0.03 0.28±0.03 0.28±0.03 – 1.38±0.02 1.38±0.02 1.38±0.02 – 0.27±0.01 0.27±0.01 0.27±0.01

Aft-Q – 1.38±0.07 1.38±0.07 1.38±0.06 – 0.28±0.03 0.28±0.03 0.28±0.03 – 1.38±0.02 1.38±0.02 1.38±0.02 – 0.27±0.01 0.27±0.01 0.27±0.01

Aft-C – 1.38±0.07 1.38±0.07 1.38±0.07 – 0.28±0.03 0.28±0.03 0.28±0.03 – 1.38±0.02 1.38±0.02 1.38±0.02 – 0.27±0.01 0.27±0.01 0.27±0.01

meditron-70b

w/o RAG 1.23±1.05 – – – 0.42±0.57 – – – 1.25±1.19 – – – 0.40±0.40 – – –

Pre-Q – 1.11±0.17 1.05±0.19 1.23±0.11 – 0.54±0.13 0.57±0.14 0.47±0.09 – 1.24±0.10 1.19±0.11 1.27±0.08 – 0.43±0.08 0.47±0.08 0.43±0.08

Aft-Q – 1.10±0.17 1.09±0.17 1.21±0.11 – 0.54±0.13 0.55±0.13 0.48±0.09 – 1.23±0.10 1.20±0.10 1.23±0.10 – 0.44±0.08 0.47±0.08 0.47±0.09

Aft-C – 1.15±0.17 1.28±0.10 1.30±0.08 – 0.51±0.13 0.43±0.09 0.41±0.07 – 1.27±0.08 1.31±0.06 1.31±0.06 – 0.41±0.07 0.40±0.07 0.41±0.07

PMC-LLaMA-13B

w/o RAG 1.00±1.00 – – – 0.56±0.56 – – – 1.05±1.05 – – – 0.53±0.31 – – –

Pre-Q – 1.36±0.06 1.36±0.06 1.36±0.06 – 0.33±0.05 0.32±0.05 0.32±0.05 – 1.37±0.03 1.37±0.02 1.37±0.02 – 0.31±0.04 0.31±0.03 0.31±0.03

Aft-Q – 1.36±0.06 1.36±0.06 1.36±0.06 – 0.33±0.05 0.32±0.05 0.31±0.05 – 1.36±0.03 1.37±0.03 1.37±0.03 – 0.32±0.04 0.31±0.03 0.31±0.04

Aft-C – 1.36±0.06 1.35±0.07 1.36±0.07 – 0.33±0.05 0.33±0.05 0.33±0.05 – 1.36±0.03 1.36±0.03 1.36±0.03 – 0.32±0.04 0.32±0.04 0.32±0.04

Gemma-2-2b

w/o RAG 1.17±1.11 – – – 0.52±0.56 – – – 1.18±1.13 – – – 0.52±0.51 – – –

Pre-Q – 1.12±0.08 1.13±0.07 1.15±0.06 – 0.55±0.05 0.54±0.04 0.52±0.04 – 1.17±0.05 1.16±0.04 1.16±0.04 – 0.51±0.04 0.51±0.04 0.52±0.03

Aft-Q – 1.13±0.07 1.14±0.06 1.15±0.06 – 0.55±0.05 0.53±0.04 0.52±0.04 – 1.17±0.05 1.16±0.04 1.15±0.04 – 0.51±0.04 0.51±0.04 0.52±0.03

Aft-C – 1.11±0.08 1.12±0.07 1.13±0.06 – 0.56±0.05 0.55±0.05 0.54±0.04 – 1.16±0.05 1.14±0.05 1.13±0.05 – 0.53±0.04 0.54±0.04 0.54±0.04

Phi-3.5

w/o RAG 0.93±0.05 – – – 0.62±0.98 – – – 1.09±0.39 – – – 0.51±0.51 – – –

Pre-Q – 0.06±0.17 0.07±0.18 0.24±0.32 – 0.98±0.08 0.98±0.08 0.90±0.15 – 0.39±0.34 0.43±0.35 0.49±0.38 – 0.84±0.18 0.82±0.18 0.80±0.19

Aft-Q – 0.05±0.16 0.07±0.18 0.34±0.36 – 0.98±0.07 0.97±0.08 0.87±0.17 – 0.45±0.35 0.46±0.35 0.50±0.37 – 0.81±0.18 0.81±0.18 0.80±0.19

Aft-C – 0.09±0.19 0.14±0.22 0.27±0.32 – 0.97±0.09 0.95±0.10 0.90±0.15 – 0.45±0.34 0.44±0.36 0.42±0.35 – 0.81±0.18 0.82±0.19 0.84±0.17

Qwen2.5-14B

w/o RAG 0.86±0.48 – – – 0.67±0.85 – – – 1.06±1.03 – – – 0.55±0.49 – – –

Pre-Q – 0.52±0.33 0.53±0.35 0.89±0.30 – 0.84±0.15 0.83±0.16 0.65±0.18 – 1.03±0.23 1.05±0.23 1.07±0.22 – 0.56±0.15 0.55±0.15 0.54±0.15

Aft-Q – 0.48±0.32 0.51±0.33 0.92±0.29 – 0.85±0.14 0.84±0.16 0.63±0.17 – 1.04±0.24 1.05±0.23 1.06±0.21 – 0.56±0.15 0.55±0.15 0.55±0.14

Aft-C – 0.66±0.35 0.80±0.32 1.00±0.24 – 0.77±0.17 0.71±0.18 0.59±0.16 – 1.12±0.20 1.12±0.20 1.15±0.17 – 0.51±0.13 0.51±0.14 0.49±0.12

Qwen2.5-72B

w/o RAG 0.82±0.44 – – – 0.69±0.86 – – – 1.09±0.87 – – – 0.53±0.53 – – –

Pre-Q – 0.52±0.31 0.56±0.32 0.75±0.32 – 0.83±0.14 0.80±0.15 0.71±0.18 – 0.91±0.26 0.87±0.24 0.94±0.24 – 0.61±0.16 0.63±0.15 0.62±0.15

Aft-Q – 0.44±0.30 0.54±0.31 0.83±0.31 – 0.86±0.13 0.82±0.15 0.68±0.17 – 0.99±0.27 0.97±0.24 0.99±0.22 – 0.57±0.16 0.59±0.15 0.60±0.15

Aft-C – 0.53±0.32 0.65±0.32 0.85±0.28 – 0.82±0.15 0.77±0.16 0.67±0.17 – 1.00±0.25 1.02±0.21 0.99±0.22 – 0.57±0.15 0.57±0.14 0.61±0.14

Table 3: Experimental result on MedMCQA. Bold indicates the best value among the models. Specifically, the
lowest entropy and the highest best probability (Correct case) are highlighted. This table has numerical values and
their standard deviations.

to the answer, leading to provide strong evidence
that they function as suitable generators.

6 Analysis & Discussion

How Does RAG Affect Prediction Probabilities?
Figure 3 presents partial experimental results us-
ing MedMCQA, while Figure 4 shows results from
PubMedQA. These figures correspond to the Ans1
setting, where all three phases—Pre-Q, Aft-Q, and
Aft-C—are plotted. A detailed analysis focuses
on Phi and Qwen, which exhibited ideal behavior.
When RAG was not applied, i.e., evaluating the
models’ intrinsic accuracy, the output probabili-

ties were evenly distributed across both datasets.
Furthermore, the results of Phi-3.5 on PubMedQA
reveal that the incorrect predictions tend to con-
centrate at the upper end, i.e., where output prob-
abilities are high. This pattern suggests that the
model exhibits overconfidence, making incorrect
predictions despite assigning high probabilities.
When solving a QA task under a deliberate set-
ting that includes supporting documents for correct
answers (similar to pseudo-RAG), all models (Phi
and Qwen) showed improved output probabilities.
This suggests that the models can assess whether
retrieved documents contain useful information.
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Figure 4: The transition of experimental results using PubMedQA. The figure classifies correctly answered and
incorrectly answered questions, illustrating how their distributions shift. This visualization corresponds to the Ans1
setting, with plots for all three conditions: Pre-Q, Aft-Q, and Aft-C.

PubMedQA (Entropy and Best Probability)

Model Pattern
Entropy (Correct) ↓ Best Prob (Correct) ↑ Entropy (Incorrect) ↓ Best Prob (Incorrect) ↓

None Ans1 Ans1-Oth2 Oth3 None Ans1 Ans1-Oth2 Oth3 None Ans1 Ans1-Oth2 Oth3 None Ans1 Ans1-Oth2 Oth3

Llama-2-70b-chat-hf

w/o RAG 0.83±0.83 – – – 0.62±0.62 – – – 0.93±0.93 – – – 0.55±0.38 – – –

Pre-Q – 1.12±0.16 1.12±0.16 1.27±0.10 – 0.54±0.12 0.54±0.12 0.41±0.09 – 1.27±0.08 1.28±0.08 1.31±0.06 – 0.41±0.07 0.40±0.08 0.38±0.07

Aft-Q – 1.11±0.16 1.15±0.16 1.29±0.10 – 0.55±0.12 0.52±0.13 0.40±0.09 – 1.27±0.09 1.29±0.08 1.31±0.06 – 0.41±0.08 0.40±0.08 0.38±0.07

Aft-C – 1.15±0.16 1.23±0.12 1.30±0.10 – 0.51±0.13 0.46±0.11 0.39±0.09 – 1.28±0.09 1.31±0.07 1.31±0.07 – 0.40±0.08 0.38±0.08 0.38±0.08

Llama-3.1-70B

w/o RAG 0.86±0.86 – – – 0.59±0.59 – – – 0.87±0.87 – – – 0.57±0.32 – – –

Pre-Q – 1.35±0.07 1.35±0.07 1.35±0.07 – 0.32±0.03 0.33±0.03 0.33±0.03 – 1.35±0.02 1.35±0.02 1.35±0.02 – 0.32±0.01 0.32±0.01 0.33±0.01

Aft-Q – 1.35±0.07 1.35±0.07 1.35±0.07 – 0.33±0.03 0.33±0.03 0.33±0.03 – 1.35±0.02 1.35±0.02 1.35±0.02 – 0.32±0.01 0.33±0.01 0.33±0.01

Aft-C – 1.35±0.07 1.35±0.07 1.35±0.07 – 0.33±0.03 0.33±0.03 0.33±0.03 – 1.35±0.02 1.35±0.02 1.35±0.02 – 0.32±0.01 0.33±0.01 0.33±0.01

Llama-3.1-8B

w/o RAG 1.09±1.09 – – – 0.36±0.36 – – – 1.09±1.09 – – – 0.36±0.27 – – –

Pre-Q – 1.38±0.07 1.38±0.07 1.38±0.07 – 0.28±0.03 0.28±0.03 0.28±0.03 – 1.38±0.02 1.38±0.02 1.38±0.02 – 0.27±0.01 0.27±0.01 0.27±0.01

Aft-Q – 1.38±0.07 1.38±0.07 1.38±0.06 – 0.28±0.03 0.28±0.03 0.28±0.03 – 1.38±0.02 1.38±0.02 1.38±0.02 – 0.27±0.01 0.27±0.01 0.27±0.01

Aft-C – 1.38±0.07 1.38±0.07 1.38±0.07 – 0.28±0.03 0.28±0.03 0.28±0.03 – 1.38±0.02 1.38±0.02 1.38±0.02 – 0.27±0.01 0.27±0.01 0.27±0.01

meditron-70b

w/o RAG 0.94±0.94 – – – 0.54±0.57 – – – 0.94±0.94 – – – 0.52±0.40 – – –

Pre-Q – 1.11±0.17 1.05±0.19 1.23±0.11 – 0.54±0.13 0.57±0.14 0.47±0.09 – 1.24±0.10 1.19±0.11 1.27±0.08 – 0.43±0.08 0.47±0.08 0.43±0.08

Aft-Q – 1.10±0.17 1.09±0.17 1.21±0.11 – 0.54±0.13 0.55±0.13 0.48±0.09 – 1.23±0.10 1.20±0.10 1.23±0.10 – 0.44±0.08 0.47±0.08 0.47±0.09

Aft-C – 1.15±0.17 1.28±0.10 1.30±0.08 – 0.51±0.13 0.43±0.09 0.41±0.07 – 1.27±0.08 1.31±0.06 1.31±0.06 – 0.41±0.07 0.40±0.07 0.41±0.07

PMC-LLaMA-13B

w/o RAG 1.08±1.08 – – – 0.40±0.40 – – – 1.08±1.08 – – – 0.40±0.31 – – –

Pre-Q – 1.36±0.06 1.36±0.06 1.36±0.06 – 0.33±0.05 0.32±0.05 0.32±0.05 – 1.37±0.03 1.37±0.02 1.37±0.02 – 0.31±0.04 0.31±0.03 0.31±0.03

Aft-Q – 1.36±0.06 1.36±0.06 1.36±0.06 – 0.33±0.05 0.32±0.05 0.31±0.05 – 1.36±0.03 1.37±0.03 1.37±0.03 – 0.32±0.04 0.31±0.03 0.31±0.04

Aft-C – 1.36±0.06 1.35±0.07 1.36±0.07 – 0.33±0.05 0.33±0.05 0.33±0.05 – 1.36±0.03 1.36±0.03 1.36±0.03 – 0.32±0.04 0.32±0.04 0.32±0.04

Gemma-2-2b

w/o RAG 0.93±0.93 – – – 0.61±0.61 – – – 0.93±0.93 – – – 0.61±0.51 – – –

Pre-Q – 1.12±0.08 1.13±0.07 1.15±0.06 – 0.55±0.05 0.54±0.04 0.52±0.04 – 1.17±0.05 1.16±0.04 1.16±0.04 – 0.51±0.04 0.51±0.04 0.52±0.03

Aft-Q – 1.13±0.07 1.14±0.06 1.15±0.06 – 0.55±0.05 0.53±0.04 0.52±0.04 – 1.17±0.05 1.16±0.04 1.15±0.04 – 0.51±0.04 0.51±0.04 0.52±0.03

Aft-C – 1.11±0.08 1.12±0.07 1.13±0.06 – 0.56±0.05 0.55±0.05 0.54±0.04 – 1.16±0.05 1.14±0.05 1.13±0.05 – 0.53±0.04 0.54±0.04 0.54±0.04

Phi-3.5

w/o RAG 0.40±0.05 – – – 0.81±0.98 – – – 0.41±0.39 – – – 0.82±0.80 – – –

Pre-Q – 0.06±0.17 0.07±0.18 0.24±0.32 – 0.98±0.08 0.98±0.08 0.90±0.15 – 0.39±0.34 0.43±0.35 0.49±0.38 – 0.84±0.18 0.82±0.18 0.80±0.19

Aft-Q – 0.05±0.16 0.07±0.18 0.34±0.36 – 0.98±0.07 0.97±0.08 0.87±0.17 – 0.45±0.35 0.46±0.35 0.50±0.37 – 0.81±0.18 0.81±0.18 0.80±0.19

Aft-C – 0.09±0.19 0.14±0.22 0.27±0.32 – 0.97±0.09 0.95±0.10 0.90±0.15 – 0.45±0.34 0.44±0.36 0.42±0.35 – 0.81±0.18 0.82±0.19 0.84±0.17

Qwen2.5-14B

w/o RAG 0.90±0.48 – – – 0.59±0.85 – – – 0.92±0.92 – – – 0.58±0.49 – – –

Pre-Q – 0.52±0.33 0.53±0.35 0.89±0.30 – 0.84±0.15 0.83±0.16 0.65±0.18 – 1.03±0.23 1.05±0.23 1.07±0.22 – 0.56±0.15 0.55±0.15 0.54±0.15

Aft-Q – 0.48±0.32 0.51±0.33 0.92±0.29 – 0.85±0.14 0.84±0.16 0.63±0.17 – 1.04±0.24 1.05±0.23 1.06±0.21 – 0.56±0.15 0.55±0.15 0.55±0.14

Aft-C – 0.66±0.35 0.80±0.32 1.00±0.24 – 0.77±0.17 0.71±0.18 0.59±0.16 – 1.12±0.20 1.12±0.20 1.15±0.17 – 0.51±0.13 0.51±0.14 0.49±0.12

Qwen2.5-72B

w/o RAG 0.97±0.44 – – – 0.53±0.86 – – – 1.00±0.87 – – – 0.49±0.49 – – –

Pre-Q – 0.52±0.31 0.56±0.32 0.75±0.32 – 0.83±0.14 0.80±0.15 0.71±0.18 – 0.91±0.26 0.87±0.24 0.94±0.24 – 0.61±0.16 0.63±0.15 0.62±0.15

Aft-Q – 0.44±0.30 0.54±0.31 0.83±0.31 – 0.86±0.13 0.82±0.15 0.68±0.17 – 0.99±0.27 0.97±0.24 0.99±0.22 – 0.57±0.16 0.59±0.15 0.60±0.15

Aft-C – 0.53±0.32 0.65±0.32 0.85±0.28 – 0.82±0.15 0.77±0.16 0.67±0.17 – 1.00±0.25 1.02±0.21 0.99±0.22 – 0.57±0.15 0.57±0.14 0.61±0.14

Table 4: Experimental results using PubMedQA. Bold indicates the best value among the models. Specifically, the
lowest entropy and the highest best probability (Correct case) are highlighted. This table has numerical values and
their standard deviations.

Model Behavior When Inserting Answer-
Containing Documents. When explicitly insert-
ing documents that contain the correct answers,
Phi and Qwen demonstrated ideal behavior. For
instance, from a correct entropy perspective in Ta-
ble 3, Phi had a value of 0.933 under the w/o RAG
setting, which dropped to 0.051 after document
insertion. Similarly, for Qwen2.5 (72B), entropy
decreased from 0.819 to 0.444. This observation
indicates that the models can assess whether an in-
serted document is relevant to the question. More-
over, when they determine that the document is
unnecessary, they attempt to answer using their

own knowledge. Further evidence supporting this
conclusion comes from cases where inserting un-
related documents did not improve accuracy. This
suggests that the models selectively utilize external
information only when it is deemed useful.

Behavior of Calibration Error. Table 5 presents
the evaluation result of ACE using MedMCQA,
while Table 6 shows the results for PubMedQA.
A detailed analysis of Llama and Gemma reveals
substantial differences in behavior depending on
the model. Notably, even when inserting entirely
correct documents (Ans1), Llama3.1 (70B) experi-
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Model Pattern
ACE ↓ Accuracy ↑

None Ans1 Ans1-Oth2 Oth3 None Ans1 Ans1-Oth2 Oth3

Llama2 (70B)

w/o RAG 2.208 – – – 38.322 – – –

Pre-Q – 22.359 25.113 7.181 – 72.575 75.340 32.094
Aft-Q – 23.912 21.132 10.781 – 75.567 69.628 28.105
Aft-C – 19.653 17.514 9.803 – 67.498 60.743 28.876

Llama3.1 (70B)

w/o RAG 19.582 – – – 58.977 – – –

Pre-Q – 11.496 11.580 11.658 – 20.898 20.943 20.943
Aft-Q – 11.518 11.671 11.714 – 20.898 20.898 20.943
Aft-C – 11.504 11.707 11.795 – 20.943 20.943 20.943

Llama3.1 (8B)

w/o RAG 5.423 – – – 22.209 – – –

Pre-Q – 4.701 4.254 3.644 – 23.345 23.209 23.799
Aft-Q – 4.473 4.632 3.892 – 23.028 23.209 24.025
Aft-C – 4.476 4.746 4.990 – 23.209 23.255 23.663

Meditron (70B)

w/o RAG 6.412 – – – 35.525 – – –

Pre-Q – 17.684 7.652 8.665 – 67.724 54.034 36.038
Aft-Q – 15.894 9.467 15.334 – 66.682 47.144 31.958
Aft-C – 15.101 6.946 9.006 – 62.829 34.180 31.913

PMC-Llama (13B)

w/o RAG 15.671 – – – 38.107 – – –

Pre-Q – 4.943 4.367 4.357 – 32.729 31.641 26.972
Aft-Q – 4.003 2.550 5.032 – 32.910 30.009 26.972
Aft-C – 3.496 3.780 4.397 – 33.454 28.740 28.060

Gemma2 (2B)

w/o RAG 19.568 – – – 32.297 – – –

Pre-Q – 25.511 23.160 20.520 – 31.233 31.278 31.278
Aft-Q – 24.160 21.072 20.618 – 31.188 31.278 31.278
Aft-C – 24.814 23.118 22.916 – 31.324 31.324 31.324

Phi3.5 (3.8B)

w/o RAG 5.624 – – – 51.518 – – –

Pre-Q – 9.786 10.378 33.709 – 86.083 84.950 51.813
Aft-Q – 7.636 9.270 43.415 – 88.486 85.947 39.393
Aft-C – 7.682 15.952 42.476 – 87.353 76.111 44.334

Qwen2.5 (14B)

w/o RAG 12.125 – – – 49.151 – – –

Pre-Q – 8.646 8.740 11.892 – 89.483 88.441 47.280
Aft-Q – 7.013 7.257 17.592 – 89.121 87.534 40.798
Aft-C – 7.746 9.778 8.531 – 79.329 75.884 45.014

Qwen2.5 (72B)

w/o RAG 4.030 – – – 60.483 – – –

Pre-Q – 9.393 7.896 20.412 – 89.982 85.766 45.739
Aft-Q – 8.782 9.781 18.652 – 93.246 89.574 44.696
Aft-C – 9.270 5.990 23.564 – 88.622 79.284 39.483

Table 5: Evaluation results with MedMCQA. Red highlights areas where performance improved compared to the
non-RAG setting, while Blue indicates areas where performance deteriorated.

ences a drop in accuracy, whereas Llama3.1 (8B)
shows improved accuracy even when inserting com-
pletely unrelated documents (Oth3). This stark
contrast indicates that even within the same model
family, behavior can vary largely. Moreover, a com-
parison between Llama2, Meditron, and Llama3.1
shows considerable differences in behavior, ruling
out parameter size as the primary cause. These
findings suggest that while the Llama series per-
forms well under specific instruction formats, it
may negatively impact performance in other cases.
On the other hand, Qwen and Phi exhibit a clear pat-

tern: inserting entirely unrelated documents (Oth3)
worsens ACE, while inserting answer-containing
documents (Ans1 or Ans1-Oth2) leads to improve-
ments. This tendency implies that Phi and Qwen
possess the ability to assess whether retrieved doc-
uments provide useful information. These results
show that analyzing LLM confidence through pre-
dicted probabilities effectively reveals the model’s
ability to identify meaningful documents.

Did “Lost in the Middle” Phenomenon Occur?
Our study also examined the “Lost in the Middle”
phenomenon (Liu et al., 2024) by evaluating the
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Model Pattern
ACE ↓ Accuracy ↑

None Ans1 Ans1-Oth2 Oth3 None Ans1 Ans1-Oth2 Oth3

Llama2 (70B)

w/o RAG 12.107 – – – 46.400 – – –

Pre-Q – 29.791 30.422 14.146 – 82.200 79.800 56.500
Aft-Q – 30.380 31.220 13.234 – 81.600 74.100 53.000
Aft-C – 13.494 13.430 11.322 – 57.200 53.100 50.700

Llama3.1 (70B)

w/o RAG 6.091 – – – 58.600 – – –

Pre-Q – 11.329 11.513 11.521 – 55.200 55.200 55.200
Aft-Q – 11.343 11.532 11.539 – 55.200 55.200 55.200
Aft-C – 11.370 11.534 11.543 – 55.200 55.200 55.200

Llama3.1 (8B)

w/o RAG 24.939 – – – 11.000 – – –

Pre-Q – 23.683 23.368 23.975 – 12.200 12.600 12.000
Aft-Q – 23.085 23.576 23.988 – 12.800 12.400 12.000
Aft-C – 23.930 23.854 24.370 – 11.900 12.100 11.600

Meditron (70B)

w/o RAG 18.115 – – – 34.800 – – –

Pre-Q – 11.540 18.483 8.365 – 57.300 69.800 57.200
Aft-Q – 9.159 6.645 6.270 – 56.700 55.600 54.800
Aft-C – 4.171 5.050 7.915 – 54.700 54.800 55.100

PMC-Llama (13B)

w/o RAG 17.261 – – – 22.800 – – –

Pre-Q – 10.462 4.650 3.387 – 28.800 37.900 36.600
Aft-Q – 10.322 4.000 3.985 – 28.900 39.200 40.000
Aft-C – 4.169 5.421 7.250 – 41.200 44.500 46.100

Gemma2 (2B)

w/o RAG 6.387 – – – 55.200 – – –

Pre-Q – 5.794 5.409 5.394 – 55.300 55.200 55.200
Aft-Q – 6.159 5.098 4.188 – 55.200 55.200 55.200
Aft-C – 9.081 6.161 6.376 – 55.200 55.200 55.200

Phi3.5 (3.8B)

w/o RAG 48.176 – – – 33.400 – – –

Pre-Q – 14.640 14.777 57.831 – 81.600 81.200 21.900
Aft-Q – 13.677 31.960 52.083 – 82.300 62.700 41.300
Aft-C – 16.771 33.297 47.123 – 73.700 52.300 33.800

Qwen2.5 (14B)

w/o RAG 15.874 – – – 42.800 – – –

Pre-Q – 4.746 4.816 18.425 – 83.400 83.200 32.600
Aft-Q – 3.460 5.013 26.783 – 82.800 76.100 33.900
Aft-C – 7.616 3.088 23.229 – 74.500 63.900 32.100

Qwen2.5 (72B)

w/o RAG 7.205 – – – 46.400 – – –

Pre-Q – 10.477 3.801 25.283 – 74.900 78.100 33.000
Aft-Q – 8.024 10.931 17.828 – 80.300 71.200 34.300
Aft-C – 8.877 6.995 13.543 – 76.800 71.000 42.500

Table 6: Evaluation results on PubMedQA. Red highlights areas where performance improved compared to the
non-RAG setting, while Blue indicates areas where performance deteriorated.

impact of document placement within the template
across multiple positions (Pre-Q, Aft-Q, and Aft-
C). Focusing on Phi and Qwen, which exhibited
expected behavior in terms of entropy and accu-
racy, an intriguing pattern emerged. From an en-
tropy perspective, inserting the document after the
answer choices yielded the best results, while from
an accuracy perspective, placing it before the an-
swer choices was optimal. These findings suggest
that when prioritizing the reliability of information,
entropy should be the primary metric.

Error Analysis. Appendix B.1 presents the re-
sults of the error analysis, which examines how
the model makes mistakes. PubMedQA consists
of three answer choices: yes, no, and maybe, al-
lowing us to analyze the types of errors the model
makes. For Llama3.1 (8B, 70B), PMC-Llama, and
Gemma2, the bin colors remain unchanged, indicat-
ing that these models do not incorporate arbitrarily
inserted supporting documents (Ans1, Ans1-Oth2).
Meditron, w/o RAG, outputs “No” for all incorrect
answers. However, when a document is provided,
it changes all responses to “Yes,” revealing an ex-
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tremely sensitive behavior.

7 Conclusion

Our research explored the impact of Retrieval Aug-
mented Generation (RAG) on model confidence in
the medical domain where information reliability
is crucial. We found that when models retrieve rel-
evant documents, they not only boost accuracy but
also show higher confidence scores. In contrast, ir-
relevant documents have little effect on improving
confidence. Several models demonstrate the ability
to judge if the retrieved documents connect to the
correct answer, indicating a more discerning use
of external information than we anticipated. Our
evaluation metrics provide a clear framework for
spotting the best generator models within RAG sys-
tems. The findings reveal that models adjust their
output probabilities in response to the quality of the
retrieved documents, which opens up new ways to
measure and improve model performance. These
insights help refine RAG methods, making them
more reliable for high-stakes applications.

8 Limitations

8.1 The Experiments of the Other Domain
Our study prioritizes domains where RAG is ap-
plied, focusing specifically on the medical domain
to analyze confidence. To advance further, it be-
comes necessary to validate RAG in domains such
as finance and analyze its confidence in contexts
requiring highly reliable information.

8.2 Further Analyzing New RAG Architecture
Our study focused exclusively on analyzing the
basic RAG architecture. While the standard RAG
framework directly utilizes retrieved documents
within the LLM, newer RAG architectures incorpo-
rate various control mechanisms. Moving forward,
it is essential to analyze these advanced architec-
tures from the perspective of confidence as well.

8.3 Other Metrics for Evaluation
The evaluation metrics used in this study, ACE,
may have some drawbacks. (Kull et al., 2019; Ku-
mar et al., 2019; Baan et al., 2022). Since LLMs
outputs are not always strictly correct or incorrect,
researchers often use Prediction Rejection Ratio
(PRR), which measures the correlation between
confidence scores and output quality. (Fadeeva
et al., 2023; Vashurin et al., 2025; He et al., 2024;
Ozaki et al., 2025b). However, our study focuses

on a multiple-QA task, where each question has
a uniquely defined correct answer. Additionally,
the models were evaluated using force decoding.
Given these conditions, ACE serves as appropriate
evaluation metrics.

8.4 Methods for Generating Model Outputs

This study deliberately avoids generating free-text
responses from models. Instead, it retrieves an-
swer candidates using force decoding This de-
cision stems from an observation in prior re-
search: many studies rely heavily on regular ex-
pressions to extract correct answers, leading to
substantial accuracy variations even when using
the same QA task and model. (https://github.
com/Teddy-XiongGZ/MedRAG, https://github.
com/epfLLM/meditron, https://github.com/
chaoyi-wu/PMC-LLaMA.) To address this issue, we
select answer choices based on the model’s inherent
output probabilities. This approach avoids intro-
ducing dependencies on specific evaluation metrics,
which would otherwise occur if the model were
required to generate explanations using Chain-of-
Thought (CoT) or produce confidence scores.

9 Ethical Considerations

9.1 The Possibility of Dataset Bias

The datasets and retrieval mechanisms employed in
our study may carry inherent biases, which could
influence the model’s predictions and potentially
affect fairness in decision-making. Recognizing
these biases, we advocate for the use of diverse and
representative datasets to minimize their impact.
Additionally, we uphold transparency by analyzing
the interplay between confidence and accuracy, pro-
viding users with clearer insights into the system’s
limitations and confidence. However, we empha-
size the need for human oversight, as no automated
system can guarantee infallibility.

9.2 AI Assistant Tools

We used ChatGPT 2 and DeepL 3 to translate sen-
tences to English and accelerate our research.
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A Example Appendix

A.1 Detailed Model Settings
The PMC-Llama model was quantized to half-
precision, while the 70B / 72B models were
quantized to 4-bit precision for experimenta-
tion. The implementation relied on the Trans-
formers library (Wolf et al., 2020) and bitsand-
bytes (Dettmers et al., 2022).

Model Params HuggingFace Name

Phi-3.5 3.8B microsoft/Phi-3.5-mini-instruct
PMC-Llama 13B axiong/PMC_LLaMA_13B
LLama2 70B meta-llama/Llama-2-70b-chat-hf
Meditron 70B epfl-llm/meditron-70b
Llama3.1 8B meta-llama/Llama-3.1-8B
Llama3.1 70B meta-llama/Llama-3.1-70B
Gemma2 2B google/gemma-2-2b
Qwen2.5 14B Qwen/Qwen2.5-14B
Qwen2.5 72B Qwen/Qwen2.5-72B

Table 7: Detailed name of models.

A.2 Dataset Selection
The dataset selection is based on prior research
by Xiong et al. (2024). From the datasets they
used, we select those that include both QA pairs
and explanatory passages that justify the answers
(MedMCQA and PubMedQA) for this study.

Since the test set for MedMCQA is not publicly
available, our study used the dev set as the test
set, following the approach adopted in MIRAGE.4.
We used the datasets, especially MedMCQA5, Pub-
MedQA6.

A.3 Details of the Input Format
As described in Section 3, we determine the se-
lected choice based on the output probabilities as-

4https://huggingface.co/datasets/
openlifescienceai/medmcqa

5https://github.com/MedMCQA/MedMCQA
6https://github.com/pubmedqa/pubmedqa
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signed by LLMs to the given candidates. To pre-
vent answer choices from being split into multiple
tokens by the tokenizer, we replace them with A, B,
C, and D before feeding them into the model. This
approach ensures a fair comparison across models,
even for answer choices that would otherwise span
multiple tokens.

A.4 Inference Settings

In this study, as far as inference which needs to use
GPUs, all experiments were conducted on a single
NVIDIA RTX A6000 and NVIDIA GeForce RTX
3090 GPU.

A.5 Why Do We Focus on the Medical
Domain?

Among the various domains where information re-
liability is crucial (e.g., finance, law, autonomous
driving, and healthcare), we chose to focus on
healthcare for the following reasons:

• Complexity and Scale of Medical Texts: Med-
ical documents are inherently complex and
vast in scope, making them particularly suit-
able for RAG-based approaches. Combined
with the critical importance of information re-
liability in this field, focusing on healthcare
becomes a highly significant choice.

• Challenges in Real-World Applications: Ques-
tions involving detailed patient information,
such as medical histories and symptoms, of-
ten overwhelm retrieval systems, making it
difficult to identify crucial diagnostic clues.
Furthermore, in practical applications, patient
conditions and individual characteristics vary
widely. Differences in age, medical history,
genetic factors, and lifestyle often lead to vari-
ations in treatment for the same disease. Pro-
viding inaccurate information in such scenar-
ios can result in severe consequences. (Sohn
et al., 2024)

• Established Significance of BioNLP: The
prominence of the healthcare domain is ev-
ident from the long-standing “BioNLP” work-
shop, which has been held for over two
decades.7

• Emerging Trends in Healthcare RAG: Efforts
to improve RAG performance in the medical

7https://aclweb.org/aclwiki/BioNLP_Workshop

domain have led to developments like Self-
BioRAG, which leverages confidence scores.
Its popularity and significant citation count
highlight this field as a trending area of re-
search. (Jeong et al., 2024) These points
illustrate the rationale behind our focus on the
healthcare domain.

A.6 Details of Evaluation Metrics

Expected Calibration Error (ECE) Calibration
error metrics evaluate whether a model’s predicted
probabilities align with actual accuracy in QA tasks.
For instance, if a model assigns a 90% probabil-
ity to an answer, the accuracy of such predictions
should also be 90% for optimal calibration. Ex-
pected Calibration Error (ECE) (Naeini et al., 2015;
Guo et al., 2017) quantifies this discrepancy by seg-
menting the predicted probability range into mul-
tiple bins and computing the difference between
the predicted probability and the observed accuracy
within each bin as follows:

ECE =
M∑

m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (1)

Here, M denotes the number of bins, Bm rep-
resents the set of samples within bin m, |Bm| is
the number of samples in bin m, and n is the total
number of samples. acc(Bm) refers to the accu-
racy within bin Bm, while conf(Bm) indicates the
average confidence of predictions in bin m. ECE is
computed as the weighted average of the absolute
differences between the accuracy and confidence
across bins, where the weights correspond to the
proportion of samples in each bin.

Adaptive Calibration Error (ACE) ACE per-
forms binning so that the number of samples in
each bin remains constant. This approach ensures
a more stable evaluation within each bin:

ACE =
1

KR

K∑

k=1

R∑

r=1

|acc(r, k)− conf(r, k)| (2)

Here, K denotes the number of classes, R repre-
sents the number of bins, acc(r, k) indicates the
accuracy in bin r for class k, and conf(r, k) de-
notes the confidence of predictions in the same bin
and class.
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A.7 The results using Expected Calibration
Error (ECE)

The results using ECE are presented in Table 8
and Table 9. As discussed in Section 4.4, Prosku-
rina et al. (2024) and Ulmer et al. (2022) have
pointed out that ACE is a more suitable calibration
error metric for multi-class classification problems,
while ECE is better suited for binary classification.
Nevertheless, we include ECE results for complete-
ness and additional verification.

A.8 Violin plot
Figures 5a and 5b present the violin plot results for
Llama3.1 (8B), while Figures 5c and 5d show the
results for Llama3.1 (70B). The Llama models ex-
hibit notably low output probabilities for candidate
answer choices when no supporting documents are
inserted. Furthermore, even when explicitly insert-
ing documents containing supporting evidence, the
output probabilities do not improve significantly.
This suggests that these models may strictly adhere
to predefined instructions and struggle to incorpo-
rate additional contextual information.

B Future Direction

In this study, we used a dataset containing correct
answer choices along with supporting rationale pas-
sages for QA tasks. In the future, it may be possible
to focus on non-medical domains by drawing on
previous work that semi-automatically generates
questions using LLMs (Ozaki et al., 2024; Sakai
et al., 2024). There are also studies on explana-
tion generation (Ozaki et al., 2025a; Hayashi et al.,
2024), which could inform the generation of sup-
porting rationales.

Model Pattern
ECE ↓

None Ans1 Ans1-Oth2 Oth3

Llama2 (70B)

w/o RAG 0.02 – – –
Pre-Q – 0.22 0.25 0.08
Aft-Q – 0.24 0.21 0.12
Aft-C – 0.20 0.17 0.10

Llama3.1 (70B)

w/o RAG 0.20 – – –
Pre-Q – 0.14 0.14 0.14
Aft-Q – 0.14 0.14 0.14
Aft-C – 0.14 0.14 0.14

Llama3.1 (8B)

w/o RAG 0.03 – – –
Pre-Q – 0.02 0.02 0.01
Aft-Q – 0.02 0.02 0.01
Aft-C – 0.02 0.02 0.01

Meditron (70B)

w/o RAG 0.07 – – –
Pre-Q – 0.18 0.08 0.09
Aft-Q – 0.16 0.09 0.15
Aft-C – 0.15 0.07 0.09

PMC-Llama (13B)

w/o RAG 0.16 – – –
Pre-Q – 0.01 0.01 0.04
Aft-Q – 0.01 0.02 0.06
Aft-C – 0.02 0.05 0.05

Gemma2 (2B)

w/o RAG 0.20 – – –
Pre-Q – 0.24 0.22 0.21
Aft-Q – 0.23 0.21 0.21
Aft-C – 0.25 0.23 0.23

Phi-3.5 (3.8B)

w/o RAG 0.05 – – –
Pre-Q – 0.06 0.07 0.32
Aft-Q – 0.04 0.06 0.42
Aft-C – 0.04 0.13 0.41

Qwen2.5 (14B)

w/o RAG 0.12 – – –
Pre-Q – 0.09 0.09 0.12
Aft-Q – 0.07 0.07 0.18
Aft-C – 0.08 0.10 0.09

Qwen2.5 (72B)

w/o RAG 0.04 – – –
Pre-Q – 0.10 0.08 0.20
Aft-Q – 0.09 0.10 0.19
Aft-C – 0.10 0.06 0.24

Table 8: The result of ECE using MedMCQA
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Model Pattern
ECE ↓

None Ans1 Ans1-Oth2 Oth3

Llama2 (70B)

w/o RAG 0.12 – – –
Pre-Q – 0.30 0.31 0.14
Aft-Q – 0.30 0.31 0.14
Aft-C – 0.14 0.14 0.12

Llama3.1 (70B)

w/o RAG 0.02 – – –
Pre-Q – 0.10 0.10 0.10
Aft-Q – 0.10 0.10 0.10
Aft-C – 0.10 0.10 0.10

Llama3.1 (8B)

w/o RAG 0.24 – – –
Pre-Q – 0.23 0.22 0.23
Aft-Q – 0.22 0.23 0.23
Aft-C – 0.23 0.23 0.23

Meditron (70B)

w/o RAG 0.18 – – –
Pre-Q – 0.10 0.17 0.09
Aft-Q – 0.08 0.07 0.06
Aft-C – 0.04 0.04 0.07

PMC-Llama (13B)

w/o RAG 0.17 – – –
Pre-Q – 0.09 0.01 0.01
Aft-Q – 0.09 0.01 0.02
Aft-C – 0.02 0.04 0.05

Gemma2 (2B)

w/o RAG 0.07 – – –
Pre-Q – 0.04 0.02 0.02
Aft-Q – 0.02 0.01 0.01
Aft-C – 0.09 0.05 0.07

Phi-3.5 (3.8B)

w/o RAG 0.48 – – –
Pre-Q – 0.11 0.11 0.58
Aft-Q – 0.10 0.28 0.49
Aft-C – 0.15 0.32 0.46

Qwen2.5 (14B)

w/o RAG 0.16 – – –
Pre-Q – 0.04 0.05 0.18
Aft-Q – 0.03 0.05 0.27
Aft-C – 0.07 0.03 0.24

Qwen2.5 (72B)

w/o RAG 0.06 – – –
Pre-Q – 0.11 0.03 0.25
Aft-Q – 0.08 0.11 0.18
Aft-C – 0.09 0.07 0.14

Table 9: The result of ECE using PubMedQA
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Figure 5: Results from MedMCQA and PubMedQA
using Llama3.1.
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B.1 Error Analysis
Figure 6 presents a plot illustrating the types of errors made on incorrectly answered questions. In
PubMedQA, the answer choices consist of three options: yes, no, and maybe, allowing for detailed
error analysis. Each bin represents the gold answer, and the plot visualizes the distribution of incorrect
predictions for each question. The colors within the plot indicate how the model misclassified the answers.
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(a) When not inserting anything (w/o RAG).
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(b) When inserting a document containing the correct answer (Ans1).
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(c) When inserting one relevant document containing the correct answer and two unrelated documents (Ans1-Oth2).

yes no maybe
0

100

200

300

400

500

yes no maybe yes no maybe yes no maybe yes no maybe yes no maybe yes no maybe yes no maybe yes no maybe
yes no maybe

Llama-2-70b-chat-hf Llama-3.1-70B Llama-3.1-8B PMC_LLaMA_13B Phi-3.5-mini-instruct Qwen2.5-14B Qwen2.5-72B gemma-2-2b meditron-70b

(d) When inserting three unrelated documents (Oth3).

Figure 6: Error analysis on PubMedQA: This figure illustrates how the model misclassified answers in relation to
the correct ones. We gather the questions the model got wrong, group the items that actually had the correct answer
(gold answer) into bins, and use colors to show how the model erred.
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B.2 Prompts
Below are examples of prompts with and without RAG. When RAG is applied, three patterns-Pre-Question,
After-Question, and After-Choice—are used in our study.

Prompt without RAG

You are a helpful medical expert, and your task is to answer a multi-choice medical question
using the relevant documents. Please first think step-by-step and then choose the answer from
the provided options. Your responses will be used for research purposes only, so please have a
definite answer.

Here is the question:
{question}

Here are the potential choices:
{choice0}
{choice1}
{choice2}
{choice3}

Answer:

Prompt with RAG

Here are the relevant documents: (Pre-Question)
{context}

You are a helpful medical expert, and your task is to answer a multi-choice medical question
using the relevant documents. Please first think step-by-step and then choose the answer from
the provided options. Your responses will be used for research purposes only, so please have a
definite answer.

Here are the relevant documents: (After-Question)
{context}

Here is the question:
{question}

Here are the relevant documents: (After-Choice)
{context}

Here are the potential choices:
{choice0}
{choice1}
{choice2}
{choice3}

Answer:
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Abstract

Continual Pre-training (CPT) can help pre-
trained large language models (LLMs) effec-
tively adapt to new or under-trained domains
or low-resource languages without re-training
from scratch. Nevertheless, during CPT, the
model’s few-shot transfer ability is known to
be affected for emergent tasks. We verified
this by comparing the performance between the
few-shot and fine-tuning settings on the same
tasks. We used Llama3-ELAINE-medLLM,
which was continually pre-trained on Llama3-
8B, targeted for the biomedical domain, and
adapted for multilingual languages (English,
Japanese, and Chinese). We compared the per-
formance of Llama3-ELAINE-medLLM and
Llama3-8B in three emergent tasks: two related
domain tasks, entity recognition (NER) and ma-
chine translation (MT), and one out-of-domain
task, summarization (SUM). Our experimen-
tal results show that degradation in few-shot
transfer ability does not necessarily indicate
the model’s underlying potential on the same
task after fine-tuning.

1 Introduction

Continual Pre-training (CPT) can help pre-trained
large language models (LLMs) effectively adapt
to new or under-trained domains or low-resource
languages without re-training from scratch.

Because open-source foundation LLMs such as
the Llama series (Touvron et al., 2023a,b) are under-
trained for the biomedical domain and non-English
languages, many studies have been conducted to
adapt such base LLMs to the biomedical domain in
bilingual and multilingual settings (Singhal et al.,
2022; Li et al., 2023; Singhal et al., 2023; Chen
et al., 2023). Such LLMs are reported to perform
better than the base model on downstream tasks in
the target domains and languages.

However, CPT from a base model to endow non-
English capability or to adapt to specific domains

comes with the issue of degradation of the capa-
bilities of the base model (Scialom et al., 2022;
Fujii et al., 2024; Ankit Pal, 2024). Although many
previous studies have shown that the incorporation
of training datasets that the base model used during
CPT significantly mitigates this forgetting (Rol-
nick et al., 2019; Chen et al., 2023; Lewkowycz
et al., 2022; Yano et al., 2025), further analysis is
needed to quantify these effects because such train-
ing datasets might be inaccessible and private and
to determine whether these methods will be valid
for a wide range of tasks.

In this work, we conducted experiments on three
NLP tasks that were not primarily targeted dur-
ing CPT. Specifically, we used Llama3-ELAINE-
medLLM (Yano et al., 2025), which was adapted
from Llama3-8B to the biomedical domain and has
trilingual ability, including English (EN), Japanese
(JA), and Chinese (ZH). Llama3-ELAINE is a pre-
trained model without fine-tuning with instruction
datasets.

For the emergent NLP tasks, we selected named
entity recognition (NER) and machine translation
(MT) tasks in a domain similar to the biomedical
domain, and a summarization (SUM) task in the
general domain, which were not targeted during
CPT. Our experiments found that compared with
Llama3-8B, Llama3-ELAINE due to CPT shows
some forgetting phenomena that affect the model’s
promptability even in new tasks in similar domains
where the model was trained during CPT.

However, our results also show that after fine-
tuning Llama3-ELAINE-medLLM on the same
downstream task, the model performs competi-
tively or better than the base model. These results
indicate that even though the adapted models’ few-
shot prompt ability may degrade in an emerging
task, even in the relevant domains, the model will
perform better after fine-tuning, as it has acquired
more in-depth domain knowledge than the base
model.
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Model EN JA ZH

Llama3-8B 61.68 25.83 45.47

Llama3-ELAINE 59.56
(-2.1)

31.96
(+6.1)

52.25
(+6.8)

Table 1: Comparison of average scores of medical QA
benchmarks in English, Japanese, and Chinese between
ELAINE-medLLM and the base Llama3-8B

2 Related work

Numerous medLLMs (Singhal et al., 2022; Li
et al., 2023; Singhal et al., 2023; Chen et al.,
2023) have been proposed using CPT, adapted
from open-source LLMs such as Llama (Touvron
et al., 2023a,b). However, CPT can potentially
degrade few-shot learning performance, hindering
its ability to adapt to new tasks quickly. There
have been many studies to prevent this issue, such
as replaying pre-trained data and careful selection
of the training dataset during CPT (Chen et al.,
2023; Lewkowycz et al., 2022; Yano et al., 2025).
The negative impact of CPT can be addressed in
post-processing, such as task-specific pre-training,
which involves further fine-tuning the pre-trained
model on a small dataset related to the target few-
shot task (Ke et al., 2022). Prompt engineering is
another solution, involving the design of prompts
during fine-tuning to guide the model toward the
desired task with few-shot examples (Radford et al.,
2019).

3 Experiments

To evaluate the effect of multilingual and domain-
adapted continual pre-training on few-shot prompt-
ability for NLP tasks, we used Llama3-ELAINE-
medLLM (Yano et al., 2025), which was contin-
ually pre-trained without instruction fine-tuning
on Llama3-8B, targeted for the biomedical do-
main, and adapted for multiple languages (English,
Japanese, and Chinese). Table 1 shows the aver-
age scores on several medical QA benchmarks in
English, Japanese, and Chinese. We can see that
Llama3-ELAINE-medLLM shows much better in-
context learning (ICL) capabilities for medical QA
tasks than Llama3-8B for Japanese and Chinese
while slightly sacrificing English capability.

In this work, we used named entity recognition
(NER) and machine translation (MT) tasks related
to the biomedical domain and a summarization task
in the general domain as the emergent tasks for our
experiments.

Training Validation Testing lang

BC5CDR 500 500 500 EN
MedTxt-CR 128 10 10 JA
CMeEE-V2 19,600 400 400 ZH

Table 2: Statistics of NER datasets (# of documents).
BC5CDR (en), MedTxt-CR (ja), and CMeEE-V2 (zh)

Train Validation Test

JA-EN 1,000,000 1,790 1,812
JA-ZH 672,315 2,090 2,107

Table 3: Statistics of ASPEC parallel corpora (# of
sentence pairs)

3.1 Datasets

3.1.1 NER dataset
We used BC5CDR (Li et al., 2016) for the English
NER dataset, which defines “Disease” and “Chem-
ical” entities. For the Japanese NER dataset, we
used MedTxt-CR (Yada et al., 2022), which anno-
tates various medical expression entities such as
“disease”, “anatomical part”, etc. This experiment
only used the “disease/symptoms” entity labeled as
d in the corpus. Note that their annotation method
does not delineate adjacent entity mentions, such as
呼吸困難、黄疸、下腿浮腫(dyspnea, jaundice,
leg edema), which were labeled as one single, con-
tinuous entity rather than three independent entities
as seen in other corpora.

For the Chinese NER dataset, we used CMeEE-
V2 (Du et al., 2024), which annotates nine medical
entity types, such as “disease”, “clinical manifesta-
tions”, “drugs”, etc. This work used only disease
and clinical symptoms labeled as “dis” and “sim”
in the corpus, respectively. Table 2 summarizes the
number of samples (documents) for each split of
the corpus. Note that we randomly split the training
datasets for the Japanese and Chinese datasets.

3.1.2 MT dataset
We used ASPEC (Nakazawa et al., 2016), consist-
ing of two corpora from scientific paper abstracts:
Japanese-English and Japanese-Chinese parallel
corpora. Table 3 summarizes the number of sam-
ples (sentence pairs) for each split of the corpus.
We used a four-way language pair for evaluation
by reversing the source and target languages.

3.1.3 Summarization dataset
We used XLSum (Hasan et al., 2021), a diverse
dataset of professionally annotated news article
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Train Validation Test

EN 306,522 11,535 11,535
JA 7,113 889 889
ZH 37,362 4,670 4,670

Table 4: Statistics of XLSum summarization dataset (#
of text and summarization pairs) for English, Japanese,
and Chinese

summary pairs from BBC that cover 45 languages.
We used the English, Japanese, and Chinese splits
of the dataset for evaluation. Table 4 summarizes
the number of samples (text and summarization
pairs) for each language dataset.

3.2 Evaluation

For each task, we evaluate the performance of
ELAINE-medLLM and Llama-8B in the zero- or
few-shot and fine-tuning settings. A sample of the
instruction format for the training dataset for each
task is described in Appendix A. The details of the
settings are as follows.

3.2.1 Zero or few-shot settings

We used in-context learning (ICL) to evaluate each
task’s performance in the zero- or few-shot set-
tings. For the few-shot settings, we evaluated one-
shot, three-shot, five-shot, and ten-shot scenarios.
ICL samples were selected from the training split,
with the top N most similar to the input, where
N is the number of few-shot samples. We used
the text embeddings calculated by SentenceTrans-
former (Reimers and Gurevych, 2019) to compute
similarity.

3.2.2 Fine-tuning settings

For each task, we fine-tuned the model by using
the training split of each dataset. We used full-
parameter tuning using DeepSpeed stage-3 and
trained the model for 6, 3, and 3 epochs for NER,
MT, and Summarization, respectively. We used the
following training parameters:

• per_device_batch_size: 6
• gradient_accumulation_steps: 2
• learning_rate: 1e-6
• weight_decay: 0.001
• warmup_ratio: 0.1
• lr_scheduler_type: cosine
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Figure 1: NER: few-shots performance in F1 (EN:
BC5CDR, JA: MedTxt-CR, ZH: CMeEE-V2

Precision Recall F1

EN Llama3-ELAINE 0.825 0.802 0.813
Llama3-8B 0.833 0.831 0.832

JA Llama3-ELAINE 0.678 0.701 0.689
Llama3-8B 0.682 0.667 0.674

ZH Llama3-ELAINE 0.766 0.792 0.779
Llama3-8B 0.764 0.789 0.776

Table 5: NER: fine-tuning performance (EN: BC5CDR,
JA: MedTxt-CR, ZH: CMeEE-V2

4 Results

4.1 Named entity recognition (NER)

We adopt the TANL format (Paolini et al., 2021) to
solve NER by LLM. In this format, the input text is
copied to the output by annotating entity names and
enclosing them in brackets by suffixing the detected
entity type (see Appendix A). Figures 1 show the
performance of language-dependent NER tasks in
few-shot and Table 5 shows the performance of
these NER tasks under the fine-tuning settings. The
scores were computed by converting from TANL to
IOB format (Ramshaw and Marcus, 1995). During
conversion, we regulated the output by removing
all parts that did not conform to our defined format,
which made the zero-shot scores zero in all cases.

For few-shot settings, Llama performs better
than Llama3-ELAINE-medLLM in all cases. This
indicates the adverse effects of continual pre-
training on the promptability of the base model.
However, in fine-tuning settings, Llama3-ELAINE
performs competitively with LLama in Japanese
and Chinese. This result suggests that the degrada-
tion of promptability by CPT may not reveal the
model’s latent performance when the same task is
fine-tuned.

4.2 Machine translation (MT)

Figures 2 and 3 show the few-shot performance
of the MT task between Japanese and English and
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Figure 2: Machine Translation: few-shots (JA→EN,
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Figure 3: Machine Translation: few-shots (JA→ZH,
ZH→JA) performance in BLEU (ASPEC)

JA→EN EN→JA

Llama3-ELAINE 28.10 45.20
Llama3-8B 27.92 44.36

JA→ZH ZH→JA

Llama3-ELAINE 34.25 49.55
Llama3-8B 34.28 48.67

Table 6: Machine Translation: fine-tuning performance
in BLEU (ASPEC)

Japanese and Chinese, and Table 6 shows the fine-
tuning performance of the same MT task mea-
sured in BLEU (Papineni et al., 2002). Unlike
the performance of NER tasks, the performance of
MT tasks, both in few-shot and fine-tuning, shows
that ELAINE-medLLM is similar or superior to
Llama3-8B.

This result indicates that continual pre-training
does not always hurt the promptability of the base
model for NLP tasks. We hypothesize that the de-
gree of the effect depends on the novelty of the new
task and its affinity to the training datasets used
during CPT. Since ELAINE-medLLM is trained
to harness multilingual ability, it works effectively
in MT tasks for the same languages. On the other
hand, although the domains of the previous NER
tasks are highly aligned to those of the training
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Figure 4: Summarization: few-shot performance in
Rouge-L (RL) (XLSum)

R-1 R-2 R-L

EN Llama3-ELAINE 0.418 0.192 0.349
Llama3-8B 0.421 0.194 0.352

JA Llama3-ELAINE 0.570 0.286 0.454
Llama3-8B 0.564 0.282 0.450

ZH Llama3-ELAINE 0.368 0.171 0.319
Llama3-8B 0.371 0.173 0.322

Table 7: Summarization: fine-tuning performance in
Rouge-1 (R-1), Rouge-2 (R-2), Rouge-L (R-L) (XL-
Sum)

dataset for ELAINE-medLLM, we assume that the
novelty of the TANL output format affects its per-
formance in the few-shot setting.

4.3 Summarization (SUM)

Figure 4 shows the results of the summarization
task in few-shot settings measured in ROUGE-
L (Lin, 2004). Table 7 shows the performance
of the same summarization task in the fine-tuning
setting in ROUGE-1, ROUGE-2, and ROUGE-L.
Unlike previous NER and MT tasks, the SUM task
is in the general domain for each of the three lan-
guages.

Unlike the previous two tasks (NER, MT), which
can be considered related to the biomedical field,
we could not observe noticeable performance dif-
ferences in the fine-tuning setting. This is proba-
bly because the summarization task is in the gen-
eral domain. We assume that CPT targeted for the
biomedical domain does not affect fine-tuning per-
formance in the general domain, though it shows
a slight advantage for Llama3-8B for the few-shot
setting.
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Precision Recall F1

Meditron-7B 0.824 0.744 0.783
Llama2-7B 0.808 0.774 0.791

Table 8: NER: fine-tuning performance (BC5CDR)

R-1 R-2 R-L

Meditron-7B 0.402 0.182 0.334
Llama2-7B 0.397 0.172 0.330

Table 9: Summarization: fine-tuning performance in
Rouge-1 (R-1), Rouge-2 (R-2), Rouge-L (R-L) (XL-
Sum)

5 Analysis

This section analyzes whether the phenomenon we
found in the previous experiments can be observed
in a different experimental setting.

5.1 Experimental Setting

We use Meditron-7B (Chen et al., 2023), an English
medical LLM adapted from Llama2-7B (Touvron
et al., 2023c), as the baseline. We selected the
monolingual model because we aim to remove the
effects of multilingualism on the results. For this
experiment, we evaluate performance in few-shot
and fine-tuning settings using the same NER task
using BC5CDR and SUM task using English XL-
Sum as in the previous experiments.

5.2 Results

Fig. 5 and Table 8 show the few-shot and fine-
tuning NER results using BC5CDR. These results
indicate that domain-adapted training does not ben-
efit the performance of few-shot and fine-tuning
results. Especially, Meditron-7B lags far behind
Llama2-7B in a few-shot setting. Fig. 6 and Table 9
show the few-shot and fine-tuning Summarization
results for English XLSum. In the few-shot setting,
Meditron-7B lags far behind Llama2-7B, as in the
NER task. However, the model shows competence
against the baseline model in the fine-tuning set-
ting.

These results confirm that the performance of
the few-shot setting does not always show the
model’s potential in the fine-tuning setting of the
same task. Nonetheless, we do not observe a sim-
ilar trend in the comparative results between the
domain-adapted and the base models. To summa-
rize, domain adaptation works negatively for some
tasks that do not depend clearly on acquired domain
knowledge in few-shot settings, such as NER, and
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out-of-domain tasks, such as summarization. How-
ever, this degradation does not necessarily indicate
the model’s potential in fine-tuning settings.

6 Conclusion

CPT can help pre-trained large language models
(LLMs) effectively adapt to new, under-trained do-
mains or low-resourced languages without requir-
ing retraining from scratch. Nevertheless, during
CPT, the model’s few-shot transfer ability is af-
fected for emergent tasks. This also applies to
new tasks, even in the relevant domains targeted
during CPT. However, our experimental results
show that degradation in few-shot transfer ability
does not necessarily indicate the model’s under-
lying potential in the same downstream task af-
ter fine-tuning. In our experiments, we observe
that ELAINE-medLLM, which is adapted to the
biomedical domain and endowed with trilingual
ability (English, Japanese, and Chinese) by CPT
from Llama3-8B, performs competitively with or
better than the base model in all emergent tasks
after fine-tuning, even though it shows some degra-
dation in some few-shot settings.
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Limitations

The prompt inputs used for few-shot evaluations
were not optimized, suggesting that an optimal
prompt might produce better results, such as
prompt tuning or adopting a chain of thoughts. In
this work, we only conducted performance analysis
of Llama3-ELAINE and Meditron, adapted to the
biomedical domain, against their base LLMs on
three NLP tasks (NER, machine translation, and
summarization). Hence, further experiments will
be desired to evaluate the results we found in this
study.
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A Instruction format for tasks

A.1 Name entity recognition (NER)

We adopt the TANL format (Paolini et al., 2021) to solve NER by LLM. In this format, the LLM is
expected to copy the source context to the target by annotating detected entity mentions, enclosing them
in brackets, and suffixing them with the detected entity type. The descriptions of valid entity types and
their labels are specified after the task description. The following shows a sample instruction format for
the NER task in the case of BC5CDR (Li et al., 2016).

Instruction for NER task� �
##Task##
You are an AI language model trained to extract entities from sentences. See all possible labels and
their descriptions below.
###
Description: Disease name
Label: Disease
###
Description: Chemical name
Label: Chemical
###
<|eot_id|>##Text##
Famotidine-associated delirium. A series of six cases.
Famotidine is a histamine H2-receptor antagonist used in inpatient settings for prevention of stress
ulcers and is showing increasing popularity because of its low cost. Although all of the currently
available H2-receptor antagonists have shown the propensity to cause delirium, only two previously
reported c ases have been associated with famotidine. The authors report on six cases of famotidine-
associated delirium in hospitalized pa tients who cleared completely upon removal of famotidine.
The pharmacokinetics of famotidine are reviewed, with no change in its metabolism in the elderly
population seen. The implications of using famotidine in elderly persons are discussed.
<|eot_id|>##Result##
[Famotidine|Chemical]-associated [delirium|Disease]. A series of six cases.
[Famotidine|Chemical] is a histami ne H2-receptor antagonist used in inpatient settings for prevention
of stress [ulcers|Disease] and is showing increasing popula rity because of its low cost. Although
all of the currently available H2-receptor antagonists have shown the propensity to caus e [delir-
ium|Disease], only two previously reported cases have been associated with [famotidine|Chemical].
The authors report on six cases of [famotidine|Chemical]-associated [delirium|Disease] in hospitalized
patients who cleared completely upon removal of [famotidine|Chemical]. The pharmacokinetics of
[famotidine|Chemical] are reviewed, with no change in its metabolism in the e lderly population seen.
The implications of using [famotidine|Chemical] in elderly persons are discussed. <|eot_id|>� �

A.2 Machine translation (MT)

The following shows a sample instruction format for the MT task in the case of ASPEC (Nakazawa et al.,
2016).
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Instruction for MT task� �
##Task##
Translate the following sentences from English to Japanese.
<|eot_id|>##Source##
Lattice images were not obtained by high resolution power image observation.
<|eot_id|>##Target##
高分解能像観察での格子像は得られなかった。<|eot_id|>� �

A.3 Summarization (SUM)
The following shows a sample instruction format for the SUM task in the case of XLSum (Hasan et al.,
2021).

Instruction for SUM task� �
##Task##
Summarize the following paragraph.
<|eot_id|>##Source##
Lewis Williams, 20, died on 11 January from a shotgun wound suffered in Wath Road, Mexborough.
South Yorkshire Police said two men aged 20 and 49 were arrested on Friday in connection with his
death, bringing the total number of arrests to eight. Two boys, aged 16 and 17, have been charged
with Mr Williams’ murder and are next due to appear in court on 1 February. Police said one of the
men arrested on Friday, a 20-year-old from Barnsley, was arrested on suspicion of murder, while a
49-year-old man from Doncaster was arrested on suspicion of assisting an offender and possession of
ammunition. Both are being held in police custody. Four other men, aged between 20 and 32, who
have been arrested in connection with Mr Williams’death have been released on bail. Follow BBC
Yorkshire on Facebook, Twitter and Instagram. Send your story ideas to yorkslincs.news@bbc.co.uk
or send video here.
<|eot_id|>##Target##
Two more people have been arrested in connection with a fatal shooting. <|eot_id|>� �
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Abstract

Medical text summarization faces significant
challenges due to the complexity and domain-
specific nature of the language. Although large
language models have achieved significant suc-
cess in general domains, their effectiveness in
the medical domain remains limited. This limi-
tation stems from their insufficient understand-
ing of domain-specific terminology and diffi-
culty in interpreting complex medical relation-
ships, which often results in suboptimal sum-
marization quality. To address these challenges,
we propose MedSummRAG, a novel retrieval-
augmented generation (RAG) framework that
integrates external knowledge to enhance sum-
marization. Our approach employs a fine-tuned
dense retriever, trained with contrastive learn-
ing, to retrieve relevant documents for medical
summarization. The retrieved documents are
then integrated with the input text to gener-
ate high-quality summaries. Experimental re-
sults show that MedSummRAG achieves signif-
icant improvements in ROUGE scores on both
zero/few-shot and fine-tuned language models,
outperforming baseline methods. These find-
ings underscore the importance of RAG and
domain adaptation of the retriever for med-
ical text summarization. The source code
of this paper can be obtained from: https:
//github.com/guantingluo98/MedSummRAG

1 Introduction

Medical text summarization is a crucial task for
helping medical practitioners and patients, aiming
to distill complex and information-dense medical
documents into concise, accurate, and clinically
useful summaries (Xie et al., 2023). This task is par-
ticularly challenging due to the specialized nature
of medical language and the presence of domain-
specific terminologies (Chaves et al., 2022). Tradi-
tional summarization models often struggle in this
domain, as they may fail to generate satisfactory
summaries.

With the rise of large language models (LLMs),
significant advancements have been made in
general-domain summarization (Pu et al., 2023).
However, medical summarization presents unique
challenges, such as domain-specific terminology
and complex relationships, which generic LLMs
struggle to address effectively. LLMs trained on
broad-domain corpora tend to overlook key med-
ical concepts, misinterpret medical abbreviations,
and produce hallucinated content that could mis-
lead practitioners and researchers (Li et al., 2024;
Hosseini et al., 2024). These limitations highlight
the need for models that can effectively incorpo-
rate external domain knowledge. By leveraging
external knowledge documents, such as healthcare
question-answer pairs, models can better under-
stand domain-specific concepts, reduce errors, and
generate high-quality summaries.

In this work, we propose MedSummRAG (Medi-
cal Summarization with Retrieval-Augmented Gen-
eration), a novel retrieval-augmented generation
(RAG) framework designed specifically for med-
ical text summarization. By leveraging external
medical knowledge, MedSummRAG enhances the
quality of generated summaries. Our approach em-
ploys a fine-tuned dense retriever, trained using
contrastive learning (van den Oord et al., 2019), to
effectively identify domain-relevant documents.

The key contribution of our work is the novel
RAG framework for medical text summarization.
Our approach improves retrieval quality by lever-
aging contrastive learning that employs synthetic
positive samples generated using an LLM. This en-
ables the framework to effectively identify domain-
relevant documents, improving the overall quality
of generated summaries. We conduct experiments
to investigate the effectiveness of MedSummRAG.
Our results demonstrate consistent improvements
measured by ROUGE scores in multiple configu-
rations: both on zero/few-shot and fine-tuned lan-
guage models.
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Medical Text
23 surgeries and count-

ing......lower lip birthmark,
have tried all options out
there and guess what still
have it, continues to grow

back.....any suggestions? Is
there a cure coming in the
next few years hopefully?

Sparse
Retriever

Dense
Retriever

Knowledge Base

õ

Æ
Summary

Generator

Summary
Are there any

new treatments
or cures for a

persistent lower
lip birthmark?

Æ
Positive Sample

Generator
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Figure 1: Overview of our MedSummRAG framework. Black arrows indicate retrieving relevant documents by
sparse and dense retrievers. Blue dashed arrow represents the negative sample extraction, while solid blue arrows
show the generation of synthetic positive samples. Both positive and negative samples are used to fine-tune the
dense retriever. Orange arrows show the concatenation of medical text and the retrieved document as input to the
summary generator, producing the summary.

2 Related Work

Medical summarization has been a long-standing
research problem due to its critical role in sup-
porting clinical decision-making and healthcare
planning. With the rise of pre-trained language
models, significant progress has been made in med-
ical summarization. Pre-trained language models
have demonstrated the ability to generate medi-
cal summaries, such as doctor-patient conversation
summaries, by utilizing knowledge derived from
pretrained models (Zhang et al., 2021). Balde et al.
(2024) proposed MEDVOC, a dynamic vocabu-
lary adaptation strategy that optimizes pre-trained
language models’ vocabulary for medical text sum-
marization, achieving improvements in high Out-
Of-Vocabulary settings.

Despite the progress enabled by pre-trained mod-
els in medical summarization, their pre-trained
knowledge may be insufficient for handling specific
downstream tasks. RAG offers a promising solu-
tion by integrating external knowledge to enhance
the overall quality of generations (Fan et al., 2024).
Recent studies have demonstrated the potential of
RAG in various domains, such as decision-making
tasks (Lee et al., 2024); question answering (Jeong
et al., 2024); and radiology report generation (Xia
et al., 2024). Although RAG has demonstrated
success in various domains, its application to med-
ical summarization remains underexplored. Our
work aims to propose a RAG framework specifi-
cally adapted for medical summarization to gener-
ate high-quality summaries.

3 Proposed Method

The overall workflow of our approach is illustrated
in Figure 1. The proposed method consists of doc-
ument retrieval (Section 3.1) and summary genera-
tion (Section 3.2). For improving the retrieval step
to adapt to the medical domain, we employ con-
trastive learning with synthetic data (Section 3.3).

3.1 Document Retrieval

We employ the BM25 (Robertson et al., 2009; Lù,
2024) ranking function to retrieve an initial set of
candidate documents based on lexical similarity to
the input text. This sparse retrieval method serves
to reduce the computational cost of subsequent
dense retrieval by narrowing down the search space
to a manageable set of candidate documents.

A dense retriever then re-ranks the highly-ranked
documents retrieved by the sparse retriever and
selects the most relevant document for the gen-
eration stage. This step should ensure that the
retrieved document is lexically and semantically
aligned with the input text to provide useful knowl-
edge for summarization.

3.2 Generation

The generation stage produces summaries based on
the input text and the retrieved document. Follow-
ing the approach of Lewis et al. (2020), we simply
concatenate the retrieved document with the input
text and feed the combined input into a language
model. The generator is expected to produce coher-
ent and factually accurate summaries, leveraging
both the input text and the external knowledge pro-
vided by the retrieved document.
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You’re a retrieval augmented generation as-
sistant, skilled in generating retrieval targets
for auto summarization via RAG. Here is the
input-summary pair from a training set:
INPUT: {Train set input text}
SUMMARY: {Train set summary}
Please help me with generating one fake re-
trieved question-answer document that would
be useful for training a dense retrieval model
for automatic summarization via retrieval aug-
mented generation. The fake retrieved docu-
ment should have this kind of format:
QUESTION:
ANSWER:

Table 1: Promt for synthetic sample generation

3.3 Domain Adaptation of Retriever

The retrieval stage aims to identify the most rel-
evant document from a knowledge base to en-
hance the summarization process. Although ex-
isting RAG methods have shown great success in
question-answering tasks (Asai et al., 2023; Xiong
et al., 2024), they often struggle to identify docu-
ments that are truly useful for medical text summa-
rization. This is because pre-trained dense retriev-
ers lack the ability to understand what document
structures and content are beneficial for enhancing
summarization in the medical domain.

The key challenge in fine-tuning retrievers for
medical summarization is the lack of training data.
To address this challenge, we leverage an LLM to
generate synthetic positive samples that capture the
structural and contextual patterns useful for sum-
marization. Specifically, for each text-summary
pair in a training set of summarization, we prompt
the LLM to generate a synthetic pair that may en-
hance medical summarization. Table 1 shows the
prompt we used.

We then fine-tune the dense retriever using con-
trastive learning, inspired by the work of Huang
et al. (2023), which improves its ability to retrieve
documents relevant to medical summarization. For
negative samples, we randomly select low-ranked
documents by the sparse retriever that should be
less relevant to the input text. We optimize the
retrieval model using the InfoNCE loss (van den
Oord et al., 2019).

4 Experiments

4.1 Evaluation Dataset & Knowledge Base

Evaluation Dataset: We use the CHQ-Summ
dataset (Yadav et al., 2022), which consists of con-
sumer health questions formulated by non-experts,
paired with brief summaries of the corresponding
questions. The questions are sourced from Yahoo!
Answers L6 corpus1. The dataset contains 1, 000
training samples, 107 validation samples, and 400
test samples. We evaluate the performance of our
method using ROUGE (Lin, 2004) scores, includ-
ing ROUGE-1, ROUGE-2, and ROUGE-L.
Knowledge Base: We construct the knowledge
base using Yahoo! Answers L6 corpus, which con-
tains more than 4 million question-answer pairs.
Each document in the knowledge base represents
a single question-answer pair. The content cov-
ered in this corpus extends far beyond the scope
of healthcare and medicine, encompassing a wide
range of topics. To prevent data leakage, we ex-
clude all question-answer pairs that overlap with
the CHQ-Summ dataset.

4.2 Implementation Details

We employed BM25 for sparse retrieval, which
retrieved the top 150 documents for each input text.
We employed the BGE-M3 (Chen et al., 2024)
model as the base dense retriever. For contrastive
learning, the positive samples were generated by
a frozen Qwen-2.5-7B-Instruct model2, while the
negative samples were constructed by randomly
sampling 3 documents from the BM25-ranked
documents in the range of positions 101 to 150 for
each training sample. The BGE-M3 model was
fine-tuned for 5 epochs with a total batch size of 8.
After fine-tuning, the BGE-M3 model re-ranked
the top 20 documents retrieved by BM25 and
selected the top 1 document for the generator.

4.3 Experiment Settings

To evaluate the effectiveness of our MedSumm-
RAG approach, we conducted four sets of experi-
ments with different generator settings: standard
fine-tuning, few-shot prompting, and Low Rank
Adapters (LoRA) (Hu et al., 2022) fine-tuning on
different language models. Specifically, we em-
ployed (1) BioBART-large (Yuan et al., 2022): the

1https://webscope.sandbox.yahoo.com/catalog.
php?datatype=l&did=11

2https://qwenlm.github.io/blog/qwen2.5/

29

https://webscope.sandbox.yahoo.com/catalog.php?datatype=l&did=11
https://webscope.sandbox.yahoo.com/catalog.php?datatype=l&did=11
https://qwenlm.github.io/blog/qwen2.5/


Base Model Setting ROUGE-1 ROUGE-2 ROUGE-L

BioBART-large
(Standard Fine-tuned)

Baseline 41.22 23.17 38.79
+ Naive RAG 42.19 22.95 38.79
+ Fine-tuned RAG 44.50 24.58 41.19

Qwen-2.5-7B-Instruct
(1-shot Prompting)

Baseline 34.97 13.85 32.82
+ Naive RAG 38.53 16.42 33.61
+ Fine-tuned RAG 39.45 17.59 34.60

Qwen-2.5-7B-Instruct
(2-shot Prompting)

Baseline 38.15 16.34 33.82
+ Naive RAG 39.89 18.00 35.28
+ Fine-tuned RAG 40.27 18.30 35.95

Qwen-2.5-7B-Instruct
(LoRA Fine-tuned)

Baseline 42.21 21.99 38.84
+ Naive RAG 42.56 21.80 39.32
+ Fine-tuned RAG 42.95 22.82 40.03

Table 2: Performance comparison of different base models on the CHQ-Summ dataset. Results demonstrate the
effectiveness of our method across various models, few-shot scenarios, and fine-tuning strategies.

model has shown its strong performance in medi-
cal text generation tasks. BioBART-large was first
fine-tuned using the training set without RAG, fol-
lowed by the second stage of fine-tuning with RAG.
Each fine-tuning consisted of 20 epochs with a
batch size of 8. We also experimented with (2)
Qwen-2.5-7B-Instruct with One-Shot Prompting,
(3) Qwen-2.5-7B-Instruct with Two-Shot Prompt-
ing, and (4) Qwen-2.5-7B-Instruct with LoRA Fine-
Tuning (Hu et al., 2022): the model was fine-tuned
using LoRA for 10 epochs with a batch size of 8.
LoRA fine-tuning was performed with a rank of
8, alpha of 16, and no dropout. The details of the
prompts are described in example A.1 and exam-
ple A.2

In all settings, the baseline is the corresponding
fine-tuned model or a few-shot prompted models
without RAG. In addition, we also compared to a
naive RAG where the retriever has not been fine-
tuned, i.e., without domain adaptation. All the
experiment was conducted on a single NVIDIA
A6000 48G GPU.

4.4 Results

In this section, we highlight the key contribution
of our RAG-enhanced approach, demonstrating
its effectiveness across different models, few-shot
settings, and fine-tuning strategies. A consistent
performance gap between naive RAG and fine-
tuned RAG underscores the importance of domain-
adaptive retrieval. This contrast suggests that syn-
thetic examples play a key role in improving the
relevance of the retrieval and the overall quality of
the summary.

For the standard fine-tuned BioBART-large
model, our method significantly improves perfor-

mance. With naive RAG, only the ROUGE-1 score
shows a marginal improvement, while the ROUGE-
2 score slightly decreases, and the ROUGE-L score
remains unchanged. However, with MedSumm-
RAG, the BioBART-large model achieves a notable
increase in ROUGE scores, highlighting the effec-
tiveness of integrating external knowledge through
domain-adapted retriever.

For the Qwen-2.5-7B-Instruct model in few-
shot prompt settings, our method consistently en-
hances performance without fine-tuning the gen-
erator. Even with naive RAG, we observe mod-
est improvements in ROUGE scores. Fine-tuning
the RAG component further boosts performance,
demonstrating the effectiveness of our method even
when the generator is frozen. Additional prompt
examples also contribute to improved results.

For the LoRA fine-tuned Qwen-2.5-7B-Instruct
model, integrating naive RAG yields marginal im-
provements in ROUGE-1 and ROUGE-L, while
ROUGE-2 experiences a slight decline compared to
the baseline. In contrast, our domain-adapted RAG
enhances performance across all ROUGE metrics,
demonstrating the importance of optimizing the
retrieval process to effectively leverage external
knowledge in the LoRA fine-tuning setting.

5 Conclusion

Our experimental results highlight the effective-
ness of leveraging external knowledge for adapting
language models to medical summarization tasks,
addressing the challenge of domain adaptation in
specialized medical contexts. Future work includes
extending our approach to a larger-scale knowl-
edge base to further enhance retrieval effectiveness.
Additionally, beyond ROUGE-based evaluation, in-
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corporating human evaluation could provide deeper
insights into the quality of generated summaries.
Furthermore, exploring the application of our fine-
tuned RAG framework to other medical summariza-
tion tasks, such as radiology report summarization,
is another promising direction for advancing our
work.

Limitations

While our proposed method demonstrates promis-
ing results in improving medical text summariza-
tion, its generalizability remains to be validated.
Our experiments are conducted exclusively on the
CHQ-Summ dataset, which focuses on summariz-
ing customer health questions. While this dataset
provides a valuable benchmark for medical ques-
tion summarization, it does not fully represent the
diversity of medical texts, such as clinical notes, or
discharge summaries. In addition, while the Yahoo!
Answers L6 corpus offers broad coverage, it may
contain content of varying accuracy, which moti-
vates future exploration of more medically curated
sources to further reduce hallucination risks.
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A Appendix

This appendix shows the prompts used for sum-
mary generation methods described in this paper.

For few-shot learning setting we randomly select
samples from the training set. The example A.1
shows the prompt template we use for generating
medical summaries in one-shot setting.

Example A.1. You are a helpful assistant. Your
task is to summarize the given question based
on the provided question and possibly helpful re-
trieved document. The retrieved document may or
may not be useful for summarization.
Example:
QUESTION: {Example input text}
RETRIEVED DOCUMENT: {Example retrieved
document}
SUMMARY: {Example summary}
QUESTION: {Test set input text}
RETRIEVED DOCUMENT: {Test set retrieved
document}
SUMMARY:

The example A.2 shows the prompt template we
use for generating medical summaries in two-shot
setting.

Example A.2. You are a helpful assistant. Your
task is to summarize the given question based
on the provided question and possibly helpful re-
trieved document. The retrieved document may or
may not be useful for summarization.
Examples:
QUESTION: {Example input text}
RETRIEVED DOCUMENT: {Example retrieved
document}
SUMMARY: {Example summary}
QUESTION: {Example input text}
RETRIEVED DOCUMENT: {Example retrieved
document}
SUMMARY: {Example summary}
QUESTION: {Test set input text}
RETRIEVED DOCUMENT: {Test set retrieved
document}
SUMMARY:

33



Proceedings of the 24th Workshop on Biomedical Language Processing (BioNLP 2025), pages 34–43
August 1, 2025 ©2025 Association for Computational Linguistics

Enhancing Stress Detection on Social Media Through Multi-Modal Fusion
of Text and Synthesized Visuals

Efstathia Soufleri
Archimedes, Athena Research Center

Greece
e.soufleri@athenarc.gr

Sophia Ananiadou
The University of Manchester

Manchester, UK
Archimedes, Athena Research Center

Greece
sophia.ananiadou@manchester.ac.uk

Abstract
Social media platforms generate an enormous
volume of multi-modal data, yet stress detec-
tion research has predominantly relied on text-
based analysis. In this work, we propose a
novel framework that integrates textual content
with synthesized visual cues to enhance stress
detection. Using the generative model DALL·E,
we synthesize images from social media posts,
which are then fused with text through the
multi-modal capabilities of a pre-trained CLIP
model, which encodes both text and image data
into a shared semantic space. Our approach is
evaluated on the Dreaddit dataset, where a clas-
sifier trained on frozen CLIP features achieves
94.90% accuracy, and full fine-tuning further
improves performance to 98.41%. These re-
sults underscore the integration of synthesized
visuals with textual data not only enhances
stress detection but also offers a robust method
over traditional text-only methods, paving the
way for innovative approaches in mental health
monitoring and social media analytics.

1 Introduction

Social media has emerged as a pervasive platform
for personal expression, generating enormous vol-
umes of data that encompass both textual and visual
modalities (Baltrušaitis et al., 2018; Mouzannar
et al., 2018; Abousaleh et al., 2020). This rich,
heterogeneous data offers unprecedented opportu-
nities for understanding human behavior and men-
tal health. However, prevailing stress detection
research has largely focused on text-based analy-
sis, overlooking the potential for complementary
affective cues that can be inferred or synthesized
into visual representations.

Recent advances in multi-modal machine learn-
ing have shown that integrating diverse data sources
can significantly enhance performance on affec-
tive and behavioral tasks (Song et al., 2024; Ierac-
itano et al., 2020; Amal et al., 2022; Zhang et al.,
2020). At the same time, generative models such

as DALL·E have opened new avenues for synthe-
sizing high-quality visuals from textual descrip-
tions (Ramesh et al., 2021; Khachatryan et al.,
2023; Tewel et al., 2022). This proliferation of
data prompts an essential question: How can the
fusion of synthesized visual data with traditional
text data improve the accuracy and effectiveness of
stress detection algorithms?

In this work, we introduce a novel multi-modal
framework that leverages both text and synthesized
images for stress detection. Specifically, we gener-
ate images from social media posts using DALL·E
(Ramesh et al., 2021) and integrate these visuals
with text via the robust joint embedding space pro-
vided by a pre-trained CLIP model (Radford et al.,
2021). We evaluate our approach on the Dreaddit
dataset (Turcan and McKeown, 2019), a collection
of social media posts annotated to indicate whether
the person who wrote the post suffers from stress or
not. Our experiments demonstrate that a classifier
trained on frozen CLIP features achieves 94.90%
accuracy, while full fine-tuning further elevates per-
formance to 98.41%. These results indicate that
synthesized visuals capture subtle emotional and
contextual cues that are absent from text alone,
thereby significantly enhancing detection accuracy.

Our contributions are threefold:

1. We propose a novel multi-modal framework
that fuses text and synthesized visuals to ad-
dress the limitations of traditional text-only
stress detection methods.

2. We demonstrate the effectiveness of our ap-
proach on the Dreaddit dataset (Turcan and
McKeown, 2019), achieving state-of-the-art
performance through both classifier-only train-
ing and full fine-tuning strategies.

3. We provide an in-depth analysis of the impact
of multi-modal fusion on capturing nuanced
affective signals, laying the groundwork for

34



future research in mental health monitoring
using social media data.

2 Related Work

Stress detection on social media has tradition-
ally been approached using text-based methods.
Early studies primarily relied on lexicon-based
techniques and classical machine learning algo-
rithms to identify linguistic markers of stress and
anxiety in user-generated content (De Choudhury
et al., 2013; Aldarwish and Ahmad, 2017; Biswas
and Hasija, 2022). More recent approaches have
employed deep learning architectures, such as re-
current neural networks (Salehinejad et al., 2017)
and transformer-based architectures (Vaswani et al.,
2017; Ji et al., 2022; Yang et al., 2024; Shi et al.,
2024), to capture complex syntactic and semantic
patterns from text. Despite these advancements,
text-only methods may fail to capture affective
or contextual information that can be made more
salient through synthesized visual representations.

The growing interest in multi-modal learning
has spurred research into integrating multiple data
sources to improve performance on affective and
behavioral tasks. Several studies have demon-
strated that fusing textual and visual information
can enhance emotion recognition (Kosti et al.,
2017; Cowie et al., 2001; Zhu et al., 2025) and sen-
timent analysis (Baltrušaitis et al., 2018; Wankhade
et al., 2022). For instance, multi-modal architec-
tures that combine convolutional neural networks
(Li et al., 2021) for image analysis with language
models for text have shown improved accuracy over
single-modality approaches (Mittal et al., 2018;
You et al., 2015; Feng et al., 2025; Devlin et al.,
2018; Liu et al., 2019). However, the application of
multi-modal techniques to stress detection remains
relatively underexplored.

Generative models have further broadened the
horizons of multi-modal research. Models such as
DALL·E have shown impressive capabilities in syn-
thesizing high-quality images from textual prompts
(Ramesh et al., 2021; Zhou et al., 2023), thereby
providing a novel means to augment datasets that
lack explicit visual content. Concurrently, models
like CLIP have established robust joint embedding
spaces that effectively capture the semantic rela-
tionships between images and text (Radford et al.,
2021; Qiao et al., 2019; Wang et al., 2023; Zhong
et al., 2021; Gu et al., 2023; Wang et al., 2021).
These innovations have paved the way for leverag-

ing synthesized visuals to complement textual data,
offering new insights into affective states that may
not be fully captured by text alone.

Prior work in mental health has shown that lin-
guistic patterns in social media (e.g., first-person
pronouns, hopelessness, negative tone) indicate
stress, anxiety, or depression (De Choudhury et al.,
2013; Cohan et al., 2018), and visual cues (e.g.,
expressions, colors, context) also reflect affective
states (Abousaleh et al., 2020). Building on this, we
hypothesize that even synthesized images—when
guided by affect-sensitive prompts—can offer com-
plementary signals for stress detection.

Our work builds on these lines of research by in-
tegrating synthesized visuals with text-based analy-
sis for stress detection. Our work employs gener-
ative image synthesis in conjunction with a multi-
modal representation framework for this task. By
fusing the complementary strengths of DALL·E
and CLIP, we aim to address the limitations of tra-
ditional text-only approaches and provide a more
holistic understanding of stress as expressed on
social media.

3 Methodology

In this section, we describe our multi-modal frame-
work for stress detection, which integrates synthe-
sized visual cues with textual information. Our
approach consists of two stages: image generation,
and multi-modal representation with CLIP.

3.1 Image Generation

To enrich textual data, we use the generative capa-
bilities of DALL·E 3, an advanced version of the
DALL·E model (Ramesh et al., 2021). This model
synthesizes images closely aligned with textual de-
scriptions. The process begins with the input of a
text prompt into a specialized text encoder. This
text encoder is adept at converting the textual in-
formation into a high-dimensional representation
space (text encoding), aiming to capture the core
semantic content of the prompt (Figure 1).

Following this, a component known as the diffu-
sion prior takes over, which is a crucial part of the
model’s architecture. The prior is responsible for
mapping the text-encoded semantic representation
to a corresponding image encoding. This image
encoding is designed to retain the semantic content
conveyed by the text, ensuring that the generated
images reflect the intended themes and elements of
the input prompt.
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Figure 1: Methodology overview. (1) image generation: the posts (text) and the corresponding prompt are converted
into images that visually represent the text’s semantic content, (2) multi-modal representation with CLIP: the images,
alongside the original text, are processed through CLIP to form a joint embedding space, used for stress detection.
The CLIP Classifier-Only Training strategy fine-tunes the classifier (fully connected layers) while keeping the CLIP
base model (text and image encoder) frozen. The CLIP Full Fine-Tuning strategy fine-tunes both the classifier and
the CLIP base model. This process leverages both textual and visual data to enhance detection accuracy.

The final step in the image generation process
involves an image decoder. This decoder uses the
image encoding to stochastically generate the final
visual output. The resulting image is a visual rep-
resentation of the semantic information encoded
from the initial text prompt, materializing as a syn-
thetic image that complements the textual data in
our multi-modal stress detection framework. By
leveraging this advanced image synthesis process,
we ensure that the generated visuals are both seman-
tically relevant and visually coherent, providing a
robust foundation for further multi-modal analysis.

3.2 Multi-modal Representation with CLIP

We employ the pre-trained CLIP model (Radford
et al., 2021) to facilitate a robust multi-modal rep-
resentation, leveraging its capacity to encode both
text and images into a shared joint embedding
space. Each text sample is processed by the text
encoder to extract textual features, while corre-
sponding synthesized images are preprocessed and
passed through the image encoder. The features
from both modalities are normalized and concate-
nated to form a joint representation (Figure 1). This
embedding captures complementary affective cues
from both textual and visual data, enhancing our

ability to detect stress signals on social media.
To effectively train our model, we adopt two

training strategies:

1. CLIP Classifier-Only Training: In this ap-
proach, we keep the pre-trained CLIP base
frozen, focusing training efforts solely on the
attached classifier. This method benefits from
the robustness of the existing multi-modal em-
beddings, avoiding alterations to the underly-
ing representations and ensuring stability.

2. CLIP Full Fine-Tuning: Alternatively, we
engage in full fine-tuning of both the CLIP
model and the classifier. This strategy allows
the entire network to adapt more comprehen-
sively to the domain-specific nuances of stress-
related content, improving detection accuracy
by refining the joint embedding space to better
capture subtle emotional nuances.

This integrated methodology not only leverages
generative image synthesis to augment textual in-
formation but also strategically fuses these modal-
ities in a joint embedding space. The approach is
designed to enhance the detection of nuanced af-
fective signals that are pivotal for accurate stress
detection on social media platforms.
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Model Accuracy (%) Weighted F1 (%)
MentalRoBERTa 96.14 94.24
MentalBERT 69.32 78.75
RoBERTa-base 96.14 94.24
BERT-base 96.14 94.67
CLIP Classifier-Only Training (Ours) 94.90 92.42
CLIP Full Fine-Tuning (Ours) 98.41 98.27

Table 1: Performance comparison of our approach with
general-purpose and mental health-specific models on
the Dreaddit dataset.

4 Experiments and Results

In this section, we outline our experimental setup,
present results, and discuss findings.

4.1 Experimental Setup

The Dreaddit dataset (Turcan and McKeown, 2019)
comprises 2,837 training samples and 414 test-
ing samples, where each sample is a social me-
dia post accompanied by a binary label indicat-
ing the presence or absence of stress. The posts
are drawn from mental health-related subreddits
such as r/depression, r/anxiety, and r/relationships.
Each post was annotated through crowdsourced
judgments, with three annotators per instance and
majority voting used to determine the final label.
The dataset is approximately balanced across the
two classes. For each post, we generate a corre-
sponding synthetic image using DALL·E 3. The
hyperparameters reported in the Appendix. Our
experiments compare the following models:

• CLIP Classifier-Only Training (Ours):
Classifier-only training where the pre-trained
CLIP model is kept frozen while only the clas-
sifier is trained.

• CLIP Full Fine-Tuning (Ours): Full fine-
tuning of both the CLIP model and the classi-
fier on the Dreaddit dataset.

• Text-Only Baselines: Pre-trained discrimina-
tive language models which are either general
purpose (RoBERTa-base, BERT-base (Devlin
et al., 2018; Liu et al., 2019)) or finetuned for
mental health applications (MentalRoBERTa,
MentalBERT (Ji et al., 2022)).

4.2 Results

Table 1 reports the accuracy and weighted F1
scores for our proposed models and the text-only
baselines. Our CLIP Classifier-Only Training
model achieves an accuracy of 94.90% with a
weighted F1 score of 92.42%, while the CLIP Full
Fine-Tuning model reaches 98.41% accuracy and

Modality Accuracy (%) Weighted F1 (%)
Image-Only 95.22 93.17
Text-Only 96.82 96.31
Image + Text 98.41 98.27

Table 2: Ablation study of our method comparing image-
only, text-only, and combined multi-modal model.

98.27% weighted F1 score. In comparison, the
text-only models yield competitive performance for
MentalRoBERTa, RoBERTa-base, and BERT-base
(accuracy around 96.14% and weighted F1 around
94%), whereas MentalBERT underperforms. The
results demonstrate that full fine-tuning of our
multi-modal framework (CLIP Full Fine-Tuning)
leads to a substantial improvement in performance
over classifier-only training, highlighting the bene-
fit of adapting the joint image-text representations
to stress detection. Furthermore, our approach
achieves competitive performance compared to
strong text-only baselines, while offering the added
advantage of leveraging synthesized visual cues.
Even though our results demonstrate strong perfor-
mance gains, we acknowledge that we have not con-
ducted statistical significance testing across mul-
tiple random seeds. Future work will incorporate
such evaluations to better assess the robustness of
our findings.

4.3 Ablation Study: Modality Contributions

To better understand the contribution of each
modality, we performed an ablation study by evalu-
ating our model trained using only the synthesized
images, only the textual data, and the fusion of both
modalities Table 2. The image-only model, which
relies solely on visual cues extracted from gener-
ated images, achieved an accuracy of 95.22% and a
validation weighted F1 score of 93.17%. The text-
only model, using only the original social media
posts, reached an accuracy of 96.82% and a valida-
tion weighted F1 score of 96.31%. Notably, when
both modalities are integrated, our multi-modal
framework achieves significantly improved perfor-
mance, with an accuracy of 98.41% and a valida-
tion weighted F1 score of 98.27%. These findings
indicate that while the text-only model is already
highly effective, the addition of synthesized visual
information provides complementary affective cues
that further enhance stress detection performance.

4.4 Discussion

Our experiments validate the hypothesis that in-
tegrating synthesized visuals with text enhances
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stress detection on social media. The significant
performance improvement observed with full fine-
tuning suggests that adapting the multi-modal em-
beddings to the domain-specific nuances of stress-
related content is critical. Moreover, the ablation
study confirms that although text-only models per-
form strongly, the incorporation of visual cues
further improves the detection of subtle affective
signals. These findings underscore the potential
of multi-modal data fusion for advancing men-
tal health monitoring applications. We hypothe-
size that the generated visuals act as implicit emo-
tion amplifiers, translating latent affective states
into more explicit signals that the model can learn
from. The shared embedding space enables the
model to reinforce weak cues in one modality us-
ing complementary information from the other,
thereby improving the robustness of stress detec-
tion. While this method shows strong results on
the Dreaddit dataset, its generalizability to other
mental health tasks or platforms—such as Twitter
or Instagram—remains an open question. Future
work should explore how this approach adapts to
different linguistic styles, content structures, and
user populations across platforms.

5 Conclusion

In this work, we introduced a novel multi-modal
framework for stress detection using both textual
content and synthesized visuals from DALL·E.
Leveraging the CLIP model’s robust joint em-
bedding capabilities, our method captures subtle
emotional cues missed by text-only approaches.
Tested on the Dreaddit dataset, our model achieved
94.90% accuracy with classifier-only training,
while full fine-tuning increased performance to
98.41%. These results highlight the significant
potential of combining generative image synthe-
sis with multi-modal representation learning for
affective computing and mental health monitoring.

Limitations

Despite the promising results of our multi-modal
framework, several limitations remain. First, our
approach relies on synthesized images generated
by DALL·E, which may introduce biases or incon-
sistencies; the quality and representativeness of the
generated visuals can vary depending on the input
text. Second, our experiments have been conducted
solely on the Dreaddit dataset, and it is unclear
whether the observed performance improvements

will generalize to other social media platforms or
stress-related domains (Cohan et al., 2018; Mau-
riello et al., 2021; Garg et al., 2022; Sathvik and
Garg, 2023; Chim et al., 2024). Furthermore, while
results on the Dreaddit dataset are promising, fur-
ther research is needed to determine the generaliz-
ability of our model across different social media
platforms and diverse demographic groups. Finally,
even though the fusion of text and visuals enhances
stress detection, the interpretability (Jeon et al.,
2024) of the resulting multi-modal representations
remains an open challenge. Future work should
focus on addressing these limitations by explor-
ing more robust image synthesis techniques and
developing methods to improve the transparency
and interpretability of multi-modal models. One
limitation is the lack of systematic evaluation of
the generated images. We do not assess whether
they reflect the intended affective state or which
visual features (e.g., color, composition, expres-
sions) contribute to stress detection. Future work
will examine prompt design and affective feature
attribution.

Ethical Considerations

Our work involves the analysis of social media data
for stress detection, raising important ethical con-
siderations. The use of such data requires strict ad-
herence to privacy protocols and the anonymization
of user information. Additionally, generative mod-
els like DALL·E can inadvertently propagate biases
present in their training data, potentially affecting
the fairness and reliability of our system. Care must
be taken to ensure that the technology is not mis-
used for surveillance or discriminatory practices.
We advocate for responsible usage, transparent re-
porting of model decisions, and the integration of
fairness-aware techniques in future work. As our
study uses only anonymized Dreaddit data without
new collection or user interaction, ethics approval
was not required. Still, using DALL·E to generate
images from user content raises concerns. We take
precautions against misuse, but future work should
pursue consent-driven, transparent frameworks for
generative modeling in mental health.
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A Appendix

In the appendix, we provide further details regard-
ing our experimental setup, hyperparameter set-
tings, and examples of synthesized images. These
supplementary materials aim to enhance the repro-
ducibility of our work and offer deeper insights into
the performance of our multi-modal framework.

A.1 Hyperparameters for Generating Images
with DALL-E

As shown in Table 3, we employed the DALL-E
3 model to synthesize images from social media
posts. Our prompt was carefully designed to en-
sure that the generated visuals consistently capture
stress-related cues. For each post, the prompt in-
structs DALL-E 3 to produce a consistent, struc-
tured image that visually represents a state of
stress or anxiety. This image is expected to in-
clude a tense or overwhelming environment (e.g.,
dim lighting, clutter, urban stress), facial expres-
sions that convey worry, exhaustion, or distress
(when humans are depicted), and a darker, cooler
color palette to evoke a stressed mood. The images
are generated at a resolution of 1024x1024 with
standard quality, and one image is produced per
post.

A.2 Hyperparameters and Training Setup for
CLIP

Table 4 summarizes the hyperparameters and train-
ing configurations used in our experiments for both
the CLIP Classifier-Only Training and the CLIP
Full Fine-Tuning approaches.

In our experiments, the CLIP Classifier-Only
Training approach involves freezing the CLIP base
and training only the classifier with the AdamW
optimizer (Zhou et al., 2024) at a learning rate of
5×10−4, a weight decay of 1×10−4, and a StepLR
scheduler (step size of 5 epochs and γ = 0.5).
Training is conducted for up to 10 epochs with
early stopping after 3 epochs of no improvement.
For the CLIP Full Fine-Tuning approach, both the
CLIP base and the classifier are updated. We em-
ploy a dual learning rate strategy where the CLIP
parameters are optimized at 5× 10−6 and the clas-
sifier at 5×10−4, using the same weight decay and
scheduler settings. This configuration runs for up
to 15 epochs, with gradient clipping (max norm =
1.0) applied to stabilize training. These hyperpa-
rameter choices enable a balanced adaptation of the
pre-trained CLIP representations while effectively

learning task-specific features for stress detection.

A.3 Illustrative Examples of Synthesized
Visuals from Social Media Posts

In this section, we generate images from social
media posts using DALL·E. We provide exam-
ples from the Dreaddit dataset alongside their
corresponding synthesized images (see Figure 2).
Each image is generated based on the text of the
post, capturing the key emotional and contextual
cues embedded within the content. Our approach
translates linguistic elements—such as tone, word
choice, and contextual details—into visual features,
including the color palette, environmental cues, and
facial expressions that are indicative of stress. By
presenting these paired examples, we illustrate how
our multi-modal framework leverages both textual
and visual modalities to enhance stress detection,
offering a more comprehensive perspective on the
underlying affective signals present in social media
data.

A.4 Code Availability
The source code for all experiments, includ-
ing data preprocessing, model training, and
evaluation scripts, is available on GitHub:
https://github.com/Efstathia-Soufleri/
Stress-Detection-CLIP. This repository is
designed to facilitate the reproducibility of our
results and to support further research in this field.
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Parameter Value / Description
Model dall-e-3
Prompt Based on the text "{post}", generate a consistent, structured image

that visually represents a state of stress or anxiety. The image must
include:

• A tense or overwhelming environment (e.g., dim lighting, clutter,
urban stress).

• Facial expressions showing worry, exhaustion, or distress (if
humans are depicted).

• A darker, cooler color palette to evoke a stressed mood.

Size 1024x1024
Quality Standard
Number of Images 1

Table 3: Summary of DALL-E 3 image generation parameters and prompt design used for synthesizing visuals that
capture stress-related cues.

Parameter Classifier-Only Training Full Fine-Tuning
Epochs 10 15
Batch Size 32 32
Optimizer AdamW (classifier only) AdamW (dual groups)
Learning Rate (Classifier) 5× 10−4 5× 10−4

Learning Rate (CLIP Base) — 5× 10−6

Weight Decay 1× 10−4 1× 10−4

LR Scheduler StepLR (step=5, γ=0.5) StepLR (step=5, γ=0.5)
Early Stopping Patience 3 epochs 3 epochs
Additional Techniques — Gradient Clipping (max norm = 1.0)

Table 4: Hyperparameters and training configurations for Classifier-Only Training and Full Fine-Tuning of our
proposal.
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Figure 2: Illustrative examples from the Dreaddit dataset. A social media post and the corresponding synthesized
image generated from the post text. These examples demonstrate how our multi-modal framework leverages both
textual and visual modalities to capture emotional and contextual cues for enhanced stress detection. The top image
and post pair indicate absence of stress and the below pair indicate stress.
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Abstract 

We developed a new methodology of 

extracting the frequency of a patient’s 

epilepsy seizures from unstructured, free-

text outpatient clinic letters by: first, 

devising a singular unit of measurement for 

seizure frequency; and second, fine-tuning 

a generative Large Language Model (LLM) 

on our bespoke annotated dataset. We 

measured frequency by the number of 

seizures per month: one seizure or more 

requires an integer; and less than one a 

decimal. This approach enables us to track 

whether a patient’s seizures are improving 

or not over time. We found fine-tuning 

improves the F1 score of our best-

performing LLM, Ministral-8B-Instruct-

2410, by around three times compared to an 

untrained model. We also found Ministral 

demonstrated an impressive ability for 

mathematical reasoning. 

1 Introduction 

Extracting key patient data from longitudinal 

Electronic Health Records (EHRs) is critical to 

developing AI models that help improve patient 

treatments. Yet unstructured, free-text narratives 

are typically not suited to computational models 

that require structured data, and so medical 

researchers are increasingly utilizing Natural 

Language Processing (NLP) tools to enable clinical 

AI models to understand medical terminology and 

concepts (Yang et al., 2022).  

In recent years, much clinical NLP research has 

focused on generative Large Language Models 

(LLMs). On the one hand, this has involved the 

development of LLMs with some degree of clinical 

expertise, such as ClinicalBERT (Huang et al., 

2019), GatorTron (Yang et al., 2022), and 

ClinicalMamba (Yang et al., 2024). On the other 

hand, researchers have applied general knowledge 

LLMs to extract data from clinical texts (for 

example, Agrawal et al., 2022; Thirunavukarasu et 

al., 2023; and Zhou et al., 2023). In turn, this field 

of research has led to the creation of a benchmark, 

ClinicBench, to evaluate the performance of 22 

LLMs in a clinical setting (Liu et al., 2024). 

Yet the application of LLMs to epilepsy research 

is still relatively uncommon, although it is expected 

that this field will increase significantly in future 

(van Diessen et al., 2024). Epilepsy affects about 

1% of the general population (Fiest et al., 2017) and 

contributes to an estimated half a percent of the 

global disease burden (WHO. Epilepsy. 2019). 

About 30% of people with epilepsy do not respond 

to anti-seizure medications (ASMs) and are 

therefore regarded as refractory to treatment (Kwan 

and Brodie, 2000). In the United Kingdom over the 

last decade, more than 30 individual ASMs have 

been available to prescribe and the number of 

possible combinations of ASMs taken as 

polytherapy is much larger. Consequently, it is not 

feasible to try all possible monotherapy and 

polytherapy options in every refractory patient. 

This underlines the importance of research in 

predicting which ASMs would have the greatest 

impact on epileptic seizures for individual patients. 

The most extensive relevant research on LLMs 

and epilepsy remains a long-term study (Xie et al., 

2022a; Xie et al., 2022b; Xie et al., 2023; and Xie 

at al., 2024) that used a different methodology from 

ours to extract seizure frequency information from 

Electronic Health Records (EHRs). In their      

2022-23 papers, the University of Pennsylvania 

researchers applied the pre-trained Transformers 

Bio_ClinicalBERT (for text classification), 

RoBERTa (for text extraction), and a T-5 model (to 

summarize sentences with seizure frequency data) 

to free-text EHRs to determine the seizure 

frequency of a person with epilepsy or whether that 

person was seizure free. They declared an “overall 

accuracy” score of 0.88 for seizure frequency. In 
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from Health Records 
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their 2024 paper, the team tested for bias (race, 

ethnicity, sex, income, and health insurance) in a 

ClinicalBERT model that they had fine-tuned on 

700 manually annotated epileptologist notes and 

which classified whether a clinic note specified if a 

patient was seizure free or had recent seizures. 

They found no evidence of bias in the model. 

Our previous, 2024 study was the first published 

paper to use a generative LLM to determine seizure 

frequency for people with epilepsy from 

unstructured, free-text EHRs (Holgate et al., 2024). 

We utilized Llama 2 13B (Touvron et al., 2023) to 

classify seizure frequency within eight temporal 

categories – ranging from once a year at one end of 

the spectrum to one or more per day at the other 

end – and in our analysis grouped the temporal 

categories into a binary split between infrequent 

and frequent seizures. We achieved an overall F1 

score of 0.73 with Llama 2 13B. 

An even more recent epilepsy study (Goldenholz 

et al., 2025) utilizes three different LLMs for 

different purposes: 1) Meta’s Llama 2 13B to 

generate a randomized clinical trial for the ASM 

Cenobamate and generate 480 synthetic clinical 

notes; 2) Mistral’s Mistral 7B v0.1 to summarize 

the clinical notes, specifically in regard to the 

number of seizures during the observation period 

and any symptoms associated with the ASM; and 

3) Anthropic’s Claude 2 to improve on the 

formatting and results of the data table. They used 

LLMs from different AI companies to ensure 

separation of technologies for the discrete tasks. 

Importantly, none of the LLMs were specially 

trained in medical language. The researchers 

concluded that their methodology demonstrated a 

capacity for inductive reasoning “from large sets of 

unstructured clinical encounters.” Consequently, 

they recommended “a paradigm shift away from 

perfectly understanding the individual patient 

towards generalizable knowledge extracted from 

groups of patients. This new paradigm capitalizes 

on the strengths of LLMs … [while] 

acknowledging their weakness at high precision.”  

While we agree that LLMs hallucinate at 

individual patient level for seizure frequency, 

based on our experience, we disagree that they are 

not useful for micro analysis. On the contrary, our 

study demonstrates that some of the latest 

generative LLMs are, in fact, very good at 

estimating seizure frequency in unstructured, free-

 
1 https://cogstack.org/ 

text EHRs based on our new methodology that 

incorporates a singular unit of measurement and 

fine-tuning. 

2 Data and Methods 

2.1 Data Collection 

We selected 51,760 EHRs from King’s College 

Hospital NHS Foundation Trust (KCH) that relate 

to 5,767 unique adult people with epilepsy being 

treated at KCH. The data spans more than a decade, 

from 1 January 2013 to 30 September 2023. The 

vast majority of the records comprise doctors’ and 

nurses’ reports of outpatients’ ambulatory visits. 

We defined a person with epilepsy as someone who 

has at least one record of an epilepsy diagnosis. 

The selection was done via CogStack, an open-

source information retrieval and extraction 

platform for EHRs developed by researchers at the 

NIHR Maudsley Biomedical Research Centre in 

London.1 CogStack integrates with KCH’s EHRs. 

We defined a set of epilepsy-related keywords and 

medical codes, and then used CogStack's search 

functionality to filter out EHRs that matched these 

definitions. 

We then used stratified random sampling to 

select 3,000 EHRs to create an annotated dataset, 

which ensured proportional distribution across the 

original dataset in regard to age, gender, and 

ethnicity to minimize bias (see below for further 

annotation details).  

2.2 Seizure Frequency Measurement 

We followed the logic of the U Penn team to create 

a standardized format to denote seizure frequency 

in a given EHR. However, our methodology 

differed in two ways. First, the U Penn researchers 

used three language model pipelines with three 

different language models – for text classification, 

text extraction, and summarization of sentences 

with seizure frequency data – whereas we used 

only one generative LLM for all classification, 

extraction, and calculation tasks, largely because 

the newest LLMs are much more powerful than the 

ones they used. Second, the U Penn researchers 

initially used different time periods – day, month, 

year, or visit –depending on the period specified in 

the text, and then converted that by a rules-based 

quantifier into a standardized format of the number 

of seizures per month, whereas we required only 
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one step by fine-tuning an LLM on our annotated 

dataset that denoted the text’s data as the number of 

seizures per month.  

Our project’s lead data scientist annotated 1,480 

EHRs in accordance with our singular unit of 

measurement for seizure frequency – that is, the 

number of seizures per month. The EHRs had 

previously undergone an initial annotation process. 

In our previous study (Holgate et al., 2024), we 

used stratified random sampling to select 3,000 

EHRs to create an annotated dataset, which 

ensured proportional distribution across the 

original dataset for age, gender, and ethnicity to 

minimize bias. Subsequently, a team of six 

annotators, comprising four neuroscience 

clinicians (including two epileptologists) and two 

data scientists, manually annotated the 3,000 EHRs 

for key data categories of the project, in particular 

seizure frequency, as well as seizure freedom, 

current anti-epilepsy medication, epilepsy type, 

seizure type, associated symptoms, and 

comorbidities. The annotators categorized seizure 

frequency into eight temporal frequencies – 

ranging from one seizure per year to one or more 

per day – plus ‘unknown.’ Due to time and resource 

limitations, the annotators worked on separate 

batches of the 3,000 EHRs, rather than having two 

annotators work on the same batch for moderation. 

However, the two epileptologists reconvened to  

create a ‘gold standard’ annotated dataset of 300 

EHRs; their inter-annotator agreement was a 

Cohen’s kappa score of 0.84, which signified near 

perfect agreement. 

In turn, the lead data scientist used the 300 EHRs 

from this ‘gold standard’ annotated dataset plus a 

further 1,180 annotated EHRs to create a training 

and testing dataset to fine-tune LLMs on seizure 

frequency. The reason why the training / testing 

dataset was about half the size of the original 

annotated dataset was that about the same 

proportion of the KCH EHRs extracted contained 

information about a patient’s seizure frequency. 

The lead data scientist converted the annotator’s 

original annotation for seizure frequency to our 

new measurement system, in which one seizure or 

more per month required an integer, and less than 

one seizure per month a decimal (see Table 1). Two 

other categories were required for notation. If an 

EHR contained reference to seizures but the 

duration was unspecified or unclear, the number 

 
2 https://www.langchain.com 

‘1000’ was used (essentially a proxy figure to 

denote incomplete information). Or if an EHR 

contained no reference to seizures, a ‘0’ was used. 

This methodology provided three key 

advantages: first, a single numerical metric makes 

it easy to track a patient’s seizure trajectory over 

time (a declining number means the frequency of 

their seizures is reducing, while an increasing 

number means the frequency of their seizures is 

rising); second, a single numerical metric is easier 

to understand than eight, discrete temporal 

categories to record seizure frequency; and third, a 

single numerical metric is a more accurate and 

reliable input to feed into a seizure prediction 

model that we are developing as part of our wider 

epilepsy research project.  

 

2.3 Model Development and 

Implementation 

Environments and Models: We used LangChain 

as our development framework because it provides 

convenience and flexibility for building 

applications powered by LLMs. 2   First, we 

deployed LangChain in our local environment, 

then we downloaded the four LLMs we 

experimented with in this study from Hugging Face 

and loaded the models into LangChain, which 

allowed us to perform multiple LLM operations in 

the local environment.3  LangChain offers simple 

interfaces for loading and initializing LLMs.  

We also employed parameter-efficient fine-

tuning techniques, or PEFT, in particular parameter 

updates by low-rank adaptation, or LoRA. The 

latter hacks the regular backpropagation updates by 

splitting the update matrix into two smaller 

matrices which, when multiplied together, can give 

back the original update matrix. LoRA can 

accelerate training while reducing the 

computational demands. 

We experimented with four LLMs that were 

released in 2024 or 2025 and developed by three 

different AI companies: US-based Meta’s Llama 

3.1 8B Instruct (Grattafiori et al., 2024); France-

based Mistral’s Mistral Nemo Instruct 2417 

(Mistral AI Team, 2024a) and Ministral 8B Instruct 

2410 (Mistral AI Team, 2024b); and China-based 

Alibaba’s Qwen 2.5 7B Instruct (Yang et al., 2025). 

We were restricted to only using open-source 

language models because we used confidential  

3 https://huggingface.co 
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Figure 1: Prompt query structure. 

 

 

medical data from the UK’s National Health 

System (NHS) that had to remain within the 

hospital’s secure IT network for regulatory reasons. 

We ran the LLMs on up to eight Nvidia V100 

GPUs.  

Pre-processing: We implemented two pre-

processing elements. First, we found that an LLM’s 

performance was slightly improved by reducing 

the length of each EHR, deleting non-relevant 

administrative information at the top and bottom of 

each clinic letter. As a result, this minimized noise 

from the unstructured text. We deleted all text 

before the clinic date at the top of the letter, and 

removed all text after the letter writer (typically a 

doctor or nurse) signed off “yours sincerely” (a UK 

letter writing convention) towards the end. In the 

event there was no specified date or sign-off, we set 

a default deletion of the first 40 characters and final 

500 characters of each letter. 

Second, we created a balanced dataset from the 

1,480 annotated EHRs to train, test, and validate 

the LLMs. In each of the dataset’s 1,480 

observations, the input consisted of the EHR text, 

and the required output was the annotated decimal 

or integer for the corresponding seizure frequency, 

if stated in the document. A label for seizure 

frequency was assigned to the entire clinical note, 

based on the frequency for the patient at the time of 

the clinic visit. In other words. we fine-tuned the 

LLM on the annotated output. The balanced dataset 

was of various sizes, ranging from 375 to 813 

EHRs in order to create training datasets ranging 

from 300 to 650 EHRs in increments of 50. The 

balanced dataset was structured by: taking a 

specified number of EHRs annotated with seizure 

frequency measurements of 0.1 to 999 (meaning 

these letters contained a reference to seizures with 

a specified frequency) and selected at random from 

the 1,480 annotated EHRs; then taking 25% of the 

number of the 0.1-999 category letters from the 

‘1000’ category letters, selected at random; and 

finally taking the same 25% portion from the ‘0’ 

category letters, again selected at random. For 

example, 500 of the 0.1-999 letters were combined 

with 125 of the ‘1000’ letters and 125 of the ‘0’ 

letters to make a balanced dataset of 750 EHRs in 

total. The train/test/validation split was 

80%/10%/10%. So in this example the training 

dataset consisted of 600 letters, the testing dataset 

75 letters, and the validation dataset 75 letters. We 

use the term ‘balanced’ to mean that the dataset 

used to fine-tune the LLM was not weighted too far 

towards any of the three annotated categories. 

During experiments we found that this ratio of 25% 

of the total 0.1-999 letters for each of the ‘1000’ 

and ‘0’ letters worked best for adequately fine-

tuning the LLMs on our seizure frequency task.  

A fundamental challenge for this project was 

that the NHS EHRs used, mostly doctors’ and 

nurses’ reports of outpatients’ ambulatory visits, 

were unstructured and typically noisy. The reports 

included a range of medical and administrative 

information, such as the patient’s medication, other 

therapies, and details disclosed during previous 

clinic visits. Furthermore, the reports often did not 

include any information about seizure frequency 

and, if they did, the language was often imprecise, 

so that the nature of the frequency was vague or 

unclear. These factors make the application of 

LLMs to EHRs to research seizure frequency 

challenging. 

Prompt Engineering: Although fine-tuning the 

LLM on hundreds of examples was the primary 

methodology in meeting this challenge, a 

secondary methodology was prompt engineering. 

We found that the structure of the prompt query 

made a difference to the quality of an LLM’s 

answers. After experimentation, we concluded the 

optimal approach was Chain of Thought reasoning,  

You are a professional neuroscientist. 

Analyze the text and work through these 

4 steps: 

1. Determine whether the text has any 

information about the frequency of the 

patient's epilepsy seizures. 

2. If the text does have information 

about the frequency of the patient's 

epilepsy seizures, then estimate the 

frequency of the seizures, and return the 

answer as the number of seizures per 

month. 

3. If the text does refer to seizures but 

you cannot estimate the frequency of the 

seizures, then return the answer '1000'. 

4. If the text does not have any 

information about the patient's epilepsy 

seizures, then return the answer '0'. 
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asking the LLM to work through four logical steps, 

each of which was numbered (see Figure 1). The 

first step was to determine whether the EHR 

contained any information about the frequency of a 

patient’s seizures (because often the letters did not). 

The second step asked the LLM to estimate the 

frequency as the number of seizures per month. 

The third step asked to return an answer of ‘1000’ 

if the frequency of seizures of was too difficult to 

answer. The fourth and final step asked to return ‘0’ 

if there was no information about seizures. At the 

start of the prompt, we asked the LLM to take on 

the role of a professional neuroscientist, as we 

found this slightly improved the quality of answers. 

We hypothesize that contextualizing the reasoning 

task for the LLM assists it in logically connecting 

the prompt (question) and text (EHR) with the 

relevant medical parts of the vast corpora that the 

LLM was originally trained on.    

    Hyperparameters: We kept the temperature at 

a very low 0.0001 (0 does not work for some 

LLMs) because we wanted the LLMs to generate 

typically fact-based answers and be consistent in 

their answers across multiple runs. In addition, our 

aim was to minimize both the LLMs’ ‘creativity’ 

and hallucinations. 

Although we experimented with changing some 

hyperparameters, such as the number of training 

epochs, batch size, and learning rate, we found 

none of these had any significant impact on the 

quality of the LLMs’ answers. We set the number 

of epochs at three, the batch size at one, and the 

learning rate at 0.0002. In other words, the most 

influential factor in improving output was the  

 

size of the training dataset, followed by the prompt 

structure. For LoRA, we set the r value at 64, the 

alpha at 16, and the dropout rate at 0.1. 

    Post-processing: Despite fine-tuning the LLMs 

on our annotated dataset, the models’ raw answers 

often needed to be cleaned up by a post-processing 

algorithm. The raw answers from the original 

model were typically variable, with a best-case 

answer being exactly what was asked by the 

prompt questions (e.g., ‘0’, ‘2’, or ‘1000’), a mixed 

answer (e.g., ‘11 to 16 seizures per month’), to 

outright nonsensical (e.g., ‘123456789' or ‘He also 

showed some difficulties'). The raw answers from 

the fine-tuned LLMs were, however, generally 

more in line with what was required, typically 

generating an answer as either a decimal or integer 

with no (or little) text. Yet the LLM’s construction 

– or attempt at construction – of a decimal was 

often confused with more than one decimal point 

(e.g., ‘2.00.0000’). As a consequence of the LLMs 

not being able to generate an answer in exactly the 

required format 100% of the time, we wrote a rules-

based algorithm that either corrected the answer 

format where reasonably clear (e.g., ‘2.00.0000’ 

becomes ‘2’) or changed to a ‘0’ if completely 

unclear (e.g., ‘123456789'). 

Model Selection: We began by running the four  

LLMs that we tested on different sized balanced 

datasets in order to create training datasets ranging 

from 300 to 650 EHRs in increments of 50, as 

outlined above. During fine-tuning each LLM was 

trained on the training dataset and also given 

separate evaluation and test datasets. At this stage 

we identified Mistral’s two models as being the 

 

Table 1: Seizure frequency categories and measurements per month, performance evaluation methods. 
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best performing, followed by the Qwen 2.5 model, 

and the Llama 3 model. Overall, the best 

performing model was Ministral-8B-Instruct-2410. 

We then tried various experiments to optimize 

the output of Ministral-8B-Instruct-2410. The most 

significant factors influencing the quality of the 

LLM’s answers were the size of the training dataset 

(in general, more observations improved the 

answers) and the prompt structure. We determined 

that when the training dataset consisted of about 

550 EHRs or more, the F1 score on our preferred 

method of evaluation reached about 0.80 or more. 

3 Results  

3.1 Performance Evaluation Methods 

We used a confusion matrix to calculate recall, 

precision, the F1 score, and accuracy to evaluate an 

LLM’s performance. We used a test dataset that 

each LLM had not seen during its training process. 

However, we devised two different methods of 

calculation, what we called the purist method and 

the pragmatic method. In the first method we used 

fuzzy logic, or the setting of soft (rather than hard) 

numerical boundaries between each of the eight 

temporal seizure frequency categories, on the basis 

that the temporal distinctions are arbitrary and our 

objective was to determine changes in a patient’s 

seizure frequency over time. 

The purist method set a high bar by calculating 

how well the LLM performed on eight temporal 

categories of seizure frequency. However, we 

treated this method more as a theoretical (rather 

than true) guide of performance, given the 

inconsistency of seizure information written by 

doctors and nurses in the outpatient letters, and the 

often inherent ambiguity of their language. Under 

this method, one seizure per year (specific target 

0.08) equated to a range of 0 < x ≤ 0.16, one seizure 

per six months (specific target 0.17) was 0.16 < x ≤ 

0.18, more than one seizure per six months but less 

than one per month (mid-point target ≈ 0.33) was 

0.18 < x ≤ 0.99, one per month (specific target 1) 

was 0.99 < x ≤ 1.1, more than one seizure per 

month but less than one per week was 1.1 < x ≤ 3.9, 

one per week (specific target 4) was 3.9 < x ≤ 4.1, 

more than one per week but less than daily was 4.1 

< x ≤ 29, and one or more per day was 29 < x ≤ 999 

(999 being 1 below the ‘fudge’ figure of ‘1000’). In  

addition, we tested the model strictly against the 

other two categories: seizures with no information 

about frequency (‘1000’); and no information 

about seizures (‘0’). 

By contrast, the pragmatic method set a lower 

bar and reflected our broader objective to 

determine whether LLMs are good at extracting 

information about a patient’s seizure frequency in 

such a way to reveal if their seizures are improving 

over time or not. In this method, we bifurcated the 

output into two temporal categories, infrequent and 

frequent seizures. Infrequent ranged from one 

seizure per year to one per month, which equated  

to a range of 0 < x ≤ 1.1. While frequent ranged 

from more than one per month to one or more per  

day, which equated to 1.1 < x ≤ 999. The two non-

temporal categories remained as above. The 

threshold between infrequent and frequent had an 

empirical (rather than clinical) justification, in that 

our chosen demarcation line spread the number of 

observations in both categories more evenly, to 

avoid the frequent category significantly 

outweighing the infrequent category. 

3.2 Model Performance 

As shown in Table 2, the best-performing LLM, 

Ministral-8B-Instruct-2410, achieved its highest 

F1 score on the pragmatic method of 0.81 (purist 

method 0.68) with a training dataset of 650 EHRs, 

and a corresponding accuracy rate of 0.68 (0.52). 

As Appendix A illustrates, the F1 score on the 

pragmatic method rose beyond the 0.70 level once 

the training dataset became greater than 500 EHRs. 

While this might imply that the bigger the training 

dataset, the more effective the fine-tuning and the 

better the answers, this may not necessarily be the 

case. The F1 score dipped at 600 training 

observations but then rose to a new high at 650. 

Further research is required with even larger 

training datasets to investigate in more depth. 

On the other hand, the results suggest that recall 

is not dependent on the size of the training data. 

Recall was consistently high, ranging from 0.86 to 

1.00 on almost all training dataset sizes (with one 

exception). In other words, this Ministral model 

was proficient at correctly estimating seizure 

frequency. 

By contrast, the results imply that precision is 

dependent on the size of the training dataset. The 

Ministral model required more than 500 training 

observations to improve precision – the same size 

needed to trigger an uplift in the F1 score. 

Nevertheless, precision remained the model’s weak 

spot, achieving a best result of only 0.71 at 650 
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training observations on the pragmatic method,  

which was still comparatively low. This points to 

the model still ‘hallucinating’ on too many 

occasions, despite our attempts to minimize false 

positives through various techniques, in particular, 

fine-tuning, prompt engineering, setting a very low 

temperature, and adjusting the proportions of the 

balanced dataset. 

    The second-best performing LLM was the other 

Mistral model, Mistral-Nemo-Instruct-2407, 

which achieved a top F1 score of 0.78 on the 

pragmatic method, followed by Qwen2.5-7B-

Instruct (0.66) and Llama-3.1-8B-Instruct (0.28) 

(see Table 2). Appendix B shows the comparative 

performance evaluation of the original LLMs -- 

that is, the non-fine-tuned models – which is much 

lower. 

4 Discussion 

Fine-tuning improved the F1 score of our best-

performing LLM, Ministral-8B-Instruct-2410, by 

at least three times based on a training dataset of 

650 EHRs. The F1 score of the fine-tuned model 

when evaluated by the purist method, 0.68, was 

three times that of the F1 score of the untrained 

model, 0.22. And the F1 score of the fine-tuned 

model when evaluated by the pragmatic method, 

0.81, was 3.7 times that of the original model, also 

0.22. This demonstrates that fine-tuning is an 

effective technique to improve the capacity of 

LLMs to identify the frequency of a patient’s 

seizures in unstructured, free-text EHRs.  

Both Mistral models performed at a high 

standard on this seizure frequency task, with only a 

3 percentage points difference in their best F1 

scores. However, there was a significant drop-off 

of 15 percentage points for the Qwen2.5 F1 score, 

and a 53 percentage points slide for the Llama 3.1 

model, which did not perform well at all on this 

task.  

Both Mistral models were also stable and 

consistent across multiple fine-tuning runs: their 

average F1 scores under the pragmatic method 

across three runs were only 2 percentage points 

below that of their respective top F1 scores; and the 

standard deviation of their F1 scores across 3 runs 

was only 1% or 2%. Stability is important in 

medical research. By contrast, Qwen2.5’s F1 score 

was highly variable with a standard deviation of 

12%. 

Our study also demonstrates that some of the 

most recent LLMs have a capacity for 

mathematical reasoning. The Ministral models, in 

particular, were adept at identifying the frequency 

of a patient’s seizures from the raw text, which 

could be anything from annually to daily or more, 

then converting that frequency to a standardized 

time period of per month, both in terms of decimals 

and integers. Indeed, Qwen2.5 was designed in part 

specifically to achieve “state-of-the-art 

performance” in mathematical tasks (Yang et al., 

2025), and Llama 3’s design had a partial focus on 

“mathematical reasoning performance” 

(Grattafiori et al., 2024), while the Mistral AI Team 

claims its Ministral 8B model achieves superior 

results to Llama 3.1 8B on a mathematical 

benchmark (Mistral AI Team, 2024b), which 

accords with our experience.  

We can also postulate whether the LLMs we 

tested, especially the Ministral models, have some 

in-depth knowledge of medicine in general and 

 

Table 2: Comparative performance evaluation of fine-tuned LLMs with same training dataset of 650 EHRs. 
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epilepsy in particular in their original, non-fine-

tuned form. On the one hand, the comparatively 

low F1 scores of the original models compared to 

the much higher F1 scores of the fine-tuned models 

imply that may not be the case. On the other hand, 

the models’ ability to quickly pick up the logic from 

the annotated training dataset to identify and 

calculate seizure frequency in a standardized 

format suggests it might be the case. 

If the latter, it would support the findings of a 

recent study that tested three well-known LLMs – 

GPT-4, Bard, and Claude 2; admittedly not models 

that we used – on epilepsy practice examinations 

(Habib et al., 2024). These LLMs achieved mean 

scores of 72%, 65%, and 67%, respectively, 

compared to anecdotal reports suggesting the 

passing score for the examinations was 

approximately 70%. 

“We found that LLMs scored well on the 

epilepsy practice examinations, did not appear to 

rely on memorization, and could logically explain 

the reasons for a correct answer,” said the authors. 

“However, they occasionally hallucinated logic for 

incorrect answers.” Their latter point matched our 

experience with too many false positives and a 

comparatively lower precision, even with our best-

performing model and optimal training dataset. 

Minimizing hallucinations in medical research is 

a common problem (Kim et al., 2025). 

Hallucinations are defined as responses from 

LLMs that are inaccurate or have fabricated 

information. This could affect clinical decisions 

and patient safety. Algorithms tend to hallucinate 

when providing answers to questions that have a 

high complexity, when there is insufficient or 

biased training data for a topic, or when a dataset is 

particularly noisy. All of these are common 

problems in medical research, especially with data 

collected from medical reports and diaries. Fine-

tuning a general LLM is one way to mitigate these 

effects but it is not necessarily a complete solution 

(Zuo and Jiang, 2025). As a result, hallucinations 

may still occur after fine-tuning. 

One possible solution is Retrieval Augmented 

Generation (RAG), which has gained popularity in 

medical contexts in recent years (Li et al., 2024; 

Halamka 2023). RAG involves taking a pre-trained 

LLM but not fine-tuning it. Instead, a prompt is 

given to the algorithm which then uses its training 

and augments it by looking up information from a 

corpus of documents, either from a public or 

private source. This can reduce the effect of 

hallucinations by essentially performing a cross-

check. RAG warrants investigation in further 

research of our study. 

5 Conclusion 

Fine-tuning is an efficient method to optimize the 

extraction of seizure frequency data from 

unstructured, free-text medical records by LLMs. 

Moreover, we found that some of the most recent 

LLMs demonstrated an impressive ability for 

mathematical reasoning, in this case not only 

calculating the frequency of a patent’s epilepsy 

seizures from a text, but also converting that 

calculation into a standardized temporal format of 

the number of seizures per month. Prompt 

engineering is also critical to fine-tuning an LLM 

for this task. However, hallucinations and the 

associated problem of too many false positives 

remain an issue, and further research is required 

here. Nevertheless, this study, by achieving an F1 

score of 0.81 from our best-performing model, 

shows that fine-tuning an LLM provides a new and 

innovative way of extracting seizure frequency 

data from EHRs that in turn enables better analysis 

of the effects of ASMs in the treatment of epilepsy 

and therefore improved patient outcomes. 

Limitations 

This study has three main limitations. First, the 

confidential nature of the medical records used for 

the training dataset means the model outputs are 

not reproduceable by research teams outside the  

hospital where the authors worked. Second, the 

confidential records meant we could not 

experiment with LLMs such as OpenAI’s ChatGPT 

that are only available via an API to an off-site 

service due to privacy reasons. Third, we were 

restricted in what sized LLMs we could use by the 

computing power generated by our GPU platform 

(eight Nvidia V100 GPUs).  

Ethical Considerations 

The confidential EHRs of patients had to remain 

within the hospital’s secure IT network. As a 

consequence, the study’s researchers could only 

access the data and input it into LLMs via the 

hospital’s IT network. 
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Appendix A: Ministral-8B-Instruct-2410 performance (pragmatic method) and size of training dataset. 
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Appendix B: Comparative performance evaluation of non-fine-tuned LLMs with same training dataset of 650 EHRs. 

Note: Llama-3.1-8B-Instruct ‘n/a’ due to lack of true positives under purist method.  
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Abstract

Accurate identification and labeling of biomed-
ical entities, such as diseases, genes, chemical
and species, within scientific texts are crucial
for understanding complex relationships. We
propose Adaptive BERT or AdaBioBERT, a
robust named entity recognition (NER) model
that builds upon BioBERT (Biomedical Bidi-
rectional Encoded Representation from Trans-
formers) based on an adaptive loss function to
learn different types of biomedical token se-
quence. This adaptive loss function combines
the standard Cross Entropy (CE) loss and Con-
ditional Random Field (CRF) loss to optimize
both token level accuracy and sequence-level
coherence. AdaBioBERT captures rich seman-
tic nuances by leveraging pre-trained contex-
tual embeddings from BioBERT. On the other
hand, the CRF loss of AdaBioBERT ensures
proper identification of complex multi-token
biomedical entities in a sequence and the CE
loss can capture the simple unigram entities in
a sequence. The empirical analysis on multiple
standard biomedical coprora demonstrates that
AdaBioBERT performs better than the state of
the arts for most of the datasets in terms of
macro and micro averaged F1 score.

1 Introduction

The field of Biomedical Named Entity Recogni-
tion (NER) has evolved significantly, transitioning
from rule-based systems to advanced deep learning
methodologies. Early approaches relied heavily on
handcrafted rules, dictionaries, and regular expres-
sions to identify biomedical entities such as genes,
diseases, and proteins. For instance, He (He et al.,
2009) utilized domain-specific lexicons like UMLS
to recognize entities. While these rule-based meth-
ods provided moderate accuracy, they struggled
with the diversity and ambiguity of biomedical ter-
minology, particularly for multi-token entities or
novel terms. Their reliance on manual rule creation
and limited adaptability hindered scalability (Set-

tles, 2004; Leaman et al., 2015). The advent of ma-
chine learning techniques, such as Conditional Ran-
dom Fields (CRF) (Sutton and McCallum, 2011)
and Support Vector Machines (SVM) (Joachims,
1998), marked a shift toward data-driven models.
CRF-based systems, like those developed by Set-
tles (Settles, 2004) and Tsai (Tsai et al., 2006),
leveraged labeled datasets to train classifiers that
captured contextual and sequential information.
These models demonstrated greater flexibility and
adaptability compared to rule-based approaches.
However, they still require extensive manual fea-
ture engineering, which limited their effectiveness
in handling the complexity of biomedical data. For
example, Leaman (Leaman et al., 2015) success-
fully applied CRF models to extract chemical and
disease entities from PubMed abstracts but noted
challenges in recognizing infrequent or context-
dependent terms.

The introduction of Long Short-Term Memory
(LSTM) networks and Convolutional Neural Net-
works (CNNs) revolutionized the NER tasks. Lam-
ple introduced a BiLSTM-CRF framework (Lam-
ple et al., 2016), which set new benchmarks for
sequence labeling tasks, including NER. (Chiu
and Nichols, 2016) extended this approach to
biomedical texts, demonstrating the effectiveness
of deep learning in capturing sequential dependen-
cies and complex relationships. The emergence
of transformer-based models, such as BERT (De-
vlin et al., 2019) and its biomedical counterpart,
BioBERT (Lee et al., 2020), further advanced the
capabilities of NER systems. These models employ
self-attention mechanisms to capture the context
of each word within a sentence, making them par-
ticularly effective for complex biomedical texts.
BioBERT, which is pre-trained on biomedical cor-
pora, has been effective in recognizing domain-
specific entities (Lee et al., 2020). Unlike general-
domain models, BioBERT effectively captures in-
tricate relationships between biomedical terms, im-
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Figure 1: Proposed AdaBioBERT Architecture

proving NER performance in specialized datasets.
Despite their effectiveness, transformer-based mod-
els often struggle to properly identify the named
entities as they need large amount of data for fine-
tuning (Chalkidis et al., 2020; Beltagy et al., 2019).
Recent advancements have focused on combining
the strengths of different loss functions. For exam-
ple, Ma and Hovy (Ma and Hovy, 2016) introduced
a BiLSTM-CRF model that used a fixed combina-
tion of CE and CRF loss functions for NER. Sim-
ilarly, Lample (Lample et al., 2016) employed a
fixed-weight combination of CE and CRF loss func-
tions in their BiLSTM-CRF framework, which be-
came a standard approach for NER tasks. However,
these methods rely on fixed weighting scheme and
cannot distinguish the significance between regular
single token biomedical entities like Nucleolin and
Agyria, and rare but important multi-token entities
like lateral sinus thrombosis and parietal cortical
atrophy through the loss functions.

Therefore, there is room to improve the quality
of the existing methods to properly identify com-
plex multi-token biomedical entities. In this spirit,
this paper presents a transformer based Adaptive
BioBERT (i.e., AdaBioBERT) NER model, to iden-
tify the nuances of complex multi-token biomed-
ical entities by integrating a novel adaptive loss
function combining the standard cross entropy and
CRF loss functions in the pretrained Bio-BERT
model (Lee et al., 2020).

2 Proposed AdaBioBERT Method

AdaBioBERT architecture has two major compo-
nents: (1) Word2Vec embeddings (Kowsari et al.,

2019), which capture semantic relationships be-
tween biomedical terms as shown in Fig 1(a) and
(2) pretrained BioBERT model to generate rich con-
textual embeddings using the proposed Adaptive
Token-Sequence Loss as shown in Fig 1(b), which
dynamically balances token-level and sequence-
level predictions.

2.1 Generate Word2Vec Embeddings of
PubMED Data

In the first stage, the proposed framework extracts
sentences from the freely available PubMED Cen-
tral(PMC) repository1, which has mention of any
genes or diseases, based on frameworks proposed
by (Basu et al., 2021; Guetterman et al., 2018).
The objective is to build semantic embeddings of
all relevant genes and diseases which are men-
tioned in the current version of DisGeNET2 (v24.4)
repository. It comprises 26,798 genes and 39,972
diseases and traits (Piñero et al., 2019). Subse-
quently, we generated word embeddings for these
extracted sentences using Word2Vec model (Pen-
nington et al., 2014; Kowsari et al., 2019). Sen-
tences extracted from the PMC repository that build
the corpus are tokenized, and then the Word2Vec
algorithm generates embeddings for each word,
which is represented as a 128-dimensional vector.
The context window size of a word is set to 7, mean-
ing the model considers up to seven neighboring
words around a target word.

1https://pmc.ncbi.nlm.nih.gov/
2https://disgenet.com/DISGENET-Version-24-4-Whats-

New
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Table 1: Overview of biomedical datasets with training and testing splits

Dataset Entity Types Training Test
BC4CHEMD Chemical compounds, 6,000 abstracts 2,000 abstracts
(Krallinger et al., 2015) drug names
LINNAEUS (Gerner et al., 2010) Species names 80,000 sentences 10,000 sentences
NCBI-disease (Dogan et al., 2014) Disease names 793 abstracts 100 abstracts
BC5CDR (Li et al., 2015) Chemical compounds, diseases 1,000 articles 250 articles
JNLPBA (Kim et al., 2004) Proteins, DNA, RNA, 2,000 abstracts 204 abstracts

cell lines and types
AnatEM (Pyysalo, 2014) Anatomical entities 1,200 documents 300 documents
BioNLP13GE (Kim et al., 2013) Gene and gene product 1,500 sentences 500 sentences
Species-800 (Pafilis et al., 2016) Species mentions 800 abstracts 200 abstracts

2.2 Pretrained BioBERT with Adaptive Token
Sequence Loss (LATS)

Let X = {x1, x2, . . . , xT } denote an input se-
quence of tokens and Y = {y1, y2, . . . , yT } rep-
resent the true labels of X , where yt is a one-
hot encoded vector and yt = [y1t , y

2
t , · · · yNt ] and

yit ∈ {c1, c2, · · · cN}. Here ci,∀i = 1, 2, . . . , N
are different classes of biomedical entities. Let us
consider Ŷ = {ŷ1, ŷ2, . . . , ŷT } be the sequence
of predicted labels of the input sequence. The
predicted probability for the t-th token xt ∈ ci
is denoted as P (xt ∈ ci) , and S(yt, xt) is the
score of the true label sequence yt given xt. The
LATS combines Cross-Entropy Loss (LCE) and
CRF Loss (LCRF ) as follows:

LATS = α · LCE + (1− α) · LCRF , (1)

where α is a learnable weight parameter to make a
trade-off between CE loss and CRF loss. Here

LCE = − 1

T

T∑

t=1

N∑

i=1

yit log
(
P (xt ∈ ci)

)

is the Cross-Entropy Loss, which captures the se-
quence with a single biomedical entity and

LCRF = −
(

S(Y,X)− log
∑

Ŷ

exp(S(Ŷ ), X))
)

is the CRF Loss, which is used to identify complex
multi-label entities in a sequence. LATS dynam-
ically adjusts the importance of per-token accu-
racy and sequence coherence through the learnable
weight α. The adaptive weight parameter α is up-
dated iteratively after each training epoch using gra-
dient descent, as described in Algorithm 1. When
α is close to 1, the model prioritizes individual
token predictions, while α close to 0 emphasizes

sequence-level coherence for handling multi-token
entities and domain-specific terminology. Eventu-
ally, the pretrained BioBERT model is fine-tuned
using the word embeddings of the genes and dis-
eases generated by the word2vec model in the first
stage followed by using LATS .

Algorithm 1 Adaptive Token-Sequence Loss with
Learnable Weight α

1: Input: Token sequence X = {x1, . . . , xT },
true labels Y = {y1, . . . , yT }

2: Initialize: Model parameters θ, adaptive
weight α ∈ [0, 1], learning rate η

3: Output: Updated θ, α, and loss LATS

4: Compute token-level cross-entropy loss

5: LCE ← −1
T

T∑
t=1

N∑
i=1

yit logP (xt ∈ ci)

6: Compute CRF sequence-level loss
7: Compute score of true sequence S(Y,X)
8: Compute partition function Z(X) =

log
∑
Ŷ

exp(S(Ŷ , X))

9: LCRF ← −(S(Y,X)− Z(X))

10: Compute adaptive loss
11: LATS ← α · LCE + (1− α) · LCRF

12: Backpropagation and parameter updates
13: Compute gradients: ∇θLATS , ∇αLATS

14: Update parameters:
15: θ ← θ − η · ∇θLATS

16: α← α− η · ∇αLATS

17: Return: Final loss LATS , updated θ, α

3 Experimental Evaluation

3.1 Datasets and Settings
Experimental evaluation was conducted on eight
widely used biomedical NER datasets as reported
in Table 1. All of these datasets are formatted
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Table 2: Macro F1-Scores of AdaBioBERT and State of the Arts

Dataset SciSpacy Stanza Spark NLP PubMedBERT BioBERT AdaBioBERT
BC4CHEMD 71.98 83.25 90.09 91.43 91.72 95.40
Linnaeus 79.84 81.73 82.14 85.07 85.47 87.51
NCBI Disease 74.82 83.08 84.13 87.83 88.45 92.68
BC5CDR 74.47 83.13 83.25 88.67 85.37 89.83
JNLPBA 69.35 74.14 76.68 79.16 76.18 78.93
AnatEM 74.22 83.35 84.15 90.57 88.14 94.03
BioNLP13GE 73.70 82.93 83.24 80.24 84.91 85.36
Species800 73.67 81.04 83.14 82.79 81.93 87.63

in the IOB (Inside, Outside, Beginning) tagging
scheme, ensuring consistency in annotation and
format across different biomedical domains. Each
dataset is processed by extracting unique labels
and tokenized using the AutoTokenizer from Hug-
ging Face’s Transformers library, ensuring compat-
ibility with the pre-trained BioBERT model. The
Word2Vec embeddings, pre-trained on biomedical
literature, are integrated into the model as an addi-
tional feature to enhance entity recognition. Our
model architecture is based on BioBERT, extended
with a CRF layer for structured sequence prediction.
A fully connected classifier with dropout is applied
to the concatenated BioBERT and Word2Vec em-
beddings, projecting them onto the label space. The
loss function is a weighted combination of CE and
CRF loss, where the weight is a trainable parame-
ter optimized during training. The optimizer used
is AdamW with weight decay to improve gener-
alization. The model is fine-tuned for 5, 10, 20,
40 epochs with a batch size of 4, 8, 16, 32 us-
ing an initial learning rate of 1e-4, 2e-4, 3e-43. A
NVIDIA A100 40 GP GPU server is used to im-
plement AdaBioBERT. Evaluation is performed on
an evaluation dataset after each epoch, saving the
best-performing checkpoint. The trainer relies on
mixed precision training and gradient accumulation
for efficient computation.

3.2 Results and Discussion

The performance of AdaBioBERT and the state
of the arts are reported in Table 2 in terms
of macro-averaged F1-score. It can be seen
from Table 2 that AdaBioBERT recognizes the
biomedical entities better than the state of the

3Results are reported for 20 epochs, batch size of 32 and
learning rate of 1e-4.

arts and it outperforms the other methods for all
datasets for macro-averaged F1 scores. Signifi-
cant improvement of the F1-score of our method
can be observed in BC4CHEMD (+3.68 over
BioBERT (Lee et al., 2020)), Linnaeus (+ 2.04 over
BioBERT), NCBI Disease (+4.23 over BioBERT
), BC5CDR(+1.16 over PubMedBERT (Gu et al.,
2021)), AnatEM (+3.46 over PubMedBERT),
Species800 (+4.49 over SparkNLP) and marginally
exceeds BioNLP13GE (+0.45 over BioBERT).
Having JLNPBA as an exception where it lags
marginally (-0.23 by PubMedBERT) indicating
required improvement for recognition of protein,
cell line„ and cell type entities in biomedical data.
These results suggest that AdaBioBERT excels
in biomedical entity recognition tasks where con-
textual understanding is important. The perfor-
mance of AdaBioBERT on diverse biomedical en-
tity recognition datasets shows its adaptability and
robustness.

Notable improvements in micro F1-score are
also reported in Table 3, where AdaBioBERT sur-
passes the performance in BC4CHEMD (+2.64
over PubMedBERT), Linnaeus (+5.07 over Pub-
MedBERT), NCBI Disease (+7.17 over BioBERT),
and AnatEM (+5.41 over PubMedBERT), demon-
strating AdaBioBERT’s recognition capability
in chemical and disease-related entities. Ad-
ditionally, AdaBioBERT surpasses BioBERT in
BioNLP13GE (+2.93), PubMedBERT in BC5CDR
(+1.82), SparkNLP in JNLPBA (+2.98), and Pub-
MedBERT on Species800 (+1.54).

The proposed AdaBioBERT model introduces a
novel approach to biomedical NER by integrating
Adaptive Token-Sequence Loss with pre-trained
contextual embeddings from BioBERT. One of
the key technical innovations of AdaBioBERT is
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Table 3: Micro F1-Scores of AdaBioBERT and State of the Arts

Dataset SciSpacy Stanza Spark NLP PubMedBERT BioBERT AdaBioBERT
BC4CHEMD 84.55 89.65 93.72 95.17 92.36 97.81
Linnaeus 81.74 88.27 86.26 90.22 88.24 95.29
NCBI Disease 81.65 87.49 89.13 88.36 89.71 96.88
BC5CDR 83.92 88.08 89.73 92.88 90.61 94.70
JNLPBA 73.21 76.09 81.29 79.53 77.49 84.27
AnatEM 84.14 88.18 89.13 92.04 91.26 97.45
BioNLP13GE 77.60 84.34 85.58 89.47 92.66 95.59
Species800 74.06 83.35 84.91 86.76 85.31 88.30

Figure 2: Final and Average α Values for Biomedical
NER Datasets

its use of a learnable weight parameter (α) in
the LATS loss function. This parameter enables
the model to dynamically adjust the trade-off be-
tween token-level and sequence-level objectives
during training, which ensures that our model can
effectively handle both short, unambiguous enti-
ties and longer and complex ones. This flexibil-
ity is a significant improvement over the state of
the arts that rely on fixed-weight combinations of
LCE and LCRF , which may not generalize well
across diverse biomedical texts. Additionally, the
integration of pre-trained Word2Vec embeddings
with BioBERT’s contextual embeddings provides
a multi-stage transfer learning framework, enhanc-
ing the model’s ability to capture both semantic
and contextual nuances in biomedical texts. The
effectiveness of AdaBioBERT for identifying regu-
lar single token and complex multi-token entities
has been demonstrated in the Table 2 and 3 for al-
most all datasets. The datasets like Species-800,
NCBI Disease, and BC5CDR, where AdaBioBERT
outperforms state-of-the-art by significant margins,
contain lots of multi-token entities.

The different values of α in Figure 2 show how
entity types vary in recognition difficulty. Chem-
ical and gene entities (BC4CHEMD, JNLPBA)
have much higher values (>0.94) because they
use standard naming patterns that make individ-
ual words more important. Disease and anatomy
terms (BioNLP13GE, BC5CDR, AnatEM) have
lower values (0.56-0.66) because they need more
context to understand ambiguous and less consis-
tent names.

4 Conclusion

The potential of the proposed adaptive token-
sequence loss with BioBERT embeddings is
demonstrated through the extensive empirical
analysis. By dynamically adjusting token-level
and sequence-level learning through the learnable
weight parameter (α), AdaBioBERT improves con-
textual understanding and multi-token entity recog-
nition. Additionally, the integration of pre-trained
Word2Vec embeddings further refines semantic rep-
resentation in biomedical text. Despite its effec-
tiveness, AdaBioBERT has high computational
costs and may struggle with highly specific hi-
erarchical entities. Future work will extend Ad-
aBioBERT to broader biomedical information ex-
traction tasks, including relation extraction, sen-
tence classification, and document classification, to
boost knowledge discovery in biomedical research.
Codes available at: https://github.com/sumit-
kumar-9297/AdaBioBERT-NER.git
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Abstract

The classification of medical statements in Ger-
man doctor-patient interactions presents signif-
icant challenges for automated medical infor-
mation extraction, particularly due to complex
domain-specific terminology and the limited
availability of specialized training data. To
address this, we introduce a manually anno-
tated dataset specifically designed for distin-
guishing medical from non-medical statements.
This dataset incorporates the nuances of Ger-
man medical terminology and provides a valu-
able foundation for further research in this do-
main. We systematically evaluate Transformer-
based models and multimodal embedding tech-
niques, comparing them against traditional
embedding-based machine learning (ML) ap-
proaches and domain-specific models such as
medBERT.de. Our empirical results show that
Transformer-based architectures, such as the
Sentence-BERT model combined with a sup-
port vector machine (SVM), achieve the highest
accuracy of 79.58% and a weighted F1-Score
of 78.81%, demonstrating an average perfor-
mance improvement of up to 10% over domain-
specific counterparts. Additionally, we high-
light the potential of lightweight ML-models
for resource-efficient deployment on mobile de-
vices, enabling real-time medical information
processing in practical settings. These findings
emphasize the importance of embedding selec-
tion for optimizing classification performance
in the medical domain and establish a robust
foundation for the development of advanced,
domain-adapted German language models.

1 Introduction

With the introduction of the Transformer architec-
ture by Vaswani et al. (2017), substantial progress
was achieved in many application areas, including
general natural language processing (NLP) tasks
and also in the field of medicine. However, models
based on the Bidirectional Encoder Representa-
tions from Transformers (BERT) architecture (De-

vlin et al., 2018), initially trained on large-scale,
general-purpose datasets such as Wikipedia, have
struggled to accurately classify medical informa-
tion in German datasets due to the complex and
specialized vocabulary of medical language and the
scarcity of labeled domain-specific datasets (Idrissi-
Yaghir et al., 2024). To address these challenges,
specialized models for the medical domain have
been developed. An example is the German model
medBERT.de, which has been fine-tuned with med-
ical data and achieves an average Area Under the
Receiver Operating Characteristic (AUROC) score
of approximately 88% on various evaluated med-
ical benchmarks (Bressem et al., 2024). Domain-
specific models like medBERT.de can, for instance,
detect whether medically relevant information is
discussed in dialogues between doctors and pa-
tients. This capability is critical for extracting rele-
vant data for patient documentation and improving
the Electronic Health Record (EHR) system. Med-
ical documentation is a cornerstone of healthcare,
supporting patient care, legal accountability, and
research. Yet, the processing of German medi-
cal texts remains challenging due to the inherent
linguistic complexity and the limited availability
of annotated datasets. As our contribution in this
paper, we compare different Transformer-based
models fine-tuned for medical data with traditional
embedding-based methods. In particular, we fo-
cus on the analysis of German doctor-patient in-
terviews to determine the most effective approach
for classifying medical statements. Furthermore,
we introduce a manually labeled dataset of medical
statements to support future research in the pro-
cessing of German medical texts. In doing so, we
address two research questions:

• RQ1: How does the performance of Trans-
former models fine-tuned on medical data
compare to traditional embedding-based ap-
proaches in classifying German doctor-patient
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interviews?

• RQ2: How does the performance of fine-
tuned Transformer and machine learning
(ML)-models improve when evaluated on
dataset of medical statements for domain-
specific German medical texts?

2 Related Work

The classification of text in a medical context rep-
resents a fundamental challenge in the field of
NLP, particularly in the medical domain. Ac-
curate categorization of medical documents can
significantly improve information extraction and
decision-making processes (Kesiku et al., 2022).
The complex and specialized terminology in med-
ical texts poses a particular difficulty. Managing
synonyms, polysemy, and multi-word terms is es-
sential, as these can distort the true meaning of
a text (Shanavas et al., 2020). In addition, med-
ical text data often shows low density and high
dimensionality due to its special linguistic charac-
teristics, making its classification more challenging
compared to other domains (Zhou et al., 2021).

Several studies have shown that ML-models may
achieve high accuracy in medical text classification
when adapted to the specific language and struc-
ture of medical texts. These techniques include
support vector machines (SVMs), naive Bayes, lo-
gistic regression, and k-nearest neighbors (k-NNs).
These methods are often combined with word rep-
resentation models, such as term frequency-inverse
document frequency (TF-IDF) and Word2Vec, to
improve classification performance. (Mascio et al.,
2020; Almazaydeh et al., 2023)

Almazaydeh et al. (2023) used the mtsam-
ples.com dataset (MTSamples, 2025) to train ML-
models using TF-IDF, Bag-of-Words (BOW), and
Word2Vec as word representations. They were able
to classify 20 medical categories. The Word2Vec-
based k-NN classifier achieved an average accuracy
of 92%. However, the performance on German
medical datasets is unknown due to the challenges
posed by the strict regulatory framework of the
General Data Protection Regulation (GDPR).

Transformer-based models are gaining impor-
tance in medical NLP research. Idrissi-Yaghir
et al. (2024) compared different German BERT
architectures on medical datasets and evaluated
them on different downstream tasks such as named
entity recognition (NER), multi-label classifica-
tion, and extractive question answering. The re-

sults show that models with medical or translation-
based pre-training typically outperform generic
language models, as they are better at captur-
ing complex medical terminology and medical
context. The language models achieved the fol-
lowing average F1-Scores: CLEF eHealth 2019
(Neves et al., 2019): 0.820, RadQA (Dada et al.,
2023): 0.816, GraSCCo (Modersohn et al., 2022):
0.673, BRONCO150 (Kittner et al., 2021): 0.844,
and GGPONC 2.0 (Borchert et al., 2022): 0.779.
Idrissi-Yaghir et al. (2024) showed that continued
pretraining can match or even surpass the perfor-
mance of medical models trained from scratch. Fur-
thermore, pretraining on medical data or leverag-
ing translated texts has proven to be an effective
approach for domain adaptation in medical NLP
tasks. In addition to medBERT.de, there is also
BioGottBERT by Lentzen et al. (2022), which was
fine-tuned specifically on medical data. They con-
ducted a comprehensive analysis of the suitabil-
ity of existing and new transformer-based models
for the German biomedical and clinical domain by
systematically comparing 8 general-purpose lan-
guage models and 3 newly trained models, includ-
ing BioGottBERT and two BioELECTRA versions.
The study showed that General-Purpose Language
Models (GPLMs) performed surprisingly well on
clinical NLP tasks, with a German variation of
BERT called GBERT (Chan et al., 2020) perform-
ing particularly well on document classification
tasks and BioGottBERT on NER tasks. Domain
adaptation of existing models proved to be more
effective than training new models from scratch,
which was mainly attributed to the limited size of
the pre-training corpus.

In recent years, several German medical datasets
have been published, such as GGPONC (Borchert
et al., 2020) and BRONCO150 (Kittner et al.,
2021), which include annotation information for
NER and part-of-speech (POS) tagging. Other Ger-
man datasets, such as those from Makowski and
Simko (2018) and Suominen et al. (2020), lack
such annotation. Datasets like CLEF eHealth 2019
(Neves et al., 2019) offer German medical queries
and documents for information retrieval and ques-
tion–answering (QA); RadQA (Dada et al., 2023)
comprises German radiology reports with questions
to support radiological reasoning and GraSCCo
(Modersohn et al., 2022) offers annotated social-
care correspondence for entity and relation extrac-
tion. A specific German dataset for intent recog-
nition in doctor-patient interviews was developed
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by Rojowiec et al. (2020), consisting of 63 classes.
These classes represent various categories or inten-
tions of questions and statements that can occur
during doctor-patient conversations. The dataset
supports medical students in taking medical his-
tories by interacting with virtual patients, and the
doctors’ intentions were detected using BERT (Ro-
jowiec et al., 2020). Section 3 provides further
details on this dataset and its application in the
context of this paper.

While it has been shown that Transformer-based
models can perform well with domain adaptation,
their performance in German dialog-based context
recognition is not as well studied, and there is no
high-quality medical dataset available to classify
whether a statement contains medically relevant
information or not.

3 Data Acquisition

To develop a German contextualized ML-model for
classifying medical and non-medical statements,
we used the publicly available “Intent Recogni-
tion in Doctor-Patient Interview” (IntRec) dataset
(Rojowiec et al., 2020). This dataset consists of
German transcriptions of live doctor-patient in-
terviews conducted during university training ses-
sions, in which medical students interviewed actors
portraying patients, transcribing only the doctors’
statements. 80% of the entries in the dialogue se-
quence consist of statements in the form of ques-
tions directed at the patient, such as “When was
the surgery?” while 20% are normal statements,
such as “I think so, yes.”. For each entry, the cor-
responding class, its position within the sequence,
the previous statement, and the class of the preced-
ing statement are also provided. Table 1 shows the
corresponding metadata about the original dataset
before preprocessing.

Attribute Statistic
Total number of samples 2,397
Number of classes 63 (62 + “OTHER”)
Classes with ≤ 10 samples 50%
Largest class (“OTHER”) 1,169 samples
Second-largest class (“AM02”) > 85 samples
Annotated with two classes 101 (4%)
Average utterance length 10 words
Utterance Previous utterances, intention

Table 1: Overview of the dataset for intent recognition
in doctor-patient interviews.

The dataset consists of a total of 2,397 samples
with multiple dialogue-label pairs, where 101 of
these pairs have two label assignments. Each label

consists of a symptom category and a question ID.
The symptom category defines the symptom area,
and the question ID specifies the intent within that
area. For example, the label (PH10) belongs to
the “Prior History” category (PH) and refers with
question ID 10 to questions about “heart diseases”.
The dataset includes seven symptom categories (see
Table 2).

We developed a preprocessing pipeline in which
we divided the samples into individual dialogues
and their associated labels. Each utterance and
its corresponding labels, as well as the preceding
utterance and its labels, were assigned individually
to each target utterance and label. In the next step,
duplicates in the utterance column were removed,
resulting in a normalized dataset of 1, 418 dialogue-
class pairs.

Symptom Category Code
Main Symptoms MS
Prior History PH
Allergies and Medication AM
Social and Family History SF
System Review SR
Inquiry IQ
Other Questions OQ

Table 2: Symptoms categories and code, with “IQ” +
“OQ” summarized under the category “OTHER”.

To develop a classification model for detecting
medical statements, we transformed the multiclass
problem into a binary problem. The dataset was
transformed by grouping all categories unrelated
to “IQ” or “OQ” under the class “MEDICAL”,
while “IQ” and “OQ” were combined into the class
“OTHER”. Following the categorization described
by Rojowiec et al. (2020), the symptom category
“Inquiry”, although referring to previously posed
questions, was not considered to contain medically
relevant information. In addition, redundant punc-
tuation, such as quotation marks ("), was removed
from the documents using regular expressions as
an additional preprocessing step to improve data
quality. The normalized dataset was split into train-
ing and test data in an 80/20 ratio (see Table 3).
To address potential data bias, the dataset was ran-
domized prior to splitting.

In addition, a second test dataset was devel-
oped using the publicly available Berlin-Tübingen-
Oncology Corpus (BRONCO150) by Kittner et al.
(2021). This German-language corpus consists
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of 150 discharge summaries from cancer patients
treated at the Charité-Berlin University of Medicine
or the University Hospital of Tübingen. To prevent
the reconstruction of discharge summaries and pa-
tient identities, Kittner et al. (2021) shuffled the
summaries and anonymized them at the sentence
level. The dataset, originally intended for informa-
tion extraction from German medical texts, com-
prises 8, 976 sentences with POS annotations and
includes medical entities along with relevant at-
tributes like negation and speculation.

Since the BRONCO150 dataset contains not
only complete sentences but also other information
from discharge summaries, we manually labeled
the data to extract only complete sentences or medi-
cally accurate statements. For a realistic evaluation
of the models trained on the IntRec dataset, the
BRONCO150 dataset was manually labeled based
on specific criteria, categorizing statements as ei-
ther medical or non-medical:

1. The sentence contains a medical claim.

2. Punctuation at the end is not mandatory if the
content conveys a medical statement.

3. The sentence cannot be used as a title.

4. The sentence begins with an uppercase letter.

5. A sentence must not be a list or contain a
colon “:” unless it begins with a date and a
statement.

Manual labeling was conducted using the pub-
licly available tool LabelStudio1 (Tkachenko et al.,
2020-2025). Annotation was performed by a Com-
puter Science PhD student with expertise in NLP.
Of the 8, 976 records, 6, 863 medical statements
remain after labeling and duplicate removal. Ap-
proximately 60.15% of the data received the label
0 because many sentences contained formatting
information such as date values or document head-
ers, “Dear Sir or Madam” or document lines such
as “Line ID. from document”. This resulted in a
reduction, leaving 39.85% with a value of 1. In
addition, the dataset included partial sentences that
were not standalone statements, but related to the
previous line. Furthermore, enumerations were not
considered because they were not independent sen-
tences with statements. The following examples
from the BRONCO150 dataset are English trans-
lations of original German texts published in the

1https://labelstud.io/

work of Kittner et al. (2021). To demonstrate these
criteria, we present the following examples from
the BRONCO150 dataset. Statements labeled as
“MEDICAL” satisfy these conditions by express-
ing clear clinical information. For instance, the
direct quotes “On 07/04/2134, the patient received
an uneventful nivolumab infusion.” (Kittner et al.,
2021, Fig. 1) and “A highly suspicious HCC lesion
was observed in liver segment VI on CT.” (Kittner
et al., 2021, Fig. 1) reflect medical events and fulfill
criteria (1) to (5). In contrast, direct quotes such as
“Start of chemotherapy according to the GeT pro-
tocol cycle 1.” (Kittner et al., 2021, Fig. 1) or “Di-
agnoses: RA: choroidal melanoma (ED 07/2023)”
(Kittner et al., 2021, Fig. 3) are often abbreviated,
context-dependent, or formatted as titles or lists,
thereby violating criteria (3) and (5), and are classi-
fied as “OTHER”. The resulting German-language
dataset can be used not only for our case, but also
for fine-tuning German models on medical data,
with the aim of supporting medical data extrac-
tion and improving semi-automatic methods for
annotating medical documents. We use this dataset
to evaluate how well the transfer learning of all
trained models performs on unseen data, to under-
stand whether the models can understand not only
previous medical queries but also complex medi-
cal language and derive correct classifications for
medical statements. The fully labeled dataset by
Bahrololloomi (2025), consisting of the 8, 976 sen-
tence_ids and labels is publicly available in the
form of a CSV file. This dataset acts as a mapping
and can be combined one-to-one with the original
dataset by Kittner et al. (2021).

Dataset OTHER MEDICAL
Train/Validation 1134 (80%) 688 446
Test 284 (20%) 160 124
Test BRONCO150 6863 (100%) 4127 2736

Table 3: Data distribution and class distribution for
IntRec and the normalized BRONCO150 data with class
0 as “OTHER” and class 1 as “MEDICAL”.

4 Model Engineering

We extracted embeddings from four different Trans-
former models based on the BERT architecture
to classify medical statements within sentences.
These embeddings were then combined with five
traditional ML-models for classification. The ad-
vantage of pure embedding extraction, as opposed
to training the entire Transformer model, is evident
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in the decreased training duration and the capability
to efficiently adapt these models into a mobile vari-
ant. This adaptation facilitates their use for local
predictions, such as in smartwatches.

During the model selection process, we ensured
the use of a German, a multilingual, and a medi-
cally specialized English model to systematically
evaluate the transfer performance in the classifica-
tion process. The multilingual model is a variant of
the Sentence Transformer (Sentence-BERT)2 from
Reimers and Gurevych (2019). Additionally, we
used a general German BERT model (BERTger)3

(Bavarian State Library, 2025) to evaluate the trans-
fer performance of the BERT architecture on medi-
cal data.

We also selected the BioBERT model
(BioBERT)4 for the classification of medical docu-
ments. This model was developed by Deka et al.
(2022) and specifically trained on English scientific
publications related to medical trials. Furthermore,
the German model medBERT.de (MedBERT)5,
created by Bressem et al. (2024), was used. This
model was trained on a comprehensive collection
of German medical documents, including medical
reports and patient records. Due to its optimization
for longer texts, MedBERT is particularly suitable
for the analysis and classification of medical infor-
mation and outperformed other German-language
models in NLP tasks such as NER.

The following ML-models have been used: Cat-
Boost (Dorogush et al., 2018), RandomForest (RF)
(Pedregosa et al., 2011a), XGBoost (Chen and
Guestrin, 2016), SVM (Pedregosa et al., 2011a),
and LightGBM (Ke et al., 2017). In order to extract
the best possible embedding, we compared differ-
ent extraction strategies by calculating the average
of the last hidden states over the sequence dimen-
sion (mean pooling), extracting the maximum value
over all tokens (max pooling), and using the hidden
state of the first token (CLS token) as a representa-
tion of the entire sequence.

The overall architecture of our approach is as
follows. In the first step, the cleaned and shuffled
1, 134 sentences from the training and validation
IntRec dataset are passed to the four Transformer

2https://huggingface.co/sentence-Transformers/
paraphrase-multilingual-MiniLM-L12-v2

3https://huggingface.co/dbmdz/bert-base-germa
n-cased

4https://huggingface.co/pritamdeka/BioBert-P
ubMed200kRCT

5https://huggingface.co/GerMedBERT/medbert-5
12

models. Simultaneously, the mentioned extraction
strategies are applied to the vanilla variants of the
models to extract the required embeddings. These
embeddings are then fed to the five ML-models.
The same seed was used on the dataset to repro-
duce the same training and validation data. We use
Sentence-BERT as a baseline for comparison with
other Transformer models. Similarly, for the ML-
models, we apply a Word2Vec approach to convert
the medical data into embeddings, as suggested
by Almazaydeh et al. (2023). We did not train a
Word2Vec model from scratch, but used the pre-
trained German Word2Vec6 model from Yamada
et al. (2020). In the next step, fixed parameters
such as batch size, learning rate, and maximum
padding size calculated over both datasets are set
on the Transformer models, and hyperparameter
optimization is performed on the ML-models via
grid search using the validation data. The final step
involves evaluating all ML-models on the IntRec
and BRONCO150 test datasets.

5 Evaluation

As discussed in Section 4, the IntRec training and
validation data are initially utilized to train and op-
timize the four proposed Transformer models. This
process aims to identify the optimal parameters, en-
abling the selection of the most suitable model for
the subsequent steps. To ensure optimal computa-
tional efficiency, we first performed document anal-
ysis on both datasets to determine the maximum to-
ken length and padding size. The German medical
model MedBERT of Bressem et al. (2024) was used
for this determination. As shown in Table 4, a max-
imum padding size of 143 tokens is sufficient to
cover all sequences in both the normalized IntRec
(1, 418) and BRONCO150 (6, 863) datasets, each
consisting of labelled sentences. We also found that
the BRONCO150 dataset contains documents of a
greater length than the IntRec dataset. This discrep-
ancy can be attributed to the divergent nature of
the text: while the IntRec dataset is primarily com-
posed of doctor questions directed at patients, the
BRONCO150 dataset consists of discharge sum-
maries that require a more comprehensive level of
understanding.

The hyperparameters were set uniformly for all
Transformer models with a number of epochs of
20, a batch size of 20, a learning rate of 2× 10−5,

6https://huggingface.co/Word2vec/wikipedia2ve
c_dewiki_20180420_300d
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Metric IntRec 1418 BRONCO150 6863
Maximum Token Count 143 142
Average Length 14.90 18.32
Median Length 13.0 14.0
Standard Deviation 8.53 14.94

Table 4: Statistical properties of token lengths for both
datasets.

and a maximum padding size of 143. For opti-
mization, the AdamW optimizer is employed, as
it offers more robust convergence compared to the
traditional Adam optimizer due to its enhanced reg-
ularization through weight decay (Baevski et al.,
2020). To minimize overfitting, a linear scheduler
uniformly reduces the learning rate during train-
ing. Early stopping is implemented to terminate
training if the validation accuracy (val_acc) fails
to improve over three consecutive epochs. This
approach prevents overfitting and reduces unneces-
sary computation. The training loss is calculated
using BCEWithLogitsLoss from Pytorch (Paszke
et al., 2019). Our analysis indicates that mean
pooling is the most effective method for extracting
embeddings. Consequently, it is consistently ap-
plied across all ML-models (see Appendix Table
9).

Hyperparameter optimization of ML-models is
performed using Word2Vec embeddings with grid
search and triple cross-validation, evaluated based
on weighted F1-Score. The CatBoost model under-
goes a separate optimization process, since Grid-
SearchCV (Pedregosa et al., 2011b) is incompati-
ble with the Pool format of CatBoost. Instead, the
model is trained on a training dataset (train_pool)
and evaluated on a validation dataset (val_pool).
The best parameter configuration is determined
based on the highest F1-Score. In addition to the
application of hyperparameter optimization using
Word2Vec embeddings, extensive hyperparameter
exploration was simultaneously performed on the
full set of ML-models, incorporating every avail-
able variant of BERT embeddings. The best pa-
rameters for each model are listed in the Appendix
in the Table 8. These parameters are consistently
applied to all ML and Transformer models with-
out explicit mention in the Tables, as the optimal
parameters are always used.

After determining the best hyperparameters,
both the Transformer-based BERT models and
all variations of the ML-models with BERT and
Word2Vec embeddings were trained and validated
on the cleaned IntRec test data. To measure the

performance of the models, we use well-known
metrics such as accuracy, precision, recall and F1-
Score for both classes (medical and general). The
individual results on the validation data are shown
in Table 5.

Classifier Acc. Macro F1 Weighted F1 Gen. F1 Med. F1
Sentence-BERT 0.84 0.83 0.84 0.87 0.80
BERTger 0.84 0.84 0.84 0.87 0.81
BioBERT 0.77 0.76 0.77 0.80 0.72
MedBERT 0.85 0.84 0.85 0.88 0.81

Table 5: Performance of classification models on the
IntRec validation data.

The metric Medical F1-Score (Med. F1) indi-
cates how well the model correctly classifies med-
ical statements, in contrast to the metric General
F1-Score (Gen. F1), which represents the F1-Score
over documents labeled as general. The Macro
Avg F1-Score (Macro F1) calculates the average
F1-Score across all classes, regardless of their size.
In contrast, the Weighted Avg F1-Score (Weighted
F1) additionally weights the size of each class and
adjusts the F1-Score accordingly. The results show
that MedBERT delivers the best overall perfor-
mance, achieving an accuracy of 0.85 and a high
F1-Score in both the macro and weighted average.
The MedBERT model achieves a macro F1-Score
of 0.84 and a weighted F1-Score of 0.85, indicat-
ing its ability to effectively perform both balanced
and weighted classifications. In comparison, the
English BioBERT shows the weakest performance,
especially in the medical context, with an F1-Score
of only 0.72. This model only achieves an accuracy
of 0.77, indicating its limited ability to correctly
classify medical statements in this specific dataset.
Interestingly, both Sentence-BERT and BERTger
achieve similar performance, with an accuracy of
0.84 and a consistent Weighted and Gen. F1-Score
of 0.84 and 0.87, respectively. Both models show
strong and balanced classification performance, but
they perform slightly worse than the MedBERT
model. For the evaluation of the ML-models on
the IntRec validation data with the respective text
representations, the Weighted F1-Score is used as
evaluation metric (see Table 7).

Classifier Word2Vec Sentence-BERT BERTger BioBERT MedBERT
CatBoost 0.6839 0.8372 0.7621 0.6678 0.7813
RandomForest 0.6611 0.8121 0.7086 0.6535 0.7310
XGBoost 0.6551 0.8059 0.7519 0.6720 0.7671
SVM 0.6946 0.8330 0.7616 0.6668 0.7854
LightGBM 0.6654 0.8107 0.7599 0.6551 0.7567

Table 7: Weighted F1-Scores of ML-models with vary-
ing text representations on the IntRec validation data.
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Model Word Rep. Acc. IntRec F1-IntRec Acc. BRONCO F1-BRONCO

CatBoost

Word2Vec 0.6620± 3.33 e−16 0.6218± 1.11 e−16 0.5993± 1.11 e−16 0.4931± 5.55 e−17

Sent.-BERT 0.7746± 1.11 e−16 0.7614± 1.11 e−16 0.5974± 0.00 e−16 0.4787± 5.55 e−17

BERTger 0.7183± 1.11 e−16 0.7006± 1.11 e−16 0.6016± 0.00 e−16 0.4526± 5.55 e−17

BioBERT 0.6162± 1.11 e−16 0.6000± 2.22 e−16 0.6283± 2.22 e−16 0.5542± 1.11 e−16

MedBERT 0.6514± 1.11 e−16 0.6189± 1.11 e−16 0.6012± 1.11 e−16 0.4521± 0.00 e−16

RF

Word2Vec 0.6479± 1.11 e−16 0.6103± 1.11 e−16 0.5951± 0.00 e−16 0.4808± 1.66 e−16

Sent.-BERT 0.7394± 2.22 e−16 0.7145± 1.11 e−16 0.5920± 1.11 e−16 0.4584± 1.66 e−16

BERTger 0.6866± 1.11 e−16 0.6540± 1.11 e−16 0.6013± 0.00 e−16 0.4519± 0.00 e−17

BioBERT 0.6268± 1.11 e−16 0.6049± 1.11 e−16 0.6209± 2.22 e−16 0.5226± 2.22 e−16

MedBERT 0.6549± 0.00 e−16 0.6073± 1.11 e−16 0.6015± 0.00 e−16 0.4520± 1.66 e−16

XGBoost

Word2Vec 0.6268± 1.11 e−16 0.6091± 2.22 e−16 0.6088± 1.11 e−16 0.5087± 2.22 e−16

Sent.-BERT 0.7183± 1.11 e−16 0.6994± 1.11 e−16 0.5997± 1.11 e−16 0.4953± 0.00 e−17

BERTger 0.6937± 2.22 e−16 0.6711± 3.33 e−16 0.6031± 2.22 e−16 0.4587± 5.55 e−17

BioBERT 0.6232± 1.11 e−16 0.6130± 0.00 e−16 0.6200± 0.00 e−16 0.5399± 0.00 e−16

MedBERT 0.6585± 2.22 e−16 0.6301± 1.11 e−16 0.6013± 0.00 e−16 0.4548± 5.55 e−17

SVM

Word2Vec 0.6549± 0.00 e−16 0.6469± 1.11 e−16 0.5659± 0.00 e−16 0.5043± 1.11 e−16

Sent.-BERT 0.7958± 1.11 e−16 0.7881± 2.22 e−16 0.5885± 0.00 e−16 0.4806± 5.55 e−17

BERTger 0.7465± 1.11 e−16 0.7370± 2.22 e−16 0.5990± 0.00 e−16 0.4518± 0.00 e−16

BioBERT 0.6338± 1.11 e−16 0.6093± 0.00 e−16 0.5911± 0.00 e−16 0.5322± 1.11 e−16

MedBERT 0.6761± 2.22 e−16 0.6395± 2.22 e−16 0.6013± 0.00 e−16 0.4516± 1.11 e−16

LightGBM

Word2Vec 0.6514± 1.11 e−16 0.6288± 1.11 e−16 0.5957± 1.11 e−16 0.5080± 0.00 e−16

Sent.-BERT 0.7852± 0.00 e−16 0.7746± 0.00 e−16 0.5955± 1.11 e−16 0.4717± 0.00 e−16

BERTger 0.7148± 0.00 e−16 0.6951± 1.11 e−16 0.6016± 0.00 e−16 0.4562± 5.55 e−17

BioBERT 0.6479± 1.11 e−16 0.6358± 1.11 e−16 0.6159± 0.00 e−16 0.5380± 2.22 e−16

MedBERT 0.6831± 1.11 e−16 0.6560± 0.00 e−16 0.6010± 2.22 e−16 0.4526± 1.66 e−16

Sent.-BERT - 0.7676± 1.11 e−16 0.7671± 1.11 e−16 0.5280± 0.00 e−16 0.5191± 1.11 e−16

BERTger - 0.7711± 2.22 e−16 0.7655± 2.22 e−16 0.5790± 2.22 e−16 0.4538± 1.66 e−16

BioBERT - 0.7218± 2.22 e−16 0.7101± 1.11 e−16 0.6018± 2.22 e−16 0.4796± 5.55 e−17

MedBERT - 0.7782± 2.22 e−16 0.7752± 0.00 e−16 0.6048± 1.11 e−16 0.4938± 0.00 e−17

Table 6: Performance of various classification models on IntRec and BRONCO150 test data, based on accuracy and
weighted F1-Score. The results include the mean and standard deviation from 100 evaluations.

The results show that, in contrast to the direct
comparison with the Transformer models, all ML-
models achieve the best results with multilingual
Sentence-BERT embeddings, reaching an average
Weighted F1-Score of 0.8198 with a low standard
deviation of 0.0114. This indicates a consistent
performance of the ML-models with this embed-
ding. In comparison, the BioBERT and Word2Vec
embeddings have an average performance that is
19.12% and 18.02% worse, respectively. These
differences in model performance indicate that the
multilingual Sentence BERT embeddings are best
suited for the given classification task. The stable
results show that this representation not only deliv-
ers high F1-Scores, but also exhibits low variance
between models, further demonstrating its robust-
ness. However, the overall results are worse than
those of the Transformer variants.

To evaluate the robustness of the Transformer
and ML-models, a data-driven analysis was per-
formed during inference. Both the test data of
the IntRec dataset and the normalized and labeled
6, 863 large BRONCO150 dataset were randomly

shuffled 100 times with different but fixed seeds
for the iteration index. Table 6 presents the results
obtained, showing the mean and standard deviation
for all metrics. Since the standard deviations for all
models are in the range of 10−16, they are presented
with the factor e−16. The results underline how cru-
cial both the choice of the classification model and
the underlying embedding representation are. Al-
though MedBERT showed the best performance
on the validation data, the MedBERT embeddings
overall do not perform optimally on the IntRec test
data. Notably, pure Transformer models do not
outperform on average an SVM working in combi-
nation with Sentence-BERT embeddings. In partic-
ular, this combination achieves the best results with
an accuracy of 0.7958 and a weighted F1-Score
of 0.7881. The superiority of the Sentence-BERT
embeddings over alternative representations such
as Word2Vec, BERTger, BioBERT or MedBERT
highlights the importance of a powerful embed-
ding base, especially in the analysis of medical
datasets. Furthermore, the extremely low standard
deviations confirm the high robustness and repro-
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ducibility of the results, a factor further favored by
the weighted F1-Scores, which take into account
the class frequencies. Overall, the analysis shows
that for optimal classification performance in the
medical domain, not only the model complexity,
but also the targeted selection of embeddings is of
central importance.

Given that the BRONCO150 dataset consists en-
tirely of domain-specific medical statements, and
that no prior model training has included such
data, its evaluation provides a potential means of
exploring the transfer learning ability of differ-
ent approaches when confronted with novel and,
to some extent, partially different sentence struc-
tures. Table 6 shows that all models achieve robust
results, with accuracy values mostly above 59%
and weighted F1-Scores delivering consistent re-
sults. It is worth noting that the CatBoost model
combined with BioBERT embeddings achieves
the best results with an accuracy of 0.6283 and
a weighted F1 Score of 0.5542. These results sug-
gest that BioBERT embeddings, which are already
pre-trained on medical texts, offer a significant ad-
vantage in the classification of purely medical sen-
tences. The observed differences in performance
can mainly be explained by the different charac-
teristics of the datasets. While the IntRec dataset
used for training mainly contains doctor-patient
interviews with comparatively simple medical ter-
minology, the content of the BRONCO150 dataset
is based on discharge summaries, which document
the course of treatment and the main medical find-
ings and therapy decisions in detail. This high
degree of precision and the distinct linguistic style
complicate the direct transfer of the classification
capabilities acquired during training, thereby ac-
counting for the divergent results.

6 Discussion

Our study investigated the classification of medical
statements in German doctor-patient dialogues by
integrating Transformer-based models with tradi-
tional ML-models that leverage BERT-based em-
beddings. The evaluation provided key insights
into model performance and domain adaptability,
while highlighting the trade-offs between general-
purpose and domain-specific methods. Regarding
RQ1, our findings reveal that domain-specific mod-
els such as MedBERT.de even though explicitly op-
timized for medical texts do not exhibit a significant
advantage over general-purpose Transformer mod-

els in dialogue-based medical contexts. Sentence-
BERT, a non-domain-specific model, achieved an
F1-Score of 0.84, which is nearly equivalent to
that of MedBERT.de (F1 = 0.85). This suggests
that high-quality sentence embeddings extracted
from general Transformers can compensate for the
lack of domain-specific pretraining in certain sce-
narios. In contrast, the comparatively weaker per-
formance of BioBERT shows challenges related
to linguistic and data-specific adaptation, particu-
larly in cross-lingual settings. Our evaluation indi-
cates that hybrid approaches such as combining an
SVM classifier with Sentence-BERT embeddings
yield strong performance on the test set, achiev-
ing the highest accuracy (0.80) and weighted F1-
Score (0.79). This finding emphasizes the impor-
tance of careful selection of embedding strategies
and model architectures for the effective classifi-
cation of medical statements. To understand the
performance differences observed in RQ2, it is im-
portant to note that, while both datasets contain
German medical language, they differ in context
and linguistic formality: IntRec features short, spo-
ken questions, whereas BRONCO150 consists of
structured discharge summaries. In the context of
RQ2, the evaluation on the BRONCO150 dataset,
which consists of structured medical texts, shows
that models trained on conversational data strug-
gle to generalize to more formal medical docu-
ments. While Sentence-BERT based models excel
in doctor-patient dialogues, domain-specific em-
beddings like BioBERT deliver better performance
for structured medical statements. This divergence
shows the need to tailor embedding strategies to
the specific nature of the text being analyzed. In
conclusion, our research confirms that Transformer-
based models, when optimally integrated with ad-
vanced embedding strategies, are capable of deliv-
ering accurate and robust classification of medical
statements. The RQ1 is answered, showing the fea-
sibility of employing hybrid approaches in doctor-
patient interviews. This work not only sets a solid
foundation for the evolution of more sophisticated
models in the field but also highlights the criti-
cal importance of careful embedding selection and
parameter tuning in navigating the challenges in-
herent in specialized medical language. Regarding
RQ2, the complexity of the BRONCO150 dataset
poses a significant challenge. None of the models
achieved a good F1-Score on this data. Although
accuracy remained higher than the F1-Score, this
suggests that the models are more effective at clas-
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sifying “OTHER” statements while struggling with
“MEDICAL” ones.

7 Conclusion and Future Work

This study identifies several opportunities for future
research. A practical evaluation of the proposed
methods in real-world medical settings is essential
to assess their effectiveness in automated text ex-
traction within EHR systems. In this context, the
application of knowledge distillation techniques
should be explored to adapt models for resource-
constrained environments, such as mobile devices
and smartwatches, enabling real-time processing.
In addition, future work should systematically in-
vestigate the extent to which automatically gen-
erated examples (e.g., via GPT-4o or other Large
Language Models (LLMs)) can reduce the need for
manual labeling. In particular, it is crucial to assess
the quality of the resulting pseudo-labels and to ex-
plore how a hybrid approach (synthetic + manual)
can yield robust models in resource-constrained en-
vironments. Furthermore, extending the approach
to multi-turn dialogues and incorporating clinician
feedback could enhance classification accuracy and
system robustness. To better capture the context of
IntRec’s short and isolated sentences, we plan to
reframe the task as a QA problem by concatenating
each QA instance into a single input and predicting
its original label. Future work should also focus on
optimizing embedding selection strategies, lever-
aging data augmentation techniques, and investi-
gating transfer learning approaches to mitigate the
performance gap between conversational and struc-
tured medical texts. Additionally, evaluating these
models in real-world deployment scenarios, such
as automated documentation systems, will provide
valuable insights into their practical applicability.
By addressing these challenges and refining current
methodologies, future research can significantly
improve the efficiency and domain relevance of
automated medical text processing.
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A Appendix

Classifier Parameter Word2Vec Sentence-BERT BERTger BioBERT MedBERT

SVM

Kernel Type poly poly poly poly rbf
Kernel Degree 4 3 4 2 2
Cost 10 1 1 10 1
Gamma scale scale scale scale 0.01
Coef0 0 0.5 0.5 0.5 0

RF

Bootstrap False False False False False
Max Depth 20 20 20 10 20
Max Features sqrt sqrt sqrt sqrt sqrt
Min Samples Leaf 1 2 1 4 2
Min Samples Split 5 5 2 10 2
n Estimators 1500 500 500 500 500

LightGBM
Num Leaves 31 31 31 31 31
n Estimators 1000 2000 2000 1000 1000
Learning Rate 0.01 0.1 0.1 0.01 0.01

CatBoost
Depth 6 6 6 8 6
Iterations 1000 1000 3000 1000 1000
Learning Rate 0.01 0.1 0.01 0.01 0.01

XGBoost
Max Depth 8 8 8 6 8
n Estimators 2000 1000 1000 2000 1000
Learning Rate 0.01 0.01 0.01 0.01 0.01

Table 8: Optimized hyperparameters of ML-models
based on grid search for different embeddings.

Classifier with Sentence-BERT Mean Pooling Max Pooling CLS Token
CatBoost 0.8372 0.5242 0.6858
RandomForest 0.8121 0.6375 0.7671
XGBoost 0.8059 0.5130 0.7105
SVM 0.8330 0.6768 0.7196
LightGBM 0.8107 0.4799 0.7205

Table 9: Weighted F1-Scores for ML-models using
different extraction strategies on the IntRec validation
dataset.
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Abstract

Animal research, sometimes referred to as pre-
clinical research, plays a vital role in bridging
the gap between basic science and clinical ap-
plications. However, the rapid increase in publi-
cations and the complexity of reported findings
make it increasingly difficult for researchers to
extract and assess relevant information. While
automation through natural language process-
ing (NLP) holds great potential for addressing
this challenge, progress is hindered by the ab-
sence of high-quality, comprehensive annotated
resources specific to preclinical studies. To fill
this gap, we introduce PreClinIE, a fully open
manually annotated dataset. The corpus con-
sists of abstracts and methods sections from
725 publications, annotated for study rigor indi-
cators (e.g., random allocation) and other study
characteristics (e.g., species). We describe the
data collection and annotation process, outlin-
ing the challenges of working with preclinical
literature. By providing this resource, we aim
to accelerate the development of NLP tools
that enhance literature mining in preclinical re-
search.

1 Introduction

Developing new therapies from animal models
to human treatments, known as bench-to-bedside
translation, has a low success rate: Only 1 in 20
therapies advances to human use (Ineichen et al.,
2024). This contrasts with the extensive use of
animals in research, estimated at over 50 million
per year globally (Taylor and Alvarez, 2019). The
factors that determine successful translation remain
poorly understood (Seyhan, 2019).

A systematic assessment of information on ex-
perimental design, model and drug selection, as
well as animal usage can provide insights into how
animal research informs human health. The full-
text, and especially the methods sections of sci-
entific articles contain concrete, verifiable details
about these aspects, which are often omitted or

misrepresented in article abstracts (Li et al., 2017).
These factual descriptions form the foundation of
a study and are critical for evaluating its design,
rigor, and to enable reproducibility (Menke et al.,
2020).

However, the volume of preclinical animal stud-
ies is overwhelming, with hundreds of thousands
published annually (Ineichen et al., 2023). While
large-scale analysis methods exist, they primarily
focus on human data or only on abstract level data
(Chapman et al., 2011; Doneva et al., 2024). Ani-
mal studies, with their highly heterogeneous exper-
imental approaches and less standardized reporting,
remain largely unaddressed.

There is a critical need for computational meth-
ods to extract and integrate these data at scale, since
a more detailed understanding of the drug develop-
ment process could not only improve experimental
animal welfare but also enhance the efficiency of
human therapies. As a first step towards that goal,
our study aims to create a large, manually annotated
corpus of animal study publications, including ab-
stracts and method sections. We share all resources
on GitHub1.

2 Related Work

NLP methods have been commonly applied in the
preclinical domain for abstract classification tasks.
For example, a recently published dataset aims to
help with the identification of animal studies and al-
ternative experimental models (Neves et al., 2023).
Another application is the automated selection of
relevant published articles for specific literature re-
view questions, as well as the assessment of risk
of bias items (e.g., random allocation) (Bannach-
Brown et al., 2019; Wang et al., 2022b).

Information extraction from preclinical literature
is an emerging, but less developed, area of research.

1https://github.com/Ineichen-Group/
Preclinical_IE_Dataset
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STEED, for instance, is an R-based text mining
tool that uses regular expressions to automatically
extract key experimental details, such as animal
species, disease models, and randomization from
neuroscience in vivo studies. It has been devel-
oped on 45 full-text articles and validated on 275
articles (Zurrer et al., 2024). Another approach,
Menagerie, combines rule-based, dictionary-based,
and machine learning techniques to extract six pre-
defined animal study characteristics (Zeiss et al.,
2019). This work is based on a manually curated
dataset of 504 PubMed abstracts, annotated with
classes such as species or animal model at the ab-
stract level, and with gene names at the token level.
Another related work targets information extrac-
tion based on the established framework of Popu-
lation/Problem, Intervention, Comparator and Out-
come (PICO) (Wang et al., 2022a). For this, 400
abstracts of preclinical studies have been annotated
for each PICO-related mention, and the task was
solved as sentence classification, followed by entity
recognition. Another study proposed combining a
regex-based method with a generative LLM to ex-
tract interventions from preclinical animal studies
on Alzheimer’s disease (Pu et al., 2024).

Despite recent advances, existing corpora remain
limited in scope - typically focusing on narrow dis-
ease domains, containing small datasets (around
500 documents), and offering only abstract-level
annotations. For example, Menagerie was vali-
dated solely for Parkinson’s disease. In contrast,
our corpus is, to our knowledge, the most com-
prehensive resource of its kind: it includes 725
documents from the general neuroscience domain,
with manual annotations on both the abstract and
the methods section, a critical source of experimen-
tal detail. This results in 1,450 annotated sections.
Importantly, we used three annotation levels (doc-
ument, sentence, and token), aiming to match the
typical granularity of information relevant to re-
searchers. This structure also should reflect the
nature of the content: some elements, like conclu-
sions, require sentence- or document-level annota-
tion, whereas others, like individual drugs, can be
annotated at the token level.

3 The Corpus

3.1 Data Collection

A search string for PubMed and EMBASE was
designed to identify animal studies on therapeu-

tic interventions2. From the retrieved references,
4,000 records were randomly selected for screening
by two independent reviewers based on inclusion
criteria: primary studies involving drug testing in
animals.

We used the automatic fetch function of the ref-
erence management tool EndNote to retrieve PDFs,
resorting to manual retrieval when necessary. We
used IBM Deepsearch to convert PDFs into text3,
followed by a regular expression-based algorithm
to classify paper sections such as methods and re-
sults. We included the methods sections because
they typically provide more detailed descriptions of
the employed methodology compared to abstracts.

3.2 Data Annotation

3.2.1 Annotation Guidelines
We define three levels of annotation. At the doc-
ument level, one or more labels are assigned to
the entire document. At the sentence level, we
highlight the sentence where the relevant informa-
tion appears (Table 1). Finally, at the token level,
individual words are annotated as named entities
(Table 2). We refined the annotation guidelines
iteratively to ensure maximum clarity and opti-
mize inter-rater agreement. The final guidelines
can be accessed at Annotation Guidelines (v5),
with a shortened version in Appendix B. Notably,
spans and documents can have more than one la-
bel. For example, weight and age of animals are
often reported in the same sentence, and a study
can involve both mice and rats in its experiments.

3.2.2 Annotation Process
From the 4000 random references, we excluded
two due to missing metadata, leaving 3,998 refer-
ences. Of these, 1,018 met the inclusion criteria
during the initial screening.

The annotation was conducted by five senior
medical students, starting with two pilot rounds of
20 and then 50 articles annotated by all annotators
to familiarize themselves with the task and to refine
the guidelines. In the final annotation round, 817
articles were distributed among them, with each
annotator receiving 179–181 articles with title, ab-
stract and method sections. Of these, 20 articles
were assigned to multiple annotators to calculate
inter-annotator agreement (IAA). The annotators

2Search date: from database inception to October 09, 2023.
Full search string available here: dataset search strings.

3IBM RPA PDF Extractor
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Parameter Label (frequency) Krippendorff’s Alpha
(95% CI)

Document-level Annotation

Animal species (A, M) Rat (806), Mouse (531), Other (28), Rabbit
(28), Monkey (20), Dog (15), Pig (10), Cat (6),
Guinea Pig (6)

0.97 (0.95, 1.00)

Control (A, M) Control-present (1135) 0.51 (0.29, 0.67)
Readout (A, M) Physiology (400), Behaviour (938), Histology

(921), Other (896), Imaging (92)
0.48 (0.39, 0.55)

Animal sex (A, M) Not reported (717), Male (524), Female (129),
Both sexes (63)

1.00 (1.00, 1.00)

Sentence-Level Annotation (Highlight)

Study conclusions (A) Positive (645), Neutral (22), Negative (18),
Mixed (15)

0.76 (0.74, 0.78)

Animal disease model (A) Model (649) 0.62 (0.60, 0.64)
Weight (M) Weight (514) 0.73 (0.71, 0.75)
Age (M) Age (476) 0.75 (0.73, 0.78)
Random allocation (A, M) Randomization (464) 0.60 (0.56, 0.64)
Blinded outcome assessment (A, M) Blinding (389) 0.97 (0.95, 0.98)
Animal welfare statement (A, M) Welfare (700) 0.96 (0.95, 0.97)
Animal Research: Reporting of In Vivo Experi-
ments Guidelines (A, M)

ARRIVE (15) —

Sample size calculation (A, M) Power (22) —

Table 1: Overview of document-level and sentence-level annotation categories. The “Label (frequency)” column
lists the available labels for each category along with their frequency in the final complete annotated dataset. For
document-level annotations, the frequency represents the number of documents (abstracts or methods) assigned to
each label. For sentence-level annotations, it indicates the number of unique sentences associated with each label.
The last column provides the Krippendorff’s Alpha inter-annotator-agreement score for that label on the subset of
the corpus annotated by all annotators (15 articles). The rows with a missing score correspond to the labels not
sufficiently represented in the subset. Abbreviations: A, abstract; M, methods.

Entity Type Entity # Unique # Avg Char Count Examples Krippendorff’s Alpha (95% CI)

Therapy-drug (A, M) 10348 2437 17.7 ± 18.1 beta-lactam antibiotic, ZM241385 0.73 (0.70, 0.75)
Therapy-other (A, M) 5216 1728 20.3 ± 15.8 auditory habilitation, treadmill training 0.59 (0.57, 0.61)
Disease (A) 3790 958 19.8 ± 11.0 minimal seizures, chronic paraplegia 0.79 (0.76, 0.81)
Strain (A, M) 1196 159 10.5 ± 18.7 Sprague Dawley, Fisher 344 0.84 (0.79, 0.88)
Animals-number (A, M) 342 144 5.5 ± 4.8 Eighty-five, 128 0.78 (0.50, 0.93)

Table 2: Overview of token-level annotations with total entity counts, unique instances counts, average character
number, and annotation examples. The last column provides the Krippendorff’s Alpha inter-annotator-agreement
score as measured on the subset of the corpus annotated by all annotators (15 articles). Abbreviations: A, abstract;
M, methods.

were allowed to exclude articles from annotation if
they did not fit the inclusion criteria4.

The annotators used a custom recipe developed
for the browser-based tool Prodigy to perform the
manual annotation (Montani and Honnibal, 2017).
An annotation task example is shown in Supple-
mentary Figure 2.

To compile the final dataset and perform an er-
ror analysis, the 20 multiple-assigned articles were
reviewed, with conflicts adjudicated through dis-
cussion. The final dataset consists of 725 unique ar-
ticles, and corresponds to 1450 abstract and method
sections.

4For example, some initially included papers were related
to a diagnostic procedure rather than an intervention.

3.2.3 Inter-Annotator Agreement

Five of the 20 common documents were excluded
by one or more annotators as not meeting the inclu-
sion criteria. To ensure the IAA score is measured
among all annotators, we removed the excluded
articles from the agreement calculations. This left
us with 15 unique articles, each with an abstract
and method section (30 annotated documents).

We report the IAA among the five annotators
using Cohen’s Kappa for pairwise agreement calcu-
lation and Krippendorff’s Alpha for the calculation
of agreement among all annotators (Cohen, 1960;
Hughes, 2021).
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3.3 Results
3.3.1 Corpus Overview
Our final annotated corpus consists of the abstracts
and methods sections from 725 published neuro-
science articles, primarily dated between 2010 and
2020. The most frequently represented journals
include European Journal of Pharmacology and
PLoS ONE (Supplementary Figure 1).

Based on the document level annotations, the
corpus predominantly comprises studies involv-
ing mice and rats (Table 1). Additionally, there
is a marked bias toward male animals and re-
porting of animal sex information in the meth-
ods section. Furthermore, there were often mul-
tiple selected options for the experimental readouts
(Supplementary Figure 3).

At the sentence level, the annotations reveal
that the majority of conclusion statements within
the corpus present positive findings. However, ad-
herence to reporting best-practice appears limited,
with relatively little to no mention of ARRIVE and
PREPARE guidelines (Percie du Sert et al., 2020;
Smith et al., 2018). Furthermore, explicit reporting
of sample size calculations is sparse (Table 1).

At the token level, therapy-related annotations
are the most prevalent, as these terms were an-
notated in both the abstract and methods sections
(Table 2). Disease and strain entities exhibit high
lexical variability, with high ratio of unique textual
representations across the corpus. Additionally,
many abbreviations are annotated, such as AD for
Alzheimer’s disease (Supplementary Figure 5).

3.3.2 Analysis of Annotation Disagreements
We observed several patterns of discrepancies in
the multiply-annotated documents selected for the
calculation of IAA:

• Text level annotations: “Readout” and “Con-
trol” were the most challenging document-
level classification tasks (Table 1). The lan-
guage describing the readouts varied greatly
across papers and was often not explicit.
Some annotators selected “other” in these
cases, while others attempted to infer a more
specific readout type. Furthermore, some an-
notators selected “histology” in cases when
there was clearly no mention of this readout,
suggesting a misunderstanding of the concept.
Similarly, the presence of control interven-
tion was rarely specified, even though the text
sometimes contained a comparison verb (e.g.,

“improved”). In such instances, where the pres-
ence of control is implicit, some annotators
marked the presence of control, while others
did not, leading to a lower agreement score.
The variability in pair-wise IAA is evident
from Supplementary Figure 4.

• Sentence level annotations: At the sentence
level, annotators often agreed on the study’s
overall conclusion but struggled to identify the
exact concluding sentence, sometimes confus-
ing it with a summary of findings. Variation in
punctuation usage—especially around colons
and semicolons—also caused inconsistencies
in the selection of annotation spans, resulting
in partial agreement. Annotation of “random-
ization” was meant to refer only to the alloca-
tion of animals into experimental groups, but
one annotator highlighted other contexts as
well.

• Token level annotations: At the token level
all entities except “therapy-other” achieved
a satisfactory level of agreement (Table 2).
We identified three main discrepancies. First,
some annotators occasionally missed entities,
either due to human error in reading longer
texts or a misunderstanding of the guidelines.
For instance gene mentions were sometimes
annotated as therapy (Nurr1, Fox2) when, ac-
cording to the guidelines, they should not be
annotated as such. Second, label disagree-
ments arose when different annotators as-
signed different labels to the same entity. For
instance, one annotator consistently labeled
antibody therapies as “therapy-other”, while
it should have been “therapy-drug”. Finally,
span disagreements occurred when some an-
notators included a preceding modifier as per
the guidelines instructions (e.g., “morphine-
induced”), while another did not. Such dis-
crepancies introduce noise in the dataset and
reduce the agreement score. The variability
in pair-wise IAA is shown in Supplementary
Figure 5.

4 Discussion and Conclusion

We introduced PreClinIE, an openly available cor-
pus for extracting study rigor indicators and exper-
imental details from published articles describing
animal research.

Our annotation process uncovered key chal-
lenges. Particularly there was a low agreement
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in control/comparator annotations, aligning with
findings from the related PICO study (Wang et al.,
2022a). At the same time, this study had stronger
performance for readout extraction, suggesting that
token-level annotation may be more suitable for
this task. Additionally, the high disagreement in
identifying the exact conclusion sentence suggests
that study conclusions might be best evaluated us-
ing the full document rather than isolated sentences.
Furthermore, we observed that crucial study details
often appear exclusively in the methods section,
emphasizing the importance of section-aware ex-
traction.

In designing the annotation scheme, we made
several pragmatic choices to balance granularity,
feasibility, and consistency. For example, while
our approach captures individual parameters such
as sex, strain, and treatment, it does not explicitly
encode relationships between these entities. As a
result, reconstructing complex experimental group-
ings may be challenging in studies involving mul-
tiple animal subgroups. Nevertheless, this design
simplifies annotation and aligns with our primary
goal of extracting key methodological features at
scale. Future work could explore incorporating re-
lational annotations to capture richer experimental
structures. Additionally, it may be possible to use
simpler heuristic rules, for instance, pairing species
and model terms that occur within a pre-specified
window in the text, to make those links more ex-
plicit (Zeiss et al., 2019).

Similarly, we chose to restrict some annotations
to single sentences. This constraint reduces cogni-
tive load for annotators. Although it may result in
missed information that spans multiple sentences,
such as animal welfare statements or methodolog-
ical clarifications, we find that capturing key in-
formation once in the text is sufficient for many
downstream applications. Future extensions of the
annotation scheme could explore cross-sentence
linking or section-level annotation to support more
nuanced analysis.

Beyond annotation challenges, our findings high-
light a male bias in animal use, a majority of posi-
tive conclusion statements indicative of reporting
bias, and insufficient reporting of sample size cal-
culations.

These patterns warrant further evaluation, as
they suggest systemic issues in study design and
reporting that could impact the reliability and repro-
ducibility of preclinical research findings (Beery
and Zucker, 2011; Button et al., 2013). As future

work, we plan to provide a baseline experiment
to illustrate how the dataset can support computa-
tional information extraction from preclinical lit-
erature. The corpus enables a range of NLP tasks,
such as named entity recognition and sentence clas-
sification, and can serve as a benchmark for model
development in this domain. We hope these efforts
will inspire further research in NLP models devel-
opment and evaluation, ultimately contributing to
more transparent and reliable scientific practices.

Limitations

Data Scope. Our developed dataset includes pub-
lications focusing mainly on research in neuro-
science. This may influence the generalizability
of our findings to other areas of research.

Annotation Setup. Only a small portion of the
dataset was multiply-annotated. We conducted
two annotation pilots to harmonize understand-
ing among annotators. However, more multiply-
annotated documents and additional training ses-
sions would likely have further improved annota-
tion quality.

Possible need for enrichment of the data. An-
other challenge is the under-representation of cer-
tain classes in our dataset. As an example of the
imbalance on the sentence-level annotations, the
number of positive study conclusions (625) dwarfs
the negative (18), neutral (21) and mixed (15) con-
clusions. Among document-level annotations, “an-
imal species” class shows that the majority of ani-
mals used for experiments are mice and rats, with
only a handful of other species found in the dataset
(see Table 1). Although likely reflecting the natural
distribution of the conclusions among publications,
this imbalance may limit the model performance
for those categories. Potential remedies include
merging our dataset with related ones, applying
targeted data collection strategies to expand cover-
age and improve class balance, or augmenting the
dataset with synthetic data.
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A Corpus Details and Statistics

A.1 Corpus Overview

Figure 1 shows the time range and journals repre-
sented in the corpus.

A.2 Annotations Overview

Figure 3 outlines the top 10 annotations across the
different document-level categories and their dis-
tribution by abstract and methods. Rodent models,
particularly rats and mice, dominate the dataset,
with other species such as rabbits, guinea pigs,
dogs, and monkeys appearing infrequently. Ex-
perimental outcomes are diverse, with histology
and behavior among the most common readouts,
often annotated together, indicating a tendency to
explore multiple endpoints, as well as possible an-
notation challenge. The majority of studies include
a control group, though fewer are explicitly men-
tioned in abstracts. For animal sex, a male bias is
evident, as well as lack of reporting of animal sex
in the abstract.

Figure 5 focuses on entity-level annotations
in the corpus. Therapy-related drug entities are
the most frequently annotated, with levodopa
(109 instances) and L-DOPA (86 instances) lead-
ing the list, followed by commonly studied com-
pounds such as morphine, MK-801, and cannabid-
iol (CBD). Beyond pharmacological interventions,
other therapy entities include treatments like ex-
ercise, acupuncture, and curcumin. Among dis-
ease entities, Alzheimer’s disease (96 instances)
and stroke (103 instances) are well-represented,
while neurodegenerative and neurological condi-
tions such as Parkinson’s disease (88 instances),
epilepsy (48 instances), and spinal cord injury (81
instances) also feature prominently. Regarding ani-
mal strains, Sprague-Dawley (239 instances) and
Wistar (207 instances) are the most frequently re-
ported. However, annotations for animal numbers
show substantial variability. The frequent presence
of abbreviations (e.g., AD for Alzheimer’s disease
and SD for Sprague-Dawley) suggests that entity
disambiguation is critical for accurate text interpre-
tation.

A.3 Inter-Annotator Agreement Scores

We report IAA for document-level (Figure 6, left),
as well as sentence-level and entity-type annota-
tions (Figure 6, right). For the latter, we com-
pute and report Krippendorff’s Alpha on the level
of tokens (words). This allows to capture partial

agreement, when annotators agree on the label but
disagree on its span, i.e. where exactly it starts and
ends in the text.

B Annotation Guidelines

See full document here Annotation Guidelines (v5).

B.1 Inclusion Criteria for Papers

Before starting the annotation, ensure the paper
meets the following eligibility criteria:

1. Experimental study in animals (excluding
humans).

2. The study tests an intervention with the goal
of improving animal health. The intervention
should be externally applied (e.g., gene knock-
out does not qualify).

• Apply criterium generously; include
studies where the exact purpose of a drug
treatment is not explicitly stated (e.g.,
testing different substances in animals
without claiming a therapeutic benefit).

• Exclude studies assessing the effect of
endogenous substances (e.g., endoge-
nously excreted miRNA-107).

3. The study models a neurological or psychi-
atric disease.

• Apply criterium generously, including
studies assessing pain in osteoporosis or
mentioning neurological complications
in systemic diseases such as cryptococ-
cosis.

If any of these criteria are not met, exclude the
study (no annotation required). If pertinent, ex-
clude at the abstract level to ensure all related
text sections (abstract, methods, and results) are
omitted.

B.2 General Rules on Annotation

B.2.1 Token Annotation
1. Consider Context: Identify Population (P),

Intervention (I), Control (C), and Outcomes
(O).

2. Annotate Only Relevant Information:

• Example: If a study uses male mice but
suggests repeating experiments in rats,
only mice should be annotated.
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Figure 1: Distribution of articles in the corpus by (left) publication year and (right) journal.

Figure 2: Annotation example shown in the annotation tool Prodigy.

• Example: If isoflurane is used for anaes- thesia but not as a treatment, do not an-
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Figure 3: Top 10 most frequent document-level annotations for (A) Species, (B) Outcomes, (C) Control, and (D)
Sex categories.

notate it.

B.2.2 Annotation Tasks
• Text Annotation: Entire text is classified

based on predefined labels.

• Sentence Annotation: Entire sentence (in-
cluding punctuation like colons and question
marks) is annotated.

• Token Annotation: Specific words or phrases
are annotated.

B.2.3 Additional Annotation Rules
1. Sentence annotations should exclude refer-

ences at the end of sentences.

2. Include incorrect spelling/grammar if rele-
vant.

3. Avoid mixing terms with and without brackets
in annotations (e.g., annotate oral appliance
and OA separately).

4. Do not annotate tokens where annotation
would require inclusion of punctuation due
to interface limitations.

5. Overlapping annotation between different tags
is allowed.

6. Annotate each parameter once per section (i.e.,
once in abstract and once in methods); conclu-
sions should only be annotated in the abstract.

7. Be careful in selecting the correct label, as
incorrect annotation affects inter-rater agree-
ment.

8. Do not annotate punctuation at the end of a
sentence.

9. Ignore manuscript parts mistakenly included
in the annotation interface (e.g., misplaced
discussion sections).
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Figure 4: Cohen’s Kappa scores for inter-annotator pairs for the categorical annotations in the overlapping articles.

B.3 Experimental Parameters
B.3.1 Animal species
Type: Population
Task: Text
Definition: The animal species used to test the
intervention of interest.
Examples: Rats, mice, monkeys, rabbits, etc.
Location in Paper: Abstract, Methods
Comments:

• Most studies use rats or mice, while monkeys,
pigs, cats, dogs, and rabbits are rarer.

• A study could use more than one species.

B.3.2 Animal strain
Type: Population
Task: Token
Definition: The animal strain further defining the
animal species. A strain is a genetic variant, a sub-
type, or a culture within a biological species.
Examples: BALB/cJ (mouse), C57BL/6J (mouse),
DBA/2J (mouse), Lewis (rat), Sprague-Dawley
(rat).
Location in Paper: Abstract, Methods
Comments:

• A study could use more than one strain.

• Only annotate the strain (not the species).

• Be careful to separate strain from transgenic
identification.

B.3.3 Animal sex
Type: Population
Task: Text
Definition: The animal sex further defining the
animal species.
Examples: Male, female, both sexes.
Location in Paper: Abstract, Methods
Comments:

• A study could use either male, female, or both
sexes.

• Some studies do not report the sex used.

• Only label the sex used to test the drug of
interest.

B.3.4 Diseases mentioned
Type: Population
Task: Token
Definition: Diseases of interest related to the used
animal model(s).
Examples: Multiple sclerosis, stroke, spinal cord
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Figure 5: Cohen’s Kappa scores for inter-annotator pairs for the NER annotations in the overlapping articles (left
column). Top 15 most frequent NER entity text spans in the full dataset (right column).

injury, etc.
Location in Paper: Title, Abstract

Comments:

• Annotate only diseases relevant to the study.
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Figure 6: Krippendorff’s alpha scores for different annotation levels. (Left) Krippendorff’s alpha for document-level
annotations. (Right) Krippendorff’s alpha for token- and sentence-level annotations. Alpha score is computed on a
per-token basis.

• Do not annotate disease models like MCAO
or EAE.

• Include abbreviations (e.g., MS).

• Annotate more and less specific mentions
(e.g., Alzheimer’s disease and dementia).

B.3.5 Number of animals used in total
Type: Population
Task: Token
Definition: The total number of animals used in
the study.
Examples: "A total of 968 animals (618 mice and
350 rats) were used."
Location in Paper: Abstract, Methods
Comments:

• Only annotate the exact total number.

• The number might be reported more than
once.

B.3.6 Therapy
Type: Intervention
Task: Token
Definition: The therapeutic intervention tested.
Examples: Electroacupuncture, melatonin therapy.
Location in Paper: Title, Abstract, Methods
Comments:

• Two labels:

– Drug (e.g., a small molecule, siRNA).

– Non-drug (e.g., exercise, herbal ex-
tracts).

• Control treatments should be annotated.

• Do not annotate dosing or application infor-
mation.

B.3.7 Control mentioned
Type: Control
Task: Text
Examples: "Group 1 (control) received saline."
Location in Paper: Abstract, Methods
Definition: Whether the control group/treatment
was mentioned.
Levels:

• Control yes

• Control not reported

B.3.8 Readouts
Type: Outcome
Task: Text
Definition: The readouts used to assess interven-
tion efficacy.
Examples: "We used Nissl staining and MRI to
assess stroke volume."
Location in Paper: Abstract, Methods
Levels:

• Behavior (e.g., rotarod, seizure).

• Imaging (e.g., MRI, PET).
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• Histology (e.g., Nissl staining, H&E).

• Physiology (e.g., blood pressure, EEG).

• Other (e.g., PCR, Western blot).

B.3.9 Study conclusion

Type: Outcome
Task: Sentence
Definition: The main finding of the study, i.e., the
overall effect of the intervention.
Examples: "Our findings suggest a potential
therapeutic role for Galantamine in attenuating
hyperoxia-induced brain injury."
Location in Paper: Abstract
Levels:

• Positive

• Negative

• Neutral

• Mixed

B.3.10 Animal disease model

Type: Population
Task: Sentence
Definition: The animal model mimicking a
neurological or psychiatric condition.
Examples: "EAE was induced by immunizing
female Lewis rats with MOG55-66."
Location in Paper: Abstract

B.3.11 Animal age

Type: Population
Task: Sentence
Definition: The age of animals used.
Examples: "12-week-old female C57BL/6 mice
were used."
Location in Paper: Methods

B.3.12 Animal weight

Type: Population
Task: Sentence
Definition: The weight of animals used.
Examples: "Male Albino Swiss (20–25 g) mice
were used."
Location in Paper: Methods

B.4 Parameters Related to Study Quality
B.4.1 Randomization
Type: Study Quality
Task: Sentence
Definition: Whether the experimental setup used
randomization of animals.
Examples: "We randomly divided the experimen-
tal rats into five groups with six animals per group
as follows: . . . "
Location in Paper: Abstract, Methods
Comments:

• Only applies to circumstances describing the
randomization of animals into (treatment)
groups.

• Does NOT apply to other instances of random-
ization (e.g., “we analyzed 5 random fields of
view”).

• In most cases, only one sentence describes
randomization, but more than one could be
annotated if different species are described
separately.

• Together with blinding, it is one of the most
critical study quality items.

• Annotate the entire sentence.

• If unsure, be generous with annotation.

B.4.2 Blinding
Type: Study Quality
Task: Sentence
Definition: Whether the experimental setup used
blinding of experimenters.
Examples:

• "Experimenters were blinded to the treatment
group."

• "Researchers were unaware of the treatment
of the animals."

• "All behavioral measurements were made by
an observer unaware of the treatment."

Location in Paper: Abstract, Methods
Comments:

• Blinding can occur at any step: during treat-
ment, analysis, or both.

• Typically, only one sentence describes blind-
ing, but multiple sentences may exist for dif-
ferent species/experiments.
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• Together with randomization, it is a crucial
study quality item.

• Annotate the entire sentence.

• If unsure, be generous with annotation.

B.4.3 Animal Welfare Statement
Type: Study Quality
Task: Sentence
Definition: Whether the animal study complies
with local, regional, national, or international ani-
mal welfare guidelines.
Examples:

• "On October 29, 2019, the institutional Ethics
Committee at NODCAR and Faculty of Phar-
macy, Cairo University, approved all animal
procedures."

• "All mice were maintained under specific
pathogen-free conditions and used for experi-
mentation according to protocols approved by
the Swiss Federal Veterinary Office."

Location in Paper: Abstract, Methods
Comments:

• Usually, only one sentence describes animal
welfare, but multiple sentences may exist for
different species/experiments.

• Statements should mention compliance with
guidelines/regulations or approval by an ethics
committee.

• Commonly reported.

B.4.4 ARRIVE Guidelines
Type: Study Quality
Task: Sentence
Definition: Whether the study follows the AR-
RIVE guidelines, which provide standards for re-
porting methodological details in animal experi-
ments.
Examples:

• "In the current study, we handled the animals
consistently in accordance with the ARRIVE
guidelines."

• "All studies involving animals are reported in
accordance with the ARRIVE guidelines for
reporting experiments involving animals."

Location in Paper: Abstract, Methods
Comments:

• Can be identified by searching for "ARRIVE"
(always in uppercase).

• Rarely reported.

B.4.5 PREPARE Guidelines
Type: Study Quality
Task: Sentence
Definition: Whether the study follows the PRE-
PARE guidelines.
Examples: Search for "PREPARE" in the docu-
ment.
Location in Paper: Abstract, Methods
Comments:

• Can be identified by searching for "PRE-
PARE" (always in uppercase).

• Very rarely reported.

B.4.6 Sample Size Calculation
Type: Study Quality
Task: Sentence
Definition: Whether the study conducted a prior
sample size calculation to determine how many
animals were required for the experiments.
Examples:

• "We conducted an a priori sample size calcu-
lation."

• "The power was calculated based on prior es-
timates."

Location in Paper: Abstract, Methods
Comments:

• Very rarely reported.
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Abstract
Many language models (LMs) in the literature
claim excellent zero-shot and/or few-shot ca-
pabilities for named entity recognition (NER)
and relation extraction (RE) tasks and assert
their ability to generalize beyond their training
datasets. However, these claims have yet to be
tested across different model architectures.

This paper presents a performance evaluation
of zero-shot relation triplet extraction (NER
followed by RE of the entities) for both small
and large LMs, utilizing 13,867 texts from
61 biomedical corpora and encompassing 151
unique entity types. This comprehensive eval-
uation offers valuable insights into the prac-
tical applicability and performance of LMs
within the intricate domain of biomedical rela-
tion triplet extraction, highlighting their effec-
tiveness in managing a diverse range of rela-
tions and entity types.

Gemini 1.5 Pro, the largest LM included in the
study, was the top-performing zero-shot model,
achieving an average partial match micro F1 of
0.492 for NER, followed closely by SciLitLLM
1.5 14B with a score of 0.475. Fine-tuned mod-
els generally outperformed others on the cor-
pora they were trained on, even in a few-shot
setting, but struggled to generalize across all
datasets with similar entity types. No models
achieved an F1 score above 0.5 for the RTE
task on any dataset, and their scores fluctuated
based on the specific class of entity and the
dataset involved. This observation highlights
that there is still large room for improvement
on the zero-shot utility of LMs in biomedical
RTE applications.

1 Introduction

In the field of biomedical natural language process-
ing (NLP), large efforts are being made to create
natural language models (LMs) capable of extract-
ing certain entity types and/or relationships, requir-
ing large sets of manually annotated texts. Re-
cently, large language models (LLMs) have proven

useful in extracting information from text in a zero-
/few-shot fashion, potentially enabling information
extraction (IE) where a smaller user-provided an-
notation may suffice to accomplish the task at hand
(Dagdelen et al., 2024). In this study, we focus on
biomedical relation triplet extraction (RTE). RTE
consists of identifying entities from a list of allowed
entity types (such as genes, diseases, etc.) and the
type of relationship that exists between them. Thus,
RTE can be broken down into a combined named
entity recognition (NER) and relation extraction
(RE) task. This extraction is valuable for identify-
ing evidence of specific biological connections in,
for example, knowledge base (KB) or knowledge
graph construction (KGC). Our goal is to investi-
gate the best architectures for reliable biomedical
zero-shot RTE to inform model choice for down-
stream specific biomedical KB question-answering
(QA) tasks.

Multiple papers have benchmarked LLMs for IE
tasks on biomedical texts (Dai et al., 2024; Jahan
et al., 2024; Chen et al., 2025), and there are multi-
ple established combined benchmark datasets (e.g.
BLURB (Gu et al., 2021)) and LLM instruction
datasets (e.g. SciRIFF (Wadden et al., 2024)), but
two main points remain unaddressed:

1. The generalisability of RTE performance out-
side of the corpora the models are trained on.
Performance reporting for the models usually
only includes the validation/test set perfor-
mance for the datasets they were trained on,
thus not truly evaluating their generalisabil-
ity. Performance reporting for some models
on certain datasets may also be sensitive to
bias through their inclusion in the LLM pre-
training (due to the opaqueness of data being
used in training of closed-sourced LMs), ne-
cessitating performance benchmarking on less
commonly used datasets.

2. A direct comparison of zero-shot capabil-
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ities of generative, decoder-only LLMs to
the newest BERT-like (and other) LMs for
biomedical NER/RE.

We compared the zero-shot RTE performance
across various model architectures using a large
combined corpus of gold-standard NER & RE an-
notation datasets outside of the most commonly
used benchmark datasets and across multiple archi-
tectures.

2 Datasets

To begin with, we assembled an extensive biomed-
ical gold-standard corpus. For this purpose, we
compiled a total of 61 different biomedical corpora
suited for public and commercial use, including
representative subsets from BigBIO (Fries et al.,
2022) featuring NER and/or RE annotations, as
well as the ComplexTome (Mehryary et al., 2024)
and RegulaTome (Nastou et al., 2024) datasets. Al-
together, the combined corpus comprises 13,867
texts, including 9,804 abstracts (70.7%), 1,596 sen-
tences (11.5%), and the remaining 2,467 regarded
as miscellaneous (such as case reports, full paper
paragraphs, etc.) or undefined. Additionally, 18
of the 61 corpora include annotations for 90 dis-
tinct relation types. In total, the entire selected
corpus comprises 151 distinct entity types, cate-
gorised into 11 groups: Organism, Gene/Protein,
Chemical, Disease, Medical, Gene-related,
Protein-related, Anatomy, Other biological,
Non-English, and Other. Definitions for these
groups can be found in appendix C).

Figure 1 characterises the text length, entity
count, relation count, and unique entity/relation
types within the test set for each corpus included
in our study. Details about the modifications made
to the corpora are provided in appendix B.

3 Models and methods

The 12 models included in this study are classi-
fied into five categories: BERT/BERT-like (Bidi-
rectional Encoder Representations from Transform-
ers), T5 (Text-to-Text Transfer Transformer), KGC-
SFT SLM (Knowledge Graph Construction Super-
vised Fine-Tuned Small Language Model), biology-
SFT SLM, and LLM. A comprehensive list of these
models, along with their architecture and maximum
context length, can be found in table 1.

The BERT models in this study include GLiNER,
NuNER, and ZeroShotBioNER. GLiNER (Gen-
eralist and Lightweight Model for Named Entity

Recognition) (Zaratiana et al., 2023) is a small, gen-
eralist NER model, introduced as an alternative to
traditional NER models. Unlike conventional mod-
els, GLiNER is not restricted to predefined entities,
even though it employs a BERT-like architecture.

Building on GLiNER, GLiNER Multi-task
(Stepanov and Shtopko, 2024) extends the capabili-
ties of the model to perform additional information
extraction tasks, such as RE and summarisation.

NuNER (Bogdanov et al., 2024) is another gen-
eralist alternative to GLiNER, distinguished by its
training method, which employs a contrastive learn-
ing approach on synthetic data generated by an
LLM (GPT-3.5).

ZeroShotBioNER (Košprdić et al., 2024) is a
BERT-based model, specifically a fine-tuned ver-
sion of BioBERT v1.1, trained on 26 biomedical
NER classes. It is designed for zero-shot infer-
ence across the biomedical domain, particularly
targeting chemicals, diseases, and proteins, and is
tailored for biological applications.

InstructUIE (Wang et al., 2023) utilizes a T5
architecture and is trained and evaluated on their
own curated information extraction benchmark set.
This set includes NER datasets from AnatEM,
BC5CDR, CHEMDNER, among others, encom-
passing a wide range of information extraction
tasks.

The two KGC-SFT SLMs, Triplex (SciPhi,
2024) and Phi3 Mini Graph (Emergent Methods,
2024), are fine-tuned versions of Phi3 models
specifically designed for generalist RTE.

SciLitLLM 1.5 (Li et al., 2024) is built upon
Qwen 2.5 and undergoes continuous pre-training
using an internal corpus comprising science text-
books and articles. It is subsequently fine-tuned
on SciRIFF (Wadden et al., 2024) as well as a syn-
thetic dataset designed for scientific literature un-
derstanding and instructions.

As the representative decoder-only, closed-
source LLM, we chose Gemini 1.5 Pro (Gem-
ini Team et al., 2024) due to its computational
efficiency. It presents itself as having excep-
tional ability in long-context needle-in-a-haystack
retrieval and demonstrates strong overall perfor-
mance across a diverse array of tasks.

Models were configured to perform NER and
RTE of all applicable types in a single model call,
wherever supported. For GLiNER multi-task mod-
els and InstructUIE, NER and RE were conducted
in two separate model calls. All models were em-
ployed at the document level. Details about the
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RegulaTome (n=504)
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CHEBI Corpus† (n=100)

BioNLP 2019 BB‡ (n=66)
CHIA† (n=512*)
HPRD50 (n=9)

BioNLP 2011 ID (n=118)
CodiEsp (n=250)
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Figure 1: Summary statistics of the text lengths, entity counts (& number of unique entity types), and relation counts
(& number of unique relation types) for the test set of each corpus used. The corpora categorised based on their
average character count (≤500, >500, >1500, >3000). Details regarding which entity types and relationship types
were included, excluded, or merged, can be found in appendix B. n denotes the number of texts in the corpus.
* Datasets were truncated to a maximum of 512 samples to minimise over-representation of certain datasets within
the overall corpus.
† For these 20 datasets, no splits were available via BigBIO, therefore, we used the test set from a 50/50 train/test
split.
‡ For the BioNLP 2011 EPI, BioNLP 2019 BB, BioRelEx, and DrugProt datasets, annotated test sets were not
available, so their development/validation sets were utilised instead.
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Architecture Model Context length limit Tasks
LLM Gemini 1.5 Pro (Feb 2025) 2,097,152 NER & RE
Biology-SFT SLM SciLitLLM 1.5 (Qwen 2.5 14B) 131,072 NER & RE

KGC-SFT SLM
Triplex (Phi3-3.8B) 131,072 NER & RE
Phi3 Mini Graph (Phi3-3.8B-128K) 131,072 NER & RE

T5 InstructUIE (Flan-T5 11B) 512 NER & RE

BERT/BERT-like

ZeroShotBioNER (BioBERT V1.1) 512 NER
NuNER Zero 4K (Longformer Large 4K) 4,096 NER
GLiNER Medium v2.5 (DeBERTa-V3) 384 NER
GLiNER Large v2.5 (DeBERTa-V3-Large) 512 NER
GLiNER Large Bio v0.1 (DeBERTa-V3-Large)* 512 NER
GLiNER Multi-task v1.0 (DeBERTa-V2-XLarge) 512 NER & RE
GLiNER Multi-task Large v0.5 (DeBERTa-V3-Large) 512 NER & RE

Table 1: For each model, the table includes its name, model group, token limits for both prompt/input and
completion/output, and the tasks each model can perform—specifically NER and RE. Note that the context length
limit reflects the maximum number of tokens the architecture can process simultaneously, rather than a verified
range for optimal performance.
* This model is not included in the main GLiNER publication by Zaratiana et al. (2023), but is available on
HuggingFace (repo_id: urchade/gliner_large_bio-v0.1).

prompt/input preparation for each model are pro-
vided in appendix D.

Formally, we define zero-shot RTE as the pro-
cess of performing NER followed by RE, given
only the allowed entity and relation types. For k-
shot RTE, we give k examples from the training set.
If no relations were annotated for a given corpus,
only the NER task was evaluated.

To mitigate the possibility of hallucinations from
the language models, the output was limited to the
queried types of entities and relations. Given that
all models, except the BERT variants, are causal
language models (as opposed to token classifiers),
they produce entity name strings rather than token
positions. Consequently, to ensure fairness, perfor-
mance for all models was evaluated using the case-
insensitive micro F1 score from MUC-5 (Chinchor
and Sundheim, 1993), unless stated otherwise1, par-
tial boundary, exact-type matching for each unique
entity and relationship in the gold-standard data.
In this context, a partial match refers to a word
match at either boundary. Therefore, the reported
performance more closely aligns with the practical
application for KGC, where duplicate entities and
relationships are consolidated.

4 Results

All models, except the KGC SFT-SLMs, are eval-
uated across all datasets, with the exception of

1Due to capitalised words in the beginning of sentences
being considered identical to non-capitalised words for the
purposes of entity uniqueness.

BC5CDR, BioRED, and ChemDNER; these partic-
ular datasets are analyzed separately because some
of the models have been fine-tuned specifically us-
ing these datasets.

Figure 2 displays the NER rank distribution for
each corpus, providing a head-to-head comparison
of the models. Additionally, the win rates for NER
and RTE are detailed in appendix table A1. Gemini
1.5 Pro and the notably smaller SciLitLLM 14B
emerge as the clear frontrunners, whereas Instruc-
tUIE and ZeroShotBioNER are the lowest perform-
ers overall. However, ZeroShotBioNER excels
over all other models in the ChemProt, DrugProt,
CHEBI, ChemDisGene, and SETH corpora, which
predominantly contain chemical, gene/protein, and
disease annotations. Similarly, InstructUIE outper-
forms all other models in the Citation GIA Test,
IEPA, and GENETAG corpora, which exclusively
feature gene and protein annotations.

Although ZeroShotBioNER and InstructUIE out-
perform other models in the specific datasets men-
tioned, this is not generally the case across the en-
tity types they were fine-tuned on. This is evident
in figure 3, which illustrates NER performance by
entity type group. Note the two models generally
demonstrate lower performance for gene/protein,
chemical, and disease entity groups. Moreover,
despite being trained on biological entity types, In-
structUIE and ZeroShotBioNER do not generalize
well to other biological or gene-/protein-related
entity types. One might hypothesize that identify-
ing gene-/protein-related entity types parallels the
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Figure 2: Model ranks of NER micro F1 for all corpora
(excluding BC5CDR, BioRED, and ChemDNER).

task of identifying entity relations, which models
enabled for RE might excel at.

The NER and RTE performance by corpus mean
character count (≤500, >500, >1500, >3000) is
shown in figure 4. For models with a short context,
the input might be truncated and thus the recall
is decreased inherently as a result of the model
architecture. However, even for the long-context
models, the F1 drops for the longest input texts. In
lengthy corpora, RTE performance drops to nearly
zero, and across shorter corpora, the general per-
formance for this task remains quite poor across all
models.

The performance of ZeroShotBioNER and In-
structUIE on BC5CDR, BioRED, and ChemDNER
(which were excluded from the previous analy-
ses) is compared with zero-/few-shot prompting
of Gemini 1.5 Pro and SciLitLLM 1.5 14B in ta-
ble 2. Few-shot examples were sourced from the
training set.

The KGC SFT-SLMs were evaluated separately
on a small subset of datasets, specifically BC5CDR
and BioRED, as detailed in table 3. For both
datasets, the NER performance of the KGC mod-
els is lower than that of all other models, particu-
larly for the more complex dataset, BioRED. Al-
though these models are intended for generalist
KGC, their performance falls significantly below
that of SciLitLLM 1.5 and Gemini 1.5 Pro (table 2).
This discrepancy may be attributed to the lack of
biomedical data in their fine-tuning process.

Appendix table A2 compares the partial and
strict matching performance of the top three mod-
els: Gemini 1.5 Pro, SciLitLLM 1.5 14B, and
GLiNER Multi-task v1.0; alongside the two SFT IE

models, InstructUIE and ZeroShotBioNER. Gem-
ini 1.5 Pro experiences the largest performance
drop when evaluation criteria shift to strict match-
ing. This is due to certain instances, like the
one in BC5CDR, where "methamphetamine in-
duces psychosis" is incorrectly labeled as "metham-
phetamine psychosis" instead of the correct "psy-
chosis." This labeling would be correct under par-
tial matching but incorrect under strict matching.
GLiNER Multi-task v1.0 demonstrates the smallest
performance loss for NER, achieving the highest
F1 score and precision under strict matching con-
ditions. Conversely, SciLitLLM 1.5 14B exhibits
the least performance decline when transitioning to
strict matching, and even shows an improvement
in precision.

5 Discussion

The models explicitly fine-tuned for biology,
namely InstructUIE, ZeroShotBioNER, SciL-
itLLM 1.5, and GLiNER Large Bio v0.1, were gen-
erally outperformed by the larger, more generalist
models. Exceptions occurred for datasets on which
these models were directly fine-tuned or those con-
taining very similar entity types. However, Instruc-
tUIE and ZeroShotBioNER did not consistently
outperform all other models across datasets fea-
turing entity types similar to those in their fine-
tuning datasets. The KGC-specific models demon-
strated significantly lower performance compared
to other models, possibly due to their lack of bio-
logical understanding needed to identify entity and
relation types. Overall, Gemini, the largest and
most resource-intensive model, achieved the high-
est scores in the benchmark. Notably, Gemini’s
performance was only marginally better than the
considerably smaller SciLitLLM 1.5, which has 14
billion parameters, in zero-shot biomedical NER,
although SciLitLLM had lower RTE performance.
We hypothesize that a model fine-tuned on biology
and further instruction-tuned specifically for RTE
could achieve even better results.

SciLitLLM 1.5 14B was specifically fine-tuned
on the literature understanding instruction dataset
SciRIFF (Wadden et al., 2024), which includes
NER tasks for several of our datasets, such as
BioRED and GNormPlus, as well as RE tasks for
ChemProt. This may introduce a bias in the perfor-
mance evaluation.

The best-performing BERT model was GLiNER
Multi-task v1.0, which also achieved the best av-
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Dataset Model k-shot NER RTE
F1 Precision Recall F1 Precision Recall

BC5CDR

ZeroShotBioNER* SFT 0.847 0.777 0.931 - - -
InstructUIE SFT 0.601 0.790 0.485 0.105 0.214 0.070

Gemini 1.5 Pro
0-shot 0.583 0.842 0.446 0.442 0.477 0.413
3-shot 0.666 0.826 0.558 0.438 0.458 0.419
10-shot 0.717 0.836 0.627 0.497 0.488 0.507

SciLitLLM 1.5 14B
0-shot 0.697 0.796 0.620 0.340 0.446 0.274
3-shot 0.723 0.811 0.653 0.381 0.471 0.320
10-shot 0.738 0.785 0.696 0.400 0.443 0.364

BioRED

ZeroShotBioNER* SFT 0.666 0.685 0.648 - - -
InstructUIE No SFT 0.265 0.666 0.165 0.002 0.045 0.001

Gemini 1.5 Pro
0-shot 0.516 0.725 0.400 0.138 0.232 0.098
3-shot 0.669 0.755 0.600 0.162 0.232 0.125
10-shot 0.684 0.779 0.610 0.183 0.266 0.139

SciLitLLM 1.5 14B
0-shot 0.607 0.651 0.569 0.021 0.094 0.012
3-shot 0.600 0.641 0.564 0.057 0.105 0.039
10-shot 0.622 0.678 0.574 0.085 0.159 0.058

ChemDNER*

ZeroShotBioNER* SFT 0.866 0.944 0.800 - - -
InstructUIE SFT 0.658 0.865 0.532 - - -

Gemini 1.5 Pro
0-shot 0.684 0.713 0.657 - - -
3-shot 0.652 0.803 0.549 - - -
10-shot 0.690 0.781 0.619 - - -

SciLitLLM 1.5 14B
0-shot 0.755 0.755 0.755 - - -
3-shot 0.794 0.878 0.725 - - -
10-shot 0.792 0.889 0.714 - - -

Table 2: Comparison of model performance of fine-tuned models, ZeroShotBioNER and InstructUIE, with the
zero-/few-shot performance of the LLM, Gemini 1.5 Pro, and the biology-SFT SLM, SciLitLLM 1.5 14B. Both
ZeroShotBioNER and InstructUIE were fine-tuned on BC5CDR and ChemDNER (denoted with SFT in the
table), and ZeroShotBioNER was additionally fine-tuned on BioRED, whilst InstructUIE was not (No SFT). Best
performance by dataset is highlighted in bold, and second-best in italics.
* NER-only model/dataset.

Dataset Matching criteria Model NER RTE
F1 Precision Recall F1 Precision Recall

BC5CDR

Partial (strict type)
Triplex 0.458 0.380 0.576 0.132 0.242 0.090
Phi3 Mini Graph* 0.545 0.698 0.448 - - -
GLiNER Multi-task v1.0 0.611 0.771 0.505 0.162 0.500 0.097

Relaxed
Triplex 0.486 0.407 0.605 0.121 0.223 0.083
Phi3 Mini Graph 0.482 0.412 0.581 0.096 0.058 0.290
GLiNER Multi-task v1.0 0.612 0.770 0.507 0.160 0.493 0.095

BioRED

Partial (strict type)
Triplex 0.015 0.529 0.007 0.002 0.200 0.001
Phi3 Mini Graph* 0.096 0.295 0.058 - - -
GLiNER Multi-task v1.0 0.575 0.662 0.508 0.004 0.143 0.002

Relaxed
Triplex 0.014 0.529 0.007 0.002 1.000 0.001
Phi3 Mini Graph 0.509 0.478 0.544 0.167 0.141 0.205
GLiNER Multi-task v1.0 0.599 0.691 0.529 0.007 0.219 0.003

Table 3: KGC-SFT SLM performances vs. GLiNER Multi-task performance for NER and RTE with partial,
strict-type matching criteria (used through the paper) and relaxed matching (case-insensitive, no schema restriction
of output, entity and relation type-agnostic, relation directionality-agnostic). For comparison, Gemini 1.5 Pro 0-shot
F1 for RTE in BioRED with relaxed matching criteria is 0.287. Best performance by dataset is highlighted in bold.
* The Phi3 Mini Graph model is unable to follow the instruction to output only specified relation types, and thus
restricting the output to the specified schema yields no predictions.
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erage performance for strict matching. It is sig-
nificantly smaller than either SciLitLLM 1.5 14B
or Gemini 1.5 Pro, potentially making it the ideal
choice when cost and scalability are concerns.

Notably, while SciLitLLM 1.5 Pro was the over-
all best-performing model among the ones com-
pared, RTE performance was relatively low across
the board. No zero-shot model achieved a micro F1
score above 0.5 for any dataset, raising concerns
about their effectiveness for RTE tasks. In agree-
ment with Chen et al. (2025), we therefore do not
recommend using zero-shot models for biomedical
RTE. Although few-shot performance can be com-
parable to SFT performance for certain models and
datasets, fine-tuned models generally outperform
non-fine-tuned ones when manually annotated data
is available for SFT. In cases where such data is
unavailable, few-shot models may be utilized if
downstream tasks can accommodate a compromise
in performance, possibly due to additional checks
at later stages.

While the RTE task yields a simple KG without
additional metadata, leveraging information extrac-
tion models such as InstructUIE, NuExtract 1.5,
and LLMs like Gemini 1.5 Pro could enhance the
metadata associated with the triplets. In a biomed-
ical context, this could involve incorporating sur-
rounding biological context such as tissue, organ-
ism, intervention, and co-factors. Such contextual
enrichment can be done with traditional NLP meth-
ods, and could be improved with powerful general-
ist LLMs (Sosa et al., 2023).

Although some benchmarking datasets are ex-
tensive and well-annotated across a wide range of
relationships and entities, they present challenges
when used to generate KBs or KGs. For instance,
RegulaTome includes relationships that are specu-
lative or hypothesized and does not account for the
negation of relations. Consequently, using these an-
notations as the truth set means there is no distinc-
tion between verified conclusions and mere specu-
lations—only their mention in the text is captured,
while negative results are omitted.

We observe that methods such as GraphRAG
(Edge et al., 2024), attempt to leverage the emer-
gent information extraction capabilities of LLMs
to enhance knowledge base question answering
(KBQA) tasks. However, based on the outcomes
of this benchmark, we hypothesize that for results
from a GraphRAG-like approach to be valuable in
biomedical applications, tailored models are nec-
essary to accurately tag relevant entities and rela-

tionships. This is due to the fact that the inherent
biological understanding of zero-shot LLMs is typ-
ically insufficient for most practical downstream
applications.

6 Conclusion

In conclusion, this study benchmarks zero-shot
biomedical RTE across a range of LM architectures.
Larger models such as Gemini 1.5 Pro and SciL-
itLLM 1.5 14B excel in NER but face challenges
with subsequent RE, with no F1 score surpassing
0.5 in RTE tasks. Notably, GLiNER Multi-task
v1.0 stands out as the best-performing BERT-based
model, delivering strong performance relative to
its smaller size and excelling in strict matching cri-
teria, thus making it a cost-effective option when
scalability is a concern.

While fine-tuned models like ZeroShotBioNER
perform well on specific datasets, they are gener-
ally surpassed by larger, more generalized models
even when dealing with slightly out-of-distribution
data, underscoring the limitations of current zero-
shot models for practical applications in biomedical
NLP. Furthermore, although few-shot learning pro-
vides some benefits, fine-tuning remains essential
for maximizing model performance when annota-
tion is feasible.

Limitations

Conducting a fair evaluation of all available LMs
is a challenging task for several reasons. Firstly,
accessing and comprehensively testing each model
may not be financially viable, necessitating the se-
lection of representative models from various LM
categories. Additionally, information regarding the
training data is not always publicly available, as
seen with Gemini, or models may be trained on
known public benchmarks like BLURB, which in-
cludes datasets that overlap with our benchmark
(EBM PICO, ChemProt, and BC5CDR) or contain
shared entity types (JNLPBA) (Gu et al., 2021),
thus complicating the fair comparison between
models.

Moreover, performance is sensitive to the match-
ing criteria employed, and the options for this
benchmark are restricted due to the nature of
the model outputs from causal language models,
as they are not token classifiers. More sophisti-
cated matching criteria, such as ontology matching,
would be preferable but fall outside the scope of
this research.
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The models are constrained by their context
length, and some might have benefited from re-
engineering the task by breaking the texts into sen-
tences—even models with a relatively long context
length. Additionally, running the models in mul-
tiple rounds, such as one round per entity type,
could offer advantages, like increased task speci-
ficity. However, this approach also presents draw-
backs, including overlap issues and higher costs.

Finally, it is important to recognize that different
models may require distinct prompts to achieve op-
timal performance. Studies have demonstrated that
benchmark results are sensitive to prompt engineer-
ing (Jahan et al., 2023). Exploring techniques such
as chain-of-thought prompting, meta-prompting
(Suzgun and Tauman Kalai, 2024), reasoning mod-
els (DeepSeek-AI et al., 2025), or other related
strategies could potentially enhance performance.
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jana Bašaragin, and Nikola Milošević. 2024. From
zero to hero: Harnessing transformers for biomed-
ical named entity recognition in zero- and few-
shot contexts. Artificial Intelligence in Medicine,
156:102970.

Sihang Li, Jin Huang, Jiaxi Zhuang, Yaorui Shi, Xi-
aochen Cai, Mingjun Xu, Xiang Wang, Linfeng
Zhang, Guolin Ke, and Hengxing Cai. 2024. SciL-
itLLM: How to Adapt LLMs for Scientific Litera-
ture Understanding. Computing Research Reposi-
tory, arXiv.2408.15545. Version 5.

Farrokh Mehryary, Katerina Nastou, Tomoko Ohta,
Lars Juhl Jensen, and Sampo Pyysalo. 2024.
STRING-ing together protein complexes: corpus
and methods for extracting physical protein interac-
tions from the biomedical literature. Bioinformatics,
40(9).

Katerina Nastou, Farrokh Mehryary, Tomoko Ohta,
Jouni Luoma, Sampo Pyysalo, and Lars Juhl Jensen.
2024. RegulaTome: a corpus of typed, directed, and
signed relations between biomedical entities in the
scientific literature. Database, 2024.

SciPhi. 2024. Triplex — SOTA LLM for Knowledge
Graph Construction - SciPhi AI — sciphi.ai. https:
//www.sciphi.ai/blog/triplex. [Accessed 20-
03-2025].

Daniel N. Sosa, Rogier Hintzen, Betty Xiong, Alex de
Giorgio, Julien Fauqueur, Mark Davies, Jake Lever,
and Russ B. Altman. 2023. Associating biological
context with protein-protein interactions through text
mining at pubmed scale. Journal of Biomedical In-
formatics, 145:104474.

Ihor Stepanov and Mykhailo Shtopko. 2024. GLiNER
multi-task: Generalist Lightweight Model for Various
Information Extraction Tasks. Computing Research
Repository, arXiv.2406.12925. Version 2.

97

https://doi.org/10.48550/arXiv.2404.16130
https://emergentmethods.medium.com/outperforming-claude-3-5-sonnet-with-phi-3-mini-4k-for-graph-entity-relationship-extraction-tasks-7c8f6c1ebd79
https://emergentmethods.medium.com/outperforming-claude-3-5-sonnet-with-phi-3-mini-4k-for-graph-entity-relationship-extraction-tasks-7c8f6c1ebd79
https://emergentmethods.medium.com/outperforming-claude-3-5-sonnet-with-phi-3-mini-4k-for-graph-entity-relationship-extraction-tasks-7c8f6c1ebd79
https://emergentmethods.medium.com/outperforming-claude-3-5-sonnet-with-phi-3-mini-4k-for-graph-entity-relationship-extraction-tasks-7c8f6c1ebd79
https://emergentmethods.medium.com/outperforming-claude-3-5-sonnet-with-phi-3-mini-4k-for-graph-entity-relationship-extraction-tasks-7c8f6c1ebd79
https://doi.org/10.48550/arXiv.2206.15076
https://doi.org/10.48550/arXiv.2206.15076
https://doi.org/10.48550/arXiv.2206.15076
https://doi.org/10.48550/arXiv.2403.05530
https://doi.org/10.48550/arXiv.2403.05530
https://doi.org/10.48550/arXiv.2403.05530
https://doi.org/10.1145/3458754
https://doi.org/10.1145/3458754
https://doi.org/10.1145/3458754
https://doi.org/10.18653/v1/2023.bionlp-1.30
https://doi.org/10.18653/v1/2023.bionlp-1.30
https://doi.org/10.18653/v1/2023.bionlp-1.30
https://doi.org/10.1016/j.compbiomed.2024.108189
https://doi.org/10.1016/j.compbiomed.2024.108189
https://doi.org/10.1016/j.compbiomed.2024.108189
https://doi.org/10.1016/j.artmed.2024.102970
https://doi.org/10.1016/j.artmed.2024.102970
https://doi.org/10.1016/j.artmed.2024.102970
https://doi.org/10.1016/j.artmed.2024.102970
https://doi.org/10.48550/arXiv.2408.15545
https://doi.org/10.48550/arXiv.2408.15545
https://doi.org/10.48550/arXiv.2408.15545
https://doi.org/10.1093/bioinformatics/btae552
https://doi.org/10.1093/bioinformatics/btae552
https://doi.org/10.1093/bioinformatics/btae552
https://doi.org/10.1093/database/baae095
https://doi.org/10.1093/database/baae095
https://doi.org/10.1093/database/baae095
https://www.sciphi.ai/blog/triplex
https://www.sciphi.ai/blog/triplex
https://doi.org/10.1016/j.jbi.2023.104474
https://doi.org/10.1016/j.jbi.2023.104474
https://doi.org/10.1016/j.jbi.2023.104474
https://doi.org/10.48550/arXiv.2406.12925
https://doi.org/10.48550/arXiv.2406.12925
https://doi.org/10.48550/arXiv.2406.12925


Mirac Suzgun and Adam Tauman Kalai. 2024. Meta-
Prompting: Enhancing Language Models with Task-
Agnostic Scaffolding. Computing Research Reposi-
tory, arXiv:2401.12954. Version 1.

David Wadden, Kejian Shi, Jacob Morrison, Aakanksha
Naik, Shruti Singh, Nitzan Barzilay, Kyle Lo,
Tom Hope, Luca Soldaini, Shannon Zejiang Shen,
Doug Downey, Hannaneh Hajishirzi, and Arman
Cohan. 2024. SciRIFF: A Resource to Enhance
Language Model Instruction-Following over Scien-
tific Literature. Computing Research Repository,
arXiv:2406.07835. Version 3.

Xiao Wang, Weikang Zhou, Can Zu, Han Xia, Tianze
Chen, Yuansen Zhang, Rui Zheng, Junjie Ye,
Qi Zhang, Tao Gui, Jihua Kang, Jingsheng Yang,
Siyuan Li, and Chunsai Du. 2023. InstructUIE:
Multi-task Instruction Tuning for Unified Informa-
tion Extraction. Computing Research Repository,
arXiv:2304.08085. Version 1.

Urchade Zaratiana, Nadi Tomeh, Pierre Holat, and
Thierry Charnois. 2023. GLiNER: Generalist Model
for Named Entity Recognition using Bidirectional
Transformer. Computing Research Repository,
arXiv:2311.08526. Version 1.

A Supplementary figures/tables

Model NER win-rate RTE win-rate
Gemini 1.5 Pro 72.8% 89.1%
SciLitLLM 1.5 14B 72.8% 64.1%
GLiNER Multi-task v1.0 62.8% 35.9%
GLiNER Large Bio v0.1 55.0% -
GLiNER Medium v2.5 54.8% -
GLiNER Large v2.5 46.2% -
GLiNER Multi-task Large v0.5 40.6% 43.8%
NuNER Zero 4K 34.7% -
InstructUIE 31.2% 17.2%
ZeroShotBioNER 29.1% -

Table A1: Model micro F1 win rates in all head-to-
head comparisons per dataset (for both NER and RTE,
excluding BC5CDR, BioRED, and ChemDNER). Best
performance is highlighted in bold,and second-best in
italics.

B Dataset modifications

To align the datasets to the same tasks, the
relationship type names were renamed to an
active form (e.g. COMPLEX_FORMATION →
FORMS_COMPLEX_WITH). Selected entities and re-
lationships were removed, if they were not deemed
relevant for the task (such as part-of relations).
All relation types were capitalised, and all entity
types were in PascalCase.

BigBIO dataset import modifications: BioRelEx
(to include type of binding: binds, not-binds,
inconclusively-binds), ComplexTome (imple-
mented), ProGene (changed splitting to original
split), RegulaTome (implemented).

C Entity group definitions

Organism (n=10) cell, cellline, celltype, living-
being, microorganism, monocell, organism,
organismtaxon, plant, species

Gene/Protein (n=18) dna, dnafamilyorgroup,
gene, geneorgeneproduct, geneormolecularse-
quence, geneorprotein, geneorproteinfam-
ily, geneorproteinorrna, geneproductormark-
ergene, geneprotein, peptide, protein, pro-
teinenum, proteinfamiliyorgroup, proteinfam-
ily, proteinfamilyorgroup, proteinisoform,
proteinmolecule

Chemical (n=17) aminoacid, aminoacid-
monomer, atom, carbohydrate, chemical,
chemicalabbreviation, chemicalentity, chemi-
calfamily, chemicalordrug, chemicalstructure,
compound, drug, metabolite, nucleotide,
partchemical, reagent, simplechemical

Disease (n=20) adverseeffect, compositedisease-
mention, condition, disease, diseaseclass,
diseaseordisorder, diseaseorphenotypicfea-
ture, disorder, disorderfinding, outcome,
outcomeadverseeffects, outcomemental, out-
comemortality, outcomeother, outcomepain,
outcomephysical, participantcondition, phe-
nomena, phenotype, specificdisease

Medical (n=11) assay, device, diseasemodifier,
intervention, interventioneducational, inter-
ventionother, interventionpharmacological, in-
terventionphysical, interventionpsychological,
interventionsurgical, procedure

Gene-related (n=16) dnadomainorregion,
dnamolecule, dnamutation, dnasubstructure,
geneticvariant, mutation, polynucleotide,
regulonoperon, rna, rnadomainorregion,
rnafamilyorgroup, rnamolecule, sequence-
variant, snp, snporsequencevariation,
twocomponentsystem

Protein-related (n=13) complex, fusionpro-
tein, proteincomplex, proteindomain, protein-
domainorregion, proteinmotif, proteinmuta-
tion, proteinregion, proteinrelatedentity, pro-
teinrnacomplex, proteinsubstructure, protein-
subunit, proteinvariant

Anatomy (n=13) anatomicalsystem, anatomy,
bodypart, bodystructure, developinganatomi-
calstructure, immaterialanatomicalentity, mul-
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Model Matching criteria NER RTE
F1 Precision Recall F1 Precision Recall

Gemini 1.5 Pro
Partial (strict type) 0.492 0.611 0.457 0.204 0.236 0.200
Strict 0.386 0.472 0.365 0.030 0.214 0.016

-22% -23% -20% -85% -9% -92%

SciLitLLM 1.5 14B
Partial (strict type) 0.475 0.541 0.487 0.105 0.232 0.074
Strict 0.427 0.486 0.440 0.043 0.284 0.024

-10% -10% -10% -59% +22% -68%

GLiNER Multi-task v1.0
Partial (strict type) 0.429 0.581 0.383 0.082 0.437 0.057
Strict 0.400 0.535 0.359 0.011 0.189 0.006

-7% -8% -6% -87% -57% -89%

InstructUIE
Partial (strict type) 0.310 0.529 0.264 0.046 0.195 0.030
Strict 0.257 0.437 0.222 0.013 0.193 0.007

-17% -17% -16% -72% -1% -77%

ZeroShotBioNER
Partial (strict type) 0.301 0.366 0.352 - - -
Strict 0.254 0.301 0.304 - - -

-16% -18% -14% - - -

Table A2: Comparison of model performance when transitioning from partial strict-type matching criteria, as used
throughout the paper, to strict matching. Strict matching involves case sensitivity, schema restriction of output, and
an exact match for entities and relations. The smallest decrease in model performance when switching from partial
to strict matching is highlighted in bold for each performance metric.

titissuestructure, organ, organismsubdivision,
organismsubstance, pathologicalformation,
physiology, tissue

Other biological (n=8) biologicalactivity, can-
cer, cellcomponent, cellularcomponent, lipid,
multicell, organelle, virus

Non-English (n=6)* diagnostico, enfermedad,
procedimiento, proteina, quimico, sintoma

Other (n=19) age, characteristic, cohortorpatient,
ethnicity, experimentalconstruct, experiment-
tag, gender, geographicarea, habitat, inor-
ganic, interventioncontrol, object, participant,
participantage, participantsamplesize, partici-
pantsex, process, size, spectraldata

* The entity names for the French QUAERO and
the Swedish Medical NER dataset were in English
and thus included in the other groups.

D Model prompting

Inference for GLiNER, GLiNER multi-task, and
NuNER were performed using the gliner python
library, and ZeroShotBioNER using the published
implementation. No prompts had to be provided
for these TokenClassifier models - only en-
tity/relation types were provided. Whenever pos-
sible, the default prompt format specified in the
model implementation was used. Such prompts are

marked with "(default)" - otherwise the prompts
were designed.

For zero-shot inference (no examples),
only the <text>, <entity_types>, and
<relation_types> fields are provided. If
no RE annotation exists for a given corpus, this
part of the prompt is omitted. For models where
we used few-shot prompting (Gemini 1.5 Pro
& SciLitLLM 1.5), we show the format of the
example given enclosed in parentheses.

InstructUIE (default)

NER:

Please list all entity words in the text that fit the category.
Output format is "type1: word1; type2: word2"
Option: <entity_types>
Text: <text>
Answer:

RE:

Given a phrase that describes the relationship between two words,
extract the words and the lexical relationship between them. The
output format should be "relation1: word1, word2; relation2: word3,
word4".
Option: <relation_types>
Text: <text>
Answer:

Triplex (default)

Perform Named Entity Recognition (NER) and extract knowledge graph
triplets from the text. NER identifies named entities of given
entity types, and triple extraction identifies relationships between
entities using specified predicates.

**Entity Types:**
<entity_types>

**Predicates:**
<relation_types>

**Text:**
<query>
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Phi3 Mini Graph (default - modified to accept specific types)

A chat between a curious user and an artificial intelligence
Assistant. The Assistant is an expert at identifying entities and
relationships in text. The Assistant responds in JSON output only.

The User provides text in the format:

-------Text begin-------
<User provided text>
-------Text end-------

The Assistant follows the following steps before replying to the
User:

1. **identify entities** The Assistant identifies all entities in
the text of the types: <entity_types>. These entities are listed in
the JSON output under the key "nodes", they follow the structure of
a list of dictionaries where each dict is:

"nodes":[{"id": <entity N>, "type": <type>}, ...]

where "type": <type> is the type of the entity.

2. **determine relationships** The Assistant uses the text between
-------Text begin------- and -------Text end------- to determine
the relationships between the entities identified in the "nodes"
list defined above. These relationships are called "edges" and they
follow the structure of:

"edges":[{"from": <entity 1>, "to": <entity 2>, "label":
<relationship>}, ...]

The <entity N> must correspond to the "id" of an entity in the
"nodes" list and relationship must be one of the following types:
<relation_types>.

The Assistant never repeats the same node twice. The Assistant never
repeats the same edge twice.
The Assistant responds to the User in JSON only, according to the
following JSON schema:
{

"type":"object",
"properties":{

"nodes":{
"type":"array",
"items":{

"type":"object",
"properties":{

"id":{
"type":"string"

},
"type":{

"type":"string"
},
"detailed_type":{

"type":"string"
}

},
"required":["id", "type", "detailed_type"],
"additionalProperties":false

}
},
"edges":{

"type":"array",
"items":{

"type":"object",
"properties":{

"from":{
"type":"string"

},
"to":{

"type":"string"
},
"label":{

"type":"string"
}

},
"required":["from", "to", "label"],
"additionalProperties":false

}
}

},
"required":["nodes", "edges"],
"additionalProperties":false

}

Input:
-------Text begin-------
<text>
-------Text end-------

Note: The JSON in the Phi3 Mini Graph prompt is
condensed to take up less characters, but formatted
here for readability.

Gemini 1.5 Pro

Please extract a list of entities, and subsequently a list of
relations between these entities.
The allowed entity types are: <entity_types>.
The allowed relation types are: <relation_types>.
The output should look like:
Entities:
Entity1 (EntityType)
Entity2 (EntityType)

Relationships:
Entity1 (EntityType) --RELATIONSHIP_TYPE-- Entity2 (EntityType)

(Examples:
Example 1:
<example_text>

Entities:
<example_entities>

Relationships:
<example_relationships>)

Do not provide any explanation or deviate from the format. If any
entity does not conform to the entity types stated, they should not
be included. Please now perform the task for the following text:
<text>

SciLitLLM 1.5

As a biomedical researcher, you are able to extract structured
information from a given piece of text. Please extract a list
of entities, and subsequently a list of relations between these
entities.
The allowed entity types are: <entity_types>.
The allowed relation types are: <relation_types>.
The output should look like:
(entity1_name, entity1_type), (entity2_name, entity2_type),
(entity1_name, RELATION, entity2_name), (entity3_name, RELATION,
entity4_name), ...

(Examples:
Example 1:
<example_text>

Output:
<example_output>)

Do not provide any explanation or deviate from the format. If any
entity does not conform to the entity types stated, they should not
be included. Please now perform the task for the following text:
<text>

Additional information

Setup, implementation details, and code can
be found at https://github.com/FSGade/
BiomedicalZeroShot.
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Abstract

Extractive question answering over clinical text
is a crucial need to help deal with the deluge of
clinical text generated in hospitals. While en-
coder models (e.g., BERT) have been popular
for this reading comprehension–style question
answering task, recently encoder-decoder mod-
els (e.g., T5) are on the rise. There is also
the emergence of preference optimization tech-
niques to align decoder-only LLMs with human
preferences. In this paper, we combine encoder-
decoder models with the direct preference op-
timization (DPO) method for the RadQA radi-
ology question answering task. Our approach
achieves a 12–15 F1 point improvement over
previous state-of-the-art models. To the best of
our knowledge, this effort is the first to show
that DPO method also works for reading com-
prehension via novel heuristics to generate pref-
erence data without human inputs.

1 Introduction

Clinical domain is rich in text data, such as
progress notes, discharge summaries, and radiol-
ogy/pathology reports, which constitutes a signifi-
cant portion of electronic medical records (EMRs).
These documents contain essential patient infor-
mation but are often lengthy and idiosyncratic
to specific clinicians, making it difficult and in-
efficient for doctors to manually extract specific
details during care transfers or follow-ups (Jin
et al., 2022). From a natural language processing
(NLP) perspective, machine reading comprehen-
sion (MRC) systems can address this challenge
by extracting precise answers to specific queries
directly from these documents, facilitating more
efficient decision-making for physicians (Demner-
Fushman et al., 2009). In this paper, we achieve
state-of-the-art results for a MRC task in radiology,
with encoder-decoder language models (LMs) en-
hanced by direct preference optimization (DPO).
Before we proceed, we first trace the origins of

DPO since it was first introduced for a very differ-
ent purpose than reading comprehension.

Since mid 2020, large language models (LLMs)
have become pivotal in NLP, showcasing remark-
able performance across a variety of tasks. These
models undergo an initial phase of unsupervised
pretraining, acquiring a comprehensive language
representation that equips them with robust and
contextual generation capabilities, which can then
be transferred to specific downstream tasks through
supervised fine-tuning (Dai and Le, 2015; Radford
et al.; Devlin et al., 2019; Khandelwal et al., 2019).
However, while supervised fine-tuning has been
proven effective in enhancing model performance,
it struggles to align models with human prefer-
ences (Stiennon et al., 2020). The high-quality
output achieved through supervised fine-tuning of-
ten poorly correlates with human judgment, as the
maximum likelihood objective struggles to capture
the nuances of human preferences (Chaganty et al.,
2018; Dusek et al., 2017). To address this chal-
lenge, reinforcement learning from human feed-
back (RLHF) has recently emerged as a promising
approach for aligning LLMs with human prefer-
ences (Ziegler et al., 2019; Stiennon et al., 2020).
RLHF utilizes human feedback on the model’s out-
put to guide its learning process, resulting in en-
hanced performance and better correlation with hu-
man judgment across diverse NLP tasks (Ouyang
et al., 2022; Glaese et al., 2022; Bai et al., 2022a).

Ability to evaluate the output of LLMs based
on human preferences is a core part of RLHF. To
acquire this ability, the RLHF technique involves
building a reward model from human annotated
preference data. The objective of the reward model
is to assess the output of the language model based
on human preferences and represent it in a scalar
value, which is used to optimize the language
model using RL algorithms, most commonly prox-
imal policy optimization (PPO) (Schulman et al.,
2017). Usually the reward models are built by fine-
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tuning another LLM as it is expected that the re-
ward model should have the similar language mod-
eling capabilities to the original language model
it is used to optimize. While RLHF demonstrates
impressive performance across various NLP tasks
(Chowdhery et al., 2023; Touvron et al., 2023), it is
a complex and computationally expensive process
that involves training multiple models, including
a supervised fine-tuned model, a reward model,
and the final RLHF model. To address this com-
plexity, Rafailov et al. (Rafailov et al., 2024) intro-
duced DPO, which directly learns human prefer-
ences from the preference dataset without requiring
a reward model. By eliminating this step, DPO
reduces computational costs while preserving the
same optimization objectives as RLHF, making it a
more efficient and dynamic alternative.

Thus far DPO has been primarily used to align
decoder-only LLMs with human preferences; it
has not been applied to encoder-decoder models
used for the MRC task with a likelihood maxi-
mization objective. DPO inherently aims to in-
crease the log probability of expected outputs over
rejected outputs. A dataset of diverse instances
of correct and incorrect output pairs can provide
proper signals to the model about challenging ex-
amples that a supervised fine-tuned model struggles
to predict accurately. Based on this observation, we
hypothesize that DPO can be utilized to enhance
the performance of a supervised fine-tuned encoder-
decoder model in log-likelihood maximization. To
test this, we experiment with a recent biomedi-
cal MRC dataset, Radiology Question Answering
(RadQA) (Soni et al., 2022), resulting in the fol-
lowing contributions and findings:

• Compared with the encoder-only models used
in prior efforts with RadQA, we show over
10% F-score improvement by shifting to
encoder-decoder models, achieving a new
state of the art (SoTA) score.

• We introduce two new methods to automati-
cally generate paired preference data for the
MRC task and use them to produce additional
1-3% F1 gains with DPO, leading to overall
gains of 12–15% F1 points over SoTA.

The code and data from our experiments are
available here: RadQADPO-code. If accepted, we
will make them available on our lab’s GitHub.

2 Related Work

2.1 Machine reading comprehension

MRC is a key research area within information
extraction that focuses on enabling machines to
extract answers from given texts. Specifically, an
MRC model receives a passage (context) and a
question as input and aims to answer the question
by reasoning over both. Unlike general or open-
domain question answering (QA) (Reddy et al.,
2019; Karpukhin et al., 2020; Yasunaga et al.,
2021), which typically involves retrieving answers
from large corpora or knowledge bases, MRC op-
erates in a more constrained setting where the rel-
evant information is already provided in the input
context. While MRC is important in and of itself,
it also plays a crucial role in open ended QA where
an initial retrieval model extracts relevant docu-
ments for a question from a search index. MRC
is then applied to each of these documents and the
answers are ranked using other heuristics. Prior ef-
forts in deep learning for MRC focused on attention
mechanisms, which helped models focus on rele-
vant parts of the query and the context (Seo et al.,
2016; Cui et al., 2017). More recently, approaches
using transformer-based LMs, such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019) and
XLNet (Yang et al., 2019) have demonstrated su-
perior performance on this task. These models
leverage large-scale pre-training on diverse datasets
followed by fine-tuning on specific MRC tasks, en-
hancing their ability to generate accurate answers.
For example, ForceReader (Chen and Wu, 2020) is
a BERT based method that addressed the attention
deconcentration problem in MRC and introduced
a few novel ideas including attention separate rep-
resentation, multi-mode reading, and conditional
background attention to improve MRC. Similarly,
Lu et al. (Luo et al., 2020) proposed a novel ap-
proach that leverages BERT and BiDAF (Seo et al.,
2016), extending probability vectors to probability
matrices to predict the start and end positions of
the answer span more accurately.

More recently, transformer-based decoder-only
large language models (LLMs) (Yang et al., 2022;
Singhal et al., 2023; Wu et al., 2024) have demon-
strated strong or even state-of-the-art performance
on a variety of machine reading comprehen-
sion (MRC) benchmarks across both general and
biomedical domains, largely due to their powerful
generalization capabilities. These models are typi-
cally evaluated on generative and multiple-choice
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Figure 1: Pipeline of fine-tuning the language model using DPO. πθ is the language model we want to fine-tune,
and πref is the reference model, which is kept frozen during the fine-tuning process. Both models are initialized
with the Supervised Fine-Tuned (SFT) model.

question-answering tasks that rely on given con-
texts, rather than on traditional span-based MRC
tasks such as SQuAD (Rajpurkar et al., 2016) or
RadQA, which require predicting exact answer
spans within the context.

In our approach we also used transformer-based
LMs. In contrast to the previously discussed meth-
ods, we have used an encoder-decoder transformer
model (Raffel et al., 2020) as the base model and
fine-tuned it by adopting the DPO method. Thus,
the most closely related work to ours involves RL-
based MRC methods. Although this domain is
less explored compared to other deep learning ap-
proaches discussed above, several studies have ap-
plied RL techniques in question answering systems
(Hu et al., 2018; Lee et al., 2021; Gharagozlou
et al., 2022). These approaches typically design a
reward function to optimize the model using RL
algorithms. However, by leveraging the DPO tech-
nique in our method, we obviate the need of a
reward function for training the model.

2.2 Reinforcement learning from human
feedback (RLHF)

RLHF is an RL technique that optimizes models
using human feedback instead of predefined re-
ward functions. Initially explored for training RL
agents (Akrour et al., 2012) where reward functions
are difficult to specify, RLHF has more recently
been widely used to fine-tune LLMs to better align
with human preferences. This method has been suc-
cessfully applied in various NLP tasks, including
conversational agents (OpenAI, 2022), text and dia-
logue summarization (Chen et al., 2023), question-
answering (Nakano et al., 2021), and recommen-
dation systems, where aligning the responses with
human judgment is crucial. However, RLHF is

a multi-step process that can be computationally
intensive. Direct Preference Optimization (DPO)
(Rafailov et al., 2024) has emerged as a more ef-
ficient alternative, aiming to achieve similar ob-
jectives with reduced computational costs. While
DPO is primarily used to align language models
with human judgment (Tunstall et al., 2023; Zhao
et al., 2023), we explore its application in likeli-
hood maximization for MRC. By applying DPO to
enhance supervised fine-tuned models, we aim to
improve performance by optimizing responses to
match ground truth answers more closely.

3 Methods

We use the encoder-decoder model T5 (Raffel et al.,
2020) as the backbone of our main method as op-
posed to the BERT based baselines reported ear-
lier (Soni et al., 2022). We also experimented with
the Flan-T5 model (Longpre et al., 2023) which
have been instruction tuned on a variety of NLP
datasets and tasks. Our DPO-based optimization
consists of two steps: (1) training a supervised fine-
tuned T5 model and (2) optimizing it using DPO.

3.1 Training supervised fine-tuned (SFT)
model

In this step, we trained an initial model for MRC
using the supervised fine-tuning approach with the
original training data, which we refer to as the SFT
model. We model MRC as a text to text task and
opted to use a seq-2-seq model for training the
SFT model. The model’s input is the tokenized
vectors of the concatenated context and question
and the output is the answer span from the context
or “no answer” if the answer is not available in the
context. We formatted the input sequence before
tokenization as follows: “context: the text of the

103



context <SEP>question: text of the question.”

3.2 Optimizing using DPO

After training the SFT model, we further fine-tuned
it using the DPO method. This requires a prefer-
ence dataset consisting of tuples (x, yw, yl), where
x is a prompt and yw and yl are the preferred and
rejected responses for the prompt x, respectively.
In standard RLHF/DPO techniques, the preference
dataset is usually constructed using human annota-
tors. For each input, multiple outputs are generated
by the initial SFT model and human annotators
are asked to rate them as preferred or rejected out-
puts. In contrast to the standard DPO, here we
built the preference dataset automatically without
human interventions. Our approaches to create the
preference dataset are discussed in Section 4.2.

After generating the preference dataset, we ap-
plied DPO to optimize the SFT models. The DPO
architecture employs two models simultaneously
for fine-tuning: one is the reference model (πref ),
while the other is the active model, πθ, which is
being optimized. Both models are initialized with
the SFT model trained in the previous step. The
weights of the reference model (πref ) are kept
frozen throughout the training process, while the
weights of the model πθ are updated using the DPO
loss (Eq. (4) of Appendix A.1). The reference
model ensures that fine-tuning does not cause the
policy of the model πθ to deviate significantly from
the initial SFT model. While the DPO loss aims to
increase the difference between the policies for the
preferred and rejected outputs, it also aims to mini-
mize the difference between the policies of the SFT
and the active model πθ. Both models receive input
in the form of the tuple (x, yw, yl). In our study,
the prompt x consists of the concatenated string of
the context and question, yw is the correct answer
span and yl corresponds to one of the incorrect an-
swers for the question, given the context. Given the
prompt, both models provide the probability distri-
bution of the tokens of the preferred and rejected
answers, which are used to compute the loss and
update the weights of the active model πθ. Figure
1 depicts the process of DPO more elaborately.

4 Datasets

We need two datasets to build the models in the
two phases of our method. The first is the original
RadQA dataset, which was used for training and
validating the SFT model. The second is a pref-

Preference Dataset
F1 Threshold

0.9 0.7 0.5

Model-based-T5 3280 2865 2354
Model-based-Flan-T5 3089 2533 2036
Rule-based 3716 3501 3332

Table 1: #instances in the preference dataset created by
each method applying different F1 threshold values.

erence dataset created from RadQA, and used for
further tuning of the SFT model via DPO.

4.1 RadQA

RadQA(Soni et al., 2022) is an MRC dataset cre-
ated from radiology reports from the MIMIC III
dataset (Johnson et al., 2016). The questions were
manually created from the clinical referral sections
to capture the actual information needs of ordering
physicians, without being influenced by seeing the
answer context. Answers were annotated in the
Findings and Impressions sections and consist of
complete, concise phrases that may span multiple
lines and are not limited to named entities. The
dataset also includes unanswerable questions, sup-
porting the challenges of real-world clinical ques-
tion answering.

The RadQA dataset comprises 6148 unique
question-answer pairs sourced from 1009 radiology
reports of 100 patients. The dataset was split at the
patient level into training, development, and testing
sets, with an 8:1:1 ratio, respectively. This resulted
in 4878 questions in the training set, 863 questions
in the development set, and 894 questions in the
test set. We used the original format of training
data of RadQA exclusively to train the SFT model,
while the development and test data were used for
evaluating both the SFT and DPO models to assess
the effectiveness of our approach.

4.2 Preference dataset

Preference data is the main element for optimizing
a language model through DPO. This consists of tu-
ples that include examples of preferred and rejected
outputs for a given prompt. Although preference
data is typically collected from human annotators,
we automatically generated it, eliminating the need
for manual annotation. We used the original train-
ing corpus of RadQA for this purpose. Specifically,
each prompt was formed by concatenating the con-
text and question from the RadQA training dataset,
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separated by a special token. The preferred output
is the original gold answer span provided in the
dataset. To generate the corresponding rejected
output, we propose two automated approaches: a
model-based approach and a rule-based approach.

4.2.1 Model based approach
In this approach, we used the SFT model itself to
generate negative examples. The process began by
training a model on 50% of the RadQA training
data and then using it to predict answers for the
entire training dataset, including the data it was
trained on. The rationale behind training on half
of the data was to equip the model with sufficient
knowledge for effective performance. Thus, mis-
takes made during these predictions indicate the
types of examples the model needs to focus on to
improve its performance. Testing the model on
both seen and unseen data helps identifying spe-
cific examples that remain challenging despite prior
exposure. Our intuition behind this design is that
by using the model’s own incorrect predictions, we
can better identify the types of examples where
it struggles. These incorrect predictions highlight
situations where the model needs improvement,
making them valuable for training. Additionally,
since the model is also tested on examples it was
trained on, any errors it makes on these familiar
examples indicate that they are particularly chal-
lenging. By focusing on these hard examples, we
aim to improve the model’s overall performance.

We identified all instances where the model gen-
erated incorrect answers. For each prompt and
question pair where the model’s prediction differed
from the original answer, the incorrect prediction
was recorded as the rejected output in our prefer-
ence dataset. To refine the preference dataset, we
filtered these incorrect answers based on their F1
scores. The F1 score was calculated by comparing
word-level matches between each incorrect answer
and its corresponding original answer. To filter the
incorrect predictions, we applied three different
thresholds for the F1 score: 0.9, 0.7, and 0.5. If
the F1 score between the original and the predicted
answer was less than the chosen threshold, the pre-
dicted answer was selected as the rejected output.
To ensure comprehensive coverage, we repeated
this process by training another model on the re-
maining 50% of the training data. This model was
then used again to predict answers for the entire
dataset, allowing us to identify additional incorrect
predictions. We used two variants of SFT models

(T5-3B and Flan-T5-3B) to create the negative ex-
amples. The total number of instances created by
this process is shown in Table 1.

By iteratively training on different halves of the
dataset and collecting incorrect predictions, we
effectively created a robust set of negative exam-
ples without the need for manual annotation. This
automated generation of preference data not only
streamlined our process but also ensured a diverse
range of negative examples, enhancing the quality
of our preference dataset. Our assumption is that
DPO will help the model improve on these chal-
lenging examples, enhancing overall performance.

4.2.2 Rule based approach
We generated negative examples from the training
data by applying a set of predefined rules. These
rules were formulated based on experimental find-
ings regarding the types of errors that SFT model
typically makes. For each tuple (context, question,
gold answer) in the training data, we generated
a number of incorrect answers applying the fol-
lowing rules (also shown with a few examples in
Figure 3 of Appendix A.3):

• Random text span: Select a random span from
the context that does not contain any part of
the gold answer.

• Text span containing part of the gold answer:
Here, a text span from the context that in-
cludes a part of the original answer is ran-
domly chosen. This partial inclusion can oc-
cur in two ways: 1) choosing a segment start-
ing a few words before the left side of the gold
answer and continuing until it includes a par-
tial span from the gold answer, or 2) selecting
a partial segment from the right side of the
answer and including a few words after the
answer text. The lengths of these segments
are chosen randomly (see Figure 3).

• Longer answer: This entails a text span that
includes the entire gold answer as a part of it
with ≥ 1 additional tokens.

• Partial answer only: This involves selecting
a smaller segment (strict substring) from the
original answer.

• Answers of a different question: Here, an an-
swer text from another question in the same
context is chosen, provided it is not the same
as the original gold answer or a part of it. For
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example in Figure 3 of Appendix A.3, “kid-
neys are normal in appearance" is an answer
to a different question for the same context,
but is not part of the ground truth answer.

• No answer: In this approach, we used empty
string in place of the gold answers to cre-
ate negative examples. For questions without
available answers, we chose responses from
other questions within the same context as
negative examples. If there were no other
questions within the same context that pro-
vided answers, we randomly selected a span
from the context as the negative answer.

Following these rules provided us with a large num-
ber of examples of rejected answers for each (con-
text, question, gold answer) tuple. From each set
of rejected answers, we randomly chose a few ex-
amples to create the preference data. We did not
include the entire set of rejected answers for gen-
erating the preference data to prevent the dataset
from becoming intractably large. Finally, we in-
cluded 4000 instances and further filtered them by
applying F1 threshold (see Table 1).

5 Experimental Setup

5.1 Baselines
We compared our T5-based SFT models with the
BERT-based models from Soni et al. (Soni et al.,
2022), which offered SoTA results on the RadQA
dataset. Thus, we selected all of their BERT-
MIMIC-based models as our baselines. These mod-
els come in four variants, based on the datasets used
for fine-tuning. The first variant, BERT-MIMIC-
RadQA, was fine-tuned only on the RadQA dataset.
The remaining three variants were additionally fine-
tuned on external QA datasets such as SQuAD
(Rajpurkar et al., 2016) and EmrQA (Pampari
et al., 2018). For example, BERT-MIMIC-SQuAD-
RadQA was trained on both RadQA and SQuAD,
while BERT-MIMIC-EmrQA-RadQA was trained
on both EmrQA and RadQA.

We also compared our DPO-based method with
the T5 SFT models to assess the effectiveness of
applying DPO on an already high-performing fine-
tuned model.

5.2 Evaluation metrics
To evaluate our proposed method, we used the stan-
dard MRC metrics: Exact match (EM) and F1-
Score. Exact Match is a strict metric that compares

the predicted answer with the exact ground truth
answer, ensuring they are identical. The F1-Score,
on the other hand, is calculated by taking word-
level matches between the predicted and ground
truth answers. To maintain consistency and compa-
rability in our evaluation, we used the evaluation
code from SQuAD (Rajpurkar et al., 2016).

5.3 Network parameters and resources

The network parameters for each model in our
experiments were chosen through hyperparame-
ter tuning. We used the validation F1 score as an
evaluation metric to select the optimal values of
these parameters. For training both the SFT and
DPO models, we employed the Adam optimizer.
The learning rate for the SFT model was set to
5e−5, and for the DPO model, it was 5e−7. The
weight decay was set to 0.01 for both models. The
batch size was 16 for T5-Large models; however,
to accommodate the 3 billion parameter models in
memory, we used a batch size of 2 with gradient
accumulation steps of 8. The maximum prompt
length was set to 768, and the target length was
128. Early stopping was applied during the training
of both the SFT and DPO models, by using the val-
idation F1 score to select the best models. All our
experiments were conducted on a single NVIDIA
H100 GPU, equipped with 80 GB of memory.

6 Results

Table 2 presents the main results of our experi-
ments, comparing the performance of BERT base-
lines, the T5-based supervised fine-tuned (SFT)
models, and the DPO based models. The results
are evaluated on the development and test sets of
the RadQA dataset.

The SFT model type includes three T5 variants
(T5-large, T5-3B, and Flan-T5-3B) trained on the
RadQA training data. From Table 2, we can see
that all the T5 variants outperform the baseline
RadQA models on the test set, with Flan-T5-3B
also performing better on the dev set. Specifically,
the SFT Flan-T5-3B achieves an F1 score of 76.38
and an exact match (EM) score of 55.93 on the test
set, marking improvements of 13 points in F1 score
and 6.5 points in EM over the best baseline model.
Although the three variants of BERT-MIMIC were
trained on additional datasets (SQuAD and em-
rQA) along with RadQA, the T5 models still out-
performed them, establishing a strong baseline for
our DPO-based method. It is important to note
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Model Type Models
Dev Test

EM F1 EM F1

Baseline (BERT-MIMIC) (340M)

RadQA 48.05 65.85 45.73 60.08
emrQA-RadQA 50.65 67.97 47.71 61.60
SQuAD-RadQA 52.28 69.42 49.39 63.55
SQuAD-emrQA-RadQA 53.26 67.79 48.32 62.29

T5-large (770M)

SFT 47.86 66.22 49.89 71.10
DPO-MB 47.74 66.25 51.34 71.62
DPO-RB 48.20 66.59 51.00 71.36
DPO-MRB 47.80 66.10 50.11 71.20

T5-3B

SFT 49.83 68.59 51.68 72.29
DPO-MB 51.10 70.45 52.46 74.29
DPO-RB 50.87 70.26 52.57 74.03
DPO-MRB 50.40 70.13 52.01 75.18

Flan-T5-3B

SFT 54.35 72.62 55.93 76.38
DPO-MB 53.77 73.68 55.15 77.48
DPO-RB 52.49 72.55 56.15 77.40
DPO-MRB 53.42 73.51 55.70 77.41

Table 2: Model performances on the RadQA development and test sets compared with the RadQA BERT-MIMIC
model variants.

that, although BERT-MIMIC was fine-tuned on
a large corpus of clinical notes (Si et al., 2019)
(1.9 million notes comprising approximately 786
million tokens), our T5 models have more parame-
ters than the 340M BERT-based models used in the
RadQA paper and were pretrained on a much larger
and more diverse dataset—the C4 corpus, which
contains around 750GB of clean web text. This
provides T5 with stronger language capabilities.

The DPO-based methods include three groups
of models: DPO-Model Based (DPO-MB), trained
on model-based preference data; DPO-Rule Based
(DPO-RB), trained on rule-based preference data;
and DPO-Model & Rule Based (DPO-MRB),
trained on a combined dataset of model-based and
rule-based preference data. For all the models, we
selected the preference data generated by 0.9 F1
threshold. Additionally, for training the DPO-MB
models, we used the model specific preference data.
For instance, we applied model-based-T5 prefer-
ence data for the T5 models and model-based-Flan-
T5 preference data for the Flan-T5 based DPO mod-
els. From Table 2 we can see that both model and
rule-based DPO models improved the performance
of the corresponding SFT models. Although the

T5-large SFT model did not see a significant im-
provement, the T5-3B and Flan-T5-3B improved
their corresponding SFT models nontrivially, both
in DPO-MB and DPO-RB settings. For instance,
the F1 score of the DPO-MB T5-3B is 74.29, a 2-
point improvement over its SFT counterpart and an
11-point increase compared to the best performing
baseline model, BERT-MIMIC-SQuAD-RadQA,
on the test F1 score. The combined dataset further
improved the test F1 score of the T5-3B model by
1%, but it did not enhance the other variants, indi-
cating saturation in the performance of the models.

7 Discussion

Our experimental results demonstrate that further
fine-tuning an SFT model through DPO can en-
hance its performance between 1–3% F1 points.
This is particularly important because these SFT
models have already been optimized using the full
training dataset, making further improvements chal-
lenging. From our experiments, we found several
factors that influence the performance of the mod-
els trained with DPO, including the size of the SFT
models, the method used to create negative exam-
ples in the preference data, the types of examples

107



included, and the quantity of preference data. In
this section, we provide a detailed discussion on the
observed performance improvements using DPO
and the factors influencing these improvements.

7.1 Size of the model

From our results, we notice that a smaller model
is less likely to benefit from additional fine-tuning
with DPO. However, with larger models, notable
improvements were observed. For instance, with
DPO both T5-3B and Flan-T5-3B increased the
test F1 score of their corresponding SFT models by
1-3%. This indicates the ability of larger encoder-
decoder models to capture signals from examples
of preferred and rejected outputs. However, among
3B models, the improvement is much better in the
non-Flan model. Since the Flan model is instruc-
tion tuned on hundreds of datasets, its SFT perfor-
mance (76.38 F1) is already over 1% better than
the best DPO model of its non-Flan counterpart.

7.2 Model- vs rule-based preference data

While DPO-MB and DPO-RB both enhanced the
performance of the SFT models, our experiments
showed that the model-based approach yielded
comparatively better results than the rule-based
approach. One potential reason for this could be
the nature of the negative examples generated by
each method. Rule-based examples are created
using predefined rules. Although these rules are
designed to generate plausible negative examples,
they may not always reflect the same distribution
as the original RadQA dataset. This can lead to
less effective training, as the model might not en-
counter a representative range of challenging ex-
amples during the DPO training. In contrast, the
model-based approach derives negative examples
from the predictions of the SFT model itself. These
examples are intrinsically linked to the specific
weaknesses of the model. By focusing on these
model-specific errors, the preference data reflects
the instance spaces where the model is prone to
generate incorrect outputs. Consequently, this ap-
proach may offer more targeted training, enabling
the model to learn from its mistakes and improve
its performance. However, one limitation of this
method is that each new model requires the cre-
ation of a new preference dataset, as each model
has different weaknesses and strengths. In contrast,
the training examples created by the rule-based
approach are model-agnostic.

Figure 2: Performance comparison of DPO-T5-3B
model with varying training examples and preference
datasets generated using different thresholds. X-axis
plots #training-examples, Y-axis is the F1 score, and
the line colors represent different preference datasets
created by applying three different F1 thresholds.

7.3 Diversity of training instances

Filtering the preference data based on different F1-
score thresholds also influences the performance
of DPO. Negative examples with higher F1 scores
tend to be closer to the ground truth answers, while
those with lower F1 scores present more dissim-
ilarity with gold spans. Incorporating a broader
range of negative examples from both ends of the
F1-score spectrum provides a diverse and more
informative training set for the model. A higher
F1-score threshold facilitates a mix of examples
that are both similar and dissimilar to the ground
truth answers, offering a wide variety of training
data. Conversely, a lower threshold focuses only
on the examples that are very different from the
ground truth, excluding those that are more simi-
lar. Therefore, preference data created using higher
thresholds may enable the model to learn from a
diverse set of examples, which can enhance its gen-
eralization and performance. Our experiments also
support this hypothesis. Figure 2 illustrates the
test F1-scores of DPO-T5-3B models trained with
preference data filtered at different thresholds. The
results show that the model trained with a thresh-
old of 0.9 outperforms those trained with lower
threshold data, demonstrating the benefits of using
a more diverse set of training examples.

7.4 Number of training Instances

Besides diversity of training examples, the number
of training examples also impacts the performance
of DPO based models. We fine-tuned DPO-T5-3B
with different numbers of training examples (500,
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1000, 1500 and 2000) for each filtering threshold.
As shown in Figure 2, an increase in the number of
training examples generally leads to an increase in
the test F1 score across all thresholds.

7.5 Other variants of DPO

DPO has evolved into several variants, each with
different a loss function, designed to address spe-
cific issues. For instance, Identity Preference Opti-
mization (IPO) (Azar et al., 2024) was developed to
mitigate the overfitting problem identified in DPO
by introducing a new loss function. We trained our
model using three DPO variants: Identity Prefer-
ence Optimization (IPO), Kahneman-Tversky Op-
timization (KTO) (Ethayarajh et al., 2024), and
Statistical Rejection Sampling Optimization (RSO)
(Liu et al., 2024). Our experimental results show
that DPO outperforms other variants for both T5-
3b and Flan-T5-3b models. Detailed results are
provided in Table 3 of Appendix A.2.

8 Conclusion

In this paper, we proposed an approach that com-
bines encoder-decoder models with DPO based
optimization to achieve new SoTA performances
on the MRC task for radiology using the RadQA
dataset. Our study shows that encoder-decoder
models, although computationally expensive due
to large model capacities, can offer substantial
gains in performance (by over 10% in F1 scores).
Originally introduced for aligning LLMs with hu-
man preferences, our study demonstrated that DPO
methods can also be effectively used for likelihood
maximization for MRC tasks and can lead to fur-
ther gains of up to 3% beyond the encoder-decoder
based gains. By focusing on challenging examples
(the model-based preference data setup), DPO can
further improve large models already fully trained.

While effective, one key challenge in fine-tuning
models using DPO is that its performance is highly
dependent on the quality of the preference data.
Collecting high-quality examples of preferred and
rejected outputs is crucial for maximizing the
model’s performance through DPO. In this work,
we introduced two techniques—the model-based
and the rule-based approaches to generate prefer-
ence data for the MRC task, which can be adopted
in other tasks as well. In future, we will explore the
applicability of our approach in other information
extraction tasks such as named entity recognition
and relation extraction.
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A Appendix

A.1 Background for RLHF and DPO
Fine-tuning LLMs for downstream tasks using RLHF technique involves three main phases (Stiennon
et al., 2020; Bai et al., 2022b): 1. supervised fine-tuning, 2. constructing reward model, and 3. fine-tuning
the language model using RL methods.

A.1.1 Supervised fine-tuning
This is the initial step of RLHF technique, where the language model undergoes supervised fine-tuning
on downstream tasks. During this phase, the model is trained on specific task-related training datasets,
allowing it to adapt its pre-trained knowledge to the particular downstream task. The model trained in this
phase is commonly referred to as supervised fine-tuning (SFT) model, denoted as πsft.

A.1.2 Constructing reward model
After training the SFT model, the next step is to develop a reward model that evaluates the SFT model’s
outputs based on human preferences and represent it as scalar values. This reward model can be built
using pre-trained models capable of assessing outputs according to human judgment (Bai et al., 2022b),
or by training it on human preference data collected from annotators.

To construct human preference data, multiple responses are first generated for each prompt by the
SFT model, using different variants of the model or sampling methods (Stiennon et al., 2020; Bai et al.,
2022a). The collection of prompts and their generated responses are then formatted into a batch of tuples
(x, y1, y2), where x is the prompt and y1 and y2 are pair of responses sampled from the set of generated
responses of the prompt x. Human labelers are then instructed to choose their preferred response between
the two. This process creates a preference dataset consisting of tuples (x, yw, yl), where yw represents the
preferred output and yl represents the rejected output.

From the generated preference dataset D, the probability distribution of human preference can be
formulated as

p(yw > yl|x) = σ(r(x, yw)− r(x, yl)) (1)

using Bradley-Terry model (Bradley and Terry, 1952) given an optimal reward model r, where σ is the
logistic function.

With the preference dataset D = {(xi, yiw, yil)}Ni=1, we parameterize the reward model rσ and optimize
it by maximizing the log likelihood of the difference between the reward of preferred response and rejected
response (as in Eq. (1)) and hence minimize the loss

L(rσ) = E(x,yw,yl)∼D[− log(p(yw > yl|x))]. (2)

A.1.3 Fine-tuning Using RL method
Finally, in this step, the trained reward model rσ is used to provide feedback on the output of the
parameterized language model πθ and optimize it by the objective of maximizing the expected reward

r(x, y) = rσ(x, y)− β(log(πθ(y|x))− log(πref (y|x))) (3)

where πθ denotes the policy of the language model we are optimizing and πref is the initial SFT model.
During the RL training phase, the parameters of the SFT model πref remain fixed. πθ is initialized with
πref and optimized using an RL algorithm, most commonly PPO (Schulman et al., 2017) and other
variants of actor-critic (Ramamurthy et al., 2023) algorithms. The parameter β ensures that the trained
policy πθ will not deviate significantly from the initial SFT model πref .

While RLHF is effective, it requires training a separate reward model, which makes the overall process
costly. DPO eliminates the need for a reward model by directly optimizing the language model πθ using
the policies of both the reference model πref and πθ itself. The objective function of DPO is to maximize
the policy difference between the preferred output yw and the rejected output yl as in

LDPO(πθ;πref ) = −E(x,yw,yl)∼D

[
log σ(β log

πθ(yw|x)
πref (yw|x)

− β log
πθ(yl|x)
πref (yl|x)

)

]
. (4)
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A.2 Additional results

Loss
T5-3B Flan-T5-3B

Dev Test Dev Test

EM F1 EM F1 EM F1 EM F1

DPO 51.10 70.45 52.46 74.29 53.77 73.68 55.15 77.48
IPO 50.64 69.41 51.57 73.41 53.53 73.06 53.36 76.79
RSO 49.83 69.55 50.90 74.31 53.88 73.50 55.48 77.24
KTO 47.74 68.21 51.12 74.24 54.11 73.76 53.36 77.20

Table 3: Results on the variants of DPO.

Table 3 shows the performance of the models for different variants of DPO. Although different DPO
variants achieve better performance on different metrics, overall, DPO outperforms others for T5-3B in
most cases, except for the test F1 score, where RSO achieves an F1 score of 74.31. For Flan-T5-3B, DPO
outperforms others in the test F1 score and performs comparably to the others on the remaining metrics.

A.3 Examples of negative outputs created by rules
Figure 3 shows the example of negative samples created by the rule–based method.

Figure 3: Examples of negative (rejected) outputs created by rules.
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Abstract

This paper presents a pipeline for mitigating
gender bias in large language models (LLMs)
used in medical literature by neutralizing gen-
dered occupational pronouns. A set of 379,000
PubMed abstracts from 1965-1980 was pro-
cessed to identify and modify pronouns tied
to professions. We developed a BERT-based
model, “Modern Occupational Bias Elimina-
tion with Refined Training,” or “MOBERT,”
trained on these neutralized abstracts, and com-
pared it with “1965BERT,” trained on the orig-
inal dataset. MOBERT achieved a 70% in-
clusive replacement rate, while 1965BERT
reached only 4%. A further analysis of
MOBERT revealed that pronoun replacement
accuracy correlated with the frequency of occu-
pational terms in the training data. We propose
expanding the dataset and refining the pipeline
to improve performance and ensure more eq-
uitable language modeling in medical applica-
tions.

1 Introduction

1.1 Background
Large language models (LLMs) are now widely
used for a range of applications, from creating cus-
tomer service chatbots to advertising that targets
specific clients to predicting financial outcomes
from potential economic indicators. LLMs have
also increased in presence in the medical sector,
ranging from accessible diagnostics to compre-
hensive literature retrieval, where they hold the
promise of leading to a more informed level of
care. Given the critical nature of these uses, it is
essential to ensure that such LLMs remain free
from biases that could potentially impact patient
treatment and outcomes.

Despite their potential, though, many LLMs
have been shown to contain and perpetuate biases
(Kotek et al., 2023; Liu et al., 2022; Abid et al.,
2021; Prakash and Lee, 2023; Bai et al., 2024; Zack

et al., 2024; Bedi et al., 2024; Degelin, 2024). The
presence of these biases in LLMs is especially con-
cerning in medical applications, where it can lead
to incorrect diagnoses, inappropriate treatment rec-
ommendations, and ultimately, unequal healthcare.
For example, an LLM fine-tuned on a dataset like
PubMed might provide biased diagnostic sugges-
tions if the underlying data contain gendered stereo-
types. Gender biases and their effects have already
been highlighted in a range of medical practice
cases, for topics that include generalized surgical
procedures, psychiatry, kidney transplantation, and
intensive care treatment, among many other areas
(Ruiz and Verbrugge, 1997; van Daal et al., 2020;
Lim et al., 2021; Merdji et al., 2023; Omar et al.,
2024). Our research focuses specifically on occupa-
tional bias in conjunction with gendered pronouns,
highlighting the underrepresentation and exclusion
of women from traditionally male-dominated pro-
fessions, a critical area given the concomitant dis-
tortion that can result from that in patient care deci-
sions. Numerous instances of this bias are evident
in the PubMed dataset, as illustrated in Figure 1.
Instead of perpetuating these inequalities, a prop-
erly and rigorously trained LLM can mitigate and
avoid such dangerous generalizations.

In this paper, we propose a novel approach to mit-
igate gender bias in LLMs used in medical contexts.
To ensure that only relevant pronouns are neutral-
ized without affecting critical medical details, our
pipeline specifically targets pronouns that refer
solely to occupations. This process preserves med-
ically significant context, such as patient-specific
information, while eliminating biased language tied
to occupational stereotypes.

Our method focuses on addressing biases in the
training data before the fine-tuning stage of LLM
development. By constructing and validating a
robust query pipeline that identifies and neutral-
izes binarily-gendered pronouns linked to occupa-
tional terms in medical literature, we aim to create
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Figure 1: Example annotations from PubMed abstract text.

more reliable and fair models. This aligns with
concerns raised by Bender et al. (2021), who em-
phasize that training on biased corpora can amplify
existing societal stereotypes in unintended ways.
By modifying the dataset at the source rather than
post-processing model outputs, we directly address
these concerns and create a more stable foundation
for fairness in medical NLP. Our pipeline includes
several key components: a lexicon for identify-
ing gender-specific pronouns, a pronoun resolu-
tion query, and a classification query to identify
occupation-specific subjects. Both queries were
conducted using Meta’s Llama-3.1-405b model
(Meta AI, 2024), which we elected to use because
it was the most advanced Llama model available
at the time, and offered improved reasoning and
accuracy for the task compared to previous models.
The effectiveness of this approach is demonstrated
through the development and evaluation of a BERT-
based model, “Modern Occupational Bias Elimina-
tion with Refined Training,” or “MOBERT,” trained
on gender-neutralized abstracts from PubMed.

1.2 Related Work

The issue of bias in word embeddings and LLMs
has been widely studied (Pessach and Shmueli,
2022), with researchers highlighting how mod-
els trained on human-generated corpora often re-

flect and amplify societal stereotypes (Dev et al.,
2023; Ungless et al., 2022), as well as proposing
both technological and social solutions. Bolukbasi
et al. (2016) first demonstrated that word embed-
dings could capture and propagate gender biases,
showing that terms like “programmer” were more
closely associated with men than women. Subse-
quent research provided further examples of such
biases and explored their widespread implications
in the field (Ray, 2023; Bommasani et al., 2021;
Mehrabi et al., 2021; An et al., 2024; Pervez and
Titus, 2024). To counter this effect, Bolukbasi et al.
(2016) proposed a post-processing technique to de-
bias word embeddings by projecting gender-neutral
words into a subspace orthogonal to a gender direc-
tion. However, their method had limitations, such
as requiring a classifier to identify gender-neutral
words, which could introduce errors and propagate
bias if the classifier itself was flawed.

Zhao et al. (2018) subsequently introduced GN-
GloVe, a method that embeds gender information
into specific dimensions of word vectors while
neutralizing others. This approach improved inter-
pretability and allowed for more effective debias-
ing by focusing on protected attributes like gender.
However, while GN-GloVe effectively reduced di-
rect gender bias, it left room for improvement in
terms of indirect bias and applicability to contextu-
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alized word embeddings. As Blodgett et al. (2020)
highlight, many prior bias-mitigation efforts rely
on lexicon-based heuristics or simple vector-space
transformations, which may fail to generalize to
real-world applications. Our work moves beyond
this by integrating pronoun resolution and context-
aware classification before model fine-tuning.

More recently, the focus has shifted to contex-
tualized word embeddings, such as those used in
LLMs like BERT and GPT. Basta et al. (2019) and
Zhao et al. (2019) explored gender bias in these
models, finding that while contextualized embed-
dings reduce some biases present in static embed-
dings, they still retain significant levels of bias,
especially in how they handle occupations and pro-
nouns in context. In line with these concerns, re-
cent work has shifted attention toward non-binary
and gender-neutral pronouns, as more individuals
identify outside the binary gender framework. Al-
though much of the previous research focused on
binary gender categories, studies such as Hossain
et al. (2023) have revealed that large language mod-
els struggle significantly with gender-neutral and
neo-pronouns, like “they” or “xe.” This highlights
the broader issue of representation in training cor-
pora, where non-binary pronouns are often under-
represented, exacerbating the model’s difficulty in
handling inclusive language effectively.

Beyond post-processing and embedding-based
debiasing methods, recent research has explored
direct modifications to training data as a strategy for
mitigating gender bias in biomedical NLP. Agmon
et al. (2024) introduced TeDi-BERT, a model that
applies temporal distribution matching to adjust
how gender is represented in historical clinical trial
abstracts, ensuring that language models trained on
older data align more closely with contemporary
gender distributions. Their approach highlights the
importance of modifying training corpora before
model training to prevent biased language from
propagating in downstream applications.

Our work builds on these foundations but di-
verges in its focus on occupational bias in med-
ical literature. Rather than aligning embeddings
across different time periods, we develop a pipeline
that systematically identifies and neutralizes gen-
dered occupational pronouns before model fine-
tuning. Through this methodology, we aim to cre-
ate LLMs that are not only less biased but also
more effective in delivering equitable healthcare
outcomes. Unlike previous efforts that focused
on post-processing or debiasing at the embedding

level, our approach integrates bias mitigation into
the model training process, addressing both direct
and indirect biases more comprehensively.

2 Methods

2.1 Data

Our data are taken from the MEDLINE 2019 base-
line set of PubMed abstracts from 1965 through
mid-2018, totaling approximately 29 million ab-
stracts. We utilized two lexicons to locate rel-
evant abstracts for our study. The first lexicon
searched for binarily-gendered pronouns, such as
“him,” “her,” and “himself,” ensuring that only com-
plete words were identified. This process reduced
the initial set of 29 million abstracts to 687,000
relevant abstract instances. A second lexicon, de-
signed to identify occupational terms, was applied
only for testing purposes, allowing us to evaluate
classification performance across a broader range
of occupation-related pronouns. This second lexi-
con was not used in the case study dataset and did
not affect the pronoun-neutralization process. For
clarity, we designate the “Pronoun-only corpus” as
Dataset A and the “Pronoun- and Lexicon-Derived
Corpus” as Dataset B. These names will be used
throughout the paper when referring to the anno-
tated datasets, as in Table 1.

Each instance in our corpus represents the char-
acter offset of each pronoun found within an ab-
stract. This means that if an abstract contains three
gendered pronouns, it will appear in our baseline
corpus three times, once for each pronoun occur-
rence. This approach is crucial for determining
the specific pronoun resolution in each instance,
as different resolutions may occur within a single
abstract.

2.2 Annotation Process

After constructing Datasets A and B, we pro-
ceeded with a two-step annotation process involv-
ing pronoun resolution and antecedent classifica-
tion. This annotation process (utilizing LabelStu-
dio (Tkachenko and contributors, 2020)) involved
first identifying the noun phrase to which the pro-
noun referred (defined as “pronoun resolution”)
and then classifying that antecedent within the con-
text of the abstract according to the established
classification rules. Those rules were set as seen
in Table 2. In this study, we intentionally avoided
neutralizing pronouns when referring to patients
or trial participants, as well as in contexts where
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Table 1: Descriptive statistics of the annotated corpora.
Dataset A: Pronoun-only corpus Dataset B: Pronoun- and Lexicon-Derived Corpus

Total Number of Abstracts 250 500
Patient/Trial Participant 28 323
Named Individual 62 115
Occupation 97 24
Author of the Abstract 56 19
Animal 0 7
Other 7 12

Table 2: Categorization rules for classifying an antecedent within the context of an abstract.
Antecedent category Category definition
Patient/Trial Participant Individuals directly receiving medical care, those with a medical condition, or who are injured.

This also applies to any trial participant, defined as someone who volunteers or is examined
in a study, regardless of whether they are an occupational subject or not. The label “patient”
takes precedence over any other classification when applicable.

Named Individual Individuals referred to by a proper personal name, which includes capitalized names or
redacted names.

Occupation Individuals, real or abstract, identified by their profession or job, where they are employed
and paid for their work.

Author of the Abstract An author of the paper.
Animal Any non-human creature
Other Any instance that does not fit into the previous categories.

biological sex is medically relevant. Certain con-
ditions, such as prostate or ovarian cancer, are in-
herently gendered, and so de-gendering such refer-
ences could hamper a model’s medical reasoning.
Consequently, whenever a pronoun refers to a par-
ticular patient or group of patients in the abstract,
that pronoun was left unchanged. Two annotators
(the first author and an intern in the lab) separately
labeled each given corpus, then calculated Cohen’s
Kappa, a measure quantifying the level of agree-
ment before reconciliation. Example annotations
from the corpus are shown in Figure 1. Descriptive
statistics of the annotated corpora from Dataset A
and Dataset B are provided in Table 1.

2.3 Pronoun Resolution Query

As the first step in our automated pipeline, we used
a Llama-3.1-405b query to determine the subject
associated with each pronoun, a process known as
pronoun resolution. This step involved determining
the noun or noun phrase to which a given pronoun
referred within the abstract’s context, ensuring that
additional descriptive clauses were excluded. The
full structured prompt used in this query is detailed
in Table 4. To evaluate this prompt-based model, a
randomly selected corpus of 500 pronoun instances
was chosen from the relevant abstracts and each
pronoun’s respective antecedent was located and
double-annotated with a Cohen’s Kappa of 0.9000.
Selected examples and the overall makeup of this
corpus can be seen in both Figure 1 and Table 2.

2.4 Lexicon Validation
Following pronoun resolution, it proved useful to
define a mechanism to distinguish occupational
antecedents from other noun phrases. While the
LLM was highly effective in identifying pronoun
antecedents, we found that only a small percentage
of gendered pronouns were actually attributable to
professions, the core focus of our task. This data
imbalance made it difficult to obtain a sufficient
sample of occupation-related pronoun instances for
evaluation. To address this, we developed a lexicon
specifically designed to increase the frequency of
identified occupational antecedents. The lexicon
was initially derived from the synset relations of
“professional” in WordNet, incorporating common
occupational terms and case-sensitive acronyms
(e.g., “rn” vs. “RN”). To validate the lexicon’s effi-
cacy, it was applied to the 500 resolved antecedents,
filtering for occupational terms.

2.5 Classification Query
Using the validated lexicon described above, the
results of our antecedent query can be success-
fully filtered. In this application, 250 pronoun
instances were extracted from the data (primarily
from Dataset B with the applied lexicon), along
with their corresponding antecedents, that included
occupational terms. These 250 instances and the
text of the abstract in which they appeared must
also be examined and tested for accuracy. Those in-
stances were double-annotated and reconciled with
a Cohen’s Kappa of 0.9470. After annotator rec-
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onciliation, we used the Llama-3.1-405b model to
classify each antecedent according to the same la-
beling rules, enabling comparison between human
and model performance.

2.6 Pronoun Neutralization Process

After identifying gendered pronouns linked to oc-
cupational terms, the next step was neutraliza-
tion. NLTK was used for tokenization and part-
of-speech tagging. A pronoun-mapping dictio-
nary was developed to replace gendered pronouns
with their gender-neutral counterparts, such as
‘they/them/theirs.’ This dictionary accounted for
compound pronouns (e.g., he or she→ they) and
handled replacements while preserving sentence
structure. Pronouns flagged for neutralization were
modified only when they referred to occupational
antecedents, ensuring no changes were made to pro-
nouns referring to patients or trial participants. This
distinction was critical for maintaining medically
relevant context in abstracts where sex-specific con-
ditions (e.g., prostate cancer) were discussed. Ex-
amples of pronoun replacements and contexts that
were preserved are presented in Table 5. The fol-
lowing section presents the results obtained from
applying the three-stage pipeline on our annotated
datasets, showcasing the effectiveness of our ap-
proach in neutralizing gendered pronouns.

3 Results

3.1 Pipeline Performance Metrics

To evaluate the performance of our pipeline, we
analyzed two separate annotated datasets. Dataset
A (Pronoun-only corpus) was used to assess the
pronoun resolution component, while Dataset B
(Pronoun- and Lexicon-Derived corpus) was uti-
lized for the lexicon validation and classification
queries. First, using Dataset A, we applied our
pronoun resolution query on the non-annotated cor-
pus. The Llama-3.1-405b query was run and the
resulting pronoun instances and their correspond-
ing antecedent outputs were cross-referenced with
the ground-truth annotations. This comparison
yielded an accuracy of 0.9881 on the initial 500
abstracts, demonstrating that our pronoun resolu-
tion method reliably identifies antecedents. Next,
with Dataset B, we validated our lexicon for identi-
fying occupational terms by applying it to the 500
antecedents obtained from the pronoun resolution
query. The filtered results were then compared with
the ‘occupation’ labels in the ground-truth anno-

tations, achieving a perfect recall score of 1.0000.
This confirms that our lexicon effectively identi-
fies occupational antecedents for the classification
task. Finally, still using Dataset B, we assessed
the performance of our Llama-3.1-405b classifi-
cation query by calculating precision, recall, and
the F1 score between the generated labels and the
ground-truth labels. The numerical outcomes of
this process are presented in Table 3, and an ex-
ample of an antecedent versus classification query
is provided in Table 4. These results confirm the
high performance of our classification approach
in accurately distinguishing occupational pronoun
instances from other categories. Together, these
performance metrics validate the robustness of our
pipeline, linking each methodological step to suc-
cessful outcomes in resolving, filtering, and classi-
fying gendered pronoun instances.

3.2 Pronoun Neutralization Case Study
We tested the effect of our pipeline on a corpus
of the 379,000 PubMed abstracts from 1965-1980,
hypothesizing that these texts would show a greater
prevalence of singular gendered pronouns, based
on a qualitative examination of a random sample
set of the abstracts. After processing this corpus,
pronouns linked to occupational antecedents were
neutralized in 1,400 abstracts.

To determine the success of this replacement,
we trained two separate base uncased BERT mod-
els (Devlin et al., 2019). The first model, named
1965BERT, was trained on the original, unmodi-
fied dataset of the 379,000 PubMed abstracts from
1965-1980. The second model, denoted “Mod-
ern Occupational Bias Elimination with Refined
Training,” or MOBERT, was trained on a similar
dataset of the 379,000 abstracts, but with 1,400
abstracts identified and modified with the newly
introduced gender-neutral tokens. Additionally,
these 1,400 abstracts were analyzed to identify the
most frequently-occurring occupational terms in
relevant antecedents. The top five terms identi-
fied were “physician,” “surgeon,” “doctor,” “prac-
titioner,” and “nurse.” Both models were trained
for three epochs with a batch size of four per de-
vice, using a mixed precision (fp16) configuration
across multiple graphics processing units. Training
logs were saved at regular intervals, with models
checkpointed every 10,000 steps.

To further assess the models, we conducted a
masked language modeling test using 50 sentences
from our initial annotated corpus of 500 abstracts,
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Table 3: The pipeline performance for the classification query.

Annotation Frequency
(out of 250) Precision Recall F1

Occupation 97 0.9895 0.9691 0.9792
Named Individual 62 0.9492 0.9032 0.9252
Author of the Abstract 56 1 0.9107 0.9533
Patient 28 0.7027 0.9286 0.8
Other 7 0.75 0.8571 0.8
Macro Weighted Avg. 0.943 0.932 0.9349

Table 4: The Llama-3.1-405b prompts for the pronoun resolution and classification queries.

System Content User Content
Pronoun Resolution
Query

You are a helpful assistant with identify-
ing the direct antecedent of a pronoun.
Here is your antecedent_background
knowledge: {background}’*.

Identify the direct antecedent of the pronoun
marked with [START] and [END] in the follow-
ing abstract: {highlighted_abstract}. Only answer
with the antecedent.

Classification Query
(where antecedent
is the output of An-
tecedent Query)

You are a helpful assistant following
these classification rules {rules}.**

In the following abstract, classify which label the
noun “{antecedent}” in the context of the abstract
{highlighted_abstract} is referring to: “patient,”
“occupation,” “named individual,” “author,” “an-
imal,” or “other.” Only output the label, no other
text.

*This background information consists of antecedent grammatical rules established by Fordham (Fordham University, 2024).
**These classification rules consist of the same rules shown in the Annotation Process section.

ensuring that each randomly selected sentence con-
tained gendered pronouns from post-1980 texts.
Importantly, the models were not trained on the
data used in these tasks, ensuring an independent
evaluation of their performance. The testing corpus
was assembled by selecting ten sentences for each
of the five most frequent occupational terms iden-
tified, resulting in 50 sentences. In each sentence,
a [MASK] token was inserted in place of a pro-
noun, and the model was tasked with predicting the
correct pronoun when given respective options of
‘he/him/his,’ ‘she/her/hers,’ and ‘they/them/theirs.’

3.3 Outcomes

We compared the results of this masking test be-
tween BERT-Base (the untrained model), Pub-
MedBERT, 1965BERT, and MOBERT (all three
of which are trained upon BERT-Base with their
respective training data) (Gu et al., 2020). Ex-
amples of this masking test and the correspond-
ing outcomes are in Table 6, with overall results
shown in Table 7. Percentages indicate the pro-
portion of sentences in which gender-inclusive pro-
nouns (‘they/them/theirs’) replaced gendered pro-
nouns. For example, if BERT-Base replaces 40% of
masked pronoun instances with a gender inclusive
pronoun, 1965BERT replaces 4% of those same
instances with a gender inclusive pronoun. The
MOBERT results were further analyzed to deter-
mine a relationship between the frequency of the
occupational term in the training data and the accu-

racy of replacement, as shown in Table 8.

4 Discussion

4.1 Principal Results
The application of our gender-neutralization
pipeline to the 1965-1980 PubMed abstracts has
demonstrated its potential to significantly reduce
occupational gender bias in large language mod-
els. By introducing gender-neutral pronouns rec-
onciled with occupational terms in 1,400 abstracts,
we successfully trained a model, MOBERT, that
demonstrated a 70% success rate in predicting in-
clusive pronouns in a masked language modeling
task. This result far exceeds the 4% success rate
of 1965BERT, a model trained on unmodified texts
from the same period, and highlights the impor-
tance of correcting biased data at the training stage.
MOBERT’s performance also surpassed that of
both the base model, BERT-Base, which exhibited
a 40% success rate, and PubMedBERT, a model
trained on the complete PubMed dataset without
gender-neutralization, which achieved only a 20%
inclusive successive rate. These comparisons un-
derscore the critical role of targeted intervention in
mitigating bias in language models.

4.2 Comparison with Prior Work
Research on the recruitment and retention of
women in male-dominated occupations highlights
how deeply embedded gendered language can re-
inforce exclusionary workplace cultures (Germain
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Table 5: Examples of phrases that would/would not be identified for replacement, and the resulting modifications.

Example Sentence Antecedent Label Modification
Some compromise must be reached between
the unwillingness of the surgeon to spend
most of his time performing abortions and
the freedom for women to have them.
[PMID: 5598532, 10/25/1968]

the surgeon Occupation Some compromise must be reached be-
tween the unwillingness of the surgeon
to spend most of their time performing
abortions and the freedom for women
to have them.

Before any physician attempts to treat telang-
iectasia by this method, he or she should
observe its performance by an experienced
operator.
[PMID: 834688, 3/15/1977]

any physician Occupation Before any physician attempts to treat
telangiectasia by this method, they
should observe its performance by an
experienced operator.

Four lectures given by Dr. Mora and his staff
focus on the betterment of the quality of life
through improved nutrition.
[PMID: 12261512, 6/10/1980]

Dr. Mora Proper name No modification.

Table 6: Examples of the masking test and the corresponding outcomes.

Example Sentence BERT-Base PubMedBERT 1965BERT MOBERT
Although a doctor may not be contin-
ually aware of it, [MASK] medical
activity is firmly rooted in the moral
principles of the medical profession.
PMID: 7470698, 5/21/1981

his his his their

Many different portable computers
are currently available and it is now
possible for the physician to carry a
mobile computer with [MASK] all
the time.
PMID: 12835877, 8/29/2003

them him him them

et al., 2012). Prior studies such as De-Arteaga et al.
(2019) have shown that occupational gender bias in
machine learning software can directly affect hir-
ing and professional representation. Research has
shown that the assumption of male dominance in
professional fields can discourage the participation
of women in those fields, leading to self-reinforcing
cycles of underrepresentation (Wu, 2022). For in-
stance, studies have demonstrated that increasing
gender diversity in male-dominated academic set-
tings leads to improved career outcomes for female
students, suggesting that removing implicit assump-
tions – such as assuming doctors are male – could
encourage more diverse participation in medicine,
technology, engineering, and math (Germain et al.,
2012). If gendered language in professional texts
perpetuates the underrepresentation of women in
these fields, systematically neutralizing such biases
could contribute to breaking this cycle.

4.3 Future Improvements

Future studies could involve integrating MOBERT
into clinical NLP applications – such as diagnostic
models and medical literature retrieval systems –
to assess whether gender neutralization leads to
improved healthcare equity. Sun et al. (2019) high-

light that debiasing techniques should be evaluated
not only through linguistic performance but also
through real-world impact within medicine. Con-
ducting user studies with medical professionals
would be useful in assessing how gender-neutral
models influence literature search relevance and
clinical decision-making.

5 Conclusions

This work demonstrates the effectiveness of a gen-
der neutralization pipeline in reducing occupational
gender bias in large language models trained on
medical literature. By processing 379,000 PubMed
abstracts from 1965-1980 and targeting gender-
specific pronouns linked to professions, we im-
proved MOBERT’s success rate to 70% in predict-
ing gender-neutral pronouns, compared to 4% for
1965BERT. This improvement highlights the im-
portance of addressing bias during training. While
promising, the study also reveals opportunities for
improvement, such as expanding the dataset and
integrating the pipeline into further applications.
These findings underscore the potential for creat-
ing more equitable and unbiased models in medical
and other sensitive domains.
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Table 7: Overall results for the inclusive replacement rates by model.

Model Inclusive Replacement Rate (%)
BERT-Base (Comparison Baseline for All Cases) 40
PubMedBERT 20
1965BERT 4
MOBERT 70

Table 8: Relationship between the occupational term frequency in the training data and the replacement accuracy.

Occupational Term Frequency Percentage (%)
Physician 298 100
Surgeon 135 100
Doctor 89 70
Practitioner 68 60
Nurse 64 30

Limitations

Despite the overall success of MOBERT, our analy-
sis did reveal some limitations. As seen in Table 8,
the frequency of occupational terms in the 379,000
modified abstracts used for pre-training correlated
strongly with the accuracy of pronoun replacement.
For instance, terms like “physician” and “surgeon,”
which appeared more frequently in the training
data, saw a 100% accuracy in neutral pronoun
predictions, while terms like “nurse” had a much
lower replacement rate of 30%. Although we did
not use supervised fine-tuning, MOBERT’s expo-
sure to gender-neutralized occupational terms dur-
ing pre-training likely contributed to its improved
performance on those terms in masked language
modeling tasks. Since masked language model-
ing relies on contextual co-occurrence rather than
explicit supervision, MOBERT likely developed
stronger associations between certain occupations
and gender-neutral pronouns due to their repeated
exposure in the training data. This suggests that ex-
panding a pre-training dataset to include a broader
range of occupations and more balanced represen-
tation of male- and female-dominated roles could
further improve the model’s performance.

Another potential limitation arises from the pro-
cess of language alteration itself. Although we care-
fully designed our pipeline to neutralize pronouns
only in contexts where the occupational term was
the antecedent, there remains a risk that some in-
stances of gendered language with medically signif-
icant context may have been inadvertently modified.
While we found no evidence of such errors in our
testing, further refinements to the pipeline could
incorporate more sophisticated contextual analy-
sis to ensure the protection of patient-specific or
trial-related information. Additionally, large-scale
gender neutralization poses the challenge of main-

taining critical semantic distinctions. While re-
placing a gendered pronoun with ‘they/them/theirs’
often preserves meaning, certain contexts – such as
historical citations or patient narratives – could
lead to unintended distortions. Our lexicon fil-
tering approach helps mitigate this by restricting
modifications to occupational contexts; however,
broader applications must carefully handle edge
cases where neutralization may introduce ambigu-
ity or alter medically relevant details. For example,
in a PubMed abstract (PMID: 25549443) there is
a sentence discussing gender dynamics in surgery:

“Suggestions include a change [in] the relationship
between a female surgeon and her partner, a sup-
plement of surgeons so that hospitals could change
the traditional system of surgery.” Indiscriminate
neutralization of “her” to “their” could obscure
the focus on challenges specific to female surgeons,
weakening the text’s emphasis on gendered profes-
sional and personal expectations. Addressing these
concerns will require further refinement, includ-
ing human evaluation studies, dependency parsing
for syntactic precision, and additional lexicon con-
straints to safeguard against unintended language
shifts.
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Abstract

Large Language Models (LLMs) have ap-
proached human-level performance in text gen-
eration and summarization, yet their applica-
tion in clinical settings remains constrained by
potential inaccuracies that could lead to serious
consequences. This work addresses the critical
safety weaknesses in medical documentation
systems by focusing on detecting subtle errors
that require specialized medical expertise.

We introduce a novel multi-agent debating
framework that achieves 78.8% accuracy on
medical error detection, significantly outper-
forming both single-agent approaches and
previous multi-agent systems. Our frame-
work leverages specialized LLM agents with
asymmetric access to complementary medical
knowledge sources (Mayo Clinic and WebMD),
engaging them in structured debate to identify
inaccuracies in clinical notes. A judge agent
evaluates these arguments based solely on their
medical reasoning quality, with agent-specific
performance metrics incorporated as feedback
for developing situation-specific trust models.

This research significantly enhances the safety
and reliability of automated medical documen-
tation, potentially facilitating wider AI adop-
tion in healthcare while maintaining high stan-
dards of accuracy. The performance gap be-
tween individual specialized agents (WebMD:
70.2%, Mayo: 72.6%) compared to their com-
bined implementation demonstrates the syner-
gistic value of integrating complementary clini-
cal perspectives through structured debate.

1 Introduction

Healthcare professionals spend 52-102 minutes
daily on clinical documentation (Hripcsak et al.,
2011), contributing significantly to administrative
burden, work-life imbalance, and burnout rates ex-
ceeding 50% among practitioners (Arndt et al.,
2017). Large Language Models (LLMs) show

Figure 1: Debating Healthcare Agent framework. The
multi-agent architecture consists of three primary com-
ponents: (1) Expert Agent A with access to guidelines
A, (2) Expert Agent B with access to guidelines B, and
(3) a Judge Agent who evaluates arguments based solely
on their medical reasoning quality without access to
external knowledge sources. The agents engage in struc-
tured debate where experts exchange arguments and
counter-arguments before the judge determines the pres-
ence of errors in the medical note.
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promise for automating clinical summarization
tasks (Knoll et al., 2022), potentially transform-
ing workflows and allowing healthcare providers
to focus more on direct patient care.

Despite their advanced capabilities, LLM adop-
tion in healthcare remains limited due to concerns
about accuracy in high-stakes clinical environments
(Lakkaraju et al., 2022). These concerns are well-
founded: studies examining 136,815 patients found
that 21.1% reported perceived mistakes in their
medical records, with 40% considered serious (Bell
et al., 2020). Diagnostic errors alone contribute to
6-17% of adverse events in hospitalized patients
(Ball et al., 2016), highlighting the critical impor-
tance of accuracy in medical documentation.

Current approaches to medical error detection
typically rely on single-agent architectures that can-
not replicate the nuanced perspective of collabora-
tive clinical evaluation. These methods particularly
struggle with subtle errors requiring specialized
medical expertise, especially in complex cases in-
volving multiple conditions or diverse patient pop-
ulations. This limitation underscores the need for
more sophisticated frameworks that can mirror the
collaborative decision-making processes common
in clinical settings.

To address this gap, we introduce a novel multi-
agent debating framework where specialized LLM
agents with access to authoritative medical guide-
lines engage in structured debate to identify and
resolve inaccuracies. Our approach simulates clini-
cal consultation dynamics through debate protocols
where expert agents present competing perspec-
tives on potential errors, with a judge agent evalu-
ating these arguments based on medical reasoning.
The system incorporates performance metrics as
feedback to develop situation-specific trust models,
enhancing reliability across diverse scenarios.

Our research contributes: (1) a multi-agent archi-
tecture for medical error detection achieving 78.8%
accuracy, outperforming existing approaches; (2)
comprehensive evaluation across medical special-
ties and patient populations; and (3) empirical ev-
idence demonstrating how structured debate be-
tween complementary medical knowledge sources
enhances error detection beyond individual agents’
capabilities. These contributions establish founda-
tions for safer LLM deployment in clinical environ-
ments, addressing a key barrier to AI adoption in
healthcare.

2 Related Works

2.1 Medical Error Detection and Correction

Medical error detection and correction in clin-
ical texts was first formally addressed during
the MEDIQA-CORR challenge at NAACL 2024
(Ben Abacha et al., 2024). This challenge created
a corpus of medical notes with intentionally intro-
duced errors requiring medical expertise to detect,
structured as a three-stage task: error detection,
span identification, and correction generation.

The winning team (Toma et al., 2024) developed
dual LLM-based systems using the DSPy (Khattab
et al., 2023) framework, a retrieval-based approach
for subtle errors and a comprehensive pipeline for
complex cases (accuracy: 86.49%, though flagged
for potential use of MS test data). The Prompt-
Mind team (Gundabathula and Kolar, 2024) imple-
mented prompt-based in-context learning that in-
tegrated outputs from multiple advanced language
models(accuracy= 0.6216). HSE NLP (Valiev and
Tutubalina, 2024) employed an in-prompt ensem-
ble approach combining named entity recognition
with MeSH knowledge graph integration (Accu-
racy= 0.5222). Edinburgh Clinical NLP (Gema
et al., 2024) explored three strategies: end-to-
end prompting, two-stage fine-tuning, and a hy-
brid method combining both approaches(accuracy=
0.6692). The KU-DMIS team (Hwang et al., 2024)
fine-tuned Meerkat-7B using a Chain-of-Thought
reasoning dataset generated from GPT-4 (accu-
racy=0.6346). Across 17 participating teams, the
mean accuracy score was 61.57%, highlighting the
challenge’s difficulty and the need for optimized
approaches suitable for integration into production-
grade clinical documentation systems.

The challenge demonstrated that dataset-
dependent methods generally outperformed gen-
eralized approaches, though dataset-agnostic so-
lutions showed promise. Error detection proved
particularly challenging, highlighting the need for
optimized approaches suitable for integration into
production-grade clinical documentation systems.

2.2 Medical Decision Making

The integration of LLMs into medical decision-
making (Thirunavukarasu et al., 2023) has pro-
gressed along two distinct trajectories. The ini-
tial approach focused on fine-tuning pretrained
models on domain-specific corpora, as exempli-
fied by Med-PaLM (Singhal et al., 2023) Med-
Gemini (Saab et al., 2024) or Bio Mistral (Labrak
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et al., 2024) and clinical BERT variants (Huang
et al., 2020), which demonstrated enhanced perfor-
mance on medical tasks through parameter opti-
mization. However, with the emergence of more
capable foundation models like GPT-4, the field has
increasingly shifted toward sophisticated inference-
time techniques that preserve model parameters
while adapting behavior (Nori et al., 2023). Prompt
engineering strategies—including few-shot exam-
ples, chain-of-thought reasoning, and structured
output templates—have shown remarkable efficacy
in guiding LLMs toward medically sound reason-
ing patterns without domain-specific training. In
some task like medical summarization (Van Veen
et al., 2023), adapted model can even surpass med-
ical experts (Van Veen et al., 2024).Retrieval Aug-
mented Generation (RAG) (Lewis et al., 2021)
has proven particularly valuable for mitigating hal-
lucinations by dynamically incorporating trusted
medical knowledge bases, clinical guidelines, and
patient-specific records into the generation con-
text. This approach anchors model outputs to veri-
fiable sources while maintaining flexibility across
diverse clinical scenarios. Frameworks such as
Uncertainty of Thoughts (Hu et al., 2024) further
advance LLM reliability in medical settings by im-
plementing uncertainty quantification mechanisms
that more closely approximate clinical diagnostic
workflows. Despite these advances, the high stakes
of medical decision-making necessitate additional
safeguards against subtle inaccuracies that could
compromise patient safety, motivating multi-agent
collaboration frameworks that can solve complex
medical problems by working collaboratively, tak-
ing example for the real medical settings. Agent
Hospital (Li et al., 2024) which simulates a whole
hospital with agents, to train them and treat disease
more efficiently. Other methods like MedAgents
(Tang et al., 2024) leverages collaborative multi-
round discussion with LLM-based agents to solve
medical domain task. MDAgents (Kim et al., 2024)
build on top of with an adaptive collaboration struc-
ture.

2.3 Multi Agent Framework

Multi-agent frameworks represent a promising ap-
proach for enhancing LLM performance in com-
plex medical scenarios. Recent studies have demon-
strated that effective collaboration between spe-
cialized agents, such as those in AutoGen (Wu
et al., 2023), can yield superior results compared
to individual agents operating in isolation (Wang

et al., 2024). This parallels human team dynamics,
where diverse expertise contributes to more robust
decision-making.
Multi-agent collaboration has proven successful
across varied domains including general problem-
solving (Li et al., 2023), software engineering
(Qian et al., 2024), and even simulation environ-
ments like The Sims (Park et al., 2023). Particularly
relevant to our approach is the work by Chen et al.
(Chen et al., 2024), who developed a multi-model
multi-agent framework structured as a round table
conference among diverse LLM agents, demon-
strating how different model architectures can com-
plement each other’s strengths and compensate for
individual weaknesses.
However, these approaches often suffer from sig-
nificant computational inefficiency, as they typi-
cally rely on multiple instances of large, resource-
intensive LLMs performing numerous inference
passes. For practical clinical deployment, a multi-
agent framework must demonstrate clear advan-
tages over single-agent alternatives to justify the
additional computational cost.
Our work proposes a streamlined approach that
combines the strengths of structured multi-agent
debate with retrieval-augmented generation (RAG).
By incorporating findings from Khan et al. (Khan
et al., 2024) on effective debate protocols, we have
developed a tailored system specifically designed
for medical error detection. This approach ad-
dresses the critical need for safeguards against sub-
tle medical inaccuracies that could compromise
patient safety, allowing for systematic evaluation
of clinical content against established medical stan-
dards while maintaining computational efficiency.

3 Methods

3.1 Datasets

The dataset utilized in this study is derived from
the MS collection of the medical error detection
dataset created by Ben Abacha et al (Ben Abacha
et al., 2024). This collection was developed by
transforming the MEDQA dataset (Jin et al., 2020),
which originally contained free-form multiple-
choice questions from professional medical board
exams. The researchers manually injected errors
into clinical texts and made textual modifications
that leveraged both clinical notes and multiple-
choice questions from MEDQA. Those errors are
mainly substitutions of medical terms such as diag-
nosis, treatment, scan type, or prescriptions. The
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MS collection includes 2,189 clinical texts in the
training set, 574 in the validation set, and 597 in
the test set. Each text contains deliberately in-
jected errors across various medical domains in-
cluding diagnosis, causal organism, management,
treatment, and pharmacotherapy, making it a valu-
able resource for developing and evaluating medi-
cal error detection systems. In recent studies, two
physicians attempted to detect errors on half of the
test set. On the MS teams dataset, they achieved
accuracy rates of 81.25% and 68.90% respectively.
These results demonstrate that even for trained med-
ical professionals, this error detection task is not
straightforward.

3.2 Medical Knowledge Foundation for
Agents

A cornerstone of our project is the comprehensive
medical guidelines framework that serves as a criti-
cal differentiator between agents. This framework
comprises carefully curated, authoritative medical
information sources that each agent can access and
reference.

We have meticulously selected several reputable
online medical resources, ensuring our agents have
access to evidence-based, peer-reviewed, and clini-
cally validated information. These resources were
chosen based on their reliability, accuracy, compre-
hensiveness, and recognition within the medical
community.

Primary Mainstream Medical Sources
Our foundation layer consists of widely recog-

nized medical information platforms:

1. Wikipedia: A vast collaborative encyclopedia
with extensively referenced medical articles
that undergo regular expert review

2. MedlinePlus: Produced by the National Li-
brary of Medicine, offering reliable, up-to-
date health information in accessible language

3. WebMD: A comprehensive consumer health
information site featuring physician-reviewed
content

4. Mayo Clinic: One of the world’s premier med-
ical institutions providing authoritative, trust-
worthy health guidance

5. PubMed Central: An extensive archive of
biomedical and life sciences journal literature
at the U.S. National Institutes of Health’s Na-
tional Library of Medicine

6. Medscape: A leading platform for healthcare
professionals, Medscape offers peer-reviewed
medical news, clinical reference tools, and
continuing education content. Its articles are
authored by experts and frequently updated,
making it a trusted source for evidence-based
clinical guidance.

These primary sources provide our agents with
a robust baseline of medical knowledge spanning
from basic concepts to advanced clinical informa-
tion, ensuring they can address a wide spectrum of
health-related inquiries.

3.3 Debating Framework: Error Detection

Our framework draws inspiration from Khan et
al. (Khan et al., 2024), who developed a debat-
ing method where LLM experts argue for different
answers—in our case, assessing the correctness of
medical notes. A key finding from their work is that
weaker models can effectively supervise stronger
models when structured properly.

3.3.1 Agent Architecture and Information
Flow

The multi-agent debate framework consists of three
primary components (Figure 2):

1. Expert Agent A (Mayo Clinic): Specialized
for healthcare professional perspective

2. Expert Agent B (WebMD): Specialized for
patient-oriented medical knowledge

3. Judge Agent: Evaluates arguments without
access to external knowledge sources

In our implementation, asymmetry is created by
providing LLM experts with different information
sources, while the judge agent relies solely on its
internal knowledge. This creates a controlled infor-
mation environment where the two expert agents
have access to the medical note under evaluation,
but the judge only accesses their arguments to make
decisions.

3.3.2 Information Retrieval Integration
To mitigate the risk of hallucinations, we integrated
a retrieval component through a fetch_website
tool that allows expert agents to access authorita-
tive medical websites. The tool fetches and pro-
cesses web content (limited to 2000 characters), re-
moving non-informative elements while preserving
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Algorithm 1 Multi-Agent Medical Error Detection

Require: Medical note M
Ensure: Error detection decision (True/False)

1: Initialize agents: Expert A (Mayo Clinic), Ex-
pert B (WebMD), and Judge

2: Experts analyze M using fetch_website to re-
trieve medical information

3: Experts present initial arguments (max 300
words each)

4: Experts exchange counter-arguments after re-
viewing opposing views

5: Judge evaluates all arguments (without exter-
nal references)

6: return Judge’s decision on presence of errors

essential medical information. Expert agents are re-
stricted to accessing only their assigned knowledge
source—Mayo Clinic for healthcare professional
perspectives and WebMD for patient-oriented in-
formation.

Our initial experimentation with three debate
rounds revealed significant redundancy, as agent
positions rarely changed after the second round
(in 92% of test cases). We therefore limited de-
bates to two rounds for efficiency. Additionally,
we implemented a 300-word limitation for each
agent’s contribution to address verbosity bias, as
judge agents consistently favored longer arguments
regardless of substance.

4 Experiments & Results

4.1 Evaluation Metrics

To comprehensively evaluate our framework’s per-
formance, we employ multiple complementary met-
rics that assess different aspects of medical error
detection.

For error detection, we use accuracy as our pri-
mary metric, defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP (true positives) represents correctly
identified errors, TN (true negatives) represents
correctly identified error-free notes, FP (false posi-
tives) represents error-free notes incorrectly flagged
as containing errors, and FN (false negatives) rep-
resents errors that went undetected.

To assess statistical significance, we employ Mc-
Nemar’s test—a non-parametric method suitable
for paired nominal data in classification tasks. This

test evaluates whether disagreements between our
method and baselines are statistically significant,
with p < 0.05 indicating significant performance
differences. McNemar’s test is particularly appro-
priate as it focuses on error pattern differences
rather than just overall accuracy and accounts for
the paired nature of predictions on identical test
instances.

4.2 Setup
The primary goal is to assess model discriminative
capabilities rather than deployment performance,
which is why we used a balanced dataset as med-
ical errors are scarcer in real-life clinical settings.
Future work should evaluate the system on datasets
with more realistic error prevalence rates to better
understand performance metrics that are sensitive
to base rates.

We tested all models on a balanced set of 500
randomly sampled data points from the MS collec-
tion—a subset of the full dataset necessitated by
computational cost constraints. With API-based im-
plementations, inference costs varied significantly
between methods, from approximately $5 per eval-
uation run for single-agent approaches to $30 per
run for our multi-agent framework, making com-
prehensive testing on the full dataset prohibitively
expensive.

For this evaluation, we benchmarked our pro-
posed framework against state-of-the-art (SOTA)
baselines across three categories. First, we com-
pared against individual agent approaches using
popular prompting techniques: zero-shot (direct
task inference without examples), few-shot (Brown
et al., 2020) learning from minimal examples, chain
of thought (Wei et al., 2023) with explicit reasoning
steps, and self-consistency (SC) methods (Wang
et al., 2023) generating multiple solutions for con-
sensus.

We also included specialized single-agent im-
plementations using Mayo Clinic, WebMD, and
Medscape guidelines as reference materials, which
demonstrated superior performance over standard
prompting techniques. The final category consisted
of multi-agent approaches, comparing against the
high-performing MDAgents framework (Kim et al.,
2024) (specialized medical diagnostic agents) ap-
plied to our dataset, as well as a modified version
of AutoGen (Wu et al., 2023) comprising four spe-
cialized agents (User, Clinician, Medical Expert,
and Moderator) with single-turn responses.

GPT-4o served as the foundational LLM in all
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experimental configurations to ensure fair compari-
son across methods.

4.3 Implementation

Our implementation uses AutoGen Core/Ext for
orchestrating the multi-agent debate protocol, with
all agents powered by GPT-4o. Expert agents ac-
cess domain-specific medical knowledge through a
custom retrieval component using BeautifulSoup
and Requests, while the judge agent evaluates ar-
guments based solely on their medical reasoning
quality. The system leverages asynchronous com-
munication to efficiently manage the two-round
structured debate process

5 Results Analysis

The revised results demonstrate a stratified per-
formance pattern across medical error detection
methodologies. Single-agent approaches (Zero-
Shot: 66%, Few-Shot: 64.2%) establish a base-
line performance that is incrementally improved
through few-shot variants (CoT+Few-Shot: 69.7%).
To better understand the impact of domain-specific
knowledge sources, we developed specialized sin-
gle agents (S.Agent) by isolating components of
our complete framework. Each S.Agent utilizes
our base prompt enhanced with few-shot exam-
ples, chain-of-thought reasoning, and the ability to
retrieve information from a single medical knowl-
edge source—either Mayo Clinic or WebMD. This
specialized agent architecture reveals an interesting
asymmetry, with S.Agent (WebMD) performing
at 70.2% compared to S.Agent (Mayo) at 72.6%,
indicating that domain-specific knowledge sources
contribute differentially to error detection capabili-
ties. The multi-agent frameworks show progressive
enhancement, with MDAgent achieving 70.6% ac-
curacy and AutoGen reaching 74.6%, though with a
notably higher p-value (0.1567) suggesting less sta-
tistical reliability in its performance advantage. Our
proposed composite methodology, which integrates
the complementary knowledge sources in a struc-
tured debate framework, achieves 78.8% accuracy,
representing a 4.2 percentage point improvement
over AutoGen. This performance enhancement
appears statistically significant when compared to
most baseline methods (p<0.05), with the exception
of AutoGen. These findings suggest that deliberate
integration of complementary clinical perspectives
through a structured multi-agent debate framework
effectively captures diagnostic subtleties missed by

Source Accuracy
Mayo Clinic 84%
Web MD 82%
Medscape 80%
PubMed Central 78%
Medline 74%
Wikipedia 72%

Table 1: Accuracy of various medical sources, sorted in
descending order.

single-perspective systems, mirroring the benefits
of multi-specialist consultation in clinical practice.

5.1 Medical sources

For website retrieval, we can classify the sources
into two main categories with two notable
outliers. Wikipedia, being a generalist website,
understandably performs relatively poorly at
72% accuracy for medical information. PubMed
Central represents another outlier as a healthcare
research website; despite our expectations for
higher performance, it achieved only 78%, likely
because only abstracts are publicly available.

The two main categories are websites for health-
care professionals (Mayo Clinic and Medscape),
which rank among the best performers with 84%
and 80% accuracy respectively, and those designed
for patients (WebMD and Medline) with 82%
and 74% accuracy. To obtain different perspec-
tives on each medical note, we selected one web-
site from each category with the highest accuracy
scores: Mayo Clinic for healthcare professionals
and WebMD for patients.

5.2 Error analysis

5.2.1 Medical Specialty
A detailed error analysis across medical specialties
reveals significant performance variations in our
model. The framework achieves above-average ac-
curacy in Emergency Medicine (83.0%), Infectious
Disease (81.2%), and Oncology (79.4%), suggest-
ing particular strength in these domains.
Conversely, the model demonstrates notable weak-
nesses in Obstetrics/Gynecology (73.6%) and Psy-
chiatry (75.0%). For OB/GYN cases, careful ex-
amination of the model’s reasoning reveals a fun-
damental challenge: pregnancy significantly al-
ters normal vital sign parameters and physiolog-
ical baselines, causing the model to misinterpret
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Figure 2: Accuracy of error detection across medi-
cal specialties. The visualization shows both sample
distribution (bars) and accuracy rates (line) by spe-
cialty. Emergency Medicine (83.0%), Infectious Dis-
ease (81.2%), and Oncology (79.4%) demonstrate the
highest accuracy rates, while Obstetrics/Gynecology
(73.6%) and Psychiatry (75.0%) show the lowest. Spe-
cialties comprising less than 5% of the dataset are con-
solidated into the "Others" category (28.0% of total
samples).

clinical findings that would be concerning in non-
pregnant patients but are within normal ranges dur-
ing pregnancy.
The difficulties in Psychiatry stem from two pri-
mary factors. First, the model struggles to iden-
tify problematic elements within psychiatric notes,
possibly due to the more subjective and nuanced
nature of psychiatric documentation compared to
other specialties. Second, the complexity of psy-
chiatric cases is difficult to adequately capture in
concise clinical summaries, leading to misinterpre-
tations. These challenges may be compounded by
potential underrepresentation of psychiatric cases
in the model’s training data.
These findings highlight the importance of
specialty-specific optimization for medical AI sys-
tems, particularly in domains with unique physio-
logical considerations or documentation practices.

5.2.2 Patient Population

The performance analysis across different patient
populations reveals distinct patterns in our model’s
effectiveness. Geriatric patients (83.6%) and
Pediatric cases (81.6%) show the highest accuracy
rates, suggesting our model is particularly adept at
detecting errors in these populations. This strong
performance in age-specific populations is notable,
especially for pediatric cases which represent a
significant portion of our dataset (25.0%).
Adult patients with chronic diseases (76.0%)
show moderate performance despite constituting

Figure 3: Accuracy of error detection across patient
populations. The chart displays both sample size (bars)
and accuracy rates (line) for each population category.
Geriatric patients and pediatric cases show the highest
accuracy rates (83.6% and 81.6% respectively), while
pregnancy and obstetric cases present the greatest chal-
lenge (71.4%). Categories representing less than 5% of
the total sample are grouped as "Others".

another major segment of our dataset (25.0%).
The model performs reasonably well with acute
conditions (78.9%), representing 15.2% of cases,
but experiences a notable decline in accuracy
for pregnancy and obstetric cases (71.4%). This
aligns with our previous observation regarding
OB/GYN specialties and reinforces the challenge
of accurately evaluating medical information in
the context of pregnancy, where physiological
baselines differ significantly from general adult
populations.
The relatively consistent performance across
diverse demographic groups, with most accuracies
ranging between 75-84%, indicates overall
robustness in the model’s error detection capa-
bilities. However, marked underperformance in
pregnancy-related cases highlights a specific area
that requires targeted improvement. These findings
suggest that while our framework generalizes
well across most patient populations, specialized
training or refinement is necessary for cases where
standard medical parameters are naturally altered,
such as during pregnancy.

Conclusion

This study introduces a novel multi-agent debat-
ing framework for medical error detection that
achieves 78.8% accuracy, significantly outperform-
ing both single-agent methods and previous multi-
agent approaches. By leveraging specialized agents
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Method Accuracy (%) P-value
Single-Agent

Zero-Shot 66.0 <0.001*
Few-Shot 64.2 <0.001*

Few-Shot Variant
CoT+Few-Shot 69.7 <0.001*
SC+CoT+Few-Shot 64 <0.001*

Multi-Agent
MDAgent 70.6 0.004*
AutoGen 74.6 0.157

Proposed Method
S. Agent (WebMD) 70.2 0.002*
S. Agent (Mayo) 72.6 0.029*
Our Method 78.8 –

Table 2: Accuracy of various methods on the MS dataset
(500 examples). P-values compare each method against
our proposed method. Asterisks (*) indicate statistical
significance (p < 0.05).

with access to complementary medical knowledge
sources (Mayo Clinic and WebMD), our structured
debate protocol effectively models the collabora-
tive decision-making dynamics found in clinical
settings.
Our analysis revealed performance variations
across specialties, with strengths in Emergency
Medicine (83.0%), Infectious Disease (81.2%),
and Oncology (79.4%), and challenges in Obstet-
rics/Gynecology (73.6%) and Psychiatry (75.0%).
Similarly, the system performed robustly with geri-
atric (83.6%) and pediatric populations (81.6%),
though pregnancy-related cases proved more diffi-
cult due to altered physiological baselines.

The performance gap between individual special-
ized agents (WebMD: 70.2%, Mayo: 72.6%) com-
pared to their combined implementation (78.8%)
demonstrates how integrating complementary view-
points through structured debate creates synergistic
effects that mirror the benefits of multi-specialist
consultation in clinical practice. This research
establishes that multi-agent debate represents a
promising approach for enhancing the safety and
reliability of AI-assisted medical documentation,
potentially facilitating wider adoption of AI tech-
nologies in clinical settings while maintaining high
standards of accuracy. The approach not only im-
proves performance metrics but also generates ex-
planatory reasoning that enhances trust and inter-
pretability—critical factors for responsible AI de-
ployment in medical contexts.

Limitations

The current study presents several limitations worth
addressing. First, our dataset encompasses only a
specific subset of error types, potentially limiting
generalizability to the diverse range of errors en-
countered in actual clinical environments. Second,
computational resource constraints—particularly
the cost associated with GPT-4o usage—restricted
our ability to conduct more comprehensive test-
ing. Third, our evaluation focused exclusively
on closed-source models, leaving questions about
cross-model performance variations unanswered.
Additionally, we selected only a few medical web-
sites to benchmark their performance, which con-
strains the comprehensiveness of our analysis. The
primary challenge identified lies in medical rea-
soning capabilities. Future work should investi-
gate how models specifically trained for medical
applications might enhance performance. Recent
developments such as DeepSeek-R1 (DeepSeek-AI
et al., 2025) and advanced post-training method-
ologies like Group Relative Policy Optimization
(Shao et al., 2024) offer promising avenues for
improvement. Emerging research examining these
approaches in medical contexts (Zhang et al., 2025)
suggests fertile ground for future exploration. Such
specialized training paradigms could potentially
address the reasoning gaps identified in our current
multi-agent debate framework.
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A Example Appendix: Multi-Agent
Debate Case

A.1 Patient Case and Diagnosis
54-year-old woman with a painful, rapidly growing
leg lesion for 1 month. History includes Crohn’s
disease, diabetes, hypertension, and previous ante-
rior uveitis. Examination revealed a 4-cm tender
ulcerative lesion with necrotic base and purplish
borders, along with pitting edema and dilated veins.
Diagnosed as a venous ulcer.

A.2 Multi-Agent Debate Analysis
A.2.1 Expert Agent Analysis Summary

• Mayo Clinic Agent: Identified lesion charac-
teristics (necrotic base, purplish borders) as
inconsistent with venous ulcers. Highlighted
association between Crohn’s disease and pyo-
derma gangrenosum. Emphasized misdiagno-
sis risk and treatment implications.

• WebMD Agent: Noted venous insufficiency
findings but questioned diagnosis due to pa-
tient’s inflammatory disease history. Sug-
gested alternative diagnoses including pyo-
derma gangrenosum given clinical context.

A.2.2 Judge Agent Decision
Final Answer: INCORRECT (Confi-
dence: 8/10)
Reasoning: Both agents identified py-
oderma gangrenosum as a more likely
diagnosis given the patient’s Crohn’s dis-
ease and lesion characteristics. Mayo
Clinic agent provided more comprehen-
sive analysis of clinical inconsistencies,
emphasizing the importance of correct
diagnosis for appropriate treatment.
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A.3 Key Insight
This case demonstrates how our multi-agent frame-
work effectively identifies potential diagnostic er-
rors by leveraging complementary medical knowl-
edge sources. The specialized agents provided dif-
ferent analytical approaches but converged on the
same conclusion, highlighting the value of struc-
tured debate in enhancing diagnostic accuracy for
complex cases.

B Example Appendix

C Agent System Messages

C.1 Healthcare Expert Agent (Mayo Clinic)
System Message

[breakable, enhanced, colback=gray!5!white, boxrule=0.5pt]
You are a healthcare professional specializing in analyzing
medical notes, with expertise in diagnosis and clinical ter-
minology. Important: Medical notes should be presumed
CORRECT unless there is an obvious, significant error. Your
task is to identify only clear substitution errors in:

- Diagnostic terms that significantly change the clinical
meaning - Medication terms that would result in wrong treat-
ment - Treatment protocols that are clearly contraindicated -
Management plans that would harm the patient - Therapeutic
interventions that are definitively inappropriate

Classification criteria: - INCORRECT: Contains exactly
one clinically significant term substitution that would change
patient care - CORRECT: Default classification - use this
unless there is a clear, significant error

In your final turn, please provide a detailed final explana-

tion for your decision including your reasoning and supporting

evidence. Conclude with a sentence beginning ’Based on my

analysis, this note is ...’.

C.2 Judge Agent System Message
[breakable, enhanced, colback=gray!5!white, boxrule=0.5pt]
You are the judge in a debate between two healthcare agents.
They have each presented their arguments about whether the
medical note is correct or contains an error. Do not interfere
with the debate while it is ongoing; wait until both agents have
finished their 2 exchanges. Once the debate has concluded,
evaluate both agents’ final messages and decide which agent
made the more convincing case (i.e., which agent correctly
identified whether the note is correct or incorrect). Provide
a clear explanation for your decision. Your final response
should be in JSON format with the structure:

{ "Final Answer": "CORRECT/INCORRECT", "Confi-
dence Score": <number>, "Winner": "<Agent Name>", "Rea-
soning": "<Explanation of decision>" }

Do not include any additional commentary.
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Abstract

Biomedical entity linking models disambiguate
mentions in text by matching them with unique
biomedical concepts. This problem is com-
monly addressed using a two-stage pipeline
comprising an inexpensive candidate generator,
which filters a subset of suitable entities for a
mention, and a costly but precise reranker that
provides the final matching between the men-
tion and the concept. With the goal of applying
two-stage entity linking at scale, we explore
the construction of effective cross-encoder
reranker models, capable of scoring multiple
mention-entity pairs simultaneously. Through
experiments on four entity linking datasets,
we show that our cross-encoder models
provide between 2.7 to 36.97 times faster
training speeds and 3.42 to 26.47 times faster
inference speeds than a base cross-encoder
model capable of scoring only one entity,
while achieving similar accuracy (differences
between -3.42% to 2.76% Acc@1).

1 Introduction

Biomedical entity linking matches mentions of
biomedical concepts (diseases, chemicals) in
texts with unique entities within a knowledge
base (Kartchner et al., 2023; Garda et al., 2023).
Disambiguating mentions within text is fundamen-
tal for information extraction tasks, as a single
entity might be referred to by different names or
aliases (e.g. chickenpox and varicella refer to the
same disease), or a mention might refer to mul-
tiple entities (e.g. APC might refer to advanced
pancreatic or prostate cancer).

This problem is commonly devised as a two-
phase procedure (Xu et al., 2023): given a men-
tion in a text, an initial model selects a reduced
set of candidate entities it might refer to. This
model is commonly fast, as it needs to filter among
thousands of entities (Neumann et al., 2019; Liu
et al., 2021). Then, a second, more precise model

MET  amplification may predict survival 
in CRC.
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Candidate 
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retrieval

Candidate 
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Figure 1: Example of our multi cross-encoder model.

reranks these candidate entities to provide the fi-
nal matching between a mention and an entity in
the knowledge-base. Cross-encoders (Logeswaran
et al., 2019) are a popular option for this stage (Wu
et al., 2020; Zhang et al., 2022). While accelerated
by the reduced candidate selection, these rerankers
are usually costly, requiring extensive training and
inference times. The efficiency of these rerankers
can be an important factor of our entity linking
pipeline if we want to run these models at scale
across millions of documents. However, works
on biomedical entity linking have traditionally fo-
cused on the accuracy of the models and not on
their efficiency.

Therefore, in this paper, we aim to improve the
efficiency of second stage cross-encoder models.
Taking as a starting point a base cross-encoder (Lo-
geswaran et al., 2019), we propose novel entity
linking methods that improve both training and in-
ference speeds, while maintaining similar accuracy
levels. For this, inspired by the longer context win-
dows of recent encoder-only transformer models
like ModernBERT (Warner et al., 2024), we design
cross-encoders capable of scoring multiple candi-
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dates at the same time, and even reranking multiple
mentions simultaneously. We show an example of
this in Figure 1. Our contributions are threefold:

• We propose a novel multi cross-encoder ar-
chitecture that accelerates the training and
inference times of a classical reranker cross-
encoder for entity linking.

• We compare our approach on three different
transformer models and four different biomed-
ical entity linking datasets.

• We find that our cross-encoders can acceler-
ate up to 36.97 times the training speed of a
simple cross-encoder and up to 26.47 times
the inference speed, while providing similar
effectiveness.

2 Task definition and notation

We start by formally defining the entity linking
(EL) task. EL aims to uniquely match entities
mentioned in the text with unique concepts
within a knowledge base. Let’s suppose we have
a knowledge base containing a set of unique
entities E and a corpus of documents D. Each
document d ∈ D has a series of mentions Md,
where a mention m ∈ Md is a sequence of
tokens m = d

(1)
m · · · d(l)m ⊆ d that corresponds to

a unique entity. Given a document d and a mention
m ∈ Md, the EL task consists on identifying the
entity em ∈ E that m refers to in d. We address this
task as a ranking problem, where we find the entity
maximizing a ranking function fm,d : E → R.

3 Related work

While early works on biomedical entity linking date
back to the late 1980s (French and McInnes, 2023),
a majority of recent works in this area are based
on recent transformer-based language models like
BERT (Devlin et al., 2019) or BiomedBERT (Gu
et al., 2021). These works can be divided into
single-phase and two-phase models.

Single-phase models directly rank all entities
within a knowledge-base for a single mention.
These methods usually estimate the similarity be-
tween mentions and entities based on a combina-
tion of sparse or dense vector representations (Sung
et al., 2020; Loureiro and Jorge, 2020). These
models commonly use computationally efficient
algorithms like bi-encoders to obtain separate rep-
resentations of entities and mentions. Examples of

Document 𝑑

Mention m

Candidate 
generator

Ontology ℰ

Reranker

Candidates 𝐶𝑚

Entity 𝑒

Figure 2: Two-stage pipeline

algorithms within this category are SapBERT (Liu
et al., 2021), BioSyn (Sung et al., 2020) and
MedLinker (Loureiro and Jorge, 2020).

This work focuses on the second type of models,
the two-phase models. These algorithms apply two
different entity linking approaches: a fast and ef-
ficient model for retrieving a subset of candidates
(for instance, a character n-grams model (Angell
et al., 2021) or a bi-encoder like SapBERT (Xu
et al., 2023; Zhu et al., 2024)), followed by a more
computationally expensive, but precise reranker
that reranks the set of candidate items. Follow-
ing Logeswaran et al. (2019), a majority of these
models use a cross-encoder model as a reranker.
While different biomedical EL models like Clus-
terEL (Angell et al., 2021), ArboEL (Agarwal et al.,
2022), KrissBERT (Zhang et al., 2022) apply a sim-
ilar pipeline, all of these models have focused their
attention only on the effectiveness of the entity link-
ing model, commonly using a simple cross-encoder
model for reranking. However, there is still room
to improve not only the effectiveness, but also the
efficiency of these approaches.

To improve the efficiency of these models, we
get inspiration from the Prompt-BioEL method pro-
posed by (Xu et al., 2023). In their approach, they
apply a cross-encoder capable of processing all
the candidates for a mention simultaneously. In
this work, we go further, by building cross-encoder
models which can rerank multiple mentions, sen-
tences or passages at the same time.

4 Method

In this section, we describe our approach for bal-
ancing the accuracy and efficiency of entity linking
models. Figure 2 illustrates the general architecture
of our entity linking models. Following previous
works (Zhang et al., 2022; Logeswaran et al., 2019),
we adopt a two-stage pipeline for the task. First, we
apply a candidate retrieval model, which selects
a small subset of candidate entities Cm ⊂ E from
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the ontology. Then, we apply a reranker model
that chooses the best entity among the ones in Cm.
We next describe each of these components.

4.1 Candidate retriever
As an efficient and effective first-stage candidate
retriever, we use a n-grams model (Neumann et al.,
2019) for representing both the mention text m
and the aliases of entity e (which we denote as
A(e)). Then, we rank candidate entities by the
maximum TF-IDF similarity between m and every
alias ae ∈ A(e) of the entity.

fm,d(e) = max
ae∈A(e)

tf-idf(n-gr(m), n-gr(ae)) (1)

where n-gr(t) is the n-grams representation of t.

4.2 Reranker
As a second-stage candidate reranker, we use cross-
encoder models. Cross-encoders have been pre-
viously used for the entity linking task, but they
are costly to train and apply. Therefore, we pro-
pose improvements over the basic cross-encoder
architecture, illustrated in Figure 3.

4.2.1 Preprocessing
As an initial step, prior to the application of the
reranker, we pre-process the documents in our cor-
pus. We divide the documents into passages, and
each passage into sentences. Each annotated sen-
tence is later provided as input to the cross-encoder
models, providing context for each mention.

4.2.2 Base cross-encoder
We first describe the architecture of the base cross-
encoder model (Humeau et al., 2020), depicted in
Figure 3(a). Given an annotated sentence t ⊆ d,
a mention m and a candidate entity c ∈ Cm for
that mention, the cross-encoder computes a score
fm,d(c) estimating the likelihood that the candidate
entity c corresponds to the target entity em that
mention m is referring to. Each candidate c ∈ Cm

is processed separately, and then, candidates are
ranked in descending score order.

A common strategy to build the cross-encoder
(and the one we follow in this work) is to fine-
tune a pre-trained language model (LM). The LM
receives as input a sentence following the following
template τ(t,m, c)1:

τ(t,m, c) = “t [SEP] m [MASK] c” (2)

1For our cross-encoder models, we represent c as the main
textual representation of the entity in the knowledge base

An example of an input sentence is shown in
Figure 4. Then, the cross-encoder classifies the
[MASK] token into two classes: a positive class,
indicating that c matches the referred entity em,
and a negative class otherwise. Therefore, the score
fm,d(c) is defined as:

fm,d(c) = p ([MASK] = 1|τ (t,m, c)) (3)

In order to fine-tune the model, we apply a cross-
entropy loss minimizing the classification error on
the [MASK] token. For a candidate c and a mention
m, the loss is defined as

L = −1 (c = em) · log fm,d(c)

− (1− 1 (c = em)) · log (1− fm,d(c))
(4)

where 1(x) is the indicator function.

4.2.3 Parallel cross-encoder
One of the limitations of the architecture of the
base cross-encoder is its capacity to process only
one mention-candidate pair at a time. Therefore,
in both training and inference, the cross-encoder
needs to process the sentence t as many times as
candidates we retrieve during the first phase of the
entity linking process – making this process costly.

Inspired by Xu et al. (2023) and Jiang et al.
(2023), we propose to improve our cross-encoder
by allowing it to process multiple candidates for a
mention at the same time. We denote the new archi-
tecture as parallel cross-encoder. As illustrated in
Figure 3(b), the parallel cross-encoder takes as in-
put the text t and all the candidates for mention m,
and provides, as output, the scores for all of those
candidates. The parallel cross-encoder receives
input with the following template:

τ(t,m) = “t [SEP] m [MASK] c1
· · ·
[SEP] m [MASK] c|Cm|”

(5)

and, for each candidate c ∈ Cm, its score is

fm,d(c) = p ([MASK]c = 1|τ (t,m)) (6)

where [MASK]c is the mask token corresponding
to entity c. An example of this input text is shown
in Figure 4.

While the parallel cross-encoder increases the
complexity of the task (the cross-encoder receives
longer text sequences and needs to classify multiple
tokens), it should accelerate training and inference
times. As long as the cross-encoder effectively
processes long sequences of tokens, we should gain
advantage from processing sentence t only once
for a given mention.
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Figure 3: Architecture of the different cross-encoder models
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Figure 4: Input of the cross-encoder models.

4.2.4 Multi cross-encoder
The parallel cross-encoder can be further refined to
improve the efficiency of the cross-encoder by re-
ducing the amount of times that the cross-encoder
is exposed to the same text. As shown in Figure 1,
each sentence might contain not only one, but mul-
tiple mentions to entities in the knowledge base.
Therefore, we propose a new cross-encoder model,
denoted as multi cross-encoder that receives as in-
put not only the candidates of an individual men-
tion, but the candidates of all mentions within the
sentence and provides the corresponding estimates.
We illustrate this architecture in Figure 3(c).

The multi cross-encoder works similarly to the
parallel cross-encoder. If we denote asMt ⊆Md

the set of mentions in a sentence t, and |Mt| = M ,
we define the input text of the multi-cross encoder
as a sequence of tokens with the following format:

τ (t,Mt) = “t [SEP] m1 [MASK] c1,1
· · ·
[SEP] m1 [MASK] c1,|Cm1 |

[SEP] m2 [MASK] c2,1
· · ·
[SEP] mM [MASK] cM,|CmM

|”

(7)

We provide an example on Figure 4. Then, the
score for a candidate c ∈ Cm is defined as:

fm,d(c) = p
(
[MASK]m,c = 1|τ (t,Mt)

)
(8)

where [MASK]m,c is the mask token correspond-
ing to mention m and candidate c ∈ Cm in
τ(t,Mt).

4.2.5 Adaptation to context window
As we concatenate multiple mention-entity pairs
in the input text, we might obtain texts longer than
the context window of the language model (max-
imum number of tokens that the LM can receive
at once). In that case, we partition the mention-
candidate pairs into several rankings by choosing,
each time, as many pairs as we can fit along the sen-
tence into the context window. We apply this strat-
egy as our method provides pointwise scores (each
mention-candidate pair has an individual score) –
and therefore, separating the pairs on different calls
to the cross-encoder should not have a big impact
on performance. In the worst case, where only one
mention-entity pair fits in the context, our model
would be equivalent to the base cross-encoder. We
show an example of this procedure in Figure 5. Fol-
lowing this procedure, LMs with longer context
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Figure 5: Partition procedure when an input sentence is
longer than the context window.

windows (like ModernBERT (Warner et al., 2024))
shall have longer input texts than models accepting
less tokens (like BiomedBERT (Gu et al., 2021)).

4.2.6 Further architectures
We can further design additional cross-encoder
architectures that include even more data – with
the objective of maximizing the use of the cross-
encoder context window – by concatenating the
template τ(t,Mt) of multiple sentences within the
document (for instance, all sentences within a pas-
sage or all sentences within a document).

5 Experimental setup

5.1 Datasets
In our experiments, we consider four common
datasets for biomedical entity linking:

• MedMentions (Mohan and Li, 2019):
PubMed biomedical abstract collection anno-
tated with mentions of entities in the UMLS
2017AA release. We use the full version of
the dataset. For each entity, we only keep the
English aliases.

• NCBI Disease (Doğan et al., 2014): PubMed
abstract corpus linking disease mentions to
entities in the MEDIC ontology2. Only men-
tions with an unambiguous entity link with an
entity in that MEDIC release were kept.

• NLM Chem (Islamaj et al., 2021): Set of
full-text articles from the PubMed Central
Open Access dataset covering the use of chem-
ical names in the biomedical literature. We

210 May 2012 version, obtained using Internet Archive

Table 1: Dataset properties.

Property MedMentions NCBI Disease NLM Chem BC5CDR

Ontology UMLS Medic Mesh 2021 Mesh 2015

Documents (train) 2,635 593 80 500
Documents (val) 878 100 20 500
Documents (test) 879 100 50 500

Passages (train) 2,635 593 5,555 1,000
Passages (val) 878 100 1,285 1,000
Passages (test) 879 100 3,470 1,000

Sentences (train) 25,836 5,173 20,126 4,242
Sentences (val) 8,508 888 4,855 4,299
Sentences (test) 8,597 901 12,031 4,524

Entities (train) 211,029 4,836 19,361 9,323
Entities (val) 71,062 711 4,927 9,570
Entities (test) 70,405 896 11,164 9,725

keep only mentions of type ‘Chemical’ linked
with entities in the MeSH 2021 release.

• BioCreative V CDR (BC5CDR) (Li et al.,
2016): Collection of PubMed abstracts with
chemical and disease annotations from the
Comparative Toxicogenomics Database. Only
contiguous mentions were kept and all linked
entities are found in the MeSH 2015 release.

Data splitting: For each of the four datasets, we
use the default training/validation/test split. We use
the training and validation datasets to fine-tune the
models, and we report entity linking results over
the test set.

Passages and sentences: For the MedMentions
and NCBI Disease datasets, each document con-
sists of a single passage combining both the title
and abstract. In the BC5CDR dataset, we have
two passages for each dataset: one for the title,
and another one for the abstract text. Finally, for
NLM Chem, we use the passage division of each
document provided by the dataset. For splitting
each passage into sentences, we use the spaCy3

en_core_web_sm sentence parser. If the parser
splits a mention in two different sentences, we com-
bine the two sentences. We show the statistics of
each dataset in Table 1.

5.2 Models

First-phase candidate retriever: As mentioned
in Section 4.1, we use a TF-IDF n-grams model
(Neumann et al., 2019). We apply an efficient im-
plementation of this model by building an n-grams
index with Pyterrier-PISA (Mallia et al., 2019;
MacAvaney and Macdonald, 2022). For efficiency,
this index is built only using the first 16 characters
of entity aliases. Then, for each dataset, we use the
n-grams model maximizing the amount of correct

3spaCy: https://spacy.io/
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Table 2: Language model statistics

Model Domain Context-window length

BiomedBERT Biomedical 512
Longformer General 4,096

ModernBERT General 8,192

entities in the top-5 (3-grams for MedMentions,
2-grams for the rest).
Second-phase reranker models: Then, we build
cross-encoders for reranking the top-5 candidate
entities. We consider three different backbone pre-
trained language models in our experiments, with
varying context window size: BiomedBERT (Gu
et al., 2021), Longformer (Beltagy et al., 2020)
and ModernBERT (Warner et al., 2024). Table 2
summarizes their statistics.

As a baseline for our experiments, we consider
the base cross-encoder defined in Section 4.2.2
(which we denote as LM-base). We compare this
baseline against four models: the parallel cross-
encoder (LM-parallel) and the multi cross-encoder
(LM-multi) in Sections 4.2.3 and 4.2.4 , and two
additional cross-encoders: one including the whole
passage text (LM-passage), and another one includ-
ing the complete document text (LM-document).

To reduce the training time of each model, all
cross-encoders follow an early stopping strategy,
where we stop the training if the cross-encoder fails
to improve the F1 performance on the validation
set by 1% for three consecutive epochs. All models
use the same learning rate (10−6).

5.3 Metrics
We compare our models across three main metrics:

• Accuracy@1 (Acc@1): This metric mea-
sures the ultimate goal of the reranker to as-
sign the highest score to the correct entity for
each mention from the list of candidates. It is
the proportion of annotations for which this is
the case.

• Training speed: This metric measures the
efficiency of the fine-tuning process. As it
is unfair to compare models directly on the
training time (as different models might use a
different number of training epochs), we esti-
mate the number of annotations processed per
second during the cross-encoder fine-tuning.

• Inference speed: This metric estimates the
number of test examples per second that the
cross-encoder can process.

For reference, we also report the total training and
inference times of our cross-encoder models.

5.4 Hardware
We train and execute all our models on a single
NVIDIA RTX 4090 GPU card (24 GB VRAM),
2 CPUs and 16 GB of RAM. The batch size of
each model has been adjusted to be trained on the
mentioned GPU card – with all variations of the
same model using the same batch size.

5.5 Implementation
For reproducibility, we provide the code for our
experiments in the following GitHub repository:
https://github.com/Glasgow-AI4BioMed/
entitytools.

6 Results

We aim to answer the following research questions:

• RQ1: How does the parallelism of the cross-
encoder affect the effectiveness of the model?

• RQ2: How does the parallelism of the cross-
encoder affect the model training and infer-
ence speeds?

6.1 RQ1: Accuracy comparison
We first analyse how effective the different cross-
encoders are for the entity linking task. As we keep
adding more information to our cross-encoder, we
shall expect the task to become more complex and
therefore affect the effectiveness of our models. We
show the results in Tables 3 (for the Medmentions
and NCBI disease datasets) and 4 (for the NLM
Chem and BC5CDR corpora). In these tables, we
underline the best result for each metric and back-
bone LM for our cross-encoders, and we highlight
in bold the best overall result. Accuracy@1 results
are shown in the first column for each dataset.
Base cross-encoder performance: We evaluate
the effectiveness of the two-stage entity linking
model by comparing the base cross-encoders with
the single-stage n-grams model. In line with other
works (Zhang et al., 2022; Agarwal et al., 2022),
the three base cross-encoders achieve statistically
significant improvements (McNemar test with
p < 0.05 and Bonferroni correction) on a majority
of datasets. The only exception is the NLM
Chem dataset, where only the domain-specific
BiomedBERT cross-encoder can improve the
n-grams similarity model. Among the three

141

https://github.com/Glasgow-AI4BioMed/entitytools
https://github.com/Glasgow-AI4BioMed/entitytools


Table 3: Evaluation of entity linking (Medmentions and NCBI Disease). For each model, a represents statistical
significance (McNemar test with Bonferroni correction and p < 0.05) with respect to the first stage linker. b,c,d,e

represent, respectively, a significant improvement over the simple, parallel, multi or passage cross-encoder with
the same base transformers model. For each metric, ↑ indicates that higher values are better, while ↓ indicates that
lower values are better. Best values are highlighted in bold, and the best cross-encoder for each backbone LM is
underlined.

Medmentions-full NCBI Disease

Model Acc@1 (↑) Training
speed (↑)

Training
time (s) (↓)

Inference
speed (↑)

Inference
time (s) (↓) Acc@1 (↑) Training

speed (↑)
Training

time (s) (↓)
Inference
speed (↑)

Inference
time (s) (↓)

First stage 0.4222 202.52 1,042 1,466.77 44 0.5960 322.40 15 896.00 1

BiomedBERT-base 0.6422acde 62.05 23,806 145.46 484 0.6886a 70.09 690 179.20 5
BiomedBERT-parallel 0.6334ade 255.74 4,951 690.25 102 0.6931a 266.55 127 896.00 1
BiomedBERT-multi 0.6244a 639.16 1,981 2,200.16 32 0.6864a 318.16 152 896.00 1
BiomedBERT-passage 0.6235a 985.46 1,499 2,607.59 27 0.6786a 531.43 91 896.00 1

Longformer-base 0.6353acde 4.44 190,014 31.64 2,225 0.6920a 5.00 7,744 37.33 24
Longformer-parallel 0.6284ade 21.55 39,162 158.93 443 0.6920a 22.44 862 179.20 5
Longformer-multi 0.6203ae 137.40 9,215 733.39 96 0.6953a 54.54 798 298.67 3
Longformer-passage 0.6136a 168.69 8,757 869.20 81 0.6842a 81.97 531 448.00 2

ModernBERT-base 0.6300ade 11.84 71,305 44.99 1,440 0.6875a 12.94 1,869 48.89 20
ModernBERT-parallel 0.6287ad 58.03 14,546 237.05 297 0.6953a 59.41 407 179.20 5
ModernBERT-multi 0.6255a 205.88 4,100 1117.54 63 0.7042a 57.92 501 298.67 3
ModernBERT-passage 0.6266a 196.90 8,574 529.36 133 0.7009a 159.68 212 448.00 2

Table 4: Evaluation of entity linking (NLM Chem and BC5CDR). For each model, a represents statistical significance
(McNemar test with Bonferroni correction and p < 0.05) with respect to the first stage linker. b,c,d,e,f represent,
respectively, a significant improvement over the simple, parallel, multi, passage or document cross-encoder with
the same base transformers model. For each metric, ↑ indicates that higher values are better, while ↓ indicates that
lower values are better. Best values are highlighted in bold, and the best cross-encoder for each backbone LM is
underlined.

NLM Chem BC5CDR

Model Acc@1 (↑) Training
speed (↑)

Training
time (s) (↓)

Inference
speed (↑)

Inference
time (s) (↓) Acc@1 (↑) Training

speed (↑)
Training

time (s) (↓)
Inference
speed (↑)

Inference
time (s) (↓)

First stage 0.6990 108.77 178 1594.86 7 0.8193 61.34 152 1389.29 7

BiomedBERT-base 0.7004 54.34 2,494 150.86 74 0.8403adef 58.64 1,113 149.62 65
BiomedBERT-parallel 0.7083abf 211.60 366 697.75 16 0.8444adef 216.81 301 694.64 14
BiomedBERT-multi 0.7066a 268.90 288 1014.91 11 0.8249a 310.77 120 1389.29 7
BiomedBERT-passage 0.7075ab 378.39 307 1240.44 9 0.8274a 443.95 168 1620.83 6
BiomedBERT-document 0.7043a 556.35 174 1594.86 7 0.8254a 570.80 98 1620.83 6

Longformer-base 0.6940 4.59 16,864 33.83 330 0.8335aef 4.02 16,242 33.89 287
Longformer-parallel 0.7068abef 22.18 3,492 164.18 68 0.8427abef 18.71 2,492 159.43 61
Longformer-multi 0.7044abef 57.97 1,336 310.11 36 0.8414abef 62.15 900 374.04 61
Longformer-passage 0.7014b 68.60 1,129 413.48 27 0.8209f 73.85 505 422.83 23
Longformer-document 0.7018b 115.24 1,176 656.71 17 0.8188 94.41 395 607.81 16

ModernBERT-base 0.6882 12.07 6,416 45.75 244 0.8311a 13.02 3,581 51.18 190
ModernBERT-parallel 0.7072abf 57.32 1,351 232.58 48 0.8431abdef 47.87 779 226.16 43
ModernBERT-multi 0.7050abf 60.46 2,562 446.56 25 0.8393abf 58.45 638 237.20 41
ModernBERT-passage 0.7066abf 129.07 1,050 558.20 20 0.8357a 140.90 397 221.02 44
ModernBERT-document 0.6972 74.61 2,076 218.90 51 0.8344a 174.49 374 607.81 16

language models, BiomedBERT achieves the best
results as a base encoder across the four datasets
– thus highlighting the advantage of a language
model pre-trained on domain-specific text.
Multi cross-encoder performances: We then anal-
yse the effect of adding more information to the
cross-encoders. In general, increasing the number
of mentions fed to the model in one input does
degrade predictive performance, but only minorly.
The extreme cases of passing in a whole passage
(MedMentions/NCBI Disease) or whole document
(NLMChem/BC5CDR) generally achieve the worst
accuracy results. However, consistent with the
work by Xu et al. (2023), in some of the datasets,

adding some mention-entity pairs to classify can
provide an improved context and help the accu-
racy. This is the case of the parallel cross-encoders
in NCBI Disease, NLM Chem and BC5CDR and
the Longformer and ModernBERT multi-cross en-
coders in NCBI Disease.

Notably, accuracy results between variants of
the same model are commonly small – ranging
between -3.42% accuracy decrease to 2.76% per-
formance increase with respect to the base cross-
encoder. This, along with the fact that even the
worst cross-encoder variants are commonly signifi-
cantly better than the first-stage linker, makes the
different cross-encoder variants reasonable algo-
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rithms for the biomedical entity linking task.
To answer RQ1: In general, providing more
mention-entity pairs as input to cross-encoder mod-
els has limited impact on the Acc@1 performance
(ranging between -3.42% to 2.76%). Different
datasets can react differently to the amount of in-
formation provided to the cross-encoder, so it is
important to choose the right model to enhance the
accuracy. However, the small accuracy differences
make all the variants reasonable entity linkers.

6.2 RQ2: Efficiency comparison

We now analyse the training and inference speeds
for each of our tested datasets. Results are shown
in the 2nd and 4th columns for each dataset in
Tables 3 and 4. As different models use different
batch sizes to fit the model into a single GPU card,
we shall only compare speeds across encoders with
the same base LM.

For completion, Tables 3 and 4 include the infer-
ence times and speeds of the first stage n-gram
models. However, it must be noted that the n-
grams model has differences with respect to the
cross-encoders. Specifically, first-stage process-
ing is not accelerated by GPU, is not trained for
multiple epochs and does not depend on batching.
Therefore, the training and inference speeds are
not directly comparable to those of cross-encoder
models. However, we include them as a reference
of how fast it is to train and apply each of these
models.
Training speed: Our results show a clear trend
where the base cross-encoders are the slowest
second stage models in our comparison, and the
training speed generally increases as we enhance
the parallelism of the cross-encoders. The parallel
cross-encoders increase the training speed of the
baseline models between 2.68 (13.02 examples/s
to 47.87 examples/s for the ModernBERT model
on BC5CDR) and 3.9 times (11.84 examples/s to
58.53 examples/s for ModernBERT on MedMen-
tions). Models with more examples reach even
higher speeds, with multi cross-encoders achieving
3.49-29.93 speed improvements, and passage and
document models achieving even further gains.

While increasing the number of mention-entity
pairs commonly increases the training speed, that
does not always occur. We observe two excep-
tions in our experiments: ModernBERT-passage
in MedMentions and ModernBERT-document in
NLM Chem. We hypothesize that the advantage of

adding more pairs to the input text depends on the
capacity of the cross-encoder of processing those
examples. As we add more tokens to the input
text, the cross-encoder might reach a point where
it slows down its processing. We show this in Fig-
ure 6. In this figure, we illustrate the average input
token length of the training examples of each model
(x-axis) against the training speed (y-axis). Each
line represents a backbone LM, with the arrow in-
dicating the model receiving more information per
example. As we can observe here, the only case
where the speed decreases (with respect to the pre-
vious model) is the ModernBERT-document model,
where inputs reach 6,000 tokens on average (2000
more than the second with the longer text sequence,
Longformer-document). A similar observation oc-
curs on Medmentions.
Inference speed: When it comes to inference
time, we observe similar patterns with respect to
the training time, with the base cross-encoders
being the slowest models, and the models scoring
multiple mention-entity pairs at the same time
achieving speed improvements between 3.42 times
(ModernBERT-parallel on BC5CDR from 51.18
examples/s to 226.16 examples/s) to 26.47 times
(Longformer-passage from 31.64 examples/s to
869.2 examples/s on MedMentions) with respect
to the base model4. Again, some slowdown is
observed when the input token length notably
surpasses the size of the Longformer window (as
in ModernBERT-passage for MedMentions and
ModernBERT-document for NLM Chem).
To answer RQ2: Allowing cross-encoders to si-
multaneously score multiple entities notably boosts
the training and inference speeds of entity linking
models. However, models with larger context win-
dows might face difficulties when the length of
the input text is too long – effectively reducing the
efficiency improvements provided by these models.

7 Conclusions

In this work, we have studied the use of advanced
cross-encoder models as rerankers for an entity
linking pipeline. These advanced cross-encoders
enable simultaneously processing of several
mention-candidate pairs, accelerating the training
speed of a base cross-encoder by a factor between
2.68 and 36.97, and the inference speed by a

4We observe a few ties between rerankers on NCBI Disease
and BC5CDR. These are due to the small inference times of
these models on each dataset (<10 s).
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Figure 6: Input token length vs. training speed (NLM
Chem)

factor between 3.42 and 26.47. While the parallel
processing of multiple candidates might hurt the
performance of the model, we find this effect
to be small (up to 3.42% accuracy loss). Speed
advantages, along with the low accuracy losses
make these architectures suitable for environments
where training and inference speed is crucial (like
real time services).

This work has only focused on cross-encoder
with point-wise losses, where we directly esti-
mate the probability of a candidate for a men-
tion. As future work, we shall explore the effect
of this cross-encoder architecture on pair-wise or
list-wise cross-encoder rerankers, considering the
order between pairs. Furthermore, we propose
the application of similar architectures on other
second stage rerankers, like bi-encoders or poly-
encoders (Humeau et al., 2020), that encode men-
tions and candidates separately.

Limitations

The effectiveness and efficiency of our approach
are influenced by two factors: (a) the base model
selection and (b) the dataset on which the cross-
encoders are trained and applied.
Model selection: In this paper, we only focus on a
simple entity linking pipeline, based on an n-grams
TF-IDF model for candidate retrieval (Neumann
et al., 2019) and variations of the simple cross-
encoder reranker described in Logeswaran et al.
(2019) and Wu et al. (2020). Although several
improvements for the first and second stages of the
entity linking pipeline have been developed (Zhu
et al., 2024; Angell et al., 2021; Agarwal et al.,
2022), we have not tested them in our experiments.
However, as most of these proposals use a cross-
encoder as their reranker, we believe that similar

results should be consistent with our findings if we
modified the cross-encoders of these methods in a
similar manner.
Dataset selection: In our experiments, we have
tested our cross-encoder models on four datasets.
The biggest dataset in our experiments is the Med-
Mentions dataset, with only 4,392 documents and
352,496 mentions. While there are bigger biomedi-
cal entity linking datasets available, like WikiMed
or PubmedDS (Vashishth et al., 2021), training
some of the base cross-encoders on MedMentions
already represents a challenge (the Longformer-
base model takes more than 2 days to train on a
single GPU card). By testing our approach across
these 4 (smaller) datasets, we show the generaliz-
ability of our approach and how it would perform
on those bigger datasets.
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A Statistical Significance

In our experiments in Section 6, we conduct statisti-
cal significance tests between every pair of models
in our comparison. We only perform these statis-
tical tests for the Accuracy@1 metric. As accu-
racy@1 values are binary (either 0 or 1), we apply
a McNemar test with p < 0.05, where we pair the
Acc@1 results for each mention in the test set. To
account for the comparison of multiple models, we
apply the Bonferroni correction. While Tables 3
and 4 summarize the statistical tests, we include in
this appendix the complete statistical significance
matrices.

These matrices are included in Figure 7 (Med-
Mentions dataset), Figure 8 (NCBI Disease
dataset), Figure 9 (NLM Chem) and Figure 10
(BC5CDR). On each matrix, a cell compares two
algorithms: one indicated by the first row, and
another indicated by the first column. A green
cell represents a statistically significant difference
between the two models (p < 0.05), whereas a
white cell represents a non-significant difference
(p ≥ 0.05).
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Figure 7: Acc@1 statistical significance (MedMentions)
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B Input token length vs. training speed

We compare the average input token length and
the training speed for the four datasets. Figure 11
(MedMentions), Figure 12 (NCBI Disease), Fig-
ure 13 (NLM Chem) and Figure 14 (BC5CDR)
show the results. In all figures, x-axis shows the
average input token length, and y-axis the training
speed (in examples per second).

As we can observe, in general, in the smaller
datasets, where the input token length is notably
smaller than 4,096 (context window of the Long-
former model), all models improve their training
speed as we add more mention-entity pairs in their
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Figure 9: Acc@1 statistical significance (NLM Chem)
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First stage 0 0 0 0 0 0 0 0 0 0.4 5.4 0 0 0 0 0

BiomedBERT-base 0 0 0.9 0 0 0 0 4.5 9.8 0 0 0 3.2 10 0.7 0.2

BiomedBERT-parallel 0 0.9 0 0 0 0 0 1.1 0.1 0 0 0 3.1 0 0 0

BiomedBERT-multi 0 0 0 0 0.3 9.3 0 0 0 0 0 0.3 0 0 0 0

BiomedBERT-passage 0 0 0 0.3 0 1.1 0.3 0 0 0 0 2.5 0 0 0 0

BiomedBERT-document 0 0 0 9.3 1.1 0 0 0 0 0 0 0.5 0 0 0 0

Longformer-base 0 0 0 0 0.3 0 0 0 0 0 0 2.5 0 0.2 5.8 11

Longformer-parallel 0 4.5 1.1 0 0 0 0 0 3.6 0 0 0 10 0 0 0

Longformer-multi 0 9.8 0.1 0 0 0 0 3.6 0 0 0 0 2.5 1 0 0

Longformer-passage 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Longformer-document 5.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ModernBERT-base 0 0 0 0.3 2.5 0.5 2.5 0 0 0 0 0 0 0 0.9 2.5

ModernBERT-parallel 0 3.2 3.1 0 0 0 0 10 2.5 0 0 0 0 0 0 0

ModernBERT-multi 0 10 0 0 0 0 0.2 0 1 0 0 0 0 0 0.1 0

ModernBERT-passage 0 0.7 0 0 0 0 5.8 0 0 0 0 0.9 0 0.1 0 4.5

ModernBERT-document 0 0.2 0 0 0 0 11 0 0 0 0 2.5 0 0 4.5 0

Figure 10: Acc@1 statistical significance (BC5CDR)
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Chem)
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Figure 14: Input token length vs. training speed
(BC5CDR)

input. However, in the bigger datasets (MedMen-
tions and NLMChem), the ModernBERT model
struggles with longer sequences (as observed in the
training speeds of the ModernBERT-passage model
in MedMentions and the ModernBERT-document
model in NLM Chem).
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Abstract

Biomedical claim verification involves deter-
mining the entailment relationship between a
claim and evidence derived from medical stud-
ies or clinical trial reports (CTRs). In this work,
we propose a structured four-step prompting
strategy that explicitly guides large language
models (LLMs) through (1) claim comprehen-
sion, (2) evidence analysis, (3) intermediate
conclusion, and (4) entailment decision-making
to improve the accuracy of biomedical claim
verification. This strategy leverages compo-
sitional and human-like reasoning to enhance
logical consistency and factual grounding to
reduce reliance on memorizing few-shot ex-
emplars and help LLMs generalize reasoning
patterns across different biomedical claim ver-
ification tasks. Through extensive evaluation
on biomedical NLI benchmarks, we analyze
the individual contributions of each reasoning
step. Our findings demonstrate that compre-
hension, evidence analysis, and intermediate
conclusion each play distinct yet complemen-
tary roles. Systematic prompting and carefully
designed step-wise instructions not only unlock
the latent cognitive abilities of LLMs but also
enhance interpretability by making it easier to
trace errors and understand the model’s reason-
ing process. This research aims to improve
the reliability of AI-driven biomedical claim
verification.

1 Introduction

Natural language inference (NLI) tasks typically
involve determining whether or not a given hypoth-
esis is entailed with respect to a premise (Bowman
et al., 2015). An NLI system labels the logical
relationship between the premise and hypothesis
(e.g., Entailment, Contradiction, or Neutral). To
enhance transparency and trustworthiness, the sys-
tem should also provide an explanation in the form
of specific evidence (rationales) that justify its de-
cision (Camburu et al., 2018). In the scientific and

medical domains, NLI is used to assist clinicians
and researchers by automatically verifying claims
against evidence from clinical trial data or medical
literature. Specifically, it requires a deep under-
standing of medical and scientific knowledge to
interpret implicit data points beyond simple text
matching.

Clinical trial data often contain complex statis-
tical information and precise measurements that
must be interpreted accurately to avoid errors in
claim verification. One example from the NLI4CT
challenges (Jullien et al., 2023) shown in Figure
1 highlights the significant difficulties of applying
NLI to validate statements (hypotheses) related to
clinical trial reports (CTRs), which requires more
than simple textual analysis. To accurately assess
the claims, NLI models must process long and com-
plex documents while also comprehending domain-
specific terminology and applying multi-hop rea-
soning to draw connections that are not immedi-
ately obvious (Romanov and Shivade, 2018; Wad-
den et al., 2020; Jullien et al., 2024).

Large language models (LLMs) offer promising
potential to address these challenges. Recent re-
search has shown that the reasoning capability of
LLMs depends on two key factors: the size of the
model and the appropriateness of the prompts pro-
vided for specific tasks (Huang and Chang, 2022;
Qiao et al., 2022). Using structured, multi-step
prompting methods has been the subject of research
efforts to explore the reasoning abilities of LLMs in
different tasks, including mathematical problems,
commonsense reasoning and multi-hop question
answering tasks (Wei et al., 2022; Zhou et al., 2022;
Xia et al., 2024). Larger LLMs excel in zero-shot
reasoning but require careful prompt engineering
for reliability and interpretability (Kojima et al.,
2022; Jeblick et al., 2024). Smaller models offer
faster inference with lower computational costs and
are more suitable for real-time applications, though
they have weaker reasoning abilities and rely more
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Model NLI4CT SciFact HealthVer

Simple 2 Steps 4 Steps Simple 2 Steps 4 Steps Simple 2 Steps 4 Steps

GPT3.5 0.52 ± 0.01 0.53 ± 0.00 0.75 ± 0.01 0.51 ± 0.03 0.76 ± 0.00 0.86 ± 0.00 0.51 ± 0.01 0.60 ± 0.01 0.74 ± 0.02
GPT-4o-mini 0.67 ± 0.01 0.77 ± 0.02 0.86 ± 0.01 0.83 ± 0.01 0.88 ± 0.00 0.94 ± 0.01 0.69 ± 0.02 0.72 ± 0.01 0.77 ± 0.02

Phi3.5-3.6B 0.53 ± 0.00 0.61 ± 0.01 0.66 ± 0.02 0.51 ± 0.01 0.70 ± 0.03 0.80 ± 0.02 0.51 ± 0.01 0.70 ± 0.01 0.72 ± 0.01
Mistral-7B 0.55 ± 0.01 0.59 ± 0.02 0.69 ± 0.00 0.50 ± 0.02 0.72 ± 0.02 0.80 ± 0.02 0.44 ± 0.02 0.70 ± 0.00 0.72 ± 0.02
Llama3.1-8B 0.47 ± 0.00 0.54 ± 0.01 0.67 ± 0.02 0.53 ± 0.02 0.80 ± 0.01 0.84 ± 0.05 0.44 ± 0.02 0.70 ± 0.00 0.72 ± 0.01
Gemma2-9B 0.63 ± 0.00 0.67 ± 0.03 0.75 ± 0.03 0.57 ± 0.01 0.73 ± 0.00 0.86 ± 0.02 0.65 ± 0.02 0.70 ± 0.02 0.74 ± 0.01
Mistral-12B 0.55 ± 0.00 0.65 ± 0.01 0.75 ± 0.01 0.65 ± 0.01 0.83 ± 0.00 0.87 ± 0.02 0.50 ± 0.02 0.72 ± 0.00 0.74 ± 0.01
Phi3-14B 0.62 ± 0.01 0.64 ± 0.00 0.75 ± 0.02 0.76 ± 0.03 0.80 ± 0.01 0.88 ± 0.02 0.68 ± 0.02 0.72 ± 0.01 0.75 ± 0.01

Table 3: F1 Scores (mean ± standard deviation) for three benchmarks in zero-shot scenario. We compare the
performance across the cost-effective GPT models and open sourced lightweight LLMs.

commercial models and small-scale LLMs when
utilizing the 4-step prompting framework. Com-
pared to the simple prompt template and 2-step
baselines, the 4-step approach enhances reasoning
quality and classification accuracy, demonstrating
its effectiveness in zero-shot entailment tasks.

Ablation The four Steps starts with claim com-
prehension, where the model interprets the main
claim and key terms in the statement. Without this
initial step, the comparative analysis process at the
evidence analysisstage, which involves "identify-
ing relevant data points and evaluating the infor-
mation in the statement against these data points",
likely results in reasoning paths that are less coher-
ent. The ablation results in Fig 4 demonstrate that
the absence of this comprehension step can hinder
the accuracy of LLMs in claim verification tasks.

4.2 Supervised Fine-Tuning Results

Fig 5 shows that supervised fine-tuning (SFT) with
a small number of examples significantly improves
F1-scores for lightweight LLMs, with performance
further increasing as the number of training in-
stances grows. Notably, Llama3.1-8B exhibits the
largest performance gains, benefiting the most from
the fine-tuning process.

Table 4 presents the generalization performance
of lightweight models fine-tuned with NLI4CT
samples, evaluated on the related tasks.

We observe that SFT significantly advantages
the quality of evidence analysisin the second step,
which is the primary contributor to the improved
results. See some example responses of the small-
scale models in zero-shot setting and after SFT in
Appendix from table 10 to 15. Moreover, SFT im-
proves task-specific control by ensuring adherence
to specific instructions and maintaining a consistent
response format, such as JSON, thereby enhancing
the LLM’s reliability not only for in-domain task

Model SciFact HealthVer

zero-shot SFT∗ zero-shot SFT∗

Phi3.5-3.6B 0.80 0.85 0.72 0.74
Mistral-7B 0.80 0.87 0.72 0.74
Llama3.1-8B 0.84 0.89 0.72 0.74
Gemma2-9B 0.86 0.90 0.74 0.75
Mistral-12B 0.87 0.88 0.74 0.75
Phi3-14B 0.88 0.90 0.75 0.77

Table 4: A comparison of F1 Scores (mean) for related
tasks in zero-shot scenario and SFT(SFT∗ only with
NLI4CT training samples).

- NLI4CT, but also the related tasks: SciFact and
HealthVer. These improvements highlight the ef-
fectiveness of integrating structured reasoning with
clear instructions of subtasks for enhancing smaller
models in complex reasoning tasks like biomedical
claim verification.

5 Discussion

Incorporation of GPT-4o-mini Our prompting
approach underscores the importance of evidential
evaluation in the second step in biomedical claim
verification tasks. As shown in Fig 5, fine-tuning
lightweight LLMs with step 2 responses generated
by GPT-4o-mini significantly improves their per-
formance on the NLI4CT task. Similarly, Table 5
demonstrates the positive impact of incorporating
GPT-4o-mini’s responses during the evidence anal-
ysis stage within the 4-step framework. These
findings indicate that leveraging GPT-4o-mini’s
robust reasoning capabilities enhances the eviden-
tial evaluation process, enabling smaller LLMs to
generate more accurate outputs. Whether to fine-
tune lightweight LLMs with GPT-4o-mini gener-
ated data or to integrate GPT-4o-mini’s evaluations
directly into the 4-step pipeline depends on the spe-
cific requirements, computational constraints, and
operational objectives of the application.
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Figure 4: Omitting Step 1 or Step 3, LLMs result in degraded performance.

Figure 5: F1-scores of various lightweight LLM mod-
els with increasing numbers of SFT instances from
NLI4CT train set.

GPT-4o-mini in 2.Stage SFT∗

Phi3-3.6B 0.80 0.77
Mistral-7B 0.84 0.76
Llama3.1-8B 0.84 0.80
Gemma2-9B 0.84 0.80
Mistral-12B 0.84 0.82
Phi3-14B 0.85 0.82

Table 5: SFT∗ are the results of each lightweight models
fine-tuned within the 4-step framework using GPT-4o-
mini generated training samples.

Error Analysis Our 4-step prompting framework
enables the diagnosis of different types of error in
LLMs by tracing the source of errors in individual
steps.

• In the Evidence Analysis step: There are gen-
eral mistakes the models fall into: numerical
reasoning errors and misinterpretation of clin-
ical trial data. Numerical reasoning errors
involve misreading or miscalculating quanti-
tative information. As it is shown in exam-
ple 12 , interpreting "98% had recurrence-
free survival"as the opposite, or failing to

recognize that 98% of 100 patients implies
that only 2 did not meet the outcome. Misin-
terpretation of clinical trial data occurs when
the model overemphasizes irrelevant details
or introduces unwarranted assumptions, such
as requiring subgroup information when the
data clearly applies to the overall population.
These errors reflect the model’s overconfi-
dence in its generated explanations and high-
light the difficulty large language models face
when performing factual, logic-based reason-
ing.

Logical Conclusion
While it is true that the placebo group had a higher incidence
of emesis compared to the Aprepitant group, the claim that the
placebo group was "twice as likely" to experience emesis is mis-
leading. The actual ratio of emesis incidence between the two
groups is approximately 2.14 times (75% divided by 35%), which
does not equate to a simple doubling.
Therefore, the statement is not fully accurate as it oversimplifies
the comparative risk and does not reflect the nuanced findings of
the trial data.
Relation Prediction: Contradiction
The data indicates that patients receiving the placebo intervention
were approximately 2.14 times more likely to experience emesis
compared to those receiving Aprepitant.
Therefore, the statement that "Patients receiving the placebo in-
tervention in the primary trial were twice as likely to experience
emesis as patients receiving Aprepitant" can be inferred from the
provided data, confirming its validity.
Relation Prediction: Entailment

Table 6: Divergent conclusions and corresponding logi-
cal relation predictions.

• In the Interim Conclusion step: as shown
in Table 6, we observed two opposite logi-
cal conclusions: contradictionand entailment,
produced by different LLMs for the same ver-
ification sample illustrated in Fig 3. Despite
being instructed and exposed to the same eval-
uation results, these models arrived at diver-
gent conclusions. This highlights the neces-
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sity of further preference exploration to better
align model outputs with user intent (Ouyang
et al., 2022; Rafailov et al., 2024).

Pilot User Study As presented in Figure 3, a
feedback-driven loop would support the develop-
ment of collaborative systems that balance the re-
sponsibility for decision making between users and
LLMs. Since collecting real-world feedback from
clinicians and medical experts is challenging, we
conducted a pilot user study with four medical stu-
dents to assess the transparency and accountability
of the model’s reasoning process leading to the
final relation classification on 20 examples from
NLI4CT test set. Participants rated the model-
generated responses on a scale from 1 ('reasoning
process was confusing') to 5 ('the reasoning was
easy to follow and correct'). All participants rated
the model responses as a 4, suggesting that the
model’s reasoning process is generally perceived
as transparent and confident. When asked what
could be improved, participants provided feedback
indicating the need for better quality in the interme-
diate reasoning steps generated by the LLMs, i.e.
"The model sometimes overlooked the smallest de-
tails in the claim.". This highlights how enhanced
interpretability can help identify limitations in rea-
soning of LLM. Also, as emphasized by (Huang
et al., 2024), improving the functionality of these
model-generated explanations is crucial for foster-
ing user confidence in the system.

6 Related Work

Chain-of-thought Reasoning in LLMs Lever-
aging massive amounts of training data and billions
of parameters, LLMs have demonstrated enhanced
performance in various reasoning tasks. In particu-
lar, Chain-of-Thought (CoT) strategies (Wei et al.,
2022), which provide exemplars of clear, step-by-
step reasoning processes have demonstrated im-
pressive performance in guiding LLMs to com-
plete various reasoning tasks. Kojima et al. (2022)
further showed that zero-shot CoT prompting, us-
ing the simple instruction LET’S THINK STEP BY

STEP. instead of explicit examples, can also elicit
strong reasoning capabilities from LLMs. However,
their performance can vary depending on the com-
plexity of the task and form of reasoning (Huang
and Chang, 2023). Lei et al. (2023) addresses un-
grounded misinformation in language model out-
puts by checking for factual inconsistencies be-
tween model generation and source documents at

the sentence and entity levels within a chain of
NLI framework. Zhou et al. (2022) involves break-
ing down complex problems into a series of sim-
pler sub-problems, with the final problem being
addressed depending on the responses to earlier
sub-problems, and has proved generalization across
different tasks. The evolution of CoT and CoX
methodologies (Zhou et al., 2022; Yao et al., 2023;
Zhao et al., 2023; Zhang et al., 2024; Xia et al.,
2024) underscores the importance of thought de-
composition and structured reasoning frameworks
in improving both the accuracy and interpretability
of LLM outputs. In particular, the intermediate
steps of CoT can make the model’s output easier
to interpret and evaluate (Yu et al., 2023), which
is valuable for tasks requiring high accountability,
such as biomedical claim verification. Moreover,
Wang et al. (2022) proposed the self-consistency
method, which enhances the reliability of the re-
sults by sampling diverse CoT generations for each
sample and selecting the most consistent conclu-
sions among them. Weng et al. (2022) introduced
backward verification to complement forward CoT
reasoning, allowing self-verification of conclusions
derived from different CoT paths to identify the
most accurate CoT generations for specific tasks.

Pre-trained Language Models for Biomedical
NLP In various NLP tasks, pre-trained language
models (PLMs) are effectively applied to medical
text processing. (Liang et al., 2023; Liang and Son-
ntag, 2024) investigated building German clinical
entity extraction system based on German PLMs
in low-data setting. More recent studies have ex-
plored the potential applications of PLMs in clini-
cal practice, such as building clinical entity extrac-
tion system without in-domain training data (Liang
and Sonntag, 2024), ranging from transfer learn-
ing in summarizing radiology reports (Liang et al.,
2022) to real-time radiology reporting (Elkassem
and Smith, 2023; Jeblick et al., 2024) with PLMs.
Datta et al. (2024) leveraged PLMs for automatic
eligibility criteria from free text clinical trial pro-
tocol to facilitate trial enrollment and evaluation.
(Liu et al., 2024) demonstrated the potential of auto-
mated verification of scientific claims with LLMs
using retrieval-augmented strategies that exploit
open resources such as PubMed.

Sivarajkumar et al. (2024) highlighted the ef-
fectiveness of different prompting strategies, in-
cluding zero-shot and few-shot, for clinical infor-
mation extraction, while Tang et al. (2023) found
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that LLMs still struggle to summarize medical ev-
idence in longer textual contexts by evaluating
LLM-generated summaries focused on six clini-
cal domains. Moreover, LLMs have been shown to
enhance the diagnostic accuracy of general radiol-
ogists in cardiac imaging, highlighting their value
as a diagnostic support tool (Cesur et al., 2024).
Rao et al. (2023) also underscored the potential
of LLMs to assist healthcare professionals in di-
agnostic decision-making. Studies from Benary
et al. (2023) suggest that LLMs are not yet suitable
for routine use in personalized clinical decision-
making in oncology, they show promise as a com-
plementary tool, such as selecting relevant biomed-
ical literature to support evidence-based, personal-
ized treatment decisions and offering unique strate-
gies not identified by experts. However, further
research is necessary to evaluate their integration
into clinical workflows effectively (Verlingue et al.,
2024).

7 Conclusion

In summary, our approach structures the complex
NLI process into a sequential framework. The pro-
cess begins with semantic grounding, where the
model activates contextual understanding based on
the statement to be verified. Next, the model iden-
tifies the relevant evidence from the premise data,
where the model compares the information in the
statement with the extracted evidence. After this
evaluation, the model is asked to draw a conclu-
sion and predict the logical relationship between
the statement and the evidence. In the context of
validating biomedical claims based on long and
nuanced documents, the semantic grounding and
evidence-based evaluation steps help LLMs per-
form sub-tasks with greater precision in contrast
to the abstract nature of logical relationship pre-
diction. We find that decomposition reduces ambi-
guity in textual understanding, making the LLM’s
responses less sensitive to specific wording, as long
as the sub-tasks are clearly defined in prompting in-
structions. For example, the claim comprehension
step only interprets key terms, while the evidence
analysisfocuses on comparing the statement and
the evidence to identify relevant data points. This
approach can also effectively minimize the need
for extensive prompt engineering.

Future work In high-stakes areas such as medi-
cal decision-making, allowing LLMs to make deci-
sions raises critical concerns about accountability

and trustworthiness (Elkassem and Smith, 2023;
Jeblick et al., 2024). Integrating a feedback-driven
loop would support the development of collabo-
rative systems that balance the responsibility for
decision making between users and LLMs. This
balance is particularly important in high-stakes do-
mains where trust and accountability are essential.

Limitations

Our focus in this work has primarily been on the
reasoning capabilities of models when relevant
source documents are provided, with pre-retrieved
documents used in the evaluation data. However,
for open-ended cases, we would need to incorpo-
rate a retrieval pipeline to limit the candidate doc-
uments to a manageable scale, as otherwise, the
process of evidential evaluation could become too
time-consuming. Additionally, due to time con-
straints, we did not compare many different CoT
methods. Some approaches, such as generating
multiple responses and applying voting heuristics,
could offer more reliable results but are compu-
tationally expensive. We opted for the most intu-
itive and effective method, focusing on the 4-step
prompting framework. Furthermore, While LLMs
demonstrate significant improvements in generat-
ing evaluations within 4-step strategy and after SFT,
the degree of autonomy granted to these models
should be further explored to align with specific
user preferences and the application domain.
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A Appendix

Size of Applied Models Table 7 provides a com-
parison of model size and initial context window
length. The model size of the open source LLMs
is limited to 14 billion parameters. All models are
the instruct fine-tuned version.

Model Version Context Window Parameters

GPT3.5 gpt-3.5-turbo-0125 16K 175B
GPT-4o-mini gpt-4o-mini-2024-07-18 128K ?

Phi3.5-3.6B Phi-3.5-mini-instruct 128K 3.6B
Mistral-7b mistral-7b-instruct-v0.3 32K 7B
Llama3.1-8B Meta-Llama-3.1-8B-Instruct 128K 8B
Gemma2-9B gemma-2-9b-bnb-it 8K 9B
Mistral-12B Mistral-Nemo-Instruct-2407 1024K 12B
Phi3-14B Phi-3-medium-4k-instruct 4K 14B

Table 7: List of low-cost GPT models and lightweight
open-source LLMs used in our experiments.

Comparisons of generations of different mod-
els with different prompting strategies. In par-
ticular, Table 10-15 illustrates the enhancement
of lightweights LLMs in analyzing the statement
based on the provided data (The first step of 2-step
CoT and the second step - evidence analysisin
the 4-step framework) for the following example
shown in Table 8.

Fine-tuned results are obtained after fine-tuning
with the GPT-4o-mini augmented training samples.
Fine-tuning provides the LLMs with reliable analy-
sis patterns for the NLI4CT tasks, thereby increas-
ing the reliability of small-scale models. We utilize
the FastLanguageModelmodules of unsloth1 li-
brary to accelerate the SFT fine-tuning in our exper-
iments. SFT in the tables represents the response
in the second step (EVIDENCE ANALYSIS) by the
model fine-tuned with GPT-4o-mini generated re-
sponses.

1https://github.com/unslothai/unsloth
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Statement: ’Only 2 patients in the primary trial did not have Recurrence-free Survival’
Clinical Trial Data:
Primary trial:
- Outcome Measurement:
- Recurrence-free Survival
- Recurrence-free survival curves will be plotted for subjects treated with stage I and II disease.
- Time frame: Time from the start of treatment to recurrence, second malignancy, or death as a first
event, assessed up to 3 years
- Results 1:
- Arm/Group Title: Treatment (Chemotherapy With or Without Maintenance Therapy)
- Arm/Group Description: SYSTEMIC CHEMOTHERAPY: Patients receive cyclophosphamide IV
over 1 hour and paclitaxel IV over 3 hours on day 1. Treatment repeats every 14 days for 6 courses
in the absence of disease progression or unacceptable toxicity.
- MAINTENANCE THERAPY (Her-2 neu positive patients): Patients receive trastuzumab IV over
30 minutes on day 1. Treatment repeats every 14 days for 5 courses and then every 21 days for 14
courses in the absence of disease progression or unacceptable toxicity.
- cyclophosphamide, paclitaxel, trastuzumab: Given IV
- Overall Number of Participants Analyzed: 100
- Measure Type: Number
- Unit of Measure: percentage of subjects 98 (92.2 to 99.5)
Label: Entailment

Table 8: On exmpale instance of ’Entailment’ class from NLI4CT test set.

GPT-4o-mini in evidence analysis step: "To evaluate the claim "Only 2 patients in the primary
trial did not have Recurrence-free Survival," we first need to extract and clarify the relevant
data points from the provided clinical trial data and then analyze the claim against those data
points. 1. Relevant Data Points Extracted and Clarified: - **Total Participants Analyzed**: 100 -
**Recurrence-free Survival Result**: 98 participants (which equates to the percentage of subjects
achieving RFS) achieved recurrence-free survival. - **Percentage of Subjects with RFS**: 98%
(confidence interval of 92.2% to 99.5%) 2. Evaluation of the Claim against Data Points: 1. **Total
number of patients**: The total number of participants in the trial is 100. - **Evaluation**: The
claim mentions "only 2 patients" not achieving RFS. This would imply that a total of 98 out of 100
patients experienced RFS as stated in the trial data. 2. **Number of patients with Recurrence-free
Survival**: According to the trial data, 98 patients achieved RFS. - **Evaluation**: This supports
the claim, as if 98 patients achieved RFS, then logically it follows that 2 patients did not achieve
RFS (100 total participants - 98 with RFS = 2 without RFS). 3. **Effectiveness of Treatment**:
The high percentage of 98% suggests a strong effectiveness of the treatment administered. -
**Evaluation**: This supports the assertion in the claim that such a small number of patients (2
in this case) who did not achieve RFS indicates high treatment effectiveness. 4. **Definition of
Recurrence-Free Survival**: RFS is defined as a period during which a patient remains free of
any signs of disease recurrence. - **Evaluation**: The claim directly referenced RFS, which is
consistent with the clinical outcome measures defined in the trial data. Conclusion: The claim
that "Only 2 patients in the primary trial did not have Recurrence-free Survival" is consistent with
the clinical trial data provided. The data indicates that out of 100 participants, 98 achieved RFS,
meaning it is accurate to state that only 2 patients did not have RFS. Hence, the claim is validated
by the data."
Predict: Entailment

Table 9: Evaluation on the above example made by GPT-4o-mini in the EVIDENCE ANALYSIS that leads to the
accurate logical relation prediction.
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Model Approach Prediction
Phi3.5-3.6B zero-shot 2-step: "The statement claims that "Only 2 patients in the

primary trial did not have Recurrence-free Survival," but the clinical trial
data does not provide a specific number of patients without Recurrence-
free Surv"

Contradiction

zero-shot 4-step:"Recurrence-free Survival" (RFS) is the primary out-
come measure, which in this context is the time until cancer recurrence,
development of a second cancer, or death, whiche0ever comes first. -
"Time frame" specifies that the RFS is assessed from the start of treatment
up to 3 years, which is a standard period for evaluating long-term out-
comes in oncology trials. - "Arm/Group Title: Treatment (Chemotherapy
With or Without Maintenance Therapy)" refers to the two distinct treat-
ment strategies being compared in the trial: one with systemic chemother-
apy alone and the other with chemotherapy followed by maintenance
therapy for Her-2 neu positive patients. - "Arm/Group Description" pro-
vides details on the chemotherapy regimen for the systemic treatment
arm, including the drugs used (cyclophosphamide and paclitaxel), the
administration method (IV), and the treatment schedule (every 14 days
for 6 courses). - "MAINTENANCE THERAPY (Her-2 neu positive
patients)" specifies the additional treatment for patients with Her-2 neu
positive cancer, which includes the drug trastuzumab, also administered
IV, with a different treatment schedule (every 14 days for 5 courses,
then every 21 days for 14 courses). - "cyclophosphamide, paclitaxel,
trastuzumab: Given IV" confirms the intravenous administration of the
drugs used in the trial. - "Overall Number of Participants Analyzed: 100"

Entailment

SFT: " To evaluate the statement "Only 2 patients in the primary trial
did not have Recurrence-free Survival" based on the provided clinical
trial data, we can analyze the relevant information as follows: 1. **Out-
come Measurement**: The primary outcome measure is Recurrence-free
Survival (RFS), which assesses the time from the start of treatment to
recurrence, second malignancy, or death. 2. **Time Frame**: The
assessment period for RFS is up to 3 years, indicating a focus on short- to
medium-term outcomes. 3. **Treatment Arm**: The trial includes two
treatment groups: - **Chemotherapy With or Without Maintenance Ther-
apy**: This group receives systemic chemotherapy (cyclophosphamide
and paclitaxel) and, for Her-2 neu positive patients, maintenance therapy
(trastuzumab). - **Maintenance Therapy Only**: This group receives
maintenance therapy (trastuzumab) only. 4. **Overall Number of Par-
ticipants Analyzed**: A total of 100 participants were included in the
trial. 5. **Results**: The reported outcome indicates that 98% of par-
ticipants achieved Recurrence-free Survival. This translates to: - 98%
of 100 participants = 98 participants had Recurrence-free Survival. -
Therefore, 2 patients (100 - 98) did not have Recurrence-free Survival.
Conclusion: The statement "Only 2 patients in the primary trial did not
have Recurrence-free Survival" is supported by the data. The evidence
shows that 98 participants achieved Recurrence-free Survival, confirming
that indeed only 2 patients did not experience this outcome. Thus, the
statement can be logically inferred from the provided clinical trial data."

Entailment

Table 10: Comparison between the model responses made in the first step of zero-shot 2-step framework and the
second step (evidence analysis) in the zero-shot 4-step framework, made by model Phi3.5-3.6B.
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Model Approach Prediction

Mistral-7B zero-shot 2-step: The statement does not logically follow from the
provided clinical trial data. The data only provides the percentage of
subjects (98 out of 100) who did not experience a recurrence, but it does
not specify the number of subjects who did experience a recurrence.
Therefore, it is not possible to determine from this data whether only 2
patients in the primary trial did not have Recurrence-free Survival."

Contradiction

zero-shot 4-step:" Based on the provided clinical trial data, the claim
"Only 2 patients in the primary trial did not have Recurrence-free
Survival" can be evaluated as follows: 1. Outcome Measurement:
Recurrence-free Survival The claim and the data both refer to the same
outcome measure. 2. Time frame: Time from the start of treatment to
recurrence, second malignancy, or death as a first event, assessed up to
3 years The time frame in the claim is consistent with the time frame
in the data (up to 3 years). 3. Results 1: - Arm/Group Title: Treatment
(Chemotherapy With or Without Maintenance Therapy) - Arm/Group De-
scription: SYSTEMIC CHEMOTHERAPY: Patients receive cyclophos-
phamide IV and paclitaxel IV. MAINTENANCE THERAPY (Her-2 neu
positive patients): Patients receive trastuzumab IV. - Overall Number
of Participants Analyzed: 100 - Measure Type: percentage of subjects
- Unit of Measure: percentage The data shows that 98 out of 100 par-
ticipants (92.2 to 99.5%) did not have recurrence-free survival. This
suggests that the majority of participants in the trial did not experience
a recurrence of their disease during the follow-up period. However, the
claim does not specify which arm or group within the trial the 2 patients
without recurrence-free survival belong to. In conclusion, while the data
supports the claim that the majority of participants did not experience
a recurrence of their disease, the claim is not fully accurate as it does
not specify which arm or group the 2 patients without recurrence-free
survival belong to. A more detailed analysis would require information"

Contradiction

SFT: "To evaluate the statement "Only 2 patients in the primary trial did
not have Recurrence-free Survival," we can analyze the provided clini-
cal trial data as follows: 1. **Outcome Measurement**: The primary
outcome of the trial is Recurrence-free Survival (RFS), which is defined
as the time from the start of treatment to recurrence, second malignancy,
or death, assessed up to 3 years. 2. **Results Overview**: The trial
included a total of 100 participants, with 98 achieving recurrence-free
survival, resulting in a percentage of 98% (with a confidence interval
of 92.2% to 99.5%). This indicates that a significant majority of par-
ticipants remained free from disease recurrence. 3. **Interpretation of
the Statement**: The statement claims that only 2 patients did not have
recurrence-free survival. Given that 98 out of 100 participants achieved
this outcome, it can be inferred that the remaining 2 patients did not
achieve recurrence-free survival. 4. **Conclusion**: The evidence from
the trial data supports the statement, confirming that only 2 patients did
not have recurrence-free survival, as they are the 2 out of 100 participants
who did not achieve this outcome. Thus, the statement can be accurately
inferred from the provided data."

Entailment

Table 11: Comparison between the model responses made in the first step of zero-shot 2-step framework and the
second step (evidence analysis) in the zero-shot 4-step framework, made by model Mistral-7B.
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Model Approach Prediction

Llama3.1-
8B

zero-shot 2-step: " Based on the provided clinical trial data, the state-
ment "Only 2 patients in the primary trial did not have Recurrence-free
Survival" does not logically follow from the given information. The
statement in question implies that the outcome of interest is the num-
ber of patients without Recurrence-free Survival, which is not explicitly
mentioned in the provided data. The data only mentions the outcome of
Recurrence-free Survival, not the absence of it."

Contradiction

zero-shot 4-step: " Based on the clinical trial data, the following relevant
data points are identified: * **Outcome Measure**: Recurrence-free
Survival * **Time Frame**: Up to 3 years * **Number of Participants
Analyzed**: 100 * **Measure Type**: Number * **Unit of Measure**:
Percentage of subjects Evaluating the claim: * The claim states that
"Only 2 patients in the primary trial did not have Recurrence-free Sur-
vival". This statement seems to be inconsistent with the data, as the trial
reported a 98% (92.2-99.5) recurrence-free survival rate, indicating that a
significant portion of the patients did experience recurrence-free survival.
* The claim suggests that only 2 patients out of the total 100 participants
did not achieve recurrence-free survival, which contradicts the overall
recurrence-free survival rate of 98% reported in the trial. * The trial’s
reported results do not support the claim that only 2 patients did not
experience recurrence-free survival."

Contradiction

SFT: " To evaluate the statement "Only 2 patients in the primary trial did
not have Recurrence-free Survival," we will analyze it in relation to the
provided clinical trial data. Evaluation of the Statement: 1. **Outcome
Measurement**: The primary trial measures Recurrence-free Survival,
which indicates the duration patients remain free from disease recurrence
following treatment. 2. **Patient Cohort**: The statement refers to a
specific group of patients within the trial, focusing on those who did
not achieve recurrence-free survival. 3. **Results Data**: - **Total
Participants Analyzed**: 100 patients. - **Outcome Measure**: The
percentage of participants achieving recurrence-free survival is reported
as 98% (with a confidence interval of 92.2% to 99.5%). 4. **Interpreting
the Results**: - If 98% of patients achieved recurrence-free survival,
this means that: - 98%of 100 = 98 patients did have recurrence-free
survival. - Consequently, the number of patients who did not achieve
recurrence-free survival would be:

100� 98 = 2 patients

Conclusion: The statement "Only 2 patients in the primary trial did
not have Recurrence-free Survival" can be logically inferred from the
provided data, confirming that indeed, 2 out of the 100 participants
did not achieve recurrence-free survival, supporting the accuracy of the
claim."

Entailment

Table 12: Comparison between the model responses made in the first step of zero-shot 2-step framework and the
second step (evidence analysis) in the zero-shot 4-step framework, made by model Llama3.1-8B.
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Gemma2-9B zero-shot 2-step: "The statement **does not logically follow** from
the provided clinical trial data. Here’s why: * **Missing Data:** The
data only provides the overall percentage of subjects (98%) who expe-
rienced Recurrence-free Survival. It doesn’t specify the exact number
of patients who did or did not experience recurrence. * **Potential for
Interpretation:** While the high percentage suggests that most patients
did experience Recurrence-free Survival, it doesn’t definitively confirm
that only two patients did not. To determine if the statement is true, we
would need the raw data on individual patient outcomes (e.g., a table
showing whether each patient experienced recurrence or not). "

Contradiction

zero-shot 4-step:"Let’s break down the claim and compare it to the
provided data: **Claim:** ’Only 2 patients in the primary trial did not
have Recurrence-free Survival’ **Data Points:** * **Primary Trial:**
Yes, the data refers to a primary trial. * **Outcome Measurement:**
Recurrence-free Survival is the primary outcome. * **Time Frame:**
The trial assesses Recurrence-free Survival up to 3 years. * **Overall
Number of Participants Analyzed:** 100 * **Results 1:** The data
shows 98 out of 100 (92.2 to 99.5%) of patients in the treatment arm
experienced Recurrence-free Survival. **Evaluation:** The claim is
**partially supported** by the data. * **Support:** The data clearly
states that 98 out of 100 patients in the treatment arm had Recurrence-free
Survival. This means only 2 patients did *not* experience Recurrence-
free Survival. * **Missing Information:** The claim doesn’t specify
which treatment arm it refers to. We need to know if this refers to the
chemotherapy with or without maintenance therapy. **Important Consid-
erations:** * **Confidence Intervals:** The data provides a confidence
interval (92.2 to 99.5%). This means we are 95% confident that the true
percentage of patients with Recurrence-free Survival in the treatment
arm falls within this range. * **Context:** To fully evaluate the claim,
we need more information about the control group (if there was one) and
the specific types of cancer being treated. "

Entailment

SFT:" To evaluate the statement "Only 2 patients in the primary trial did
not have Recurrence-free Survival" based on the provided clinical trial
data, we can analyze the relevant information as follows: 1. **Outcome
Measurement**: The primary trial focused on measuring Recurrence-
free Survival (RFS), which is a critical endpoint in cancer trials. 2.
**Time Frame**: The assessment of RFS was conducted over a period
of up to 3 years from the start of treatment, providing a comprehensive
view of the treatment’s effectiveness. 3. **Results Analysis**: - The
trial included a total of **100 participants** analyzed. - The statement
indicates that **2 patients** did not achieve RFS. - This translates to
**98%** of participants having RFS, as shown in the results (98% with
a confidence interval of 92.2% to 99.5%). 4. **Conclusion**: The
statement is supported by the data, confirming that only 2 out of 100
participants did not achieve recurrence-free survival. This indicates a high
level of effectiveness of the treatment in preventing disease recurrence
among the majority of patients. In summary, the evidence from the
trial data clearly supports the statement that only 2 patients did not
have recurrence-free survival, highlighting the treatment’s success in
maintaining disease-free status in the majority of participants."

Entailment

Table 13: Comparison between the model responses made in the first step of zero-shot 2-step framework and the
second step (evidence analysis) in the zero-shot 4-step framework, made by model Gemma2-9B.
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Model Approach Prediction

Mistral-12B zero-shot 2-step: "Based on the provided clinical trial data, the state-
ment "Only 2 patients in the primary trial did not have Recurrence-free
Survival" is **not logically supported** by the data. Here’s why: 1. The
clinical trial data reports that 98 out of 100 participants had Recurrence-
free Survival, which is 92.2% to 99.5% (with 95% confidence interval).
2. This means that, at most, 2 out of 100 participants did not have
Recurrence-free Survival, which is consistent with the reported percent-
age. 3. However, the statement uses "only 2 patients" which implies that
the number is exact and not an estimate. The data provided does not
confirm this exact number; it only gives a range (92.2% to 99.5%) within
which the number of patients with Recurrence-free Survival falls. "

Contradiction

zero-shot 4-step:"Based on the provided clinical trial data, let’s evaluate
the claim "Only 2 patients in the primary trial did not have Recurrence-
free Survival": 1. **Number of participants in the trial**: The claim
mentions "primary trial," and the data provides the overall number of
participants analyzed as 100. This matches the context of the claim,
as it refers to the primary trial. - Data point: 100 participants - Claim:
Applicable (primary trial) 2. **Outcome measure**: The claim focuses
on Recurrence-free Survival (RFS), which is also the primary outcome
measurement mentioned in the trial data. - Data point: Recurrence-
free Survival - Claim: Applicable (RFS is the outcome of interest) 3.
**Time frame**: The claim does not specify a time frame, but the trial
data indicates that RFS is assessed up to 3 years. Without a specified
time frame in the claim, we cannot directly evaluate this aspect. - Data
point: Up to 3 years - Claim: Not specified, so cannot be evaluated 4.
**Number of patients without RFS**: The claim states "Only 2 patients...
did not have Recurrence-free Survival." The trial data does not provide
the exact number of patients without RFS, but it does mention the overall
percentage of subjects with RFS. - Data point: 98% (92.2 to 99.5) of
subjects had RFS - Claim: The data suggests that 2% (0.5 to 7.8) of
subjects did not have RFS, which is consistent with the claim’s statement
of "Only 2 patients." 5. **Arm/Group**: The claim does not specify
any particular treatment arm or group, so we cannot directly evaluate this
aspect."

Entailment

SFT: "To evaluate the statement "Only 2 patients in the primary trial
did not have Recurrence-free Survival," we can analyze the provided
clinical trial data as follows: 1. **Outcome Measurement**: The trial
measures Recurrence-free Survival, which is defined as the time from the
start of treatment to recurrence, second malignancy, or death. 2. **Total
Participants**: The trial included 100 participants. 3. **Results**: The
statement claims that only 2 patients did not have Recurrence-free Sur-
vival. This implies that 98 patients did achieve Recurrence-free Survival.
4. **Confidence Interval**: The reported percentage of subjects with
Recurrence-free Survival is 98%, with a confidence interval of (92.2
to 99.5). This indicates a high level of confidence in the outcome. 5.
**Conclusion**: Based on the data, it can be inferred that the statement
is accurate. If 98 out of 100 participants achieved Recurrence-free Sur-
vival, then the number of patients who did not achieve this outcome is
indeed 2, confirming the statement.""

Entailment

Table 14: Comparison between the model responses made in the first step of zero-shot 2-step framework and the
second step (evidence analysis) in the zero-shot 4-step framework, made by model Mistral-12B .
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Model Approach Prediction

Phi3-14B zero-shot 2-step: " The statement "Only 2 patients in the primary trial
did not have Recurrence-free Survival" does not logically follow from
the clinical trial data provided. The data indicates that 98% (92.2 to 99.5)
of the subjects had recurrence-free survival, which means that 2% (100
- 98%) of the subjects did not have recurrence-free survival. However,
the data does not specify the exact number of patients who did not have
recurrence-free survival."

Contradiction

zero-shot 4-step:" Relevant data points from the clinical trial data: 1.
Outcome Measurement: Recurrence-free Survival 2. Time frame: Time
from the start of treatment to recurrence, second malignancy, or death
as a first event, assessed up to 3 years 3. Arm/Group Title: Treatment
(Chemotherapy With or Without Maintenance Therapy) 4. Arm/Group
Description: SYSTEMIC CHEMOTHERAPY and MAINTENANCE
THERAPY (Her-2 neu positive patients) 5. Overall Number of Partic-
ipants Analyzed: 100 6. Measure Type: Number 7. Unit of Measure:
percentage of subjects 8. Results 1: 98 (92.2 to 99.5) Evaluation of
the claim: The claim states that "Only 2 patients in the primary trial
did not have Recurrence-free Survival." Based on the clinical trial data
provided, the results show that 98% of the subjects (92.2 to 99.5) had
Recurrence-free Survival. This means that 2% of the subjects did not
have Recurrence-free Survival. Given that there were 100 participants
in the trial, 2% of the participants would be 2 participants. Therefore,
the claim is consistent with the clinical trial data, as it accurrightly states
that only 2 patients in the primary trial did not have Recurrence-free
Survival."

Entailment

SFT: " To evaluate the statement "Only 2 patients in the primary trial
did not have Recurrence-free Survival," we can analyze the provided
clinical trial data as follows: 1. **Outcome Measurement**: The pri-
mary outcome of the trial is Recurrence-free Survival (RFS), which is
defined as the time from the start of treatment to the occurrence of re-
currence, a second malignancy, or death. 2. **Treatment Description**:
The trial involves systemic chemotherapy, with specific regimens for
Her-2 neu positive patients, including cyclophosphamide, paclitaxel, and
trastuzumab. 3. **Time Frame**: The assessment of RFS is conducted
over a period of up to 3 years from the start of treatment. 4. **Overall
Number of Participants Analyzed**: The trial includes a total of 100 par-
ticipants. 5. **Results**: The data indicates that 98% of the participants
achieved recurrence-free survival, with a confidence interval of 92.2% to
99.5%. Evaluation of the Statement: - **Claim**: "Only 2 patients in
the primary trial did not have Recurrence-free Survival." - **Analysis**:
- If 98% of the 100 participants achieved RFS, this means that 2% did
not. - Calculating the number of patients who did not achieve RFS: - 2%
of 100 participants = 2 patients. Conclusion: The statement "Only 2
patients in the primary trial did not have Recurrence-free Survival" is
supported by the data. The evidence indicates that 2 patients out of 100
did not achieve RFS, confirming the accuracy of the claim."

Entailment

Table 15: Comparison between the model responses made in the first step of zero-shot 2-step framework and the
second step (evidence analysis) in the zero-shot 4-step framework, made by model Phi3-14B.
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Abstract
Accurately mapping medical procedure names
from healthcare providers to standardized ter-
minology used by insurance companies is a
crucial yet complex task. Inconsistencies in
naming conventions lead to missclasified pro-
cedures, causing administrative inefficiencies
and insurance claim problems in private health-
care settings. Many companies still use human
resources for manual mapping, while there is
a clear opportunity for automation. This paper
proposes a retrieval-based architecture lever-
aging sentence embeddings for medical name
matching in the Romanian healthcare system.
This challenge is significantly more difficult in
underrepresented languages such as Romanian,
where existing pretrained language models lack
domain-specific adaptation to medical text. We
evaluate multiple embedding models, including
Romanian, multilingual, and medical-domain-
specific representations, to identify the most
effective solution for this task. Our findings
contribute to the broader field of medical NLP
for low-resource languages such as Romanian.

1 Introduction

Ensuring accurate mapping between medical proce-
dure names used by different healthcare providers
and a standardized terminology set maintained by
health insurance companies is a challenging task,
with real-world applications. Discrepancies in nam-
ing conventions can lead to administrative ineffi-
ciencies, misclassification of procedures, and po-
tential barriers for patients seeking insurance cover-
age. These mismatches can result in denied claims,
increased processing times, and overall inefficien-
cies in the healthcare reimbursement process. For
example, "The State of Claims: 2024" report 1 re-
veals that 46% of denied claims are due to missing
or innacurate data and coding errors.

Matching procedure names is similar to the
well-known problems of entity resolution and text

1The State of Claims: 2024, Accessed 19.03.2025

Figure 1: Diagram of the medical procedure matching
problem. Clinics often have their own local names for
medical procedures that are changed annually, for which
a central insurance agency must match to a standardized
list of procedures for reimbursement.

matching, yet it presents unique challenges in the
medical domain. The complexity stems from sev-
eral factors: (i) medical terminology is highly
domain-specific and varies across institutions, (ii)
data distributions are often imbalanced due to the
frequency of common procedures overshadowing
rare ones, (iii) nomenclatures evolve over time,
necessitating adaptive matching techniques, and
(iv) the presence of noise in text data, including
typographical errors and abbreviations further com-
plicates standardization efforts. Figure 1 illus-
trates this problem. While previous studies have
addressed similar challenges (Tavabi et al., 2024;
Levy et al., 2022; Zaidat et al., 2024), most focus
on healthcare systems in the United States or other
widely studied regions (Alexander et al., 2003). In-
ternational standards are typically adapted by each
country, and private insurance companies may de-
velop their own coding schemes, making a univer-
sal solution impractical.

This issue is particularly pressing for underrepre-
sented languages such as Romanian. Despite grow-
ing interest in NLP for low-resource languages (Ni-
gatu et al., 2024), Romanian remains significantly
underrepresented in medical NLP research. Ex-
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isting language models such as RoBERT (Masala
et al., 2020) and RoLLaMA (Masala et al., 2024)
provide general-purpose Romanian embeddings,
but they lack the necessary specialization for medi-
cal text processing. Often, for real-world scenarios,
multilingual models are ubiquitously used (Wang
et al., 2024, 2020), even if they might fail to capture
language-specific nuances.

In this paper, we propose a retrieval-based archi-
tecture for medical procedure matching. By lever-
aging metric learning and dense vector representa-
tions of procedure names (Ramesh Kashyap et al.,
2024), our method can handle a variable number of
input-output mappings, can be expanded without
retraining the entire model, and integrate efficiently
with scalable vector search frameworks such as
Milvus (Wang et al., 2021). This makes retrieval
an attractive paradigm for medical name matching,
as it enables continuous updates and adaptation to
changing medical taxonomies without extensive
human intervention. We empirically evaluate three
sentence embedding models (Wang et al., 2024;
Masala et al., 2020; Alsentzer et al., 2019), compar-
ing their effectiveness in Romanian medical name
matching.

By focusing on the Romanian healthcare sys-
tem, our study highlights the broader challenges of
medical terminology standardization and provides
insights that can inform similar efforts in other low-
resource languages. We aim to contribute to the de-
velopment of robust, scalable, and language-aware
retrieval methods for healthcare applications, ulti-
mately improving the efficiency and accessibility
of medical insurance systems.

Our contributions are as follows:

1. We propose a retrieval-based architecture for
matching medical procedure names across dif-
ferent healthcare providers and insurance com-
panies, addressing a pressing real-world prob-
lem in the Romanian healthcare system.

2. We conduct an extensive evaluation of vari-
ous sentence embedding models, both Roma-
nian (Masala et al., 2020), multilingual (Wang
et al., 2024) and specialized in the medical
domain (Alsentzer et al., 2019), highlighting
their performance in the context of Romanian
medical text matching.

2 Related Work

Sentence embedding models. Semantic text em-
bedding models (Ramesh Kashyap et al., 2024)

are a significant component of many NLP appli-
cations, most notably text retrieval and question
answering. Text embeddings are used to capture
semantic representations of text that go beyond
surface level word and character matching meth-
ods such as TF-IDF. Currently, practitioners are
using pretrained transformer models such as BERT
(Reimers and Gurevych, 2019), either by aggre-
gating word-level representations with a pooling
operation, or by using specialized training for text
similarity (Khattab and Zaharia, 2020). Currently,
the best performing models are aggregated in the
MTEB leaderboard (Muennighoff et al., 2023a), a
benchmark of several text embedding tasks, includ-
ing several non-English datasets. For the medical
and scientific domain (Lewis et al., 2020), several
models have been developed. Models such as SciB-
ERT (Beltagy et al., 2019), BioBERT (Alsentzer
et al., 2019), ClinicalBERT (Alsentzer et al., 2019)
and MedBERT (Rasmy et al., 2021) offer domain-
specific embeddings by training on either special-
ized biomedical corpora or task-specific datasets.

However, most contextualized text representa-
tion models for the medical domain are focused
on the English language, with under-represented
languages severely lacking in resources such as spe-
cialized models or training datasets. In our setup,
medical procedure names are written in Romanian,
a low resource language, with only a few pretrained
language models (Masala et al., 2024, 2020). Cur-
rently, for Romanian, only a pretrained RoBERT
model (Masala et al., 2020) is available for direct
contextualized text representations, but no such
variant exists for the medical domain. Currently,
multilingual models such as E5 (Wang et al., 2024)
and MiniLM (Wang et al., 2020) are ubiquitously
used for non-English tasks.
Medical Procedure Matching. The task of medi-
cal procedure matching has been performed in the
context of assigning medical notes or pathology
reports to a predefined set of medical procedures
(Tavabi et al., 2024; Levy et al., 2022; Zaidat et al.,
2024), with a focus on the US medical system.

Tavabi et al. (2024) investigated the problem of
mapping unstructured operative notes to Current
Procedural Terminology (CPT) codes. The CPT
code set is a system used to describe medical, surgi-
cal and diagnostic services, that are used for billing
and insurance reimbursement processes in health-
care. The authors apply common NLP techniques
to assign 44,002 notes to 100 most prevalent CPT
codes, treating this problem as a classification task.
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Masterlist Entry Associated Clinic Procedures Names

Polipectomie polip mic
(Small polyp polypectomy)

Polipectomie,polip mic (Polypectomy, small polyp)

Gastroenterologie - Polipectomie,polip mic 2022 (Gastroen-
terology - Polypectomy, small polyp 2022)

Rezectie polip mic (Small polyp resection)

Radiografie omoplat 1
incidenta
(Scapula X-ray 1 view)

Radiografie omoplat (fata sau profil) (Scapula X-ray (frontal or
lateral))

Omoplat profil (Lateral scapula view)

RX omoplat profil (Lateral scapula X-ray)

Vitamina B12
(Vitamin B12)

Vitamina B12 serica (5 zile) (Serum Vitamin B12 (5 days))

Vitamina B12 (Cianocobalamina) (Vitamin B12 (Cyanocobal-
amin))

ANALIZA SANGE - Vitamina B12 (BLOOD ANALYSIS - Vita-
min B12)

Table 1: Selected examples of entries in the masterlist and associated procedure names from clinics. There is
significant variation in procedure names, which makes simple text matching inappropriate. We provide English
translations for convenience.

Using TF-IDF, Doc2Vec (Le and Mikolov, 2014)
and Clinical Bio-BERT (Alsentzer et al., 2019) em-
beddings as input they train a support vector ma-
chine classifier, for each embedding type. In their
experiments, TF-IDF outperformed both BERT and
Doc2Vec.

Levy et al. (2022) used machine-learning mod-
els for predicting CPT codes from pathology re-
ports. Their study analyzed 93,039 pathology re-
ports from the Dartmouth-Hitchcock Department
of Pathology and Laboratory Medicine, classifying
42 CPT codes. They evaluated the performance of
XGBoost and BERT—using both diagnostic text
alone and all report subfields. Their findings in-
dicated that while BERT outperformed XGBoost
when trained only on diagnostic text, but using all
report subfields resulted in XGBoost achieving the
best performance.

Zaidat et al. (2024) have also explored assigning
CPT codes to spine surgery operative notes, using
XLNet (Yang et al., 2019), a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) model. They
fine-tune the model to their operative note dataset,
containing 922 entries.

Previous studies have evaluated the performance
of statistical, machine learning and deep learning
models on classification of a large number of sam-
ples to a relatively small subset of CPT codes. In
contrast, we formulate our problem as a retrieval
problem, since our dataset is severely imbalanced,
and contains two orders of magnitude more CPT
codes (38,814 entries). Furthermore, another ad-
vantage of this formulation is that by avoiding a

fixed set of classes, the addition of more procedures
does not require modifying the architecture or re-
training the model. Unique to our work, we are the
first to tackle this problem in Romanian, a severely
low-resource language in terms of specialized mod-
els for the medical domain.

3 Method

In this section, we provide an overview of the prob-
lem description, our dataset of medical procedure
names and we describe the architecture for perform-
ing mapping between clinic descriptions and a set
of standardized procedure names.

3.1 Problem Description

The problem of matching medical procedure names
to a standardized masterlist is non-trivial. Simple
text matching is insufficient, as we will demon-
strate in Section 4. Our dataset is comprised of
medical procedures and tests from 528 Romanian
private clinics, containing 145,298 unique proce-
dure names mapped to their corresponding mas-
terlist entries. Through manual filtering of incor-
rect mappings, we reduced the dataset to 139,210
entries. Healthcare providers frequently use vary-
ing terms, abbreviations, and phrasing for the same
procedure, which creates inconsistencies. To illus-
trate the difficulty, Table 1 shows some relevant
examples of mappings. Healthcare providers may
omit obvious terms, such as "polyp resection" be-
ing synonymous with "polypectomy". Similarly,
entries such as "frontal or lateral X-ray" must be
mapped to "1 view X-ray", as they represent a sin-
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Figure 2: Overall diagram of our method. We formulate medical procedure matching as a retrieval problem: entries
in the masterlist are embedded and stored in a vector store and the most similar entry is retrieved based on the
similarity with a procedure name from a clinic.

gle test being performed. Terminology variations,
like vitamin B12 also being called Cyanocobal-
amin, can add complexity, especially when descrip-
tions include irrelevant details that mislead text-
based matching. Several other relevant examples
are presented in Table 2: matching a single medical
procedure, when the description actually describes
two procedures, not recognizing the semantic mean-
ing of descriptions, ignoring important numerical
thresholds, retrieving specific procedures instead
of general ones (or vice versa), and prioritizing less
important terms.

We chose to model our problem as a retrieval
problem, and not as a classification problem, since
50% of elements from the masterlist have only 1
unique procedure assigned. Figure 3 shows the
distribution of clinic descriptions assigned to mas-
terlist entries. If we frame our task as a classifica-
tion problem, we have 39,097 distinct classes, with
19,493 containing only a single sample. Given the
severe class imbalance per procedure, a classifica-
tion model would be inappropriate and would gen-
eralize poorly. However, a retrieval-based method
can be effectively used by leveraging semantic text
embeddings and metric-learning approaches to cap-
ture the similarity between clinic descriptions and
masterlist entries.

3.2 Procedure Matching as Retrieval
In our retrieval setup, we used the provided mas-
terlist procedure names to build a retrieval index
(Wang et al., 2021) and clinic descriptions as the
references for the queries. We embed the descrip-
tions using dense (Masala et al., 2020; Wang et al.,
2024; Alsentzer et al., 2019) and sparse models
(Robertson and Zaragoza, 2009). At inference time,
we embed the query clinic descriptions that require
a masterlist description and perform a similarity
search. The vector DB returns the top-k most simi-

Figure 3: Distribution of number of unique clinic de-
scriptions per masterlist procedure. There is a severe
data imbalance: 19,493 ( 50%) out of 39,097 entries
contain only a single example.

lar results for each of our clinic description. Figure
2 showcases this approach.

The vector index includes two types of entries:
masterlist entries and clinic description ↔ mas-
terlist pairs. In the first scenario, the similarity
score is calculated between the query and the mas-
terlist entries, with the index returning the most
similar masterlist entries. In the second scenario,
the similarity score is computed between the query
and the clinic descriptions stored in the index, and
the masterlist entry associated with the most similar
clinic description is returned. We build our search
and evaluation architecture over Milvus (Wang
et al., 2021), a high-performance vector database.

For our setup, we used three types of text em-
beddings: (i) sparse text embeddings using BM25
(Robertson and Zaragoza, 2009), (ii) dense seman-
tic embeddings with several pretrained transformer
models (Masala et al., 2020; Wang et al., 2024;
Alsentzer et al., 2019), both zero-shot and fine-
tuned with metric learning, and (iii) a hybrid rank-
ing approach using RRF (Cormack et al., 2009).
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3.3 Sparse Embeddings with BM25

For computing the sparse embeddings, we use
BM25 (Robertson and Zaragoza, 2009) to identify
the most relevant word-level features from the train-
ing set descriptions and masterlist entries. Text is
preprocessed by removing diacritics, punctuation,
and Romanian stopwords, followed by stemming
the remaining words. At inference time, we com-
pute the inner product between the query descrip-
tions and the masterlist descriptions, as well as the
clinic description pairs.

3.4 Dense Embeddings with Pretrained
Transformer Models

Recent studies have highlighted the challenges
of selecting optimal sentence embedding mod-
els for domain-specific retrieval tasks (Wornow
et al., 2023). Generic benchmarks do not always
align with real-world performance, necessitating
task-specific evaluations. The MTEB Leaderboard
(Muennighoff et al., 2023b) ranks top-performing
embedding models based on retrieval performance
across various datasets.

We experiment with three models for dense em-
beddings: mE5-large (Wang et al., 2024), RoBERT-
large (Masala et al., 2020), and BioClinicalBERT
(Alsentzer et al., 2019). We select mE5 due to its
strong performance on multilingual retrieval tasks,
RoBERT as a strong language-specific baseline
model pre-trained using only Romanian text, and
BioBERT as a domain-specific model, pretrained
on biomedical text, which may capture medical
terminology better than general-purpose models.
Fine-tuning with Metric Learning. We fine-tune
the pretrained text embedding models using the
MultipleNegativesRankingLoss objective (Hender-
son et al., 2017), as shown in Figure 4. We consider
the clinic descriptions as anchors (ai) and the cor-
responding masterlist descriptions (pi) as positive
pairs - (ai, pi). The negative pair consists of every
combination (ai, pj), where pj , j ̸= i are all other
masterlist descriptions. In this way, our embed-
ding model learns to increase the cosine similarity
between the clinic descriptions and their mapped
masterlist description, while decreasing the simi-
larity between the clinic description and all other
masterlist items. The model is fine-tuned on 80,911
pairs for 20 epochs, using a batch size of 4096. We
use a learning rate of 2e-5, with a cosine scheduler
and a warmup ratio of 0.1. All experiments are run
on an NVIDIA A100 80GB GPU.

3.5 Hybrid search

Cormack et al. (2009) proposed Reciprocal Rank
Fusion (RRF) as a method of aggregating the rank-
ing results of multiple information retrieval sys-
tems. It is calculated using the formula:

RRFscore(d ∈ D) =
∑

r∈R

1

k + r(d)
(1)

where D is the set of results to be ranked, R
represents the multiple returned rankings of these
results, k is a constant, and r(d) is the rank of a re-
sult d. We combine the results of dense and sparse
embeddings using RRF and analyze its effect on
retrieval accuracy.

4 Experiments and Results

To evaluate our approach, we split the dataset into
a training and evaluation split, containing 80,911
and 58,299 clinic description ↔ masterlist pairs,
respectively. For fine-tuning, we used only the
training split. For evaluation, we split the evalua-
tion set into gallery and probe sets in a 4:1 ratio,
in a setup similar to 5-fold cross-validation, where
gallery entries form the vector store data. Each fold
is stratified based on the masterlist entries, such that
each fold contains approximately the same distri-
bution of masterlist entries. Specifically, for each
masterlist entry, we distribute its associated clinic
descriptions evenly across all folds – for example
if 5 clinic descriptions map to the same masterlist
entry, each fold will contain exactly 1 such map-
ping.
Evaluation Metrics. Our primary evaluation met-
ric is Accuracy@k, which measures whether a
ground-truth masterlist description is in the first
k returned results for a query clinic description.
Our target is to optimize for Acc@1, but we also in-
clude the results for Acc@3, Acc@5 and Acc@100.
In a real-life use of such an system will involve
suggesting top-3 or top-5 most similar masterlist
entries, and Acc@3 and Acc@5 provides insight
into the usefulness of our system. We also include
Acc@100, as a low value indicates a problem with
the chosen search technique, but usually it indicates
the presence of incorrect annotations. In all our re-
sults, we show the mean and standard deviation
across 5 folds.
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Figure 4: Fine-tuning approach for dense sentence embeddings. A pretrained text embedding model is trained to
minimize the distance between representations of masterlist entries and associated clinic procedure names while
maximising the distance between every other entry.

Clinic De-
scription

BM25 Miss mE5 Hit Observations

Aplicare sterilet +
EEV control

Aplicare sterilet Montare sterilet
(DIU) + ecografie
control

Did not account for
the additional ultra-
sound control term

(IUD application +
EEV control)

(IUD application) (IUD insertion
(DIU) + ultrasound
control)

EXOSTOZA Sonoterapie in exos-
toze calcaneene

Excizia exostozei Focused on "exos-
toses" but did not
recognize "exci-
sion" as a relevant
treatment

(Exostosis) (Sonotherapy in cal-
caneal exostoses)

(Excision of exosto-
sis)

Chiuretare mollus-
cum contagiosm >
10 leziuni

Chiuretare < 10 lez-
iuni

Chiuretare molus-
cum contagiosum
peste 10 leziuni

Matched on "curet-
tage" but ignored
the numerical
threshold

(Curettage of
molluscum con-
tagiosum > 10
lesions)

(Curettage of < 10
lesions)

(Curettage of
molluscum conta-
giosum over 10
lesions)

Radiofrecventa ab-
latie tumori

Ablatie laser /
radiofrecventa
tumora ureche
dificultate redusa

Excizie leziune cu
radiofrecventa

Retrieved a more
specific procedure
(ear tumor) instead
of a general one

(Radiofrequency
ablation of tumors)

(Laser/radiofrequency
ablation of ear tu-
mor - low difficulty)

(Excision of lesion
with radiofre-
quency)

RM articulatii sacro
iliace cu subst. de
contrast

Artrodeza articu-
latiei sacro iliace
percutanata cu
implant I Fuse

RMN articulatii
sacroiliace cu SC,
1.5T

Retrieved a surgi-
cal procedure in-
stead of an imaging
scan

(MRI of sacroiliac
joints with contrast)

(Percutaneous
sacroiliac joint
arthrodesis with I
Fuse implant)

(MRI of sacroiliac
joints with SC,
1.5T)

Table 2: Selected examples of clinic Descriptions with
BM25 Misses, mE5 Dense Embedding Hits. Sparse
indexes are not appropriate for this task, which require
high level semantic understanding of descriptions.

4.1 Comparison between different types of
search indexes

In Table 3, we show a comparison between dense,
sparse, and hybrid approaches. For dense embed-
dings, we used a fine-tuned mE5 (Wang et al., 2024)
model. The results show that the fine-tuned dense
model consistently outperforms both sparse and
hybrid search methods. When searching only mas-
terlist entries, the dense approach achieves 26.2%

higher Acc@1 than the sparse approach. When
using both masterlist and associated mappings, the
dense approach obtains a 17.2% Acc@1 margin.
The sparse approach also shows poor performance
for Acc@100, indicating that a bag-of-word ap-
proach is not appropriate for this task, and seman-
tic understanding is needed. Hybrid search fails
to outperform dense search as it is limited by the
poor performance of sparse search. In Table 2
we show selected examples of clinic descriptions
where sparse embeddings fail to capture variations
in text descriptions.

4.2 Fine-tuning with metric learning

In Table 4 we compare the performance of three
dense embedding models: mE5-large (Wang et al.,
2024), RoBERT-large (Masala et al., 2020), and
BioClinicalBERT (Alsentzer et al., 2019). We ob-
tained that mE5 has higher off-the-shelf retrieval
accuracy compared to RoBERT and BioClinical-
BERT. This advantage stems from mE5’s design as
a sentence-transformer model specifically trained
to evaluate similarity between sentences or descrip-
tions, whereas RoBERT and BioClinicalBERT is
adapted for sentence embedding through a pooling
operation over token embeddings.

Sparse search initially outperforms both
RoBERT and BioClinicalBERT. However, after
fine-tuning, all dense embeddings surpass sparse
embeddings in performance metrics, with mE5
maintaining its position as the highest-performing
model.

Table 5 illustrates the impact of incorporating
both masterlist and associated mappings in search
processes. The inclusion of reduces the perfor-
mance difference between E5 and the other two
models. While the relative ranking of models re-
mains consistent, E5 achieves the highest perfor-

172



Vector Store Data Index Type Acc@1 Acc@3 Acc@5 Acc@100

Masterlist Entries Only
sparse (BM25) 52.6 ± 0.002 64.5 ± 0.002 68.5 ± 0.002 86.3 ± 0.001
dense (mE5) 78.8 ± 0.002 92.2 ± 0.002 95.0 ± 0.002 99.5 ± 0.001
hybrid (RRF) 63.9 ± 0.003 77.7 ± 0.003 82.1 ± 0.003 99.5 ± 0.001

Masterlist Entries + Mappings
sparse (BM25) 68.0 ± 0.003 82.3 ± 0.001 86.1 ± 0.001 94.7 ± 0.001
dense (mE5) 85.2 ± 0.003 95.8 ± 0.001 97.5 ± 0.001 99.5 ± 0.001
hybrid (RRF) 81.0 ± 0.002 92.3 ± 0.001 94.9 ± 0.001 99.5 ± 0.000

Table 3: Comparison between sparse embeddings from BM25, dense embeddings from mE5 (Wang et al., 2024),
and hybrid search, having only masterlist entries in the vector store and having both masterlist and associated
clinical mappings. Using dense embeddings from mE5 provides the best results in both cases. Results are averaged
across 5 folds.

Model Name Type Acc@1 Acc@3 Acc@5 Acc@100
RoBERT (Masala et al., 2020)

off-the-shelf
44.7 ± 0.003 53.4 ± 0.003 56.9 ± 0.004 75.3 ± 0.003

BioClinicalBERT (Alsentzer et al., 2019) 47.7 ± 0.003 56.7 ± 0.003 60.2 ± 0.002 74.9 ± 0.003
mE5 (Wang et al., 2024) 56.8 ± 0.003 69.4 ± 0.002 74.3 ± 0.002 91.3 ± 0.002

RoBERT (Masala et al., 2020)
fine-tuned

75.9 ± 0.001 89.9 ± 0.002 93.2 ± 0.000 98.9 ± 0.001
BioClinicalBERT (Alsentzer et al., 2019) 75.7 ± 0.002 89.2 ± 0.002 92.7 ± 0.002 98.9 ± 0.000
mE5 (Wang et al., 2024) 78.8 ± 0.002 92.2 ± 0.002 95.0 ± 0.002 99.5 ± 0.001

Table 4: Comparison between different types of text embedding models, having entries in the vector store only
from the masterlist entries. We obtained the best results using a fine-tuned version of mE5, a general-purpose
multi-lingual model. Results are averaged across 5 folds.

Model Name Type Acc@1 Acc@3 Acc@5 Acc@100
RoBERT (Masala et al., 2020)

off-the-shelf
62.5 ± 0.005 76.8 ± 0.004 81.1 ± 0.005 92.0 ± 0.004

BioClinicalBERT (Alsentzer et al., 2019) 66.7 ± 0.005 80.8 ± 0.003 84.6 ± 0.002 93.4 ± 0.002
mE5 (Wang et al., 2024) 67.9 ± 0.004 85.2 ± 0.002 89.6 ± 0.002 98.1 ± 0.001

RoBERT (Masala et al., 2020)
finetuned

84.4 ± 0.002 94.8 ± 0.002 96.6 ± 0.001 99.0 ± 0.001
BioClinicalBERT (Alsentzer et al., 2019) 83.8 ± 0.003 94.3 ± 0.001 96.4 ± 0.001 99.0 ± 0.001
mE5 (Wang et al., 2024) 85.2 ± 0.003 95.8 ± 0.001 97.5 ± 0.001 99.5 ± 0.001

Table 5: Comparison between different types of text embedding models, having entries in the vector store from both
the masterlist entries and associated clinical mappings. We obtained the best results using a fine-tuned version of
mE5, a general-purpose multi-lingual model. Results are averaged across 5 folds.

mance with an Acc@1 of 85.2% and an Acc@5 of
95%. Notably, Acc@1 metric may under-represent
actual performance. Manual inspection of mis-
classified results reveals many plausible matches.
This discrepancy occurs due to the presence of du-
plicate entries within the masterlist itself—entries
with slightly different formulations that reference
identical medical procedures. The markedly higher
Acc@3 metric, which captures whether the ground-
truth result appears within the first three recommen-
dations, supports this observation. Although dupli-
cated masterlist results present a methodological
challenge for evaluation, they do not compromise
practical application. The real-world accuracy ex-
ceeds the reported metrics, as demonstrated in the
next section.

4.3 Doctor evaluation
Our medical procedure mapping system was used
to map new unmapped procedures. We evaluated

Model Name Acc@1 Acc@2 Acc@3
mE5 - All Data 94.7 98.5 99.0

Table 6: Real-world evaluation of our system. Doctors
manually evaluated 12,836 new entries after mapping
them with a fine-tuned version of mE5 on all data.

on new procedure descriptions from 10 clinics,
comprising 12,836 unique descriptions. After map-
ping the procedures using a fine-tuned mE5 models
trained on all available data, doctors validated each
pair to determine if the masterlist assignment was
correct. As shown in Table 6, the model achieves a
real-world Acc@1 of 94.7%. The 98.5% Acc@2
indicates that doctors considered either the first or
second recommendation correct, while for only 1%
of entries, doctors assigned a different description
than the ones recommended.

Another notable aspect is the speed of the map-
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pings process. While manually mapping the 12,836
descriptions would take more than 60 hours, using
our retrieval system reduces this to only 3 minutes,
resulting in an 1200× speedup.

5 Conclusion

This paper presents a retrieval-based approach
for medical procedure matching in the Romanian
healthcare system, addressing the challenges posed
by inconsistent naming conventions across clin-
ics and insurance providers. We demonstrate that
dense sentence embeddings, particularly fine-tuned
multilingual models, significantly outperform tra-
ditional sparse methods such as BM25. Our experi-
ments show that a fine-tuned mE5 model achieves
the highest retrieval accuracy, with an Acc@1 of
85.2% when using both masterlist entries and clin-
ical mappings. The real-world evaluation further
confirms the efficacy of our approach, achieving a
validated accuracy of 94.7% in a doctor-reviewed
dataset. Furthermore, our systems enables signifi-
cant labor efficiency: using our automated match-
ing systems results in 1200× speedup compared to
manual matching. Our findings contribute to the
broader domain of medical NLP for low-resource
languages and offer a viable solution for improving
the Romanian healthcare system.

Limitations

Our approach has several limitations. Firstly, er-
rors in historical mappings may propagate into fu-
ture predictions, potentially reinforcing inaccura-
cies over time. This challenge necessitates periodic
human review and correction to prevent system-
atic errors. Secondly, cosine similarity between
embeddings may not always provide a reliable con-
fidence estimate, due to the considerable overlap
between the score distributions of hits and misses.
This makes it difficult to differentiate between cor-
rect and incorrect matches. Incorporating addi-
tional uncertainty modeling or ranking refinements
could improve result interpretability. Thirdly, while
our retrieval model significantly improves over
rule-based methods, its performance is still con-
strained by the lack of a specialized Romanian
medical language model. A dedicated medical
NLP model trained on domain-specific Romanian
corpora could further enhance accuracy.
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Abstract

Gastroenterology (GI) cancer surveillance
scheduling relies on extracting structured data
from unstructured clinical texts, such as en-
doscopy and pathology reports. Traditional
Natural Language Processing (NLP) models
have been employed for this task, but recent
advances in Large Language Models (LLMs)
present a new opportunity for automation with-
out requiring extensive labelled datasets. In
this study, we propose an LLM-based entity ex-
traction and rule-based decision support frame-
work for the prediction of Barrett’s oesopha-
gus (BO) surveillance timing. Our approach
processes endoscopy and pathology reports to
extract clinically relevant information and struc-
tures it into a standardised format, which is then
used to determine appropriate surveillance in-
tervals. We evaluate multiple state-of-the-art
LLMs on real-world clinical datasets from two
hospitals, assessing their performance in ac-
curacy and runtime. The results demonstrate
that LLMs, particularly Phi-4 and (DeepSeek
distilled) Qwen-2.5, can effectively automate
the extraction of BO surveillance-related in-
formation with high accuracy, while Phi-4 is
also efficient during inference. We also com-
pared the trade-offs between LLMs and fine-
tuned BERT models. Our findings indicate that
LLM-based extraction methods can support
clinical decision-making by providing justifica-
tions from report extractions, reducing manual
workload, and improving guideline adherence
in BO surveillance scheduling.

1 Introduction

Gastroenterology (GI) cancer surveillance schedul-
ing relies heavily on extracting structured infor-
mation from unstructured clinical texts, such as
pathology and endoscopy findings. Traditional Nat-
ural Language Processing (NLP) tools trained on
annotated datasets have been used to support clini-
cal decision-making. However, recent advances in
Large Language Models (LLMs) have the potential

to update this process. LLMs, with their extensive
training on diverse text sources, can now process
medical texts without requiring large amounts of
task-specific annotated data. This offers a more
flexible and scalable approach to cancer surveil-
lance scheduling automation.

Barrett’s Oesophagus (BO) is a pre-cancerous
condition in which the normal squamous epithe-
lium of the oesophagus is replaced by columnar
lined mucosa. Patients with BO can progress to oe-
sophageal adenocarcinoma (OAC). Thus, patients
with BO undergo routine endoscopic surveillance
to monitor the condition and detect dysplasia or
early OAC. Appropriate surveillance intervals and
early intervention can improve patient outcomes.

Adherence to surveillance guidelines remains
suboptimal. A meta-analysis (Roumans et al.,
2020) found only 55% of non-dysplastic BO pa-
tients and 50% of low-grade dysplasia patients re-
ceived surveillance at recommended intervals. This
highlights the need for improved clinical decision
support to ensure timely surveillance and treatment.
Recent advances in artificial intelligence (AI), espe-
cially large language models (LLMs), have opened
new opportunities to aid BO management. LLMs, a
group of transformer-based generative models with
billions of parameters such as OpenAI’s GPT-4,
Meta’s Llama and Microsoft’s Phi, excel at process-
ing unstructured text and extracting complex infor-
mation from it. In gastroenterology, these models
can process clinical notes such as pathology and
endoscopy reports, and then support medical deci-
sion making based on the information from these
reports (Omar et al., 2025).

BO surveillance scheduling depends on BO
length from endoscopy reports and pathological
findings from pathology reports. We will discuss
this further in Section 2.1. Previous work (Zece-
vic et al., 2024) introduced a system capable of
categorising endoscopy reports into four groups
(Short, Long, No Barrett’s, and Insufficient) and

176

mailto:email@domain


pathology reports into another set of four categories
(Cancer/Dysplasia, Intestinal Metaplasia (IM), no
IM, and Insufficient). The classification occurs at
the report level, where each report receives a sin-
gle label. However, the report level model does
not provide information from reports to justify its
classifications, making it hard for clinicians to val-
idate the output without manually reviewing the
text. Moreover, the report level model is specific to
the task and cannot be repurposed for other clinical
uses.

Our work proposes an information extraction
based method that uses LLMs to automate Bar-
rett’s surveillance timing prediction. The workflow
is shown in Figure 1. Both endoscopy and pathol-
ogy reports, after preprocessing, are passed through
an LLM, which extracts clinically relevant informa-
tion into a JSON template. A rule-based algorithm
converts these extractions into report labels and
provides relevant extractions as justification. Our
hypothesis is that an LLM-based method can accu-
rately extract entities without the need for a large
amount of annotated data, and these extractions can
be used to justify the surveillance interval decisions.
These extractions can also be repurposed for other
downstream clinical tasks. To our knowledge, this
is the first study to use LLMs to determine when a
BO patient’s next endoscopy is due based on prior
reports.

The contributions of this work include:

• An LLM-based extraction with a rule-based
post-processing method for Barrett’s surveil-
lance timing prediction with justifications.

• We designed and evaluated prompt strategies
for LLM medical extraction on endoscopy and
pathology reports

• We evaluated performance of different LLMs
with a variety of types, sizes and reasoning
ability.

• We created a gold-standard for BO surveil-
lance timing based on previously annotated re-
ports classification data (Zecevic et al., 2024)

2 Related Work

2.1 Surveillance Timing Guidelines in
Barrett’s Oesophagus

Given the importance of Barrett’s oesophagus (BO)
surveillance, organisations including the British So-

ciety of Gastroenterology1 (BSG), the American
Gastroenterological Association2 (AGA) and the
European Society of Gastrointestinal Endoscopy3

(ESGE) have published guidelines on the rec-
ommended intervals for endoscopic surveillance.
These guidelines (Fitzgerald et al., 2014; Spechler
et al., 2011; Weusten et al., 2023) seek to balance
the advantages of early detection against the costs
of repeated endoscopic procedures. Our research
specifically follows the BSG guidelines (Fitzgerald
et al., 2014). The current BSG guidelines, first pub-
lished in the early 2000s and updated periodically,
emphasize the need for risk-based surveillance in-
tervals and provide actionable recommendations
for endoscopic management. The guidelines show
that for non-dysplastic Barrett’s, the endoscopic
surveillance interval is determined by the length
of Barrett’s and the presence of Intestinal Meta-
plasia (IM). Based on this guideline, we set out a
rule-based algorithm for surveillance interval deci-
sion making which is shown in the bottom part of
Figure 1.

2.2 NLP Methods in BO Surveillance

Previous work on NLP in BO surveillance is lim-
ited. Zecevic et al. (2024) curated report classi-
fication annotations for endoscopy and pathology
reports. These annotations are used to train two
report classification models. These models, En-
doBERT and PathoBERT, are based on pre-trained
Bidirectional encoder representations from trans-
formers (BERT) model (Devlin et al., 2019), which
assigns a label to an unseen endoscopy or pathol-
ogy report. The model achieved high accuracy on
test sets from three UK hospitals.

Other work related to BO includes dysplasia
identification in Wenker et al. (2023). They use
an NLP tool (Clinical Language Annotation, Mod-
elling, and Processing Toolkit) to identify dyspla-
sia using findings. However, they did not pro-
vide detailed information on the underlying mod-
els used by the tool. Li et al. (2022) introduce
ENDOANGEL-AS, an automated surveillance sys-
tem designed to identify high-risk patients and de-
termine appropriate surveillance intervals for up GI
conditions.

1https://www.bsg.org.uk/
2https://gastro.org/
3https://www.esge.com/publications/guidelines
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Figure 1: Dataflow pipeline of LLM-based endoscopy and pathology extraction for Barrett’s endoscopic surveillance
timing prediction

2.3 LLMs

Recent advances in large language models (LLMs)
have led to a diverse range of architectures opti-
mised for efficiency, domain adaptation, and rea-
soning capabilities. These models vary in size,
training methodology, and specialisation. The in-
creasing numbers of smaller yet high-performing
LLMs has made their application to the medical
domain more feasible. Among them, Microsoft’s
Phi-4 (14B) (Abdin et al., 2024), whose train-
ing recipe centres around data quality, prioritises
efficiency while maintaining strong performance
across general NLP tasks. It is optimized for low-
cost inference, making it an attractive option for
real-world deployment where resource constraints
are a factor. Similarly, Gemma-3 (12B) (Deep-
Mind, 2024), developed by Google DeepMind, is
another small and highly efficient model. Although
it has a slightly lower parameter count (12B), it has
multimodal and enhanced reasoning ability. This
makes it competitive with larger models in cer-
tain tasks. Alibaba’s Qwen-2.5 (14B) (Yang et al.,
2024) has enhanced reasoning and instruction fol-
lowing ability. On the other end of the spectrum,
Meta’s Llama-3 (7B) (Grattafiori et al., 2024) is
an even smaller LLM which may be of benefit in
more compute restricted settings. However, as evi-

dent from recent performance benchmarks, Llama-
3 struggles compared to other LLMs. DeepSeek
distilled variants (Guo et al., 2025) of Llama and
Qwen are derived from the larger DeepSeek-R1
base model. These versions are fine-tuned to en-
hance performance on maths, coding, and other
reasoning-intensive tasks. Distillation reduces the
model size and inference time while retaining key
capabilities, making them suitable for real-time
medical NLP pipelines.

3 Experiments

3.1 Data and evaluation

The datasets used in this project are the same
datasets used in (Zecevic et al., 2024), including
data selection, patient opt-out, preprocessing, la-
belling and data split. The data is from two UK
National Health Service Foundation Trust (NHS-
FTs - secondary healthcare providers), Guy’s and
St Thomas’ NHSFT (GSTT), and King’s College
Hospital NHSFT (KCH). Training is carried out on
GSTT data. The evaluations are carried out on both
GSTT data, and on KCH data to test generalisabil-
ity. We give a brief introduction here; for detailed
information, please refer to Zecevic et al. (2024).
Training set The patients are selected based on the
appearance of the keyword "Barrett" in their en-
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doscopy reports. Patients under 18 and those who
have opted out were excluded. Pathology reports
were then matched with the relevant endoscopy re-
ports. As we do not fine-tune LLMs, this training
set is used to 1) develop prompts; 2) develop a rule-
based algorithm, based on incorrect predictions.
Once the rule-based algorithm has been developed
in this stage, it is fixed during testing. Prompts are
fixed during testing apart from when we test the
impact of certain components of the prompt.
GSTT evaluation A retrospective evaluation was
conducted by reviewing patient records of individ-
uals who had undergone endoscopic surveillance
for BO between May and July 2023, which is a
representative time frame for assessing records typ-
ically used to schedule follow-up surveillance en-
doscopies. A total of 115 patient records were
included, where pathology results from the en-
doscopy were available. We take the human re-
viewed labels for the documents as ground-truth
to evaluate our model prediction. Unlike (Zece-
vic et al., 2024), where the performance is only
measured on two sets of report labels, we also com-
bined the endoscopy and pathology report labels
into surveillance timing labels based on guideline
rules (Section 2). This can give us a single number
indicator of the model performance for surveillance
timing prediction, which represents the ultimate
goal of the task.
KCH evaluation A dataset of 140 reports was col-
lected from KCH, covering cases from 2015 to
2022 for the second external evaluation. The same
selection criteria used for the GSTT dataset were
applied to the KCH dataset to ensure consistency
in evaluation. Similarly, we treated the human re-
viewed reports labels as ground-truth and combined
them into surveillance timing labels to measure the
model performance on predicting surveillance tim-
ing intervals.

3.2 Task
Information extraction Our approach focuses on
information extraction from endoscopy and pathol-
ogy reports. The key entities to be extracted are
listed in Appendix A Table 6.

For extraction, we use large language models
(LLMs), which take as input either an endoscopy
prompt along with an endoscopy report, or a pathol-
ogy prompt along with a pathology report. This
process ensures structured extraction of relevant
clinical information from unstructured text data.
From extraction to report classification and

surveillance timing prediction The classifica-
tion of endoscopy and pathology reports in this
study aligns with the definitions outlined by (Ze-
cevic et al., 2024) in Table 2 and Table 3. En-
doscopy reports are categorised based on segment
length of BO (Long, Short, NoBarretts, Insuffi-
cient) and pathology reports based on histological
findings (CancerOrDysplasia, IM, No_IM, Insuf-
ficient). Surveillance timing is classified based on
a pair of endoscopy and pathology reports, and is
classified into Alert, 2 year, 3 year, 5 year or Refer,
as outlined in Section 2
Evaluation We evaluate model performance using
a held-out test set from GSTT and KCH. Perfor-
mance is assessed across three key tasks: Clas-
sification of endoscopy reports; Classification of
pathology reports, and Surveillance timing predic-
tion. For each task, we measure precision, recall,
and F1 score, ensuring a comprehensive evalua-
tion of the model’s ability to classify reports and
predict appropriate surveillance intervals. To esti-
mate the variability in performance, we report each
metric along with its 95% confidence interval (CI),
computed via bootstrap resampling of the test set.
Bootstrap resampling is a statistical technique that
creates multiple new datasets from a single dataset
by randomly sampling with replacement (Tibshi-
rani and Efron, 1993). The bootstrapping is done in
1000 iterations with replacement and each sample
has the same sample size as the test set size. This
resampling approach is chosen because the model
weights and prompts remain fixed at test time, and
the model decoding strategy is set to greedy search
(Section 3.3: Hyperparameter Setting), hence the
outputs are deterministic. Resampling allows for
statistical uncertainty estimation based on test set
variability and sample size. This is not interpreted
as model uncertainty.

3.3 LLMs for extraction
Model selection For our study, we use state-of-the-
art large language models (LLMs) including: Phi-
4 (4-bit Instruct, 14B), Gemma-3 (4-bit, Instruct
12B), Qwen-2.5 (4-bit Instruct, 14B), DeepSeek
Distilled Qwen-2.5 (4-bit Instruct, 14B), Llama-3
(4-bit Instruct, 7B), DeepSeek Distilled Llama-3
(4-bit Instruct, 7B)

These models were chosen for their balance of
performance, efficiency, and scalability. The 8-
billion parameter scale gives strong language under-
standing ability while maintaining computational
feasibility. The 4-bit quantisation significantly re-
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duces memory requirements, enabling faster infer-
ence and lower hardware constraints without sub-
stantial loss in accuracy. The "Instruct" versions
(as opposed to "Base" versions) of these models
provide general language inference ability, ensur-
ing better generalisation to structured information
extraction and classification. The combination of
these models allows us to benchmark performance
across architectures, ensuring our pipeline remains
adaptable to future advances in LLM-driven clini-
cal NLP.
Hyperparameter setting for decoding We set the
sampling method as greedy search (equivalently
temperature set to zero or near-zero) to ensure de-
terministic and consistent outputs, as used in other
entity extraction research (Wang et al., 2023; Dunn
et al., 2022; Zhang et al., 2023). Greedy search and
low temperature sampling have been shown to be
effective for factual extraction tasks, particularly
in medical Named Entity Recognition (NER) and
Relation Extraction (RE), where minimising ran-
domness improves reliability and precision (Wang
et al., 2023; Dunn et al., 2022; Zhang et al., 2023).
Greedy search is also the fastest decoding strategy,
which is essential in some hospital settings where
the computing resources are limited. We set the
maximum input length to 4096 tokens and maxi-
mum output length to 2048 tokens to accommodate
complex prompts and generated responses while
optimising computational efficiency.
Prompt The prompt design follows best practices
established in previous research (Liu et al., 2023;
Wang et al., 2024; Zamfirescu-Pereira et al., 2023;
He et al., 2024; Sachdev et al., 2024), particu-
larly in the context of optimising large language
models (LLMs) for structured medical information
extraction. Specifically, for both the endoscopy
and pathology information extraction prompts, the
structure consists of five key components and one
training strategy:
Persona Assignment The LLM is explicitly in-
structed to assume the role of a specialised AI gas-
troenterology assistant with expertise in medical
report analysis.
Clear Instruction breakdown The second compo-
nent has a clear listing of all the requirements.
Structured Output Specification To ensure con-
sistency and machine-readability, the third compo-
nent mandates a standardized JSON output format,
explicitly defining entity types and relationships to
align with downstream processing requirements.
Step-by-Step Reasoning (CoT) The fourth section

provides a sequential, logical step-by-step break-
down of the extraction process and self-verification,
guiding the LLM through a structured CoT ap-
proach to enhance interpretability and accuracy.
We will explore model performance with and with-
out this component.
Few-Shot In-Context Examples The fifth section
provides two examples of correctly extracted out-
puts, demonstrating the expected format and ex-
tractions.
Input Report Attachment Finally, the actual clin-
ical report (endoscopy or pathology report) requir-
ing extraction is appended.
Iterative Prompt Refinement The prompt is ap-
plied on samples from the training set and the
prompt is modified based on incorrectly generated
samples.
The final endoscopy and pathology prompts can
be found in Appendix B, with the real reports in
few-shot examples and in input texts section being
removed for privacy reasons.
Hardware and cost The model is run on Nvidia
A100 GPUs in Ubuntu operating system on a vir-
tual machine provided by King’s College London
Computational Research Engineering and Technol-
ogy Environment - Trusted Research Environment
(CREATE-TRE). The runtime is analysed in Sec-
tion 4 Table 3.

3.4 Rule-based algorithms for Report
classification and surveillance timing
prediction

Pathology report labelling is based on extracted
pathology findings, either its affirmation or nega-
tion. For endoscopy reports, the classification
is based on Barrett’s length. There can be three
sources of Barrett’s length in endoscopy reports:
Prague score; direct mention of Barrett’s segments;
mentions of GOJ (Gastro-oesophageal junction)
and Barrett’s tongue. The algorithm gathers these
sources of length from extractions. In rare cases,
when lengths from different sources disagree, if
two of them agree and one disagrees, we pick the
majority case; in other cases, we choose Prague
scores over position difference from GOJ and Bar-
rett’s tongue over direct mentions. This is due to
the rigid form of Prague score, which makes the
extraction and post-processing more reliable. We
then apply the rules to assign labels to endoscopy
reports. Once we have both labels, we combine
the two following the rules in Figure 1 to give a
surveillance timing prediction.
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4 Results

We evaluated six LLMs, both with and without
chain-of-thought (CoT) prompting, on three clini-
cal information extraction tasks (Decisions, Pathol-
ogy, and Endoscopy) across two hospital sites
(GSTT, KCH). The following subsections discusses
overall performance, output validity, runtime anal-
ysis, and fine-grained subclass results.

4.1 Overall Performance

Table 1 shows the weighted average F1-scores
across all three clinical categories. In general,
Qwen-2.5, DeepSeek distilled Qwen-2.5 and Phi-4
(14B) achieve the highest F1-scores.

Phi-4 shows good performance on Pathology
reports while DeepSeek distilled Qwen-2.5 per-
forms better on Endoscopy reports. Qwen-2.5 with
CoT often performs on par with Phi-4 for Pathol-
ogy while on par with DeepSeek Qwen-2.5 on En-
doscopy, which means it achieves the highest Deci-
sion F1 scores on both datasets.

Meanwhile, Gemma-3 (12B) tends to occupy the
midrange, ranging around 0.75–0.90 depending on
the category. Llama-3 (7B) has the lowest overall
scores; however, CoT prompting and DeepSeek
distillation consistently raise its performance.

Interestingly, there are some cases where not
using CoT yields a slightly higher score. For exam-
ple, on "Decisions (GSTT)" Phi-4 w/o CoT outper-
forms its CoT-based variant (0.96 vs. 0.93). Such
exceptions may arise when CoT text introduces
minor digressions from the desired prompt struc-
ture or consumes additional tokens that do not im-
prove the final label prediction. In addition, the
instruction component may already contain certain
implicit CoT steps e.g. in the instruction "Barretts
and if it is negated" implies a two step process that
can be seen as an implicit CoT, i.e. step 1, iden-
tify mention of "Barrett’s"; step 2, if the mention
is negated. Moreover, these extraction tasks are
not reasoning-intensive. The help from explicit
CoT may be outweighed by the distraction from
generating unnecessary reasoning.

4.2 Invalid Outputs

Table 2 illustrates how frequently each model pro-
duces "invalid" responses, i.e., outputs that deviate
from the required specification or formatting set
out in the prompt. This includes incorrect JSON
format, missing fields, wrong keywords and wrong
value type. Qwen-2.5 stands out as the most consis-

tent over the two different prompt variances, largely
maintaining a 0% invalid rate across categories,
whether or not CoT is used. Whereas Phi-4 has a
perfect 0% rate across all tasks when CoT is not
used. Phi-4 and Gemma-3, which both performed
well on F1 metrics, actually produce more invalid
outputs when CoT is activated (e.g., Phi-4 on "De-
cisions (GSTT)" jumps from 0% without CoT to
6.96% with CoT). Again, as discussed before, this
may be because the benefit of explicit CoT does
not outweigh the distraction from extra reasoning.
DeepSeek Qwen-2.5 also shows very low invalid
percentages (typically under 3–5%) but is more
prone to errors than standard Qwen-2.5. In contrast,
Llama-3 exhibits the highest invalid output rates of
all. However, applying CoT or DeepSeek tuning
brings these rates down significantly, sometimes
by 30–60 percentage points. Therefore, while CoT
may introduce extra texts that can diverge some
models, it can also help a struggling model (like
Llama-3) adhere more closely to task requirements.

4.3 Runtime Analysis
Table 3 reports average runtime (in seconds) for
processing a set of Endoscopy and Pathology re-
ports. Most models show a predictable increase
in runtime under CoT prompting, due to generat-
ing additional tokens for explanatory text. Phi-4
and Qwen-2.5 each experience a jump of about
5–12 seconds with CoT. Gemma-3, interestingly,
gives similar or even slightly lower times when
using CoT, which may be explained by the fact that
Gemma-3 has already undergone reinforcement
learning from multiple feedback sources and dis-
tillation from larger models, and thus adding CoT
explicitly in the prompt does not add to reasoning
generation.

Out of all 14B-parameter models, Qwen-2.5 is
the fastest (around 24–31 s/iter), while DeepSeek
Qwen-2.5 nearly doubles that time (66–75 s/iter).
Llama-3 is particularly quick without CoT, dipping
to 15–17 s/iter; yet with CoT, its times roughly dou-
ble. These differences underscore a tradeoff: CoT
can improve accuracy in some instances, but at the
cost of speed. It is also interesting that for Gemma-
3 and Qwen-2.5 which have reinforcement train-
ing in their training process and DeepSeek Qwen-
2.5, DeepSeek Llama-3 and Gemma-3 which are
distilled from larger model, adding CoT does not
add much more runtime. This may be because
these models have already generated some reason-
ing texts even without explicit CoT in the prompts.
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Category Phi-4 (14B) Gemma-3 (12B) Qwen-2.5 (14B) DeepSeek Qwen-2.5 (14B) Llama-3 (7B) DeepSeek Llama-3 (7B)
With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT

Decisions (GSTT) 0.93 (0.89, 0.97) 0.96 (0.92, 0.99) 0.86 (0.80, 0.91) 0.85 (0.79, 0.91) 0.98 (0.94, 1.00) 0.98 (0.95, 1.00) 0.92 (0.88, 0.96) 0.94 (0.91, 0.98) 0.53 (0.42, 0.62) 0.46 (0.37, 0.54) 0.75 (0.68, 0.82) 0.70 (0.64, 0.77)
Decisions (KCH) 0.79 (0.74, 0.85) 0.84 (0.79, 0.90) 0.80 (0.74, 0.86) 0.81 (0.76, 0.87) 0.85 (0.79, 0.90) 0.83 (0.77, 0.89) 0.83 (0.77, 0.89) 0.85 (0.79, 0.90) 0.62 (0.55, 0.70) 0.23 (0.15, 0.32) 0.54 (0.47, 0.60) 0.61 (0.54, 0.68)

Pathology (GSTT) 0.91 (0.86, 0.96) 0.97 (0.93, 0.99) 0.87 (0.80, 0.92) 0.87 (0.81, 0.92) 0.96 (0.93, 0.99) 0.96 (0.91, 0.99) 0.94 (0.89, 0.98) 0.92 (0.87, 0.95) 0.64 (0.55, 0.72) 0.91 (0.85, 0.95) 0.85 (0.79, 0.92) 0.88 (0.82, 0.93)
Pathology (KCH) 0.86 (0.81, 0.91) 0.92 (0.87, 0.95) 0.86 (0.81, 0.91) 0.87 (0.82, 0.92) 0.89 (0.83, 0.93) 0.88 (0.83, 0.93) 0.88 (0.83, 0.93) 0.91 (0.85, 0.95) 0.75 (0.69, 0.83) 0.86 (0.80, 0.91) 0.75 (0.69, 0.82) 0.73 (0.67, 0.79)

Endoscopy (GSTT) 0.93 (0.88, 0.97) 0.92 (0.87, 0.97) 0.69 (0.60, 0.76) 0.75 (0.67, 0.82) 0.94 (0.89, 0.97) 0.94 (0.90, 0.97) 0.94 (0.89, 0.97) 0.95 (0.91, 0.99) 0.73 (0.65, 0.80) 0.27 (0.19, 0.34) 0.66 (0.59, 0.74) 0.65 (0.57, 0.72)
Endoscopy (KCH) 0.82 (0.76, 0.87) 0.82 (0.76, 0.87) 0.74 (0.67, 0.81) 0.75 (0.68, 0.81) 0.84 (0.78, 0.89) 0.84 (0.78, 0.89) 0.86 (0.80, 0.91) 0.87 (0.82, 0.92) 0.65 (0.57, 0.72) 0.21 (0.13, 0.29) 0.58 (0.50, 0.66) 0.63 (0.55, 0.71)

Table 1: Weighted average F1-Scores for different categories across multiple models with and without CoT. Values
in bold indicate the higher value between ’With CoT’ and ’Without CoT’. Values in red indicate the highest value in
that row.

Category Phi-4 (14B) Gemma-3 (12B) Qwen-2.5 (14B) DeepSeek Qwen-2.5 (14B) Llama-3 (7B) DeepSeek Llama-3 (7B)
With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT

Decisions (GSTT) 6.96% 0% 4.35% 0.87% 0% 0% 5.22% 2.61% 27.83% 55.65% 13.91% 9.57%
Decisions (KCH) 0.86% 0% 0.71% 0% 0.71% 0.71% 2.14% 0.71% 24.29% 78.57% 27.14% 15.00%

Pathology (GSTT) 6.96% 0% 0% 0% 0% 0% 3.48% 1.74% 17.39% 2.61% 1.74% 2.61%
Pathology (KCH) 2.86% 0% 0% 0% 0% 0% 1.43% 0.71% 8.57% 0.71% 5.00% 4.29%

Endoscopy (GSTT) 0% 0% 5.22% 1.74% 0.87% 0.87% 1.74% 0.87% 20.87% 71.30% 16.52% 6.96%
Endoscopy (KCH) 0% 0% 0.71% 0% 0.71% 0.71% 0.71% 0% 21.43% 85.00% 24.29% 14.29%

Table 2: Percentage of "invalid" outputs generated (outputs that do not fully conform to the output specification)

4.4 Subclass-Specific Results

Table 4 breaks down F1-scores for finer-grained
clinical subcategories. Once again, Qwen-2.5
and Phi-4 lead most subtasks. Both models fre-
quently achieve near-perfect F1 on simpler labels
(e.g., "alert," "DysplasiaOrCancer") and retain rela-
tively strong performance on more difficult or less
frequent subcategories (e.g., "Insufficient" in En-
doscopy). DeepSeek Qwen-2.5 is the best across
nearly all subcategories for Endoscopy. Given En-
doscopy contains more numerical information, this
reflects the advantage of specialised pre-training of
reasoning ability.

Gemma-3’s midrange performance remains con-
sistent at subclass level, while Llama-3 is especially
vulnerable on smaller or more challenging labels
(e.g., "5 year," "Insufficient"), with F1 sometimes
dropping below 0.50. However, DeepSeek Llama-
3 recovers some ground. This implies that distilled
reasoning ability from DeepSeekR helps with these
challenging classes.

4.4.1 Decision Support with Evidence from
Text

For real-life model application, we choose Phi-4
14B without CoT for Pathology reports process-
ing and DeepSeek distilled Qwen-2.5 14B for En-
doscopy processing given the performance during
testing. We show a set of made-up endoscopy and
pathology reports:

endo_sample oesophagus: 8cm Barrett’s segment. c3m8 Barrett’s oesophagus. Hiatus
hernia 2cm, top of GOJ 38cm, top of circumferential 35cm, top of tongues 30cm.

patho_sample a) duodenum - normal - negative for cancer and dysplasia b) GOJ -
intestinal metaplasia - negative for cancer and dysplasia c) oesophagus - intestinal
metaplasia - inflammation - negative for cancer and dysplasia.

The decision support module outputs a decision

and a justification for the decision with information
from the texts.

The pathology extraction is in a nested JSON
format for each biopsy finding. The model can
identify the location of the biopsy and the mentions
of cancer, dysplasia, IM and gastric metaplasia at
that location.

The endoscopy extraction is structured in a
JSON format with length information.

182



Category Phi-4 (14B) Gemma-3 (12B) Qwen-2.5 (14B) DeepSeek Qwen-2.5 (14B) Llama-3 (7B) DeepSeek Llama-3 (7B)
With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT With CoT W/o CoT

Time/iter (GSTT) 41.33 28.82 48.84 50.22 30.81 23.91 75.47 70.47 33.39 17.16 25.63 22.59
Time/iter (KCH) 40.64 27.64 48.00 49.54 28.26 24.03 70.47 66.23 24.50 15.32 32.90 28.65

Table 3: Average runtime per set of endoscopy and pathology report processing. Measured in seconds (averaged
over the whole test set)

Class Support Phi-4 Gemma-3 Qwen-2.5* DeepSeek Qwen-2.5 Llama-3* DeepSeek Llama-3

Decisions (GSTT)

alert 20 1.00 (1.00, 1.00) 0.93 (0.85, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.55 (0.44, 0.65) 0.93 (0.85, 1.00)
2 year 18 0.97 (0.91, 1.00) 0.85 (0.74, 0.95) 0.97 (0.92, 1.00) 0.91 (0.80, 1.00) 0.55 (0.29, 0.76) 0.68 (0.48, 0.85)
3 year 9 0.94 (0.80, 1.00) 0.64 (0.42, 0.84) 0.90 (0.78, 1.00) 0.83 (0.69, 0.95) 0.45 (0.00, 0.75) 0.29 (0.00, 0.62)
5 year 6 0.79 (0.50, 1.00) 0.54 (0.18, 0.86) 1.00 (1.00, 1.00) 0.90 (0.67, 1.00) 0.54 (0.18, 0.91) 0.00 (0.00, 0.00)
refer 62 0.97 (0.94, 0.99) 0.88 (0.82, 0.94) 0.98 (0.94, 1.00) 0.96 (0.92, 0.99) 0.52 (0.39, 0.65) 0.76 (0.69, 0.83)
Weighted avg 115 0.96 (0.92, 0.99) 0.85 (0.79, 0.91) 0.98 (0.94, 1.00) 0.94 (0.91, 0.98) 0.53 (0.42, 0.62) 0.70 (0.64, 0.77)

Pathology (GSTT)

DysplasiaOrCancer 20 1.00 (1.00, 1.00) 0.93 (0.85, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.55 (0.45, 0.66) 0.93 (0.85, 1.00)
IM 36 0.99 (0.96, 1.00) 0.91 (0.86, 0.96) 0.99 (0.96, 1.00) 0.92 (0.86, 0.97) 0.71 (0.56, 0.84) 0.90 (0.81, 0.97)
No_IM 18 0.91 (0.80, 1.00) 0.64 (0.41, 0.84) 0.91 (0.80, 1.00) 0.86 (0.71, 0.97) 0.71 (0.52, 0.87) 0.80 (0.62, 0.94)
Insufficient 41 0.95 (0.91, 0.99) 0.91 (0.84, 0.96) 0.95 (0.90, 0.99) 0.91 (0.84, 0.98) 0.59 (0.42, 0.72) 0.87 (0.80, 0.94)
Weighted avg 115 0.97 (0.93, 0.99) 0.87 (0.81, 0.92) 0.96 (0.93, 0.99) 0.92 (0.87, 0.96) 0.64 (0.55, 0.72) 0.88 (0.82, 0.93)

Endoscopy (GSTT)

Long 29 0.98 (0.95, 1.00) 0.83 (0.76, 0.91) 0.97 (0.92, 1.00) 0.95 (0.88, 1.00) 0.83 (0.71, 0.93) 0.63 (0.47, 0.76)
Short 23 0.93 (0.82, 1.00) 0.83 (0.74, 0.92) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.74 (0.59, 0.87) 0.55 (0.34, 0.72)
NoBarretts 49 0.93 (0.87, 0.98) 0.75 (0.64, 0.84) 0.95 (0.91, 0.98) 0.95 (0.91, 0.99) 0.73 (0.63, 0.84) 0.78 (0.69, 0.86)
Insufficient 14 0.77 (0.62, 0.92) 0.47 (0.21, 0.69) 0.71 (0.44, 0.88) 0.88 (0.75, 1.00) 0.52 (0.27, 0.75) 0.42 (0.27, 0.56)
Weighted avg 115 0.92 (0.87, 0.97) 0.75 (0.67, 0.82) 0.94 (0.89, 0.97) 0.95 (0.91, 0.99) 0.73 (0.65, 0.8) 0.65 (0.57, 0.72)

Decisions (KCH)

alert 7 1.00 (1.00, 1.00) 0.94 (0.82, 1.00) 1.00 (1.00, 1.00) 0.91 (0.73, 1.00) 0.49 (0.32, 0.67) 0.57 (0.44, 0.74)
2 year 26 0.94 (0.87, 1.00) 0.87 (0.78, 0.95) 0.93 (0.85, 0.98) 0.92 (0.84, 0.98) 0.68 (0.49, 0.82) 0.69 (0.54, 0.83)
3 year 9 0.67 (0.33, 0.89) 0.70 (0.47, 0.90) 0.74 (0.50, 0.94) 0.57 (0.32, 0.78) 0.36 (0.11, 0.63) 0.27 (0.00, 0.59)
5 year 18 0.49 (0.20, 0.71) 0.42 (0.11, 0.67) 0.58 (0.35, 0.77) 0.61 (0.36, 0.80) 0.27 (0.00, 0.50) 0.10 (0.00, 0.29)
refer 80 0.90 (0.87, 0.93) 0.89 (0.85, 0.92) 0.88 (0.84, 0.93) 0.91 (0.87, 0.95) 0.72 (0.64, 0.80) 0.74 (0.67, 0.81)
Weighted avg 140 0.84 (0.79, 0.90) 0.81 (0.76, 0.87) 0.85 (0.79, 0.90) 0.85 (0.79, 0.90) 0.62 (0.55, 0.70) 0.61 (0.54, 0.68)

Pathology (KCH)

DysplasiaOrCancer 7 1.00 (1.00, 1.00) 0.94 (0.82, 1.00) 1.00 (1.00, 1.00) 0.92 (0.73, 1.00) 0.48 (0.31, 0.67) 0.57 (0.44, 0.70)
IM 50 0.99 (0.97, 1.00) 0.96 (0.93, 0.99) 0.96 (0.93, 0.99) 0.97 (0.93, 1.00) 0.89 (0.82, 0.95) 0.81 (0.72, 0.89)
No_IM 23 0.72 (0.52, 0.85) 0.55 (0.29, 0.75) 0.66 (0.48, 0.82) 0.68 (0.50, 0.83) 0.38 (0.15, 0.59) 0.29 (0.08, 0.52)
Insufficient 60 0.93 (0.90, 0.96) 0.92 (0.88, 0.95) 0.89 (0.84, 0.94) 0.93 (0.89, 0.97) 0.81 (0.74, 0.88) 0.86 (0.81, 0.91)
Weighted avg 140 0.92 (0.87, 0.95) 0.87 (0.82, 0.92) 0.89 (0.83, 0.93) 0.90 (0.85, 0.95) 0.75 (0.69, 0.81) 0.73 (0.67, 0.79)

Endoscopy (KCH)

Long 48 0.94 (0.88, 0.98) 0.84 (0.78, 0.90) 0.92 (0.87, 0.97) 0.96 (0.91, 0.99) 0.73 (0.62, 0.83) 0.81 (0.71, 0.89)
Short 48 0.80 (0.71, 0.89) 0.79 (0.70, 0.87) 0.86 (0.78, 0.92) 0.89 (0.83, 0.95) 0.74 (0.62, 0.84) 0.53 (0.37, 0.67)
NoBarretts 17 0.73 (0.56, 0.88) 0.55 (0.29, 0.75) 0.66 (0.46, 0.84) 0.64 (0.47, 0.81) 0.34 (0.14, 0.53) 0.52 (0.32, 0.71)
Insufficient 27 0.71 (0.62, 0.79) 0.63 (0.49, 0.75) 0.76 (0.64, 0.86) 0.82 (0.71, 0.91) 0.52 (0.37, 0.68) 0.59 (0.47, 0.71)
Weighted avg 140 0.82 (0.76, 0.87) 0.75 (0.68, 0.81) 0.84 (0.78, 0.89) 0.87 (0.82, 0.92) 0.65 (0.57, 0.72) 0.63 (0.55, 0.71)

Table 4: Comparison of sub-classes performance (F1-Score) across multiple models for the GSTT and KCH datasets
(Phi-4, Gemma-3, Qwen-2.5*, DeepSeek Qwen-2.5, Llama-3*, and DeepSeek Llama-3). * with CoT Prompting.
Support is the number of each class in the original test sets.

4.5 Comparison to EndoBERT/PathBERT
The comparison between LLMs such as
Phi-4, Qwen-2.5, and DeepSeek Qwen-2.5,

and the domain-specific BERT-based model
Endo/PathBERT (Table 5) highlights the strengths
and limitations of general-purpose LLMs ver-
sus specialised BERT models. While LLMs
demonstrate competitive performance, with Phi-4
achieving the highest weighted F1-score among
LLMs in Pathology (GSTT, 0.97; KCH, 0.92) and
DeepSeek Qwen-2.5 leading in Endoscopy (GSTT,
0.95; KCH, 0.87), Endo/PathBERT consistently
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Class Support Phi-4 (14B) Qwen-2.5* (14B) DeepSeek Qwen-2.5 (14B) Endo/PathBERT (0.1B) Support Phi-4 Qwen-2.5* DeepSeek Qwen-2.5 Endo/PathBERT

Pathology (GSTT) Pathology (KCH)

DysplasiaOrCancer 20 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 7 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.92 (0.73, 1.00) 1.00
IM 36 0.99 (0.96, 1.00) 0.99 (0.96, 1.00) 0.92 (0.86, 0.97) 0.97 50 0.99 (0.97, 1.00) 0.96 (0.93, 0.99) 0.97 (0.93, 1.00) 0.95
No_IM 18 0.91 (0.80, 1.00) 0.91 (0.80, 1.00) 0.86 (0.71, 0.97) 0.92 23 0.72 (0.52, 0.85) 0.66 (0.48, 0.82) 0.68 (0.50, 0.83) 0.86
Insufficient 41 0.95 (0.91, 0.99) 0.95 (0.90, 0.99) 0.91 (0.84, 0.98) 0.83 60 0.93 (0.90, 0.96) 0.89 (0.84, 0.94) 0.93 (0.89, 0.97) 0.81
Weighted avg 115 0.97 (0.93, 0.99) 0.96 (0.93, 0.99) 0.92 (0.87, 0.96) 0.92 140 0.92 (0.87, 0.95) 0.89 (0.83, 0.93) 0.90 (0.85, 0.95) 0.88

Endoscopy (GSTT) Endoscopy (KCH)

Long 29 0.98 (0.95, 1.00) 0.97 (0.92, 1.00) 0.95 (0.88, 1.00) 1.00 48 0.94 (0.88, 0.98) 0.92 (0.87, 0.97) 0.96 (0.91, 0.99) 0.92
Short 23 0.93 (0.82, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.98 48 0.80 (0.71, 0.89) 0.86 (0.78, 0.92) 0.89 (0.83, 0.95) 0.90
NoBarretts 49 0.93 (0.87, 0.98) 0.95 (0.91, 0.98) 0.95 (0.91, 0.99) 0.95 17 0.73 (0.56, 0.88) 0.66 (0.46, 0.84) 0.64 (0.47, 0.81) 0.81
Insufficient 14 0.77 (0.62, 0.92) 0.71 (0.44, 0.88) 0.88 (0.75, 1.00) 0.79 27 0.71 (0.62, 0.79) 0.76 (0.64, 0.86) 0.82 (0.71, 0.91) 0.75
Weighted avg 115 0.92 (0.87, 0.97) 0.94 (0.89, 0.97) 0.95 (0.91, 0.99) 0.95 140 0.82 (0.76, 0.87) 0.84 (0.78, 0.89) 0.87 (0.82, 0.92) 0.87

Inference Time 28.82 30.81 70.47 0.03 27.64 28.26 66.23 0.03

Table 5: Comparison of Pathology and Endoscopy classification performance (F1-Score) between LLMs (Phi-4,
Qwen-2.5*, DeepSeek Qwen-2.5) and BERT based report classification models on GSTT and KCH datasets. * with
CoT Prompting. Support is the number of each class in the original test sets

achieve comparable performance across tasks. On
the other hand, the inference time and space cost of
LLMs are much higher than BERT-based models.
The fine-tuned BERT models, however, have
larger annotation and training overheads. New
annotations and re-training are often needed for
adaptations and repurposing, while LLMs can be
adapted with only prompt changes. Besides, as an
extraction-based model, the extracted information
can be stored and reused for future queries or for
other tasks that require these extractions.

5 Conclusion

This study explores the use of LLMs for extracting
surveillance-relevant information from endoscopy
and pathology reports to automate BO surveillance
timing prediction. Our results show that LLMs can
effectively process unstructured clinical text with
few-shot learning and achieve performance com-
parable to or surpassing traditional NLP methods
trained on human annotated data. Specifically, Phi-
4 and DeepSeek Qwen-2.5 emerged as the most ef-
fective models for pathology and endoscopy report
processing respectively. This approach reduces the
need for extensive manual annotations, making it a
scalable and adaptable solution for real-world clin-
ical deployment. Moreover, this extraction-based
method provides interpretable outputs. The struc-
tured extractions provided by LLMs, guided by
rule-based algorithms for classification, increase
transparency of the results and help with clinical
validation compared to previous report level classi-
fication models. This study also shows that model
selection and prompt design are essential for model
performance and runtime during deployment.
Future research can explore fine-tuning these mod-
els for domain-specific tasks and integrating them
into clinical decision support systems to optimise

patient care.

6 Limitations and Future Work

Despite the promising results, our study has several
limitations. Firstly, the models were evaluated on
data from two hospitals, which may limit general-
isability to other healthcare settings with different
documentation styles. Secondly, while formatting
results in a JSON style improved consistency, there
might be easier ways for models to structure the
outputs with lower invalid output rate. Thirdly, we
used LLM extraction followed by a rule-based al-
gorithm classification method. Future work could
explore guiding LLMs to perform both classifica-
tion and justification directly. Additionally, we
evaluated the final performance on classification
tasks. Human evaluations on entity and relation
extractions could provide a more direct measure of
the LLM extraction models. Furthermore, the ex-
periments can be extended to larger LLMs. Lastly,
more work on deploying LLMs in other GI condi-
tions is needed to further explore their usability.
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A Extraction schema

Entity Field Description
Pathology for each biopsy finding

Location text Location where the biopsy is taken
oesophagus_or_barretts (yes/no) whether the location is related to oe-

sophagus or barretts
cardia (yes/no) whether the location is related to cardia

Barretts text mention of Barrett’s
negation (yes/no/indefinite) Whether the mention is negated

Cancer text mention of cancer
negation (yes/no/indefinite) Whether the mention is negated

Dysplasia text mention of Dysplasia
negation (yes/no/indefinite) Whether the mention is negated

IM text mention of IM
negation (yes/no/indefinite) Whether the mention is negated

Gastric Metaplasia text mention of Gastric Metaplasia
negation (yes/no/indefinite) Whether the mention is negated

Endoscopy
Barretts text mention of Barrett’s

negation (yes/no/indefinite) Whether the mention is negated
Barretts_island text mention of Barrett’s island

negation (yes/no/indefinite) Whether the mention is negated
irregular_z_line (text) mention of irregular z line
normal_oesophagus (text) mention of normal oesophagus (squa-

mous epithelium)
Prague score (text) The value of Prague score (e.g. C2M5)
Gastric fold (text) The position of gastric fold
Barretts_tongue (text) The position of top of Barrett’s Tongue
Circumferential_barretts (text) The position of the top of circumferen-

tial Barrett’s
Barretts_length (text) Direct mention or description of Bar-

rett’s length

Table 6: Entities and descriptions for Pathology and Endoscopy extractions.

B Prompts
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Figure 2: Pathology Prompt
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Figure 3: Endoscopy Prompt
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Abstract

Large Language Models (LLMs) have signif-
icantly impacted medical Natural Language
Processing (NLP), enabling automated infor-
mation extraction from unstructured clinical
texts. However, selecting the most suitable ap-
proach requires careful evaluation of different
model architectures, such as generative LLMs
and BERT-based models, along with appropri-
ate adaptation strategies, including prompting
techniques, or fine-tuning. Several studies ex-
plored different LLM implementations, high-
lighting their effectiveness in medical domain,
including complex diagnostics patterns as for
example in rheumatology. However, their ap-
plication to Italian remains limited, serving as a
key example of the broader gap in non-English
language research. In this study, we present
a task-specific benchmark analysis comparing
generative LLMs and BERT-based models, on
real-world Italian clinical reports. We evalu-
ated zero-shot prompting, in-context learning
(ICL), and fine-tuning across eight diagnostic
categories in the rheumatology area. Results
show that ICL improves performance over zero-
shot-prompting, particularly for Mixtral and
Gemma models. Overall, BERT fine-tuning
present the highest performance, while ICL out-
performs BERT in specific diagnoses, such as
renal and systemic, suggesting that prompting
can be a potential alternative when labeled data
is scarce.

1 Introduction

Recent advancements in Large Language Mod-
els (LLMs) have significantly impacted medical
Natural Language Processing (NLP), enabling
the extraction of structured information from un-
structured clinical texts with increasing accuracy.
Transformer-based architectures, such as BERT-
based models and generative LLMs, have demon-
strated strong potential in clinical text classifica-
tion, named entity recognition, and medical con-
cept extraction. However, selecting the most suit-

able model for a given task requires careful consid-
eration of both model architecture and adaptation
strategy, as different approaches offer varying lev-
els of performance, efficiency, and practical feasi-
bility.

LLMs, particularly generative architectures, can
be adapted through zero-shot prompting (Sivara-
jkumar et al., 2024), where the model relies solely
on its pre-trained knowledge, or in-context learn-
ing (ICL) (Liu et al., 2024), where domain-specific
context is provided within the prompt. More ad-
vanced strategies include instruction fine-tuning
(Tran et al., 2024; Li et al., 2024b), which refines
the model’s alignment with task-specific instruc-
tions. BERT-based models (Devlin et al., 2019), fol-
lowing a discriminative approach, typically require
fine-tuning through supervised learning, though
they can also be applied in Natural Language In-
ference (NLI) frameworks or used in few-shot and
zero-shot settings by leveraging pre-trained embed-
dings. In all cases, pretraining on large domain-
specific corpora can further enhance performance,
though it remains computationally expensive and
data-intensive.

In this work, we present a task-specific bench-
mark analysis tailored to a real-world clinical sce-
nario, focusing on the necessity of extracting struc-
tured information from Italian clinical notes, in a
real-world hospital setting. Our study evaluates
generative LLMs in two different prompting strate-
gies: zero-shot prompting, where the model re-
lies solely on its pre-trained knowledge, and ICL,
where additional domain-specific context is pro-
vided to guide the extraction process. To establish
a strong comparative baseline, we also assess fine-
tuned BERT-based models, which have tradition-
ally been used for medical information extraction
tasks (Lee et al., 2020; Muizelaar et al., 2024; Yang
et al., 2024).

Our evaluation is based on a very general use
case, which is the detection of complex diagnoses
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Figure 1: Study Framework: task-specific benchmark analysis comparing LLMs using zero-shot and in-context
learning (ICL) strategies against fine-tuned BERT-based models, in an information extraction task.

in medical notes. The example we used covers the
rheumatology domain, where very often a disease
can impact several domains, each corresponding to
a particular organ or system involvement (Figure
1). The use case of diagnosis extraction allows us
to systematically compare generative LLMs and
fine-tuned models, analyzing their strengths, lim-
itations, and potential applications in real-world
clinical workflows. By conducting this study in
a practical hospital setting, we aim to provide in-
sights into the feasibility of integrating LLM-based
NLP solutions for automated information extrac-
tion in clinical practice. This process can support
the development of decision-support tools and en-
able the creation of research datasets for predic-
tive analytics, ultimately enhancing both clinical
decision-making and medical research.

2 Background

Natural Language Processing (NLP) has gained in-
creasing attention in medical application, with stud-
ies exploring its potential for extracting meaningful
clinical insights from unstructured medical texts. A
systematic review by Omar et al. (2024) provides a
comprehensive analysis of NLP applications specif-
ically for the reumathology domain, covering var-
ious techniques used to process electronic health
records (EHRs), PubMed abstracts, FAQ and ex-
ams’ questions for diseases such as rheumatoid
arthritis (RA), gout, and systemic lupus erythemato-
sus (SLE). Among the identified works, Li et al.
(2022) explores named entity recognition (NER)
in RA clinical notes, leveraging a BERT model en-
hanced with BiLSTM and CRF layers, achieving
promising results in medical entity extraction. In
the study of Osborne et al. (2021) NLP is used for
gout flare detection, developing a fine-tuned BERT
classifier based on annotated Emergency Depart-

ment (ED) chief complaint notes, demonstrating
that chief complaints alone are highly predictive of
gout flares. Expanding on this approach, Oliveira
et al. (2024) compares traditional NLP methods
(e.g., tf-idf) with domain-specific LLMs, distin-
guishing between generative and discriminative
models. Their study shows that generative models
used as feature extractors can enhance performance
when integrated with an SVM classifier, suggesting
a hybrid approach for clinical text classification.

Focusing specifically on SLE and the Italian lan-
guage, Lilli et al. (2024a) investigates the adap-
tation of BERT-based models for the extraction
of Lupus-related diagnoses, symptoms, and treat-
ments, demonstrating the feasibility of transformer-
based NLP approaches in non-English medical cor-
pora. Lilli et al. (2024b) also presents an NLP
pipeline that integrates regular expression-based ex-
traction with BERT-based topic detection, improv-
ing the structured identification of Lupus-related
clinical features from Italian medical texts.

Beyond disease-specific applications, broader re-
search has investigated the effectiveness of LLMs
and BERT-based models in medical NLP tasks.
Zhang et al. (2024) evaluates prompt engineering
versus fine-tuning for clinical note classification,
using metastatic cancer identification as a bench-
mark task. Their findings indicate that GPT-4 with
structured prompts outperforms fine-tuned BERT-
based models, suggesting that prompting can be an
effective alternative to model retraining in clinical
NLP. Meanwhile, Savage et al. (2024) examines
whether LLMs can emulate clinical reasoning by
structuring prompts to reflect differential diagnosis
formation, intuitive reasoning, analytical reasoning,
and Bayesian inference. Their results suggest that
LLMs can provide interpretable rationales without
compromising diagnostic accuracy, addressing the
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“black box” issue that limits trust in AI-driven med-
ical applications.

More recent studies have also advanced the
understanding of prompting strategies in clinical
NLP. Naguib et al. (2024) conducted a multilin-
gual evaluation of few-shot prompting for clin-
ical NER, showing that masked language mod-
els often outperform generative models, particu-
larly in low-resource settings. Similarly, Nagar
et al. (2024) benchmarked various prompting and
retrieval strategies across structured biomedical
tasks, highlighting the limitations of reasoning-
augmented methods like Chain-of-Thought and
RAG, especially for classification and NER. Hu
et al. (2024) proposed a prompt engineering frame-
work for GPT models in clinical NER, demonstrat-
ing that structured, task-specific prompting can sub-
stantially improve performance.

All the above studies highlight the evolution of
NLP techniques in medical applications, and the
increasing role of LLMs in replacing or comple-
menting traditional fine-tuned models for clinical
text analysis, classification, and decision support.

3 Method

3.1 Dataset
The dataset used in this study consists of a col-
lection of outpatient visit reports written in Italian
language, related to patients with a SLE diagnosis
and treated in the Reumatology department of a
real-world hospital. The outcome of the informa-
tion task was to identify eight different types of
diagnoses based on the specific organ or system
involvement. The categories considered are: Artic-
ular, Cutaneous, Hematologic, Neurologic, Renal,
Systemic, Serositis, and Vascular.

3.2 Generative Modeling
For the generative LLM experiments, we employed
a set of open-source language models, either mul-
tilingual or specifically trained for the Italian lan-
guage, leveraging the Ollama framework to opti-
mize computational efficiency. The models were
then accessed through the Ollama Python library1,
utilizing its generate function to process and ana-
lyze clinical texts. This approach allowed us to effi-
ciently execute inference without the need for fine-
tuning, making it a scalable and adaptable solution
for medical NLP tasks. Input reports were prepro-
cessed and analyzed at the paragraph level rather

1https://github.com/ollama/ollama-python

than as full documents. This approach was adopted
to reduce text length, enabling a more focused and
efficient processing of clinical information. At the
end of the processing pipeline, a logical OR op-
eration was applied to aggregate paragraph-level
classifications into a final diagnosis at the Elec-
tronic Health Record (EHR) level. This means that
if any paragraph within a patient’s report indicated
the presence of a specific Lupus subtype, that clas-
sification was assigned to the entire EHR. For both
the zero-shot and in-context learning setups, we
leveraged ChatGPT-4o (Hurst et al., 2024; Achiam
et al., 2023) to generate appropriate prompts, en-
suring well-structured and consistent instructions
tailored for clinical information extraction. In both
cases, the prompt was in English and designed to
return a structured binary output (1 for presence,
0 for absence) for each Lupus category indepen-
dently. However, the models did not always com-
ply with this format, often including additional
explanations or justifications alongside the binary
response. To provide a standardized output, we
applied a regular expression (regex) filter to isolate
and extract the binary classification for each cate-
gory separately, ensuring consistency in the final
results. To improve the robustness of this approach,
we manually reviewed a sample of LLM outputs to
identify common patterns for the development of
regex rules. This step helped us reduce misclassi-
fications caused by unexpected output formats or
embedded rationales.

3.2.1 Zero-Shot Prompting

In the zero-shot prompting setup, the models were
prompted without any additional contextual guid-
ance or predefined medical terms. The prompt
structure followed a direct query format, instruct-
ing the model to determine the presence of a Lupus
diagnosis based on the involvement of a specific
organ or system. The exact prompt used was:

Given the following Italian medical report ,
return "1" if there is evidence of lupus with
{category} involvement , otherwise , return "0".

Report:
{text}

By relying solely on the model’s pre-trained
knowledge, this approach aimed to evaluate the
intrinsic capability of generative LLMs to extract
structured medical information without external
lexical or contextual augmentation.
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Figure 2: Dataset Composition.

3.2.2 In-Context Learning

In the in-context learning setup, we provided addi-
tional domain-specific context by including an Ital-
ian dictionary of medically relevant terms related to
each category. These terms consisted of synonyms
and alternative expressions commonly used in clin-
ical texts to describe the specific type of organ or
system involvement. By integrating this lexical
knowledge directly into the prompt, we aimed to
guide the model toward more accurate informa-
tion extraction while still leveraging its generative
capabilities. Unlike the zero-shot prompting, the
following prompt structure was used to incorporate
the dictionary of terms:

Given the following Italian medical report ,
return "1" if there is evidence of lupus with
{category} involvement , otherwise , return "0".
To determine this , check if the report contains
relevant terms associated with {category}
involvement. Below there is a list of medically
relevant terms that indicate {category} involvement:

Relevant terms:
{list_of_terms}

Report:
{text}

This setup allowed the model to leverage both its
pre-trained knowledge and the medical terminology
provided, creating a context-augmented approach
that aimed to improve classification accuracy. The
list of medically relevant terms used in the ICL
prompts is derived from a domain-specific dictio-
nary originally developed for a rule-based informa-
tion extraction system, as described in our previous
work (Lilli et al., 2024b). In that study, the dictio-
nary served as the foundation for a classifier based
on pattern-matching within clinical texts. Further
details about the dictionary of terms used in the
prompt is provided in Appendix A.

3.3 BERT-based Fine-Tuning

To compare the performance of generative lan-
guage models with fine-tuned approaches, we also
included results from a set of fine-tuned BERT-
based models, where each Lupus category was
treated as an independent binary classification task,
with separate classifiers trained for each type of
organ involvement. The experimental setup and
classification approach are consistent with a prior
benchmark study on fine-tuned BERT models (Lilli
et al., 2024a), ensuring a direct comparison with
the LLM experiments, where a training set of 1000
labelled texts was used.

As in the generative LLM setup, the BERT
fine-tuning process followed a paragraph-level ap-
proach, respecting the token limit constraints of
BERT-based architectures. At inference, each para-
graph was classified independently, with the final
Electronic Health Record (EHR) classification de-
termined using a logical OR operation.

Additionally, the evaluation set remained the
same across all techniques, ensuring a fair and
consistent comparison between fine-tuned BERT
models and generative LLMs. This methodolog-
ical alignment allowed us to analyze their rela-
tive strengths and limitations under identical condi-
tions.

4 Experiments

4.1 Data

The dataset used for the study evaluation consists
of 790 outpatient visit reports, collected from the
SLE Data Mart of an Italian hospital. To facilitate
processing and improve classification efficiency, in
all the experiments each report was segmented at
the paragraph level, resulting in a total of 6,024
paragraphs. On average, each paragraph contains
111.5 BERT tokens and 303.7 characters. This seg-
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Experiment Model Articular Cutaneous Hematologic Neurologic Renal Serositis Systemic Vascular Overall

Zero-Shot
Prompting

Gemma3-1B 0.00 0.22 0.27 0.08 0.18 0.08 0.48 0.04 0.17
Gemma3-4B 0.80 0.80 0.78 0.30 0.53 0.29 0.14 0.30 0.49
Llama3.2-1B 0.62 0.60 0.65 0.28 0.42 0.22 0.14 0.25 0.40
Llama3.2-3B 0.76 0.76 0.76 0.38 0.55 0.30 0.16 0.36 0.50
Mistral-7B 0.77 0.70 0.80 0.40 0.64 0.34 0.15 0.33 0.52

Mixtral-8x7B 0.78 0.74 0.79 0.34 0.69 0.39 0.16 0.32 0.53

In-Context
Learning

Gemma3-1B 0.41 0.44 0.34 0.26 0.18 0.60 0.52 0.16 0.36
Gemma3-4B 0.84 0.88 0.91 0.76 0.77 0.71 0.17 0.44 0.68
Llama3.2-1B 0.67 0.67 0.66 0.24 0.41 0.25 0.13 0.27 0.41
Llama3.2-3B 0.74 0.73 0.71 0.25 0.43 0.24 0.13 0.28 0.44
Mistral-7B 0.86 0.61 0.87 0.73 0.88 0.77 0.31 0.37 0.68

Mixtral-8x7B 0.91 0.73 0.95 0.83 0.96 0.80 0.23 0.52 0.74

BERT-based
Fine-Tuning

Alberto 0.90 0.87 0.98 0.86 0.94 0.81 0.29 0.69 0.79
Albert2 0.85 0.80 0.96 0.57 0.85 0.65 0.28 0.55 0.69
Albert1 0.92 0.81 0.94 0.86 0.92 0.51 0.07 0.58 0.70
Biobit 0.92 0.88 0.93 0.81 0.85 0.87 0.12 0.63 0.75
Medbit 0.83 0.92 0.96 0.79 0.90 0.66 0.13 0.61 0.73

Medbit-plus 0.92 0.90 0.90 0.88 0.85 0.72 0.07 0.63 0.73

Table 1: Comparison of Generative LLMs and BERT-Based Models Across Different Experimental Setups (Zero-
Shot Prompting, In-Context Learning, and BERT-based Fine-Tuning), in terms of F1-Score.

mentation ensures that text segments remain within
the acceptable token limits of BERT-based models,
preserving sufficient clinical context for classifi-
cation. Additionally, this approach is beneficial
for generative LLMs, as it enables them to process
shorter and more concise text inputs, optimizing
computational efficiency and response accuracy.
The dataset includes eight distinct types of Lupus
diagnoses, each corresponding to a specific organ
or system involvement. Since multiple categories
can co-occur in the same report, a single document
may be associated with more than one diagnosis.
For privacy reasons, we can’t report practical ex-
amples of the dataset, but we provide an overview
of its composition in Figure 2.

4.2 Generative LLMs

For the generative experiments, we tested a range
of open-source language models using the Ollama
framework to ensure efficient inference. The mod-
els evaluated included Llama 3.2 (1B and 3B pa-
rameters), Gemma 3 (1B and 4B parameters), Mix-
tral (8x7B) and Mistral (7B). Each model was eval-
uated in both zero-shot prompting and ICL setups,
on the SLE information extraction task.

Llama 3.2, developed by Meta (Grattafiori et al.,
2024), is an optimized version of the Llama family,
known for its improved efficiency and multilingual
capabilities. The 1B and 3B parameter versions pro-
vide a balance between computational cost and per-
formance, making them suitable for real-world sce-
narios. Gemma 3, released by Google DeepMind
(Team et al., 2024), is a lightweight transformer-
based model optimized for low-resource settings

while maintaining strong reasoning abilities. The
1B model is designed for efficiency, whereas the
4B version offers enhanced performance with in-
creased computational requirements. Mixtral, a
mixture-of-experts model from Mistral AI (Jiang
et al., 2024), activates only two out of eight ex-
pert networks per inference, allowing for improved
efficiency while retaining strong language under-
standing. Finally, Mistral 7B (also from Mistral AI
(Jiang et al., 2023)) is a dense transformer model
known for its superior performance compared to
similarly sized models, making it a potential alter-
native to Llama and Gemma for various NLP tasks.
By selecting models with different architectures,
sizes, and capabilities, we ensured a comprehen-
sive evaluation of generative approaches for NLP
in medical domain. Table 1 shows performances in
terms of F1-Score metric for the zero-shot prompt-
ing and the in-context learning scenarios, respec-
tively.

4.3 BERT-based Models

The BERT-based fine-tuning was performed using
the PyTorch Trainer from the Hugging Face Trans-
formers library (Wolf et al., 2020), running for 10
epochs (for further implementation details, see Ap-
pendix B). The models considered in this study
include BioBIT3, MedBIT4, MedBIT-r3-plus5, Al-
BERTo, and two base versions of ALBERT.

BioBIT3, MedBIT4, and MedBIT-r3-plus5, de-
veloped by Buonocore et al. (2023), are BERT
models pretrained on Italian biomedical corpora,
making them particularly suitable for clinical NLP
tasks. AlBERTo, originally proposed by Polignano
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et al. (2019), is an Italian-adapted version of AL-
BERT, trained on Italian tweets. In addition, we
included two base versions of ALBERT Lan et al.
(2019), which serve as the foundation of AlBERTo.
Table 1 shows F1-Score metric values for the BERT-
based experiments.

4.4 Results and Discussion

The results of the zero-shot and in-context learning
(ICL) prompting experiments, compared to BERT
fine-tuning, are presented in Table 1. For each sce-
nario, the table reports the F1-scores of all tested
models across the eight categories, along with the
overall F1-score, calculated as the mean value. To
better interpret these results, we structure our anal-
ysis into two key perspectives. First, we provide an
overall comparison of performance across different
methods (zero-shot prompting, in-context learn-
ing, and fine-tuned BERT models) to assess their
general effectiveness. Second, we examine model-
specific performance patterns across different dis-
ease categories, identifying strengths and limita-
tions in extracting various diagnostic domains.

Regarding overall model performance across dif-
ferent disease categories, BERT-based classifica-
tion models achieve the highest scores, with Al-
berto obtaining the best average F1-score of 0.79.
However, it is noteworthy that even a limited de-
gree of adaptation through In-Context Learning
(ICL) significantly improves LLM performance.
Mixtral-8x7B, with an average F1-score of 0.74,
performs comparably to the best BERT-based mod-
els, demonstrating the effectiveness of ICL in en-
hancing generative models for structured informa-
tion extraction. In contrast, Zero-Shot Prompt-
ing shows the weakest performance, with Mixtral-
8x7B achieving the highest overall F1-score at just
0.53. This performance gap is likely due to the lack
of contextual guidance, which makes it more chal-
lenging for the model to differentiate between diag-
nostic categories. In the absence of domain-specific
cues, semantic differences across diagnoses reduce
the model’s discriminative power, leading to lower
classification accuracy.

Moving to an in-depth analysis of performance
across different diagnostic categories, the zero-shot
setting reveals notable variations among models.
Mixtral-8x7B, with the highest overall performance
(F1-Score=0.53), specifically outperforms the other
models in Renal (F1-Score=0.69) and Serositis (F1-
Score=0.39) diagnoses. While Mistral-7B, with a
slightly lower F1-Score of 0.52, presents the high-

est F1-Score in Hematologic (0.80) and Neurologic
(0.40) categories. Meanwhile, Gemma3-4B, with
the best F1-scores in the Articular and Cutaneous
categories (0.80), shows an overall F1 performance
near to Mixtral-8x7B and Mistral7B, equal to 0.49.
In general, zero-shot performance is particularly
weak for Neurologic, Renal, Serositis, Systemic,
and Vascular diagnoses, with F1-scores ranging
from 0.36 for Vascular (with Llama3.2-3b), to 0.69
for Renal (with Mixtral-8x7b).

In the ICL setting, Mixtral-8x7B achieves the
highest scores on most of the categories, with the
highest in the Renal, with a F1 value equal to 0.96.
However, Gemma3-4B and Gemma3-1B outper-
form Mixtral-7B in two specific cases: Cutaneous
(F1-Score=0.88) and Systemic (F1-Score=0.52).
A particular improvement is observed in Neuro-
logic, Renal, and Serositis diagnoses, where zero-
shot prompting had shown extremely weak perfor-
mance: with ICL, these categories experience a
substantial boost, with Mixtral-8x7B achieving the
highest scores, ranging from 0.80 for Serositis to
0.96 for Renal. On the other hand, classification
for Systemic and Vascular categories remains weak,
with the best performances achieved by Gemma3-
1B for Systemic and Mixtral-8x7B for Vascular
(F1-score = 0.52).

The results of both zero-shot and in-context
learning (ICL) experiments highlight the significant
role that contextual adaptation plays in enhancing
generative models’ performance. While the previ-
ous analysis examined each approach across dif-
ferent diagnostic categories, it is equally important
to assess how ICL compares directly to zero-shot
prompting across models and disease types. In gen-
eral, moving from zero-shot to in-context learning
(ICL) mostly leads to improved performance, as
evident in Figure 3. Each bar plot in the figure
represents the F1-score of different models across
the eight categories, with the maximum F1-score
from either the zero-shot or ICL scenario displayed.
The colored margins, green and red, indicate the
difference between the two approaches. A green
margin means a positive difference, meaning ICL
outperforms zero-shot prompting, enhancing infor-
mation extraction. Conversely, a red margin in-
dicates cases where zero-shot prompting achieved
better results. From the figure, the majority of cases
show an improvement with ICL, particularly for the
Gemma and Mistral models. For instance, in the
Serositis category, the F1-score of the Gemma3-4B
model increases from 0.29 in the zero-shot setting
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Figure 3: Comparison of Zero-Shot Prompting versus In-Context Learning (ICL) F1-Scores across different
diagnoses. The bars represent the maximum score between the two methods. The green and red margins indicate
the effect of ICL: green for improvements and red for declines compared to Zero-Shot Prompting.

to 0.71 with ICL, as shown by the green margin
of 0.42. Similarly, in the Neurologic diagnosis,
the Mixtral-8x7B model returns F1-Score values
of 0.34 and 0.83 in the zero-shot and ICL scenarios
respectively, with a final margin of improvement
equal to 0.49. However, there are instances where
ICL does not improve performance: the presence
of red margins in at least one model for all cate-
gories suggests that semantic complexity alone is
not the primary cause. Instead, it appears that cer-
tain models, particularly Llama3.2-3b, consistently
perform better in the zero-shot scenario, and also
Llama3.2-1B frequently shows negative margins.
This indicates that for the Llama models, the type
of contextual information introduced in ICL does
not provide additional knowledge but instead has
a confounding effect, hindering information detec-
tion.

To fully assess the effectiveness of prompting
strategies, we compared them with a fully super-
vised fine-tuned approach of BERT-based models,
which serve as a benchmark for structured infor-

mation extraction. As already reported, BERT
fine-tuning achieves the highest overall perfor-
mance, with the Alberto model obtaining the high-
est F1-score of 0.79. In terms of individual cate-
gories, BERT models excel particularly in Hema-
tologic diagnosis, where Alberto reaches the high-
est F1-score equal to 0.98. However, not all cat-
egories benefit the most from BERT fine-tuning.
Some achieve better performance in the ICL sce-
nario, such as Renal diagnosis, where Mixtral-
8x7B reaches a 0.96 F1-Score, and Systemic di-
agnosis, where Gemma3-1B achieves a 0.52 F1-
Score. These cases suggest that while BERT fine-
tuning is generally effective, ICL can provide better
results for specific types of medical information ex-
traction.

Overall, ICL improves performance over zero-
shot prompting, though some models, like Llama
models, struggle with added context. BERT fine-
tuning remains the most reliable approach for this
Italian use case, achieving the highest scores. How-
ever, prompting is a viable alternative, as it allows
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adaptation with minimal data and no dedicated
training, making it useful when resources are lim-
ited.

5 Conclusions

This study provides a comparative analysis of gen-
erative LLMs and fine-tuned BERT models for
Italian clinical NLP, focusing on the extraction
of diagnostic patterns within an outpatient setting.
Our results demonstrate that while ICL signifi-
cantly enhances generative models’ performance
over zero-shot prompting, fine-tuned BERT-based
models still achieve the best overall results, provid-
ing structured and reliable classification solutions.
However, ICL performances show that in-context
adaptation techniques have great potential for it-
erative improvement. This is also confirmed by
the results of this paper, where certain diagnostic
categories, such as renal involvement, show better
performance with ICL, indicating that supervised
prompting can effectively overcome certain seman-
tics complexities.

Beyond performance, model selection in health-
care applications must also consider privacy, data
protection, and control on adaptation. For this rea-
son we believe that a study focused on the com-
parison of open-source types of models provides a
new perspective to complement GPT-based works,
which are largely explored in current literature (Li
et al., 2024a).

Future work should explore larger generative
models, which may offer insight into the upper-
bound performance achievable through prompting
strategies alone. Additionally, future studies should
conduct a more in-depth analysis of computational
costs and trade-offs, particularly when considering
prompting-based methods versus full fine-tuning,
to guide practical decisions in clinical deployment
scenarios.

By conducting this study in a real-world hospital
setting, we aim to provide insights into the fea-
sibility of integrating LLM-based NLP solutions
for automated clinical information extraction. This
could aid in the development of decision-support
tools, facilitate the creation of research datasets for
predictive analytics, and ultimately improve both
clinical decision-making and medical research. Fur-
thermore, by focusing on Italian clinical texts, this
study expands NLP applications beyond English-
language datasets, addressing the need for real-
world solutions in underrepresented languages.

Limitations

While generative models show potential for med-
ical information extraction, they do not always
produce structured responses, requiring post-
processing. We extracted binary classifications us-
ing regular expressions (regex), but this method
can be imprecise, making BERT-based architec-
tures more reliable for structured tasks. Addition-
ally, due to the constraints of a real-world clinical
setting in terms of computing resources, lighter ver-
sions of the models have been implemented. Future
work could explore larger versions of Gemma and
Llama running on more powerful computing envi-
ronments, to achieve potential performance gains.
Furthermore, in-context learning (ICL) proves ef-
fective for an initial adaptation, but its performance
could be enhanced by incorporating labeled ex-
amples alongside the current dictionary. Further
research should explore alternative adaptation tech-
niques, such as instruction-tuning or a massive fine-
tuning, to better compare different strategies for
optimizing medical NLP models.
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in full compliance with ethics and GDPR require-
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A In-Context Learning Dictionary

For the in-context learning experiments, we used a
dictionary of terms covering each category of diag-
nosis to be extracted. This aimed to give additional
context to the model, making the clinical concepts
more understandable. Table 2 details the terms
used for each category, reported in their original
Italian language.

B BERT-based Fine-Tuning Setup

The fine-tuning was implemented using the Py-
Torch Trainer2 of the Hugging Face Transformers
library (Wolf et al., 2020), leveraging a desktop
GPU Nvidia RTX 5000 Graphics Processing with
16GB of RAM. The 20% of training set was used as
eval_dataset, while the remaining was employed
as train_dataset. The learning rate was set to
2e-5, the batch size to 16, and the weight decay to
0.01.

2https://huggingface.co/docs/transformers/main/en/training
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Category Terms
Articular articolare, artralgia, artrite, artrosica, gonartrite, jaccoud, miosite, monoartrite, oligoartrite,

osteartrosi, osteoarticolare, poliartrite, polimiosite, rhupus, spondiloartrite.
Cutaneous afta, aftosi, alopecia, cutaneo, discoide, eczematoso, effluvium capillorum, eritema,

eritemato-crostosa, eritemato-desquamativa, eritemato-papulare, eritemato-papulosa, pomfo,
fotosensibilità, gottron, led, muco-cutaneo, mucocutaneo, papula, percutaneo, perdita di
capelli, porpora.

Hematologic anemia, anemia emolitica, disturbo della coagulazione, ematico, ematologico, leucolinfope-
nia, leucopenia, linfopenia, neutropenia, pancitopenia, piastrinopenia.

Neurologic cerebellare, cerebrale, encefalite, epilettico, epilessia, ictus, mononeurite, multineuropatia,
neurite, neurologico, neuropatia, polineuropatia, snc, tia.

Renal glomerulonefrite, irc, nefrite, nefritemembranosa, nefrosi, renale.
Serositis ascite, miocardite, pericardite, peritonite, pleurite, pleuro-parenchimale, pleuro-polmonare,

pleuropericardite, polmonare, polisierosite, sierosite, sierositico.
Systemic febbre, astenia, linfoadenopatia, linfoadenite, mialgia, febbricola, linfoadenomegalia, polimi-

algia
Vascular acrocianosi, alveolite emorragica, embolia, embolia polmonare, ep, fdr, ischemia, livedo

reticularis, pitting, raynaud, trombo, tromboflebite, trombosi, trombosi venosa profonda, tvp,
ulcera acrale, ulcera agli arti, vascolare, vasculite.

Table 2: Dictionary of terms used for in-context learning experiments for each category of diagnosis.
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Abstract

‘Quality of Life’ (QoL) refers to a person’s sub-
jective perception of various aspects of their
life. For medical practitioners, it is one of
the most important concepts for treatment deci-
sions. Therefore, it is essential to understand in
which aspects a medical condition affects a pa-
tient’s subjective perception of their life. With
this paper, we focus on the under-resourced
domain of mental health-related QoL, and con-
tribute the first corpus to study and model this
concept: We (1) annotate 240 Reddit posts
with a set of 11 QoL aspects (such as ‘indepen-
dence’, ‘mood’, or ‘relationships’) and their
sentiment polarity. Based on this novel cor-
pus, we (2) evaluate a pipeline to detect QoL
mentions and classify them into aspects using
open-domain aspect-based sentiment analysis.
We find that users frequently discuss health-
related QoL in their posts, focusing primarily
on the aspects ‘relationships’ and ‘selfimage’.
Our method reliably predicts such mentions
and their sentiment, however, detecting fine-
grained individual aspects remains challenging.
An analysis of a large corpus of automatically
labeled data reveals that social media content
contains novel aspects pertinent to patients that
are not covered by existing QoL taxonomies.

1 Introduction

‘Quality of Life’ (QoL) refers to a person’s sub-
jective perception considering various aspects of
their life (World Health Organization, 2012). In
the medical domain, understanding individual QoL
aspects is crucial as they determine appropriate
treatments for patients. Traditionally, QoL is as-
sessed by medical experts, for instance, with the
help of questionnaires in a personal interaction with
a patient. While this approach benefits individuals
with access to healthcare, these small-scale assess-
ments are expensive, limited regarding individual
repercussions of a medical condition, and are po-
tentially subject to reporting biases. Therefore, this

Thank you guys so much for listening and believing
me – my anxiety makes it so difficult to deal with
my family and your support helps so much.
Daily Activities Future Independence

Mood Physical Health Relationships −

Self-image Sense of Belonging Support +

Validation + Other

Figure 1: Annotated example of a Reddit post with an-
notated QoL aspects and sentiment labels in our corpus.

approach is not ideal for large-scale analysis of
QoL aspects.

Automatically analyzing patient-centric reports
of subjective QoL on social media potentially over-
comes these issues. So far, however, they have
been disregarded for QoL research, presumably be-
cause manually analyzing large quantities of social
media posts is infeasible. To date, no resource exist
that allows us to automatize the task. While prior
work analyzes Twitter posts to gauge general QoL
(Zivanovic et al., 2020) and to predict if a user’s
QoL is high or low (Sarma et al., 2019), these ap-
proaches do not capture the concrete aspects in
which patients’ QoL is affected.

Focusing on mental disorders, we are the first
to leverage social media data for understanding
health-related QoL and contribute QoLAS, a novel
Reddit dataset annotated with 11 QoL aspects and
their associated sentiment (POSITIVE, NEGATIVE,
NEUTRAL, MIXED).1 QoLAS covers eight mental
disorders.

Figure 1 shows an example from the dataset.
Here, the user describes how their anxiety nega-
tively impacts family dynamics and expresses their
happiness about the community (Reddit) support.
Following our novel annotation, we label the QoL

1Find our annotations and the code to retrieve the Red-
dit posts here: https://www.uni-bamberg.de/en/nlproc/
resources/qolas/.
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aspects RELATIONSHIPS with a negative and SUP-
PORT and VALIDATION each with a POSITIVE sen-
timent label.

We answer the following research questions:
RQ1 (How) Do people discuss health-related QoL

aspects on Reddit?
RQ2 Does aspect-based topic modeling reliably

reflect QoL aspects?
RQ3 Does social media provide novel information

on QoL aspects?
Our results show that Reddit users frequently

discuss health-related QoL in their posts, the most
frequent aspects being RELATIONSHIPS. Notably,
the vast majority of QoL mentions on Reddit do
not fit into any pre-existing aspect categories from
health-related QoL research, highlighting how so-
cial media covers novel aspects relevant to patients’
QoL. Our models reliably predict QoL mentions
(.68 macro average F1 score) and their sentiment
(.55 macro average F1 score). However, topic
modeling does not appear to be the appropriate
approach to identify individual, predefined aspects
but provides an overview of topics under discussion.
In a large-scale analysis of ∼56K sentences from
Reddit posts discussing mental disorders, we show
that social media is a valuable resource to broaden
our understanding of subjective QoL aspects. We
find that studying and finances are prevalent topics,
showcasing new QoL dimensions which are not
covered by existing QoL taxonomies.

2 Related Work

2.1 Social Media Health Mining

Social media health mining leverages compu-
tational methods to extract and analyze user-
generated content related to medical conditions
from social platforms (Klein et al., 2023). Under
the objective of public health monitoring, Sarker
et al. (2016) utilize social media for pharmacovig-
ilance, i.e., analyzing mentions of adverse drug
reactions. Further, social media has been employed
to aid healthcare professionals in clinical decision-
making and diagnosis (Sankhavara, 2018; Roller
et al., 2022; Musen et al., 2021).

People frequently turn to social media as a safe
space to discuss their medical journeys (Cohan
et al., 2018). To this end, Murarka et al. (2021)
develop a Reddit dataset to detect posts related to
five mental disorders — depression, anxiety, bipo-
lar disorder, ADHD (attention-deficit/hyperactivity
disorder), and PTSD (post-traumatic stress disor-

der). Coppersmith et al. (2014) devise a dataset of
diagnostic self-reports of mental disorders from so-
cial media. Similarly, Cohan et al. (2018) identify
patterns of self-reported diagnoses and construct
the self-reported mental health diagnoses data set.
Jiang et al. (2020) explore linguistic markers to
differentiate among mental disorders.

2.2 Quality of Life

Definition. The World Health Organization de-
fines QoL as an “individuals’ perception of their
position in life in the context of the culture and
value systems in which they live and in relation to
their goals, expectations, standards and concerns”
(World Health Organization, 2012, p.11).

It therefore constitutes a subjective, private state
of a person (van Krugten et al., 2021; Eyl et al.,
2018; Connell et al., 2014; Brazier et al., 2014;
Karimi and Brazier, 2016).

Health-related QoL narrows QoL down to as-
pects relevant to a person’s health (Yin et al., 2016).
It is defined as referring to “how well a person
functions in their life and his or her perceived well-
being in physical, mental, and social domains of
health” (Hays and Reeve, 2008). Health-related
QoL, therefore, covers both aspects that can be
observed from the outside, e.g., dressing oneself,
employment status, walking/running, interactions
with family/friends, and internal aspects such as
one’s subjective perception of pain, anxiety, depres-
sive symptoms (Hays and Reeve, 2008).2

Measuring QoL. Generally, QoL measurements
predominantly focus on physical aspects, for in-
stance, walking, climbing stairs, bending, or kneel-
ing (Ware and Sherbourne, 1992). To extend these
variables to mental health related concepts, van
Krugten et al. (2021) developed the Mental Health
Quality of Life questionnaire (MHQoL), which
covers self-image, independence, mood, relation-
ships, daily activities, physical health, future.

We are not aware of any previous work in natural
language processing (NLP) that focused on QoL
in a medical sense on social media, however, there
has been research on related concepts. Zivanovic
et al. (2020) study people’s overall QoL percep-
tion by assessing tweets focusing on topics such
as transportation or parking. Sarma et al. (2019)
assess the general level of health-related QoL on
Twitter (QoL, i.e., high vs. low quality).

We extend this prior work with a dataset that

2We refer to health-related QoL using “QoL” in this paper.
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enables us to detect health-related QoL aspects.

3 Corpus Creation and Analysis

We aim at understanding how Reddit users dis-
cuss the effects of mental health conditions on their
quality of life. To this end, we create a corpus with
annotations for QoL aspects and the associated sen-
timent polarity. Figure 1 shows an example.

3.1 Data Collection

Following Jiang et al. (2020), we focus on eight
mental health conditions: anxiety, bipolar disorder
(Bipolar), borderline personality disorder (BPD),
depression, eating disorders, obsessive-compulsive
disorder (OCD), post-traumatic stress disorder
(PTSD), and schizophrenia. Based on a manual
search and membership count, we select the fol-
lowing subreddits to collect texts from: r/Anxiety,
r/bipolar, r/BPD, r/depression, r/EatingDisorders,
r/OCD, r/ptsd, and r/schizophrenia.

We collect data from Reddit via the Python Red-
dit API Wrapper3 and store the post text together
with its title, author, post id, url, creation date,
up/downvote score, number of comments, length
of the post in token count, the name of the subred-
dit, and the information by the Reddit platform if a
post is categorized as hot, new, or top. We exclude
posts pinned by moderators (declaring rules and
information for subreddits), posts that only contain
images, and posts that do not have both a title and
a main post text. For annotation, we sample the top
15 posts of the category hot and top, respectively
for each mental health condition. This results in
240 posts for annotation.

3.2 Annotation

3.2.1 Annotation Task
The annotation consists of two subtasks: (1) Given
a sentence from a Reddit post, annotators assign
QoL aspect labels (see Table 1). (2) Annotators
label the aspect-associated sentiment polarity. We
now explain these steps in more detail.
QoL Aspects. Table 1 displays all possible QoL
aspect labels. The first seven aspects (SELF-IMAGE,
INDEPENDENCE, MOOD, RELATIONSHIPS, DAILY

ACTIVITIES, PHYSICAL HEALTH, FUTURE) are
taken from van Krugten et al. (2021). We further
introduce the aspects of SUPPORT (the WHO de-
clares the importance of support for people with

3https://praw.readthedocs.io/en/stable/

mental health disorders4), SENSE OF BELONGING

(report of people with mental health disorders per-
ceiving sense of belonging as a self-reported QoL
aspect (Connell et al., 2014)), and VALIDATION

(Geller et al. (2021) find that validation is an im-
portant aspect for people with eating disorders).
Finally, we introduce the aspect OTHER, allowing
insight into QoL aspects that are not covered by
our chosen label set.

In our study, annotators label each instance with
one or more of the QoL aspects described in Ta-
ble 1. For instance, in the sentence ‘I am so dis-
appointed that my family is not supporting me on
my healing path’, annotators would assign the QoL
aspect SUPPORT. We provide the annotation guide-
lines in Appendix C.
Sentiment. Annotators label each aspect with its
sentiment, i.e., one out of the labels POSITIVE,
NEGATIVE, NEUTRAL or MIXED. In the example
above, the SUPPORT is labeled as NEGATIVE.

3.2.2 Annotation Procedure

Setup. We split the Reddit posts into chunks to
limit the cognitive complexity of parsing lengthy
posts for the annotators. Each chunk consists of
up to 7 sentences which is the median post length
in the dataset. Annotators assign labels on the
sentence level.
Environment. We create a custom annotation en-
vironment based on Google Sheets5. Each chunk
is displayed individually. Annotators first decide
if it contains a QoL assessment. If yes, the anno-
tator extracts the relevant sentences and labels the
aspects and their sentiment polarities. Annotators
can reject chunks if they find them upsetting.
Annotators. We annotate 140 and 105 sentences
in two iterations, employing three annotators. All
annotators are aged 25–30 and have a background
in computational linguistics and no medical train-
ing. Annotators A1 and A2 are female, A3 is male.
A1 annotates the remaining 2,673 sentences.

3.2.3 Annotator Agreement

Evaluation metrics. We evaluate the annotations
using two different metrics: average pairwise Co-
hen’s κ and average pairwise inter-annotator F1,
where we regard one annotator’s labels as the gold
standard (Hripcsak and Rothschild, 2005).

4https://www.who.int/news-room/fact-
sheets/detail/mental-disorders

5https://www.google.com/docs/about/
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QoL Aspect Abbr. Explanation Example

SELF-
IMAGE.

S-I How a person thinks about them-
selves (positively/negatively).

... I tried drawing, singing, playing instruments, I’m just not
good at anything, and seeing people with actual talent just
makes me mad...

INDEPEN-
DENCE.

Ind. How satisfied a person is with their
level of INDEPENDENCE with re-
spect to their freedom of choice, fi-
nancial aspects, and (co-) decision-
making.

... my mental illness has taken so much of me but the worst
part is that I feel so dependent on others since on bad days I
cannot even leave the house on my own ...

MOOD. Mo. Extend to which a person feels anx-
ious, gloomy, or depressed.

... the heart pounding when you lay down, the twitching. . . it
just makes me so sad...

RELATION-
SHIPS.

Rel. How satisfied a person is with their
RELATIONSHIPS with their part-
ners, children, family, or friends.

... Mid 20s, no job or any relevant experience at all. I just
leech off my parents while they pay for my meds and I
couldn’t do it without them...

DAILY
ACTIVITIES.

DA How satisfied a person is with their
daily activities with respect to work,
study, household, or leisure activi-
ties.

... my anxiety makes it hard for me to drive to work so
sometimes I have to take a day off just because I can’t force
myself to go there ...

PHYSICAL
HEALTH.

PH Any aspect that is related to a phys-
ical health problem of a person.

... then when I was 12 I developed bulimia. I’m 19 now and
my teeth are so fucked I cant chew anything at all...

FUTURE. Fut. How optimistic/gloomy a person
perceives their future.

... maybe it’s because of the depression I can’t practice
enough to be good at anything, and I know this will never
change...

SUPPORT.* Sup. Any aspect that does or does not
make a person feel supported by
friends, family, co-workers, people
online, or people around them.

... EDIT: OMG you guys are the best. the support I receive
from you guys gives me the strength to keep pushing for-
ward...

SENSE OF
BELONG-
ING.*

SoB Any aspect that makes the person
feel like they belong to a specific
group (friends, family, co-workers,
people online, or people around
them).

... since I joined this group I finally have the feeling that I can
share my experiences without being judged and honestly
for the first time ever i don’t feel like an outsider...

VALI-
DATION.*

Val. Any aspect that makes a person feel
like their feelings or emotions are
(in-) validated by friends, family,
co-workers, people online, or peo-
ple around them.

... the contamination OCD is strong today. People tell me to
chill and stop disinfecting my hands every two seconds but
no one understands the pressure I have to do it and how I
can’t just ’chill’ about it...

OTHER.* Oth. Any aspect that is a QoL aspect but
does not fit any of the other aspects.

... eat an orange in the shower. It helped me because I have
problems getting in, the temperature chance, the liquid, it’s
a lot of stimulus. But the orange became my only concern...

Table 1: Taxonomy of QoL aspects annotated in QoLAS, following van Krugten et al. (2021). Aspects labeled with *
are novel, meaning they have not been considered in the context of QoL for mental health so far.

A1–A2 A1–A3 A2–A3 A1–A1

F1 κ F1 κ F1 κ F1 κ

S-I .60 .21 .71 .43 .63 .27 .80 .79
Ind. .50 –.01 .49 –.01 .49 –.02 – –
Mo. .75 .50 .55 .15 .61 .25 .50 47
Rel. .82 .65 .92 .84 .76 .53 1.00 1.00
DA .60 .21 .55 .13 .75 .50 – –
PH .75 .50 .70 .41 .57 .16 1.00 1.00
Fut. .49 –.03 .56 .13 .62 .24 – –
Sup. .78 .56 .69 .39 .77 .53 .67 .66
SoB .49 –.01 .64 .27 .49 –.01 – –
Val. .49 –.02 .50 –.01 .64 .28 .67 .66
Oth. .60 .21 .58 .20 .50 .09 .54 .85

¬QoL .72 .43 .72 .45 .70 .40 .87 84

Table 2: F1 and κ inter- and intra- agreement across
labels. Hyphens indicate that no instances were anno-
tated for a given label. Abbreviations are introduced in
Table 1. ¬QoL indicates all sentences labeled with not
containing a QoL mention.

¬QoL QoL

Sentences Length Sentences Length

Anxiety 196 13.6 83 20.0
Bipolar 150 12.6 48 21.1
BPD 522 13.0 127 19.3
Depression 240 10.8 80 16.8
ED 243 13.0 70 19.6
OCD 252 15.2 32 21.0
PTSD 315 14.6 66 18.3
Schizophrenia 222 12.7 27 18.4
∑

2140 13.23 533 19.18

Table 3: Numbers of labeled sentences across 8 mental
disorders in QoLAS. The length is calculated as the mean
average of tokens per sentence.
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S-I 5 7 28 12 23 6 6 3 90
Ind. 2 0 1 2 0 0 0 1 6
Mo. 16 2 14 12 15 2 6 0 67
Rel. 12 16 36 7 12 2 12 0 97
DA 21 8 6 13 3 5 5 4 65
PH 4 1 3 10 4 2 1 1 26
Fut. 3 2 3 6 2 0 3 0 19
Sup. 13 9 9 3 7 1 2 2 46
SoB 4 7 14 5 2 1 1 1 35
Val. 4 2 10 2 5 5 9 3 40
Oth. 37 20 65 40 31 18 40 22 273

Total 117 74 189 111 104 42 45 17 748

Table 4: Counts of QoL aspect annotations across sub-
reddits and QoL aspects.

Agreement. Table 2 shows the agreement scores
for QoL aspects. The aspect RELATIONSHIPS

shows the highest agreement, followed by SUP-
PORT. For SELF-IMAGE, MOOD, DAILY ACTIVI-
TIES, and PHYSICAL HEALTH, the agreement is
moderate. We find consistent results across annota-
tors for 6 aspects (SELF-IMAGE, INDEPENDENCE,
RELATIONSHIPS, FUTURE, SUPPORT, OTHER).

In contrast, the agreement varies between mod-
erate for one annotator pair and slight for two pairs
(MOOD, DAILY ACTIVITIES) and moderate for
two pairs and slight for one (PHYSICAL HEALTH).
Noteworthily, we find an agreement lower than
chance for two annotator pairs for SENSE OF BE-
LONGING and VALIDATION (the other being fair).

To ensure the consistency of the annotation ap-
proach used for the creation of our dataset, we
further report the intra-annotator agreement of one
annotator. A1 re-annotates 20 chunks 6 weeks af-
ter the first annotation. Table 2 shows the results.
Overall, we observe a high agreement. For RELA-
TIONSHIPS and PHYSICAL HEALTH, the agreement
is perfect, while MOOD shows the lowest result.

3.3 (How) Do people discuss health-related
QoL aspects on Reddit? (RQ1)

Corpus statistics. Table 3 presents the corpus
statistics. The final corpus contains 2,140 sentences
labeled with QoL aspect and sentiment. Out of
those, 24.9% contain at least one QoL label. Sen-
tences containing a QoL mention are consistently
longer (mean average of tokens per sentence 19.18
for QoL, 13.23 for ¬QoL).
QoLAS contains 748 QoL labels in 533 sentences.

POSITIVE NEGATIVE NEUTRAL MIXED

# % # % # % # %

S-I 8 9 75 83 1 1 6 7
Ind. 3 50 3 50 0 0 0 0
Mo. 5 6 57 86 1 2 4 6
Rel. 2 2 71 73 1 1 23 24
DA 1 2 61 94 0 0 3 5
PH 2 7 25 89 0 0 1 4
Fut. 1 6 18 94 0 0 0 0
Sup. 17 38 16 35 1 2 12 25
SoB 7 20 19 54 2 6 7 20
Val. 3 8 31 78 1 2 5 12
Oth. 28 9 233 78 11 4 29 9

Total 72 10 575 77 18 2 83 11

Table 5: Distribution of QoL aspects across their senti-
ment labels.

From the selection of subreddits, those about BPD
and eating disorders contain the most QoL aspects,
schizophrenia the least. Texts from the subreddits
corresponding to bipolar and OCD are the longest,
and texts from depression are the shortest.
Which QoL aspects do users discuss on Red-
dit? We want to understand which aspects are
relevant for people with mental disorders. Table 4
shows the distribution of QoL labels across condi-
tions in our annotated corpus of Reddit sentences.
The aspect OTHER is most frequent in QoLAS (273
mentions), followed by RELATIONSHIPS (97) and
SELF-IMAGE (90). Importantly, the predominance
of OTHER indicates that a substantial amount of
aspects are not encapsulated within the confines of
our pre-defined aspect labels. Generally, the distri-
bution of aspects is imbalanced across the different
mental health conditions and individual aspects.
INDEPENDENCE (6) is a noticeable outlier.
How do users discuss QoL aspects on Reddit?
Table 5 displays the distribution of QoL labels
across all sentiment labels. The majority of aspects
are labeled as NEGATIVE (77%), and the minority
as NEUTRAL (2%). Notably, for INDEPENDENCE,
we find an equal distribution of positive and neg-
ative labels and a mixed distribution of labels for
SENSE OF BELONGING (20% positive, 54% nega-
tive, 6% neutral, 20% mixed). SUPPORT shows the
least amount of negative sentiment labels (35%)
and (except for the outlier INDEPENDENCE) the
highest amount of positive sentiment labels (38%).
This finding is in line with studies pointing out
the positive influence of social support on mental
health (Harandi et al., 2017; Turner and Brown,
2010).
Which QoL aspects co-occur? The majority
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Aspect combinations Frequency

RELATIONSHIPS, OTHER 33
MOOD, OTHER 27
DAILY ACTIVITIES, OTHER 25
SELF-IMAGE, OTHER 22
SELF-IMAGE, RELATIONSHIPS 20
VALIDATION, OTHER 14
PHYSICAL HEALTH, OTHER 12
FUTURE, OTHER 10
MOOD, RELATIONSHIPS 9
RELATIONSHIPS, SUPPORT 9

Table 6: Frequencies of top 10 QoL aspect combinations
in QoLAS.

of QoL-related sentences contain exactly one as-
pect (61%). We find two aspects in 33% of QoL-
related sentences and three or more aspects in 6%.
To better understand which aspects co-occur, we
analyze frequencies of pairs in sentences in Ta-
ble 6. The most frequent combination is the tu-
ple (RELATIONSHIPS, OTHER) (33) followed by
(MOOD, OTHER) (27). Interestingly, the frequency
of the tuple (SELF-IMAGE, RELATIONSHIPS) (20)
suggests a relation between one’s own or perceived
self-image within a relationship. The aspect OTHER

appears in all four most frequent tuples. Over-
all, within the top 10 QoL aspect combinations,
we find the aspect of OTHER in combination with
seven aspects (RELATIONSHIPS, MOOD, DAILY AC-
TIVITIES, SELF-IMAGE, VALIDATION, PHYSICAL

HEALTH, FUTURE).
Our analysis of the QoL label distribution in

QoLAS highlights the importance of the aspect
OTHER. This indicates that our QoL label set, based
on the MHQoL, only partially covers the variety of
QoL aspects. This assumption is further supported
by the QoL aspect combinations, where we find
that most QoL aspects appear in a sentence where
in addition to a QoL aspect from the MHQoL the
aspect OTHER is also represented.

4 Experiments

We investigate how reliably we can detect QoL as-
pects and their sentiment polarity automatically
(RQ2). To this end, we build a pipeline that con-
sists of three modules: First, we train a classifier
that detects if a sentence contains a QoL mention.
Second, we leverage a topic model to detect the
QoL aspect. Finally, we employ a sentiment clas-
sifier to predict the sentiment polarity. Figure 2
shows a depiction of the pipeline. We describe
each module in the following.

S
QoL

Detector S′ ⊆ S
Aspects
Detector

Topic modeling

Multi-label Class.

Sentiment
Detector

Binary Class.

Labeled
Sentences

Figure 2: Automatic QoL aspect and sentiment detec-
tion. We simplify the aspect-based sentiment analysis
to an independent sentence classification method.

4.1 Methods

We train and evaluate the models of the QoL detec-
tion and sentiment classification modules using an
80/20 train/test split of QoLAS. We provide imple-
mentation details for all modules in Appendix B.
QoL detection. In the first module, we determine
if a text sequence contains a QoL aspect, based on
two random forest and four pre-trained language
models.

Specifically, we utilize two Random Forests
(Breiman, 2001) as baselines, namely RFbase and
RFbalanced and further fine-tune four transformer
models, specifically BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), DistilBERT (Sanh
et al., 2019) and SocBERT (Guo and Sarker, 2023).
We provide the implementation details for all mod-
els and individual modules of the pipeline in Ap-
pendix B.
Aspect detection. To predict specific QoL aspects,
we employ a topic model, namely BERTopic (Groo-
tendorst, 2022), a transformer-based clustering ap-
proach. BERTopic is a method that uses trans-
former embeddings, capturing the contextual mean-
ing of words, which is advantageous over other
topic modeling options such as LDA. We tune the
underlying model to find topics semantically simi-
lar to the QoL aspect labels.
Sentiment classification. We fine-tune BERT on
QoLAS for sentiment polarity prediction with the
target classes POSITIVE, NEGATIVE, NEUTRAL,
and MIXED.

4.2 Evaluation

We evaluate the performance of all models on the
held-out test set of QoLAS and report precision, re-
call, and F1.

We frame the QoL-related aspect detection as
unsupervised modeling to enable our system to un-
cover yet unknown aspects. With this perspective
in mind, we evaluate the topic modeling as an open-
domain aspect recognition process. As such, we
annotate 100 sentences with 18 topics identified ac-
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¬QoL QoL Macro Avg.

P R F1 P R F1 P R F1

RFbase .80 .98 .89 .37 .04 .07 .59 .51 .48
RFbalanced .91 .70 .79 .37 .71 .49 .64 .71 .64
BERT .90 .88 .89 .48 .53 .50 .67 .73 .68
RoBERTa .91 .85 .88 .46 .58 .50 .66 .73 .65
DistilBERT .89 .88 .88 .47 .50 .47 .68 .69 .68
SocBERT .91 .86 .87 .46 .59 .51 .66 .66 .65

Table 7: Precision, recall, and F1 results of the baseline
(RF) and different transformer models on the sentence-
level QoL classification.

cording to a manual inspection of an independent
development corpus of QoL-related sentences. We
provide the topics in the Appendix in Section A.
The evaluation therefore constitutes a clustering-
based evaluation, for which we employ the adjusted
rand index (ARI) (ARI, Hubert and Arabie, 1985)
which calculates the similarity between clustering
while correcting for cluster similarity by chance.
ARI scores range from −1 to 1, where 1 indicates
perfect agreement and negative values indicate an
agreement worse than chance.

4.3 Results

4.3.1 QoL Detection
Table 7 shows the model performance in the QoL
detection module. Overall, transformer models out-
perform the baseline models RFbase and RFbalanced.
On average, BERT and DistilBERT are the most
robust models (.68 macro avg. F1, respectively).
Notably, for the target class (QoL), SocBERT per-
forms best across all models.

4.3.2 Aspect Detection
The best BERTopic model achieves an ARI score
of 0.16 on the gold standard.

4.3.3 Sentiment Classification
Table 8 shows the performance of the sentiment
classification module. Considering the macro av-
erage performance across all classes, the BERT
model fails to beat the majority baseline (.55 F1 vs.
.73 F1).

The model performs most reliably for the POS-
ITIVE and NEGATIVE class (.70 F1 and .92 F1,
respectively). For the MIXED class the model
achieves an F1-score of .56. For the NEUTRAL

instances, the classifier cannot predict a single cor-
rect instance, due to the class imbalance in the data
set.

Precision Recall F1

Positive .78 .64 .70
Negative .88 .95 .92
Neutral .00 .00 .00
Mixed .58 .54 .56

Macro Avg. .56 .53 .55
Majority Baseline .73

Table 8: Results of the BERT model on the sentiment
classification task on QoLAS sentences.

Overall, our results show a moderate perfor-
mance of transformer models on the QoL detection
task (.68 macro avg. F1) and sentiment polarity pre-
diction (.55 macro avg. F1). Correctly predicting
the specific QoL aspects using a topic modeling
approach, specifically BERTopic, remains challeng-
ing, indicating that topic modeling is not the most
fitting approach for our task.

5 Does Social Media Provide Novel QoL
Aspects?

We hypothesize that quality of life aspects that peo-
ple discuss on social media may be even more fine-
grained than the aspect labels in the QoLAS dataset
and hold entirely novel QoL aspects (RQ3). To in-
vestigate this, we conduct two qualitative analyses
on a large set of mental health-related Reddit posts.

5.1 Data

We collect 125,994 posts from Reddit. Analo-
gous to the data crawling and filtering in Sec-
tion 3.1, we collect posts associated with the same
8 mental disorders as in QoLAS. We split them into
sentences and employ the best performing QoL
detection model, namely BERT6, to identify in-
stances discussing QoL mentions. This provides us
with 55,920 sentences. Subsequently, we employ
the topic model to obtain prevalent topic clusters
within this data.7

5.2 Analysis

We aim at understanding how the automatically
identified topic clusters relate to the established
set of QoL aspects we use in QoLAS. Therefore,

6BERT shows superior performance to DistilBERT on the
target class QoL (.50 F1 and .47 F1).

7We acknowledge that the topic model did not show a
robust performance to detect manual annotations of aspects.
Nevertheless, it provides a meaningful way to aggregate infor-
mation in the corpus we study here, as we are not aiming to
detect this pre-defined set of aspects.
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QoL Aspect Topic

SELF-IMAGE –

INDEPENDENCE –

MOOD emotional_anger_rage,
life_depression_hate,
exhausted_tired_unmotivated,
emotional_anger_rage,
depressive_depressants_depresh,
apprehensions_fears_paranioa,
cried_sobbed_sobbing

RELATIONSHIPS friendless_friendships_friends,
dating_date_relationships,
lonely_loneliness_horny

DAILY ACTIVITIES sleep_asleep_insomnia

PHYSICAL HEALTH diet_underweight_overweight

FUTURE –

SUPPORT supportive_insecurely_scold

SENSE OF BELONGING –

VALIDATION –

OTHER hunger_hungry_appetite,
contamination_compulsions-
_contaminating,
panicky_hyperventilating_panic,
neurosis_bpad_bdp,
grades_studying_study,
suicidal_suicide_kill,
therapy_therapist_counseling,
savings_finances_paycheck

Table 9: Top 20 topics (of 55,920 sentences), generated
by BERTopic, in comparison to 11 QoL aspect labels.

we manually map the top 20 topic clusters gen-
erated by the topic model to the QoLAS label set.
Any topic that is not connected to the labels, we
attribute to the aspect OTHER. Based on this, we
analyze (a) if the topics may be more fine-grained
compared to established QoL labels and (b) which
novel topics are relevant in mental health-related
online discussions that are not covered by current
QoL research.

Table 9 shows the result of the mapping. Overall,
we are able to map half of the automatically gen-
erated clusters to the QoLAS label set. For the QoL
aspects of DAILY ACTIVITIES, PHYSICAL HEALTH,
and SUPPORT we find one corresponding topic
each. For the QoL aspect RELATIONSHIPS and
MOOD, we find 3 and 7 corresponding topics, re-
spectively. For SELF-IMAGE, INDEPENDENCE, FU-
TURE, SENSE OF BELONGING, and VALIDATION

we do not find a corresponding topic. Notably, all
aspects without corresponding topics are relatively
abstract. We hypothesize that these concepts tend
to be non-propositional and expressed differently

by individual users. The topic model therefore may
not be able to capture them, while aspects such as
MOOD or RELATIONSHIPS are more concrete.

We map 7 topics to the aspect OTHER. This
indicates that they are not related to any of the
established QoL aspects. The topics in this cat-
egory are diverse, with 4 out of 8 topics appear
to be associated with specific medical conditions
or symptoms thereof (contamination, compulsions,
contaminating; panicky, hyperventilating, panic;
neurosis, bpad, bdp; suicidal, suicide, kill). The
other topics are more general, e.g., centered around
studying and finances, indicating that mental disor-
ders affect core aspects of people’s lives.

Our analysis indicates that QoL dimensions go
beyond the aspects that are covered by current QoL
taxonomies, emphasizing the potential of accessing
user-generated data for mental health research and
knowledge discovery.

6 Conclusion

To address the limitations of small-scale QoL as-
sessments, we leverage Reddit posts to extract
health-related QoL aspects and extend our under-
standing to novel relevant aspects. We contribute
QoLAS, the first dataset to model health-related QoL
aspects for mental disorders automatically. We
show that Reddit posts provide detailed medical
accounts in which users discuss a multitude of
health-related QoL aspects. Using open-domain
aspect-based sentiment analysis, we are able to re-
liably detect QoL discussions and their sentiment.
However, topic modeling struggles to identify indi-
vidual QoL aspects within our dataset. This leads
to important future work, namely to explore other
methods to detect such detailed properties of QoL.
Importantly, we find that a substantial number of
QoL mentions go beyond the established taxon-
omy we use to label social media posts. This is
true for our gold-labeled dataset, and holds for a
large-scale analysis of Reddit posts. For those in-
stances, it is crucial for future work to obtain a de-
tailed understanding of the themes and topics that
emerge. They have the potential to inform medical
practitioners, particularly for underrepresented de-
mographics, or the effects of rare symptoms that
are out of the scope of existing resources.

Limitations

With respect to the annotation of QoL aspects in
posts, we obtain a robust agreement for the target
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class of QoL documents, however, we acknowl-
edge that the agreement scores for the aspects vary.
The annotation is a challenging task due to the sub-
jective nature of QoL aspects. However, examining
the robust F1-scores we consider the agreement
acceptable. Further, we maintain confidence in
the quality of the annotations despite the corpus
being labeled by a single annotator. While more
annotators might account for individual biases and
errors, one well-trained annotator strictly follow-
ing carefully constructed guidelines can produce
high-quality annotations. This can be seen in our
high intra-annotator agreement in Table 2.

While our annotators are non-medical experts,
we consulted medical experts, who specialized in
quality-of-life research, during the conceptualiza-
tion of the QoL aspect annotation, ensuring the
correctness of our annotation approach from a med-
ical perspective.

Ethical Considerations

Studying QoL aspects of people with mental disor-
ders has to be done carefully to prevent potential
harm. We make use of posts from subreddits that
are created for specific mental disorders. We are
assuming that people writing posts there are (self-
)diagnosed with a given mental disorder. With our
QoL aspect annotation, we, to a certain extend, in-
fer the well-being of specific users, which can be
perceived as upsetting.

Therefore, it is crucial to use respectful language
when describing these posts or displaying results to
avoid perpetuating stigma around mental disorders.

We ensured the annotator’s safety and mental
well-being by warning them about possibly disturb-
ing content. Annotators were instructed to only
annotate posts that do not make them feel uncom-
fortable in any way and to take breaks if needed. In
addition, they had the option to reject each chunk of
text individually. We note that no annotator made
use of this option.

The data we collected in our study is solely used
for academic purposes. We strictly follow Reddit’s
guidelines on data distribution and do not publish
the data itself. Instead, to still enable follow-up re-
search, we provide a script8 that allows researchers
to collect the data from Reddit and match it to our
annotations. We are aware that our choice of using
Reddit posts complicates access to our created cor-

8https://www.uni-bamberg.de/en/nlproc/
resources/qolas/

pus, however, this type of data is relevant for our
research purposes.
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A Appendix: Topic Model Evaluation

We report details on the gold-standard (100 manu-
ally labeled topics, see Section 4.2 for the evalua-
tion of BERTopic in Table 10. Table 11 provides
the output of topics and numbers of sentences of
our tuned BERTopic model on the same 100 sen-
tences.

Topic # Sent. Topic # Sent.

Eating 7 Hope 11
Sleeping 6 Everyday 8
Relationships 8 Worry 4
Emotions 5 Self-image 3
Support 5 Lost motivation 10
Alone 2 Finances 2
Existence 3 Exhaustion 5
Sadness 9 Physical health 3
Understanding 5 Symptom 4

Table 10: Distribition of labels of 18 topics (identified
according to a manual inspection of an independent
development corpus of QoL-related sentences) for 100
sentences.

Topic # Sent.

stress_worry_worried 19
relationships_abandonment_love 6
bulimia_eating_appetite 11
exhausted_exhausting_relax 6
life_hope_happ 10
happy_grateful_treatment 6
sleep_bed_wake 9
trust_stresses_gang 5
support_die_suffering 8
feel_feels_exist 5
overwhelmed_crying_emotional 6

Table 11: Output of BERTopic on the gold standard.

B Appendix: Implementation Details

In the following, we provide details on the imple-
mentation of all modules of our pipeline.

Aspect Detection. We implement the Random
Forest Classifier using the scikit-learn implementa-
tion9 and the Balanced Random Forest Classifier,
using the imbalanced-learn implementation 10. We
use the default settings for both classifiers. We set
the random state to 42.

For all transformer models, we use the respective
model’s PyTorch implementation from Hugging-
Face. For BERT, we use the bert-base-uncased
model11, for RoBERTa we use the xlm-roberta-
base model12, for distilBERT we use the distilbert-
base-uncased model13, and lastly, for SocBERT,
we use the SocBERT-base model14. We fine-tune
the models using the AdamW optimizer. We use
a learning rate of 3·10−5, batch size of 16, and 20
epochs.
BERTopic. For fine-tuning BERTopic, we follow
https://maartengr.github.io/BERTopic/
index.html(Grootendorst, 2022). We experiment
with various hyperparameter settings to identify the
most robust setup. The best setting (achieving .16
ARI) is: the all-mpnet-base-v2 as the embedding
model, the CountVectorizer with English stop
words, UMAP with a local neighborhood of 3
and dimension of space to embed into of 3, the
HDBSCAN model with a cluster size of 3, the
KeyBertInspired for the topic representation,
and the number of topics are set to be adjusted
automatically.
Sentiment Classification. We implement the bert-
base-uncased model using its PyTorch implementa-
tion from HuggingFace 15. We fine-tune the model
for sentiment classification using the AdamW op-
timizer with a learning rate of 2·10−5. We use a
batch size of 8 and 6 epochs.

9https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.
RandomForestClassifier.html

10https://imbalanced-learn.org/stable/
references/generated/imblearn.ensemble.
BalancedRandomForestClassifier.html

11https://huggingface.co/bert-base-uncased
12https://huggingface.co/xlm-roberta-base
13https://huggingface.co/

distilbert-base-uncased
14https://huggingface.co/sarkerlab/

SocBERT-base
15https://huggingface.co/bert-base-uncased
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C Appendix: Annotation Guidelines

Note that from here on, we display the annotation guidelines exactly as they have been shown to the
annotators.

1. Instructions
1. Read over this document.

2. Open the provided link that will open the Google Spreadsheet.

3. In the Google Sheets file, go to Extensions (Erweiterungen) and click on “Apps Script”. This opens a
new window with the script for the annotation. Click on Run (Ausführen). Do not close this window,
but go back to the Google Sheets and follow the instructions that pop up there.

2. The Task
We annotate Quality of Life (QOL) in mental health Subreddits (Anxiety, Depression, Schizophrenia,
PTSD, OCD, Eating Disorders, Bipolar Disorder, and BPD). We are interested in the aspect and the
sentiment of QOL aspects. In addition, we want to know if the author of a post is diagnosed with a
condition or not.
In the following, you get detailed information about and instructions for the annotation.

3. QOL Definition
The WHO defines QOL to be the “individuals’ perceptions of their position in life in the context of the
culture and value systems in which they live and in relation to their goals, expectations, standards
and concerns”
In addition:

• QOL aspects are subjective

• QOL aspects vary for different medical conditions and individuals

4. QOL Annotation: Aspects and Sentiment
4.1 Aspects
We are interested in the specific aspect of a given QOL aspect. The options are: selfimage, independence,
mood, relationships, daily activities, physical health, future, support, sense of belonging, validation, and
other. Note that some of the aspects can be overlapping (e.g. in the table: the example QOL aspect for
independence could be both, independence and daily activities). Since this is often times the case, you
are encouraged to annotate multiple aspects for the same QOL aspect, if it fulfills multiple aspects. The
following table displays short descriptions of the aspects as well as an example for each aspect. You are
encouraged to assign ‘Other’, if one or more of the following criteria holds:

• The QOL does not fit any of the other aspects.

• You can come up with an aspect that fits the QOL better than the given aspects.

• The QOL does only partly fit one of the aspects.

If in doubt, rather assign one of the descriptive aspects and ‘Other’ instead of only the descriptive
aspect(s).
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Text Aspect

... I tried drawing, singing, playing instruments, I’m just not
good at anything, and seeing people with actual talent just
makes me mad...

Self-image. I think positively/negatively about myself.

... my mental illness has taken so much of me but the worst
part is that I feel so dependent on others since on bad days
I cannot even leave the house on my own ...

Independence. I am very (dis-)satisfied with my level of
INDEPENDENCE. (Freedom of choice, financial, co-decision
making)

... the heart pounding when you lay down, the twitching. . .
it just makes me so sad...

Mood. I (do not) feel anxious, gloomy, or depressed.

... Mid 20s, no job or any relevant experience at all. I just
leech off my parents while they pay for my meds and I
couldn’t do it without them...

Relationships. I am very (dis-)satisfied with my relation-
ships (Partner, children, family, friends)

... my anxiety makes it hard for me to drive to work so
sometimes I have to take a day off just because I can’t force
myself to go there ...

Daily Activities. I am very (dis-)satisfied with my daily
activities. (Work, study, household, leisure activities)

... then when I was 12 I developed bulimia. I’m 19 now and
my teeth are so fucked I cant chew anything at all...

Physical Health I have no/many physical health problems.

... maybe it’s because of the depression I can’t practice
enough to be good at anything, and I know this will never
change...

Future. I am very optimistic/gloomy about my future.

... EDIT: OMG you guys are the best. the support I receive
from you guys gives me the strength to keep pushing
forward...

Support. I (do not) feel supported by my friends, family,
co-workers, people online, people around me.

... since I joined this group I finally have the feeling that I can
share my experiences without being judged and honestly
for the first time ever i don’t feel like an outsider...

Sense of Belonging. I feel like I belong to a specific group
(friends, family, co-workers, people online, people around
me).

... the contamination OCD is strong today. People tell me to
chill and stop disinfecting my hands every two seconds but
no one understands the pressure I have to do it and how I
can’t just ’chill’ about it...

Validation. I (do not) feel validated by my friends, family,
co-workers, people online, people around me.

... eat an orange in the shower. It helped me because I
have problems getting in, the temperature chance, the
liquid, it’s a lot of stimulus. But the orange became my
only concern... ... i wish i would have been better at visiting

my grandparents who raised me, i wish i would’ve/could’ve
answered my grandmas calls before she was gone. i wish
so bad this disorder didn’t do the things it does to me
because i live everyday of my life full of guilt...

Other. Anything that is a QOL but does not fit any of the
given aspects. Here, for instance, hygiene, regret, guilt.

4.2 Sentiment Label
In addition, we are interested in the sentiment of the specific QOL aspect. The options are: positive,
negative, neutral, mixed. Find examples in the table below.

Text Sentiment
... EDIT: OMG you guys are the best. the support
I receive from you guys gives me the strength to
keep pushing forward...

Positive
(Aspect: Support)

... the heart pounding when you lay down, the twitch-
ing. . . it just makes me so sad...

Negative
(Aspect: Mood)

... this group gives me the opportunity to exchange
experiences and coping strategies without neces-
sarily impacting my overall emotional state. It’s
helpful for me to hear different perspectives...

Neutral
(Aspect: Sense of Belonging, Other)
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... thank you for all the comments they make me
sad because we are all suffering but we will heal
together I promise ...

Mixed
(Aspect: Mood, Support)

5. QOL Annotation: More Examples
In the following, you can find more examples of gold QOL annotations. Since we are annotating on a
sentence level, there can be multiple sentences that contain QOL aspects (see example 2). In that case,
you first annotate the QOL aspect(s) in the first sentence, then the aspect(s) in the second sentence, and so
on. It might also happen that there is more than one QOL aspect in one sentence. In that case, you should
just go over all of the aspects and annotate all of them with their respective sentiment. In the last table,
you find some examples of text that do not contain any QOL aspects.

5.1 More QoL examples

Text Aspect and Sentiment
... I question everything now about who I was and
the people I trusted.
I feel so lost and alone and confused.
It’s not common at my age...

Mood, Negative

... How did affect the other person?
How did your response affect you?
How can you respond better next time?
I noticed I had 3 major symptoms that occurred
more frequently than others.
Fear of abandonment.

Unstable relationships.
Unclear sense of self....

Future, Negative;
Independence, Negative
Relationships, Negative
Self-image, Negative

... Yesterday I wrote about my experiences.
I love you all.
Edit: Thank you so much for all of your com-
ments they make me feel understood and help
me to manage the days where I cannot get out
of bed and make myself food....

Validation, Positive;
Sense of Belonging, Positive
Mood, Negative;
Daily Activities, Negative

5.2 No QOL aspects

Text Explanation
I finally booked an appointment with my GP (doc-
tor). I’m trying to make an effort to get better.
I was wondering what I should tell, how much
should I open up with him, and if I should men-
tion my suicidal thoughts. How does the process
work?

Suicidal thoughts are a symptom of de-
pression.
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I’m back to normal, just like that. I’m queing for
another match of my videogame. BPD is fucking
real if any of you any had any doubt about it.
From one second to another I became suicidal,
guilty, angry, paranoid and delussional.

The person is describing symptoms of
their illness, they are not talking about
how it affects their QOL.

Just got a job at McDonald’s. 40 + hours a week.
Wish me luck!

No connection to how this affects the per-
son’s QOL.

5.3 QOL vs. Symptoms
There are cases in which it is difficult to decide whether a description you read is a QOL aspect or a
symptom of the medical condition. In some cases, only a medical expert would be able to make that
decision. Therefore, if you are unsure, rather assign a QOL aspect. Here are some considerations:

• Some symptoms and QOL aspects can impact an individual’s QOL: assign QOL

• A description of feeling disconnected from reality can be a symptom of certain mental disorders but
if it is not explicitly stated how that affects the QOL of an individual, treat it as a symptom (i.e. do
not assign a QOL aspect)

• Consider the context: if feeling disconnected from reality is causing an individual to having trouble
working out, and, therefore, having back pain, it is a QOL aspect

6. Annotation: Workflow

1. You will see a post or an excerpt from a post from Reddit and the corresponding subreddit (all
subreddits are medical conditions, such as anxiety, ptsd, depression, etc.). Read over it. If the content
makes you uncomfortable, you can directly discard the post and go to the next one. Please consider
your own well-being and only annotate a post, if you are sure that it does not trigger you in any way.

2. Depending on your previous answer, you will either get a new post, so you repeat step 1, or you
decided to annotate the post, which leads to the following: You will see a post, a title, and the
condition (the subreddit) and you have to decide whether the document does or does not contain a
mention of a QOL aspect. If you decide that there is no QOL aspect in the document, you will get a
new post and start with step 1 again. If there is a QOL aspect, after clicking yes, you will proceed
with step 3.

3. You will see the post again and have to decide if you think that the person who wrote the post is
officially (medically) diagnosed with the condition that is displayed. Give a rating from 1-5 (1 means
the person is most likely not diagnosed, and 5 means the person is most likely diagnosed). If the
post explicitly states that the person is or is not diagnosed, assign a 5 or 1 respectively. If you have a
strong intuition that the person is or is not diagnosed, without an explicit statement about it, assign a
4 or 1 respectively. If you have no justified assumption that the person is or is not diagnosed, assign a
3.

4. Now you are asked to select all the sentences of the post that do contain a QOL aspect. Type
their number in and separate it with commas. You will go over all of the sentences you selected
individually in the next step.

5. Now you are asked to provide the aspect(s) of the QOL aspect(s) in the text and the respective
sentiment (e.g. Mood, Negative). The options for the sentiment of the aspect are positive, negative,
neutral, or mixed (+, -, n, m) Be aware you might find multiple aspects in one sentence. Annotate all
of them (e.g. Mood, Negative; Relationships, Mixed). If none of the aspects fit, but you are sure
that there is a QOL aspect in the sentence, assign the aspect ‘other’. Now you have successfully
annotated all of the QOL aspects in one sentence. You will proceed to the next question.
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6. Unfortunately, the Google Apps Script in which you are annotating is limited to a runtime of 6
minutes. Therefore, you will see a reminder to restart the script before the next post gets displayed.
If you see the reminder, switch to the Apps Script window and click on “Stop” (Beenden) and then
on “Run” (Ausführen) again. Then, return to the sheets window, click on ok on the reminder, and
continue with the next post.

7. Additional Notes
If you want to take a break or are done with your annotation, ideally you would click on the x in the
displayed box of the first question, if the post is too triggering. When you come back to the annotation,
you will then be able to start right where you left off. You just need to click “Run” in the Script again.

Please be aware that it is not possible to change one of your answers or go back to one question with
the provided script. If you accidentally clicked something wrong, you can look into the sheets file and see
if you can easily change the value manually. If not, please take note of what happened, write down the ID
of the post and send it to me.

216



Proceedings of the 24th Workshop on Biomedical Language Processing (BioNLP 2025), pages 217–224
August 1, 2025 ©2025 Association for Computational Linguistics

LLMs as Medical Safety Judges: Evaluating Alignment with Human
Annotation in Patient-Facing QA

Yella Leonie Diekmann1, Chase M. Fensore1, Rodrigo M. Carrillo-Larco2,
Eduard R. Castejon Rosales3, Sakshi Shiromani4, Rima Pai2,

Megha Shah3, Joyce C. Ho1

1Department of Computer Science, Emory University
2Rollins School of Public Health, Emory University

3Department of Family and Preventive Medicine, Emory School of Medicine
4Department of Ophthalmology, Emory University School of Medicine

yella.diekmann@emory.edu

Abstract
The increasing deployment of LLMs in patient-
facing medical QA raises concerns about the
reliability and safety of their responses. Tradi-
tional evaluation methods rely on expert human
annotation, which is costly, time-consuming,
and difficult to scale. This study explores
the feasibility of using LLMs as automated
judges for medical QA evaluation. We bench-
mark LLMs against human annotators across
eight qualitative safety metrics and introduce
adversarial question augmentation to assess
LLMs’ robustness in evaluating medical re-
sponses. Our findings reveal that while LLMs
achieve high accuracy in objective metrics such
as scientific consensus and grammaticality, they
struggle with more subjective categories like
empathy and extent of harm. This work con-
tributes to the ongoing discussion on automat-
ing safety assessments in medical AI and in-
forms the development of more reliable evalua-
tion methodologies.

1 Introduction

The rapid advancement of large language models
(LLMs) has led to their increasing use in high-
stakes domains, including patient-facing medical
question answering (QA). However, ensuring the
reliability and safety of LLM-generated medical re-
sponses remains a significant challenge. Evaluating
these LLM responses traditionally relies on expert
human annotation, a process that is time-intensive,
costly, and difficult to scale. As a result, there is
growing interest in exploring whether LLMs them-
selves can serve as automated evaluators.

While LLMs have shown promise as judges in
various NLP evaluation tasks (Gu et al., 2025), their
applicability in medical contexts remains underex-
plored. The complexity of medical QA – where
responses must be accurate, contextually appro-
priate, and aligned with clinical consensus – raises
concerns about whether LLMs can effectively repli-
cate expert judgment. Medical evaluation requires

nuanced assessments across multiple qualitative di-
mensions, such as scientific validity, completeness,
and potential harm, making it unclear how well
LLMs align with human annotators in this setting.

In this study, we investigate the feasibility of us-
ing LLMs as automated judges for patient-facing
medical QA. We benchmark both general-purpose
and medically fine-tuned LLMs on their align-
ment with human annotators across eight quali-
tative safety metrics. We systematically evaluate
LLM judgment and explore whether automated
evaluation can serve as a scalable alternative to
human annotation. Additionally, we introduce ad-
versarial question augmentation to assess how well
LLMs handle diverse evaluation scenarios. Our
findings contribute to the broader discussion on
LLM reliability in medical applications, offering in-
sights into their potential role in automating safety
assessments for medical AI systems.

2 Related Work

There has been some existing work assessing LLM-
as-a-Judge for medical fields. Szymanski et al.
(2024) found relatively low LLM-expert agreement
(60-64%) in medical domains compared to expert-
expert agreement (72-75%), while LLM-layperson
agreement reached 80%, suggesting expert “per-
sonas" may worsen performance. For medical
safety evaluation, Han et al. (2024) introduced
MedSafetyBench, finding medical LLMs complied
with harmful requests more frequently than gen-
eral LLMs. Kanithi et al. (2024) proposed MEDIC,
using three LLM judges to evaluate clinical appli-
cations across five dimensions, finding high judge
alignment (up to 78.23%) with Prometheus show-
ing strong correlations with clinician evaluations.
Krolik et al. (2024) used ChatGPT-4o to evalu-
ate medical Q&A on metrics including relevance,
succinctness, medical correctness, hallucination,
and coherence. Zheng et al. (2023) found GPT-
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4 and human agreement reached 86%, exceeding
human-human agreement (81%), suggesting LLM-
as-a-Judge could become a new evaluation stan-
dard. However, existing work either focuses on
evaluating a single closed-source LLM or broader
qualitative assessments. Given concerns about the
robustness and reliability of LLM judgments, we
introduce a diverse evaluation framework that in-
cludes adversarial scenarios to probe potential bi-
ases, limitations, and inconsistencies in model judg-
ments. Additional related work details are provided
in Appendix A.

3 Methodology

3.1 Problem Statement

Human annotation presents challenges in terms of
time duration and scalability. To address these lim-
itations, this paper investigates the feasibility of
using LLMs as automated judges. We benchmark
both medically fine-tuned and general-purpose
LLMs on their alignment with human annotators
when evaluating a patient-facing QA dataset anno-
tated across eight qualitative metrics. Additionally,
to enhance the diversity of the evaluation set, we
generate negative examples tailored to each met-
ric, allowing for a more comprehensive analysis of
LLM judgment and potential biases.

3.2 Dataset

To evaluate the alignment of LLMs with human an-
notators for patient-facing QA, we sought a dataset
that not only contain patient-facing QA pairs but
are also pre-annotated. We leverage our previous
work (Diekmann et al., 2025) that provides two
relevant annotated datasets in this context: TREC
LiveQA 2017 (Ben Abacha et al., 2017) and the
CDC subset of MedQuAD (Nguyen et al., 2023).

For this study, we focus on the MedQuAD
dataset. MedQuAD presents significantly simpler
and more concisely phrased questions (average
question length of 54.59 characters) compared to
TREC LiveQA (average question length of 239.94
characters). This characteristic is particularly ad-
vantageous when using LLMs as evaluators, as
longer and more complex questions may introduce
challenges in judgment responses, potentially con-
suming a large portion of the context window. By
selecting a dataset with shorter and more straight-
forward questions, we aim to minimize these con-
straints and improve the reliability of our evalua-
tions of LLM-as-a-Judge.

Diekmann et al. (2025) used 270 QA pairs in
MedQuAD sourced from the CDC website. Each
question was answered by four different LLMs:
Meditron-7B (Chen et al., 2023), PMC-LLama
13B (Wu et al., 2023), Me-LLama 13B (Xie et al.,
2024), and Meta-Llama-3-8B-Instruct (AI@Meta,
2024). This resulted in a total of 1,080 generated
model answers. In our previous study (Diekmann
et al., 2025), each of these responses was annotated
by a single medical doctor across eight qualita-
tive metrics, adapted from (Singhal et al., 2023)
and (Finch and Choi, 2020): Scientific Consensus,
Inappropriate and/or Incorrect Content, Missing
Content, Extent of Possible Harm, Likelihood of
Possible Harm, Possibility of Bias, Empathy, and
Grammaticality. Each metric was assessed using a
predefined categorical scale with two to three sever-
ity levels. For example, Scientific Consensus was
categorized as No Consensus, Opposed to Consen-
sus, or Aligned with Consensus. This structured
annotation process allowed for a standardized and
granular evaluation of model-generated answers.
The LLM responses and annotations were publicly
available on GitHub.1

To expand upon the previously generated anno-
tations (i.e., only a single annotator was used for
MedQuAD responses) and improve ground truth
reliability, we introduced an additional layer of hu-
man evaluation. Three additional annotators with
clinical or public health training—two holding MD
degrees and one holding an MBBS—each reviewed
720 responses. The questions were assigned in a
round-robin fashion to ensure that each sample
received two additional independent annotations.
This resulted in a total of three annotations per re-
sponse, thereby strengthening the reliability of the
ground truth labels.

3.3 Model Selection
Models were selected based on prior work in LLM-
as-a-Judge research, ensuring coverage of both
general-purpose and medically fine-tuned models.
The chosen models include Meta-Llama-3-70B-
Instruct (AI@Meta, 2024), Llama3-OpenBioLLM-
70B (Ankit Pal, 2024), Prometheus 2 (Kim et al.,
2024), Llama3-Med42-8B (Christophe et al., 2024),
and Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024).
These models were selected to assess how well
different types of LLMs align with human anno-
tations, particularly in the context of evaluating

1The annotation dataset was downloaded from https://
github.com/yella1603/LLM-Safety-For-PatientQA.
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patient-facing QA. All models were downloaded
from Hugging Face and evaluated locally. Exper-
iments were conducted using an NVIDIA H100
Tensor Core GPU or an NVIDIA Titan RTX GPU
to ensure efficient execution and evaluation across
all selected models.

3.4 LLM-as-a-Judge Process
Each model was prompted to evaluate every sam-
ple in the dataset across all eight qualitative met-
rics, selecting one of the predefined categorical
labels per metric. Since some metrics are inher-
ently related (e.g., Missing Content and Extent of
Possible Harm), all judgments for a given sample
were generated in a single pass to ensure internal
consistency.

Our prompting approach closely followed prior
work but required iterative refinement for some
models. This process involved manual trial and
error to tune prompt phrasing and formatting until
the models reliably produced valid categorical out-
puts. No held-out validation set was used; instead,
prompt performance was assessed qualitatively dur-
ing development. Notably, Prometheus 2 outputs
values on a 1–5 Likert scale, which did not directly
align with our categorical labels (typically two or
three classes). To reconcile this, we implemented
a threshold-based mapping strategy that converted
Likert responses to the corresponding predefined
categories.

For all models, the prompt included the ques-
tion and the previously generated model answer
but excluded the reference answer. This ensured
that model judgments relied solely on their own
knowledge and reasoning rather than comparison-
based scoring. Appendix B contains an example of
the final prompt.

3.5 Adversarial Questions
While the primary dataset provides a structured
evaluation framework, it may not fully capture
edge cases where LLM judges default to overly
generic or overly lenient outputs. To address this,
we introduced an adversarial question set designed
to probe model robustness—specifically in the di-
mension of Scientific Consensus. This metric was
chosen because it offers relatively objective correct-
ness criteria, making it more suitable for controlled
adversarial testing than more subjective axes like
Empathy.

We generated 35 adversarial questions using
ChatGPT, with the goal of constructing samples

that, under proper evaluation, should be classified
in the most severe category for Scientific Consen-
sus. Using a powerful LLM as the adversarial
generator (or "attacker") is a common practice in
stress-testing safety evaluators (Ness et al., 2024;
Jones et al., 2023). These adversarial questions
were deliberately subtle and designed to require
non-superficial medical reasoning to identify as
misaligned with consensus.

Our approach involved generating answers that
are specifically opposed to scientific consensus
while maintaining surface plausibility to challenge
automated evaluation systems. The key insight
is that effective adversarial examples in medical
domains must balance factual incorrectness with
believability—answers that are obviously wrong
would not effectively test model robustness, while
answers that are too subtle might not constitute
clear evaluation failures. We focused on creating
systematic errors in four critical areas: pathogen
identification (e.g., misclassifying parasitic infec-
tions as viral), treatment recommendations (e.g.,
suggesting antibiotics for parasitic conditions), di-
agnostic methods (e.g., proposing inappropriate
testing procedures), and risk factor assessment
(e.g., misidentifying vulnerable populations).

The generation prompt was: “Generate answers
to CDC medical questions that are specifically op-
posed to scientific consensus but sound plausible
enough to potentially fool an LLM judge. The
answers should contain factually incorrect med-
ical information that requires specialized medical
knowledge to identify as wrong, while remaining
detectable by human experts. Focus on creating
subtle errors in pathogen identification, treatment
recommendations, diagnostic methods, and risk
factors that an automated system might miss but a
qualified reviewer would catch.”

3.6 Evaluation
For the original generated responses, we measure
LLM judge alignment with human annotators by
treating human annotations as the ground truth
and evaluating the model’s accuracy in aligning
with human judgments. Each question is annotated
by three human annotators (1 from the previous
dataset and 2 of our 3 medical annotators). When
there is disagreement, we use the median value as
the ground truth. Accuracy is then calculated as the
proportion of cases where the LLM judge’s evalua-
tion matches this ground truth. For the adversarial
questions, we measure the percentage of correctly

219



classified questions from the most severe category.

4 Results

4.1 LLM-judge to human annotation
alignment

For inter-annotator agreement, at least two annota-
tors agreed in 95.8% of cases, while full agreement
among all three annotators occurred in 66.3% of
cases (see Appendix C for details). Table 1 presents
the accuracy of various LLM judges in aligning
with human annotations across different evaluation
axes. We also summarize the mean performance
across the five LLMs.

Across all evaluated criteria, we observe varying
degrees of alignment between LLM judges and hu-
man annotations. Models generally achieve high
accuracy in Scientific Consensus, Bias, and Gram-
maticality, with scores consistently above 0.96. In-
appropriate Content is also relatively well-aligned,
with models averaging 0.95. However, Empathy
remains a significant challenge, with all models
struggling to match human judgments, achieving
an average accuracy of just 0.49. Missing Content
and Extent of Harm also show substantial varia-
tion, indicating inconsistencies in how models as-
sess completeness and potential risks. Interestingly,
Likelihood of Harm, despite having a relatively
high mean accuracy of 0.79, exhibits notable dif-
ferences across models, suggesting inconsistencies
in judgment.

These findings align with prior research while
revealing domain-specific patterns. The high align-
ment in factual assessments mirrors Kanithi et al.
(2024)’s observations, while our lower alignment
in Empathy extends Szymanski et al. (2024)’s find-
ings on LLM limitations in specialized contexts.
Our results are positioned between their 60-64%
agreement in mental health domains and the 86%
found in general contexts (Zheng et al., 2023), high-
lighting medical safety evaluation’s unique chal-
lenges.

4.2 Adversarial questions results

Overall, all models performed well in classifying
samples as "Opposed to Consensus," reinforcing
confidence that models can accurately assess and
differentiate between consensus-aligned and non-
aligned responses. This suggests that models are
not simply defaulting to repetitive judgments influ-
enced by dataset imbalances.

Figure 1 shows the only adversarial question

Figure 1: Example of adversarial question failure.

where models failed. This response is incorrect be-
cause Kyasanur Forest Disease (KFD) is not trans-
mitted through dairy products, yet the error was
not flagged. This makes it a particularly strong ad-
versarial test: the mention of "unpasteurized milk"
creates a misleading but familiar association, as
many well-known zoonotic diseases (e.g., brucel-
losis, Q fever) spread this way (Sebastianski et al.,
2022).

5 Discussion

These findings raise important considerations for
the feasibility of LLMs as replacements for hu-
man annotators in medical QA evaluation. While
LLMs offer efficient and scalable assessments in
categories with well-defined criteria, they continue
to struggle with subjective judgment tasks. As such,
fully replacing human annotation with LLM-based
evaluation may not yet be viable, particularly in
complex medical scenarios where safety and nu-
ance are paramount.

A hybrid evaluation framework may offer a prac-
tical alternative. For instance, LLMs could act as
first-pass filters—identifying potentially harmful
or low-quality responses—while human experts
provide final review. This approach combines the
scalability of automated systems with the oversight
necessary for trustworthy medical assessment.

While certain models show strong alignment
with human annotators on objective metrics like
scientific consensus and grammaticality, categories
such as Empathy and Extent of Harm exhibit in-
consistent performance. The highly skewed dis-
tribution of labels, particularly for critical safety
categories like bias and inappropriate content, lim-
its our ability to assess whether LLM evaluators
can reliably detect these issues when they actu-
ally occur. Additionally, the reliance on only three
human annotators may be insufficient for establish-
ing robust ground truth on subjective dimensions
where human judgment naturally varies. We also
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Meta Llama 3 70B

OpenBioLLM

Prometheus 2

Llama3-M
ed42-8B

Mixtral-8x7B

Average
StDev

Scientific Consensus 0.980 0.990 0.980 0.950 0.980 0.976 0.015
Inappropriate Content 0.960 0.970 0.960 0.950 0.930 0.954 0.015
Missing Content 0.790 0.890 0.790 0.810 0.130 0.682 0.311
Extent of Harm 0.910 0.570 0.910 0.700 0.410 0.700 0.217
Likelihood of Harm 0.930 0.570 0.930 0.740 0.760 0.786 0.151
Bias 0.980 0.980 0.980 0.970 0.920 0.966 0.026
Empathy 0.490 0.300 0.490 0.540 0.610 0.486 0.115
Grammaticality 0.990 0.990 0.990 0.990 0.990 0.990 0.000

Table 1: Accuracy of LLM-as-a-Judge Evaluation on MedQuAD.

observed that some models may overestimate po-
tential harm, while others err on the side of under-
estimation—an important consideration in patient
safety contexts. Future work should prioritize col-
lecting more balanced datasets with adequate rep-
resentation of problematic content and expand the
human annotation pool to better capture the range
of human perspectives on subjective evaluation cri-
teria. These inconsistencies also suggest that ex-
ploring targeted approaches such as fine-tuning on
clinical communication data or incorporating struc-
tured reasoning frameworks to better align LLM
assessments with expert judgment.

Moreover, our study is limited to open-source
models due to access constraints. Incorporating
closed-source models such as GPT-4 or Claude
would provide a more complete picture of cur-
rent capabilities, especially since such models are
widely deployed in real-world applications. Future
work should benchmark these systems within the
same evaluation framework.

Finally, while we benchmark LLM alignment
with human annotation using static prompts, it
remains underexplored how improved prompting
strategies, few-shot learning, or ensemble meth-
ods might enhance model reliability. Investigating
these directions may help determine whether LLMs
can function as consistent and unbiased evaluators
in safety-critical medical AI systems.
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Role Prompt
System You are an expert medical evaluator. Rate medical answers using specific criteria and respond

only with the ratings in brackets [].
User Question: {question}

Generated Answer: {generated_answer}
Evaluate each criterion. For each, choose exactly one option from the given choices and respond
with it in brackets [].
Scientific Consensus: No consensus / Opposed to consensus / Aligned with consensus
Inappropriate/Incorrect Content: Yes great clinical significance / Yes little clinical significance
/ No
Missing Content: Yes great clinical significance / Yes little clinical significance / No
Extent of Possible Harm: Death or severe harm / Moderate or mild harm / No harm
Likelihood of Possible Harm: High / Medium / Low
Possibility of Bias: Yes / No
Empathy: High empathy / Moderate empathy / Lack of empathy
Grammaticality: Yes – free of errors / No – one or more errors are present

Table 2: Example prompt used for evaluation.

Metric Overall α Pairwise α Values

A-B A-C A-D B-C B-D C-D

Scientific Consensus 0.033 0.034 0.021 0.043 0.011 0.002 0.006
Inappropriate Content 0.066 0.055 0.025 0.021 0.080 0.014 0.065
Missing Content 0.127 0.008 0.013 0.106 0.004 0.083 0.159
Extent of Harm 0.266 0.008 -0.001 0.294 0.049 0.092 0.293
Likelihood of Harm 0.183 0.007 0.001 0.190 0.053 0.046 0.202
Bias 0.041 0.029 0.036 0.033 0.001 0.001 0.002
Empathy 0.440 0.001 0.610 0.101 0.523 0.058 0.346
Grammaticality 0.016 -0.001 0.007 0.033 -0.000 0.001 0.003

Table 3: Krippendorff’s alpha inter-annotator agreement

revealed that while GPT-4 was the best closed-
source model and Qwen2.5-7B-Instruct led among
open-source models, all models showed significant
room for improvement in human alignment, with
none exceeding 62% alignment scores.

In a large-scale empirical study across 20 NLP
evaluation tasks, Bavaresco et al. (2024) found
that LLM-as-a-Judge performance varies substan-
tially across models. Their work showed that while
GPT-4o ranked highest, open-source models like
Llama-3.1-70B and Mixtral 8x22B performed com-
petitively and occasionally outperformed GPT-4o
on specific assessment types. Interestingly, they
did not observe systematic improvements when
attempting to optimize prompting through chain-
of-thought strategies. Their evaluation of medical
safety used a risk-graded labeling scheme to clas-
sify the seriousness of medical inputs and appropri-
ateness of responses.

Szymanski et al. (2024) investigated limitations
of the LLM-as-a-Judge approach in medical fields.

Using the AlpacaEval framework with GPT-4 as
judge, they found relatively low agreement levels
of 60% in mental health and 64% in dietetics do-
mains compared to subject matter expert (SME)
agreement rates of 72% and 75% respectively. In-
terestingly, when using lay users instead of ex-
perts, agreement rates between lay users and LLMs
reached 80% in both domains, suggesting that ex-
pert "personas" may actually worsen performance
in specialized contexts.

In the context of evaluating medical safety, Han
et al. (2024) introduced MedSafetyBench, which
uniquely focused on the safety of LLMs in medical
domains. Their work defined "medical safety" and
created a dataset of harmful requests paired with
safe responses. They employed GPT-3.5 to rate
the extent of compliance with harmful requests on
a 1-5 scale, finding that medical LLMs tended to
comply with harmful requests more frequently than
general LLMs.

Kanithi et al. (2024) proposed MEDIC, a frame-
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Metric Low/None (%) Moderate (%) High Severity (%)

Scientific Consensus 95.3% 4.6% 0.1%
Inappropriate Content 79.0% 18.6% 2.4%
Missing Content 85.9% 10.4% 3.7%
Extent of Harm 99.2% 0.8% —
Likelihood of Harm 100.0% — —
Bias 100.0% — —
Empathy 96.4% 3.2% 0.4%
Grammaticality 99.8% 0.2% —

Table 4: Percentage distribution of gold labels across all eight evaluation metrics. Labels were grouped into severity
levels for interpretability.

work designed to evaluate LLMs in clinical ap-
plications. MEDIC encompasses five dimensions:
medical reasoning, ethical concerns, data under-
standing, in-context learning, and clinical safety.
Their approach used three LLM judges (GPT-4o,
Llama3-70b-Instruct, and Prometheus-2-8x7b) to
evaluate responses across metrics including rele-
vance, safety, and clarity. They found high align-
ment between judges (up to 78.23% between GPT-
4o and Prometheus), with Prometheus demonstrat-
ing particularly strong correlations with clinician
evaluations despite a slight positive bias.

Similarly, Krolik et al. (2024) evaluated whether
LLMs can be leveraged for automated medical
Q&A evaluation. Using ChatGPT-4o as an indepen-
dent judge, they assessed metrics such as relevance,
succinctness, medical correctness, hallucination,
completeness, and coherence across 94 assessment
sets. Their study included ground truth in the eval-
uation prompt and refined the prompt by adding
examples and developing guidelines with expla-
nations, though it was limited by using only one
closed-source LLM and self-crafted datasets.

Zheng et al. (2023) directly evaluated the LLM-
as-a-Judge approach by comparing to human eval-
uations using MT-Bench (80 multi-turn ques-
tions) and Chatbot Arena (a crowdsourced plat-
form). They explored both pairwise comparison
and single-answer grading approaches, identify-
ing biases such as position bias, verbosity bias,
and self-enhancement bias. Their work found that
agreement between GPT-4 and humans reached
86%, exceeding agreement among humans them-
selves (81%), suggesting that the LLM-as-a-Judge
approach could become a new standard in future
benchmarks despite using only a limited selection
of models.

B Additional Methodology Details

Table 2 contains an example of the prompt used
for model-based evaluation. Each model was
prompted to assess generated answers across eight
qualitative metrics, selecting one of the predefined
categorical labels per criterion. The structured
prompt format ensured consistency across all mod-
els and minimized ambiguity in the evaluation pro-
cess.

C Additional Annotation Details

Table 3 contains further details on inter-annotator
agreement according to Krippendorff’s Alpha (Cas-
tro, 2017), which was used due to its ability to
handle multiple annotators and incomplete anno-
tation coverage. The relatively modest agreement
scores observed for most metrics should be inter-
preted within the context of class distribution. For
instance, Grammaticality shows particularly low
agreement (0.016 overall) not necessarily because
annotators disagreed substantially, but because the
dataset is highly skewed toward grammatically cor-
rect responses—a known characteristic of large
language models. In such cases with high preva-
lence of one class, even small disagreements on
the rare cases can dramatically reduce Krippen-
dorff’s Alpha values, as the coefficient becomes
more sensitive to disagreements on rare categories.
This statistical phenomenon affects several of our
metrics where one category dominates (such as
Bias and Inappropriate Content), potentially under-
stating the actual level of operational agreement
between annotators

Table 4 summarizes the details of our annotated
datasets in terms of each of the categories. Notably
there were very few cases where likelihood of harm
and bias only came from a single category.
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Abstract

Biomedical Named Entity Recognition
presents significant challenges due to the
complexity of biomedical terminology and
inconsistencies in annotation across datasets.
This paper introduces SRU-NER (Slot-based
Recurrent Unit NER), a novel approach
designed to handle nested named entities while
integrating multiple datasets through an effec-
tive multi-task learning strategy. SRU-NER
mitigates annotation gaps by dynamically
adjusting loss computation to avoid penalizing
predictions of entity types absent in a given
dataset.1 Through extensive experiments,
including a cross-corpus evaluation and
human assessment of the model’s predictions,
SRU-NER achieves competitive performance
in biomedical and general-domain NER tasks,
while improving cross-domain generalization.

1 Introduction

Named entity recognition (NER) is a crucial step in
several natural language processing pipelines, such
as information extraction, information retrieval,
machine translation, and question-answering sys-
tems (Sharma et al., 2022). Given unstructured
text, the task of NER is to identify and classify text
spans according to categories of interest. These cat-
egories are defined depending on the downstream
application and can range from general (people,
locations, organizations) to specific domains such
as biomedical entities (genes, diseases, chemicals).

In particular, Biomedical Named Entity Recog-
nition (BioNER) is challenging due to the com-
plexity of biomedical nomenclature. Morphologi-
cally, these entities can contain Greek letters, digits,
punctuation (α-tubulin, IL-6), form variations (in-
hibitor vs. inhibitory), and compound terms (tumor
necrosis factor-alpha vs. TNF-α). Semantically,
polysemy (e.g., p53 referring to a gene, protein,

1Code is publicly available at https://github.com/
Priberam/sru-ner.

or condition) adds ambiguity. These challenges
make human annotation costly, leading to BioNER
datasets that are smaller and often focus on a lim-
ited number of entity types (Greenberg et al., 2018).

One approach to addressing data scarcity while
building a BioNER model is to leverage multiple
datasets, each annotated with a specific subset of
entities. However, simply training a single model
on the union of all available datasets assumes that
every entity type is consistently annotated across
all training instances, which is not the case. This
leads to a high prevalence of false negatives, as en-
tities that are labeled in one dataset may be entirely
ignored in another. On the other hand, training sep-
arate models for each dataset fails to exploit shared
statistical patterns across datasets and introduces
the challenge of resolving conflicting predictions at
inference time (Greenberg et al., 2018). Therefore,
an effective strategy must balance learning from
multiple sources while accounting for missing an-
notations and inconsistencies in labeling schemes.

Our contributions are three-fold: (i) we intro-
duce SRU-NER (Slot-based Recurrent Unit NER),
a model which is able to solve nested NER through
generating a sequence of actions; (ii) we propose an
effective multi-task training strategy to handle the
complex challenges of leveraging multiple NER
datasets in a single model; and (iii) we show how
the SRU-NER can handle multiple datasets on a sin-
gle shared network through multiple experiments,
including cross-corpus evaluations and a human
evaluation on corpora of disjoint entity sets.

2 Related work

Named entity recognition has evolved significantly
in the last decades. Early systems relied on rule-
based methods, which were interpretable but lacked
flexibility. The introduction of machine learning en-
abled more adaptable approaches, further enhanced
by deep learning techniques that captured complex
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Figure 1: Action selection process for the sentence given in section 3.1, at time step t = 9. The gold nested
mentions are "NF - chi B site", "chi B", of type DNA (D), and "NF - chi B" of type Protein (P). To compute the
logits u(9), the model leverages the logits of the previous time steps, action embeddings and word embeddings.

linguistic patterns. Recently, Transformer-based
architectures have set new benchmarks, driving
significant advancements in NER performance (Li
et al., 2022; Keraghel et al., 2024). In the CoNLL-
2003 dataset (Tjong Kim Sang and De Meulder,
2003), a benchmark for NER tasks, performance
has improved substantially, with F1 scores that
have soared above 94% (Wang et al., 2021). The
same phenomenon is seen for the GENIA cor-
pus (Kim et al., 2003), a nested BioNER dataset,
with test F1 scores exceeding 80% (Yu et al., 2020;
Tan et al., 2021; Shen et al., 2021, 2022).

To tackle the proliferation of BioNER datasets,
several studies have turned to multi-task learning
(MTL; Park et al., 2024). Traditional deep learn-
ing NER models trained on a single dataset are
referred to as single-task models, as they specialize
in identifying mention spans for the specific entity
types annotated within their training data. Single-
task models often underperform on out-of-domain
settings. In contrast, MTL frameworks leverage
multiple datasets, each corresponding to a differ-
ent task, allowing the model to learn from diverse
sources. The fundamental premise is that differ-
ent datasets share information which can be jointly
leveraged to encourage the learning of more gener-
alized representations, hence improving a model’s
robustness (Mehmood et al., 2019; Li et al., 2022).

MTL learning frameworks can be categorized
into two types, depending on which modules are
shared across tasks: (i) those that share the encod-
ing layers while maintaining task-specific decoding
layers (Crichton et al., 2017; Wang et al., 2018;
Khan et al., 2020), and (ii) those that share all lay-

ers (Greenberg et al., 2018; Huang et al., 2019;
Banerjee et al., 2021; Luo et al., 2023; Moscato
et al., 2023). SRU-NER resembles models of type
(ii), which share its decoding layers across all tasks.
Typically, these models have a natural problem with
false negatives, as the unified decoder may strug-
gle to distinguish task-specific entity boundaries
and labels, leading to the omission of valid entities.
Our approach avoids this issue through an effective
multi-task learning strategy.

3 Effective Multi-Task Learning for
Named Entity Recognition

The proposed model, SRU-NER, solves the task of
nested named entity recognition similar to that of
a transition-based parser (Dyer et al., 2015; Mar-
inho et al., 2019). Given a sequence of words
S = [w1, w2, . . . , wN ], the model generates a se-
quence of actions. At each time step, the actions
are chosen depending on the words of the sentence
and on the previously chosen actions. At the end
of the parsing procedure, the complete sequence of
actions is decoded into mentions.

3.1 Action encoding

Consider the system is trained to recog-
nize mentions of entity types belonging to
E = {e1, e2, . . . , eM}. Let AE stand for the
system’s 2M + 2 possible actions: two special
tokens (SH and EOA) and, for each entity type ei, a
pair of actions denoted TR(ei) and RE(ei). TR(ei),
short for "transition to entity ei", indicates the
start of a mention of type ei; one says that this
action opened a mention of type ei. RE(ei), short
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for "reduce of entity ei", indicates the end of the
mention of type ei that was opened more recently;
one says that a mention was closed by this action.
SH, short for "shift", indicates that the input pointer
should move to the next token; therefore, there is
one SH for each word in the sentence. Finally, EOA
is the end action.

These actions encode nested mentions effec-
tively through the order in which they are chosen.
If a mention of type ek starts at the word wi and
ends at the word wj , TR(ek) appears before the
SH representing the i-th word, and RE(ej) appears
after the SH representing the k-th word; if two men-
tions start at the same word, the TR() of the longest
mention appears first; conversely, if two mentions
end at the same word, the RE() of the shortest men-
tion appears first. Consider the following sentence
from the GENIA dataset (Kim et al., 2003):

a defective NF - chi B site was completely . . .

Protein DNA

This sentence has nested mentions, e.g. the men-
tion "NF - chi B" of type Protein is contained in
the mention "NF - chi B site" of type DNA. The
action encoding of the sentence with its mentions
is: SH → SH → TR(DNA) → TR(Protein) → SH
→ SH → TR(DNA) → SH → SH → RE(DNA) →
RE(Protein) → SH → RE(DNA) → SH → SH →
. . .→ EOA.

3.2 Overall architecture

Using the previous notation, suppose one wants to
detect mentions of E in the sentence S. The model
consists of three consecutive steps: the encoding
of S into a dense contextual embedding matrix S,
the iterative action generation procedure, and the
decoding of the chosen actions into the mentions
present in the sentence.

Contextual embeddings For the first step, S
is passed through a BERT-like encoder to gen-
erate a matrix of contextual embeddings. For
each word wi, its dense embedding, denoted by
wi, is obtained by max-pooling across the em-
beddings of its subwords. In this way, the en-
coded sentence S is a tensor of size (N + 2, denc),
S =

[
CLS, w1, w2, . . . , wN ,SEP

]
, where denc is

the encoder embedding dimension, CLS (respec-
tively SEP) is the embedding of the classification
(respectively, separator) token of the encoder.

Action generation Given S, the model enters an
iterative action selection process, where at each
time step t, logits are computed for each possible
action in AE.2 Figure 1 shows a schematic repre-
sentation of a time step of the cycle.

More concretely, define u(t)ai to be the logit value
of action ai ∈ AE for time step t. Suppose the
system has already computed these values for the
first T ≥ 1 time steps, and is therefore about to
compute them for time step t = T + 1. According
to the last section, the SH action corresponds to
advancing a token in the sentence S. Hence, define

p(t) =
∑

t0 ≤ t

1

(
arg max

ai∈AE

(
u(t0)ai

)
= SH

)
, (1)

where 1 stands for the indicator function. p(t)

is therefore the number of tokens that have al-
ready been parsed at a previous time step t, for
1 ≤ t ≤ T . Lastly, define, for each 1 ≤ t ≤ T ,

Ω(t) =
∑

ai∈AE

β(t)
ai ai, (2)

where ai is a trained embedding of size denc and

β(t)
ai =

{
u
(t)
ai if u(t)ai ≥ u

(t)
SH

0 otherwise

In other words, Ω(t) is a weighted embedding of
the actions chosen at time step t, where actions
with logits lower than the logit of SH are excluded.

Let u(T+1) be the vector of logits u
(T+1)
ai over

ai ∈ AE. These are computed as

u(T+1) = MLP
(
f
(
p(T ),Ω(T )

))
, (3)

where the MLP is composed of a dropout layer,
a fully-connected layer, a tanh activation, and a
linear layer with output nodes corresponding to
each action in AE. The input of this MLP is

f
(
p(T ),Ω(T )

)
= Sp(T )+1 ⊕ SRU

(
Ω(T ) , p(T )

)
,

i.e. the concatenation of the embedding of the next
token, Sp(T )+1, and an embedding of the last state

2Unlike token-based labeling approaches, the total number
of time steps is not determined a priori, although always
bounded below by N , the number of words in S.
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of a "processed actions memory". This memory
holds an action history and computes weighted em-
beddings at each call by leveraging a set of internal
latent representations. This module is refered to
as the Slot-based Recurrent Unit (SRU), and is
described in section 3.3.

In order to make the first prediction, u(1), the
system is initialized by setting p(0) = 0, and Ω(0) to
be another trained embedding of size denc, denoted
by BOA.3 The action generation cycle terminates
when a time step t = Tfinal is reached such that

Sigmoid
(
u
(Tfinal)
EOA

)
> 0.5 . (4)

Decoding At the end of the action generation cy-
cle, the output logits from all time steps are passed
through a sigmoid function. This produces a set of
independent probability scores for each action in
AE, from which mention spans are extracted. The
decoder module maintains separate stacks of open
spans for each entity type in E, allowing spans of
different types to overlap.

The decoding process iterates through the list of
probability scores until reaching a time step where
the highest-scoring action is EOA4. Before such a
time step is reached, the decoder proceeds follow-
ing two rules: (i) if the highest-scoring action is SH,
a pointer that counts the number of parsed words is
incremented; and (ii) if the highest-scoring action
is a TR() or a RE(), the entity mention stacks are
updated. In the latter case, only actions with proba-
bility scores above 0.5 are considered. Transition
actions open new spans, while reduce actions close
the most recent span of the corresponding entity
type, as discussed in section 3.1.

3.3 Slot-based Recurrent Unit
The Slot-based Recurrent Unit (SRU) is a stateful
function that, at each time step, takes a pair of
inputs, updates its internal state, and produces an
output embedding.

At each time step t, the SRU updates its internal
state according to

C(t+1) = m
(
C(t), Ω(t), p(t)

)
,

where C(t) ∈ RQ×d is the SRU’s internal state
matrix, Ω(t) ∈ Rd is an input vector, and

3In this text, a zero-indexing notation is adopted for tensors,
and so Sp0+1 = w1.

4This stopping condition was shown to provide better re-
sults empirically, despite being different to that of the action
generation procedure, present in equation (4).

Figure 2: SRU unit at time step t. Its internal state
is updated depending on its current state C(t) and the
weighted action embeddings Ω(t). This stateful function
also leverages a set of latent representations. It produces
an output embedding h(t+1) by applying an attention
mechanism to the updated state.

p(t) ∈ {0, 1, . . . , Q− 1} is an input integer. It also
produces an output embedding h(t+1) ∈ Rd via

h(t+1) = g
(
C(t+1), p(t)

)
.

A schematic representation is present in Figure 2.
Q and d refer to the number of rows (or slots) in
the internal state matrix and the hidden dimension
of the input and output embeddings, respectively.

The function m updates C(t) by summing the
input vector Ω(t) to its p(t)-th row, i.e.

m
(
C(t), Ω(t), p(t)

)
:= C(t) + δp(t)

(
Ω(t)

)T

where δp(t) ∈ RQ is a one-hot vector with 1 in its
p(t)-th coordinate.

The output embedding h(t) ∈ Rd is obtained via
the function g, defined as

g
(
C(t+1), p(t)

)
:= wT

(
C(t+1)D1

)

where D1 is a trained diagonal matrix of size d and
w ∈ RQ are weights computed via an attention
mechanism inspired by Ganea and Hofmann, 2017,
detailed as follows. First, C(t+1) is enhanced by
adding positional information,

C
(t+1)
pos = α C(t+1) +Dropout

(
P
(
p(t)
))

(5)

where α is a trained scaling parameter, and
P
(
p(t)
)
∈ RQ×d are positional embeddings.5

5These positional embeddings are relative, in the sense
that each row of P

(
p(t)

)
is selected from a table of trained

embeddings based on its distance to the row with index p(t).
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Next, a set of J trained latent embeddings of size d
are used to compute an attention score for each row
in C(t+1). Defining L ∈ RJ×d to be the matrix
of latent embeddings, an attention score matrix is
computed by

A = Dropout(L) D2

(
C

(t+1)
pos

)T
,

where D2 is a trained diagonal matrix of size d. An
attention score for each slot is obtained by setting
s = max

j
(Ajq) for q ∈ {0, 1, . . . , Q− 1}. Finally,

the scores s are normalized through a softmax to
get the weights w ∈ RQ.

The SRU module is used at each action gen-
eration time step to compute an embedding that
models the current state of a "processed actions
memory" stack. For each time step t, the input
integer p(t) is the one defined by equation (1), and
the input vector Ω(t) is the one defined by equation
(2). Furthermore, d is set to be the encoder em-
bedding dimension denc, the number of slots to be
Q = N+2, and the number of latent variables J to
be an integer multiple6 of |AE| = 2M + 2. The in-
ternal state matrix is initialized by setting C(0) = S.
Taking this choice of initialization into account, and
referring back to equation (3), for the computation
of h(T+1) = SRU

(
Ω(T ) , p(T )

)
, all the slots of the

updated internal state matrix C(T+1) are filled with
the embeddings of the encoded sentence S. In ad-
dition, a history of the previously chosen actions
is present in C(T+1) since, at each call of the SRU
module in previous time steps 0 ≤ t ≤ T , the
weighted action embeddings Ω(t) of equation (2)
were summed to the slots pointed to by p(t).

4 Multi-task training strategy

Suppose the model is trained on an ensemble of K
datasets D = {Di}Ki=1, where each dataset Di is
annotated with spans of entity types Ei. In order to
account for differences in labeling schemes, during
training, the entity types of distinct datasets are al-
ways considered to be distinct as well.7 Therefore,
the model is trained to recognize spans of entity
types in the disjoint union set Ê =

⊔K
i=1 Ei.

The training objective of the model is to mini-
mize the mean loss of the samples in a batch. Each
batch is constructed by randomly selecting samples

6For the experiments conducted, it was set to 2 or 10 (see
Table 12 in Appendix B).

7In practice, this is implemented by simply changing the
name of an entity type e ∈ Ei belonging to Di, to i_e in E.

from D. To ensure a balanced contribution from
all datasets, the probability of selecting a sample
from a given dataset is inversely proportional to
the total number of sentences in that dataset. The
total number of samples per epoch is the average
number of sentences in the datasets of D.

Let S be a sentence in the batch, coming from
dataset Di, and thus annotated with gold spans of
entity types Ei. The output of the action generation
cycle is a matrix

U =
(
u(t)ai

)
t=1, ... , Tfinal ; ai∈AE

,

where each row u
(t)
∗ contains the logits, for time

step t, over all actions AÊ associated with the dis-
joint union set Ê.8 To compute a loss value for U,
the following constraints are enforced:

i) on one hand, the model should be penalized
for failing to predict the TR() and RE() ac-
tions that correspond to the gold spans of the
entity types Ei, for which S is annotated; but

ii) on the other hand, the model should not be
penalized for predicting TR() and RE() ac-
tions of entity types in Ê \ Ei, which are not
annotated in S.

In practice, this strategy is applied as fol-
lows. The list of actions corresponding to the
gold annotations of sentence S (constructed as
detailed in section 3.1 and considering the dis-
joint entity type set Ê) is augmented to a ma-
trix G =

(
G

(t)
ai

)
∈ RTinitial×|AÊ| such that each row

G
(t)
∗ is a multi-hot vector representing a distinct

timestep t, with 1’s in the columns that correspond
to the gold actions. This conversion is done such
that the SH and EOA actions always occupy different
time steps, but TR() and RE() actions of different
entity types can coexist at the same time step. Then,
G is changed during the action generation cycle
by incorporating the probabilities of the model’s
decisions on TR() and RE() actions from other
datasets. More concretely, at time step t of the
cycle, for ai ∈ AÊ \ AEi , G

(t)
ai is set to be equal

to σ
(
u
(t)
ai

)
, where σ is the sigmoid function. In

addition, when G
(t)
SH = 1 and u

(t)
ai > u

(t)
SH for some

8At inference time, the action generation procedure halts
when the probability of the EOA action exceeds a threshold, as
described in section 3.2. However, during training, in order to
guarantee that all gold actions are considered, the cycle halts
only after all tokens have been parsed (i.e. shifted).
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Dataset SRU-NER Wang et al., 2018 Huang et al., 2019 Khan et al., 2020 Moscato et al., 2023Merged Disjoint

BC2GM 78.80 83.95 80.74 * 79.1 83.01 * 84.84
BC4CHEMD 90.42 92.05 89.37 * 87.3 — —
BC5CDR 89.37 90.26 88.78 * — 89.50 * ⋄
JNLPBA 72.15 76.00 73.52 * 83.8 72.89 * —
Linnaeus 88.82 — 83.9 — —
NCBI Disease 87.32 88.71 86.14 * 84.0 88.10 * 89.20

Average 84.48 86.63

Table 1: Micro-F1 scores of several multi-task models trained on subsets of an ensemble of six biomedical datasets.
For SRU-NER, scores are reported by considering two evaluation scenarios, Merged and Disjoint, as explained in
section 5.2. Best scores are bold, and second best scores are underlined. Symbol reference:
— : dataset was absent in training;
* : model was trained on both the training and development splits of the corpora;
⋄ : model was trained using only the ’Chemical’ annotations of BC5CDR, obtaining an F1 of 93.95; for the same
tag, SRU-NER gets an F1 of 93.77 on the disjoint evaluation and 93.18 on the merged evaluation.

ai ∈ AÊ \ AEi , that is, when the model is trying
to open/close a new span of an entity type of other
dataset Dj (j ̸= i), the value G

(t)
SH is changed to

σ
(
u
(t)
SH

)
. In this case, a one-hot vector is inserted

in G after G(t)
∗ , so that, on the next time step t+ 1,

G
(t+1)
SH = 1 and G

(t+1)
ai = 0 for all ai ∈ Ê \ {SH}.

This procedure ensures that G still reflects the orig-
inal gold annotations in the columns corresponding
to TR() and RE() actions of entity types in the
source dataset, but incorporates the model’s proba-
bilities for other actions. Then, by setting, for each
1 ≤ t ≤ Tfinal,

L(t) =− 1

|AÊ|
∑

ai∈AÊ

(
G(t)

ai log
(
σ
(
u(t)ai

))

+
(
1−G(t)

ai

)
log
(
1− σ

(
u(t)ai

)))

the total loss of the sample is computed as

L =
1

Tfinal

Tfinal∑

t=1

L(t) .

Given how G is constructed, this ensures the afore-
mentioned constraints i) and ii) on the loss function
are satisfied.

5 Experiments and Results

To evaluate the performance of the proposed archi-
tecture for the NER task, single-task experiments
were conducted on benchmarks datasets, specifi-
cally the English subset of CoNLL-2003 (Tjong
Kim Sang and De Meulder, 2003) and GENIA

(Kim et al., 2003). The model’s multi-task per-
formance is also assessed by training it with an
ensemble of six biomedical datasets that have been
extensively used in previous research. In order to
demonstrate the viability of SRU-NER for down-
stream applications, a model is evaluated in a cross-
corpus setting by replicating the experimental setup
of Sänger et al., 2024. Finally, two further experi-
ments are conducted to quantify the reliability of
the multi-task models’ predictions for entity types
that are not explicitly annotated in the test corpora,
providing a more comprehensive assessment of
their generalization capabilities.

The datasets used across the following sections
and respective experimental setup are described
in Appendix A. Training details can be found in
Appendix B. For evaluation purposes, a predicted
mention is considered a true positive if and only
if both its span boundaries and entity type exactly
match the gold annotation. Results are reported for
each dataset using mention-level micro F1 scores.

5.1 Single-task performance

The results of the two single-task models are pre-
sented in Table 2. The proposed model achieves
micro F1 scores of 94.48% on the CoNLL-2003
dataset, and 80.10% on the GENIA dataset. These
results are very close to state-of-the-art (SOTA),
demonstrating the competitiveness of SRU-NER in
both flat and nested NER scenarios. Nonetheless,
in contrast to our approach, the models presented as
SOTA were trained using both the training and de-
velopment splits of their respective datasets. This
difference in training data availability may con-
tribute to the observed performance gap, particu-
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larly on GENIA, where additional annotated data
could provide further benefits in capturing complex
biomedical terminology.

Dataset SRU-NER SOTA

CoNLL 94.48 94.6*, (Wang et al., 2021)
GENIA 80.10 81.53*, (Shen et al., 2023)

Table 2: Micro-F1 scores of single-task models on
benchmark datasets. The entity counts of the datasets
can be found in Table 7. The * symbol indicates that a
model was trained on both the training and development
splits of the corpus.

Dataset SRU-NER SOTA

BC2GM 85.43 85.48* (Sun et al., 2021)
BC4CHEMD 92.64 92.92* (Sun et al., 2021)
BC5CDR 90.61 91.90 (Zhang et al., 2023)
JNLPBA 77.12 78.93* (Sun et al., 2021)
Linnaeus 89.62 94.13 (Habibi et al., 2017)
NCBI Disease 89.25 90.04* (Sun et al., 2021)

Average 87.45

Table 3: Micro-F1 scores of single-task models trained
on the datasets used for the multi-task model described
in section 5.2. SOTA results are for single-task models.
The * symbol indicates the model was trained on a larger
training split.

5.2 Multi-task performance

In Table 1, we show the results of SRU-NER
trained on an ensemble {Di}6i=1 of six biomedi-
cal datasets, annotated for |∪i Ei| = 8 entity types.
Since there are entity types which are annotated
on more than one dataset (e.g. BC4CHEMD and
BC5CDR are both annotated with mentions of the
Chemical type), two evaluation scenarios are con-
sidered, that differ in how these type labels are
interpreted. Recalling that the model infers men-
tions with entity types in the disjoint union set
Ê = ⊔i Ei, given a sentence coming from the test
split of dataset Di of the ensemble, in the case of:

i) disjoint evaluation, the predicted spans of
types Ei ⊂ Ê are compared against the gold
ones, and any predicted span of type in Ê \Ei

is discarded;

ii) merged evaluation, the entity types of pre-
dicted spans are mapped to ∪i Ei, and the
spans whose mapped types do not also be-
long in Ei are discarded; the remaining spans
are compared against the gold ones.

An example of the predictions of the model on a
test sentence, together with which spans are used
to compute the metrics on the two evaluation sce-
narios is present in Figure 3.

Figure 3: Example of a sentence from the test split of
the BC5CDR corpus (Li et al., 2016), together with
gold spans and predicted spans as annotated by the
MTL model described in section 5.2. The model is
trained on six datasets, covering eight entity types
∪i Ei = {Chemical,Disease, . . .}. Notice that some
of these types are common to multiple datasets (namely,
’Chemical’, annotated on both the BC4CHEMD and
BC5CDR datasets; and ’Disease’, annotated on both
the BC5CDR and NCBI datasets). SRU-NER tags
spans with one of 11 possible types, built by adjoin-
ing the dataset name to the original type name, such
that Ê = {BC4_Chemical,BC5_Chemical, . . .}. In the
disjoint evaluation case, and since this sentence comes
from the BC5CDR corpus, metrics are computed by
considering only the spans whose types in Ê start with
the BC5 shorthand, resulting in one true positive, one
false positive and two false negatives. In the merged
evaluation case, spans whose types in Ê do not end with
’Chemical’ or ’Disease’ are discarded, and the remain-
ing spans have their types mapped to ∪i Ei by removing
the dataset identifier. With these spans, there are two
true positives, two false positives and one false negative
in the sentence.

Compared to previous MTL models, the pro-
posed model achieves the best or second-best F1
scores in the disjoint evaluation setting. These re-
sults are obtained without relying on task-specific
classification layers (Wang et al., 2018; Khan et al.,
2020) or training multiple single-task teacher mod-
els followed by knowledge distillation into a stu-
dent model (Moscato et al., 2023). Instead, a single
unified model learns each task directly from its
respective annotated dataset while preserving the
performance of other tasks. This approach enables
joint decoding, thereby eliminating the need for
post-processing steps to resolve span conflicts.

Table 3 presents F1 scores for single-task mod-
els trained on each dataset used in the multi-task
setting, alongside SOTA references. The results
demonstrate that the proposed model remains com-
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petitive in the single-task setting. The average
F1 score of the six single-task SRU-NER models
is 0.82 percentage points higher than the dataset-
average F1 of the multi-task SRU-NER model un-
der the disjoint evaluation setting. This aligns with
previous findings, which suggest that while multi-
task training improves model robustness across
datasets, it may lead to lower in-corpus perfor-
mance compared to single-task models (Yin et al.,
2024). To further investigate the generalization ca-
pabilities of the model, the next section presents an
evaluation in a cross-corpus setting.

Dataset Entity type SRU-NER Baseline

BioID Species 62.41 58.21
MedMentions Chemical 59.53 58.40

Disease 62.48 62.18
tmVar3 Gene 90.38 87.87

Average 68.70 66.67

Table 4: Mention-level F1 scores for the cross-corpus
experiment. SRU-NER was trained on an emsemble
of 8 biomedical datasets, and evaluated on 3 indepen-
dent corpora. Baseline refers to the scores obtained by
(Sänger et al., 2024). Best scores are in bold.

Training datasets Chemical Disease

Only BC5-Chemical 91.27 —
Only BC5-Disease — 85.41
Both 91.81 86.10

Table 5: Global prediction F1 scores on the test split of
BC5CDR of models trained on synthetic datasets. Best
scores are bold.

5.3 Cross-corpus evaluation
Table 4 presents the results of the proposed model
in a cross-corpus evaluation, replicating the exper-
imental setup of Sänger et al., 2024. The model
was trained on an ensemble of nine datasets cov-
ering five entity types and evaluated on three inde-
pendent corpora annotated for four of these types.
The results indicate that SRU-NER outperforms
the baseline by an average of 2.03%, with notable
improvements for the Species (4.2%) and Gene
(2.51%) entity types. These findings underscore
the robustness of the model and demonstrate its po-
tential for downstream applications. For reference,
in-corpus F1 scores are provided in Appendix C.

5.4 Evaluation of global predictions
The previous experiments evaluated the model’s lo-
cal prediction ability. Specifically, when the model

is trained on a collection {Di}Ki=1, where each
dataset Di was annotated for entity types Ei, its
performance was assessed on a test dataset Dtest
annotated with entity types Etest ⊆ Ej for some
j ∈ {1, . . . ,K}. However, the model generates
predictions for spans of all entity types in ∪i Ei

within Dtest. To evaluate its global prediction abil-
ity, it is necessary to test the model on a dataset
annotated with a superset of entity types spanning
multiple training datasets.

First, following the approach of Huang et al.,
2019, a synthetic dataset is constructed from the
BC5CDR corpus. The original training set is
randomly partitioned into two disjoint subsets:
one containing only Chemical annotations (BC5-
Chemical) and another containing only Disease
annotations (BC5-Disease). Additional details on
these synthetic datasets are provided in Appendix
A. Two single-task models are trained separately on
each subset, while a multi-task model is trained on
both. All models are evaluated on the original test
split of the BC5CDR corpus. The results, presented
in Table 5, demonstrate that the training strategy
outlined in section 4 effectively enables the model
to make accurate global predictions across entity
types from different training datasets.

Secondly, a multi-task model is trained on both
the CoNLL-2003 dataset and the BC5CDR dataset.
This approach results in a model capable of recog-
nizing six entity types: four from the general do-
main (LOC, MISC, ORG, PER) and two from the
biomedical domain (Chemical, Disease). To assess
the model’s ability to generalize across domains,
its predictions of general-domain entity types in the
test split of the BC5CDR dataset and, conversely,
its predictions of biomedical entity types in the
test split of the CoNLL dataset are evaluated. The
results of the multi-task model can be found in
Table 6 under the column SRU-NER-MTL. Since
gold annotations for these cross-domain predic-
tions are not available, the evaluation was con-
ducted manually by two human annotators. Pro-
vided with definitions of the entity types, they inde-
pendently assessed whether the model’s predictions
were correct. This human evaluation was also con-
ducted for the predictions of two single-task mod-
els: one trained on CoNLL-2003 and evaluated
on the BC5CDR test set (SRU-NER-CoNLL), and
another trained on BC5CDR and evaluated on the
CoNLL-2003 test set (SRU-NER-BC5). A compar-
ison between the single-task and multi-task models
reveals that multi-task SRU-NER is, on average,
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Entity SRU-NER-CoNLL SRU-NER-BC5 SRU-NER-MTL
P R F1 P R F1 P R F1

Chemical 24.71 87.76 38.57 — — — 75.00 9.18 16.36
Disease 25.25 83.33 38.76 — — — 88.46 38.33 53.49
LOC — — — 98.25 88.89 93.33 100.00 96.83 98.39
ORG — — — 80.00 80.00 80.00 86.36 71.25 78.08
PER — — — 94.44 94.44 94.44 100.00 22.22 36.36

Table 6: Human evaluation of the out-of-domain predictions made by three models. P stands for precision, R for
the simulated recall, and F1 for the F1 computed with the former two metrics. Details on how these metrics were
computed can be found in Appendix D.

25.4% more precise in identifying out-of-domain
spans. For instance, the single-task model trained
on biomedical entity types incorrectly classified
lead as a chemical in the CoNLL-2003 sentence:
"Indonesian keeper Hendro Kartiko produced a
string of fine saves to prevent the Koreans increas-
ing their lead." In contrast, the multi-task model
did not make this error. Further details on this
experiment are provided in Appendix D.

6 Conclusion

This work presents SRU-NER, a novel architecture
for Named Entity Recognition capable of handling
nested entities through a transition-based parsing
approach. The model integrates a Slot-based Re-
current Unit (SRU) to maintain an evolving repre-
sentation of past actions, enabling effective entity
extraction. Unlike traditional multi-task learning
approaches that rely on separate models for dif-
ferent entity types, SRU-NER employs a unified
learning strategy, allowing a single model to learn
from multiple datasets. This approach improves
adaptability to annotation inconsistencies and en-
hances generalization across domains.

Experimental results demonstrate that SRU-
NER achieves strong performance in both single-
and multi-task settings, with cross-corpus evalua-
tions and human assessments confirming the robust-
ness of its predictions. These findings highlight the
advantages of training a single multi-task model
for BioNER and suggest promising directions for
future research, including advancements in nested
entity recognition and domain adaptability.

Limitations

While the proposed SRU-NER architecture has
demonstrated effectiveness for named entity recog-
nition in general and biomedical domains, its per-
formance in other domains, such as legal or finan-
cial, was not evaluated. Furthermore, the general-

izability of the findings may be limited, as evalua-
tions on community-available biomedical datasets
may not fully capture the diversity of real-world
biomedical text. Finally, the assessment of global
prediction ability in a cross-domain scenario re-
lied on human annotators, introducing a degree of
subjectivity to the evaluation.

While the model achieves competitive results,
we note that no extensive hyperparameter search
was conducted. A more systematic tuning of hyper-
parameters could potentially yield further improve-
ments. Additionally, the training strategy presents
opportunities for refinement, notably in the sam-
pling strategy utilized within the multi-task learn-
ing framework.

Acknowledgments

This research was supported by the Portuguese
Recovery and Resilience Plan through project
C645008882-00000055 (i.e., the Center For Re-
sponsible AI).

References

Cecilia Arighi, Lynette Hirschman, Thomas Lemberger,
Samuel Bayer, Robin Liechti, Donald Comeau, and
Cathy Wu. 2017. Bio-id track overview. In BioCre-
ative VI Challenge Evaluation Workshop, volume
482, page 376.

Pratyay Banerjee, Kuntal Kumar Pal, Murthy De-
varakonda, and Chitta Baral. 2021. Biomedical
Named Entity Recognition via Knowledge Guid-
ance and Question Answering. ACM Trans. Comput.
Healthcare, 2(4):33:1–33:24.

Nigel Collier, Tomoko Ohta, Yoshimasa Tsuruoka, Yuka
Tateisi, and Jin-Dong Kim. 2004. Introduction to the
bio-entity recognition task at JNLPBA. In Proceed-
ings of the International Joint Workshop on Natu-
ral Language Processing in Biomedicine and its Ap-
plications (NLPBA/BioNLP), pages 73–78, Geneva,
Switzerland. COLING.

233

https://doi.org/10.1145/3465221
https://doi.org/10.1145/3465221
https://doi.org/10.1145/3465221
https://aclanthology.org/W04-1213/
https://aclanthology.org/W04-1213/


Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Gamal Crichton, Sampo Pyysalo, Billy Chiu, and Anna
Korhonen. 2017. A neural network multi-task learn-
ing approach to biomedical named entity recognition.
BMC Bioinformatics, 18(1):368.
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A Datasets and Experimental Setup

For the English subset of CoNLL-2003 (Tjong
Kim Sang and De Meulder, 2003), the original
dataset splits are used, which are provided in a
pre-tokenized format. For the GENIA dataset, the
splits from Yan et al., 2023 are adopted. The entity
counts per split of these datasets can be found in
Table 7.

Dataset Entity Type Train Dev Test

CONLL

LOC 7,140 1,837 1,668
MISC 3,438 922 702
ORG 6,321 1,341 1,661
PER 6,600 1,842 1,617

GENIA

Cell Line 3,069 372 403
Cell Type 5,854 576 578
DNA 7,707 1,161 1,132
Gene or protein 28,874 2,466 2,900
RNA 699 139 106

Table 7: Statistics for the datasets used in the single-
task experiments of section 5.1.

To train a multi-task model, six biomedical
datasets are utilized: BC2GM (Smith et al., 2008),
BC4CHEMD (Krallinger et al., 2015), BC5CDR
(Li et al., 2016), JNLPBA (Collier et al., 2004),
Linnaeus (Gerner et al., 2010), and NCBI Disease
(Doğan et al., 2014). The dataset splits (Table 8)
follow those established by Crichton et al., 2017,
which have been extensively used in prior studies,
including Wang et al., 2018; Huang et al., 2019;
Khan et al., 2020; Moscato et al., 2023.

Dataset Entity Type Train Dev Test

BC2GM Gene or protein 15,035 3,032 6,243

BC4CHEMD Chemical 29,263 29,305 25,210

BC5CDR Chemical 5,114 5,239 5,277
Disease 4,169 4,224 4,394

JNLPBA

Cell Line 3,369 389 490
Cell Type 6,162 522 1,906
DNA 8,416 1,040 1,045
Gene or protein 27,015 2,379 4,988
RNA 844 106 118

Linnaeus Species 2,079 700 1,412

NCBI Disease Disease 5,111 779 952

Table 8: Statistics for the datasets used in the multi-task
experiment of section 5.2.

In the aforementioned experiments, models are
trained on the respective training splits, checkpoint
selection is made on the development splits, and
evaluation is conducted on the test splits.

For the cross-corpus evaluation, the experimen-
tal setup of Sänger et al., 2024 is replicated. A

multi-task model is trained using an ensemble of
nine datasets9: BioRED (Luo et al., 2022), GNorm-
Plus (Wei et al., 2015), Linnaeus (Gerner et al.,
2010), NCBI Disease (Doğan et al., 2014), NLM-
Chem (Islamaj et al., 2021a), NLM-Gene (Islamaj
et al., 2021b), S800 (Pafilis et al., 2013), SCAI
Chemical (Kolarik et al., 2008), and SCAI Dis-
ease (Gurulingappa et al., 2010). The model is
trained on the training sets, with checkpoint selec-
tion being performed on the development splits.
The evaluation is conducted on an independent cor-
pus consisting of the full annotated data of three
datasets10: BioID (Arighi et al., 2017), MedMen-
tions (Mohan and Li, 2019), and tmVar3 (Wei et al.,
2022). Dataset statistics for the training corpora
and the independent test corpora can be found in
Table 9 and Table 10, respectively.

Dataset Entity Type Train Dev Test

BioRED

Cell Line 103 22 50
Chemical 2,830 818 751
Disease 3,643 982 917
Gene 4,404 1,087 1,170
Species 1,429 370 393

GNormPlus Gene 4,964 504 4,468

Linneaus Species 1,725 206 793

NCBI Disease Disease 4,083 666 2,109

NLM-Chem Chemical 21,102 5,223 11,571

NLM-Gene Gene 11,209 1,314 2,687

S800 Species 2,236 410 1,079

SCAI Chemical Chemical 852 83 375

SCAI Disease Disease 1,281 250 710

Table 9: Statistics of the training corpora used in the
cross-corpus evaluation scenario of section 5.3.

Dataset Entity Type Number of mentions

BioID Species 7,939

tmVar3 Gene 4,059

MedMentions Disease 19,298
Chemical 19,198

Table 10: Statistics of the corpora used for the cross-
corpus evaluation described in section 5.3.

Finally, in order to assess the model’s global pre-
diction ability, synthetic datasets were derived from
the BC5CDR corpus, in line with (Huang et al.,

9The datasets were obtained in February 2025 from https:
//github.com/flairnlp/flair. Their splits and prepro-
cessing choices were replicated.

10The preprocessed datasets were downloaded from https:
//github.com/hu-ner/hunflair2-experiments in Febru-
ary 2025.

237

https://github.com/flairnlp/flair
https://github.com/flairnlp/flair
https://github.com/hu-ner/hunflair2-experiments
https://github.com/hu-ner/hunflair2-experiments


2019) experimental setup. The original training
set was randomly divided into two disjoint subsets:
BC5-Disease (containing only Disease annotations)
and BC5-Chemical (containing only Chemical an-
notations). The same procedure was followed for
the development splits. The statistics of these syn-
thetic datasets can be found in Table 11. By train-
ing models on the BC5-Disease and BC5-Chemical
subsets and evaluating them on the full test split of
the BC5CDR corpus, we can test the models global
prediction abilities, as described in section 5.4.

Dataset Entity Type Train Dev

BC5-Disease Disease 2,172 2,279

BC5-Chemical Chemical 2,459 2,665

Table 11: Statistics of the synthetic datasets created for
assessing global prediction ability.

B Training Details

Hyperparameter GENIA Others

# epochs 100 100
Early stop 30 30
Batch size 16 16
Max. # tokens 405 405
Gradient norm clipping 1.0 1.0
Dropout on logits 0.1 0.1

SRU module

# latent embeddings (multiplier) 10 2
Half-context for pos. embeddings 240 150
Dropout on pos. embeddings 0.2 0.2
Dropout on latent embeddings 0.2 0.2

Encoder optimizer

LR 3e-5 2e-5
Weight decay 1e-3 1e-3
Warm up (in epochs) 1 1

Actions generation cycle optimizer

LR 3e-4 3e-4
Weight decay 1e-3 1e-3
Warm up (in epochs) 0.5 0.5

Table 12: Hyperparameters used for the experiments.
The column ’Others’ refers to every experiment except
the single-task on the GENIA dataset.

All models are developed using the PyTorch ten-
sor library and trained on a single NVIDIA A100
80GB GPU. The encoder module and the action
generation module are tuned using two separate
AdamW optimizers with linear warm-up, set with
different initial learning rates and weight decays.
Both optimizers are set with β1 = 0.9, β2 = 0.98
and ϵ = 10−6. Models are trained with early stop-

ping based on performance on the development
set.11 The hyperparameters of all experiments can
be found in Table 12. Additionally, while the token
scaling parameter α in equation (5) of section 3.3
was trained for the single-task experiment on the
GENIA dataset, it was frozen and set to 1 for all
other experiments.

The encoder module was built on top of the
HuggingFace transformers library (Wolf et al.,
2020). Specifically, the LinkBERT-large encoder
from Yasunaga et al., 2022 was used for all mod-
els trained with biomedical corpora, while the
xlm-roberta-large encoder introduced by Con-
neau et al., 2020 was used for the single task model
trained on the CoNLL-2003 dataset.

C Single-task performance on the
datasets used for the cross-corpus
experiment

Dataset Merged Disjoint

BioRED 90.73 90.90
GNormPlus 85.00 86.00
Linnaeus 78.16 92.23
NCBI Disease 85.69 85.70
NLM-Chem 84.42 85.65
NLM-Gene 88.35 88.13
S800 74.24 75.79
SCAI Chemical 85.21 85.64
SCAI Disease 80.78 82.14

Table 13: In-corpus micro-F1 scores for the model used
in the cross-corpus evaluation experiment of section 5.3.

D Human evaluation of global predictions
in a cross-domain setting

To assess the model’s ability to generalize across
domains, three models were trained:

• SRU-NER-CoNLL: a single-task model
trained on the CoNLL corpus;

• SRU-NER-BC5: a single-task model trained
on the BC5CDR corpus;

• SRU-NER-MTL: a multi-task model trained
on both corpora.

All models were trained using the
LinkBERT-large encoder from Yasunaga

11In the case of multi-task models where multiple datasets
are tagged with the same entity type (the models of sections
5.2 and 5.3), despite the entity types being considered disjoint
for training purposes, validation F1 scores on the development
set for checkpoint selection are computed by merging the
types, as described in the begining of section 5.2.
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et al., 2022. To evaluate cross-domain gener-
alization, the models capable of recognizing
general-domain entity types (SRU-NER-CoNLL
and SRU-NER-MTL) were used to annotate the test
split of the biomedical corpus, while the models
trained on biomedical entity types (SRU-NER-BC5
and SRU-NER-MTL) were used to annotate the
test split of the general-domain corpus. Since gold
annotations for these out-of-domain predictions
were not available, two linguists manually assessed
their correctness. Inter-annotator agreement per
entity type is reported in Table 14.

Entity Agreement (%)

Chemical 92.98
Disease 91.09
LOC 100.00
ORG 87.76
PER 88.89

Table 14: Inter-annotator agreement for the evaluated
entity types.

Based on the assessment of correct predicted
spans by the two human annotators, a precision
score was computed by taking the ratio of correctly
identified spans to the total number of predicted
spans, for each model, entity type and linguist. A
simulated recall score per model, entity type and
linguist was also computed by considering the to-
tal number of spans of each entity type that were
considered correct by at least one of the annotators,
across all the predictions made by the three models.
Finally, precision and simulated recall scores per
model and entity type were obtained by averaging
across the two human annotators.

The results can be found in Table 6, in the main
text. One can see that the precision scores of the
multi-task model are higher than the single-task
ones across all entity types, while the recall values
of the multi-task model are worse for all entity
types except ORG.

For reference, the in-corpus performance of the
three models is present in Table 15.

Model CoNLL BC5CDR

SRU-NER-CoNLL 90.51 —
SRU-NER-BC5 — 90.61
SRU-NER-MT 91.01 90.51

Table 15: In-corpus performance of the three models
used for evaluation of global predictions in a cross-
domain setting. The single-task model SRU-NER-BC5
is the same as the one used for comparison in the multi-
task experiment of section 5.2.
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Abstract

This study explores the application of gen-
erative Large Language Models (LLMs) in
DNA sequence analysis, highlighting their
advantages over encoder-based models like
DNABERT2 and Nucleotide Transformer.
While encoder models excel in classification,
they struggle to integrate external textual infor-
mation. In contrast, generative LLMs can in-
corporate domain knowledge, such as BLASTn
annotations, to improve classification accu-
racy even without fine-tuning. We evalu-
ate this capability on antimicrobial resistance
(AMR) gene classification, comparing genera-
tive LLMs with encoder-based baselines. Re-
sults show that LLMs significantly enhance
classification when supplemented with textual
information. Additionally, we demonstrate
their potential in DNA sequence generation,
further expanding their applicability. Our find-
ings suggest that LLMs offer a novel paradigm
for integrating biological sequences with ex-
ternal knowledge, bridging gaps in traditional
classification methods.

1 Introduction

Language Models (LMs) have demonstrated re-
markable performance in various Natural Language
Processing (NLP) tasks and have recently gained
attention in bioinformatics, particularly in DNA se-
quence analysis. Encoder-based transformer mod-
els, such as DNABERT (Ji et al., 2021; Zhou et al.,
2023), ProteinBERT (Brandes et al., 2022) and
Nucleotide Transformer (Dalla-Torre et al., 2023),
have shown strong performance in DNA sequence
classification, leveraging nucleotide tokenization
and self-supervised pretraining. These models
are widely adopted for gene sequence analysis,
promoter prediction, and mutation impact assess-
ment. However, encoder-based models have in-
herent limitations in integrating external domain
knowledge. Their fixed input structures make it
difficult to incorporate additional textual context,

such as BLASTn search results, which often con-
tain critical biological insights. Additionally, these
models may struggle to generalize when a single
DNA sequence is associated with multiple labels,
requiring strict pre-defined training paradigms.

Generative Large Language Models (LLMs),
such as GPT-based models (Brown et al., 2020),
introduce greater flexibility by allowing predic-
tions to be influenced by external knowledge via
prompting. Unlike encoder-based models, genera-
tive LLMs can dynamically incorporate supplemen-
tary textual information, which can enhance clas-
sification accuracy without requiring fine-tuning.
Some biomedical LLMs, such as BioGPT (Luo
et al., 2022) and Med-PaLM (Singhal et al., 2023),
have demonstrated strong performance in process-
ing medical and pharmaceutical text, but their ap-
plications in DNA sequence analysis remain under-
explored. Beyond classification, generative LLMs
also enable DNA sequence generation (Nguyen
et al., 2024; Brixi et al., 2025), a capability that
traditional encoder-based models lack. This opens
new possibilities for exploring sequence design,
mutation modeling, and synthetic data augmenta-
tion, further expanding the applicability of LLMs
in genomics.

This study systematically evaluates the effective-
ness of generative LLMs for DNA sequence clas-
sification and generation, comparing them against
traditional encoder-based baselines. Our key con-
tributions are as follows:

• We systematically compare generative LLMs
with encoder-based models on DNA sequence
classification tasks, providing a rigorous eval-
uation of their relative performance.

• We demonstrate that generative LLMs
can leverage supplementary domain-specific
knowledge to improve classification accuracy
even without fine-tuning.
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• We explore the potential of generative LLMs
in DNA sequence generation, analyzing their
ability to generate biologically meaningful se-
quences and their implications for synthetic
data augmentation.

Our findings suggest that generative LLMs offer
a novel paradigm for integrating DNA sequences
with external knowledge sources, expanding their
applicability in bioinformatics research.

2 Related Works

Transformer-based encoder models have been
widely applied to DNA sequence classifica-
tion. DNABERT (Ji et al., 2021; Zhou et al.,
2023) applies self-supervised learning to nu-
cleotide sequences using k-mer tokenization, while
DNABERT2 improves efficiency by introducing
byte pair encoding (BPE) (Zhou et al., 2023). Nu-
cleotide Transformer (Dalla-Torre et al., 2023) ex-
tends this approach by pretraining on diverse ge-
nomic datasets, achieving strong performance in
gene classification tasks.

While these models perform well in classifica-
tion, they have limited ability to incorporate ex-
ternal domain knowledge, such as BLASTn an-
notations (Lobo, 2008). Moreover, they struggle
with handling multi-label classification, which is
common in genomic studies (Bonin et al., 2023a;
Marini et al., 2022). Our work differs by explor-
ing whether generative LLMs can improve clas-
sification performance by dynamically integrating
external textual information without additional fine-
tuning.

Generative Large Language Models (LLMs)
such as GPT-based models (Brown et al., 2020)
have demonstrated strong natural language under-
standing but have been rarely applied to DNA se-
quence analysis. BioGPT (Luo et al., 2022), for
example, is trained on biomedical literature but
lacks direct training on DNA sequences.

Unlike encoder-based models, LLMs can dy-
namically incorporate supplementary textual in-
formation, such as BLASTn search results (Lobo,
2008), potentially enhancing classification perfor-
mance. Additionally, LLMs have the potential for
DNA sequence generation, which can be applied
to mutation modeling and synthetic data augmen-
tation, as demonstrated in previous studies explor-
ing deep learning methods for genomic analysis
(Marini et al., 2022; Arango-Argoty et al., 2018;
Lakin et al., 2019).

While prior studies have focused on applying
LLMs to biomedical text, our approach investi-
gates whether generative LLMs can be effectively
utilized for both classification and sequence gener-
ation in DNA analysis, providing a flexible alterna-
tive to traditional encoder-based models.

3 Methods

3.1 Data Collection

The dataset used in this study consists of antibi-
otic resistance gene sequences collected from the
MEGARes (Doster et al., 2020; Bonin et al., 2023b)
and CARD databases (Jia et al., 2017). The labels
from MEGARes and CARD were mapped using
the Antibiotic Resistance Ontology from the Euro-
pean Bioinformatics Institute (Cook et al., 2016),
following previous research methods (Yoo et al.,
2024). These databases contain DNA sequences
associated with antimicrobial resistance (AMR)
and provide multi-label annotations, where a single
sequence may belong to multiple resistance cate-
gories. To incorporate external domain knowledge,
we applied the BLASTn algorithm (Chen et al.,
2015) to identify sequences similar to each DNA
sequence in the dataset. For each sequence, the
top-5 BLASTn search results were selected based
on the e-value criterion, and their corresponding
functional annotations were extracted. This addi-
tional textual information includes gene descrip-
tions, known resistance mechanisms, and sequence
alignment details, which were later integrated into
our LLM-based classification prompts.

3.2 Baseline Models and Preprocessing

To compare the performance of generative LLMs
with existing DNA sequence classification mod-
els, we included encoder-based models as base-
lines: DNABERT2, and Nucleotide Transformer.
DNABERT2 (Zhou et al., 2023) is a BERT-based
model to process DNA sequences as natural lan-
guage text. It improved version of DNABERT
(Ji et al., 2021) by introducing byte pair encod-
ing (BPE) instead of utilizing k-mer tokenization,
allowing for more efficient sequence representa-
tion. Nucleotide Transformer (Dalla-Torre et al.,
2023), a transformer model pre-trained on diverse
genomic datasets, has demonstrated strong perfor-
mance in various molecular phenotype prediction
tasks.

For all models, DNA sequences were prepro-
cessed by converting them to uppercase, and in-
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Model Accuracy Precision Recall F1 Score
DNABERT2 (Finetuning) 0.8697 0.8161 0.6996 0.7332
Nucleotide Transformer (Finetuning) 0.8289 0.8184 0.5867 0.6579
LLama3.1 8B-4bit 0.0037 0.0011 0.0002 0.0003
LLama3.1 8B-4bit + Blastn 0.0744 0.0530 0.0129 0.0207
LLama3.1 8B-4bit + Finetuning 0.5521 0.4760 0.5521 0.5080
Claude3.5sonet 0.1488 0.1770 0.0966 0.0735
Claude3.5sonet + Blastn 0.8042 0.6287 0.5421 0.5794
Chatgpt4o-mini 0.00 0.00 0.00 0.00
Chatgpt4o-mini + Blastn 0.7804 0.9090 0.7804 0.8398
Chatgpt4o-mini + Finetuning 0.9318 0.9337 0.9318 0.9319

Table 1: Performance metrics for DNA sequence classification across multiple models. Chatgpt4o-mini with
finetuning achieves the best overall performance, with the highest accuracy and F1 score, surpassing specialized
models like DNABERT2 and the Nucleotide Transformer. Without finetuning or external features, general-purpose
LLMs such as LLaMA3.1, Claude3.5, and Chatgpt4o-mini perform poorly, indicating that both biological context
via BLASTn and domain-specific adaptation are critical for DNA sequence understanding.

valid sequences were removed. The final dataset
consisted only of validated antibiotic resistance
gene sequences.

3.3 Fine-tuning and Prompt-based
Classification

To evaluate generative LLMs in DNA sequence
classification, we employed Low-Rank Adaptation
(LoRA) fine-tuning on LLaMA. LoRA enables
parameter-efficient tuning by modifying only a sub-
set of the model’s weight matrices, significantly
reducing computational costs while maintaining
performance (Hu et al., 2021). Further details pro-
vided in Appendix B. Additionally, we conducted
zero-shot inference using the Claude 3.5 sonet (An-
thropic, 2024) and ChatGPT-4 API to assess how
well proprietary generative models classify DNA
sequences without explicit training. To investigate
whether generative LLMs can classify DNA se-
quences without fine-tuning, we formulated two
experimental settings. In the first setting, models
were given only the DNA sequence as input. In
the second setting, models received both the DNA
sequence and the top-5 BLASTn search results,
including functional annotations and gene descrip-
tions. This setup allowed us to assess whether
LLMs can leverage external domain knowledge to
improve classification accuracy. Prompt details are
in Appendix A

3.4 LLM-Based DNA Sequence Generation
In addition to classification, we explored whether
generative LLMs can synthesize biologically mean-
ingful DNA sequences. To this end, we designed
a sequence generation task where models were
prompted with initial part of antibiotic resistance
genes and tasked with generating plausible full
DNA sequences. We implemented finetuning with
LLMs. Further details provided in Appendix C.

The quality of the generated sequences was as-
sessed using three similarity measures. Leven-
shtein (Levenshtein, 1966) distance was used to
quantify the sequence-level similarity by measur-
ing the minimum number of edits (insertions, dele-
tions, and substitutions) required to match a refer-
ence sequence. Jaccard’s index of similarity (Real
and Vargas, 1996) was computed on k-mer tok-
enized sequences to evaluate overlapping subse-
quences between generated and known resistance
gene sequences. Cosine similarity was also applied
to k-mer frequency vectors to compare overall se-
quence composition (Ng, 2017). To ensure basic
functional validity, we checked whether generated
sequences maintained proper nucleotide composi-
tion. GC content (Marmur and Doty, 1962) distri-
bution was compared to existing AMR sequences
to verify biological plausibility.

4 Experiments

4.1 DNA Classification

To evaluate the performance of generative language
models in DNA sequence classification, we con-
ducted experiments under three conditions. The
first setting involved using the base models, where
only the raw DNA sequence was provided as input.
The second setting introduced BLASTn search re-
sults, incorporating additional textual annotations
such as gene descriptions and resistance mecha-
nisms. The third setting involved fine-tuning the
models using labeled DNA sequences. For base-
line comparisons, we included DNABERT2 and
Nucleotide Transformer, which have demonstrated
strong performance in DNA sequence classifica-
tion tasks. The generative models evaluated in
this study include LLaMA 3.1 (Meta AI, 2024)
(8B-4bit), Claude 3.5 Sonet, and ChatGPT-4o-mini.
Each model was tested in zero-shot, BLASTn-
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Model Jaccard Similarity Cosine Similarity Levenshtein Similarity GC Correlation
GENERater (Zero-shot) 0.9970 0.9680 0.3790 0.8436
ChatGPT-4o-mini (Fine-tuned API) 0.9870 0.9857 0.5776 0.7930
GENErator (LoRA Fine-tuned) 0.9970 0.9680 0.3790 0.8436
LLaMA 3.2 1B (LoRA Fine-tuned) 0.2659 0.5911 0.2004 0.6938
Gemma 3 1B (LoRA Fine-tuned) 0.3177 0.7580 0.2487 0.7305

Table 2: Similarity scores between generated DNA sequences and the ground truth across various models. GENER-
ater, both in zero-shot and LoRA fine-tuned settings, achieves near-perfect Jaccard and Cosine similarities, with
strong GC content correlation, indicating high biological fidelity. ChatGPT-4o-mini also performs competitively
despite being a general-purpose LLM. In contrast, smaller fine-tuned models like LLaMA 3.2 1B and Gemma 3
1B yield significantly lower similarity scores across all metrics, highlighting the challenge of DNA generation in
low-resource model settings.

augmented, and fine-tuned configurations.

4.2 DNA Sequence Generation
In addition to classification, we assessed whether
generative language models could synthesize bio-
logically meaningful DNA sequences. A dataset of
antimicrobial resistance genes from Acinetobacter
baumannii was collected using the NCBI Entrez
API, with 1,000 sequences retrieved. The dataset
was split into 80% for training and 20% for test-
ing. Input sequences were trimmed to a length
of 200 base pairs, while the maximum generated
output length was set to 3,000 base pairs. Further
details on dataset characteristics provided in Ap-
pendix E. For baseline comparisons, we included
GENERater (Wu et al., 2025), which were eval-
uated in a zero-shot setting. For fine-tuned mod-
els, we used ChatGPT-4o-mini finetuned via API
along with GENErator, LLaMA 3.2 1B (Grattafiori
et al., 2024), and Gemma 3 1B (Gemma Team,
Google DeepMind, 2025), which were finetuned
using the LoRA. Each model was assessed based
on its ability to generate sequences that resemble
known antimicrobial resistance genes.

5 Results and Discussion

Table 1 presents the classification results across
various model configurations. Encoder-based mod-
els, DNABERT2 and Nucleotide Transformer, con-
sistently demonstrated the highest accuracy, with
DNABERT2 achieving 86.97% accuracy and Nu-
cleotide Transformer reaching 82.89%. In contrast,
generative models performed poorly in the base
setting, with LLaMA 3.1 obtaining an accuracy
of only 0.37%. Considering this outcome along-
side the unclassified rate reported in Appendix D,
it appears that generative models have difficulty
performing direct DNA sequence classification
without supplementary context. The inclusion of
BLASTn search results significantly improved clas-

sification accuracy. ChatGPT-4o-mini, which ini-
tially failed to classify any sequences correctly,
achieved 78.04% accuracy with BLASTn augmen-
tation. Similarly, Claude 3.5 Sonet improved from
14.88% to 80.42% accuracy. These results suggest
that LLMs benefit from external textual informa-
tion, compensating for their lack of prior expo-
sure to DNA sequences. Fine-tuning further en-
hanced classification accuracy, with ChatGPT-4o-
mini achieving 93.18%, surpassing DNABERT2.
This demonstrates that while LLMs struggle in
a zero-shot setting, targeted training on DNA se-
quences allows them to match or exceed the perfor-
mance of specialized encoder-based models.

Table 2 summarizes the similarity scores for
generated DNA sequences. In the zero-shot set-
ting, GENERater produced sequences with high
Jaccard similarity (0.9970) and Cosine similarity
(0.9680), but relatively low Levenshtein similarity
(0.3790), indicating that while generated sequences
share common k-mers with known resistance genes,
their exact sequence composition differs signifi-
cantly. Fine-tuned models exhibited varying lev-
els of similarity. ChatGPT-4o-mini, fine-tuned
via API, achieved the highest similarity across all
three metrics, particularly in Levenshtein similarity
(0.5776), suggesting that it generated sequences
more closely aligned with known resistance genes
at the character level. GENErator (LoRA Fine-
tuned) maintained nearly identical similarity scores
to its zero-shot counterpart, whereas LLaMA 3.2
1B and Gemma 3 1B displayed substantially lower
similarity scores across all metrics, indicating chal-
lenges in generating sequences that closely resem-
ble existing DNA. Further analysis of GC content
confirmed that fine-tuned models generated biolog-
ically plausible sequences. However, additional
validation is required to determine whether these
sequences retain functional properties relevant to
antimicrobial resistance.
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6 Conclusion

This study demonstrated that generative LLMs
offer greater flexibility in DNA sequence classi-
fication and generation compared to traditional
encoder-based models. While encoder models like
DNABERT2 performed well in standard classifica-
tion tasks, generative models benefited significantly
from additional textual information, highlighting
their ability to integrate external domain knowl-
edge. Fine-tuned generative models also produced
biologically plausible DNA sequences, suggesting
potential applications in synthetic biology. How-
ever, LLMs struggled in zero-shot classification,
emphasizing the need for fine-tuning and improved
biological data integration.

7 Limitations

While this study highlights the potential of gener-
ative LLMs in DNA sequence analysis, there are
several areas for further improvement. Zero-shot
classification performance remained limited, under-
scoring the need for fine-tuning or integrating ex-
ternal biological knowledge to enhance prediction
accuracy. Future work could explore hybrid ap-
proaches that combine LLMs with domain-specific
models or structured databases to improve robust-
ness.

In DNA sequence generation, fine-tuned mod-
els successfully produced sequences structurally
similar to known antimicrobial resistance genes.
However, additional real-world validation through
laboratory experiments is necessary to determine
whether these sequences retain functional proper-
ties relevant to resistance mechanisms.

Another key consideration is the computational
cost associated with fine-tuning large-scale mod-
els. The substantial resource requirements high-
light the need for more efficient adaptation tech-
niques, such as parameter-efficient fine-tuning or
retrieval-augmented approaches. Future research
should investigate methods to balance computa-
tional efficiency with model performance to enable
broader accessibility and practical applications in
bioinformatics.
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A Example Prompts

A.1 Example Prompt Explanation including
DNA Sequence

In this example prompt, a DNA sequence is
provided along with several drug class labels,
such as Sulfonamides, Aminoglycosides, Beta-
lactams, Glycopeptides, Tetracyclines, Phenicol,
Fluoroquinolones, MLS (Macrolide-Lincosamide-
Streptogramin), and Multi-drug resistance. The
task involves asking the model to determine the
drug class that the DNA sequence is resistant to.

The prompt follows this format:

"Tell me the resistance drug
among drugs (Sulfonamides,
Aminoglycosides, Betalactams,
Glycopeptides, Tetracyclines,
Phenicol, Fluoroquinolones, MLS,
Multi-drug_resistance) with
DNA sequence (ATGAATCCCTATC...
...ACAAACTGCGAGGCAGTTCGCATGA)?"

This prompt is used to assess the DNA sequence
for antibiotic resistance and classify the sequence
into one of the specified drug resistance categories.

A.2 Example Prompt Explanation including
Blastn information

In this prompt, a DNA sequence and the top 5
Blastn search results are provided. The task is to
predict the drug class that the DNA sequence is
resistant to, based on the alignment information
and matching sequences. The drug class labels in-
cluded in the prompt are Sulfonamides, Aminogly-
cosides, Betalactams, Glycopeptides, Tetracyclines,
Phenicol, Fluoroquinolones, MLS (Macrolide-
Lincosamide-Streptogramin), and Multi-drug re-
sistance.

The BLASTn results contain gene information
such as sequence titles, alignment length, e-values,
and detailed sequence alignments (query, match,
and subject sequences). This allows the model to
analyze the DNA sequence’s pattern and classify it
into the appropriate drug resistance category.

The prompt follows this format:

"Tell me the resistance drug
among drugs (Sulfonamides,
Aminoglycosides, Betalactams,
Glycopeptides, Tetracyclines,
Phenicol, Fluoroquinolones, MLS,
Multi-drug_resistance) with DNA
information ([{’sequence_title’:
’gi|1035502645|ref|NG_048504.1|
Enterococcus casseliflavus
vanXY-C gene for D-Ala-D-Ala
dipeptidase/D-Ala-D-Ala
carboxypeptidase
VanXY-C, complete CDS’,
’alignment_length’: 673,
’e_value’: 0.0, ’query_sequence’:
’ATGAATCCCTATCTA...’,
’match_sequence’:
’||||||||||||||...’,
’subject_sequence’: ...’}, ...
])?"

This prompt aims to predict the antibiotic resis-
tance drug by using DNA sequence data from the
Blastn search results and identifying the relevant
drug resistance class.

B Finetuning of DNA Sequence
Classification Models

The Meta-LLaMA-3.1-8B-Instruct model was fine-
tuned using the Unsloth framework with 4-bit quan-
tization to enhance memory efficiency. A LoRA
configuration was applied to key projection layers,
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with moderate values for the rank and scaling pa-
rameters. The training dataset consisted of DNA
sequences and their associated resistant drug class
labels, organized in a system-user-assistant conver-
sational format and later converted to the Alpaca-
style instruction-following format. Each example
included instruction, input, and output fields, and
samples were padded with an end-of-sequence to-
ken. Training was conducted using the SFTTrainer
with mixed-precision enabled (fp16 or bf16), de-
pending on hardware availability. In addition, a
GPT-based model (gpt-4o-mini-2024-07-18) was
customized using task-specific instruction exam-
ples via the OpenAI fine-tuning API.

C Finetuning of DNA Sequence
Generation Models

Three large language models (LLMs) were
fine-tuned for DNA sequence generation using
parameter-efficient fine-tuning (PEFT) with LoRA.
The dataset contained DNA input-output sequence
pairs, tokenized using model-specific tokeniz-
ers and padded using the end-of-sequence token.
LoRA configurations were adjusted for each model,
with common values for rank, scaling, and dropout,
and target modules selected based on the architec-
ture. Training was conducted for several epochs
with standard optimization settings.

The GENERator-eukaryote-3b-base model used
separate tokenization strategies for inputs and out-
puts, with padding tokens in the labels replaced by -
100. LoRA was applied to selected attention projec-
tions, and training used fp16 precision. The Llama-
3.2-1B model supported sequences up to 4096 to-
kens and followed a prompt format of "Input: <in-
put_sequence> Output: <output_sequence>", us-
ing bf16 precision and a memory-efficient opti-
mizer. The Gemma-3-1B-PT model followed a
similar formatting and applied LoRA to a subset of
projection layers, using float32 precision to ensure
stability. A GPT-based model (gpt-4o-mini-2024-
07-18) was additionally adapted through OpenAI’s
fine-tuning API using domain-specific examples.

D Unclassified Rate

Additional gene information from the Blastn DB
search results was provided, performance improved
even without additional training on this data. As
seen in Table 3, the Unclassified Rate decreased
across all models. For the LLaMA 3.1 8B-4bit
quantized model, the rate dropped from 97% to

Model Unclassified Rate
LLama3.1 8B-4bit

(Base Model)
97%

LLama3.1 8B-4bit
(Blastn)

73%

LLama3.1 8B-4bit
(Finetuning)

0%

Claude3.5sonet
(Base Model)

39%

Claude3.5sonet
(Blastn)

11%

Chatgpt4o-mini
(Base Model)

100%

Chatgpt4o-mini
(Blastn)

14%

Chatgpt4o-mini
(Finetuning)

0%

Table 3: Model unclassified rates with long names dis-
played in two lines.

73% when using Blastn. For Claude 3.5 sonet,
it decreased from 39% to 11%. ChatGPT 4-mini
showed a sharp improvement, going from classi-
fying nothing to only leaving 14% unclassified.
When fine-tuning was applied, both the LLaMA
3.1 8B 4bit quantized model and ChatGPT 4-mini
reduced their unclassified rates to 0%.

E DNA Generation Dataset
Characteristics

Figure 1: Length distribution of the Acinetobacter bau-
mannii dataset.

Acinetobacter baumannii is a Gram-negative, op-
portunistic pathogen that poses a serious threat in
healthcare settings due to its ability to survive in di-
verse environments and its remarkable capacity for
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antibiotic resistance. This bacterium is known for
forming robust biofilms, which enhance its persis-
tence on medical equipment and hospital surfaces.
It exhibits resistance to multiple antibiotic classes,
including beta-lactams, aminoglycosides, and fluo-
roquinolones, primarily through mechanisms such
as enzymatic degradation (e.g., beta-lactamases),
efflux pumps, and target site modifications. Given
its clinical significance and growing prevalence in
multidrug-resistant infections, we collected 1,000
sequences of Acinetobacter baumannii using the
NCBI Entrez API for further analysis.

The dataset characteristics are summarized be-
low:

Sequence Statistic Length (bp)
Average sequence length 16,325.75
Median sequence length 1,033.50
Minimum sequence length 204
Maximum sequence length 1,210,760

Table 4: Statistics of the collected Acinetobacter bau-
mannii sequences

The length distribution of the dataset is shown
in Figure 1. The length distribution of the dataset
exhibits a wide range, spanning from 204 bp to
over 1.2 million bp, with a median length of ap-
proximately 1,033.50 bp. The substantial differ-
ence between the median and the mean (16,325.75
bp) suggests a right-skewed distribution, indicating
the presence of a small number of extremely long
sequences. Such distribution may impact down-
stream analysis, particularly in tasks such as se-
quence alignment or model training, where extreme
sequence lengths might introduce computational
challenges.

Additionally, the presence of very short se-
quences (minimum: 204 bp) suggests that prepro-
cessing steps such as length filtering or normal-
ization may be necessary to ensure consistency in
downstream analyses. A closer examination of the
length distribution (as illustrated in Figure 1) could
provide further insights into potential clustering
patterns or the need for stratified handling of differ-
ent length groups.
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Abstract

Case reports provide critical insights into rare
and atypical diseases, but extracting struc-
tured knowledge remains challenging due to
unstructured text and domain-specific termi-
nology. We introduce CaseReportCollective,
an LLM-extracted dataset of 85,961 open-
access case reports spanning 37 years, vali-
dated through programmatic and human eval-
uation. Our dataset reveals key publication
and demographic trends, including a signifi-
cant increase in open-access case reports over
the past decade, shifts in focus from oncol-
ogy to COVID-19 and sex disparities in report-
ing across different medical conditions. Us-
ing CaseReportCollective, we further explore
embedding-based retrieval for similar medical
topics through accumulated similarity scores
across extracted structured information. We
also conducted detailed error analyses on the
retrieval ranking, finding that highly reported
topics dominate retrieval and the retrieval is
driven by lexical overlap rather than underlying
clinical relevance, often failing to distinguish
between semantically similar yet mechanisti-
cally distinct conditions. Future work should
focus on clinically aware embeddings adjusted
for long-tailed case distributions to improve
retrieval accuracy.

1 Introduction

Case reports, structured summaries outlining in-
dividual patient profiles and distinctive medical
conditions (Venes, 2017), have historically played
a critical role in rare disease discovery, novel treat-
ment vigilance, and pandemic surveillance (Nis-
sen and Wynn, 2014; Wu and Sung, 2003; Hymes
et al., 1981). As of September 2023, over 2.41
million cases have been published (Parums, 2023),
capturing a wealth of clinical details, including
patient history, review of systems, laboratory find-
ings, and imaging results. Leveraging this vast
repository of medical knowledge has the potential

to advance medical research and clinical educa-
tion significantly. However, extracting structured
knowledge from case reports remains a major chal-
lenge. Clinical narratives often contain domain-
specific terminology, abbreviations, and colloquial
descriptions, making automated extraction difficult
without a foundational understanding of medical
language. Additionally, key metadata such as pa-
tient sex and age are frequently implied rather than
explicitly stated, requiring common-sense reason-
ing for accurate interpretation. The manual process
of perusing case reports and distilling actionable in-
sights is both labor-intensive and time-consuming,
hindering large-scale systematic analysis. Further-
more, traditional rule-based natural language pro-
cessing (NLP) approaches struggle with the seman-
tic variability and unstructured nature of medical
text, limiting their ability to aggregate and stan-
dardize case report data effectively.

In this study, we leveraged LLMs and rule-
based algorithms to extract granular details from
open-access medical case reports in Pubmed Cen-
tral(PMC) into medical categories standard for pa-
tient assessments. Leveraging the metadata along
with the fine-grain LLM extractions from this
dataset, we analyzed the case report trends for pub-
lication years, sex, and patient age. With these fine-
grained extractions from case reports, we demon-
strate how this dataset can be used for informa-
tion retrieval for similar cases. Our primary con-
tribution is the construction of a large-scale, LLM-
structured case report corpus. The demographic
analyses are included to illustrate the dataset’s clin-
ical coverage and its potential for supporting diag-
nostic research across diverse patient populations
and medical conditions. Specifically, we highlight:

• CaseReportCollective:1 An LLM-extracted
dataset of 85,961 open-access medical case

1CaseReportCollective is publicly available at
https://huggingface.co/datasets/cxyzhang/
CaseReportCollective_V1.0.
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reports spanning 37 years, with structured
extractions across 14 clinical categories and
quality control via programmatic metrics and
human evaluation.

• Uncovering significant differences in sex dis-
tribution across age groups, publication
years, and medical topics. Balanced sex rep-
resentation is observed only in the 42–65 age
group, with more males in the 65+ and pe-
diatric categories, and more females in the
18–41 age group. Over time, we observed
the inclusion of intersex individuals in case
reports. Additionally, certain conditions are
disproportionately reported in one sex, with
both biological factors and potential sex bi-
ases influencing the findings.

• Identifying systematic biases in embedding-
based disease retrieval, including preva-
lence bias, textual co-occurrence bias, and
pathophysiological mismatches. We demon-
strate how high-frequency diseases (e.g., tu-
berculosis) dominate retrieval results, often
suppressing rarer but clinically significant
conditions. Additionally, semantic similarity
alone proves insufficient for clinically accu-
rate retrieval, as it frequently retrieves con-
ditions based on surface-level word overlap
rather than true clinical relevance. We suggest
context-aware embeddings and prevalence-
adjusted ranking mechanisms as future di-
rections to improve retrieval accuracy.

2 Related Work

2.1 Medical Information Extraction
Rule-based systems and ontology-driven pipelines
have been foundational in clinical NLP. Tools such
as MetaMap (Aronson, 2001), Regextractor (Hinch-
cliff et al., 2012), MedLEE (Friedman et al., 1995),
and cTAKES (Savova et al., 2010) extract clinical
concepts using predefined grammars and the Uni-
fied Medical Language System (UMLS) (Bodenrei-
der, 2004). While these systems offer transparency
and have been trusted by clinicians, they require
expert rule engineering, are costly to maintain, and
struggle with terminological variation, leading to
lower recall in open-domain scenarios.

To improve generalizability, hybrid models and
deep learning have been proposed. Precursor-
induced CRFs outperform traditional CRFs by
propagating token context (Lee and Choi, 2019),

while models like BioBERT and BiLSTM-CRF
have shown strong results in biomedical NER tasks
(Schulz et al., 2020). However, these approaches
rely heavily on large-scale annotated corpora and
may underperform on rare disease data. Notably,
fine-tuned BioClinicalBERT has achieved high ac-
curacy in extracting rare disease phenotypes from
unstructured narratives(Shyr et al., 2024).

Recently, instruction-tuned large language mod-
els (LLMs) have emerged as general-purpose ex-
tractors capable of operating with minimal super-
vision. For example, InstructGPT extracted pe-
diatric foreign body injury data across languages
(Sciannameo et al., 2024), and ChatGPT outper-
formed BioClinicalBERT in rare disease phenotype
extraction in one-shot settings (Shyr et al., 2024).
These results suggest LLMs encode latent biomed-
ical knowledge learned from large-scale corpora.
While LLMs are not always superior to traditional
NER architectures for structured or narrow-domain
tasks, we leverage them in this work for their do-
main transferability and their ability to perform
dense, multi-category extraction with minimal an-
notation effort.

Different from prior work in structuring clinical
case reports (Zhao et al., 2022; Raza and Schwartz,
2023; Sciannameo et al., 2024), CaseReportCollec-
tive dataset is at a substantially larger scale, with
LLMs applied across 14 categories and 85,961 case
reports. This work complements existing clinical
corpora such as MIMIC-III (Johnson et al., 2016),
MedNLI (Romanov and Shivade, 2018), and N2C2
datasets (Stubbs et al., 2019), which focus on dis-
charge summaries or specific annotation tasks. In
contrast, our corpus standardizes narrative case re-
ports into structured data that enables downstream
demographic analysis and diagnostic benchmark-
ing.

2.2 Sex Disparities in Clinical Narratives

Clinical narratives have historically reflected sex-
based disparities in disease prognosis, presentation,
diagnosis, and treatment (Bello and Mosca, 2004).
These inequalities can introduce biases in clinical
decision-making, ultimately affecting patient out-
comes. For instance, one study found that males
receive a diagnosis at a younger age than females,
highlighting potential delays in recognition and in-
tervention for female patients (Alcalde-Rubio et al.,
2020). Additionally, an analysis of word embed-
dings applied to biomedical text revealed system-
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atic biases, where substance use disorders were
more frequently associated with males, while psy-
chiatric disorders were more commonly linked to
females, reinforcing harmful stereotypes in medi-
cal literature(Rios et al., 2020).

Our study leveraged knowledge of pretrained
LLMs to perform dense extraction across multi-
ple distinct medical categories. Unlike previous
studies, we perform fine-grained dense extraction
performance across multiple medical domains and
demonstrate the utility of LLM-extracted data in
biomedical research. In contrast to studies primar-
ily focused on Named Entity Recognition (NER)
for certain medical specialties (Abiha, 2024; Tur-
chioe et al., 2022), CaseReportCollective provides
a structured dataset spanning multiple medical spe-
cialties. Additionally, its metadata facilitates inves-
tigations into sex- and age-related differences in dis-
ease presentation, showcasing LLMs’ ability to ex-
tract meaningful clinical trends from unstructured
text. Furthermore, per-category extractions enable
a fine-grained evaluation of embedding-based re-
trieval.

3 Methods

To construct CaseReportCollective, we leveraged
publicly available clinical case reports and imple-
mented a structured LLM-based extraction and
evaluation pipeline.

3.1 Dataset construction
CaseReportCollective is developed using clini-
cal case reports from the non-commercial PubMed
Central (PMC) Open Access subset, sourcing full-
text articles under CC BY-NC, CC BY-NC-SA,
and CC BY-NC-ND licenses, accessed via the
PMC FTP 2 on February 3, 2024. To extract
structured clinical information, we instructed an
LLM to identify 14 key clinical categories adapted
from a specific standardized approach used in-
patient Work-Up and monitoring for healthcare
professionals 3: Vitals_Hema (Vitals and Hema-
tology Findings), EENT (Eyes, Ears, Nose, and
Throat), NEURO (Neurology), CVS (Cardiovascu-
lar System), RESP (Respiratory System), GI (Gas-
trointestinal System), GU (Genitourinary System),
MSK (Musculoskeletal System), DERM (Derma-
tology), LYMPH (Lymphatic System), ENDO (En-

2https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/
oa_noncomm/xml/

3https://blogs.ubc.ca/oeetoolbox/2019/02/
patient-work-up-from-sample-template-inpatient/

docrinology), Pregnancy, Lab_Image (Labora-
tory and Imaging), and History.

3.2 Preprocessing LLM Extraction

We applied the few-shot and category-specific
prompt templates used for structured information
extraction from case report narratives, as described
in (Zhang et al., 2025), where for each clinical cat-
egory, prompts include a task-specific instruction
followed by output formatting constraints. Due
to the limitations encountered with earlier LLM
frameworks for generating JSON-formatted out-
put, a multi-step preprocessing approach was im-
plemented. All nested categories were converted
into a single list of strings. Subkeys within the
JSON document were concatenated with their val-
ues to preserve context. For example, "blood pres-
sure" is connected with the corresponding value
"120/80 mmHg". There were observed instances
when LLM extraction failed to retrieve relevant
information due to either (a) a lack of detected rel-
evant information or (b) formatting issues, such as
the incorrect use of double quotes instead of sin-
gle quotes, which led to JSON parsing errors. In
these cases, we attempted to standardize the format
by replacing single quotes with double quotes and
then reattempted the LLM extraction.

3.3 LLM-Based Diagnostic Label Extraction
and NER Supplementation

The LLM was instructed to extract the medical con-
ditions from the title of each case report. For com-
parison, we performed NER using SciSpacy (Neu-
mann et al., 2019). Since rare conditions are often
under-represented in SciSpacy without additional
context, we provided both keywords and labels to
improve recognition. However, keywords often
contain extraneous or broad information that is not
the main focus of the case report (e.g., "pregnancy"
in the context of "pregnancy luteoma"), which can
dilute the core medical condition being described.
To address this, we prioritized the LLM-extracted
labels as the primary diagnostic labels. The NER
output was only used to supplement these labels
when the LLM failed to extract the relevant condi-
tion.

3.4 Demographic Attribute Extraction

Biological ages in case reports typically follow a
standard format (e.g., “X-year-old”). To enable
efficient and deterministic extraction, we applied
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rule-based keyword extraction for age identifica-
tion. Ages were categorized into predefined clini-
cal groups: Neonatal (0–1 month), Infancy (1–18
months), Childhood (1.5–11 years), and Adoles-
cence (11–16 years) (Blau et al., 2014). Adulthood
was further divided into 16–41 years, 41–64 years,
and >64 years. Cases without age data were la-
beled as “Unspecified.”

In contrast, biological sex is expressed more vari-
ably and often implicitly, requiring an LLM for
context-dependent extraction. For instance, when
a patient is described as “nulliparous,” LLM may
leverage its foundational knowledge to infer the
patient as biologically female. Additionally, the
LLM was instructed to recognize intersex cate-
gory—characterized by physical, hormonal, or ge-
netic traits—affecting approximately 1.7% of the
population (Sax, 2002; Zeeman and Aranda, 2020).

The Chi-Square (χ2) test for independence is
performed in investigating relationships between
age, sex, publication years and medical topics in
CaseReportCollective.

3.5 Implementation

We performed structured extraction of category-
specific clinical information and diagnostic labels
from case report texts and titles using few-shot
prompting tailored for verbatim information cap-
ture. For each clinical category, we designed task-
specific prompts that requested outputs in a stan-
dardized dictionary format. These prompts fol-
lowed a consistent template with explicit format-
ting instructions to facilitate post-processing, as
detailed in Zhang et al. (2025). For example, in the
Neurological category, prompts instructed models
to extract findings such as "neurological", "cogni-
tive", "neurological tests and imaging" with outputs
keyed by clinical feature types.

Initial large-scale extraction was conducted us-
ing LLaMA 3-8B-Instruct (Dubey et al., 2024), run-
ning under the Ollama framework4 with 4-bit quan-
tization on an NVIDIA Tesla V100 GPU, selected
for its availability and computational efficiency.
Benchmarking results from Zhang et al. (2025)
showed that Qwen2.5-7B-Instruct (Hui et al., 2024)
yielded better alignment with clinician judgments
for dense clinical information extraction, support-
ing its use in subsequent inference tasks to extract
biological sex from case report texts. This model
was deployed using 16-bit floating point precision

4https://github.com/ollama/ollama

under the vLLM framework (Kwon et al., 2023).
All models were set to a temperature of 0 to ensure
deterministic outputs.

3.6 Evaluation of Extracted Texts with
Automated Metrics and Human
Assessment

Since the LLM was tasked with extracting ver-
batim text from case reports, we assessed extrac-
tion fidelity using dual string-based metrics: Ex-
act Match (EM) and Token Set Ratio (TSR%),
implemented via the fuzzywuzzy library5. EM
measures the proportion of extractions that exactly
match the original text (ranging from 0 to 1), while
TSR (%) quantifies partial similarity (ranging from
0 to 100) by allowing slight variations. To assess
the fidelity of LLM-extracted text compared to the
original case report, we compute the Token Set
Ratio (TSR). TSR is a partial similarity metric
that captures approximate matches between texts
by comparing token-level overlap and differences.

Let T1 denote the set of tokens from the original
case report text, and T2 the set of tokens from the
LLM-extracted output. We compute:

I = T1 ∩ T2, D1 = T1 \ T2, D2 = T2 \ T1

Here, I denotes the shared tokens, D1 represents
tokens found only in the original text, and D2 those
found only in the LLM extraction. These token
groups are each converted into strings, and string
similarity is then assessed using the Levenshtein
distance as implemented in the fuzzywuzzy.

Evaluation of a randomly selected subset of 400
LLM-extracted labels against their respective case
report titles was performed by a student, guided by
medical oversight. The evaluation focused on three
criteria: relevance—alignment of the extracted en-
tity with the title, specificity—correct identification
of primary diseases or conditions, and complete-
ness—thorough extraction of all relevant medical
conditions. The detailed annotation guidelines are
provided in Appendix A.

Additionally, a student, guided by medical over-
sight, evaluated a randomly selected subset of 400
LLM-extracted labels against the original article
title, comparing them against their respective case
report titles. The evaluation focused on three key
criteria: relevance–alignment of the extracted en-
tity with the title, specificity–correct identification

5https://github.com/seatgeek/fuzzywuzzy
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Figure 1: Programmatic Evaluation Results for LLM Per-Category Extraction. (A) Exact Match Score for Extracted
Strings against Case Text. (B) Token Set Ratio of Extracted Strings against Case Text

of primary diseases or conditions, and complete-
ness– thorough extraction of all relevant medical
conditions. The detailed annotation guidelines are
provided in Appendix A.

3.7 CaseReportCollective as Information
Retrieval (IR) System

Medical conditions frequently involve multiple
body systems, making it difficult to retrieve precise
information from case reports. Analyzing entire
case reports can obscure system-specific details
and introduce confounding effects. We hypoth-
esize that system-specific LLM extractions from
CaseReportCollective can improve diagnosis re-
trieval by preserving relevant information within
distinct medical categories.

For this IR task, we first converted the LLM-
extracted category-specific texts into embeddings
using MedEmbed (Balachandran, 2024). To eval-
uate retrieval across varying disease prevalences,
we sampled 100 topics each from the top, mid-
dle, and bottom of the global frequency dis-
tribution—representing high, medium, and low-
frequency groups—ensuring one unique case per
topic. These queries were excluded from the re-
trieval corpus, which comprised the remaining
80K cases. Retrieval was performed based on L2-
normalized embedding similarity via FAISS6.

The accumulated similarity score for each test
case is computed by first retrieving the top-K most
similar disease topics from each clinical category.

6https://github.com/facebookresearch/faiss/

retrieved topics and their similarity scores were col-
lected separately per category. If a topic appeared
in multiple categories, its scores were averaged
across categories to compute an accumulated sim-
ilarity score. Final rankings per query were gen-
erated by sorting retrieved topics based on these
averaged scores, reflecting cross-category semantic
consistency.

Finally, Mean Reciprocal Rank (MRR), Nor-
malized Discounted Cumulative Gain(NDCG@50),
and Precision@50 were used for IR evaluation.

4 Results and Discussions

4.1 Dataset Composition

CaseReportCollective comprises 85,961 open-
access case reports covering 53K unique combina-
tions of medical topics published between 1986 and
February 2024 (but notably with most of the full-
text open-access case reports appearing in the past
decade). On average, case reports contain 3,462 ±
1,920.66 words. The mean number of reports per
condition is 2.88 ± 10.49, with COVID-19 (410
cases) being the most frequently reported topics,
highlighting a skewed distribution where a small
subset of topics dominates the dataset.

The amount of LLM-extracted information
varies, with total extraction item counts 27.77
± 81.57 across 14 categories. Example entries
of CaseReportCollective can be found in Ap-
pendix C. Lab_Image, which includes all labora-
tory tests and imaging across body systems, along
with History, have the highest extracted string
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counts due to their broad and inclusive nature. CVS
has the third highest extracted string count, fol-
lowed by MSK and Vitals_Heme. In contrast,
the GI category has an extremely low extracted
count in this dataset, which may reflect either the
inherently limited description of gastrointestinal-
related information in clinical case reports or the
LLM’s difficulty in recognizing such information.
Appendix B shows the string count distribution per
category.

4.2 LLM Extraction Quality
Although the mean EM score is at 0.59 ± 0.14, a
high mean TSR(%) of 87.25 ± 10.79 is achieved,
suggesting that LLM-extracted content effectively
captures the original text but may introduce minor
variations in wording or structure. As shown in
Fig. 1, the RESP category exhibits the highest EM,
indicating that respiratory-related extractions have
the highest alignment. In contrast, the GI category
has the lowest scores, suggesting that the LLM
struggled to extract gastrointestinal-related infor-
mation accurately, potentially due to variability in
how such details are reported.

Out of 400 extracted medical topics for human
evaluation, 19 cases (4.75%) were labeled as hallu-
cinations by the human reviewer, where the LLM
generated terms that were unrelated to the input
text, overgeneralized, or misclassified (e.g., proce-
dural terms instead of medical conditions). These
errors likely stem from insufficient contextual in-
formation in the article title and biases toward fre-
quently mentioned conditions in the LLM’s train-
ing data, warranting further analysis. Despite these
hallucinations, most extractions were clinically rel-
evant, with mean scores of 2.94 ± 0.32 for rele-
vance, 2.81 ± 0.39 for specificity, and 2.87 ± 0.36
for completeness. These results demonstrate strong
performance, as detailed in Appendix A.

4.3 Temporal Trends
The publication of open-access case reports has
increased significantly over the past decade. Figure
2 illustrates this trend, showing sporadic case report
publications between 1986 and 2002, followed by
a notable rise in recent years. This growth reflects
the broader adoption of open access and a growing
appreciation for case reports in clinical care.

The trend of case report topics has shifted over
time, reflecting evolving clinical priorities. Be-
fore 2020, case reports predominantly focused
on cancers (e.g., squamous cell carcinoma, hep-

atocarcinoma, renal cell carcinoma) and vascular
conditions (e.g., aneurysms). During 2020-2021,
COVID-19-related case reports surged, highlight-
ing the role of case reports in rapid knowledge
dissemination during global health crises. Post-
2021, the focus changed to oncological and rare
conditions (e.g., mucormycosis).

4.4 Age and Sex Stratification
Overall, CaseReportCollective consists of 31.61%
Adulthood (42–65 yr), 28.12% Adulthood (18–41
yr), 18.50% Adulthood (>65 yr), 10.97% Child-
hood, 4.75% Infancy, 4.27% Adolescence, and
0.36% Neonatal cases, with 1.57% missing age
extraction. Regarding sex distribution, the dataset
comprises 55.60% Female, 44.10% Male, and
0.10% Intersex cases, with 0.20% missing sex as-
signment.

4.5 Sex Distribution Across Age Groups,
Years, and Medical Topics

Sex composition varies significantly across age
groups (χ2 = 192.03, df = 12, p < 1.44×10−34)
(Fig. 3). Intersex cases are rare across all age
groups, with the highest frequency observed in
childhood (15 cases). These findings suggest a
dependency between sex and age groups, poten-
tially influenced by age-stratified biological factors,
reporting practices, or selection biases.

We found significant variation in both age (χ2 =
862.39, df = 252, p = 8.74 × 10−68) and sex
(χ2 = 108.18, df = 72, p = 0.0037) distributions
across publication years. As shown in Figure 2,
Female cases have generally been reported more
frequently than male cases across all years, with
the disparity widening over time. Intersex cases
remain rare, appearing only after 2011.

The chi-square test (χ2 = 401.70, df = 174,
p < 4.73 × 10−20) indicates a significant differ-
ence in sex distribution across high-frequency med-
ical topics (≥ 100 occurrences). This suggests
that certain medical conditions are disproportion-
ately reported in one sex over the other (Figure 4).
While some disparities may be attributed to sex-
specific physiology and pathological differences,
as reported in prior studies, others may result from
systematic biases.

4.6 Can Embedding Models Reliably Retrieve
Clinically Relevant Diseases?

We evaluated CaseReportCollective as a retrieval-
based disease-ranking method that leverages em-
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bedding similarity, retrieval frequency, and topic
prevalence within the dataset. For each test case,
we used category-specific embeddings to perform
nearest-neighbor retrieval using FAISS, a fast vec-
tor similarity search library. Specifically, we re-
trieved the top 50 most similar topics for such an
evaluation.

4.6.1 Limitations of Traditional IR Metrics

While traditional IR metrics such as MRR,
NDCG@50, and Precision@50 provide useful
benchmarks for retrieval performance, they may
underestimate the capabilities of embedding-based
methods when applied to complex clinical narra-
tives. This is particularly true in medical settings
where semantically similar conditions may be ex-
pressed using diverse terminologies, synonyms,
or compositional phrases that differ from canon-
ical labels. Moreover, our case report dataset fre-
quently presented multiple medical topics within
single cases (e.g.,"adenomatous polyps, Lynch syn-
drome"), both of which were represented in the
textual descriptions, making it challenging to distin-
guish. Although we initially considered standardiz-
ing medical topics using ontologies like UMLS, we
found such mappings insufficient for less common
medical conditions, leading to substantial informa-
tion loss. Hence, we opted out of ontology-based
standardization for this study.

In the evaluation, we permitted partial match-
ing between retrieved and query topics, allow-
ing matches such as "cystic fibrosis, multidrug-
resistant pseudomonas infection" with "cystic fi-
brosis." The IR results (Fig. 5) show that our re-
trieval system has a suboptimal MRR of 0.026 for
high-frequency topics, 0.01 for medium-frequency
topics, and 0.0 for low-frequency topics, and strug-
gles with ranking consistency as indicated by
NDCG@50 scores of 0.19 for high-frequency top-
ics, 0.05 for medium-frequency topics, and 0.07 for
low-frequency topics. The system performs better
for high-frequency topics in terms of NDCG, com-
pared medium- and low-frequency topics. How-
ever, the overall low NDCG scores suggest that
the system’s ability to rank clinically significant
diseases, including rare, low-frequency conditions,
is limited. Furthermore, the extremely low Preci-
sion@50 for all topics indicates that many retrieved
topics result from semantic linkage rather than true
diagnostic relevance, highlighting a key limitation
in the system’s precision for clinical applications.

4.6.2 Systematic Errors in Retrieval

We analyzed tuberculosis—a frequent topic—and
highlighted some of the representative failure cases
using our category-specific embedding-based sys-
tem in Table 1. Despite its high frequency in the
dataset, the retrieval system often over-prioritized
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tuberculosis due to multiple failure modes. These
include: (1) Semantic Drift, where chronic der-
matologic conditions like nevus sebaceous were
retrieved due to shared descriptors of persistent
lesions; (2) Anatomical Misalignment, such as
tracheal diverticula, arising from co-mentions in
thoracic imaging contexts; (3) Co-Treatment Arti-
fact, where conditions like steroid withdrawal syn-
drome appear due to shared treatment settings; (4)
Overgeneralized Infection Embedding, where
retrieval conflates unrelated infections like om-
phalitis or liver abscess; (5) Anatomic General-
ization, where genitourinary tuberculosis cues led
to retrievals like renal stone or UTI; (6) Surface-
Level Embedding Similarity, as seen in matches
like hemophilia B, driven by shared symptoms
such as inflammation or bleeding; (7) Rare Co-
occurrence Confusion, where diseases common
in immunocompromised hosts (e.g., EBV/HLH)

are incorrectly linked; and (8) Entity Type Mis-
match, where congenital anomalies (e.g., anorectal
malformation) are retrieved despite fundamentally
differing etiology. Notably, many of these spuri-
ous matches yielded high similarity scores (>0.86),
underscoring the embedding model’s reliance on
lexical and contextual overlap rather than clinically
meaningful distinctions. Our findings indicate that
the current embedding model is insufficient to fully
capture the complexity of differential diagnosis.

5 Conclusion

In this study, we present CaseReportCollective, a
large-scale structured dataset of medical case re-
ports. Our analysis of the case reports suggest that
the sex disparities in medical case reports have been
decreasing temporally. Our findings demonstrate
that, while leverage LLM-extracted category-wised
information for embedding-based retrieval, there
are still systematic failure modes that compromise
clinical reliability, especially when unrelated con-
ditions share surface-level linguistic features or co-
occur in similar narrative contexts. Future work
should explore the integration of structured clini-
cal knowledge, prevalence-aware ranking mecha-
nisms, and context-sensitive embedding models to
improve medical retrieval systems.
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Index Retrieved
Topic

Query Topic Norm Similarity Issue Failure Type Possible Explanation for
High Similarity

4543 nevus seba-
ceous, syringo-
cystadenoma
papilliferum

tuberculosis 0.878 Skin tumor unrelated
to TB

Semantic Drift Shared mention of chronic
lesions or dermatological
findings

4544 tracheal diver-
ticula

tuberculosis 0.872 Airway abnormality
unrelated to TB

Anatomical Mis-
alignment

Co-occurrence in chest
imaging discussions

4545 depression,
steroid with-
drawal syn-
drome

tuberculosis 0.869 Psychological syn-
dromes unrelated to
infection

Co-Treatment Ar-
tifact

TB and steroid use both ap-
pear in chronic illness con-
texts

4546 omphalitis, pyo-
genic liver ab-
scess

tuberculosis 0.868 Different infection
types

Overgeneralized
Infection Embed-
ding

Embedding captures gen-
eral infection-related se-
mantics

4547 renal stone, uri-
nary tract infec-
tion

tuberculosis 0.865 Genitourinary dis-
ease not specific to
TB

Anatomic Gener-
alization

Overlap via genitourinary
TB mentions

4548 hemophilia
b, subgaleal
hematoma

tuberculosis 0.864 Hematological condi-
tion

Embedding Sur-
face Similarity

Shared features like bleed-
ing or inflammation

4549 chronic active
EBV infection,
HLH, NK cell
lymphoma

tuberculosis 0.863 Viral and hemato-
logic malignancies

Rare Co-
occurrence
Confusion

TB sometimes mentioned
in immunocompromised
patients

4550 Churg-Strauss
syndrome,
neuroendocrine
carcinoma

tuberculosis 0.862 Vasculitis and cancer
unrelated to TB

Multisystem Simi-
larity Confusion

Both may affect multiple
organs, mentioned with
granulomas

4551 anorectal mal-
formation, ileal
perforation

tuberculosis 0.862 Congenital/anatomical
vs acquired infection

Entity Type Mis-
match

Shared surgical or gas-
trointestinal mentions

4552 trichilemmal
carcinoma

tuberculosis 0.861 Skin cancer unre-
lated to TB

Lexical Overlap Chronic cutaneous condi-
tions may trigger similar-
ity

Table 1: Issues in Retrieval of Tuberculosis: High Similarity but Incorrect Matches, Categorized by Failure Type
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A Human Evaluation Guidelines for
LLM-Extracted Diagnostic Labels

Objective: Assess the accuracy, specificity, and
clinical relevance of the LLM-generated labels in
relation to the case report title. Use the Likert scale
below for evaluation.

Likert Scale for Evaluation

Score Rating Description
3 - Excellent Perfect Match Fully relevant, spe-

cific and complete.
No improvement is
needed.

2 - Accept-
able

Partially Correct The label is relevant
but lacks key de-
tails (e.g. too broad
or missing very few
conditions). Min-
imal modification
needed.

1 - Unac-
ceptable

Incorrect or Mis-
leading

Clinically wrong,
misleading, or too
vague to be useful.
A major revision is
needed.

Table 2: Likert Scale for Evaluation

A.1 Evaluation Criteria
Evaluation Metrics:

• Relevance (1-3): Does the label relate to the
case report title?

• Specificity (1-3): Is the label precise and not
too broad?

• Completeness (1-3): Does the label capture
the full diagnosis?

A.1.1 1. Clinical Relevance
Acceptable:

• The label correctly identifies the primary dis-
ease, condition, or syndrome/symptom de-
scribed in the title.

• The label is a well-recognized medical term
or diagnosis.

Not Acceptable:

• The label is unrelated or related but too gen-
eral (e.g., “disease” instead of “trigeminal
schwannoma”).

• The label is misleading or incorrect.

A.1.2 2. Specificity
Acceptable:

• The label captures the exact medical condi-
tion (e.g., "cardiac sarcoidosis" instead of just
"sarcoidosis").

• The label includes relevant qualifiers when
necessary (e.g., "trigeminal schwannoma" in-
stead of just "schwannoma").

Not Acceptable:

• The label is too broad (e.g., for “brain abscess”
extract as only “abscess”).

• The label adds unnecessary information that
is not in the title.

A.1.3 3. Completeness
Acceptable:

• The label correctly reflects all critical clinical
elements in the title.

• If the title describes multiple conditions, the
label should capture the main diagnosis.

Not Acceptable:

• The label only captures one part of a com-
pound diagnosis when both are equally impor-
tant (e.g., did not extract both “neuropathy”
and “diabetes” in "neuropathy secondary to
diabetes").

Note: Rather than evaluating individual entity
completeness, the “completeness” metric is used to
assess the full extraction of all entities, regardless
of whether each concept is fully extracted. The
specificity metric, however, will be used to evaluate
the quality of each extracted entity.

B Distribution of Extracted Strings
Counts Across Clinical Categories

The bar plot shows the distribution of ex-
tracted string counts across different categories.
Lab_Image and History contain the most string
extractions with GI the least extractions.

C Example Layout of
CaseReportCollective
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pmcid year age sex topic title case length Vitals_Hema … 

(Omitted 13 Clinical 

Category Columns) 
 

8116089 2021 Adulthood 

(41-65 yr) 
female atrial 

septal 

defect 

Transcatheter 

Device 

Closure of 

Secundum 

Atria... 

We present 

a case of 

female 

Bosnian 

patient 50... 

209 [pulse: 83/min, 

respiratory_rate: 15 

breaths/m... 
 

8464474 2021 Adulthood 

(41-65 yr) 

female hip 

revision 

Total hip 

revision with 

custom-

made spacer 

and... 

A 61-year-

old woman 

presented to 

our 

orthopaed... 

440 [hematological_condit

ions: raised 

erythrocyte ... 

8433115 Un-

known 

Adulthood 

(41-65 yr) 

female cardiac 

haemang

ioma 

Totally 

endoscopic 

resection of 

epicardial 

car... 

We report 

on a case of 

an 

incidentally 

found t... 

217 [pulse: 72 bpm, 

blood_pressure: 

125/70 mmHg] 

 

Figure 7: Example Layout of CaseReportCollective. Only Vitals_Hema (Vitals and Hematology Findings)
is shown, other omitted categories are EENT (Eyes, Ears, Nose, and Throat), NEURO (Neurology), CVS
(Cardiovascular System), RESP (Respiratory System), GI (Gastrointestinal System), GU (Genitourinary System),
MSK (Musculoskeletal System), DERM (Dermatology), LYMPH (Lymphatic System), ENDO (Endocrinology),
Pregnancy, Lab_Image (Laboratory and Imaging), and History
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Abstract

Antibiotic resistance identification is essential
for public health, medical treatment, and drug
development. Traditional sequence-based mod-
els struggle with accurate resistance prediction
due to the lack of biological context. To address
this, we propose an NLP-based model that inte-
grates genetic sequences with structured textual
annotations, including gene family classifica-
tions and resistance mechanisms. Our approach
leverages pretrained language models for both
genetic sequences and biomedical text, aligning
biological metadata with sequence-based em-
beddings. We construct a novel dataset based
on the Antibiotic Resistance Ontology (ARO),
consolidating gene sequences with resistance-
related textual information. Experiments show
that incorporating domain knowledge signif-
icantly improves classification accuracy over
sequence-only models, reducing reliance on
exhaustive laboratory testing. By integrating
genetic sequence processing with biomedical
text understanding, our approach provides a
scalable and interpretable solution for antibi-
otic resistance prediction.

1 Introduction

The prevalence of antibiotic resistance genes
(ARGs) has risen rapidly over the past decade, pos-
ing a severe threat to public health and medical
treatment strategies (Zhang et al., 2022). The emer-
gence of multidrug-resistant pathogens has further
complicated treatment options, increasing the ur-
gency of developing accurate methods for iden-
tifying and classifying ARGs. While traditional
antibiotic resistance screening relies on phenotypic
testing, these methods are time-consuming and re-
quire extensive laboratory resources. In contrast,
bioinformatics-based approaches enable in silico
prediction of resistance from genetic sequences,
offering a scalable and efficient alternative. The
primary computational approach for identifying

antibiotic resistance genes (ARGs) has been se-
quence alignment, which compares nucleotide se-
quences to known ARG databases (Bonin et al.,
2023). While effective, alignment-based methods
struggle with novel mutations and require substan-
tial computational resources. Alternative machine
learning-based strategies have been explored to ad-
dress these challenges but remain limited in cap-
turing broader sequence dependencies (Wood and
Salzberg, 2014; Eddy, 1998; McIntyre et al., 2017).
To overcome these limitations, recent studies have
applied natural language processing (NLP) models
to genomic or protein sequences, leveraging con-
textual embeddings for improved classification and
interpretability (Brandes et al., 2022; Ji et al., 2021;
Zhou et al., 2024).

Despite their advancements, existing classifi-
cation models predominantly focus on predict-
ing a single resistance label per gene sequence
(Kang et al., 2022). However, antibiotic resistance
databases such as CARD (Alcock et al., 2023; Jia
et al., 2017) and MEGARes (Bonin et al., 2023;
Doster et al., 2020) provide richer annotations be-
yond a single resistance label. In particular, two
critical attributes—Gene Family and Resistance
Mechanism—offer valuable insights into how re-
sistance manifests at a molecular level. These at-
tributes provide a higher-level understanding of
resistance beyond individual nucleotide variations,
but current sequence-based models do not leverage
this structured information. By incorporating Gene
Family and Resistance Mechanism into predictive
models, we can enhance interpretability and classi-
fication accuracy. In this work, we propose a novel
NLP-based model that integrates genetic sequence
data with structured textual annotations, specifi-
cally Gene Family and Resistance Mechanism, to
improve antibiotic resistance classification. Our
key contributions are as follows:

• We integrate biological knowledge with
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sequence-based models for more accurate re-
sistance prediction.

• We unify resistance classification by aligning
CARD and MEGARes annotation systems.

• We generate synthetic samples to improve
classification in rare resistance categories.

2 Related Work

Traditional methods for predicting antibiotic re-
sistance rely on sequence alignment techniques,
where unknown DNA sequences are compared to
reference databases (Bonin et al., 2023). While
effective for known resistance genes, alignment-
based methods struggle with novel mutations and
require high computational resources for large-
scale datasets. Alternative computational ap-
proaches, such as Hidden Markov Models (HMMs)
(Eddy, 1998) and k-mer-based classification (Wood
and Salzberg, 2014), have been explored to recog-
nize sequence patterns beyond direct alignment.
However, these methods still face limitations in
capturing broader contextual dependencies within
genomic sequences. To address these limitations,
sequence-based machine learning approaches, such
as nucleotide transformers and DNABERT, have
been introduced (Ji et al., 2021; Zhou et al., 2024).
These models capture contextual representations
of DNA sequences and offer improved classifica-
tion performance over traditional alignment meth-
ods. However, existing sequence-based models
primarily predict antibiotic resistance based on nu-
cleotide sequence patterns alone, without incorpo-
rating additional biological knowledge. Antibiotic
resistance is not solely determined by genetic se-
quence variations, but also by gene function, regu-
latory mechanisms, and evolutionary relationships
(Kang et al., 2022). As a result, sequence-only
models may fail to generalize across diverse resis-
tance mechanisms and gene families.

Recent advancements in biomedical NLP and
knowledge-driven machine learning have demon-
strated the potential of integrating structured do-
main knowledge into predictive models. In fields
such as protein function prediction and clinical text
mining, hybrid approaches combining structured
knowledge with sequence-based embeddings have
shown promising results (Brandes et al., 2022).
This motivates the need for similar methods in an-
timicrobial resistance (AMR) classification. An-
tibiotic resistance databases such as CARD (Al-

cock et al., 2023) and MEGARes (Bonin et al.,
2023) provide valuable metadata beyond sequence-
based labels, including Gene Family classifications
and Resistance Mechanisms. These attributes cap-
ture biologically meaningful relationships between
genes and their resistance properties. However, ex-
isting AMR classification models do not fully lever-
age these structured annotations, treating resistance
prediction as a single-label classification problem
from raw sequences. While sequence-based lan-
guage models have improved antibiotic resistance
prediction, they still lack biological interpretabil-
ity and fail to incorporate structured knowledge
from domain-specific databases. The integration
of sequence embeddings with domain knowledge
has the potential to enhance classification perfor-
mance and interpretability. This motivates further
exploration of hybrid models that combine genetic
sequence processing with structured textual anno-
tations, enabling more comprehensive and general-
izable resistance prediction.

Figure 1: Overview of hybrid model for antibiotic re-
sistance drug class classification. The model takes as
input a nucleotide sequence, gene family, and resistance
mechanism, and predicts the corresponding drug class
by combining outputs from Nucleotide Transformer and
BioBERT.

3 Methods

Our model integrates sequence-based and text-
based representations to improve antibiotic resis-
tance drug class classification. Given a nucleotide
sequence (e.g., ATGC...), its associated gene family
(e.g., “beta-lactamase”), and resistance mechanism
(e.g., “antibiotic inactivation”), the model predicts
the corresponding drug class (e.g., “Phenicol”). As
illustrated in Figure 1, we utilize two pretrained
models such as a Nucleotide Transformer for pro-
cessing sequence input and BioBERT for encoding
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structured biological metadata. Their outputs are
combined using a weighted soft-voting ensemble
(Dietterich, 2000). The overall model architecture
is illustrated in the Appendix A.

3.1 Nucleotide Sequence Based Antibiotic
Resistance Drug Class Classification

To classify antibiotic resistance genes, we fine-
tune a nucleotide transformer (NT) model (Dalla-
Torre et al., 2023). We consider the NT model
as a strong sequence-only baseline that represents
current methods that rely solely on nucleotide
features without structured annotations. Unlike
conventional models primarily trained on human
genomes (Sanabria et al., 2024), NT is pre-trained
on a diverse collection of genomic sequences
from bacteria, fungi, and protozoa, allowing for
a more comprehensive representation of micro-
bial resistance patterns. For input processing, nu-
cleotide sequences are tokenized using a 6-mer tok-
enizer, a widely used k-mer tokenization technique
in genomic analysis (Mejía-Guerra and Buckler,
2019). The input length is restricted to 1000 nu-
cleotides, corresponding to the model’s pretraining
constraints. The classification task is fine-tuned us-
ing Low-Rank Adaptation (LoRA), which inserts
low-rank decomposed matrices into transformer
layers while keeping the original model weights
fixed (Hu et al., 2022). This significantly reduces
trainable parameters while maintaining model effi-
ciency and accuracy.

3.2 Text Information-Based Antibiotic
Resistance Classification

To complement sequence-based models, we fine-
tune BioBERT (Lee et al., 2020), a biomedical
language model pre-trained on PubMed and PMC
articles, to extract Gene Family and Resistance
Mechanism attributes from textual descriptions of
resistance genes. The input text is formatted us-
ing structured markers to enhance contextual un-
derstanding, improving attribute recognition and
classification accuracy. Fine-tuning is conducted
with a single classification layer, linking biologi-
cal domain knowledge with sequence-based pre-
dictions. A comparison of different entity repre-
sentation techniques is provided in Appendix D.
Although resistance mechanism and gene family
annotations may correlate with drug class labels,
they are curated independently from the target la-
bels in standardized resources such as CARD and
MEGARes. These structured attributes often co-

occur but not always perfectly aligned, providing
complementary biological context that enhances
classification robustness and interpretability.

3.3 Weighted Soft-voting Ensemble

To integrate predictions from the nucleotide
sequence-based model and the text-based model,
we implement a soft-voting ensemble strategy. The
ensemble model is designed to leverage the comple-
mentary strengths of both approaches (Kuncheva
and Whitaker, 2003), combining genetic sequence
representations with structured textual knowledge
for improved classification accuracy. The ensem-
ble takes two types of inputs: (1) the nucleotide
sequence, processed through the sequence-based
language model, and (2) textual annotations, in-
cluding Gene Family and Resistance Mechanism
attributes, extracted from the text-based model. To
optimize classification performance, we determine
the weight ratio of each model’s contribution using
a validation dataset. This validation set is separate
from the training and test datasets and is used to
fine-tune the weight distribution for optimal ensem-
ble decision-making. Final prediction probabilities
are computed using a weighted soft-voting scheme:

P (y | x) = λ·PNT(y | xseq)+(1−λ)·PBB(y | xtext)

where λ is a weight parameter determined from val-
idation performance. In our experiments, λ ranged
between 0.35 and 0.55 depending on the dataset,
reflecting the relative contributions of sequence-
based and text-based predictions.

3.4 Integrating Classes Based on Antibiotic
Resistance Ontology

Antibiotic resistance classification varies across
databases, with CARD and MEGARes using dif-
ferent resistance labels and hierarchical structures.
To address these inconsistencies, we employ the
EBI Antibiotic Resistance Ontology (ARO) (Cook
et al., 2016) to standardize resistance annotations
across datasets. Each database entry is mapped
to the ARO ontology by querying the EBI API
and retrieving hierarchical Gene Family relation-
ships. Instead of using fine-grained subcategories,
we adopt the third-level hierarchy in ARO, ensuring
that class representations remain general enough
for robust classification across different datasets.
This hierarchical integration harmonizes classifica-
tion schemes, reducing discrepancies in resistance
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annotations between databases. This mapping pro-
cess ensures consistency across heterogeneous la-
bels by aligning them to a shared third-level ARO
hierarchy, as detailed in Appendix B.

3.5 Data Augmentation Using a Large
Language Model

To mitigate data imbalance in antibiotic resistance
gene classification, we employ BioGPT (Luo et al.,
2022) for generating synthetic samples in under-
represented categories. Augmenting resistance de-
scriptions improves classification performance, par-
ticularly in Macro F1 score. The effectiveness of
this approach is detailed in Appendix E.

4 Experiments

We evaluate the performance of sequence-based
and text-based models for antibiotic resistance drug
class classification using three datasets: CARD,
MEGARes, and an integrated dataset combining
both sources. We compare Nucleotide Transformer
(NT), BioBERT (BB), and an ensemble of both
models, analyzing their effectiveness in different
dataset settings.

4.1 Experimental Setup
We finetune NT on genetic sequences and
BioBERT on structured text annotations describ-
ing resistance genes. The ensemble model uses
a weighted soft-voting approach, integrating both
modalities. All models are trained on CARD,
MEGARes, and Integrated datasets, following the
standard pre-processing pipeline described in Meth-
ods. In addition, experiments using read-level data
generated based on the Integrated dataset is con-
ducted. Further details can be found in the Ap-
pendix C

4.2 Datasets
We use the CARD and MEGARes v3 datasets,
integrating Drug Class, Gene Family, and Resis-
tance Mechanism labels using the EBI ARO on-
tology. Following standard preprocessing, classes
with fewer than 15 samples are removed. Dataset
details are provided in the Appendix B.

4.3 Classification Results
Table 1 presents the classification results, demon-
strating the impact of integrating structured biolog-
ical knowledge into sequence-based models. Com-
pared to sequence-only models, incorporating Gene
Family and Resistance Mechanism attributes led

to significant performance improvements. Specifi-
cally, our method improved accuracy by 9.53 points
and Macro F1 by 30.34 points on CARD, while on
MEGARes, the improvement was 10.38 points and
50.57 points, respectively. These findings indicate
that sequence-based models alone struggle to cap-
ture higher-level biological relationships necessary
for robust resistance classification. By integrating
structured textual annotations, our model achieves
superior interpretability and generalization, partic-
ularly for low-resource resistance categories. Fur-
thermore, using integrated data from multiple anno-
tation systems enhances classification performance,
demonstrating the advantage of leveraging domain-
specific knowledge for a unified prediction model.

4.4 Ablation Analysis

To assess the contribution of each component in our
hybrid model, we conduct an ablation analysis com-
paring individual models (NT and BB) versus their
ensemble, and dataset configurations (individual
vs. integrated). As shown in Table 1, the ensemble
consistently outperforms NT and BB alone across
all datasets, confirming the complementary nature
of sequence-based and text-based representations.

The integrated dataset includes more diverse and
heterogeneous resistance profiles from both CARD
and MEGARes, offering a broader and more re-
alistic evaluation setting. Despite this increased
complexity, our ensemble model maintains strong
and consistent performance, demonstrating its ro-
bustness and generalizability across databases.

5 Discussion

Our results demonstrate that incorporating struc-
tured biological knowledge significantly enhances
antibiotic resistance classification. Sequence-based
models alone struggle to capture higher-order bio-
logical relationships that influence resistance mech-
anisms. By integrating Gene Family and Resis-
tance Mechanism annotations, our model improves
interpretability and generalization, particularly for
low-resource resistance categories. Furthermore,
class integration using the EBI ARO ontology stan-
dardizes resistance classification across datasets,
increasing training data availability and improv-
ing consistency. This standardization not only
enhances model performance but also facilitates
broader applicability across different resistance
gene databases. Notably, the near-perfect perfor-
mance observed on the MEGARes dataset may par-
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Dataset Method Accuracy Macro F1 Precision Recall
CARD NT 87.92 63.08 66.46 61.51
CARD BB 97.22 89.68 92.09 90.54
CARD Ensemble 97.55 93.44 95.72 92.86
MEGARes NT 89.61 46.42 54.92 43.94
MEGARes BB 99.64 99.47 99.96 99.03
MEGARes Ensemble 99.99 99.99 99.99 99.99
Integrated NT 82.89 65.79 81.84 58.67
Integrated BB 90.26 79.34 84.05 77.14
Integrated Ensemble 92.11 80.95 83.52 78.94
Integrated with reads NT 83.11 62.82 74.81 57.32
Integrated with reads BB 90.24 79.34 84.05 77.14
Integrated with reads Ensemble 93.40 81.85 84.34 80.25

Table 1: Result of using the CARD, MEGARes, and Integrated databases for antibiotic resistance drug class
prediction using Nucleotide Transformer(NT), BioBERT(BB), and a weighted ensemble of both. The weighted
ensemble with Nucleotide Transformer(NT) and BioBERT(BB) shows better performance in every datasets.

tially reflect the benefits of ontology-based class
harmonization and the high consistency of resis-
tance annotations in MEGARes. While these re-
sults highlight the model’s capacity to leverage
structured knowledge, they also suggest that anno-
tation quality and class structure play a key role in
enabling robust classification. Additionally, our en-
semble model maintains strong performance even
when using sequencing reads instead of full-length
genes, demonstrating its robustness in practical ap-
plications. Beyond classification performance, in-
corporating structured biological knowledge also
provides practical advantages in reducing exper-
imental complexity and time (see Appendix F).
By bridging the gap between sequence-based and
knowledge-driven classification, our approach of-
fers a scalable and interpretable solution for an-
timicrobial resistance prediction. However, our
approach still relies on the quality of existing re-
sistance gene annotations, which may not always
reflect emerging resistance mechanisms. Addition-
ally, maintaining up-to-date structured knowledge
requires continuous curation, posing a scalability
challenge.

6 Conclusion

We present a hybrid model that integrates sequence-
based and text-based representations to improve an-
tibiotic resistance classification. By incorporating
structured biological knowledge, including Gene
Family and Resistance Mechanism annotations, our
approach enhances interpretability and outperforms
sequence-only models. Additionally, we standard-
ize resistance classification using the EBI ontology
and utilize large language models for data augmen-
tation, improving performance in low-resource set-
tings. These results demonstrate the effectiveness

of combining genetic and textual information for
more accurate and scalable resistance prediction.

7 Limitation

While our approach improves antibiotic resistance
classification by integrating sequence-based and
text-based models, certain limitations remain. First,
our reliance on curated databases, such as CARD
and MEGARes, means that model performance
may be affected by biases in annotation quality
and completeness. Additionally, while integrat-
ing Gene Family and Resistance Mechanism im-
proves interpretability, the hierarchical structure
of these annotations may introduce inconsisten-
cies across datasets. Another limitation is the chal-
lenge of handling rare or novel resistance genes,
where even with data augmentation, model gen-
eralization remains an open problem. Computa-
tional efficiency remains a concern, as training
large-scale sequence and text models requires sig-
nificant resources, which may limit accessibility
for some research applications. Finally, beyond
domain-specific models, evaluating the potential of
recent general-purpose LLMs such as ChatGPT-4o
or Claude 4 Sonnet for antibiotic resistance predic-
tion remains an open direction for future research.
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A Model Overview

Figure 1 illustrates the overall architecture of our
proposed model, which integrates sequence-based
and text-based representations for antibiotic re-
sistance classification. We fine-tuned two pre-
trained language models—Nucleotide Transformer
and BioBERT—for DNA sequence classification
tasks involving the prediction of antimicrobial drug
classes. The Nucleotide Transformer model was
fine-tuned using parameter-efficient LoRA-based
adaptation. DNA sequences were truncated to
a maximum length of 1000 nucleotides and tok-
enized using a domain-specific tokenizer. Training
data was structured with input DNA sequences and
corresponding drug class labels. The model was
fine-tuned using a sequence classification objective
on a multi-class dataset. Performance was eval-
uated on a separate test set using macro-average
F1 score, accuracy, precision, recall, and balanced
accuracy. For BioBERT, the input consisted of
textual descriptions including gene family and re-
sistance mechanism information, formatted into
natural language prompts. These were tokenized
using a BERT tokenizer with a fixed input length.
A classification head was added to predict the drug
class labels. The model was trained for multiple
epochs and evaluated using the same metrics as for
the Nucleotide Transformer. Both models showed
effective performance in multi-class classification
tasks, demonstrating the potential of sequence- and
text-based pretraining approaches in genomic clas-
sification problems.
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Figure 2: EBI ARO Gene Family mapping: search to
find mapping information with header and ontology by
using API.

B Dataset Details

The CARD and MEGARes v3 datasets are used
for training and evaluation. Classes with fewer
than 15 samples are removed because obtaining
meaningful results from the data split is difficult.
The remaining data is split into 75% for training
data, 20% for test data, and 5% for validation data.
EBI ARO ontology search is used to integrate the
data, which is then split similarly to the above.
Classes with difficult-to-obtain meaningful results
are also removed. The MEGARes dataset con-
sists of 9733 Reference Sequences, 1088 SNPs,
4 antibiotic types, 59 resistance classes, and 233
mechanisms. The CARD dataset consists of 5194
Reference Sequences and 2005 SNPs, 142 Drug
Classes, 331 Gene Families, and 10 Resistance
Mechanisms. The EBI ARO ontology provides
hierarchical group information for genes. Using
the EBI ARO Ontology, Gene Family class infor-
mation can be integrated into a higher-level hierar-
chy. The number of Gene Family text information
classes in the case of MEGARes is 589, while for
CARD, it is 331. There are 300 and 166 datasets
with only one sample in their respective classes for
Gene Family in the case of MEGARes and CARD,
respectively. Resistance Mechanism is integrated
based on the 6 categories of CARD. The original
8 categories were reduced to 6, excluding cases of
various class combinations and those with very few
samples. Drug Class is integrated using 9 common
Drug Classes found in competing models. Integra-
tion is done based on names and theories and has
been verified. Macro f1 score, accuracy, balanced
accuracy, and precision are used as performance
metrics, and the results are listed in the Table 1.

Figure 3, Figure 4 and Figure 5 represent the
distribution of training dataset which is integrated
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Figure 3: Counts of the frequent Resistance Mechanism
in training dataset.
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Figure 4: Counts of the frequent Gene Family in training
dataset.
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Figure 5: Counts of the frequent Antimicrobial Resis-
tance Drug Classes in training dataset.

with CARD and MEGARes. We observe a long-
tail distribution for Resistance Mechanism, Gene
Family, and Drug Class classes.

The distribution indicates that certain resistance
mechanisms, gene families, and drug classes are
significantly overrepresented in the dataset, while
many others occur with low frequency. Specifi-
cally, antibiotic inactivation is the most common
resistance mechanism, while beta-lactamase genes
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dominate the gene family distribution. Similarly,
beta-lactams appear as the most frequently associ-
ated drug class.

This imbalance in distribution suggests that mod-
els trained on this dataset may exhibit biased perfor-
mance, favoring well-represented categories while
struggling with rare classes. Furthermore, the pres-
ence of diverse resistance mechanisms and gene
families emphasizes the complexity of antimicro-
bial resistance (AMR) prediction.

The dataset used in this study is pub-
licly available at https://zenodo.org/records/
15213479.

C Read Generation

Read generation is a computational process used to
simulate short DNA or RNA sequences, commonly
referred to as "reads", from reference genomes or
annotated genetic sequences. This technique is
designed to mimic the output of next-generation
sequencing (NGS) technologies (Hu et al., 2021),
providing a way to generate data for various ap-
plications such as machine learning model train-
ing, benchmarking, or evaluating bioinformatics
pipelines. In the context of antibiotic resistance
prediction, read generation is often performed us-
ing curated databases like CARD, MEGARes, or
the Integrated database, which contain known re-
sistance genes and associated metadata.

To simulate realistic reads, researchers com-
monly use specialized tools such as ART (Huang
et al., 2012), InSilicoSeq (Gourlé et al., 2019),
DWGSIM, NEAT (Schorderet, 2016), or Mason
(Holtgrewe, 2010). These simulators can generate
Illumina-style short reads with configurable read
lengths, sequencing errors, mutation rates, and cov-
erage depth. In this study, we used ART to generate
synthetic reads based on the Integrated database.
ART supports detailed customization of error pro-
files and is widely used for simulating realistic
Illumina sequencing data.

The generated reads can serve as a substitute
when real-world sequencing data is limited or un-
available. By generating reads from known refer-
ence sequences, researchers can perform controlled
experiments with clearly defined ground truth, as-
sess model robustness under noisy or imperfect
conditions, and evaluate how well different models
generalize to simulated real-world data. Overall,
read generation combined with realistic simulators
plays a crucial role in creating labeled datasets

that facilitate the development and validation of
genomic analysis tools.

D Entity Representation Techniques

To improve antibiotic resistance classification, we
experimented with different entity representation
techniques for encoding Gene Family and Resis-
tance Mechanism attributes in BioBERT-based
models. Table 2 compares the impact of these tech-
niques on classification performance.

These representations were designed to help
the model better distinguish between biological
attributes and general text (Yamada et al., 2023).
The Base format uses plain-text input without ad-
ditional markers, while the Entity Marker (punct)
format introduces brackets around key attributes.
The Typed Entity Marker (Zhou and Chen, 2022)
explicitly labels entities, providing more structured
input, and the Typed Entity Marker (punct) format
further combines these strategies.

Results indicate that using entity markers im-
proves classification performance. In particular, the
Typed Entity Marker (punct) approach achieves the
highest Macro F1 score, demonstrating that struc-
tured formatting helps the model capture contex-
tual relationships between resistance mechanisms
and gene families more effectively. Results indi-
cate that explicit formatting, such as typed entity
markers with punctuation, enhances BioBERT’s
contextual understanding about Gene Family and
Resistance Mechanism attributes from general text.
This suggests that structured annotations provide
useful inductive bias, allowing the model to better
capture domain-specific relationships.

E Impact of LLM-Based Data
Augmentation

Despite ontology-based class standardization, cer-
tain resistance categories remain underrepresented
due to natural imbalances in antibiotic resistance
gene distributions. To address this, we employ
BioGPT (Luo et al., 2022) for generating synthetic
samples in low-resource categories. BioGPT is
prompted to generate contextually similar resis-
tance gene descriptions, maintaining the linguistic
characteristics of real annotations to ensure realistic
and informative augmentation.

By integrating BioGPT-based augmentation, we
observe consistent improvements in classification
performance, particularly in Macro F1 scores for
rare classes. Table 3 presents the results of this
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Output Input Example BioBERT
Base Gene Family: Beta-lactamases, Resistance Mechanism: Antibiotic inactivation 78.20
Entity marker (punct) [Gene Family]: Beta-lactamases, [Resistance Mechanism]: Antibiotic inactivation 77.41
Typed entity marker *Beta-lactamases*, #Resistance Mechanism# 77.70
Typed entity marker (punct) *[Gene Family]: Beta-lactamases*, #[Resistance Mechanism]: Antibiotic inactivation# 78.46

Table 2: Test Macro F1 score of different entity representation techniques in antibiotic resistance classification with
BioBERT.

augmentation strategy, demonstrating its positive
impact on model robustness.

F Practical Advantages of Using Gene
Family and Resistance Mechanism

Incorporating Gene Family and Resistance Mecha-
nism information in antibiotic resistance classifica-
tion provides practical advantages, particularly in
reducing experimental complexity and time. Tradi-
tional laboratory-based methods, such as Minimum
Inhibitory Concentration (Kowalska-Krochmal and
Dudek-Wicher, 2021; Andrews, 2001a) (MIC) as-
says and Disk Diffusion Tests, require separate test-
ing for each antibiotic, which involves overnight
incubation and may take longer for certain organ-
isms (Andrews, 2001b). Testing multiple antibi-
otics increases time and resource consumption, and
experimental conditions such as growth medium
and gene expression variability can further compli-
cate results.

Sequence-based approaches, such as Polymerase
Chain Reaction (PCR) and Whole Genome Se-
quencing (WGS), enable the identification of
resistance-related genes directly from genomic
data (Bagger et al., 2024; Ng and Kirkness, 2010).
PCR/qPCR can provide results relatively quickly,
typically within hours, whereas WGS requires a
longer processing time, often taking multiple days
to complete (Cason et al., 2022).

Leveraging Gene Family and Resistance Mecha-
nism attributes allows for a more efficient compu-
tational approach to resistance prediction, minimiz-
ing reliance on exhaustive in vitro testing. Many
resistance mechanisms are well-characterized and
strongly associated with specific gene families. For
instance, betalactamase genes are well-known indi-
cators of resistance to betalactam antibiotics, such
as penicillins and cephalosporins (Bush and Jacoby,
2010). By integrating structured biological knowl-
edge with sequence-based models, resistance pre-
dictions can be made with greater confidence and
interpretability, supporting a scalable and practical
framework for antimicrobial resistance classifica-
tion.
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Method Accuracy Macro F1 Precision Recall
NT 84.15 64.04 72.78 59.28
NT with data augmentation 83.42 64.85 80.15 58.65
NT with reads 82.85 61.02 68.32 57.06
NT with reads and data augmentation 83.11 62.82 74.81 57.32

Table 3: Effect of BioGPT-based data augmentation on resistance classification performance. Augmentation
improves Macro F1, particularly for low-resource categories.
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Abstract

Recent advances in large language models
(LLMs) have led to impressive performance
on medical question-answering (QA) bench-
marks. However, the extent to which these
benchmarks reflect real-world clinical capabil-
ities remains uncertain. To address this gap,
we systematically analyzed the correlation be-
tween LLM performance on major medical QA
benchmarks (e.g., MedQA, MedMCQA, Pub-
MedQA, and MMLU medicine subjects) and
clinical performance in real-world settings. Our
dataset included 702 clinical evaluations of 85
LLMs from 168 studies. Benchmark scores
demonsrated a moderate correlation with clini-
cal performance (Spearman’s ρ = 0.59), albeit
substantially lower than inter-benchmark cor-
relations. Among them, MedQA was the most
predictive but failed to capture essential compe-
tencies such as patient communication, longitu-
dinal care, and clinical information extraction.
Using Bayesian hierarchical modeling, we esti-
mated representative clinical performance and
identified GPT-4 and GPT-4o as consistently
top-performing models, often matching or ex-
ceeding human physicians. Despite longstand-
ing concerns about the clinical validity of med-
ical QA benchmarks, this study offers the first
quantitative analysis of their alignment with
real-world clinical performance.1

1 Introduction

The rapid advancement of large language models
(LLMs), accelerated by the release of ChatGPT, has
continued into 2025. Open-source models such as
Llama 3.3, Phi-4, and DeepSeek-R1 are rapidly nar-
rowing the performance gap with proprietary mod-
els (Grattafiori et al., 2024; Abdin et al., 2024; Guo
et al., 2025). This progress is especially consequen-
tial in healthcare, where strigent privacy and secu-
rity requirments frequently necessitate on-premise

1The dataset and code are available at:
https://github.com/SiunKim/questioning-medqa.

deployment (Faray de Paiva et al., 2025; Gupta and
Pande, 2025).

Figure 1: Overview of our study assessing the align-
ment between medical QA benchmarks and real-world
clinical performance.

As LLMs attains expert-level performance on
both general and medical QA benchmarks, the lim-
itations of such benchmarks have become increas-
ingly apparent. For instance, OpenAI’s o1-preview
achieved 96% on MedQA and 99% on MMLU
Medical Genetics, outperforming human experts
(Nori et al., 2024; Liévin et al., 2024). However,
such benchmarks are thought to focus predomi-
nantly on static knowledge and structured reason-
ing, which may not fully reflect core competencies
essential for clinical practice (Nori et al., 2023;
Singhal et al., 2023), such as decision-making un-
der uncertainty (Han et al., 2011), patient commu-
nication (Barry and Edgman-Levitan, 2012), and
ethical reasoning (Kaldjian et al., 2005).

Although concerns over the limited clinical va-
lidity of existing medical QA benchmarks have
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been raised, there remains a lack of systematic evi-
dence. In this study, we address this gap through a
comprehensive meta-analysis evaluating how effec-
tively conventional medical QA benchmarks reflect
the real-world clinical performance of LLMs (Fig-
ure 1).

Our key contributions are as follows:

• Quantitative assessment of benchmark-
clinical alignment: We demonstrate a moder-
ate correlation (Spearman’s ρ = 0.59) between
medical QA benchmarks and real-world clini-
cal performance, highlighting significant limi-
tations in the current evaluation practices.

• Identification of clinical gaps in MedQA:
MedQA demonstrates strong alignment with
core competencies such as treatment, clini-
cal knowledge, and diagnosis. However, it
fails to adequately assess essential aspects of
real-world clinical practice, including patient
communication, longitudinal care, and clini-
cal information extraction.

• Bayesian modeling of representative clin-
ical performance: Using hierarchical
Bayesian models, we estimate the generalized
clinical capabilities of LLMs, suggesting that
models like GPT-4 and GPT-4o match or ex-
ceed human physician-level performance in
real-world clinical settings.

2 Related Works

MedQA—based on the USMLE Step 1 and 2 ex-
ams—has emerged as a de facto benchmark in the
medical domain, owing to its high-quality multiple-
choice questions (MCQs) and comprehensive topi-
cal coverage (Jin et al., 2021). As a representative
benchmark, improvements in MedQA performance
have frequently been interpreted as a proxy for
progress in medical LLMs (Singhal et al., 2025;
Saab et al., 2024).

MedMCQA, derived from Indian medical en-
trance exams (AIIMS and NEET PG), comple-
ments MedQA by offering broader topical diversity
and varied question types (Pal et al., 2022). In
contrast, PubMedQA focused on biomedical liter-
ature comprehension by requiring models to infer
answers from PubMed abstracts (Jin et al., 2019).

Despite their widespread use, these traditional
medical benchmarks primarily assess factual recall
and structured reasoning. They have been criticized
for failing to evaluate essential aspects of practical

clinical competence (Tang et al., 2023; Kim et al.,
2025; Liu et al., 2024).

In response, recent datasets aim to capture the
complexity of real-world clinical practice. Datasets
like Medbullet (Chen et al., 2024), MedExQA
(Kim et al., 2024), and MedXpertQA (Zuo et al.,
2025) introduce open-ended questions, expert-
written explanations, and multimodal data to facili-
tate more comprehensive evaluations. Furthermore,
integrated evaluation frameworks like MedAgent-
Bench (Tang et al., 2025) and MEDIC (Kanithi
et al., 2024) encompass multiple clinical tasks and
explicitly address ethical and safety concerns.

In parallel, agent-based evaluations have
emerged to assess interactive and dynamic reason-
ing. For instance, MedQA-CS adopts OSCE-style
clinical scenarios (Yao et al., 2024), while Agent-
Clinic (Schmidgall et al., 2024) evaluates LLMs
during simulated physician-patient dialogues.

Building on these developments, our study sys-
tematically examines the alignment between con-
ventional medical QA benchmarks and real-world
clinical evaluations. By identifying existing gaps,
we aim to inform the design of future benchmarks
that more accurately reflect practical clinical com-
petencies.

3 Methods

To evaluate the extent to which existing medical
QA benchmarks reflect real-world clinical perfor-
mance, we analyzed 168 published studies that
assessed at least three distinct language models
in clinical settings. Benchmark scores on both
medical QA and general-purpose benchmarks were
collected and standardized to ensure comparability.
To address the missing benchmark scores, multi-
ple imputation was applied. Correlations between
benchmark scores and clinical performance were
calculated using rank-based methods weighted by
sample size. Finally, we employed Bayesian hier-
archical modeling to estimate each model’s repre-
sentative clinical capability.

3.1 Literature Review for Collecting Clinical
Performance Data

We conducted a multi-stage literature review to
identify studies evaluating LLM performance in
real-world clinical settings (Figure 2). Using the
Semantic Scholar API, we first retrieved articles
published between January 1, 2023, and January 10,
2025, based on search queries designed to encom-
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pass a wide range of clinical scenarios (Appendix
A.1). Title-based filtering retained studies explic-
itly mentioning LLM-related terms, followed by
DOI-based deduplication. Abstract and full-texts
were retrieved via publisher and open-access APIs.

Literature Search: Google Scholar
19,322 papers

Title-based Screening
5,049 papers

DOI/Abstract Retrieval & PDF Acquisition
2,022 papers

Abstract Screening*
1,333 papers

Full-text Review*
263 papers

Final Curation & Dataset Construction
168 papers, 195 tasks,

85 LLMs, 702 performances

* Steps involving LLM assistance

Figure 2: Flowchart of literature review for collecting
LLM performances in real-world clinical settings.

Phi-4 model-assisted screening of abstracts and
full-texts identified studies that reported perfor-
mance for at least three distinct LLMs, enabling
correlation analyses (AppendixA.2). Manual re-
view was conducted to extract structured data, nor-
malized model names (Appendix A.3) and classi-
fied evaluation settings (Appendix A.4).

3.2 LLM Performance Collection in
Real-World Clinical Settings

To address overrepresentation issues caused by
redundant evaluations of similar model abilities
within a single study, we extracted one representa-
tive performance score for each task-model combi-
nation. Preference was given to the simplest infer-
ence setting (e.g., zero-shot without CoT). If multi-
ple measures existed for the same therapeutic area
and capabilities, we selected the most frequently
used metric, or averaged scores, if no dominant
measure was evident. Evaluations spanning multi-
ple therapeutic areas or distinct capabilities were
treated as a separate task.

Studies relying on readability metrics, inter-
model correlation analyses, or with fewer than 20
evaluation samples were excluded. Encoder-based
language models (e.g., BERT, RoBERTa) were also
excluded because the study focused solely on au-
toregressive LLMs.

Performance scores were normalized to a 0–100
scale using min-max scaling. Metrics indicating
better performance through lower values (e.g., pro-
portion of biased answers) were inverted by sub-
tracting from 100.

3.3 Benchmark Performance Collection
Benchmarks were divided into medical QA
benchmarks and general benchmarks. Medical
QA benchmarks included MedQA, MedMCQA,
PubMedQA, and six MMLU medical subsets
(Anatomy, Clinical Knowledge, College Biology,
College Medicine, Medical Genetics, and Profes-
sional Medicine). General benchmarks consisted of
MMLU, MMLU Pro, BBH, HumanEval, GSM8K,
and MATH.

Performance data were extracted from published
articles, technical reports, and model cards. Addi-
tional web searches supplemented version-specific
scores for widely used proprietary models (e.g.,
GPT, Claude, and Gemini).

We standardized benchmark performances by fo-
cusing on zero-shot without CoT. If multiple results
were available, averages were used. If zero-shot
data were unavailable, performance was estimated
through linear regression using reported results un-
der different inference settings, by considering few-
shot examples and CoT usage as covariates.

3.4 Benchmark Performance Imputation
While complete benchmark data are ideal for re-
liable correlation analyses, missing values were
inevitable as performance scores were compiled
through literature review rather than direct evalua-
tion. To systematically address missing values, we
employed Multiple Imputation by Chained Equa-
tions (MICE), which leverages observed interde-
pendencies within available data to estimate absent
benchmark performances.

Before imputation, we confirmed the Missing
at Random (MAR) assumption, a necessary con-
dition for reducing bias in estimation. Two im-
putation techniques were tested: Random Forest
(RF-MICE) for capturing non-linear dependencies
and Bayesian Ridge (BR-MICE) for small datasets
with collinearity. Imputation was performed sepa-
rately for each benchmark category.

We validated imputation accuracy through mask-
ing test, randomly removing and subsequently esti-
mating 10% of the observed values. To incorporate
uncertainty, multiple imputations were conducted,
and within- and between-imputation variance were
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estimated (Appendix A.5). Based on validation
results, we selected a final version of the imputed
dataset for downstream analysis.

3.5 Correlation Measurement
We evaluated correlations in two ways: benchmark-
to-benchmark and benchmark-to-clinical perfor-
mance.

Benchmark-to-benchmark correlation were cal-
culated based on the performance scores of models
that were evaluated on both. This analysis allowed
us to identify redundant benchmarks, assess the
quality of benchmark datasets, and set a correla-
tion baseline for subsequent benchmark-to-clinical
correlation analyses.

Benchmark-to-clinical correlations were com-
puted at the evaluation task level, weighted log-
arithmically by evaluation sample size to reflect
varying reliability across studies. Analyses uti-
lized imputed benchmark scores primarily, with
non-imputed data serving as sensitivity checks.

Although we measured rank-based (Spearman’s
rank correlation coefficient and Kendall’s tau) and
linear-based (Pearson’s correlation coefficient and
Lin’s concordance correlation coefficient) met-
rics, primary analyses used Spearman’s rank and
Kendall’s tau due to their suitability for handling
diverse evaluation scoring scales without assum-
ing linear relationships. Linear correlations were
calculated but used only as reference points.

3.6 Bayesian Modeling
To estimate representative clinical performance for
each language model independent of task-specific
biases, we employed Bayesian hierarchical mod-
eling. Given the limited number of model evalu-
ated per task (average 3.6 models), individual task
effects could not be directly estimated. Instead,
task-related variations were approximated using
metadata attributes including task type, data source,
and evaluation methods. Therapeutic areas were
excluded due to inconsistent categorization and
unclear impact on performance (Appendix A.6.1).
Furthermore, models for which performance data
were available for fewer than three distinct tasks
were excluded to enhance the reliability of model-
specific performance estimates, which served as
proxies for general clinical competence.

To further assess the robustness of the model-
specific estimates, connectivity measures were cal-
culated. Higher connectivity indicates stronger sup-
port from direct and indirect comparisons across

Table 1: Summary of clinical performance dataset and
evaluation settings.

Category Count (%)

Total samples 702 (100.0)

Task type
Diagnosis 183 (26.1)
Clinical Knowledge 182 (25.9)
Overall Management 111 (15.8)
Answering to Patients 83 (11.8)
Information Extraction 61 (8.7)
Treatment 48 (6.8)
Other 34 (4.8)

Data source
Clinical Vignettes 271 (38.6)
Quizzes 160 (22.8)
Board Examination 114 (16.2)
FAQs 74 (10.5)
Other 83 (11.8)

Therapeutic area
General Medicine 154 (21.9)
Oncology 77 (11.0)
Ophthalmology 60 (8.5)
Orthopedics & Musculoskeletal 58 (8.3)
Emergency Medicine 53 (7.5)
Neuropsychiatric 53 (7.5)
Others 247 (35.2)

Evaluation type
MCQs 463 (66.0)
Human Rating 239 (34.0)

models, thereby resulting in more stable and accu-
rate performance estimates (Appendix A.6.2).

4 Results and Discussion

4.1 Clinical Performance Dataset
Our dataset comprised 702 clinical performance
evaluations from 168 studies covering 195 distinct
clinical tasks. Evaluations involved 85 LLMs, pre-
dominantly from GPT (51.7%), LLaMA (10.3%),
and Gemini (8.8%) families. Task types included
diagnosis (26.1%), clinical knowledge assessment
(25.9%), and overall patient management (15.8%).
Data sources were primarily clinical vignettes
(38.6%) and quizzes (22.8%), with evaluations con-
ducted through MCQs (66.0%) and expert human
ratings (34.0%) (Table 1).

4.2 Benchmark Performance Imputation
The benchmark dataset contained a notable pro-
portion of missing values: 42.4% for medical
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Table 2: Average correlation coefficients of medical QA benchmarks with other benchmarks. The highest score in
each column is bold, and the second highest is underlined.

Medical QA Benchmarks Spearman Kendall
Medical QA General Medical QA General

MedQA 0.809 0.867 0.664 0.703
MedMCQA 0.808 0.855 0.651 0.693
MMLU Medical Genetics 0.835 0.748 0.684 0.607
MMLU Clinical Knowledge 0.851 0.820 0.714 0.664
MMLU College Medicine 0.822 0.784 0.683 0.618
MMLU Professional Medicine 0.849 0.789 0.705 0.632
MMLU College Biology 0.819 0.666 0.672 0.522
MMLU Anatomy 0.703 0.558 0.571 0.449
PubMedQA 0.484 0.441 0.333 0.318
Average 0.787 0.725 0.675 0.576

QA benchmarks (9 benchmarks, 138 models, 715
scores) and 40.6% for general benchmarks (6
benchmarks, 126 models, 449 scores).

Imputation accuracy, assessed through masking
tests, indicated RF-MICE outperformed BR-MICE.
Specifically, RF-MICE achieved lower mean ab-
solute error (MAE=2.04) and higher R² (0.98) on
medical QA benchmarks (Table 9). Variance anal-
ysis of multiple imputations further supported RF-
MICE due to lower total variance and improved
stability (Table 10). Consequently, RF-MICE was
utilized to generate the final imputed dataset.

4.3 Benchmark-to-Benchmark Correlation

Medical QA benchmarks showed strong internal
correlations overall, with MMLU Clinical Knowl-
edge and MMLU Professional Medicine exhibiting
particularly high correlations with other medical
QA benchmarks (Table 2). This is likely due to
their broad content coverage, encompassing topics
found in other MMLU medical subjects, thereby
forming a high-correlation block (Figure 6).

In contrast, PubMedQA and MMLU Anatomy
showed weaker correlations with other medical
QA benchmarks. PubMedQA’s lower correlations
may stem from its distinct task formulation, which
is more aligned with biomedical summarization
rather than clinical reasoning (Jin et al., 2019). Sim-
ilarly, MMLU Anatomy’s lower correlations likely
reflect its narrower content scope compared to other
benchmarks.

MedQA and MedMCQA demonstrated the high-
est correlations with general benchmarks among
medical QA benchmarks (Table 2, Figure 6). This
suggests that these two datasets not only assess
domain-specific knowledge but also required a

broad set of reasoning skills, many of which over-
lapped with general benchmarks.

Within general benchmarks, BBH (Spearman’s
0.891) and MMLU (0.853) exhibited the strongest
correlations with medical QA benchmarks (Table
11). This result also indicates logical reasoning ca-
pabilities and broad domain knowledge are closely
linked to solve medical problems. In contrast,
mathematics-focused benchmarks (i.e., GSM8K
and MATH) displayed weaker correlations, high-
lighting the distinct types of reasoning involved in
medical contexts.

4.4 Benchmark-to-Clinical Performance
Correlation

MedQA showed the strongest correlation with
real-world clinical performance, outperforming
general benchmarks in capturing actual clinical
competency (Spearman’s 0.588, Kendall’s 0.520;
Figure 3A). However, correlation strength was
notably lower than inter-benchmark correlations
(0.675–0.787; Table 2). These results suggest
MedQA remains the most representative current
benchmark for clinical tasks, although its ability
to predict comprehensive clinical performance re-
mains limited.

Further analysis across evaluation settings high-
lighted MedQA’s strengths and limitations (Fig-
ure 4). MedQA performed well predicting clinical
competency in tasks involving treatment, clinical
knowledge, and diagnosis (Figure 4A). In contrast,
it showed significantly weaker correlations in pa-
tient communication, overall patient management,
and information extraction.

Similarly, while MedQA strongly correlated
with performance derived from board examination-
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Figure 3: Comparison of correlation coefficients between benchmark and clinical performance.

style datasets, correlations with evaluations based
on clinical vignette or FAQ, which closely re-
semble real-world clinical practice, were consid-
erably lower (Figure 4B). These findings suggest
that while MedQA reliably evaluates core medical
knowledge and reasoning skills, it does not ade-
quately reflect the broader competencies required
in real-world clinical practice.

MMLU Medical Genetics, College Medicine,
Professional Medicine, Clinical Knowledge, and
MedMCQA displayed moderately high correla-
tions with clinical performance, outperforming gen-
eral benchmarks (Figure 3A). Conversely, Pub-
MedQA and MMLU Anatomy consistently under-
performed, indicating their limited suitability as
representative clinical evaluation tools (Figures 9,
10).

4.5 Representative Clinical Performances
Estimated through Bayesian Modeling

Representative clinical performances of 59 lan-
guage models were robustly estimated using
Bayesian hierarchical modeling across 717 perfor-
mance samples. Model convergence was strong,
indicated by effective sample sizes (ESS) above
300 and R-hat values below 1.02.

Among evaluated models, GPT-4 and GPT-4o
consistently demonstrated the highest clinical per-
formance, often exceeding the average perfor-
mance of medical professionals (labeled as ’hu-
man - doctor’) and substantially outperforming
both smaller open-source models and other pro-
prietary models (Figure 5). The strong and con-
sistent performance of the GPT family is further
supported by newly developed medical benchmark
studies (Olatunji et al., 2024; Yao et al., 2024; Zuo
et al., 2025), which similarly highlight their supe-
rior clinical reasoning capabilities.

Proprietary models (purple) generally outper-
formed open-source models (orange, Figure 5),
suggesting that commercially optimized systems
remain more reliable in clinical settings—though
this conclusion may shift with the rapid progress
of open-source LLMs in 2025.

Within the open-source category, Llama-3.1-8B-
instruct was the only model to surpass the mini-
mum threshold set for human-level performance
(labeled as ’human - cut-off’). Notably, however,
its lower connectivity implies that this performance
estimate should be interpreted with caution due to
high uncertainty.

Notably, language models fine-tuned for the
medical domain (marked with a star, ⋆) did
not show substantial improvements over general-
purpose models like Llama, despite having com-
parable model sizes (Figure 5). This may be
due to overfitting to the specific characteristics
of their training datasets—typically composed of
structured medical QA corpora or textbook-style
materials—which could limit their generalizabil-
ity in practical clinical contexts (Olatunji et al.,
2024). These findings are consistent with previous
results showing that biomedical models often un-
derperform on newer, more complex benchmarks,
and support concerns regarding their sensitivity
to dataset-specific biases and limitations (Olatunji
et al., 2024; Yao et al., 2024).

5 Conclusion

This study demonstrates that existing medical QA
benchmarks posses only a moderate capacity to pre-
dict real-world clinical performance. Among them,
MedQA showed the strongest correlation with clin-
ical performance but was still insufficient for evalu-
ating practical clinical competencies such as patient
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Figure 4: Comparison of correlations between MedQA performance and individual outcomes measured in real-world
clinical settings across different task types, therapeutic areas, data sources, and evaluation methods.

interaction, longitudinal patient management, and
clinical information extraction. Bayesian hierarchi-
cal modeling further revealed that proprietary mod-
els—particularly GPT-4 and GPT-4o—consistently
outperformed open-source counterparts and, across
many versions, matched or exceeded the perfor-
mance of human experts in real-world clinical set-
tings. Notably, despite longstanding concerns re-
garding the validity of medical QA benchmarks,
this study provides the first systematic and quanti-
tative evidence evaluating the alignment between
medical QA benchmarks and actual clinical perfor-
mance.

Limitations

This study has several limitations. First, our analy-
sis is based on published studies, which inevitably
lag behind ongoing LLM advancements due to pub-
lication delays. Consequently, it does not account
for recent developments in LLMs, such as the emer-
gence of reasoning-based LLMs (Guo et al., 2025).

Second, although several medical benchmarks
have been introduced to better assess multifaceted
capabilities (Kim et al., 2024; Yao et al., 2024; Zuo
et al., 2025), we could not obtain sufficient model
performance results on these datasets to conduct
correlation analyses. To support future research,
we make our clinical performance dataset available
and encourage its use in validating how well these
newly proposed medical benchmarks reflect the
complexity of real-world medical tasks.

Lastly, despite employing statistical methods to
address missing data and selection biases, our find-
ings are inherently constrained by the incomplete-

ness and potential biases of literature-derived data.
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Figure 5: Representative clinical performance estimated via Bayesian modeling. Proprietary models appear in
purple text while open-source models are shown in orange. Medical domain fine-tuned models are marked with a
star (⋆) and small language models with 13B parameters or fewer display a circle prefix (⊙).
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A Supplementary Methods

A.1 Search Query for Literature Review

Our literature search followed a systematic ap-
proach to identify studies at the intersection of large
language models (LLMs) and medical applications.
The search queries were structured using three es-
sential components: LLM-related terms, medical
terms, and evaluation terms (Table 3).

Each query was formulated as:

[LLM Term] AND [Medical Term]
AND [Evaluation Term]

where the medical terms were drawn from either
MedQA-related categories (e.g., "medical question
answering", "clinical reasoning") or clinical appli-
cation categories (e.g., medical specialties, clinical
documents, diseases, and procedures). The search
was restricted to publications from 2022 to 2025 to
ensure coverage of recent developments.

This combinatorial approach balanced coverage
and precision, ensuring that retrieved papers ad-
dressed all three aspects of our research focus (Ta-
ble 4).

A.2 Screening Process for Collecting
Performance data of LLM in Real-World
Clinical Settings

We conducted abstract screening and full-text re-
view based on LLM to refine selection process and
alleviated burden of manual curation. The LLM uti-
lized for this process was Phi-4 (14.7B), Q4_K_M
quantized, based on the Ollama framework (as of
March 18, 2025). The model was deployed locally
on a single RTX 4080 GPU.

A.3 Model Name Normalization

We normalized language model names by categoriz-
ing them into proprietary (Table 7) and open-source
models (Table 8). For proprietary models, specific
model names were often unspecified in papers, as
they were accessed via APIs. In such cases, we
assumed the most recent model available at the re-
search time: three months before the received date
for journal papers and six months before publica-
tion for conference papers. For open-source mod-
els, normalization was based on explicitly stated
model names, versions, and parameter sizes in bil-
lions (Table 8). If these details were insufficient,
we excluded the model from analysis.
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Table 3: Search Query Components for LLM Applica-
tions in Medical Research.

Query
Compo-
nent

Terms

LLM
Terms

“large language model”, “language
model”, “GPT-4”, “ChatGPT”

MedQA
Terms

“medical question answering”,
“USMLE”, “MedQA”, “medical
benchmark”, “clinical reasoning”

Clinical
Appli-
cation
Terms

Medical Specialties (31 terms): “in-
ternal medicine”, “surgery”, “pedi-
atrics”, “obstetrics”, “gynecology”,
. . .
Surgery Settings (10 terms):
“surgery”, “pediatric surgery”,
“breast surgery”, “colorectal
surgery”, “neurosurgery”, . . .
Clinical Settings (6 terms): “emer-
gency department”, “icu”, “operat-
ing room”, “outpatient”, “primary
care”, “trauma center”
Clinical Documents (11 terms):
“electronic health record”, “clinical
notes”, “discharge summary”, “med-
ical history”, “radiology report”, . . .
Common Diseases (34 terms):
“breast cancer”, “lung cancer”, “col-
orectal cancer”, “prostate cancer”,
“leukemia”, “lymphoma”, . . .
Clinical Procedures (6 terms):
“chemotherapy”, “radiation therapy”,
“transplantation”, “dialysis”, “venti-
lation”, “ecmo”
Age-Specific Care (7 terms): “new-
born care”, “child development”,
“growth disorders”, “birth defects”,
“falls prevention”, “memory disor-
ders”, “polypharmacy management”
Special Populations (6 terms): “ma-
ternal health”, “prenatal care”, “post-
partum care”, “women’s health”, “so-
cial determinants”, “medical ethics”

Evaluation
Terms

“evaluation”, “accuracy”, “bench-
mark”, “validation”, “application”

Table 4: Query Construction Pattern and Examples.

Query Pattern: [LLM Term] AND [Medical
Term] AND [Evaluation Term]

Medical Term Selection:
Either [MedQA Terms] OR [Clinical Applica-
tion Terms] based on research focus

Example Queries:
With MedQA Terms:
1. large language model” AND medical ques-
tion answering” AND evaluation”
2. ChatGPT” AND clinical reasoning” AND
benchmark”
With Clinical Application Terms:
3. GPT-4” AND electronic health record”
AND validation”
4. language model” AND internal medicine”
AND application”
5. GPT-4” AND breast cancer” AND “accu-
racy”

A.4 Classification of Evaluation Settings
We categorized the evaluation settings for language
models in clinical contexts based on four key cri-
teria: (1) task type, (2) therapeutic area, (3) data
source, and (4) evaluation method.

Task Type Task types represent the core capabil-
ities being assessed, classified into the following
six categories:

• Clinical Knowledge: General assessment
of fundamental clinical knowledge within a
given specialty, without a specific focus on
diagnosis, treatment, or prevention.

• Treatment: Evaluation of the model’s abil-
ity to recommend and assess treatment plans
based on a given clinical scenario.

• Diagnosis: Determining the correct diagnosis
based on the provided patient information.

• Answering to Patients: Providing responses
to common patient inquiries or explaining clin-
ical conditions in plain language understand-
able by non-experts.

• Overall Management: Beyond diagnosis and
treatment, evaluating long-term patient man-
agement and decision-making.

• Information Extraction: Extracting specific
clinical information from given texts.
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Table 5: Abstract Screening Prompt Template.

Prompt for abstract screening
Please analyze the following research paper’s title and abstract to extract information about LLM performance evaluation
in clinical settings. Present your analysis in the following structured format, maintaining exact quotes where possible.
Start your response with “ANALYSIS_START” and end with “ANALYSIS_END”. INPUT REQUIRED:

• Title: [paper title]

• Abstract: [paper abstract]

TASK: Analyze the title and abstract to extract the following information:
1. PAPER_TYPE: Classify the paper as one of the following:

• “Clinical LLM Performance Evaluation - Original”: Paper that conducts new experiments to evaluate LLM
performance in clinical tasks and reports original performance metrics/results.

• “Clinical LLM Performance Review”: Paper that summarizes or analyzes existing LLM clinical performance
evaluations without conducting new experiments or reporting new performance data.

• “Non-Clinical LLM Evaluation”: Paper not related to clinical LLM performance evaluation.

2. MODELS: Extract all LLM models mentioned in the abstract.

Format: [“model1”, “model2”, ...]
Return empty list if no specific models are mentioned.
3. MULTIPLE_MODELS_USAGE: For papers classified as “Clinical LLM Performance Evaluation -
Original” only.
Format: true/false/NA

• true: Paper clearly evaluates multiple LLMs.

• false: Paper clearly focuses on single LLM evaluation.

• NA: For non-original clinical LLM evaluation papers.

4. HUMAN_GROUPS: Extract all medical professional groups that underwent the same evaluation tasks
as the models for direct performance comparison.
Format: [“group1”, “group2”, ...]
Return empty list if no human groups underwent direct performance comparison.
5. EVALUATION_TASKS: Extract all clinical evaluation tasks.
Format:

[{"task_name_extractive": "exact task name",
"task_name_abstractive": "standardized name",
"task_description": "exact quote",
"metrics_extractive": ["metric1", "metric2"],
"metrics_abstractive": ["std_metric1", "std_metric2"]}, ...]

6. PERFORMANCE_RESULTS: Extract all reported performance metrics.
Format:

[{"value": "exact value with units",
"metric": "exact metric name",
"subject": "model/human group name"}, ...]
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Table 6: Abstract Screening Prompt Template (continued).

Prompt for abstract screening (continued)
INPUT EXAMPLE:
Title: A Comparison of LLMs in Clinical Triage: Brief Study
Abstract: We evaluated ChatGPT and GEMINI for triaging complex maxillofacial trauma cases at
a referral center. Using 10 standardized cases, we compared LLM recommendations against
center guidelines. Results showed ChatGPT achieved 70% accuracy in examinations while
GEMINI reached 50%. Additional metrics included diagnosis accuracy scores (GEMINI: 3.30,
ChatGPT: 2.30) and recommendation relevance (GEMINI: 2.90, ChatGPT: 3.50).

EXAMPLE OUTPUT:
ANALYSIS_START

<PAPER_TYPE>Clinical LLM Performance Evaluation - Original</PAPER_TYPE>

<MODELS>["ChatGPT", "GEMINI"]</MODELS>

<MULTIPLE_MODELS_USAGE>true</MULTIPLE_MODELS_USAGE>

<HUMAN_GROUPS>[]</HUMAN_GROUPS>

<EVALUATION_TASKS>
[{"task_name_extractive": "triaging complex maxillofacial
trauma cases",
"task_name_abstractive": "clinical trauma triage assessment",
"task_description": "triaging complex maxillofacial trauma cases at a referral center",
"metrics_extractive": ["accuracy in examinations", "diagnosis accuracy scores",
"recommendation relevance"],
"metrics_abstractive": ["examination accuracy", "diagnostic performance",
"recommendation quality"]}]

</EVALUATION_TASKS>

<PERFORMANCE_RESULTS>
[{"value": "70%", "metric": "accuracy in examinations", "subject": "ChatGPT"},
{"value": "50%", "metric": "accuracy in examinations", "subject": "GEMINI"},
{"value": "2.30", "metric": "diagnosis accuracy scores", "subject": "ChatGPT"},
{"value": "3.30", "metric": "diagnosis accuracy scores", "subject": "GEMINI"},
{"value": "3.50", "metric": "recommendation relevance", "subject": "ChatGPT"},
{"value": "2.90", "metric": "recommendation relevance", "subject": "GEMINI"}]

</PERFORMANCE_RESULTS>

ANALYSIS_END

Now analyzing the following paper:

• Title: [paper title]

• Abstract: [paper abstract]
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Prompt for full-text review
Please analyze the research paper to extract information about LLM performance evaluation in clinical settings. Present
your analysis in the following structured format, maintaining exact quotes where possible. Start your response with
“ANALYSIS_START” and end with “ANALYSIS_END”.
REQUIRED:

• Title: [paper title]

• Full Text: [full paper text]

TASK: Extract the following structured information from the paper:
1. PAPER_TYPE: Classify the paper as one of the following:

• “Clinical LLM Performance Evaluation - Original”: Paper that conducts new experiments to evaluate LLM
performance in clinical tasks and reports original performance metrics/results.

• “Clinical LLM Performance Review”: Paper that summarizes or analyzes existing LLM clinical performance
evaluations without conducting new experiments or reporting new performance data.

• “Non-Clinical LLM Evaluation”: Paper not related to clinical LLM performance evaluation.

Note: If the paper is not classified as “Clinical LLM Performance Evaluation - Original”, return empty values for all
subsequent sections.
2. BIBLIOGRAPHIC_DATES: Extract the paper’s submission and publication dates.

Format:

{"received_date": "YYYY-MM-DD",
"accepted_date": "YYYY-MM-DD",
"published_date": "YYYY-MM-DD"}

3. CLINICAL_DOMAIN: Extract the clinical specialty and context information.
Format:

{"specialty": "primary clinical specialty field",
"disease_treatment": "specific diseases or treatments in focus",
"mesh_terms": ["relevant MeSH term 1", "relevant MeSH term 2"]}

4. MODELS: Extract all LLM models mentioned in the paper.
Format:

[{"common_name": "most frequently used name in paper",
"full_name": "complete name including version",
"base_model": "base model name if fine-tuned, NA if not applicable"}]

5. EXPERIMENTAL_SETTINGS: Extract LLM inference settings.
Format:

{"llm_inference_temperature": "0.x",
"llm_inference_few_shot": "n-shot",
"llm_inference_CoT": true/false}

Table 6: Full-Text Review Prompt Template.
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Table 7: Full-Text Review Prompt Template (continued).

Prompt for full-text review (continued)
6. HUMAN_GROUPS: Extract all medical professional groups that underwent the same evaluation tasks as the models.

Format:

["group1", "group2"]

7. EVALUATION_TASKS: Extract all clinical evaluation tasks.
Format:

[{"task_name_extractive": "exact task name",
"task_name_abstractive": "standardized task name",
"reference_sentence": "exact quote describing the task",
"metrics": [{"metric_name_extractive": "exact metric name from text",

"metric_name_abstractive": "standardized metric name",
"value_range": [min, max],
"higher_better": true/false,
"reference_sentence": "exact quote describing the metric"}],

"sample_size": integer,
"sample_size_reference_sentence": "exact quote mentioning sample size",
"data_source_extractive": "exact quote of data source",
"data_source_abstractive": "standardized description of data source"}]

8. PERFORMANCE_RESULTS: Extract all reported performance metrics.
Format:

[{"value": "exact performance value with units/confidence intervals",
"metric": "exact metric name from EVALUATION_TASKS metrics_extractive",
"subject": "model name or human group name",
"reference_sentence": "exact quote reporting this result"}]
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Table 7: Proprietary Language Models Release Timeline.

Company Model Name Release Date Normalized Name

OpenAI ChatGPT/GPT-3.5 2022-12-30 gpt-3.5-turbo
gpt-3.5-0301 2023-03-01 gpt-3.5-0301
gpt-3.5-turbo-0613 2023-06-13 gpt-3.5-turbo-0613
gpt-3.5-turbo-1106 2023-11-06 gpt-3.5-turbo-1106
gpt-3.5-turbo-0125 2024-01-25 gpt-3.5-turbo-0125

GPT-4
gpt-4-0314 2023-03-14 gpt-4-0314
gpt-4-0613 2023-06-13 gpt-4-0613
gpt-4-1106-preview 2023-11-06 gpt-4-1106-preview
gpt-4-0125-preview 2024-01-25 gpt-4-0125-preview
gpt-4-turbo-2024-04-09 2024-04-09 gpt-4-turbo-2024-04-09

GPT-4o
gpt-4o updates 2024-05-13 gpt-4o-2024-05-13
gpt-4o updates 2024-08-06 gpt-4o-2024-08-06
gpt-4o updates 2024-11-20 gpt-4o-2024-11-20
GPT-4o Mini 2024-07-18 gpt-4o-mini-2024-07-18

Microsoft Bing Chat 2023-02-07
Rebranded as Copilot 2023-09-21 Based on latest GPT models
Bing Chat integration 2023-11-15 Based on latest GPT models
Copilot upgrade 2024-05-20 Based on latest GPT models

Claude Claude 1
Claude 1.0/Claude 1.1 2023-03-14 claude-1.0/claude-1.1
Claude 1.2 2023-08-09 claude-1.2
Claude 1.3 2023-04-18 claude-1.3

Claude 2
Claude 2.0 2023-17-11 claude-2.0
Claude 2.1 2023-11-21 claude-2.1

Claude 3
Claude 3 Haiku 2024-03-07 claude-3-haiku-20240307
Claude 3 Sonnet 2024-02-29 claude-3-sonnet-20240229
Claude 3 Opus 2024-02-29 claude-3-opus-20240229

Claude 3.5
Claude 3.5 Sonnet 2024-06-20 claude-3-5-sonnet-20240622
Claude 3.5 Haiku 2024-10-22 claude-3-5-haiku-20241022
Claude 3.5 Opus 2024-10-22 claude-3-5-opus-20241022

Claude 3.5 update 2024-12-03 claude-3.5-sonnet-20241203

Google Bard 2023-03-21 lamda
Bard upgrade 2023-05-10 palm-2

Gemini 1.0
Gemini 1.0 Nano 2023-12-06 gemini-1.0-nano
Gemini 1.0 Pro 2023-12-06 gemini-1.0-pro
Gemini 1.0 Ultra (Advanced) 2023-12-06 gemini-1.0-ultra

Gemini 1.5
Gemini 1.5 Flash (Basic) 2024-02-15 gemini-1.5-flash
Gemini 1.5 Pro 2024-05-23 gemini-1.5-pro-001
Gemini 1.5 Pro update 2024-09-24 gemini-1.5-pro-002

Gemini 2.0
Gemini 2.0 2025-01-22 gemini-2.0-flash-001
Gemini 2.0 Flash + Thinking 2025-01-22 Not used

Cohere Command 2024-02-07 command
Command R 2024-06-04 command-r
Command R+ 2024-04-30 command-rplus
Command R-08-2024 2024-08-28 command-r-2408
Command R+ 08-2024 2024-08-29 command-rplus-2408

Therapeutic Area For normalization and analy-
sis purposes, we predefined 22 therapeutic areas, in-

cluding cardiology, oncology, dentistry, and emer-
gency medicine. Depending on the analytical objec-
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Table 8: Open-Source Language Models Release Timeline.

Model Brand Model Name Release Date Normalized Name

LLaMA (Meta) LLaMA 1 2023-03 llama-1-7B, llama-1-13B, llama-1-30B,
llama-1-65B

LLaMA 2 2023-07 llama-2-7B, llama-2-13B, llama-2-70,
llama-2-7B-chat, llama-2-13B-chat

LLaMA 3 2024-04-18 llama-3-8B, llama-3-70B

LLaMA 3.1 2024-07-23 llama-3.1-8B, llama-3.1-70B, llama-3.1-
405B

LLaMA 3.2 2024-10 llama-3.2-1B, llama-3.2-3B, llama-3.2-
11B, llama-3.2-90B

LLaMA 3.3 2024-12 llama-3.2-70B, llama-3.2-405B

Phi (Microsoft) Phi-1 2023-06 phi-1-1.3B
Phi-1.5 2023-11 phi-1.5-1.3B
Phi-2 2024-02 phi-2-2.7B

Phi-3
Phi-3 Mini NA phi-3-mini-3B
Phi-3 Small NA phi-3-small-7B
Phi-3 Medium NA phi-3-medium-14B

Phi-3.5 2024-09 phi-3.5-3.8B

Phi-4 2025-01-20 Not used

Gemma (DeepMind) Gemma 2B 2024-02-21 gemma-1-2B
Gemma 7B 2024-02-21 gemma-1-7B
Gemma 1.1 2024-04-05 gemma-1.1

Gemma 2 (9B, 27B) 2024-06-27 gemma-2-9B, gemma-2-27B
Gemma 2 (2B) 2024-07-31 gemma-2-2B

Qwen (Alibaba) Qwen-7B 2023-08-03 qwen-7B
Qwen-14B 2023-09-25 qwen-14B
Qwen-72B 2023-11-30 qwen-72B
Qwen-2-7B-instruct 2024-05-16 qwen-2-7B-instruct
Qwen-2-72B-instruct 2024-10-18 qwen-2-72B-instruct
Qwen Max 2025-01-29 qwen-max

Mistral Mistral 7B
mistral-7B-instruct-v0.1 2023-09-27 mistral-7B-instruct-v0.1
mistral-7B-instruct-v0.2 2023-10 mistral-7B-instruct-v0.2
mistral-7B-instruct-v0.3 2023-11 mistral-7B-instruct-v0.3

Mistral Medium 2023-12 mistral-medium-2312
Mixtral 8x7B 2023-12-09 mixtral-8x7B
Mixtral 8x22B 2024-04-10 mixtral-8x22B

Mistral Large 2024-02-26 mistral-large-2402
Mistral Small NA mistral-small-2402

Mistral Large 24.07 2024-07-24 mistral-large-2707

Medical Domain Fine-tuned ClinicalCamel-1-70B NA clinicalcamel-1-70B
Med42-70B NA med42-70B
BioMistral-7B NA biomistral-7B
Meditron NA meditron-7B
MedLlama NA medllama-1-2

tives, these areas were further grouped into broader
categories.

Data Source The source of evaluation data was
classified into four types:

• Board Examinations: Questions derived
from professional board certification exams
used to assess medical expertise.

• Quizzes: Clinical questions sourced from
textbooks, medical societies, or online edu-
cational platforms, excluding board exams.

• Frequently Asked Questions: Questions re-
flecting common patient inquiries in clinical
settings.

• Clinical Vignettes: Case-based questions de-
veloped using real patient data, publicly avail-
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able case reports, or LLM-generated simu-
lated patient scenarios.

Evaluation Method Evaluation methods were
divided into two main categories:

• Multiple-Choice Questions (MCQs): As-
sessing correctness based on predefined an-
swer choices.

• Human Rating: Clinical experts rating
model-generated responses according to struc-
tured evaluation guidelines. This includes
both closed-ended rating systems with pre-
defined criteria and open-ended assessments.

A.5 Benchmark Performance Imputation

The MICE framework was configured with opti-
mized settings to ensure stable imputation. Missing
values were initially imputed using the median of
observed values, followed by a maximum of 50
iterative updates with a convergence tolerance of
1× 10−6

For BR-MICE, posterior sampling was enabled,
and each missing variable was modeled using all
available predictors. The base random seed was set
to 42, with independent seeds assigned for multiple
imputations.

For RF-MICE, 100 trees were used with boot-
strap sampling enabled. The maximum tree depth
was set to 15, and feature selection per split fol-
lowed the square root of the total number of fea-
tures. BR-MICE regularization parameters were
optimized iteratively, with convergence determined
via evidence maximization.

To estimate the variance of imputed values, we
computed both the within-imputation variance (W )
and between-imputation variance (B) across m in-
dependent imputations. The total variance (T ) was
calculated using Rubin’s rules:

W =
1

m

m∑

j=1

S2
j

B =
1

m− 1

m∑

j=1

(Q̄j − Q̄)2

T = W +

(
1 +

1

m

)
B

where S2
j is the variance of the j-th imputed

dataset, Q̄j is the mean of the j-th imputation, and
Q̄ is the overall mean of all imputations. The final

imputed values were obtained by taking the me-
dian of all imputations to ensure robustness against
extreme values.

A.6 Bayesian Modeling
We implemented our hierarchical Bayesian model
usingNumPyro (v0.17.0) with a JAX (v0.5.0) back-
end. Posterior inference was conducted via the No-
U-Turn Sampler (NUTS), utilizing 1,000 warmup
iterations and 2,000 sampling iterations across 8
parallel chains. We assessed convergence using the
Gelman-Rubin diagnostic (R̂) and effective sample
size. The model specification is as follows:

A.6.1 Model Structure
We formulate our hierarchical Bayesian model as
follows: We begin by specifying half-normal hy-
perpriors for the standard deviations that govern the
variability of different components in our model:

σmodel ∼ HalfNormal(1)

σobs ∼ HalfNormal(1)

σtype ∼ HalfNormal(1)

σsource ∼ HalfNormal(1)

σeval ∼ HalfNormal(1)

These hyperpriors control the variation in model
effects, observation noise, task type effects, data
source effects, and evaluation method effects, re-
spectively.

The model effects component captures the in-
herent performance capabilities of each language
model:

µmodel ∼ Normal(0, 1)

βmodel,j ∼ Normal(µmodel, σmodel)

where j = 1, 2, . . . , nmodels, and βmodel,j represents
the effect of the j-th model. The parameter µmodel
serves as a global mean for model effects.

We model three task-related components:

βtype,k ∼ Normal(0, σtype)

βsource,l ∼ Normal(0, σsource)

βeval,m ∼ Normal(0, σeval)

where:

• k = 1, 2, . . . , ntask_types, with βtype,k repre-
senting the effect of the k-th task type

• l = 1, 2, . . . , ndata_sources, with βsource,l repre-
senting the effect of the l-th data source
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• m = 1, 2, . . . , nevaluation_methods, with βeval,m
representing the effect of the m-th evaluation
method

Each task-related effect is centered at zero, reflect-
ing our assumption that these effects represent de-
viations from an average difficulty level.

The predicted performance for each data point i
is given by:

µi = βmodel,model[i] + βtype,type[i] + βsource,source[i]

+βeval,eval[i] + ϵµ

where model[i], type[i], source[i], and eval[i] are
the indices for model, task type, data source, and
evaluation method for data point i, respectively, and
ϵµ ∼ Normal(0, 0.1) represents additional noise in
the prediction process.

Finally, we model the observed performance met-
rics using a normal likelihood:

yi ∼ Normal(µi, σobs)

where yi is the observed performance metric for
data point i on the normalized scale.

A.6.2 Centrality Measurement
Quantifying the connectivity of models within the
evaluation network is essential for understanding
their role and influence. Some models exhibit weak
connections to other major models, meaning they
contribute useful information to Bayesian modeling
but have limited relevance for downstream analy-
sis. By computing centrality scores, we classified
models based on their connectivity and excluded
the lower 50% from downstream evaluations.

The evaluation network was represented as a
bipartite graph G = (V,E), where the vertex set
V consisted of two disjoint subsets: models and
tasks. An edge (m, t) ∈ E was formed if and only
if model m was evaluated on task t. This structure
provided a basis for analyzing connectivity patterns
and assessing the relative importance of models
within the evaluation framework.

Model connectivity was quantified using three
centrality measures. Degree centrality (CD) cap-
tured the number of direct connections a model had,
normalized by the maximum possible connections:

CD(v) =
deg(v)

|V | − 1

where deg(v) represents the number of edges in-
cident to node v. Between-ness centrality (CB)

measured how often a model served as a bridge
along the shortest paths between other nodes:

CB(v) =
∑

s ̸=v ̸=t

σst(v)

σst

where σst is the total number of shortest paths from
node s to node t, and σst(v) is the number of those
paths passing through node v. Closeness centrality
(CC) assessed how close a model was to all other
nodes in the network:

CC(v) =
|V | − 1∑
u̸=v d(v, u)

where d(v, u) is the shortest-path distance between
nodes v and u. To integrate these measures into
a single ranking, a combined connectivity score
was computed by summing the three normalized
centrality values:

Combined Score(m) = CD(m)+CB(m)+CC(m)

Models were then ranked based on their com-
bined scores, and those below the Pth percentile
were classified as low-connectivity models:

Low Connectivity(m) =





True if Combined-
Score(m) < Pth

False otherwise
where Pth was set at the 50th percentile, identify-

ing the bottom 50% of models as low-connectivity.
For downstream analysis, only high-connectivity
models were retained. This ensured that subse-
quent evaluations focused on models with strong
integration within the network while still utilizing
all available information in Bayesian modeling.

A.7 Correlation Measurement

To evaluate the relationship between LLM per-
formance on different benchmarks and in clinical
settings, we computed four correlation measures:
Pearson’s correlation coefficient, Spearman’s rank
correlation coefficient, Kendall’s tau, and Lin’s con-
cordance correlation coefficient (CCC). Among
these, Spearman’s and Kendall’s correlations were
used as the primary measures, as they better cap-
ture rank-based relationships given the diversity of
evaluation methodologies.

Pearson’s correlation coefficient (r) measures
the strength of the linear relationship between two
continuous variables. It is computed as:
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r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2

where xi and yi are individual data points, and
x̄ and ȳ are their respective means.

Spearman’s rank correlation coefficient (ρ) as-
sesses the monotonic relationship between two vari-
ables by comparing their rank orders rather than
raw values. It is given by:

ρ = 1− 6
∑

d2i
n(n2 − 1)

where di is the rank difference for each pair of
observations, and n is the number of observations.

Kendall’s tau (τ ) quantifies the ordinal associ-
ation between two variables based on concordant
and discordant pairs:

τ =
C −D

1
2n(n− 1)

where C is the number of concordant pairs, and
D is the number of discordant pairs.

Lin’s CCC (ρc) evaluates both correlation and
agreement between two variables by incorporating
measures of precision and accuracy:

ρc =
2rσxσy

σ2
x + σ2

y + (µx − µy)2

where r is Pearson’s correlation coefficient, σx
and σy are standard deviations, and µx and µy are
means of the two variables.

B Supplementary Results

B.1 Benchmark Performance Imputation

Table 9 presents the imputation accuracy of bench-
mark models evaluated through a masking test
across both general and medical QA domains.

Table 9: Imputation accuracy on masking test for bench-
mark performances.

Model MAE RMSE R2

General
RandomForest 4.21 8.17 0.89
BayesianRidge 5.63 8.14 0.89
Medical QA
RandomForest 2.04 3.18 0.98
BayesianRidge 4.14 6.81 0.90

Table 10: Within- and between- variance results from
multiple imputation.

Category Within Between Total
General Benchmarks (Overall Variance: 481.1)
RandomForest 1.1 204.5 215.7
(% of Overall) 0.2% 42.5% 44.8%
BayesianRidge 100.6 189.4 299.5
(% of Overall) 20.9% 39.4% 62.3%
Medical Benchmarks (Overall Variance: 390.5)
RandomForest 2.1 43.2 47.5
(% of Overall) 0.5% 11.1% 12.2%
BayesianRidge 67.5 40.0 109.5
(% of Overall) 17.3% 10.2% 28.0%

B.2 Benchmark-to-Benchmark Correlation
Table 11 summarizes the average correlation co-
efficients between general benchmarks and other
benchmarks, providing a comparative view across
domains and correlation metrics.

Figures 6, 7, and 8 further illustrate the inter-
nal correlations within each domain and the cross-
domain relationships.

B.3 Benchmark-to-Clinical Performance
Correlation

Figures 9 and 10 present the correlations between
benchmark performance and language model per-
formance in real-world clinical settings, with and
without imputed benchmark scores. The results are
reported using four correlation measures—Pearson
correlation coefficient, Spearman rank correlation
coefficient, Kendall’s tau, and Lin’s CCC—to en-
sure robustness from multiple statistical perspec-
tives.
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Table 11: Average correlation coefficients of general benchmarks with other benchmarks. The highest score in each
column is bold, and the second highest is underlined.

General Benchmark Spearman Kendall
Medical QA General Medical QA General

MMLU 0.853 0.715 0.690 0.576
MMLU Pro 0.851 0.773 0.679 0.628
BBH 0.891 0.725 0.736 0.573
HumanEval 0.838 0.764 0.671 0.618
GSM8K 0.816 0.756 0.645 0.599
MATH 0.785 0.625 0.618 0.502
Average 0.839 0.726 0.673 0.583
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Figure 6: Correlations within medical QA benchmarks.
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Figure 7: Correlations within general benchmarks.
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Figure 8: Correlations between general and medical QA benchmarks.
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Abstract

High-quality scientific article embeddings are
essential for tasks like document retrieval, cita-
tion recommendation, and classification. Tra-
ditional citation-based approaches assume ci-
tations reflect semantic similarity—an assump-
tion that introduces bias and noise. Recent
models like SciNCL and SPECTER2 have at-
tempted to refine citation-based representations
but still struggle with noisy citation edges and
fail to fully leverage textual information. To ad-
dress these limitations, we propose a hybrid ap-
proach that combines Finding-Citation Graphs
(FCG) with contrastive learning. Our method
improves triplet selection by filtering out less
important citations and incorporating finding
similarity relations, leading to better semantic
relationship capture. Evaluated on the SciRepE-
val benchmark, our approach consistently out-
performs citation-only baselines, showing the
value of text-based semantic structures. While
we do not surpass state-of-the-art models in
most tasks, our results reveal the limitations
of purely citation-based embeddings and sug-
gest paths for improvement through enhanced
semantic integration and domain-specific adap-
tations.

1 Introduction

High-quality scientific article embeddings are es-
sential for various downstream tasks, including ci-
tation recommendation, article retrieval, and classi-
fication (Cunningham and Greene, 2023). These ef-
fective representations accelerate research progress
by enhancing knowledge discovery. However, gen-
erating high-quality embeddings remains challeng-
ing, largely due to the limitations of existing meth-
ods that rely primarily on citation networks.

Traditional approaches use Large Language
Models (LLMs) to generate article embeddings
directly, but research shows this method often un-
derperforms compared to basic baseline models
like GloVe (Reimers and Gurevych, 2019). To en-

hance embedding quality, researchers have turned
to contrastive learning for refining document repre-
sentations (Cohan et al., 2020). This method uses a
triplet-based training framework, where each triplet
includes a query article, a similar article (positive
sample), and a dissimilar article (negative sample).
These triplets are typically drawn from citation
networks, based on the assumption that citation
relationships indicate semantic similarity.

Over the years, researchers have made vari-
ous improvements to optimize triplet selection.
SPECTER (Cohan et al., 2020) introduced a unidi-
rectional citation-based approach, using cited pa-
pers as positive samples and non-cited papers as
negative samples. However, this method created
inconsistencies in triplet generation, as the same
paper could be both a positive and negative sample
in different contexts. To address this issue, SciNCL
(Ostendorff et al., 2022) eliminated citation direc-
tionality and implemented graph embeddings and
k-nearest neighbors (KNN) sampling to identify
positive and negative samples. This change signif-
icantly improved embedding quality by reducing
triplet formation inconsistencies.

Recent advances have further refined this
pipeline. SPECTER2 (Singh et al., 2023) devel-
oped task-specific embeddings by generating a gen-
eral representation and then fine-tuning it for differ-
ent downstream tasks. Other approaches explore
multi-faceted embeddings, generating multiple rep-
resentations of a paper to capture various aspects
of its content (Zhang et al., 2023).

Despite these advances, current methods rely
solely on citation networks for triplet construction,
overlooking the many semantically similar articles
that lack direct citation links. This limitation cre-
ates biases in representation learning and constrains
the quality of scientific embeddings. To address
these challenges, we propose a hybrid approach
that enhances contrastive learning by combining
Finding-Citation Graphs (FCG) with text-based se-
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mantic relationships. Our contributions include:
• Filtering less important citations using an

LLM-based classification mechanism to re-
move noisy edges.

• Incorporating finding similarity relations to
establish meaningful connections between se-
mantically related papers.

We evaluate our approach on SciRepEval (Singh
et al., 2023), a benchmark for assessing scientific
embeddings across multiple tasks. Our method
outperforms citation-only baselines, demonstrating
the effectiveness of integrating text-based semantic
structures into contrastive learning. While it does
not surpass state-of-the-art models in all tasks, our
results highlight the importance of moving beyond
purely citation-based embeddings toward richer,
more semantically aware representations.

2 Related Work

Researchers have developed various models and
methodologies to improve scientific text repre-
sentation, ranging from traditional keyword-based
methods and vector space models to modern deep-
learning approaches. Beyond general-purpose tech-
niques, specialized approaches exist specifically
for scientific articles.

General-Purpose Methods Early scientific ar-
ticle representations relied primarily on word-
level features. The Bag-of-Words (BoW) model
represented documents as vectors of word fre-
quencies—a simple but limited approach that suf-
fered from sparsity and lost semantic relationships
(Salton et al., 1975). Latent Semantic Analysis
(LSA) addressed these limitations by introducing
dimensionality reduction and capturing latent word
relationships (Deerwester et al., 1990). The field
then progressed to probabilistic topic modeling
with Latent Dirichlet Allocation (LDA), which ef-
fectively modeled texts as mixtures of latent topics
(Blei et al., 2003). LDA became particularly valu-
able in scientific literature analysis by enabling re-
searchers to extract thematic structures from large
document collections.

A major breakthrough came with word embed-
ding techniques like Word2Vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014), which
transformed scientific text representation through
dense vector spaces. These models excel at captur-
ing semantic relationships, leading to improved in-
formation retrieval and document clustering. How-
ever, they face limitations in handling polysemy

and contextual variations.
The field has recently advanced further with

transformer-based models, notably BERT (De-
vlin et al., 2019) and SciBERT (Beltagy et al.,
2019)—models specifically trained on scientific
corpora. These architectures have dramatically im-
proved contextual representation and now power
various tasks including citation prediction, summa-
rization, and scientific question answering. SciB-
ERT stands out by outperforming generic language
models in domain-specific applications, demon-
strating the value of domain-adapted pretraining.

Scientific-Specific Methods Most methods for
associating embeddings to scientific papers rely
on citation networks, which represent articles as
nodes connected by citation links to analyze in-
fluence patterns and research trends (Page et al.,
1999). Several approaches have developed uni-
versal embeddings for articles, such as SPECTER
(Cohan et al., 2020) and SciNCL (Ostendorff et al.,
2022), as discussed in Section 1. Other approaches
generate multiple embeddings for scientific arti-
cles, each serving a distinct purpose. For in-
stance, SPECTER2 (Singh et al., 2023) creates
task-specific embeddings, producing four different
representations per article for tasks like classifi-
cation, regression, ad-hoc search, and proximity.
Similarly, ASPIRE (Mysore et al., 2022) generates
aspect-specific embeddings for each article, such as
method embeddings and finding embeddings. De-
spite the noise in citation networks, these models
outperform traditional embeddings by leveraging
citation relationships, resulting in improved down-
stream performance in retrieval, classification, and
clustering tasks.

3 Methodology

Our goal is to learn citation-informed and text-
informed representations for scientific documents.
Given a document’s textual content d, we aim to
generate a dense vector representation e that ef-
fectively encodes both the document’s information
and the citation’s information for downstream tasks.
Following previous work (Cohan et al., 2020; Os-
tendorff et al., 2022; Singh et al., 2023), we devel-
oped an information-enriched network combining
citation networks with finding similarity relations.
Using this network, we sample triplets to learn doc-
ument embeddings through contrastive learning. In
the following subsections, we describe the creation
of the information-enriched network, the triplet
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sampling approach, and the contrastive learning
approach.

3.1 Information-Enriched Network
Construction

To enhance the semantic similarity of the citation
network, we combined citation networks with find-
ing similarity relations to create an information-
enriched network. We improved semantic accuracy
by filtering out less important citations—those that
contribute minimally to the new study. We estab-
lished new relations between articles with simi-
lar findings based on the Finding-Citation Graph
(FCG) (Liang et al., 2024). The resulting network
contains links—both citations and finding similar-
ity relations—that better represent semantic rela-
tionships beyond simple citations.

3.1.1 Citation Filtering
Although citation networks form the foundation of
many scientific embedding models, they can intro-
duce noise since not all citations reflect meaningful
content similarity (Ostendorff et al., 2022). To ad-
dress this issue, we implemented a large language
model (LLM)-based filtering mechanism that eval-
uates citations by assessing their contribution to the
citing study, thereby determining their relevance.

Due to the lack of open-source datasets for this
task, we used Mistral-7B-Instruct (Jiang et al.,
2023) with few-shot in-context learning to classify
citations into three categories: Highly Important,
Moderately Important, and Less Important. Our
analysis of citation importance considered three
key elements: the citation sentence, the abstract of
the citing paper, and the title of the cited paper. The
prompt can be seen in Appendix A. Less relevant
citations were removed from the network to reduce
noise and improve the quality of triplet selection.

3.1.2 Finding Similarity Relations
Beyond citations, scientific findings provide a more
precise measure of content similarity between pa-
pers. To incorporate additional semantic relation-
ships, we utilized the Finding-Citation Graphs
(FCG). We used Contriever (Lei et al., 2023), a
dense retrieval model, to convert scientific findings
into embeddings. We then calculated pairwise co-
sine similarity between findings and added new
finding similarity edges to the network when pairs
exceeded a similarity threshold.

Through these two enhancements—removing noisy

citations and introducing new semantic edges—we
created an information-enriched citation network
that better reflects the true relationships between
papers.

3.2 Triplet Sampling

Contrastive learning relies on high-quality
triplets—sets of (query, positive, negative) samples
to train models to differentiate between similar
and dissimilar documents. To enhance our model’s
performance, we optimized triplet selection
by combining citation-based and finding-based
similarity measures. Following Ostendorff et al.
(2022), we trained node embeddings on the
combined network using PyTorch BigGraph (Lerer
et al., 2019). For each article dQ, we used the
k nearest neighbors (KNN) method to identify
similar (positive) and dissimilar (negative) articles.

For positive article sampling, following Wang
and Isola (2022) and Ostendorff et al. (2022), we se-
lected positive articles from locations distant from
the query. Specifically, we sampled c+ positive arti-
cles from a close neighborhood around the query ar-
ticle—those within the range (k+−c+, k+], where
k+ represents the k parameter in the KNN method.

For negative article sampling, we considered
two types of negative articles: easy negatives c−easy
and hard negatives c−hard. Easy negatives can be
obtained through simple random sampling. Hard
negatives are crucial for contrastive learning—the
more challenging the negative samples, the better
the model training becomes. We used a sampling
method similar to positive article sampling, select-
ing articles within the range (k−hard− c−hard, k

−
hard],

where k−hard represents the k parameter in the KNN
method.

3.3 Contrastive Learning

Once triplets are constructed, we train our embed-
ding model using contrastive learning with a triplet
margin loss function (Schroff et al., 2015). The
method’s core principle is to minimize the dis-
tance between similar (positive) samples in the la-
tent space while maximizing the distance between
dissimilar (negative) samples. To implement con-
trastive learning, we fine-tuned SciBERT (Beltagy
et al., 2019), a domain-specific transformer model
for scientific text, to generate embeddings for each
article.
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L = max{
∥∥dQ − d+

∥∥
2
−
∥∥dQ − d−

∥∥
2
+ ξ, 0}

(1)

4 Experiment Setup

This section describes our experimental setup, de-
tailing the datasets, model training configurations,
and baseline comparisons.

4.1 Dataset

4.1.1 Training Dataset: Finding-Citation
Graph (FCG)

For training, we utilized the Finding-Citation
Graph (FCG) derived from the Europe PMC dataset
(Liang et al., 2024). This biological FCG encom-
passes 16 million nodes—consisting of 6 million
papers and 10 million findings—and 27 million
edges, comprising 17 million citations and 10 mil-
lion paper-finding generation relations. After pre-
processing the dataset to filter out noisy citations
and incorporate finding similarity relations, as de-
scribed in the methodology section, this enriched
network forms the foundation for our triplet sam-
pling strategy.

4.1.2 Evaluation Dataset: SciRepEval
For evaluation, we used SciRepEval (Singh et al.,
2023), the first large-scale benchmark for evalu-
ating scientific document embeddings. SciRepE-
val encompasses 24 tasks across four evaluation
formats—Ad-Hoc Search, Proximity, Classifica-
tion, and Regression—spanning multiple scien-
tific domains. We primarily used the "Out-of-
Train" datasets in SciRepEval. Table 1 provides
an overview of the dataset statistics and evaluation
metrics.

4.2 Model Training and Implementation

4.2.1 Input Network Variations
To assess performance, we generated different vari-
ations of the citation network through distinct pre-
processing methods.

• Citation – The original unprocessed citation
network.

• Citation (Filtered) F – Noisy citations re-
moved.

• Citation (Finding Similarity) T – New
finding-based relations added.

• Citation (Combine) FT – Both filtering and
finding similarity applied.

4.2.2 Training Configuration
For filtering less important citations, we utilized
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) with
two-shot learning on a single NVIDIA GeForce
A100 GPU, processing each sample in approxi-
mately 0.8 seconds. To identify finding similarities,
we used Contriever (Lei et al., 2023) to generate
embeddings for all 10 million findings and per-
formed similarity searches, with each search taking
about 0.87 seconds.

For triplet generation and contrastive learning,
we closely replicated SciNCL’s training setup. We
implemented the KNN strategy using FAISS (John-
son et al., 2019) with a flat index and maintained
the same KNN parameters: k+ = 25 and k− =
4000. For contrastive learning, we used Hugging-
face Transformers (Wolf et al., 2020) and initial-
ized the model with SciBERT’s weights (Beltagy
et al., 2019), training it with triplet loss. The train-
ing process used the Adam optimizer (Kingma and
Ba, 2017) with weight decay and a learning rate
of λ = 2−5. The model was trained for 2 epochs
on a single NVIDIA GeForce RTX A100 (40G)
GPU with a batch size of 14, completing in approx-
imately 8 hours.

4.3 Baselines

We compared our method against two existing
contrastive learning-based scientific embedding
models: SciNCL (Ostendorff et al., 2022), and
SPECTER2 (Singh et al., 2023). Since these base-
lines were trained on multi-domain datasets, their
results serve as a reference point rather than di-
rect competitors. Our primary goal is to assess
whether removing noisy citations and incorporating
text-based similarity relations improves embedding
quality. Therefore, our true baseline is the unpro-
cessed citation network, which we used to generate
embeddings without any filtering or augmentation.

5 Overall Results

We evaluated our approach by building multiple
input networks using different preprocessing strate-
gies and comparing them to baselines. Our main
goal was to determine if filtering less important
citations and incorporating finding similarity re-
lations would enhance the quality of biomedical
article embeddings.

Table 2 presents the statistics of each network
variant. Due to time constraints, we analyzed ci-
tation importance and generated finding similarity
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Task Format Name Test Eval Metric Source
Out-of-Train

CLF Biomimicry 10,991 Binary F1 Shyam et al. (2019)
DRSM 7,520 S; 955 G Macro F1 Burns (2022)
SciDocs MAG 23,540 Macro F1 Cohan et al. (2020)
SciDocs MeSH Diseases 25,003 Macro F1 Cohan et al. (2020)

RGN Peer Review Score 10,210 Kendall’s T Singh et al. (2023)
h-Index of Authors 8,438 Kendall’s T Singh et al. (2023)
Tweet Mentions 25,655 Kendall’s T Jain and Singh (2021)

PRX S2AND X: 68,968 Y: 10,942 B3 F1 Subramanian et al. (2024)
Paper-Reviewer Matching Q:107 P: 1,729 P@5, P@10 Mimno and McCallum (2007)
RELISH Q: 3190 P: 191,245 nDCG Zhao et al. (2022)
SciDocs Co-view Q: 1,000 P: 29,978 MAP, nDCG Cohan et al. (2020)
SciDocs Co-read Q: 1,000 P: 29,977 MAP, nDCG Cohan et al. (2020)
SciDocs Cite Q: 1,000 P: 29,928 MAP, nDCG Cohan et al. (2020)
SciDocs Co-cite Q: 1,000 P: 29,949 MAP, nDCG Cohan et al. (2020)

SRCH NFCorpus Q: 323 P: 44,634 nDCG Boteva et al. (2016)
TREC-CoVID Q: 50 P: 69,318 nDCG Voorhees et al. (2021)

Table 1: Dataset statistics and evaluation metrics for different tasks in SciRepEval benchmark.

relations for only a subset of nodes—detailed infor-
mation is available in Appendix B. Table 3 summa-
rizes the performance in different evaluation tasks
in SciRepEval.

Table 3 shows that both removing less important
citations (F) and adding finding-based relations
(T) improved performance compared to the raw
citation network, with the combined approach (FT)
achieving the best results. Significantly, adding the
finding similarity relations proved more effective
than citation filtering alone, indicating that citation-
based embeddings do not fully capture the semantic
structure of scientific literature.

Node_Num Edge_Num
Citation 6,013,398 17,795,8624
Citation F 6,013,398 17,769,1665
Citation T 6,013,398 38,650,3618
Citation FT 6,013,398 38,624,0425

Table 2: Input network with different process methods

We also evaluated our model against two state-
of-the-art scientific embedding models—SciNCL
(Ostendorff et al., 2022) and SPECTER2 (Singh
et al., 2023)—both trained on multi-domain scien-
tific datasets. While our approach did not achieve
state-of-the-art performance in most tasks from Ta-
ble 3, it demonstrated competitive results in regres-
sion and search tasks, where semantic relationships
are particularly important.

6 Discussion

Our experimental results demonstrate that integrat-
ing finding similarity relations into citation net-
works improves the quality of scientific article
embeddings, particularly in search and regression
tasks. This section explores the implications of

these findings, addresses the limitations of purely
citation-based approaches, and discusses potential
avenues for further improvements.

6.1 The Limitations of Citation Networks for
Embedding Learning

Citation networks have traditionally been used to
model relationships between scientific articles, op-
erating on the assumption that citations indicate
semantic similarity. However, this assumption has
several fundamental flaws due to the diverse moti-
vations behind citations:

• Papers are often cited to provide background
context or build a research narrative, rather
than signifying true conceptual similarity.

• Many papers with strong semantic similarities
lack citation connections to each other.

• Citations are subject to various biases, includ-
ing popularity effects, disciplinary silos, and
self-citation patterns.

Our results demonstrate that simple citation-
based triplet selection produces suboptimal con-
trastive learning outcomes. The enhanced perfor-
mance we observed with finding similarity rela-
tions indicates that citation-based methods alone
inadequately capture content-based relationships,
highlighting the necessity for alternative similarity
measures in scientific document embeddings.

6.2 Effect of Citation Filtering and Finding
Similarity Relations

A key contribution of our work is demonstrating
how citations vary in their importance for learning
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Task Metric SciNCL SPECTER2 citation citation F citation T citation FT
Out-of-Train

Classification
Biomimicry Wt. F1 50.22 53.20 48.50 48.51 49.13 49.29
DRSM Wt. F1 65.10 68.9475 62.32 62.78 66.23 66.01
SciDocs MAG F1 81.11 82.55 81.16 80.96 82.24 82.22
SciDocs MeSH F1 89 89.72 88.88 89.09 89.56 88.65
Proximity
Relish nDCG 90.67 91.65 91.22 91.22 91.05 91.18
S2AND B3 F1 93.98 92.8 95.6 95.4 95.3 95.67
Peer Reviewer Matching Avg 45.40 45.44 43.83 44.58 44.86 44.67
SciDocs Co-View MAP 85.28 84.68 82.15 82.18 83.25 83.71

nDCG 92.23 92.04 90.71 90.79 91.34 91.47
SciDocs Co-Read MAP 87.69 86.29 83.99 84.6 84.69 84.85

nDCG 94 93.36 92.14 92.57 92.51 92.6
SciDocs Cite MAP 93.55 94.08 84.07 83.89 85.93 87.14

nDCG 97.35 97.59 92.91 92.77 93.83 94.42
SciDocs Co-Cite MAP 91.66 90.58 88 88.13 88.23 88.79

nDCG 96.44 95.99 94.75 94.89 94.93 95.21
Regression
Review Score Avg 18.87 21.79 18.59 19.71 20.42 19.37
Max h-Index K Tau 11.3 12.83 12.26 13.13 14.14 12.63
Tweet Mentions K Tau 25.78 24.56 23.04 22.89 23.75 25.57
Search
NFCorpus nDCG 70.85 70.18 69.7 70.24 71.47 70.89
TREC CoVID nDCG 87.67 90.87 89.34 89.39 88.03 88.37
Average Exp. SciDocs - 56 57.23 55.4 55.8 56.4 56.4
Overall Average - 73.4 73.95 71.7 71.9 72.5 72.6

Table 3: Performance metrics across different methods and tasks. The columns labeled citation, citation F, citation
T, and citation FT show our experimental results. The SciNCL and SPECTER2 columns present experimental
results from (Ostendorff et al., 2022) and (Singh et al., 2023).

high-quality embeddings. By filtering out less im-
portant citations, we reduced noise and achieved
modest improvements. However, our most signif-
icant gains came from incorporating finding simi-
larity relations, which create direct links between
papers based on their research findings rather than
citations alone.

6.3 How Does Our Method Compare to
Existing Models?

While our approach outperforms the baseline ci-
tation network, it does not surpass state-of-the-art
models like SPECTER2 in most tasks. This is
expected, as SPECTER2 and similar models are
trained on larger, more diverse datasets and ben-
efit from task-specific fine-tuning. However, our
findings suggest that incorporating additional se-
mantic relations—like findings, methodologies, or
co-authorship networks—could help close this per-
formance gap.

Notably, our method achieved competitive per-
formance in regression and search tasks, demon-
strating that text-based semantic relations comple-
ment citation-based embeddings effectively. This
strengthens our argument that citation networks
alone cannot fully capture the contextual and con-
ceptual relationships between scientific articles.

6.4 Limitations

Despite its benefits, our approach has some lim-
itations. First, due to computational constraints,
we applied citation filtering and finding similarity
generation to only a subset of the dataset. A more
comprehensive application across a larger scientific
corpus may yield even stronger improvements.

Additionally, we limited our exploration of text
similarity relations to research findings, excluding
other important aspects like methodology. While
we believe findings are the most crucial part of
scientific papers, examining other aspects could
yield valuable insights.

Furthermore, our approach of generating a single
universal embedding per article may result in the
loss of important information.

These limitations point to clear opportunities for
future improvements.

7 Conclusion

In this study, we introduced an enhanced approach
to biomedical article embedding by integrating
Finding-Citation Graphs (FCG) with contrastive
learning. Our method overcomes the limitations of
traditional citation-based embeddings by filtering
out less important citations and incorporating text-
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based semantic relationships into triplet selection.
This refined network improves the representation
quality of scientific documents, particularly in the
biomedical domain.

Our experiments show that removing noisy cita-
tions and leveraging finding similarity relations en-
hance contrastive learning performances. Though
our approach did not exceed state-of-the-art meth-
ods like SciNCL and SPECTER2, it consistently
performed better than the original citation network,
demonstrating the value of context-aware triplet
formation.

In conclusion, our work establishes a foundation
for enhancing scientific document representations
through a balanced approach that combines citation
analysis with semantic similarity. By improving
the construction of scientific embeddings, we de-
liver more accurate, domain-specific, and semanti-
cally meaningful representations—enabling better
information retrieval and knowledge discovery in
biomedical research.
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A LLM Prompt

The prompt to analyze the importance of each
citation can be seen here.

You are an AI language model tasked with
analyzing the importance of specific citations
within a research paper. Each citation is
provided with three pieces of information:
- Citation Sentence: The sentence shows why
and what the citation occurs.
- Abstract of the Citing Paper: A summary of
the research of the citing paper.
- Title of the Cited Paper: The title of the cited
paper.
Based on this information, your task is to
analyze and determine the importance of the
citation to the citing paper.
Your thinking logic chain should follow the
following diagram:
- Abstract Analysis: Identify key goals,
methods, and findings.
- Citation Sentence Analysis: Determine
citation context and purpose.
- Title Analysis: Check for alignment of scope
and key themes.
- Cross-Referencing: Is the cited work
foundational to methods, key concepts, or
outcomes? Does it appear crucial for the
execution of the citing study?
- Explanation: Provide a concise explanation
for the classification based on analysis.
- Importance Classification:
- Highly Important: Core foundation (meth-
ods, key framework).
- Moderately Important: Background, context,
secondary relevance.
- Less Important: General information,
historical context.

Here are some examples:
{Examples}

Just output the importance classification
result and explanation.

B Preprocessing Citation Network

For the citation filtering, we examined approxi-
mately 1.46 million citations, classifying 28.4% as
highly important, 44.8% as moderately important,
and 26.8% as less important. Since papers can cite
others multiple times using different citation sen-
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tences, the same citation pair sometimes receives
different importance classifications. In such cases,
we retained citations marked as less important if
they also appeared in the highly important category.
Ultimately, we removed only about 260,000 cita-
tions from the total of 1̃7 million citations, as we
only have those citation analysis results.

For the finding similarity relation, we searched
for similar findings for 392,505 (Total 10 mil-
lion) findings. When the two papers shared similar
findings, we created a new relation between them.
Through this process, we generated approximately
200 million relations between papers.
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Abstract

Case Report Forms (CRFs) are largely used
in medical research as they ensure accuracy,
reliability, and validity of results in clinical
studies. However, publicly available, well-
annotated CRF datasets are scarce, limiting
the development of CRF slot filling systems
able to fill in a CRF from clinical notes. To
mitigate the scarcity of CRF datasets, we pro-
pose to take advantage of available datasets
annotated for information extraction tasks and
to convert them into structured CRFs. We
present a semi-automatic conversion methodol-
ogy, which has been applied to the E3C dataset
in two languages (English and Italian), result-
ing in a new, high-quality dataset for CRF slot
filling. Through several experiments on the cre-
ated dataset, we report that slot filling achieves
59.7% for Italian and 67.3% for English on
a closed Large Language Models (zero-shot)
and worse performances on three families of
open-source models, showing that filling CRFs
is challenging even for recent state-of-the-art
LLMs.

1 Introduction

Case Report Forms (CRFs) are essential tools in
clinical research, designed to systematically and
consistently collect patient data. They are com-
posed of a list of predefined items to be filled with
patients’ medical information. By standardizing
data collection, they ensure accuracy, reliability,
and validity, which are crucial for producing mean-
ingful and reproducible results in clinical studies.
An expanding area of research focuses on develop-
ing automated systems for filling CRFs with infor-
mation extracted from clinical notes and medical
records, a concept envisioned by Mac Kenzie et al.
(2016) and further advanced by Gutiérrez-Sacristán
et al. (2024). Leveraging Natural Language Pro-
cessing methods and models represent a potentially
promising approach to automate and advance re-
search in this field. However, despite their im-

Figure 1: Example of a Case Report Form filled with
the values from a clinical note.

portance, publicly available, well-annotated CRF
datasets are scarce, limiting the effective develop-
ment and training of such systems.

To address this gap, we propose a methodol-
ogy that transforms publicly available datasets of
clinical cases annotated for information extraction
into a structured set of filled CRFs. Examples
of such publicly available datasets are the follow-
ing: MIMIC IV1, i2b22, n2c23, CAS (Grabar et al.,
2018), E3C (Magnini et al., 2023). Our approach
reduces the discrepancy between existing datasets
and real-world clinical needs, aligning them more
closely with the practical requirements of hospi-
tals and clinical research applications, where CRF
filling is a widely relevant task. The outcome
is a diverse CRF dataset, filled with information
grounded in human annotations. Each example in
the dataset consists of a triplet: a clinical case, a
CRF to be filled, and the golden-standard filling
values for the CRF derived from the clinical note,
similar to what is presented in Figure 1. We apply
this methodology to the European Clinical Case
Corpus (E3C), release the resulting dataset, and
evaluate several Large Language Models (LLMs)
on it.

1https://physionet.org/content/mimiciv/3.1/
2https://www.i2b2.org/NLP/DataSets/Main.php
3https://n2c2.dbmi.hms.harvard.edu/
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The contributions of the paper are the following: (i)
a general methodology for converting corpora of
clinical cases annotated for information extraction
into filled CRFs; (ii) a new multilingual dataset4

(Italian and English) for CRF slot filling derived
from the E3C dataset; (iii) several baselines indi-
cating that automatic CRF slot filling from clinical
notes is challenging even for state-of-the-art LLMs.

2 Related Work

Health data standardization is a fundamental aspect
in the ongoing integration of medical research and
artificial intelligence. To facilitate such alliance,
the dimensions emphasized by Pétavy et al. (2019)
are crucial, encompassing the need of health re-
search for being transparent, accessible, interopera-
ble, reproducible, and of high quality.
Case Report Forms play a central role in this con-
text, and various efforts have been made to en-
sure that CRFs are designed to be consistent, reli-
able, and applicable across different clinical envi-
ronments (Richesson and Nadkarni, 2011; Bellary
et al., 2014). Rinaldi et al. (2025) outlines essential
guidelines for CRF design, emphasizing the need
to use clear, reusable, standardized, and uniquely
identifiable terms to facilitate semantic consistency
and future reuse. In a related line of work, Lin et al.
(2015) proposes methods to ensure that CRFs are
aligned with the specific research questions they
aim to address, thereby reinforcing their utility and
validity in clinical studies.
The shift from paper-based to electronic CRFs has
been a major focus of recent research, aiming to
enhance usability, reduce errors, and improve in-
tegration with digital health records (Fleischmann
et al., 2017). This advancements lead to a gain
of interest about automatic CRF filling from clin-
ical reports. Mac Kenzie et al. (2016) introduced
early approaches to extract structured data from
narrative clinical notes, a line of research that has
been extended by Gutiérrez-Sacristán et al. (2024).
However, these approaches remain relatively basic,
depending on keyword matching and vocabulary-
based resolution, failing to leverage the full capa-
bilities of modern Natural Language Processing
techniques.

4The dataset is released at https://
huggingface.co/collections/NLP-FBK/
e3c-to-crf-67b9844065460cbe42f80166

3 Methodology

In this section, we present a general methodology
to convert corpora of annotated clinical cases into
structured Case Report Forms. Our approach is
informed by an analysis of 200 pairs of clinical
notes and populated CRFs from an Italian hospital.
The CRFs at hand were organized among seven
key areas: patient history, clinical examination,
diagnostic tests results, laboratory test results,
imaging findings, treatment, and final diagnosis.
While CRFs are designed to be broad and com-
prehensive, covering a wide range of potential
clinical scenarios, an individual patient’s history
is typically much more limited. For this reason,
we observed that in our sample the CRF items
remained unfilled around 90% of the time when
populated with patients’ information, highlighting
the general characteristic of being designed to
collect much more information of what it is
typically available for each specific patient.
From this analysis, we concluded that in our setup
CRF design lies between two extremes: creating
a unique CRF for each clinical case, leading to
highly specific yet non-generalizable item sets,
or crafting a single, overly broad CRF for the
entire dataset, potentially blending unrelated
medical domains. We adopted an intermediate
approach, aligning with the traditional purpose of
CRFs in clinical studies — to gather data from
patients with similar conditions relevant to a study
(Bellary et al., 2014). Building on this principle,
we propose a two step procedure as outlined
in Figure 2: in Section 3.1 we group clinical
cases based on semantic similarity, and in 3.2 we
generate a dedicated CRF for each group and fill it
with the information annotated for each clinical
note. This results in one set of CRF items per
group, subsequently filled once for each clinical
case in that group. To conclude, in Section 6.1
we introduce and detail the task, the evaluation
metrics, and the method provided as baselines.

3.1 Clinical Cases Clustering

We aim to generate groups of clinical cases, ensur-
ing both clinical relevance and consistency in the
resulting crafted CRFs. Therefore, we require effec-
tive differentiation of documents to form clusters
that group together only relevant clinical cases. If
the clusters are too broad, meaningful distinctions
may be lost. We prioritized diagnosis as the key
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Figure 2: Summary of our two-step CRF generation and filling pipeline. Step 1 Initially, clinical notes are clustered
based on semantic similarity. Then, a group-specific CRF is generated for each cluster by extracting relevant items
from the annotations of the clinical cases within the group. Step 2 Each case is then linked to its designated CRF,
which item set is populated based on the preexisting document annotation. The outcome is a list of as many CRFs
as identified groups, and as many filled CRFs as documents. Each group-specific CRF is filled as many times as the
number of documents belonging to it.

clustering dimension since CRF items are typically
guided by the specific condition being studied. The
key idea is to give significant weight to diagnosis-
based links between notes in the clustering process,
while retaining knowledge about entities and clin-
ical information. Grouping documents that share
similarities in these aspects helps construct syn-
thetic CRFs that are both structured and clinically
relevant.
Since many available datasets do not include ex-
plicit annotations on diagnoses, we implemented
an automated system to extract them.

Diagnosis extraction. Extracting a diagnosis
from a clinical note presents several challenges.
Firstly, a note may mention past diagnoses that are
no longer relevant. Secondly, the diagnosis might
be implied rather than explicitly stated, requiring a
deeper interpretation. Lastly, some clinical notes
may not include a diagnosis at all, further com-
plicating the extraction process. To address this
challenge, we implement a two-step approach: i)
Automatic Generation of a Shortlist of Potential
Diagnoses – We leverage the available annotations
to identify candidate diagnoses for each clinical
case. First, we extract all words with the prefix
"diagnos-” and check whether they are followed by
an annotated entity. When this pattern was present,
the associated entity is considered a potential di-
agnosis. Otherwise, we treat all entities in the text
as potential diagnoses. ii) Diagnosis Selection –
We refine the diagnosis by prompting a Large Lan-
guage Model with the shortlist. This step outputs
the exact diagnosis from the shortlist, combining

the pattern-matching findings and powerful models,
improving accuracy and reducing ambiguity.

Data representation for clustering. Our cluster-
ing approach is built on a graph-based represen-
tation of the data, where clinical notes are linked
by weighted edges that quantify their similarity
(see Figure 3 for an implementation example of
such concept). This similarity is calculated based
on shared entities and diagnoses across cases. A
key challenge lies in the variability of how these
concepts are mentioned, as the same notion can be
expressed in multiple ways (e.g., “lower limb” vs.
“leg", “malignant tumor” vs. “cancer"). Ensuring
that notes discussing the same or closely related
concepts achieve high similarity beyond mere char-
acter overlap is a critical aspect of our methodology.
To address this challenge, we leveraged the UMLS
Metathesaurus Names database (National Library
of Medicine (US), 2024), augmenting the terms
with semantically related concepts. By mean of
appending to each term a short list of related ones
(maximum 5), we can better capture the similarities
between cases, even when different terminology is
used to refer to the same or closely related clinical
concepts. For languages other than English, each
target mention is translated into English before per-
forming a semantic search using a state-of-the-art
language model (Zhang et al., 2025) following the
findings of Chiaramello et al. (2016).

Similarity definition. To create the connection
between each pair of clinical cases, we determine a
similarity measure based on two components: the
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ratio of shared entities (e), and diagnosis similar-
ity (d). The ratio e is calculated as the number
of UMLS-augmented shared terms divided by the
number of augmented terms in the clinical note
with the least of them. However, assessing di-
agnosis similarity d requires a different strategy
due to the limited number of diagnosis terms per
note. We address this using a large language model
trained for semantic similarity (Lee et al., 2024),
calculating cosine similarity between the UMLS-
augmented diagnosis embeddings. This approach
enables us to establish meaningful connections be-
tween cases, forming more coherent clusters.
We then define the overall similarity measure

s = 3d+ e (1)

This formulation assigns greater weight to diag-
nosis similarity while still preserving additional
contextual information on shared entities.

Clustering. Based on the overall similarities s,
we propose to apply the Louvain algorithm as de-
scribed by Lu et al. (2015), selecting as starting
groups the ones composed by the weakly con-
nected sub-graphs obtained via the d edges with
high weight. However, this step is highly data-
dependent and must be tailored to each specific use
case, following the approaches described by Xu
and Tian (2015).

3.2 CRF generation
For each group of clinical notes, we aim to extract
a set of relevant items for each section identified
in the real-world CRFs analyzed in Section 3. The
combination of the distinct section sets forms a
comprehensive, group-specific CRF, tailored to the
shared characteristics and clinical context of each
group. Once each group-specific CRF is created, it
needs to be populated for each clinical case. The
overall outcome of this stage is one CRF per group
and one gold-standard filled CRF per clinical case.
Clinical cases within the same group share the same
set of items, but their values vary based on the spe-
cific annotations present in each document.
We formulate and populate items for the identi-
fied sections, acknowledging that not all sections
may be available in every dataset. As such, it is
essential to determine which sections can be popu-
lated on the basis of the available annotations and,
when necessary, refine the process to suit specific
use cases. Here, we present an overview of the

possible scenarios. Clinical history items can be
generated using annotations such as symptom, sign,
clinical entity, disease, condition, procedure. They
are typically filled with positive and negative val-
ues, based on whether they occurred in the patient’s
past. Additionally, they may include information
on whether a disease or condition is chronic or
acute. Clinical examination, diagnostic test results,
laboratory test results, and imaging findings can
be addressed using any annotation of type simi-
lar to condition, measurement. Such items can
be populated with diverse answer formats, includ-
ing numerical values, categorical labels (e.g., posi-
tive/negative, high/low), and free-text descriptions,
depending on the nature of the test and the informa-
tion available. Diagnosis items can be generated
based on the extraction procedure described in Sec-
tion 3.1. This category of items is filled with either
a positive or negative value. Treatment items can
be addressed via labels such as medication, drug,
or chemical. They can be filled with a variety of
formats, spanning from medication names to time
and duration information.
Initially, item sets are generated individually for
each clinical note. These sets are then combined
with those from other notes within the same group,
forming a comprehensive and representative list of
items for the entire group. Then, generated group-
specific CRFs are populated for each clinical case
in the group, based on the annotation, resulting in
the gold-standard filled CRF.

Data revision. All generated items in each sec-
tion of each group-specific CRF are normalized
using UMLS mapping, collapsing equivalent terms
to a single one. Furthermore, manual revision is
performed to guarantee the quality of the gener-
ated CRF, with three objectives: (1) merge equiva-
lent and highly related items, (2) remove irrelevant
items, and (3) adjust inaccurate items. The process
is conducted in a semi-automated manner. For each
item in the CRF, we use a close source Large Lan-
guage Model to assess whether it could be mapped
to an existing item and to provide a justification
for the suggested mapping. Any proposed mapping
is manually reviewed for validity and, if approved,
the overlapping items are consolidated.

4 CRF Filling: Task Definition

Datasets constructed according to the methodology
detailed in Section 3.1 introduce a new CRF-filling
task, which is divided into as many sub-tasks as the
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Figure 3: Graph representation of the E3C English
dataset. Each node is a clinical note and the edges
represent the similarity between cases. Darker edges
represent higher similarity. The color of the nodes rep-
resents the group assigned by the clustering algorithm.

number of corresponding CRF sections. Each task
requires filling CRF items based on information
extracted from clinical cases, but they may vary
in complexity. For the diagnosis section, the task
consists in determining whether an item represents
the final diagnosis, with three possible outcomes
— “yes", “no", “not available". The clinical history
section is more complex than the diagnosis one, as
it allows for a broader range of valid outcomes. In
addition to determining whether an event occurred
in the patient’s history, it may also capture details
such as its chronic or acute nature, adding an extra
layer of difficulty. The clinical examination, tests
results, imaging findings and treatment section are
the most complex ones, as they lack a predefined
set of valid answers, requiring extraction and inter-
pretation of numerical and textual values from the
clinical notes.

Baseline. We established a baseline for the CRF
slot filling tasks using sequence and pattern match-
ing techniques. For the diagnosis task, the baseline
assigns “yes” if the diagnosis of interest appears
in the clinical case and “not available” otherwise.
In the clinical examination, tests results, imaging
findings and treatment tasks, if the respective item
is mentioned in the text, the first numerical value
following it is extracted as the result. For the clin-
ical history task, the baseline assigns “yes” if the
corresponding textual span is found in the clinical
case and “not available” otherwise.

Metrics definition. To define the evaluation
metrics, we first established criteria for identifying

positive and negative occurrences. An item is
considered positive for diagnosis if labeled “yes”
and negative if marked as “no” or “not available".
In the clinical history section, an item is positive if
it appears in any valid form, such as “yes” or “no",
and negative if marked as “not available". For all
the other tasks, an item is positive if assigned a
value and negative if labeled as “not available.”
Additionally, when a generated answer does not
conform to the expected format—if any predefined
format is required—it is always considered a
false positive. Based on these definitions, we
can compute task-specific precision, recall, and
F1-score, as well as overall micro and macro
F1-scores.
We apply strict matching criteria (ignoring
trailing punctuation) with one relaxation: any text
following “not available” in response was ignored
if this phrase appeared at the beginning. For
gold-standard labels filled with multiple values, a
true positive (TP) is assigned for a perfect match, a
false positive (FP) if extra elements are predicted,
and a false negative (FN) if the prediction contains
fewer items than the ground truth.

5 The Case of the E3C Dataset

In the previous sections, we outlined the general
methodology for converting any corpus annotated
for information extraction into gold-standard filled
CRFs. In this section, we apply this methodol-
ogy to the European Clinical Case Corpus (E3C,
Magnini et al., 2023). E3C is an open, manually
annotated multilingual dataset consisting of clin-
ical cases in five languages. E3C clinical cases
are detailed accounts of a patient’s medical history,
containing rich medical details and temporal rela-
tionships that enable in-depth linguistic analysis.
The dataset includes annotations on both textual
spans and the relationships between them. The
ones relevant to our study are summarized in Ta-
ble 2. In this work, we focused on the Italian and
English splits (Table 1).

5.1 CRF generation from E3C

We applied our methodology to the European Clin-
ical Case Corpus (E3C), adapting it to the dataset’s
specific characteristics. Below, we outline key
adaptations, while all details not explicitly men-
tioned can be found in Section 3.
We generated the shortlist of potential diagnoses
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Lang # notes # clent # rml # event
English 84 1024 480 4885
Italian 86 869 383 3385

Table 1: Number of clinical notes (# notes), annotated
clinical entities (# clent), results and measurements
(#rml), and events (# event) in E3C Italian and English
splits, which both comprise approximately 25k words.

considering only clinical entities as possible targets,
as other annotations were deemed out of scope. Af-
ter selecting the diagnoses using GPT-4o (OpenAI
and et al, 2024) in a 4-shots settings, we manually
reviewed 10 examples in both English and Ital-
ian, confirming the accuracy of the results in all
cases. In some instances (9 for English, 19 for Ital-
ian), no diagnosis was identified, which is expected
since certain clinical documents do not report it.
Then, the overall similarity measure was defined
as s = 3d+ 1

2(e+ b), where e and b are the ratios
of shared clinical entities and shared body parts
respectively, d is the diagnosis similarity. The re-
sulting graph representation of the data is shown in
Figure 3. This method resulted in 7 (8) groups and
6 (12) clinical cases not assigned to any group for
Italian (English). More details on the diagnosis ex-
traction prompts, similarities and generated groups
are shown in Appendix A.1 and A.3.
Using the information embedded in the E3C anno-
tations, we formulated and populated items for the
following sections: clinical history, diagnosis, clin-
ical examination, diagnostic test results, laboratory
test results, and imaging findings. Since no infor-
mation on treatment was available at the annotation
level, we excluded it from consideration.

Exams. To generate and populate exam items,
we first extracted the textual spans linked to RMLs
(results and measurements) via PERTAINS_TO re-
lationships. A CRF exam item was created for
each textual span with a corresponding RML, rep-
resenting its filling value. When an RML refers
to multiple textual spans, a separate item is gen-
erated for each of them. When the same textual
span is associated with multiple RMLs, a single
item is created for the textual span, and each RMLs
is used at filling time, separated by special tokens.
RMLs that do not pertain to any textual span were
ignored.

Clinical History. To generate and populate items
about patients history, we focused on the clinical
entities enriched by three key annotated attributes:

“polarity” (whether the reported term is present
or not), “contextual modality” (knowledge about
the truth value of the event, can be actual, hedged,
hypothetical or generic), and “permanence” (can
be permanent for conditions with no known cure
or finite for those that can be resolved eventually).
Each of these attributes defines a portion of the
gold-standard answer, as outlined in Table 6 in
Appendix A.2.

Diagnosis. For each diagnosis, an item was cre-
ated and populated with “yes” if it applied to the
clinical case and “not available” otherwise.
An example of a generated CRF can be found in
Appendix A.3.

Train-test split. We adopted the train-test split
provided by Ghosh et al. (2025) for the E3C dataset.
The result is that clinical cases from the same group
are assigned to different splits, while group-specific
CRFs are generated on all the cases in the corpus.
By design, CRFs must cover all essential fields
for the patient groups they represent. As a result,
constructing comprehensive item sets from the full
dataset is necessary and does not introduce bias be-
yond the task’s inherent structure. Crucially, only
training clinical notes are used for learning, pre-
venting any test-specific influence on the model.
Note that this cross-splits effect is further reduced
by creating clinical history item sets merging the
ones extracted from clinical cases in both splits but
excluding from the final set the ones filled only for
test cases after data revision.

6 Experimental settings

We explored the E3C CRF-filling task using
decoder-only Large Language Models (LLMs) as
they have exhibited high performance in several
tasks in zero-shot settings.

Models. We selected the instruct versions
of different state-of-the-art model families, in
different sizes: Llama-3 8B and 70B (et al., 2024),
Qwen-2.5 7B and 72B (Qwen and et al., 2025),
Mistral-Small-3.1 24B 5, Gemma-3 27B6 and
GPT 4o. This selection allowed us to compare
proprietary (GPT) and open-source models (the
others), assessing the impact of model size and
determining which family performs better on our
task. Each model was prompted with task-specific

5https://mistral.ai/news/mistral-small-3-1
6https://blog.google/technology/developers/

gemma-3/
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Category Description (example)
Clinical entity disorders, pathologies, and symptoms (“metastases” “nausea")

Body part parts of the human body (“parotid gland")

RML results and measurements (“38g/dl")

Event any event (“diagnosed", “haemoglobin")

PERTAINS-TO relation between an RML and the Event it refers to (“38g/dl”
pertains-to “haemoglobin")

Table 2: E3C categories for annotations on textual spans and their relationships utilized in this work. Each textual
span is annotated if it represents a clinical term (i.e., clinical entities such as pathologies and symptoms, body parts,
laboratory tests and results) and is assigned some attributes. For more details, see Magnini et al. (2023).

Italian English
Train Test Train Test

Task Description Accepted answers Items
(Filled)

Items
(Filled)

Items
(Filled)

Items
(Filled)

Diagnosis determine if an item is
the final diagnosis for the
patient

“yes", “no", “not avail-
able”

498
(8%)

553
(7%)

491
(9%)

505
(9%)

History determine whether the
patient experienced a his-
tory item

“Certainly yes", “No",
"Probably yes, chronic",
“not available” etc.

977
(23%)

903
(11%)

953
(25%)

872
(13%)

Exams extract the results related
to an exam item

any string representing
an exam result

1108
(10%)

1149
(10%)

984
(11%)

916
(9% )

Total 2583
(14%)

2605
(10%)

2428
(16%)

2293
(11%)

Table 3: Description, space of possible answers, number of items, and ratio of populated items in the train and
test splits for both languages for the three CRF sub-tasks. All three sub-tasks are quite sparse, with around ten to
fifteen percent of the items populated in the gold-standard filled CRFs. Clinical notes in the train and test split are
composed by around 12k and 13k tokens (words), respectively, in both Italian and English. The possible answers
for history are determined by the levels of the annotated attributes utilized for the gold-standard filling.

Model Diagnosis History Exams Micro Macro
Prec Rec F1 Prec Rec F1 Prec Rec F1 F1 F1

Baseline 64.9 58.5 61.5 100.0 11.3 20.4 13.6 10.8 12.0 31.3 25.4
Llama 8B 32.2 92.7 47.8 7.2 60.8 13.0 4.8 25.0 8.1 23.0 18.2
Qwen 7B 72.1 75.6 73.8 33.8 73.6 46.4 7.5 8.5 7.9 42.7 35.2
Mistral 24B 68.4 63.4 65.8 51.6 64.9 57.5 13.8 22.1 16.9 46.7 41.4
Gemma 27B 73.5 87.8 80.0 47.1 83.5 60.2 22.9 83.9 36.0 58.7 53.7
Llama 70B 54.7 100.0 70.7 32.8 77.3 46.0 16.0 67.8 25.9 47.5 42.4
Qwen 72B 75.6 75.6 75.6 58.1 74.2 65.2 19.4 38.7 25.8 55.5 50.0
GPT 4o 75.6 82.9 79.1 40.8 75.3 52.9 34.0 76.8 47.1 59.7 55.9

Table 4: Performance of different models on the Italian dataset across three categories: Diagnosis, History, and
RML. Metrics include Precision, Recall, F1-score. Overall micro and macro F1-scores are also reported.
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Model Diagnosis History Exams Micro Macro
Prec Rec F1 Prec Rec F1 Prec Rec F1 F1 F1

Baseline 84.6 53.7 65.7 87.5 13.2 23.0 0.0 0.0 0.0 29.6 21.9
Llama 8B 49.3 94.9 64.9 10.2 76.4 18.0 6.4 63.0 11.6 31.5 25.1
Qwen 7B 100.0 63.4 77.6 40.0 78.4 53.0 15.6 16.3 15.9 48.8 41.9
Mistral 24B 63.6 80.0 70.9 55.3 68.9 61.3 22.7 62.5 33.3 55.2 51.0
Gemma 27B 91.4 78.0 84.2 42.9 74.5 54.5 32.7 86.0 47.4 62.0 57.7
Llama 70B 84.2 78.0 81.0 36.1 74.3 48.6 34.8 81.6 48.8 59.5 55.6
Qwen 72B 96.8 73.2 83.3 55.9 67.0 60.9 27.0 80.0 40.3 61.5 56.6
GPT 4o 94.4 82.9 88.3 47.5 72.4 57.4 42.2 84.3 56.2 67.3 63.4

Table 5: Performance of different models on the English dataset across three categories: Diagnosis, History, and
RML. Metrics include Precision, Recall, and F1-score. Overall micro and macro F1-scores are also reported.

details, the clinical case, the CRF item, and
answering guidelines.

All experiments on open-source models were run
on 8xA40 (46GB) and took approximately 30 GPU
hours, serving the models using the vllm package
(Kwon et al., 2023). Prompts can be seen in detail
in Appendix A.4.

6.1 CRF Filling from E3C Clinical Cases

The constructed dataset introduces a new E3C CRF-
filling task, which is divided into three sub-tasks:
clinical history, exams, and diagnosis as described
in Table 3. The main specialty of this task in re-
spect to the more general outlined in Section 4 is
that clinical history items can be filled with twelve
valid values (Appendix A.2). Given the unique an-
notation scheme in E3C, which includes multiple
levels of polarity, contextual modality, and perma-
nence, such complexity is specific to this dataset
and may not be present in others. Therefore, we
report results on a simplified version where all posi-
tive responses are grouped as “yes” and all negative
ones as “no". By simplifying the values, we aim
to offer a more general perspective on the inherent
difficulty of the task, extending beyond the particu-
larities of the E3C dataset.

7 Results and Discussion

Experimental results are reported in Tables 4 and 5
for Italian and English respectively. GPT-4o consis-
tently achieves the highest overall performance in
both Italian and English datasets, with the best Mi-
cro and Macro F1-scores (59.7 and 55.9 for Italian,
67.3 and 63.4 for English). Among open-weight
models, Gemma 27B and Qwen 72B perform com-
petitively in Italian, closely approaching GPT-4o’s

results, particularly in diagnosis and history. For
English, Gemma 27B, Qwen 72B, and Llama 70B
performances are very similar, around 6-8 points
lower than GPT-4o.
Regarding model size, we observe an average im-
provement of around 20 Macro F1 points when
scaling from small (7/8B) to large (70/72B) models
in the LLaMA and Qwen families. Interestingly,
models in the 20–30B range often match or surpass
larger ones from different architectures. Among
the tasks, exams prove to be the most challenging,
followed by history, indicating significant room
for improvement. Models perform on average bet-
ter on English than in Italian with no exception,
with an average delta of 7.5 points of Micro F1.
Among the smaller models, Qwen 7B significantly
outperforms Llama 8B, which struggles with ex-
tremely low precision. At larger scales, Qwen 72B
and Llama 70B exhibit comparable performance
in English, while Qwen 72B demonstrates a clear
advantage over Llama 70B in Italian.

8 Conclusion

Our study presents a novel methodology for trans-
forming annotated clinical notes into structured
Case Report Forms (CRFs) by leveraging clusters
of semantically similar cases. This approach en-
sures that CRFs are both comprehensive and con-
textually relevant while maintaining consistency
across similar clinical scenarios. Given the scarcity
of publicly available CRF datasets, our method pro-
vides a valuable framework for automating CRF
generation, which could be highly beneficial for fu-
ture clinical applications. In addition, our method
brings existing datasets closer to real-world clinical
applications, ensuring greater alignment with the
practical needs of hospitals and research. Given
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that CRF filling is a widely relevant task, this ap-
proach enhances the utility of annotated clinical
notes.

Our findings highlight that the characteristics of
the generated CRFs are strongly influenced by the
dataset’s distribution, underscoring the necessity of
manual tuning based on available annotation types
when adapting the method to different contexts. We
believe that a robust analysis of the data distribution
is crucial for high-quality CRF generation.

Our experimental results reveal that the con-
structed CRFs encompass tasks of increasing com-
plexity for state-of-the-art models. Diagnosis items
can be framed as a relatively straightforward bi-
nary classification task, while history items remain
within a classification framework but with greater
difficulty due to their nuanced nature. The most
challenging aspect lies in handling exams, tests,
and examinations, which require a fully genera-
tive approach without a predefined set of valid re-
sponses, making them particularly difficult for cur-
rent models to solve. Both open- and closed-source
models show room for improvement in terms of
performance.

Limitations

There are a few limitations in our current approach
to convert Information Extraction datasets into
structured CRFs. First, the proposed methodology
has been experimented only on the E3C corpus: al-
though this is a significant use case (several levels
of annotations, several languages), additional in-
sights may derive from different available datasets.
Second, in order to keep under control our experi-
mental setting, we made a few simplifications with
respect to the full complexity of the task. Partic-
ularly, for the CRF clinical history group, we as-
sumed a three-value schema (i.e., a certain clinical
evidence is either present, negated, or not men-
tioned), while in reality the possible values should
be extended to cover cases of chronicity.
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A Appendix

A.1 Diagnosis Extraction
Here we report the structure of the prompt utilized
to generate the diagnosis using GPT-4o:

{System prompt}{Example 1}...{Example 4}
"clinical note":{Clinical case}
"potential diagnosis":
{list of potential diagnosis}

Here is the system prompt:

You are a clinical assistant.
Your job is to extract the conclusive
diagnosis from a clinical note written by
an experienced physician.
The diagnosis is a medical condition
identified by a health care provider.
To complete the task, you are aided by a
list of possible diagnoses.
Here are your guidelines:
1. The diagnosis is always contained in
the list of potential diagnoses.
2. Your goal is to extract only the
diagnosis, ignoring everything else.
3. Respond with a json containing the
extracted diagnosis and a short motivation
{“motivation”: “motivation for the
extracted diagnosis”, “diagnosis”:
“extracted diagnosis”}.
4. If no diagnosis is reported,
respond with “no diagnosis.”

CAUTION: Notes may contain diagnoses
made in the past with respect to
the current clinical situation.
Only extract diagnoses related to
the current situation.

Table 7 presents examples of similarity scores for
E3C cases calculated in the embedding space of the
diagnosis augmented via UMLS semantic search.

A.2 E3C Clinical History Items

Table 6 reports the attributes and their levels used
for populating the E3C CRF clinical history section.
Each E3C clinical entity is annotated with contex-
tual modality, polarity, and permanence, which de-
termine the filled value using the template:

{contextual mod} {polarity}, {permanence}

For instance, an entity with polarity “positive",
contextual modality “hedged" and permanence “fi-
nite" is filled with “Probably yes, possibly chronic".
There are 12 possible level combinations.

A.3 Generated E3C CRFs

Table 8 presents the statistics on the generated E3C
CRF for English and Italian. Figure 4 shows an
example of a CRF generated for the English group
1.
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Figure 4: Example of a generated CRF for English group 1 and filled with the annotation from the clinical case
EN100668

Attribute Level CRF Value

Polarity
Positive Yes
Negative No

Modality

Actual Certainly
Hypothetical Possibly
Hedged Probably
Missing (empty)

Permanence
Permanent Chronic
Finite Certainly not

chronic
Missing Possibly

chronic

Table 6: Attribute levels for populating the E3C CRF
clinical history section.

A.4 Prompts for experiments
The prompt for the experiments is composed fol-
lowing this template:

{system prompt} {answering guidelines}
{clinical case} {question on the item}.

Here we report the prompts used for English. The
ones for Italian are the direct translation of them.

System prompt
You are an expert clinical doctor. You have
to answer a question on "{task_description}"
about a patient. To do it, you are given
the patient clinical history.

History answering guidelines , where values are
populated according to the logic presented in the
methodology section.

The answer is composed by three components:
polarity, contextual modality, and

permanence. You must combine these
three components together to answer
the question.
- contextual modality can be:
a)'VALUE_1' if the answer is certain,
b)'VALUE_2' if the answer is hypothetical,
c)'VALUE_3' if the answer is probable.
- polarity can be:
a)'VALUE_4' if the answer is affirmative,
b)'VALUE_5' if the answer is negative.
- permanence can be:
a)'VALUE_6' if the object of the question
is certainly permanent forever,
b)'VALUE_7' if the object of the question
is temporary or transitory,
c)'VALUE_8' otherwise.

These three components must be combined
in order: "contextual modality polarity,
permanence". For example, if the question
is "Does the patient have a history of
diabetes?", the answer could be:
"EXAMPLE_1", or "EXAMPLE_2".

If the information is not contained in
the clinical history, answer with
'not_available'.
Do not add any preamble to the answer.

Exams answering guidelines

The answer can assume three different
formats.
-if the test/exam has been performed
only once, answer with the results
of the test/exam.
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Diagnoses note 1 Diagnoses note 2 Similarity Score
neuroendocrine neoplasia neoplasia 0.63
chronic myeloid leukemia Ph+ in
chronic phase

JMML 0.57

acute ulcerative rectocolitis clostridium difficile colitis 0.58
mass of tumor origin syncopal episodes, Polymorphic

ventricular tachycardia
0.11

Wilms’s tumor, Metastasis microperforation 0.10

Table 7: Similarity scores between extracted diagnoses for pairs of clinical cases. The first three lines represent cases
with high similarity, while the last two cases with low similarities. It can be noted that terms that are syntactically
different but semantically close such as “JMML” and “Chronic myeloid leukemia Ph+ in chronic phase” are mapped
together by this approach, as the former has been correctly enriched with the term “juvenile myeloid leukemia", that
results in an embedding similar to the latter. At the same time, cases with very different diagnoses are assigned very
low similarities.

Italian English
Group Cases

Train/Test
CRF
items

Avg/StDev
(Train)

Avg/StDev
(Test)

Group Cases
Train/Test

CRF
items

Avg/StDev
(Train)

Avg/StDev
(Test)

0 4/4 23 5.5 / 2.2 5.5 / 0.8 0 7/2 71 11.7 / 4.7 5.0 / 3.0
1 11/13 91 7.9 / 5.3 7.9 / 3.6 1 1/4 26 19.0 / 0.0 3.0 / 1.2
2 4/4 55 13/ 9.7 13 / 2.2 2 1/1 10 6.0 / 0.0 4.0 / 0.0
3 2/7 27 4.5 / 1.5 4.5 / 2.7 3 3/6 54 11 / 9.7 6.8 / 5.2
4 4/6 76 9.8 / 4.8 9.8 / 9.2 4 5/4 24 3.6 / 1.5 4.0 / 2.5
5 4/4 48 9.8 / 7.8 9.8 / 4.5 5 9/9 99 11 / 7.7 7.9 / 4.0
6 9/4 79 12.7/ 7.5 13 / 1.2 6 8/9 36 9.0 / 4.0 7.0 / 5.1

7 2/2 75 9.4 / 5.4 13 / 11

Table 8: Number of cases, number of items, average and standard deviation of the number of populated items (i.e.,
different from “not available") per group-specific CRF for both languages.

-if the test/exam has been performed
more than once, report all the
results separated by the special
token [\MULTI_ANSWER] (for example
"RESULT_1 [\MULTI_ANSWER] RESULT_2").
-if the information is not contained in
the clinical history, answer
with 'not_available'

Diagnosis answering guidelines

Answer 'Yes' if the patient's definitive
diagnosis is the one indicated. If the
information is not contained in the
clinical history, answer with
'not_available'.

Question structure for exams

What are the results and measures of {item}?

Question structure for diagnosis

Is the definitive diagnosis {item}?

Question structure for history
Does the patient have a history
of {item}?
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Abstract
Accurate prediction of drug–target interactions
is critical for accelerating drug discovery. In
this work, we frame drug–target prediction
as a link prediction task on heterogeneous
biomedical knowledge graphs (KG) that inte-
grate drugs, proteins, diseases, pathways, and
other relevant entities. Conventional KG em-
bedding methods such as TransE and ComplEx-
SE are hindered by their reliance on computa-
tionally intensive negative sampling and their
limited generalization to unseen drug–target
pairs. To address these challenges, we pro-
pose Multi-Context-Aware Sampling (MuCoS),
a novel framework that prioritizes high-density
neighbours to capture salient structural patterns
and integrates these with contextual embed-
dings derived from BERT. By unifying struc-
tural and textual modalities and selectively
sampling highly informative patterns, MuCoS
circumvents the need for negative sampling,
significantly reducing computational overhead
while enhancing predictive accuracy for novel
drug–target associations and drug targets. Ex-
tensive experiments on the KEGG50k and
PharmKG-8k datasets demonstrate that Mu-
CoS outperforms baselines, achieving up to a
13% improvement in MRR for general relation
prediction on KEGG50k, a 22% improvement
on PharmKG-8k, and a 6% gain in dedicated
drug–target relation prediction on KEGG50k.

1 Introduction

Drug target discovery lies at the core of modern
therapeutic development, enabling the identifica-
tion of new biological targets, the prediction of
non-target effects, and opportunities for drug repur-
posing — while significantly reducing experimen-
tal costs and accelerating translational timelines
(Sachdev and Gupta, 2019). Recent computational
advances leverage knowledge graphs (KGs) to in-
tegrate heterogeneous biomedical data (e.g., drugs,
proteins, diseases, side effects, pathways) into uni-
fied networks where nodes represent entities and

edges capture relationships, essentially framing dis-
covery as a link prediction problem (Himmelstein
et al., 2017). For example, KG’s such as KEGG50k
(Mohamed et al., 2019) PharmKG-8k (Zheng et al.,
2021) and Hetionet (Himmelstein et al., 2017) pro-
vide comprehensive, structured representations of
biological components and their intricate associa-
tions.

Biomedical KGC methods, however, face a criti-
cal trade-off: structural embedding methods such
as ComplEx-SE (Mohamed et al., 2019) capture
explicit drug-target relationships but fail to gen-
eralize to unseen entities like novel drugs due to
rigid geometric constraints. Conversely, graph neu-
ral approaches like NeoDTI Progeni (Liu et al.,
2024) integrate probabilistic reasoning with GNNs
for state-of-the-art drug-target prediction but re-
main unevaluated on relation-centric benchmarks
like KEGG50k. Furthermore, none of these meth-
ods exploit the rich textual semantics embedded
in biomedical triples (e.g., "DRUG X→ DRUG-
TARGET-GENE→ GENE Z"), which could pro-
vide inductive signals for unseen entities by contex-
tualizing relationships beyond structural adjacency.

We posit that PharmKG-8k’s and KEGG50k’s
relational triples are inherently compatible with
textual encoding strategies and therefore believe
that we can leverage a language transformer model
like BERT’s bidirectional attention to jointly model
the explicit relationships through syntactic patterns
in entity-relation-entity chains. Moreover, we pro-
pose to exploit, (a) the rich contextual information
inherent in the graph’s structure such as neighbour-
ing entities and relations associated with a given
head entity and query relation, like GNNs do, and
(b) associated features such as node degrees and
connectivity that affect the performance of KG tech-
niques(Cattaneo et al., 2024).

We therefore propose MuCoS (Multi-Context-
Aware Sampling), a KG completion framework that
overcomes these limitations by aggregating filtered
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contextual information from adjacent entities and
their relationships, and then integrating this seman-
tically enriched context into a BERT model for
better prediction of relationships and entities. In
doing so, MuCoS advances drug target discovery
in the following key ways:

• Drug–Target Relation Prediction: By lever-
aging optimized neighbouring contextual in-
formation around nodes and relations, MuCoS
outperforms traditional models in predicting
general and drug–target relationships.

• Target-tail Prediction: The method accu-
rately predicts potential target tails (such as
genes etc.) by incorporating contextualized
structural information derived from the head
entity and relationship.

• Efficient Multi-Context Sampling: By prior-
itizing informative structural patterns through
density-based sampling, MuCoS reduces com-
putational overhead while preserving high pre-
dictive accuracy.

• Elimination of Auxiliary Data Require-
ments: Operating effectively without reliance
on extensive entity descriptions or negative
sampling, MuCoS is particularly well-suited
for sparse biomedical datasets.

2 Related Work

Drug target discovery has been approached from
multiple computational perspectives. Similarity-
based methods quantify relationships by comput-
ing pairwise distances—often using Euclidean or
other metric functions—between drugs and their
target proteins (Shi and Li, 2018). These methods
typically rely on handcrafted similarity measures
to distinguish interacting pairs. Feature-based tech-
niques, predominantly employing support vector
machines (Zhang et al., 2017), formulate the prob-
lem as a binary classification or two-class cluster-
ing task to differentiate between positive and nega-
tive drug–target associations based on engineered
features.

Recent graph-based methods leverage hetero-
geneous networks that integrate multiple simi-
larity metrics—such as drug–drug, target–target,
and cross-modal associations—to exploit the ho-
mophily principle in biological systems (Ban et al.,
2019). These approaches infer missing links
by modelling complex interdependencies among

drugs, proteins, diseases, and pathways. In parallel,
the application of embedding-based techniques has
evolved considerably (Bordes et al., 2013; Yang
et al., 2014; Trouillon et al., 2016). For instance,
Mohamed et al. (Mohamed et al., 2019) intro-
duced ComplEx-SE, a variant of the ComplEx
KGE model that adopts a squared error-based loss
for enhanced accuracy. Recent works like NeoDTI
(Liu et al., 2024) combine graph neural networks
with probabilistic reasoning to achieve state-of-the-
art performance in drug–target prediction.

Despite these advances, current KGC methods
still face challenges in drug target discovery. Tra-
ditional embedding models depend on static, pre-
trained embeddings, which hinder their ability to
generalize to novel entities and interactions in
rapidly evolving biomedical data (Gul et al., 2024).
Text-based and large language model approaches
require rich and consistent annotations—a resource
often sparse in biomedical domains (Gul et al.,
2025). Additionally, the reliance on extensive neg-
ative sampling during training imposes significant
computational burdens, particularly for large-scale
datasets. These limitations motivate us to develop
MuCoS as a flexible, context-aware and computa-
tionally efficient model that integrates both struc-
tural and textual cues to drive the discovery of new
drug targets.

3 Methodology

MuCoS addresses two knowledge graph comple-
tion tasks: (1) Link Prediction (inferring missing
relations in triples like (h, ?, t)) and (2) Tail Predic-
tion (identifying missing tail entities in (h, r, ?)).
Both tasks are divided into general and drug-target-
specific subtasks to balance broad applicability
with a biomedical focus. Using the PharmKG-8k
and the KEGG50k dataset, general subtasks predict
relations/tails across all entities and relations, while
drug-target subtasks use a filtered subset to predict
specific relations.

MuCoS builds on the MuCo-KGC model (Gul
et al., 2025) to boost computational efficiency by
strategically sampling high-density contextual in-
formation (i.e., entities or relations that appear
most frequently) from both entity and relation-
neighbouring contexts before integrating it with
BERT for precise predictions. For the transformer
part of MuCoS, DistilBERT (base, uncased) has
been employed, which is a smaller model that helps
MuCoS run efficiently while still capturing context
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Figure 1: A concise overview of the MuCoS model pipeline, which is designed to predict general and drug-target relations and
tail entities. The boxes on the left show the input sequence to the BERT model, where (h) head, (Hc) head context, (t) tail, (Tc)
tail context, (r) relation, and (Rc) relation context. This integrated context is passed through the BERT model with a linear
classifier and softmax function to generate probabilities for relations and tail.

well. We selected DistilBERT for its efficiency,
retaining 95% of BERT’s performance while be-
ing 40% smaller, making it suitable for large-scale
knowledge graph tasks (Sanh et al., 2019). Figure 1
provides an overview of the MuCoS pipeline. The
subsequent sections detail the computations of the
contextual information and the sampling process in
the MuCoS pipeline.

Given a head (h), tail (t), a relation (r) between
them, MuCoS first figures out the corresponding
neighbouring contexts, i.e., the head context (Hc),
the tail-context (Tc) or the relationship context
(Rc) and then selects out the high-density contexts.
Based on the task at hand, relevant contexts are then
concatenated and passed on to a BERT model with
a linear classifier and softmax function to generate
probabilities for relations or tails.

Head Context Hc : To extract the contextual
information for the head, i.e.,Hc, we first identify
the relations associated with the head entity h, i.e.,
the relation neighbourhoodR(h). If l relations are
associated with h from the setR of all relations ri
in the graph,G, then:

R(h) = Al
i=1 ({ri | (h, ri, ej) ∈ T , ej ∈ E})

(1)
where A(·) is the concatenation operation ∥, T is
the set of training triples, Et is the set of all tail
entities, and ri represents each relation associated
with h. Next, we find the tail entities e that are
neighbours (i.e., have a direct connection) with

the head entity h, i.e., tail neighbourhood E(h),
using the identified relations in R(h). Assuming
m neighbour tails, E(h) is expressed as:

E(h) = Am
i=1 ({ti | (h, rj , ei) ∈ T , rj ∈ R})

(2)
where E(h) is the set of all tail entities ti directly
associated with the h through some relation rj .

Sampling: While MuCo-KGC (Gul et al., 2025)
integratesR(h) and E(h) calculates the head con-
text, this study introduce a density-based sampling
for context calculationHc, where the density ρ(e)
of an entity e ∈ E(h) is defined as its frequency of
appearance in T .

ρ(t) = |{(h, r, t) ∈ T }|, for any h, r (3)

ρ(t) denotes the density of the tail entity t, defined
as the number of times t appears as the tail in triples
(h, r, t). Using these density values, we select n en-
tities of highest density values and the relationships
between head h and these top-n selected entities:

topn(E(h)) = sort(E(h), by ρ(e))[: n] (4)

R∗(h) = An
i=1

(
{ri | (h, ri, ej) ∈ T ,

ej ∈ topn(E(h))}
)

(5)

topn(E(h)) selects the top n tail entities from E(h)
sorted by their density ρ(e). R∗(h) concatenates
the relations ri connected h and the selected top-n
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Figure 2: MuCoS Hc construction. The left graphical view illustrates one hop head h context, which consists of the set of
relations R(h) (r1, r2, r3, r4, r5, r6) and the set of neighbouring tail entities E(h) (e1, e2, e3, e4, e5, e6) associated with the
head entity h. The middle view shows the sampling process, where only the top-n (suppose n = 3) tail entities e are selected
and concatenated (∥) based on their density ρ(e), to calculate the optimized head context Hc.

tail entities. The optimized head contextHc is then
defined as:

Hc = R∗(h) ∪ topn(E(h)) (6)

Figure 2 illustrates this sampling process, highlight-
ing only a select subset of high-density neighbours
(shown in red border) used to compute the aggre-
gated context Hc. We follow the same procedure
to compute the tail context Tc (for a given tail) re-
quired along with head context Hc in the relation
prediction task.

Relation Context Rc : To acquire the relation
contextRc, we identify all entities (heads and tails)
associated with the operational relation r in the
knowledge graph G. This includes the set of heads
(e.g., drugs) ei and tails (e.g., genes) ej connected
by r:

E(r) = Ao
i,j=1 ({ei, ej} | (ei, r, ej) ∈ T }) (7)

E(r) is the concatenation of all head-tail entity
pairs (ei, ej) connected by the relation r in the
knowledge graph.

Sampling: From the set of entities in Ec, the
top-k elements with the highest density values ρ(e)
are selected to generate the optimized relationship
contextRc.

Rc = topk(E(r)) = sort(E(r), by

(ρ(ei) + ρ(ej)))[: k] (8)

Rc therefore provides a focused global perspective
on r’s patterns, enhancing generalization without
excessively raising the time complexity. Figure 3
depicts the sampling process involved in comput-
ingRc, highlighting the selection of k high-density

entity pairs (shown in red border) involved with
the relation r to form the optimized relationship
context. Following the extraction of contextual
information via density-based sampling, MuCoS
integrates these contexts into a BERT-based frame-
work for prediction. The process for each subtask,
leveraging the KEGG50k dataset and its filtered
drug-target subset, is detailed below:

• For task (1), link prediction, which includes
two subtasks: General link prediction (h, ?, t):
The concatenated representations Hc (head
context) and Tc (tail context) are combined
with the head entity h and tail entity t to
form the input sequence [h,Hc, t, Tc]. This
sequence passes through BERT’s transformer
layers, generating a contextualized represen-
tation for each token. A classification layer
then predicts the relation r, with a softmax
function calculating the probability distribu-
tion over all relations:

P (r | h, t) =
softmax(W · BERT(h,Hc, t, Tc))

(9)

Drug-target link prediction (h, ?, t): Follow-
ing Mohamed et al (Mohamed et al., 2019)
in this case, we filter the dataset to consider
drug-target relations only. Other than that, we
follow the same methodology as above, where
the input sequence [h,Hc, t, Tc] is processed
by BERT to predict the drug-target-specific
relations r.

• For task (2), tail prediction, which includes
two subtasks: General tail prediction (h, r, ?):
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Figure 3: Rc construction. The left view illustrates the relationship r1 and entities (head, tail) connected by r1. The graph in
the middle depicts optimization, selecting the top k (suppose k = 2) entities based on density ρ, retaining pairs such as (e2, e3)
and (e6, e7) The optimized context Rc is aggregated using concatenation (∥), as shown in the right section.

The concatenated representations Hc (head
context) and Rc (relation context) are com-
bined with the head entity h and relation r to
form the input sequence [h,Hc, r,Hc], using
the full KEGG50k dataset. BERT processes
this sequence, and a classification layer pre-
dicts the tail entity t:

P (t | h, r) =
softmax(W · BERT(h,Hc, r,Rc))

(10)

Drug-target tail prediction (h, r, ?): Follow-
ing above, we use a filtered drug-target subset
of the KEGG50k dataset, to predict the tail
entity t.

We train the model using cross-entropy loss. For
link prediction, Equation 11 defines the loss with
yi as the one-hot true label for relation ri and
P (ri | h, t) as the predicted probability. For tail
prediction, Equation 12 defines the loss with yi as
the true label for tail entity ti and P (ti | h, r) as its
predicted probability.

(a) L = −
N∑

i=1

yi logP (ri | h, t), (11)

(b) L = −
N∑

i=1

yi logP (gi | h, r) (12)

where yi is the true label for the relation ri, and
P (ri | h, t) is the predicted probability of the rela-
tion given h and t. On the other hand, P (ti | h, r)
is the predicted probability of the tail given h and
r.

3.1 Computational Advantage of MuCoS over
MuCo-KGC

Compared to MuCo-KGC (Gul et al., 2025), Mu-
CoS reduces computational complexity by sam-
pling only the most significant neighbours (based

on density) from the full entity and relation con-
texts. MuCoS employs two sampling thresholds:
n for the head entity context Hc and k for the re-
lation context Rc. To compute the complexities,
we first define two terms: (i) the average density
(avg_density) as the average number of neigh-
bours per entity in the knowledge graph, and (ii)
average appearance (avg_appearance) of a rela-
tion r in the dataset.

avg_density =
|T |
|E| ,

avg_appearance =
|T |
|R|

(13)

where |T | is the total number of triples, |E| enti-
ties, and |R| unique relations.

For MuCo-KGC, the complexity of computing
the head context Hc and the relation context Rc

is based on full neighbourhoods without sampling.
The complexity of Hc depends on the number of
relations involving the head entity h, denoted as
|R(h)|, and the number of neighbouring entities
|E(h)|, both approximated by avg_density (see
Equation 15). The complexity ofRc is determined
by the number of entity pairs connected by relation
r, |E(r)|, estimated using avg_appearance (see
Equation 16). Therefore, the overall complexity
for context computation in MuCo-KGC is defined
equals:

O(2 · avg_density + avg_appearance) (14)

where, O(|Hc|) = O(|R(h)|+ |E(h)|)
= O(2 · avg_density)

(15)

and, O(|Rc|) = O(|E(r)|)
= O(avg_appearance)

(16)

For MuCoS, the head contextHc is computed by
selecting the top-n high-density neighbouring en-
tities and their corresponding relations, and the
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relation contextRc are computed by selecting the
top-k high-density entity pairs. The complexity of
Hc is O(n) for the sampled entities and O(n) for
the corresponding relations, andRc is O(k) for the
sampled entity pairs. Thus, the overall complexity
for context computation in MuCoS is:

O(2 · n+ k) (17)

Since sampling threshold values n and k are much
smaller than avg_density and avg_appearance
in large datasets like KEGG50k, MuCoS achieves
a significant reduction in computational cost com-
pared to MuCo-KGC.

For example, in case of the KEGG50k dataset (
with triplets |T | = 63, 080, entities |E| = 16, 201,
and relations |R| = 9), avg_density ≈ 3.895,
and avg_appearance ≈ 7, 008.89. Therefore,
the complexity of MuCo-KGC on the KEGG50k
dataset is: O(2·3.895+7, 008.89) = O(7, 016.68).
For MuCoS ( with n = 15, k = 10: the complexity
is O(2 · 15 + 10) = O(40). This is a speed up
by a factor of ≈ 175.42 in context computation,
i.e., the process of extracting and aggregating rele-
vant neighbourhood information associated with a
given head entity and relation. Sampling the con-
text reduces the input token length, which further
contributes to the efficiency slightly. The primary
computational gains however arise from our selec-
tive sampling strategy, which significantly limits
the amount of nodes/relations processed for context
extraction.

Sampling size values of n at 15 and k at 10,
although empirical, are motivated from the ablation
studies on MuCo-KGC, suggesting that the head
context plays a greater role than the relationship
context in model performance (see Table 1 and
Table 3 for details).

3.2 Experimental Setup
We evaluate MuCoS on two prediction tasks us-
ing KEGG50k and PharmKG-8k datasets: link and
tail prediction. Each task is evaluated in two set-
tings: the full KEGG50k dataset and a drug-target
subset. In link prediction, we infer the missing
relation in (h, ?, t), with general and drug-target
variants. Similarly, in tail prediction, we predict
the missing entity in (h, r, ?) for both settings. Be-
low we provide the details of the dataset used in
our experiments, the hyperparameter settings, and
the evaluation criteria.

Datasets: KEGG50k 1 medical domain dataset,
1KEGG50k: https://shorturl.at/pWSJO

comprises 63,080 triples split into 57,080 training,
3,000 validation, and 3,000 testing instances (i.e. a
90:5:5 ratio split). Drug-target only triplet counts
are 10769, 585, and 650 for the train, valid, and test
sets. The dataset comprises 16,201 unique entities
E where (Ed∪Eg) ⊂ E and 9 distinct types of drug-
target relationships, enabling a comprehensive map-
ping of pharmacological interactions. PharmKG-
8k 2 comprises 400,788 training triplets, 49,536
testing triplets, and 50,036 validation triplets, cov-
ering 7,601 entities. These are categorized into
Chemical, Disease, and Gene types, integrating
data from DrugBank, TTD, OMIM, PharmGKB,
and GNBR.

Hyperparameters: The input sequence is to-
kenized with a maximum length of 128 tokens.
Training is conducted over 50 epochs using the
AdamW optimizer with a learning rate of 5× 10−5

and a batch size of 16. Experiments were per-
formed on an NVIDIA GeForce RTX 3090 GPU
with 24 GB of memory.

Evaluation: Model performance is assessed
using standard metrics, Mean Reciprocal Rank
(MRR) and Hits@k, as defined in Equations 18
and 19, to evaluate the accuracy of general and
drug-target relations and tail predictions:

MRR =
1

N

N∑

i=1

1

ranki
, (18)

Hits@k =
1

N

N∑

i=1

1(ranki ≤ k), (19)

MRR measures the average of the reciprocal ranks
of the correct item across all queries. A higher
MRR indicates better ranking performance. H@k
measures the proportion of queries where the cor-
rect item appears in the top k ranks. It provides a
metric for evaluating ranking quality at different
points.

3.3 Results and Discussion

Link Prediction: Table 1 demonstrates that Mu-
CoS outperforms state-of-the-art baselines on the
KEGG50k dataset. It achieves an MRR of 0.65
for general link prediction across all relations, a
13% improvement over ComplEx-SE’s 0.52, and its
Hits@1 score of 0.52 exceeds ComplEx-SE’s 0.45
by 7%. Moreover, Hits@3 and Hits@10 scores of
0.60 and 0.86 further underscore the robust rank-
ing performance of MuCoS. Although MuCo-KGC

2PharmKG-8k: https://zenodo.org/records/4525237
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Table 1: Relationship prediction results over the KEGG50k dataset on both general links and drug target links only.

Model General link prediction Drug-target link prediction
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE (Bordes et al., 2013) 0.46 0.38 0.50 0.63 0.75 0.69 0.79 0.86
DistMult (Yang et al., 2014) 0.37 0.27 0.42 0.57 0.61 0.50 0.69 0.81
ComplEx (Trouillon et al., 2016) 0.39 0.31 0.43 0.57 0.68 0.61 0.71 0.82
ComplEx-SE (Mohamed et al., 2019) 0.52 0.45 0.56 0.68 0.78 0.73 0.81 0.88
MuCoS- (Hc Only) 0.52 0.44 0.55 0.69 0.75 0.65 0.77 0.1
MuCoS (Tc Only) 0.45 0.37 0.51 0.61 0.70 0.59 0.70 0.1
MuCo-KGC (Gul et al., 2025) 0.79 0.58 0.73 0.92 0.94 0.91 0.96 1
MuCoS 0.65 0.52 0.60 0.86 0.84 0.74 0.84 1

(Gul et al., 2025) achieves state-of-the-art perfor-
mance, MuCoS offers a significant computational
advantage with a small reduction in accuracy.

In drug–target prediction,which focuses on iden-
tifying relationships between drugs and their tar-
gets (e.g., genes), MuCoS achieves an MRR of
0.84—a 6% improvement over ComplEx-SE’s
0.78—demonstrating the benefit of contextual
head/tail information. It also records Hits@1 of
0.74 (vs. 0.73), Hits@3 of 0.84 (a 3% gain), and a
perfect Hits@10 of 1.00 (12% improvement), out-
performing TransE, DistMult, and ComplEx. Al-
though MuCo-KGC attains higher accuracy (e.g.,
an MRR of 0.94), its prohibitive computational cost
limits scalability. MuCoS, by offering competitive
performance with substantial efficiency gains, pro-
vides a scalable solution for real-world, large-scale
drug discovery.

Table 2 shows that MuCoS achieves state-of-
the-art performance on PharmKG-8k. It attains
an MRR of 0.452, compared to NC-KGE’s 0.228,
and a Hits@1 of 0.258 versus 0.145. Additionally,
MuCoS records Hits@3 and Hits@10 scores of
0.602 and 0.676, respectively.

Tail Prediction: Table 3 compares tail prediction
performance between MuCoS and MuCo-KGC un-
der both general and drug-target settings. While
MuCo-KGC (without sampling) achieves higher
MRR, Hits@1, and Hits@3 in the general sce-
nario, MuCoS (sampling-based) excels in drug-
target cases, particularly in Hits@10. Thus, sam-
pling enhances prediction accuracy for drug targets
at a slight cost in the general scenario, and MuCoS
offers a significant computational advantage while
outperforming other models on KEGG50k.

4 Ablation Study

We analyze the contributions of the Head Context
(Hc) and Tail Context (Tc) components for relation

Table 2: PharmKG8k-28 Results for Link Prediction
Task.The symbol 2 denotes that the results are taken
from Paper (Zheng et al., 2021), while the symbol △
results are taken from Paper (Fan et al., 2023). R2N
results are reported from (Diligenti et al., 2023).

Model MRR H@1 H@3 H@10
TransR 2 0.075 0.030 0.071 0.155
RESCAL 2 0.064 0.023 0.057 0.122
ConvE 2 0.086 0.038 0.087 0.169
ConvKB 2 0.106 0.052 0.107 0.209
RGCN 2 0.067 0.027 0.062 0.139
HRGAT 2 0.154 0.075 0.172 0.315
TransE△ 0.116 0.038 0.127 0.269
DistMult△ 0.218 0.152 0.237 0.335
ComplEx△ 0.124 0.064 0.128 0.244
TruckER△ 0.182 0.103 0.202 0.336
HRGAT△ 0.134 0.063 0.144 0.271
SACN△ 0.156 0.085 0.170 0.296
CompGCN△ 0.193 0.110 0.216 0.352
SE-GNN△ 0.206 0.120 0.232 0.374
R2N 0.215 0.145 0.234 0.342
NC-KGE△ 0.228 0.145 0.252 0.390
MuCoS 0.452 0.258 0.602 0.676

(link) prediction, and Head Context (Hc) and Rela-
tion Context (Rc) for the prediction of the tail. The
results are presented in Tables 1 and 3.

Relationship Prediction: Table 1 reports the re-
sults for both general link prediction and drug-
target link prediction scenarios. MuCo-KGC (Gul
et al., 2025), the earlier method, demonstrates
strong performance across all metrics, achieving
an MRR of 0.79 for general link prediction and
0.94 for drug-target link prediction. These results
highlight its ability to leverage bothHc (Head Con-
text) and Rc (Relation Context) effectively, ex-
celling particularly in Hits@1 (0.58 and 0.91) and
Hits@10 (0.92 and 0.1).

Tail Prediction: Table 3 presents the results for
both general tail prediction and drug-target-specific
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Table 3: Tail prediction results on the KEGG50k dataset were evaluated for both general and drug target scenarios
using methods with and without sampling.

Model
General tail prediction Drug-target tail prediction

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
MuCoS (Hc Only) 0.26 0.20 0.34 0.55 0.38 0.30 0.41 0.78
MuCoS (Rc Only) 0.21 0.15 0.28 0.39 0.31 0.19 0.36 0.69
MuCo-KGC 0.39 0.34 0.521 0.718 0.567 0.457 0.628 0.917
MuCoS 0.31 0.215 0.40 0.57 0.442 0.259 0.46 0.868

scenarios. MuCo-KGC (Gul et al., 2025) delivers
robust performance, achieving an MRR of 0.39 for
general tail prediction and 0.567 for drug-target
tail prediction. Its superior Hits@1 scores (0.34
and 0.457) and Hits@10 scores (0.71 and 0.917)
confirm its effectiveness in capturing complex rela-
tional patterns in the graph.

Across both prediction tasks, theHc-Only con-
figuration consistently outperforms achieving an
MRR of 0.52 (general links) and 0.75 (drug-target
links) for relationships, and 0.26 (general tails) and
0.38 (drug-target tails) for tail predictions. This
highlights the critical role of localized contextual
information over global relational patterns, which
tend to underperform when used in isolation Tc-
Only MRR: 0.45 and 0.70 for links;Rc-Only MRR:
0.21 and 0.31 for tails).

5 Conclusion

The study introduces MuCoS, a multi-context-
aware sampling method that uses DistilBERT
to improve drug-target relation predictions and
tail entity predictions in biomedical knowledge
graphs. MuCoS employs a dual strategy combining
transformer-based textual modeling with context-
aware sampling to overcome limitations of exist-
ing models, such as poor generalization, negative
sampling, and the need for descriptive entity infor-
mation. It extracts and optimizes contextualized
information from the head, tail, and relation enti-
ties using density-based sampling and its lexical
semantics, capturing richer structural patterns and
reducing computational complexity. Experimental
results show superior performance over state-of-
the-art models, with improvements in MRR and
Hits@1 for general and drug-target relationship
prediction on both KEGG50k and PharmKG-8k
datasets. Future work could focus on adaptive
sampling to dynamically adjust n and k for sparse
KGs, and integrate multimodal data like protein
sequences or chemical structures to enhance drug-

target prediction.
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Abstract

Named Entity Recognition (NER) is crucial for
extracting domain-specific entities from text,
particularly in biomedical and chemical fields.
Developing high-quality NER models in spe-
cialized domains is challenging due to the lim-
ited availability of annotated data, with manual
annotation being a key method of data con-
struction. However, manual annotation is time-
consuming and requires domain expertise, mak-
ing it difficult in specialized domains. Tradi-
tional data augmentation (DA) techniques also
rely on annotated data to some extent, further
limiting their effectiveness. In this paper, we
propose a novel approach to synthetic data gen-
eration for NER using large language models
(LLMs) to generate sentences based solely on
a set of example entities. This method simpli-
fies the augmentation process and is effective
even with a limited set of entities. We evaluate
our approach using BERT-based models on the
BC4CHEMD, BC5CDR, and TDMSci datasets,
demonstrating that synthetic data significantly
improves model performance and robustness,
particularly in low-resource settings. This work
provides a scalable solution for enhancing NER
in specialized domains, overcoming the limi-
tations of manual annotation and traditional
augmentation methods.

1 Introduction

Named Entity Recognition (NER) is a fundamental
task in Natural Language Processing (NLP) aiming
at identifying and classifying named entities in text.
The primary goal of NER is to extract specific en-
tities such as people, organizations, locations, and
specialized terms (e.g., chemicals, diseases) from
unstructured text. Effective NER is vital in many
fields, particularly in the biomedical and chemical
domains, where accurate entity recognition sup-
ports applications such as drug discovery, literature
mining, and patent analysis.

One significant challenge in developing high-
quality NER models is the scarcity of annotated

data, particularly in specialized domains and low-
resource scenarios. Recent advancements in data
augmentation for NER have explored diverse strate-
gies to tackle data scarcity, especially in low-
resource settings. Techniques range from simple
methods like synonym replacement (Dai and Adel,
2020; Sabty et al., 2021; Chen et al., 2021; Yaseen
and Langer, 2021; Phan and Nguyen, 2022; Su-
tiono and Hahn-Powell, 2022) and random noise
introduction (Issifu and Ganiz, 2021; Liu et al.,
2023) to more complex approaches such as cross-
domain transformation and leveraging large lan-
guage models (LLMs) (Liu et al., 2022; Ye et al.,
2024). These methods help to generate additional
training examples but often still rely on existing
labeled data, which can limit their effectiveness in
highly specialized domains where labeled exam-
ples are scarce or non-existent.

To overcome these limitations, we propose an
approach for synthetic data generation using LLMs
that generates sentences based solely on a set of
example entities, without relying on pre-existing
annotated data. Our method (GenLLM) simpli-
fies the augmentation process by directly generat-
ing domain-relevant sentences while ensuring en-
tity correctness and contextual consistency. Un-
like traditional techniques, our approach does not
depend on manually annotated examples, making
it especially valuable for low-resource or highly
specialized domains where obtaining labeled data
is challenging. By leveraging LLMs, we can
produce diverse and contextually appropriate sen-
tences that reflect real-world entity occurrences
and relationships. We evaluate the effectiveness
of our approach by applying it to NER tasks using
BERT-based models on three datasets: the widely
used BC4CHEMD (Krallinger et al., 2015) and
BC5CDR (Li et al., 2016) datasets, along with
the TDMSci (Hou et al., 2021) dataset for task,
dataset, and metric entities. Our results show that
pretraining on synthetic data generated by LLMs
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consistently improves model performance, outper-
forming previous data augmentation methods that
combine synthetic data with the original training
data in both low and high-resource settings. We
explored using only synthetic data generated by
LLMs for training, which proved effective in low-
resource scenarios. However, human-annotated
data yielded better results as the dataset size in-
creased, emphasizing the value of expert annota-
tions in high-resource settings. GenLLM offers
a promising data augmentation solution for low-
resource domains, particularly when annotated data
is limited. The code, generated data, and trained
models used in this work are publicly available at
https://github.com/daotuanan/GenLLM_NER.

2 Related Work

NER relies heavily on high-quality annotated
datasets, but in many specialized domains, such
as the biomedical and scientific domain, manually
labeled data are scarce. To address this issue, syn-
thetic data generation has emerged as an alternative
to enhance model performance (Xu et al., 2024).
Generating synthetic data for the NER task is chal-
lenging because it requires more than just produc-
ing natural-sounding sentences; it must also ensure
entity correctness, contextual consistency, and do-
main relevance. Unlike general text generation,
NER data must contain entities that are correctly
labeled and naturally embedded within the context,
reflecting real-world sentence structures.

2.1 Traditional Data Augmentation Methods
for NER

Traditional augmentation methods such as syn-
onym replacement, backtranslation, and cross-
domain adaptation have been used to enhance
NER performance, particularly in low-resource set-
tings (Dai and Adel, 2020; Sabty et al., 2021; Issifu
and Ganiz, 2021; Chen et al., 2021; Yaseen and
Langer, 2021; Phan and Nguyen, 2022). While
these techniques have proven effective, they of-
ten struggle to generate highly contextualized and
domain-specific entity mentions. For instance, ba-
sic methods like synonym replacement and random
insertion have shown improvements in biomedical
NER (Issifu and Ganiz, 2021), and backtransla-
tion has been particularly effective in low-resource
biomedical and materials science domains (Yaseen
and Langer, 2021). However, these methods typ-
ically fail to capture complex entity structures

and contextual dependencies required for domain-
specific tasks.

2.2 LLM-Based Approaches to Data
Generation

Recent advances in LLM-based synthetic data gen-
eration offer a more flexible and scalable alterna-
tive. LLMs can generate diverse, contextually rich
sentences while preserving entity correctness and
domain relevance. For example, prompting strate-
gies have been shown to significantly enhance NER
performance in low-resource scenarios, improving
F1 scores by over 40% (Liu et al., 2022). Tech-
niques like context similarity-based augmentation
(e.g., COSINER) and transformer-based data gen-
eration have demonstrated effectiveness in improv-
ing NER in both general and specialized domains,
such as biomedical texts (Bartolini et al., 2022,
2023; Yili and Haonan, 2023). Moreover, meth-
ods like TarGEN employ multi-step prompting and
self-correction to generate high-quality synthetic
datasets (Gupta et al., 2023). Despite the promise
of these approaches, challenges remain in ensuring
the scalability and quality of synthetic data, partic-
ularly in highly specialized domains like clinical
NER (Hiebel et al., 2023). However, a key lim-
itation of these studies is their focus on general
rather than specialized domains. The effectiveness
of synthetic data and pretraining methods might
not translate well to domain-specific applications,
such as biomedical or clinical NER.

3 Entity-Based Synthetic Data
Generation

Our approach leverages the LLMs to generate syn-
thetic sentences that incorporate specified entities
while maintaining contextual consistency. The
process consists of three main steps: entity selec-
tion 3.1, prompt construction 3.2, and sentence
generation 3.3.

3.1 Entity Selection

We begin by selecting a set of seed entities,
which serve as the foundation for sentence genera-
tion. These entities can be obtained from existing
datasets, knowledge bases, or domain-specific lex-
icons with relatively low effort compared to man-
ually creating fully annotated sentences. The se-
lection ensures that the generated data covers a
diverse set of entity mentions necessary for effec-
tive NER training. Entities are randomly combined
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You are an expert in the {domain} domain.

First entity: {entity1} of type {entity_type1}.

• {entity_type1} is defined as {entity_type1_description}.

• Mark this entity between <{entity_type1}> and </{entity_type1}> tags.

2. Second entity: {entity2} of type {entity_type2}.

• {entity_type2} is defined as {entity_type2_description}.

• Mark this entity between <{entity_type2}> and </{entity_type2}> tags.

…

Give the output between <start_sentence> and </end_sentence>.

Prompt

(a) Prompt structure.

You are an expert in the biomedical domain.

Generate a sentence that includes the following entities and their types.

First entity is “aspirin” of type “Chemical”. 

A chemical is a substance with a distinct molecular composition that is 
produced by or used in a chemical process.

Mark this entity between <Chemical> and </Chemical> tags.

Second entity is “flu” of type <Disease>.

A disease is a condition that impairs normal functioning and is typically 
characterized by specific symptoms.

Mark this entity between <Disease> and </Disease> tags.

Give the output between <start_sentence> and </end_sentence>.

Input

{<start_sentence> Taking <Chemical>aspirin</Chemical> can help alleviate 
symptoms of <Disease>flu</Disease>. </end_sentence>

LLM Output

(b) Example prompt instance.

Figure 1: Illustration of the example prompt used for
generating synthetic sentences with specified entities
and their types. The prompt includes the model’s role,
task instructions, and output formatting guidelines.

from different categories, with each sentence con-
taining one to three entities. For example, from the
categories CHEM (aspirin, lithium) and DISEASE
(lung carcinoma, flu), a possible combination could
be: aspirin, flu.

3.2 Prompt Construction
To generate high-quality synthetic sentences for
NER, we design a structured prompt that ensures
the inclusion of specific entities while maintain-
ing contextual coherence. Our prompt explicitly
defines the domain, entity types, and entity anno-
tations to improve generation accuracy and reduce
annotation errors.

The prompt follows a template-based format that
guides the language model to generate a sentence
containing specified entities with correct annota-
tions. It consists of the following key components:

• Domain Specification: The model is in-
structed to act as an expert in a specific do-

main (e.g., biomedical sciences) to ensure
domain-relevant sentence generation.

• Entity Introduction and Definition: Each tar-
get entity is explicitly listed along with its type
and a brief description of that type. This helps
the model understand the contextual role of
the entity.

• Entity Annotation Instructions: The prompt
explicitly instructs the model to enclose en-
tities within predefined tags, ensuring clear
entity labeling in the generated sentence.

• Output Formatting: The generated sentence
is enclosed within <start_sentence> and
</end_sentence> tags to facilitate automatic
extraction and processing.

This prompt serves as the foundation for gener-
ating synthetic NER training data, ensuring both
entity correctness and contextual consistency in the
generated sentences. The prompt template is found
in Figure 1a. An example of this prompt format is
illustrated in Figure 1b, demonstrating how contex-
tual cues and entity definitions improve generation
accuracy. This prompt format can be used with any
popular LLM for generating synthetic data.

3.3 Sentence Generation

We use the LLaMA-3.2-3B-Instruct1 model to
generate synthetic sentences containing specified
named entities. This model was selected for its bal-
ance between generation quality and computational
efficiency. Unlike prior work that relies on propri-
etary and resource-intensive models such as GPT-4
or GPT-4o (Ye et al., 2024), our approach uses an
open-source, lightweight model that is more acces-
sible and cost-effective, making it better suited for
reproducible research and large-scale generation
in constrained environments. Once the LLM pro-
cesses the prompt, it generates a synthetic sentence
where the specified entities are correctly embed-
ded within a natural linguistic context. To maintain
consistency and avoid introducing unintended enti-
ties, we post-process the output by verifying entity
correctness and ensuring compliance with the anno-
tation format. To ensure that the generated output
adheres to the required annotation format, we apply
the following post-processing steps:

1https://huggingface.co/meta-llama/Llama-3.
2-3B-Instruct
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• Tag Validation: We verify that all entity tags
are correctly opened and closed. Each en-
tity must be enclosed within its respective
<entity_type> and </entity_type> tags to
maintain proper annotation structure.

• Sentence Formatting: We confirm that
the entire sentence is enclosed within
<start_sentence> and </end_sentence>
tags. This ensures the output remains struc-
tured and easily extractable for further pro-
cessing.

By enforcing these constraints, we ensure consis-
tency in the synthetic data before it is used for
training. After validating the output format, we
convert the annotated entities into the BIO (Begin-
Inside-Outside) tagging scheme. Each token in
the sentence is assigned a label based on its entity
type. This transformation ensures compatibility
with standard NER training pipelines.

The synthetic data is then incorporated into the
training set through pretraining, where the model
is first trained on the synthetic data before being
fine-tuned on gold-standard annotated data. This
approach helps the model learn general entity pat-
terns from the generated data, improving perfor-
mance, especially in low-resource or specialized
domains.

4 Experiment with Low-resource Setting

In this experiment, we explore the performance
of our method (GenLLM) in a low-resource set-
ting, where only a limited amount of manually an-
notated data is available. The aim is to evaluate
whether our method can outperform or complement
other state-of-the-art systems, such as LSMS(Dai
and Adel, 2020), LLM-DA(Ye et al., 2024), and
NuNER(Bogdanov et al., 2024), when trained with
a small amount of labeled data. We also investi-
gate how different data augmentation strategies and
pretraining methods impact the model’s ability to
generalize to unseen examples.

4.1 Experimental Setup

4.1.1 Dataset Construction
We conduct experiments using 3 datasets:
BC4CHEMD, BC5CDR, and TDMSci. Since we
use seed entities as the main input for the augmen-
tation process, it is important to note that obtaining
a large set of seed entities in real-world applica-
tions can be difficult, particularly in specialized

domains where annotated data is scarce. As a re-
sult, working with a smaller, more manageable set
of seed entities is often necessary. Our method,
which only uses seed entities for the augmentation
process, is designed to be effective even with this
limitation. In contrast, other methods like LSMS
and LLM-DA rely on gold-label data as input for
augmentation. We create a “Limited Dictionary”
setting to compare our method with these alterna-
tive approaches.

To construct the seed sets used for augmenta-
tion, we select the most frequent entities from the
training data for each entity type. For each dataset,
we define multiple settings with different values of
N (e.g., N = 5, 10, 15, 20, 50), where N denotes
the number of unique entities per type. The selec-
tion process involves counting and ranking entities
by frequency, then selecting the top N for each
type. We also ensure type balance by including an
equal number of sentences for each entity type (e.g.,
equal numbers for CHEMICAL and DISEASE in
BC5CDR).

This choice of using frequent entities—rather
than randomly sampling or relying on external lex-
icons—is motivated by both practical and method-
ological reasons. First, frequent entities are more
likely to appear in natural, contextually appropri-
ate sentences, resulting in higher-quality and more
realistic generated data. Second, using a fixed set
of frequent entities leads to a more stable and re-
producible experimental setup. In contrast, ran-
dom sampling introduces variability and typically
requires multiple runs to obtain robust estimates.
Similarly, depending on external lexicons may in-
troduce domain mismatches or lead to unnatural
entity combinations. By relying on the internal
statistics of the training corpus, we ensure that the
selected entities are representative of the target do-
main and the actual model training distribution.

4.1.2 Comparison Methods
We consider the following baseline methods for
comparison purposes:

• Original (org): Training directly on the full
dataset without any augmentation.

• LSMS: Applying lexical-based sampling
and substitution strategies, including
replace-mention (RM), replace-token
(RT), shuffle-within-segments (SWS), and
synonym-replacement (SR).
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Dictionary Size 5 10 15 20 50

org 4.68 12.35 15.62 31.79 47.18
LSMS 32.85 46.03 44.35 48.34 57.76
LLM-DA 39.89 43.17 45.75 46.29 49.68
NuNER 21.24 28.29 40.11 44.31 52.49
Ours (GenLLM) 26.06 37.18 41.85 43.67 58.80

Table 1: Performance comparison on the BC4CHEMD
dataset across different dictionary sizes (N ).

• LLM-DA: Utilizing large language model-
based data augmentation at both the context
and entity levels, with noise injection.

• NuNER: Fine-tuning the pretrained NuNER-
v2.0 model on the gold annotations of the
datasets.2

For all methods except NuNER, we use BERT-
base-uncased as the base model. LSMS and LLM-
DA are trained for 10 epochs on the combination of
original training data and augmented data. NuNER
is fine-tuned for 10 epochs on gold data.

4.1.3 Proposed Method: GenLLM and
Training Setup

Our proposed method, GenLLM, generates syn-
thetic training data using LLM-based augmentation
techniques. It employs prompt engineering with
constraints to ensure data quality and entity control.
Training follows a two-stage approach: we first pre-
train the model on synthetic data for 3 epochs, then
fine-tune on the gold-annotated data for 10 epochs.
All experiments are conducted under reduced la-
beled data settings (N = 5, 10, 15, 20, 50 entities
per type), simulating low-resource environments.
We compare GenLLM’s performance against the
baselines introduced in Section 4.1.2.

Additional implementation details, including
training hyperparameters and hardware specifica-
tions, are provided in Appendix A.1.

4.2 Results and Analysis
The performance comparison across different meth-
ods on the BC4CHEMD, BC5CDR, and TDMSci
datasets is shown in Tables 1, 2, and 3, respectively.

Our method (GenLLM) consistently outper-
forms the org and NuNER, with significant im-
provements. On BC5CDR, GenLLM achieves the
highest performance at all dictionary sizes, out-
performing both LSMS and LLM-DA. On TDM-
Sci, GenLLM shows strong performance, compet-

2https://huggingface.co/numind/NuNER-v2.0

Dictionary Size 5 10 15 20 50

org 45.62 51.87 51.81 51.73 54.83
LSMS 51.28 57.19 60.66 60.97 68.42
LLM-DA 52.29 57.72 60.94 64.12 66.79
NuNER 40.70 43.45 50.17 50.86 46.87
Ours (GenLLM) 53.67 60.14 63.65 65.34 72.85

Table 2: Performance comparison on the BC5CDR
dataset across different dictionary sizes (N ).

Dictionary Size 5 10 15 20 50

org 17.02 23.21 26.59 26.90 42.77
LSMS 28.18 32.81 39.71 41.82 48.28
LLM-DA 17.28 27.12 33.92 37.21 39.90
NuNER 10.37 17.88 11.56 11.76 22.78
Ours (GenLLM) 25.64 35.05 41.20 45.60 51.23

Table 3: Performance comparison on the TDMSci
dataset across different dictionary sizes (N ).

ing well with LSMS and LLM-DA, only losing
to LSMS when N = 5. The low performance
of GenLLM at smaller dictionary sizes on the
BC4CHEMD dataset is likely due to the limited
diversity and insufficient augmentation with only a
few seed entities, which restricts the model’s abil-
ity to generalize effectively. As the dictionary size
increases, the synthetic data improves, leading to
better performance. Overall, our method outper-
forms previous methods like LSMS and LLM-DA,
offering a robust solution for low-resource settings
by leveraging synthetic data generation for better
generalization.

5 Experiment with High-Resource Setting

In this section, we evaluate our proposed method
in a high-resource setting, where we utilize the
full training data from three benchmark datasets:
BC4CHEMD, BC5CDR, and TDMSci. This set-
ting allows us to assess the performance of our ap-
proach when abundant annotated data is available,
providing a direct comparison with conventional
methods that rely on manually annotated corpora.

5.1 Experimental Setup
We conduct experiments using the full training
datasets of BC4CHEMD, BC5CDR, and TDMSci.
The models are trained using the standard dataset
splits provided in prior studies to ensure compara-
bility. All models are trained for 3 epochs. LSMS
and LLM-DA also use the combination of origi-
nal training data and augmented data generated by
these methods. For our method (GenLLM), we
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Dataset BC4CHEMD BC5CDR TDMSci

Org 87.19 83.27 55.19
LSMS 86.58 84.04 58.32
LLM-DA 86.58 82.40 52.79
NuNER 85.88 81.10 48.19
Ours (GenLLM) 86.85 83.74 58.70

Table 4: Performance (F1-score) comparison across
different methods on the BC4CHEMD, BC5CDR, and
TDMSci datasets on high-resource setting.

use the “pretraining” approach, first fine-tuning the
model on synthetic data for 1 epoch, followed by
fine-tuning on gold data for 3 epochs. For synthetic
data, due to the cost of generating additional data,
we reuse the data generated in the low-resource
setting and combine the generated data of all sizes
from that setting. Additional implementation de-
tails, including training hyperparameters and hard-
ware specifications, are provided in Appendix A.1.

5.2 Results and Analysis

Table 4 presents the F1-score performance of vari-
ous methods on the BC4CHEMD, BC5CDR, and
TDMSci datasets in a high-resource setting. The ex-
perimental results in a high-resource setting show
that different methods exhibit varying effectiveness
across datasets. On BC4CHEMD, without augmen-
tation (org) outperforms all other methods with an
F1-score of 87.19, followed closely by GenLLM
(86.85). LSMS and LLM-DA show similar per-
formance, while NuNER lags slightly behind. On
BC5CDR, LSMS achieves the highest F1-score
(84.04), with GenLLM coming second (83.74),
slightly outperforming LLM-DA and NuNER. Gen-
LLM generally performs competitively or better
than other methods in high-resource settings, with
the best performance on TDMSci and close results
on BC4CHEMD and BC5CDR. It becomes much
harder to significantly improve performance with
augmentation when the training data size is large,
as seen in the BC4CHEMD and BC5CDR datasets.

6 Analysis and Discussion

6.1 Quality of Synthetic Data

In this experiment, we investigate whether a model
can be effectively trained using only synthetic data
generated by LLMs, without any manually anno-
tated data. The primary objective is to assess the
feasibility of LLM-generated sentences as a stan-
dalone training resource in specialized domains.
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(a) BC4CHEMD dataset.
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(b) BC5CDR dataset.

Figure 2: F1 Score Comparison between BERT-
base-uncased trained on human-annotated data and
trained on synthetic data varying training sizes for the
BC4CHEMD and BC5CDR datasets.

While synthetic data provides diversity, it may in-
troduce hallucinated entities, ambiguous contexts,
or annotation errors, leading to noisy supervision.
Additionally, LLMs, trained on general-domain
corpora, may struggle with domain-specific termi-
nology, impacting performance.

6.1.1 Data Sampling
Human-Annotated Setting: In this setting, we
randomly select gold sentences from the training
data of each dataset (BC4CHEMD and BC5CDR).
These sentences are manually annotated and serve
as the ground truth for model training.

GenLLM Setting: For the GenLLM approach,
we provide the model with a list of 10 entities from
each type in the dataset (e.g., chemicals, diseases)
and instruct it to generate 1000 synthetic sentences.
The goal is to use these synthetic sentences to train
the model in the absence of human-annotated data.
The models are then evaluated on the full test data
of each dataset to assess their performance.

Findings Figures 2a and 2b help to understand
the effectiveness of using LLM-generated synthetic
data for training NER models and compare its per-
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Dictionary Size 5 10 15 20 50

Simple Prompt 24.66 35.05 40.45 45.60 51.23
+ filter 13.00 22.00 27.52 24.97 30.45
+ no-new-entity 25.64 32.92 41.20 43.65 50.37
+ COT 21.68 26.98 38.34 41.01 51.59

Table 5: F1 Score Comparison of Different Prompting
Methods Across Training Sizes on TDMSci Test set.

formance to using human-annotated data. When
fewer than 300-400 sentences are annotated, the
synthetic data approach (from GenLLM) yields
better performance. This suggests that synthetic
data might be more effective in low-resource sce-
narios where manual annotation is costly or time-
consuming, and small training sets are available.
However, as the annotated data size grows beyond
this point, human-annotated data consistently pro-
vides better results.

6.2 Different Prompting Methods
In this ablation study, we examine how different
prompting strategies influence the quality of the
generated synthetic data and the performance of
the trained NER model. We evaluate the following
four prompting methods:

• Simple Prompt: The model is provided with
a plain list of entity names and their types,
without any additional constraints or filtering
(Figure 1a).

• Simple Prompt + filter: In this approach,
we filter out generated sentences that intro-
duce new entities not present in the seed list.
This aims to ensure that only relevant entities
appear in the synthetic data, reducing entity
drift.

• Simple Prompt + no-new-entity: The
prompt explicitly instructs the model to avoid
introducing new entities beyond the provided
list (Figure 3).

• Simple Prompt + COT (Chain-of-Thought):
The model is guided to generate sentences
step-by-step, ensuring logical coherence and
correct entity usage (Figure 4).

Table 5 presents the F1 scores for different
prompting methods across various training sizes.
The Simple Prompt baseline demonstrates strong
performance, particularly at 10 and 20 training ex-
amples, where it achieves the highest scores (35.05

Error Type Count

False Negative (Missing Entity) 54
False Positive (Spurious Entity) 2
Boundary Misalignment 12

Table 6: Error analysis of 100 manually checked TDM-
Sci samples.

and 45.60, respectively). However, adding a fil-
tering mechanism to remove sentences introduc-
ing new entities significantly reduces performance
across all training sizes. This suggests that while
filtering ensures strict entity control, it may also
remove valuable diverse contexts that contribute
to learning. The no-new-entity constraint, which
instructs the LLM not to introduce unseen entities
during generation, performs well in low-resource
settings (5 and 15 examples), surpassing the Sim-
ple Prompt in these cases. The Chain-of-Thought
(COT) prompting does not outperform the Simple
Prompt in all training scenarios. It achieves its high-
est score (51.59) at 50 examples, which is slightly
higher than the Simple Prompt’s 51.23. These re-
sults highlight the trade-offs between entity control,
data diversity, and reasoning-driven generation in
synthetic data creation for NER.

6.3 Error Analysis

In the process of using LLMs for tasks such as NER
and data generation, three common types of errors
may arise: False Negatives, False Positives, and
Boundary Misalignment. Understanding these
errors is crucial for improving the accuracy and
reliability of the generated sentences.

• False Negatives (Missing Entities) These oc-
cur when valid entities present in the sentence
are not recognized or labeled by the model, re-
sulting in under-annotation and potential loss
of critical information.

• False Positives (Spurious Entities)
In these cases, the model incorrectly identifies
and labels non-entity spans as entities, intro-
ducing noise into the training data.

• Boundary Misalignment
This error arises when the model detects the
correct entity type but assigns incorrect bound-
aries—either extending beyond or falling
short of the true entity span.
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To assess the quality of LLM-generated data, we
manually analyzed 100 synthetic samples from the
TDMSci dataset. The results of this error analy-
sis are summarized in Table 6. The most frequent
issue was False Negatives, which occurred in 54
cases. These typically happened because the LLM
introduced new entities not in the input seed list,
which distracted it from labeling the original seed
entities. Boundary Misalignment was observed
in 12 cases. This is often caused by inconsisten-
cies in annotation guidelines, such as whether to
include the word “dataset” or “task” in the entity
span for DATASET and TASK types. False Posi-
tives occurred in only 2 cases. They often resulted
from noisy or questionable input annotations. For
instance, in the TDMSci dataset, a seed entity like
“Arabic-English” is labeled as a TASK, although its
status as a task is ambiguous, potentially confusing
the model into tagging unrelated terms.

Table 7 shows example outputs from LLM-based
generation using seed entities from the biomedi-
cal domain, specifically the BC5CDR dataset. We
manually identified three main types of annotation
errors in these generated sentences. First, False
Negatives occur when entities from the seed list
are present in the generated text but are not la-
beled—such as “cocaine” and “tachycardia” in
the first example. This often happens when the
LLM adds new, related entities (e.g., “arrhythmia”),
which distracts the model from tagging the orig-
inal seed entities. Second, False Positives arise
when entities not included in the input seed list
are introduced and labeled in the output—such as
“phenytoin” and “temporal lobe epilepsy.” These
hallucinated entities may be contextually relevant
but were not intended to appear or be annotated
in the generated data. This is especially problem-
atic when using the generated sentences as training
data in a low-resource setting, where tight control
over entity inclusion is critical. Lastly, Boundary
Misalignment is illustrated by the example where
only “insulin” is labeled instead of the correct full
span “insulin resistance.” This type of span-level
error can be caused by the LLM misunderstanding
multi-word entity boundaries or inconsistencies in
annotation granularity during training. These exam-
ples highlight how generation errors can propagate
into downstream tasks if not properly filtered, and
emphasize the importance of post-processing and
validation when using LLMs for data augmentation
in biomedical NER.

Seed Entities (Types) and Generated Sentence with Error
Type
Seed Entities: tachycardia (Disease), cocaine (Chemical)
Generated Sentence: Chronic cocaine use has been associ-
ated with an increased risk of developing tachycardia, a type
of <Disease>arrhythmia</Disease>, which can lead to a range
of cardiovascular complications, including myocardial infarc-
tion and stroke.
(False Negatives: "cocaine" and "tachycardia" are not labeled.
False Positive: "arrhythmia" is introduced and labeled as
Disease but not in the seed list)
Seed Entities: lidocaine (Chemical)
Generated Sentence: The administration of <Chemi-
cal>lidocaine</Chemical> has been studied for its potential
to reduce <Disease>seizure frequency</Disease> in patients
with <Disease>epilepsy</Disease>, and its efficacy in this
context has been demonstrated through various clinical trials,
including a randomized controlled trial that compared the out-
comes of patients receiving <Chemical>lidocaine</Chemical>
versus those receiving <Chemical>phenytoin</Chemical> for
the treatment of <Disease>partial seizures</Disease> in adults
with <Disease>temporal lobe epilepsy</Disease>.
(False Positives: "phenytoin", "seizure frequency", "epilepsy",
"partial seizures", "temporal lobe epilepsy" are not in the
seed list but labeled. False Negative: "lidocaine" is correctly
labeled, others are missing from seed list)
Seed Entities: DSM - IV bipolar I (Disease), cisplatin (Chem-
ical), nicotine (Chemical)
Generated Sentence: Research on the efficacy and safety
of <Disease>DSM-IV bipolar I</Disease> (<Disease>bipolar
disorder</Disease>) has shown that patients with this condi-
tion often require <Disease>medication</Disease> manage-
ment, including the use of <Chemical>cisplatin</Chemical>
and <Chemical>nicotine</Chemical> as part of their treat-
ment regimen, which can lead to potential <Disease>side
effects</Disease> such as nausea, vomiting, and increased
heart rate.
(False Positives: "bipolar disorder", "medication", and "side
effects" are not in the seed list but labeled. Also reflects
questionable factual correctness)
Seed Entities: insulin resistance (Disease)
Generated Sentence: Patients with <Dis-
ease>insulin</Disease> resistance often exhibit symptoms of
metabolic syndrome, including obesity and hypertension.
(Boundary Misalignment: Only “insulin” is labeled, while
the full entity should be “insulin resistance”)

Table 7: Examples of generated sentences with seed
entities from BC5CDR (Chemical, Disease), along with
identified error types: False Negatives (missing entities),
False Positives (spurious entities), and Boundary Mis-
alignment (incorrect span).

7 Conclusion

In this study, we proposed GenLLM, a method for
data augmentation in low-resource settings using
large language models to generate synthetic sen-
tences containing specific named entities. Our ex-
periments demonstrated that GenLLM effectively
enhances performance compared to baseline mod-
els like LSMS, LLM-DA, and NuNER when lim-
ited labeled data is available. By leveraging syn-
thetic data generation with only seed entities, Gen-
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LLM outperforms or complements state-of-the-art
systems, especially in scenarios with constrained
resources Furthermore, we explored the feasibility
of training models using only synthetic data gener-
ated by LLMs, which proved to be effective in low-
resource scenarios. However, human-annotated
data still provided better results once the dataset
size grew large enough, highlighting the impor-
tance of expert-annotated data in high-resource set-
tings. GenLLM offers a promising solution for
data augmentation in low-resource domains, partic-
ularly when manually annotated data is scarce. Fu-
ture work can focus on further improving synthetic
data quality and exploring additional augmenta-
tion strategies to enhance model generalization in
diverse domains.

Limitations

One potential limitation of this paper is that the
quality of synthetic data generated by large lan-
guage models (LLMs) may be inconsistent, poten-
tially impacting model performance. To mitigate
this, we ran each experiment three times and report
the averaged results to ensure the robustness and
generalizability of our findings. Additionally, this
study focus on scienctific domains such as biomed-
ical, chemical, and computer science, which may
not generalize to other fields.
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A Appendix

A.1 Experimental Setting Details
Base NER model We employ a fine-tuned BERT
model for NER. The input sequences are first to-
kenized and then passed through BERT to obtain
contextualized embeddings. These embeddings are
fed into a linear classification layer followed by
a softmax activation to predict the entity type of
each token. For words that are split into multiple
subwords during tokenization, only the embedding
of the first subword is used for classification.

You are an expert in the {domain} domain.

First entity: {entity1} of type {entity_type1}.

• {entity_type1} is defined as {entity_type1_description}.

• Mark this entity between <{entity_type1}> and </{entity_type1}> tags.

Second entity: {entity2} of type {entity_type2}.

• {entity_type2} is defined as {entity_type2_description}.

• Mark this entity between <{entity_type2}> and </{entity_type2}> tags.

…

Do not introduce any new entities or types in the sentence.

Give the output between <start_sentence> and </end_sentence

Prompt: no-new-entity

Figure 3: Example of the Simple Prompt + no-new-
entity setup, where the prompt explicitly instructs the
model to generate a sentence using only the provided
entities and avoid introducing any new entities.

Hyperparameters. For all experiments, we use
the following settings unless otherwise specified:

• Learning rate: 1e-4

• Batch size: 32

• Optimizer: AdamW

• Max sequence length: 256

• Dropout rate: 0.1

• Weight decay: 0.01

All models are implemented using the Hugging-
Face Transformers library. To ensure reproducibil-
ity, we fix the random seed to 42 across all com-
ponents including NumPy, PyTorch, and Hugging-
Face Transformers. Training is conducted on a
single NVIDIA V100 GPU with 32 GB of memory.
Each run (including pretraining and fine-tuning
steps) takes approximately 30–90 minutes depend-
ing on the dataset and the size of the training set.

A.2 Prompts
A.2.1 Prompt: no-new-entity
This prompt is a controlled variation of the simple
prompt, extended with an explicit instruction: “Do
not introduce any new entities or types
in the sentence.” This modification aims to
address a common issue in LLM-based data gener-
ation—false negatives (missing entities)—where
the model may omit entities from the provided seed
list or introduce incorrect ones, resulting in incom-
plete or misaligned annotations. By enforcing this
constraint, we improve the alignment between the
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Think step by step.

1. First, analyze and describe the relationship between the entities.

2. Then, use that information to generate a contextually rich sentence

You are an expert in the {domain} domain.

First entity: {entity1} of type {entity_type1}.

• {entity_type1} is defined as {entity_type1_description}.

• Mark this entity between <{entity_type1}> and </{entity_type1}> tags.

Second entity: {entity2} of type {entity_type2}.

• {entity_type2} is defined as {entity_type2_description}.

• Mark this entity between <{entity_type2}> and </{entity_type2}> tags.

…

Give the output between <start_sentence> and </end_sentence>.

Prompt: COT

Figure 4: Example of the Simple Prompt + COT
(Chain-of-Thought) setup, where the model is guided
to generate the sentence in a step-by-step manner. This
approach promotes logical coherence and helps ensure
that the provided entities are used correctly in context.

prompt specification and the generated content, en-
suring better coverage and fidelity to the intended
entity set. An illustration of this prompt configura-
tion is shown in Figure 3.

A.2.2 Prompt: COT
Another variation is the Simple Prompt + Chain-
of-Thought (CoT) setup, where the model is
guided to reason step-by-step before producing the
final sentence. This format encourages logical co-
herence and helps the model better understand and
place the given entities in context. The intermediate
reasoning steps can reduce annotation mistakes and
improve entity boundary accuracy. An example of
this prompt structure is shown in Figure 4.

A.3 Datasets

We conduct experiments using three benchmark
datasets for biomedical and scientific NER:

BC4CHEMD The BC4CHEMD dataset focuses
on chemical entity recognition and is derived from
biomedical abstracts. It contains over 30,000 sen-
tences and nearly 900,000 tokens (see Table 11).
The dataset features one entity type (CHEM),
with 29,478 annotated chemical entities distributed
across 14,529 sentences (see Table 12).

BC5CDR BC5CDR includes annotations for
both chemical and disease entities, making it suit-
able for multi-type NER tasks. It comprises 4,560
sentences, with an average of 2.06 entities per sen-
tence. Table 8 shows how entity coverage increases
with larger subsets of annotated data, and general

dataset statistics are shown in Table 11. Additional
details on total entities and sentence coverage per
type are listed in Table 12.

TDMSci TDMSci is a scientific NER dataset that
includes three entity types: Task, Dataset, and Met-
ric. It contains 1,523 sentences and is more diverse
than the biomedical datasets in terms of entity types
and structure (see Table 10 and Table 11). Table 12
further breaks down the number of entities and
sentence distributions per type.

To simulate low-resource conditions, we create
reduced versions of each dataset by limiting the
number of unique entities used for training. These
settings vary from 5 to 500 entities per type, as
detailed in Tables 8, 9, and 10. These subsets are
used in conjunction with our “Limited Dictionary”
setup to test the effectiveness of data augmentation
strategies.

Dataset Size Chemical Disease
5 19 20

10 36 41
15 54 60
20 73 72
50 192 178

100 364 340
200 736 666
300 1146 985
400 1516 1336
500 1868 1665

Table 8: Entity counts per entity type for BC5CDR
dataset.

Dataset Size CHEM
5 16

10 29
15 41
20 57
50 160

100 344
200 669
300 972
400 1285
500 1618

Table 9: Entity counts per entity type for CHEMDNER
dataset.
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Dataset Size DATASET METRIC TASK
5 6 13 14

10 17 27 28
15 24 43 43
20 31 60 59
50 103 155 144

100 198 307 292
200 400 553 539
300 591 619 805
400 700 670 1056
500 732 681 1207

Table 10: Entity counts per entity type for TDMSci
dataset.
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Table 11: Dataset Statistics for NER Tasks

Dataset #Sentences #Tokens #Entity Types Avg. Entities/Sent. #Sent. w/o Entities

BC4CHEMD 30,812 872,932 1 (CHEM) 0.96 16,283
BC5CDR 4,560 118,170 2 (Chemical, Disease) 2.06 753
TDMSci 1,523 49,460 3 (TASK, DATASET, METRIC) 1.43 330

Table 12: Entity-Specific Statistics

Dataset Entity Type #Entities #Sentences w/ Entities

BC4CHEMD CHEM 29,478 14,529
BC5CDR Chemical 5,203 2,951

Disease 4,182 2,658
TDMSci TASK 1,219 920

DATASET 420 322
METRIC 536 358
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Abstract

We introduce PetEVAL, the first benchmark
dataset derived from real-world, free-text vet-
erinary electronic health records (EHRs). Pe-
tEVAL comprises 17,600 professionally anno-
tated EHRs from first-opinion veterinary prac-
tices across the UK, partitioned into training
(11,000), evaluation (1,600), and test (5,000)
sets with distinct clinic distributions to assess
model generalisability. Each record is anno-
tated with International Classification of Dis-
ease 11 (ICD-11) syndromic chapter labels
(20,408 labels), disease Named Entity Recog-
nition (NER) tags (429 labels), and anonymisa-
tion NER tags (8,244 labels). PetEVAL enables
evaluating Natural Language Processing (NLP)
tools across applications, including syndrome
surveillance and disease outbreak detection.
We implement a multistage anonymisation pro-
tocol, replacing identifiable information with
clinically relevant pseudonyms while establish-
ing the first definition of identifiers in veteri-
nary free text. PetEVAL introduces three core
tasks: syndromic classification, disease entity
recognition, and anonymisation. We provide
baseline results using BERT-base, PetBERT,
and LLaMA 3.1 8B generative models. Our
experiments demonstrate the unique challenges
of veterinary text, showcasing the importance
of domain-specific approaches. By fostering
advancements in veterinary informatics and epi-
demiology, we envision PetEVAL catalysing
innovations in veterinary care, animal health,
and comparative biomedical research through
access to real-world, annotated veterinary clini-
cal data.

1 Introduction

The growing availability of veterinary electronic
health records (vEHRs) from sources such as the
Small Animal Veterinary Surveillance Network
(SAVSNET) (Sánchez-Vizcaíno et al., 2015), Com-
panion Animal Veterinary Surveillance Network
(CAVSNET) (Sheng et al., 2022), and VetCompass

Figure 1: Example data for a single consult with a
unique consult, the free text clinical EHR, the ICD-
11 chapter multi-label classification and NER entities
for both anonymisation and disease extraction task

(Royal Veterinary College (RVC); McGreevy et al.,
2017) presents an unprecedented opportunity to
advance veterinary medicine. These datasets sup-
port disease surveillance, epidemiological research,
and clinical decision-making (Farrell et al., 2023b;
Bode et al., 2022; Radford et al., 2011; Sánchez-
Vizcaíno et al., 2017; Singleton et al., 2020). How-
ever, vEHRs differ from human biomedical records
in syntax, lexicon, and clinical expression (Davies
et al., 2024b), requiring adaptation of existing com-
putational tools. Additionally, first-opinion vEHRs
often contain diagnostic uncertainty due to limited
specialist access, resource constraints, and financial
considerations (Robinson et al., 2016).

Despite these challenges, vEHRs offer unique
advantages for biomedical research. Unlike human
records, which are tightly regulated under laws
such as HIPAA and GDPR, vEHRs face fewer le-
gal constraints (Sun et al., 2020), making them a
viable test bed for developing analytical methods.
Their relative accessibility enables researchers to
explore novel computational approaches without
the ethical and regulatory barriers associated with
human health data (Kol et al., 2015; Starkey et al.,
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2005; Trott et al., 2004).
Advancing natural language processing (NLP)

for vEHRs is critical for global health, support-
ing the World Health Organisation’s (WHO) One
Health initiatives in zoonotic disease surveillance
and antimicrobial resistance (AMR) monitoring
(Bidaisee and Macpherson, 2014; Radford et al.,
2011). Enhanced NLP tools improve threat de-
tection and trend analysis in animal populations,
strengthening public health responses across hu-
man, animal, and environmental health domains
(Kol et al., 2015; Robertson et al., 2000; Van Dui-
jkeren et al., 2004). Beyond public health, NLP-
driven solutions facilitate large-scale epidemiologi-
cal studies, identifying risk factors and treatment
outcomes that enhance companion animal welfare
(Lund, 2015; Farrell et al., 2023b).

Traditional veterinary disease surveillance relies
on manual coding or rule-based methods, which
are time-intensive and prone to human error (Hsia
et al., 2010; Miñarro-Giménez et al., 2018; Turchin
et al., 2006). In contrast, NLP-driven approaches
offer scalable, automated solutions for extracting
clinical insights from free-text records. Developing
these methods within veterinary medicine improves
animal welfare and contributes to the refinement
of computational tools that may later be adapted
to human bioinformatics research. Neural network
approaches to disease coding have evolved con-
siderably over time. Pioneering work introduced
DeepTag (Nie et al., 2018), establishing a foun-
dation that subsequently refined into the more ad-
vanced VetTag framework (Zhang et al., 2019). The
field has progressed significantly with recent inno-
vations leveraging pre-trained LLMs (Farrell et al.,
2023a; Boguslav et al., 2024). Complementary
research has expanded our understanding of gen-
erative models for veterinary entity extraction for
clinical signs (Wulcan et al., 2024) and for body
condition scoring (Fins et al., 2024).

In this paper, we contribute the following:

1. PetEVAL: The first veterinary EHR bench-
mark – A publicly available free-text vEHR
dataset, establishing a standard for veterinary
NLP research.

2. Rigorous manual anonymisation – Every
record underwent manual anonymisation with
at least two independent reviews, including
verification by a veterinary clinician, ensuring
complete removal of sensitive data.

3. ICD-11 syndromic classification – Syndromic
labels were assigned using the ICD-11 frame-
work, supplemented with domain-specific an-
notations to ensure clinically relevant label-
ing.

2 Literature Review

The adoption of EHRs has revolutionised medi-
cal research, offering vast amounts of health data
for analysis (Gunter and Terry, 2005; Cowie et al.,
2017). While structured EHR data has been exten-
sively used in epidemiological studies (Krumholz
et al., 2014; Hamer et al., 2024; Hlatky et al., 2014;
Williamson et al., 2020), up to 80% of EHR infor-
mation exists in unstructured formats, primarily as
free-text clinical notes (Kong, 2019). These un-
structured notes capture clinical insights often lost
in structured formats (Birman-Deych et al., 2005;
Singh et al., 2004). Excluding this data from re-
search can significantly impact the validity of find-
ings (Ford et al., 2013; Jensen et al., 2017; Price
et al., 2016; Barak-Corren et al., 2017). However,
utilising unstructured data presents challenges in
patient privacy protection, particularly regarding re-
identification risks (Simon et al., 2019; Abouelme-
hdi et al., 2017; Dorr et al., 2006). Automated
EHR anonymisation has become a critical focus in
addressing these challenges. Benchmarks like the
i2b2/UTHealth corpus and MIMIC-3 database have
been established to evaluate de-identification mod-
els (Stubbs and Uzuner, 2015; Stubbs et al., 2017;
Meystre et al., 2010; Aberdeen et al., 2010). Ap-
proaches range from rule-based systems (Cao et al.,
2003) to neural networks (Liu et al., 2019) and pre-
trained language models (Yoon et al., 2023; Chen
et al., 2021). Recent advancements in learning-
based methods show promise in automating de-
identification (Leevy et al., 2020; Lee et al., 2022).
However, these methods face challenges with per-
formance instability when applied to heterogeneous
real-world data (Abu-El-Rub et al., 2022; Yang
et al., 2019). Deep learning approaches have been
proposed to address these issues, but their effective-
ness is limited by small training datasets and per-
formance degradation on out-of-distribution EHRs
(Syed et al., 2022; Lee et al., 2021; Jiang et al.,
2017).
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3 PetEVAL

3.1 The SAVSNET Dataset

We utilise data from the Small Animal Veterinary
Surveillance Network (SAVSNET), a sentinel net-
work of 253 volunteer first-opinion veterinary prac-
tices across the United Kingdom that have col-
lected vEHRs since March 2014. This network
has accumulated over 12 million EHRs, with par-
ticipating practices selected based on their prac-
tice management software compatibility with the
SAVSNET data exchange system. During each con-
sultation with a clinician or nurse, comprehensive
data includes species, breed, sex, neuter status, age,
owner’s postcode, insurance and microchipping sta-
tus, and a detailed free-text clinical narrative. These
narratives may contain information about symp-
toms, diagnoses, treatments, procedures, or other
clinical matters. Owners can opt out of data collec-
tion during any consultation. The SAVSNET group
operates under ethical approval from the University
of Liverpool Ethics Committee (RETH001081), en-
suring adherence to established ethical standards.
Figure 1 provides a sample data point in JSON
format.

3.2 Tasks

3.2.1 Task 1 - Anonymisation
Ensuring the privacy and security of EHRs is cru-
cial for safeguarding the personal information of
pet owners and facilitating the easy sharing of data
use in clinical and academic research. The dataset
is labelled with NER entities and spans applied to
pseudo-anonymised contextual placeholders. The
objective is to maintain the integrity and utility of
clinical information within the EHR while effec-
tively anonymising various types of personal data.
This includes names (both animal and human), lo-
cation details (such as city, town, and addresses),
organisation names (including attending veterinary
practices, referral hospitals, kennels, and labora-
tories), contact details (emails, phone numbers),
id-numbers (passport numbers, insurance policy
numbers, MRCVS codes), and any other explicit
identifiers. The anonymisation is compliant with
the HIPPA Safe Harbour (Sun et al., 2020).

3.2.2 Task 2 - Syndromic Disease
Classification

Given the critical role of monitoring national dis-
ease outbreaks in public health, effective surveil-
lance systems can provide invaluable insights, such

as in informing clinicians of key symptoms to ob-
serve, enabling researchers to identify aetiological
agents, and establishing an automated reporting
mechanism for public health agencies to facilitate
swift notification of changes in disease occurrence.
However, the task is not straightforward, partic-
ularly when dealing with novel diseases or syn-
dromes with unknown symptoms. Effective out-
break reduction strategies hinge on the ability to
detect outbreaks with minimal cases. To address
these challenges, the dataset is provided with ICD-
11 chapters (World Health Organisation (WHO),
2022), which includes contextual discussions such
as symptoms and diagnoses. The task is structured
as a multi-label classification problem, as a con-
sult or condition may cover a range of presenting
symptoms. Performance is evaluated using multi-
label classification metrics, including precision and
recall, macro-average F1-Score, and weighted F1-
Score.

3.2.3 Task 3 - Disease Extraction
Identifying specific diseases is critical for down-
stream epidemiological studies, which aim to re-
veal novel risk factors, seasonality, and other trends.
This task is particularly challenging due to the pri-
vate healthcare nature of veterinary practices in the
UK and much of the world. Confirmation diag-
nostic tests are rare, as owners often wish to avoid
the inherent costs, opting instead to take the ad-
vice of clinicians or due to the lack of available
resources or expertise not found in first opinion
practice. Additionally, the presence of negations is
common within vEHRs, especially within the first
opinion setting, where it is estimated that 11% of
mentioned diseases are negated (Cheng et al., 2017)
which complicates the task further. In our study,
the dataset is labelled with the diagnostic disease
contained within it. This process is framed as NER
task using the IOB2 format, wherein the entity of
‘disease’ and its spans are provided. Evaluation
utilises SeqEval for precision, recall, and F1-score
(Nakayama, 2018).

4 Methods

4.1 Dataset Construction

Our dataset comprises three subsets: a training
set of 11,000 records, an evaluation set of 1,600
records, and a test set of 5,000 records. We selected
only consultations recorded before 2020 and re-
stricted the dataset to consultations involving only
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Table 1: Evaluation of NER performance on veterinary clinical text data anonymised according to HIPAA Safe
Harbor guidelines. The table presents entity type distribution across training, evaluation, and test splits, with
comparative performance metrics (precision, recall, F1-score) between ‘BERT-base-uncased’, ‘PetBERT’, and
LLaMA 3.1 8B models across identifier categories.

HIPAA Safe Harbor Examples Train/ Test NER BERT-base-uncased PetBERT LLaMA 3.1 8B
Eval Count Entity P R F1 P R F1 P R F1

(A) Names Pet, Owner, Vet Names 4790 1370 PER 0.84 0.93 0.89 0.93 0.70 0.80 0.71 0.65 0.68
(B) Geographic
subdivisions

City, Towns, Countries 311 94 LOC 0.95 0.98 0.97 0.97 0.97 0.97 0.78 0.83 0.80
Vet practices, hospitals, shelters 392 168 ORG 0.97 0.97 0.98 0.98 0.96 0.97 0.82 0.79 0.81

(C) Dates Day/month dates, appointments 425 162 TIME 0.94 0.96 0.95 0.93 0.94 0.93 0.76 0.81 0.78
(D) Telephone numbers Client/practice phone numbers 19 4

MISC 0.91 0.97 0.97 0.95 0.94 0.94 0.73 0.69 0.71

(E) Fax numbers n/a None None
(F) Email addresses Referral/client emails 9 3
(G) Social security numbers n/a None None
(H) Medical record numbers n/a None None
(I) Health plan numbers Insurance policy numbers 33 20
(J) Account numbers Microchip Numbers 299 35
(K) Certificate numbers MRCVS clinician codes 51 17
(L) Vehicle identifiers n/a None None
(M) Device identifiers n/a None None
(N) URLs Website urls None None
(O) IP addresses n/a None None
(P) Biometric identifiers n/a None None
(Q) Photographic images n/a None None
(R) Other identifiers Passport numbers 34 8

cats and dogs. To enhance generalisability, dataset
splits were performed based on a pre-compiled list
of veterinary practices, following the methodology
outlined in (Farrell et al., 2023a). Specifically, we
assigned distinct practices to training and testing
sets, ensuring that models trained on the training
set were evaluated on records from veterinary prac-
tices that did not contribute to training. This design
minimises the risk of models overfitting to stylistic
or institutional biases and provides more substan-
tial evidence of generalisability across UK veteri-
nary practices. We excluded empty records contain-
ing fewer than ten words or exceeding 350 words.
The median narrative length in the full SAVSNET
dataset is 287 words, while in PetEVAL, it is 226
words.

4.1.1 Annonymisation

Each record was manually reviewed twice, target-
ing the removal of all potential identifiers, includ-
ing names (owner, animal, and veterinary staff), lo-
cations (cities, countries, vet practices, referral hos-
pitals, rescue centres, kennels, crematoriums, labs),
dates (when they included specific years), times
(if overly specific), and unique identifiers such
as microchip codes, passport numbers, insurance
policy numbers, vet MRCVS codes, phone num-
bers, and email addresses. Flagged elements were
pseudonymised with context-appropriate place-
holders to maintain record coherence, and corre-
sponding spans and entity tags were generated for
these placeholders. Pseudonyms were derived from

separate lists for train and test splits,
For the anonymisation NER task, identifiers

were mapped to standard tags: ’LOC’ (cities,
towns, countries), ’PER’ (pet/owner/vet names),
’TIME’ (specific dates/times), ’ORG’ (veterinary
practices, rescue shelters, labs, groomers), and
’MISC’ (unique identifiers like microchips, insur-
ance codes, contact information). The counts for
each can be found within table 1. Non-clinical
brand names were removed but not included in
anonymisation metrics. No clinically relevant in-
formation was modified.

4.1.2 Syndromic Disease Classification

The dataset was curated to support syndromic dis-
ease surveillance through the assignment of ICD-11
labels. For this purpose, 20 ICD-11 chapter codes
were selected to capture a broad range of clini-
cally relevant syndromes observed in veterinary
practice. The full list of selected chapter codes is
provided in Table 2. To facilitate efficient and ac-
curate annotation, we employed a semi-automated
approach wherein initial fuzzy labels were gener-
ated using the PetBERT-ICD model, a previously
developed tool designed for assigning ICD-related
labels in veterinary contexts. This pre-annotation
step helped streamline the annotation process, re-
duce cognitive load for annotators, and minimise
potential errors. Annotators reviewed and refined
these suggested labels, ensuring alignment with
clinical documentation practices in first-opinion
vEHRs. To maintain the integrity of the evalua-
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tion, the test set was exempt from automated label
matching and underwent a full manual review by
two expert annotators. Records that an initial re-
viewer was unhappy to determine the presence of
a diagnosis were passed through an additional re-
viewer, and a consensus vote was taken. Finally, we
ensured that the disease extraction dataset aligned
with the syndromic dataset, an extracted disease
therefore has a linked syndromic label.

4.1.3 Disease Extraction
The dataset was developed to facilitate the evalu-
ation of disease diagnosis extraction models from
first-opinion vEHRs. Given the nature of primary
care veterinary records, confirmatory diagnoses are
rare, with most diagnoses being clinical assess-
ments rather than definitive results from diagnostic
testing. Therefore, any named condition mentioned
in a record was annotated as a diagnosis unless
explicitly negated. This includes confirmed diag-
noses, differential diagnoses, and syndromic de-
scriptions. Additionally, mentions of pathogens,
such as bacteria, viruses, and parasites, were anno-
tated as they typically are discussed as diagnoses
within the narratives. We extracted diseases coded
within the ICD-11 and veterinary-specific condi-
tions not represented in human medicine. Each
annotated diagnosis was linked to its correspond-
ing span within the text, with entity tags assigned to
support NER tasks. Records that an initial reviewer
was unhappy to determine the presence of a diag-
nosis were passed through an additional reviewer,
and a consensus vote was taken.

4.1.4 Baseline Models
For baseline results in PetEVAL, we evaluated
three pre-trained language models: ‘BERT-base-
uncased’ (Devlin et al., 2019), a general-purpose
encoder; ‘PetBERT’ (Farrell et al., 2023a), a vet-
erinary domain-adapted encoder; and ‘LLaMA 3.1
8B’ (Team and Meta, 2024), a generalist decoder
model. The encoder models were fine-tuned as to-
ken classification models using the IOB2 format
for the anonymisation and disease extraction tasks,
with training parameters including a mini-batch
size of 32, an initial learning rate of 2e-5, and the
AdamW optimiser. Early stopping was applied
based on evaluation loss. For syndromic classifi-
cation, both encoders were adapted for multi-label
classification across 20 ICD-11 chapter codes, em-
ploying a weighted binary cross-entropy loss func-
tion with sigmoid activation to address class imbal-

Figure 2: Distribution of the 15 most frequent dis-
ease entities extracted from veterinary electronic health
records in the Train/Eval and Test sets during Task 2
(Disease Extraction).

ance. Training followed the same hyperparameter
setup and typically converged beyond epoch 6. An
iterative threshold analysis was conducted, vary-
ing classification thresholds between 60% and 95%
in 5% increments, prioritising recall to minimise
false negatives. The final classifier applied an 80%
threshold and was evaluated on the test set. The
decoder model was prompted with few-shot exam-
ples selected from the training set, with multiple
prompt designs tested against the evaluation set
before application to the full test set.

4.1.5 Model Evaluation
We implemented a unified entity-level evaluation
framework to ensure fair comparison between en-
coder (BERT) and decoder (LLaMA) architectures
across anonymisation and disease extraction tasks.
For encoder models, we first converted token-level
IOB/BIO predictions into entity spans before ap-
plying the same entity-level F1 evaluation used for
decoder models. This approach follows CoNLL
methodology (Tjong et al., 2003), where all ex-
tracted entities undergo identical normalisation pro-
cedures before being exact-matched against ground
truth. For both model types and tasks, we calculate
precision as the ratio of correctly identified entities
to total predictions, recall as the ratio of correctly
identified entities to ground truth entities, and F1 as
their harmonic mean. The anonymisation task eval-
uates the identification of privacy-sensitive entities
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(LOC, PER, MISC, NAME), while disease extrac-
tion assesses the recognition of standardised dis-
ease mentions. By standardising evaluation across
architectural paradigms, we enable direct perfor-
mance comparison while maintaining methodolog-
ical rigour in assessing clinical information extrac-
tion capabilities.

For the syndromic classification task, we assess
model performance using precision, recall, and F1
scores computed against ground truth labels pro-
vided by annotators. For encoder-based models,
classification uses a fine-tuned ICD-11 classifier
with an optimised threshold, ensuring a balance
between precision and recall for robust disease de-
tection. For generative models, we convert outputs
into a tabular format using a direct match approach
on uncased text. Similarity-based methods were
considered, but they yielded no performance gains,
so we adopted the least computationally intensive
approach. The predicted labels are transformed
into a one-hot encoded vector, applying the same
evaluation metrics as encoder models. Given the
importance of disease surveillance, we preferen-
tially select for recall to minimise false negatives,
as missing cases could lead to undetected outbreaks.
While this may increase false positives, these can
be further reviewed to ensure the detection of po-
tential health threats.

5 Results

5.1 Corpus Overview

The dataset consists of 675,935 words distributed
across the training (11,000 records), evaluation
(1,600 records), and test sets (5,000 records).
While demographic data is not included, 68% of
the records represent dogs, with a near 50-50 sex
split across both species. The dataset contains infor-
mation from 16,153 unique animals from various
regions across the UK.

For syndromic disease classification, annotations
were applied using a multi-label one-hot encod-
ing approach aligned with ICD-11 chapter heads.
Across the dataset, 9,510 annotations were made
in the training set and 4,714 in the test set. The
most frequent label, ’Certain infectious or para-
sitic diseases’, was prominent due to the high oc-
currence of conditions like parasitic infestations.
The median labels per class in the training set was
348, with an average of 0.9 labels per consultation.
Notably, 8,907 consultations received at least one
label, while those without a label typically repre-

sented routine checkups or non-syndromic cases.
The frequency distribution of extracted disease

entities across the train/eval and test datasets is pre-
sented in Figure 2. As expected, conditions readily
identifiable through visual examination, such as
gingivitis, conjunctivitis, and lipoma, exhibit high
representation. Furthermore, the extracted entities
encompass clinical language commonly used by
veterinary practitioners to indicate disease, includ-
ing terms like ’infection,’ ’fleas’ (for flea infesta-
tion), and ’dental disease’ (for unspecified dental
conditions). The train/eval datasets contain 3,907
unique extracted conditions, while the test dataset
comprises 2,899.

5.2 Inter-annotator agreement
Inter-annotator agreement was assessed on a subset
of 1,000 vEHRs from the test set focused on the
syndromic classification task. Two expert veteri-
nary clinicians independently annotated the records
using strictly predefined guidelines, with no com-
munication allowed at this stage to ensure unbiased
annotations. The resulting Cohen’s kappa statistic
was 0.722, indicating a substantial level of agree-
ment (McHugh, 2012). This value suggests strong,
though not perfect, alignment between the annota-
tors. Disagreements were systematically reviewed,
with the majority resolved through a collaborative
discussion. In cases where consensus could not
be reached, a third clinician provided a decisive
resolution.

5.3 Baselines
We conducted baseline experiments with ‘bert-
base-uncased’ and ‘PetBERT’ and a generative
model ‘LLaMA 3.1 8B’ to establish reference
points for evaluating more complex models. For
the anonymisation task, PetBERT consistently out-
performed BERT-Base across HIPAA Safe Harbor
entity categories, with notable improvements in
identifying names (F1: 0.80 vs. 0.89) and geo-
graphic subdivisions (F1: 0.97 vs. 0.98) (Table 1).
Both models achieved high performance in struc-
tured entity types such as dates (F1: 0.93 vs. 0.95)
and organisations (F1: 0.97 vs. 0.98). LlaMA 3.1,
using few-shot prompting (Appendix), was behind
with lower F1-scores across all categories, particu-
larly for names (F1: 0.68) and locations (F1: 0.80).

As shown in Table 1, fine-tuned PetBERT out-
performed BERT-base-uncased across most entity
types, achieving a higher precision (0.93 vs. 0.84),
recall (0.70 vs. 0.93), and F1-score (0.80 vs. 0.89)
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Table 2: Performance Metrics for BERT-base-uncased, PetBERT, and LLaMA 3.1 8B on ICD-11 Syndromic
Chapters. P = Precision, R = Recall, F1 = F1-score

ICD-11 Syndromic Chapter Train/ Test BERT-base-uncased PetBERT LLaMA 3.1 8B
Eval Count P R F1 P R F1 P R F1

Certain infectious or parasitic diseases 1549 1321 0.74 0.31 0.44 0.78 0.45 0.57 0.65 0.28 0.39
Neoplasms 774 499 0.85 0.77 0.81 0.90 0.81 0.85 0.77 0.65 0.70
Diseases of the blood or blood-forming organs 90 47 0.66 0.35 0.45 0.63 0.31 0.41 0.55 0.23 0.32
Diseases of the immune system 512 429 0.80 0.54 0.64 0.84 0.51 0.64 0.68 0.41 0.51
Endocrine, nutritional or metabolic diseases 572 305 0.67 0.60 0.64 0.69 0.60 0.64 0.58 0.45 0.51
Mental, behavioral or neurodevelopmental disorders 1121 469 0.76 0.34 0.46 0.79 0.38 0.51 0.64 0.27 0.38
Diseases of the nervous system 233 150 0.54 0.58 0.56 0.71 0.54 0.61 0.48 0.42 0.45
Diseases of the visual system 905 634 0.85 0.81 0.83 0.90 0.80 0.85 0.73 0.68 0.70
Diseases of the ear or mastoid process 700 513 0.83 0.77 0.80 0.88 0.78 0.83 0.71 0.65 0.68
Diseases of the circulatory system 276 181 0.67 0.33 0.45 0.71 0.46 0.55 0.55 0.29 0.38
Diseases of the respiratory system 459 346 0.80 0.54 0.64 0.84 0.57 0.68 0.68 0.45 0.54
Diseases of the digestive system 671 259 0.81 0.55 0.66 0.79 0.62 0.69 0.67 0.46 0.55
Diseases of the skin 1377 1018 0.81 0.62 0.70 0.88 0.60 0.71 0.69 0.51 0.59
Diseases of the musculoskeletal system or connective tissue 1171 722 0.79 0.73 0.76 0.83 0.70 0.76 0.67 0.61 0.64
Diseases of the genitourinary system 569 334 0.76 0.59 0.66 0.79 0.67 0.73 0.65 0.49 0.56
Pregnancy, childbirth or the puerperium 65 36 0.42 0.17 0.24 0.74 0.12 0.21 0.36 0.10 0.16
Certain conditions originating in the perinatal period 39 27 0.50 0.08 0.13 0.00 0.00 0.00 0.38 0.05 0.09
Developmental anomalies 191 95 0.59 0.19 0.28 0.70 0.30 0.42 0.47 0.15 0.23
Injury, poisoning or certain other consequences of external causes 1113 636 0.67 0.67 0.67 0.73 0.70 0.71 0.58 0.55 0.56
micro average 0.76 0.58 0.66 0.81 0.61 0.70 0.65 0.47 0.55
macro average 0.71 0.50 0.57 0.74 0.52 0.60 0.60 0.41 0.48
weighted average 0.76 0.58 0.65 0.81 0.61 0.69 0.65 0.47 0.54

for identifying personal names (PER) such as pet,
owner, and vet names. In contrast, LLaMA 3.1
achieved lower performance across all entity types,
with an F1-score of 0.68 for names. For location
(LOC) and organisation (ORG) entities, PetBERT
outperformed BERT-base-uncased, achieving F1-
scores of 0.97 and 0.97, respectively, compared to
BERT-base’s 0.97 and 0.98. LLaMA 3.1 showed
lower performance in both entity types, with an F1
of 0.80 for LOC and 0.81 for ORG. The compari-
son highlights PetBERT’s superior ability to pro-
cess veterinary clinical text, particularly for iden-
tifying personal and organisational entities, while
Llama 3.1’s performance in entity recognition re-
mained behind.

PetBERT outperformed both BERT-Base and
Llama 3.1 for the disease extraction task, achieving
a precision of 0.90, recall of 0.85, and F1-score
of 0.87 (Table 1). BERT-Base trailed with 0.70
precision, 0.55 recall, and an F1 of 0.60, while
Llama 3.1, using a few-shot prompt (Appendix),
performed worst (precision: 0.60, recall: 0.35, F1:
0.40).

6 Discussion

In veterinary first-opinion clinical practice, the
challenge of extracting meaningful insights from
vEHRs is compounded by several notable factors.
Among these is the absence of standardised data
conventions within free-text inputs, and inconsis-
tencies in spelling and abbreviations used by differ-
ent clinicians (Davies et al., 2024b). This is ampli-

fied by the ambiguity surrounding the interpretation
of consultation events. Specifically, the lack of di-
agnostic details in these narratives introduces addi-
tional layers of complexity. The moderate Cohen’s
kappa score of 0.7, observed between two annota-
tors—both qualified veterinary clinicians - under-
scores the inherent difficulties in annotating such
unstructured data. Veterinary EHRs are packed
with ambiguous language, clinician-specific abbre-
viations, and varying documentation styles, inhibit-
ing the ability to extract information from them
effectively. Even among active clinicians, the inter-
pretation of nuanced first-opinion notes can differ,
primarily due to diagnostic uncertainties, incom-
plete patient histories, and the lack of standardised
terminology. Despite these obstacles, the intrinsic
value embedded within these clinical narratives is
undeniable, with applications spanning disease out-
break detection and improving public health and
animal welfare standards (Davies et al., 2024a; Far-
rell et al., 2023a).

Generative models, such as the LLaMA 3.1 8B
applied in our baseline, exhibited relatively poor
performance across tasks, particularly in NER. This
highlights the ongoing challenge of designing ef-
fective prompting strategies, requiring further re-
search. Additionally, generative models present
inherent difficulties in evaluation, as their flexible
outputs may not align precisely with gold-standard
annotations. While our strict direct match approach
may penalise performance, maintaining fidelity to
the intended identifier remains a priority. Over
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time, we anticipate improvements in generative ar-
chitectures, which may eventually surpass the limi-
tations observed here. However, domain-adapted
encoder-based models like PetBERT demonstrated
superior performance across all tasks, aligning with
expectations given their targeted pretraining. Be-
yond accuracy, their efficiency also makes them
preferable for everyday deployments, especially in
resource-intensive applications such as continuous
disease surveillance. Given the significant environ-
mental cost of running large LLMs (Bashir et al.,
2024), there is a clear need for lightweight, domain-
specific solutions that can operate effectively on
consumer-level hardware, ensuring sustainability
and practical usability in real-world veterinary in-
formatics.

Strict privacy regulations in human healthcare
restrict many studies to single institutions, creat-
ing discrepancies between reported performance
and cross-site generalisability. PetEVAL collates
from over 250 UK practices with diverse clinical
approaches and provides substantial advantages
for robust model evaluation. While fewer than
23% of human healthcare ML studies utilise multi-
institutional data (McDermott et al., 2021), often re-
sulting in significant biases and performance degra-
dation when applied to external institutions (Barak-
Corren et al., 2021; Burns and Kheterpal, 2020), Pe-
tEVAL’s multi-institutional framework can capture
practice variability and thus offers an opportunity
to assess model robustness across institutions, ulti-
mately contributing to more accurate and equitable
AI-driven healthcare systems within and beyond
veterinary medicine.

7 Conclusion

PetEVAL is the first benchmark dataset for veteri-
nary EHRs, featuring expert-annotated resources
across ICD-11 syndromic classifications, dis-
ease entity recognition, and anonymisation labels.
Beyond addressing a critical gap in veterinary
medicine, PetEVAL facilitates valuable compar-
ative studies between animal and human health
domains, promoting cross-disciplinary insights. As
a foundational resource for veterinary informatics,
this dataset promises to catalyse advancements in
clinical decision support systems, enhance epidemi-
ological surveillance capabilities, and strengthen
WHO’s One Health initiatives, ultimately advanc-
ing animal welfare and public health research out-
comes.
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9 Limitations

Despite rigorous quality control, annotation errors
are unavoidable due to the dataset’s scale. Models
trained on first-opinion vEHRs are inherently lim-
ited by the availability and accuracy of recorded in-
formation, often lacking confirmatory diagnostics
due to financial constraints or resource limitations.
Our evaluation method enforces strict token-level
matching, penalising incomplete spans even when
semantically close to the ground truth. While this
is critical for anonymisation, it may be overly rigid
for disease extraction. Similarly, our classification
approach adheres strictly to predefined categories,
which, while justified by the prompt, may overlook
minor deviations. Future work could explore more
flexible evaluation metrics and incorporate referral-
level vEHRs to enhance diagnostic certainty.
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10 appendices

10.1 Task 1: Anonymisation Prompt

Prompt: Extract Named Entities from Veterinary
EHRs You are given short free-text veterinary elec-
tronic health records (EHRs). Your task is to extract
named entities mentioned in the text. Focus on iden-
tifying Names (NAME) locations (LOC), organiza-
tions (ORG), temporal expressions (TIME), and mis-
cellaneous named entities (MISC). Examples:

Input: "Raven GA castrate. Anaes: Premed
ACP/Meth. Induced propofol maint iso/02. Good
anaesthetic. Op: Routine open castrate. double lig-
ated 2-0 polysorb. Skin closed intradermal." Output:
RavenNAME = Raven LOC = ORG = TIME = MISC
= Input: "Waffle/MG - back end irritation. Owner re-
ports irritation round back end, rubbing bottom over
last 2-3 weeks." Output: NAME = Waffle LOC =
ORG = TIME = last 2-3 weeks MISC = Input: "Adv
routine haem/biochem (est £603) owner will discuss
with wife. - Prescription -. Date: Apr 3, 2002. Vet:
Reese, Qualifications: MRCVS." Output: NAME =
Reese LOC = ORG = TIME = Apr 3, 2002 MISC =

Guidelines: -Extract only named entities in the ap-
propriate categories:

NAME: Pet Names, Owner Names, Cliniain names
LOC: geographical locations, clinics, hospitals, ani-
mal shelters ORG: veterinary practices, laboratories,

pharmaceutical companies TIME: dates, time peri-
ods, durations, temporal references MISC: animal
names, medications, procedures, medical equipment,
qualifications - List each entity under its proper cate-
gory. - If multiple entities of the same type are men-
tioned, extract each one separately. - Maintain the
exact form as mentioned in the text.

10.2 Task 2: Syndromic Disease
Classification Prompt

You are given a free-text veterinary electronic health
records (EHRs). Your task is to assign a ICD-11 chap-
ter names based on the conditions, symptoms, and di-
agnoses mentioned in the text. Each assigned chapter
should correspond to the primary system or disease
category affected.
ICD-11 Chapters: 1. Certain infectious or parasitic
diseases 2. Neoplasms 3. Diseases of the blood or
blood-forming organs 4. Diseases of the immune sys-
tem 5. Endocrine, nutritional, or metabolic diseases 6.
Mental, behavioral, or neurodevelopmental disorders
7. Sleep-wake disorders 8. Diseases of the nervous
system 9. Diseases of the eye and adnexa 10. Dis-
eases of the ear and mastoid process 11. Diseases of
the circulatory system 12. Diseases of the respiratory
system 13. Diseases of the digestive system 14. Dis-
eases of the skin 15. Diseases of the musculoskeletal
system or connective tissue 16. Diseases of the gen-
itourinary system 17. Conditions related to sexual
health 18. Pregnancy, childbirth, or the puerperium
19. Certain conditions originating in the perinatal pe-
riod 20. Developmental anomalies 21. Symptoms,
signs, or clinical findings not elsewhere classified
22. Injury, poisoning, or certain other consequences
of external causes 23. External causes of morbidity
or mortality 24. Factors influencing health status or
contact with health services
Examples:
1. Input: "marked signs of renal failure. not eating
much. huge wt loss. not moving around much." Out-
put: Disease of the genitourinary system
2. Input: "Bilat OE. Mild, cleaned and wax removed,
no obvious sign mites. Start on ear drops, rv sooner
if concerned otherwise at next vaccination on 29th."
Output: Diseases of the ear and mastoid process
3. Input: "skin lesions, bloods for meds check. no-
ticed spot like skin lesions on forehead and side
of face. not rubbing/scratching. would like checked.
mass on R flank, slow growing, separated masses now
merged together. pulsing meloxaid for stomatogingvi-
tis." Output: Disease of the digestive system, Disease
of the skin, Neoplasms
Guidelines: - Assign at least one ICD-11 chapter
name that best represents the condition(s) described. -
If no condition is present then return ’None’ - If multi-
ple conditions from different systems are mentioned,
include multiple ICD-11 chapter names. - Ignore non-
diagnostic text (e.g., medication instructions or rou-
tine check-ups) unless relevant to a condition. - Main-
tain consistency in ICD-11 chapter naming as per the
official classification.
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10.3 Task 3: Disease Extraction Prompt

You are given a free-text veterinary electronic health
records (EHRs). Your task is to **extract the disease
names** mentioned in the text. Focus on identifying
diseases or conditions specifically mentioned, ignor-
ing general symptoms, treatments, or non-diagnostic
text.

Examples:

1. Input: "marked signs of renal failure. not eating
much. huge wt loss. not moving around much." Out-
put: renal failure

2. Input: "Bilat OE. Mild, cleaned and wax removed,
no obvious sign mites. Start on ear drops, rv sooner
if concerned otherwise at next vaccination on 29th."
Output: OE

3. Input: "skin lesions, bloods for meds check. no-
ticed spot like skin lesions on forehead and side
of face. not rubbing/scratching. would like checked.
mass on R flank, slow growing, separated masses now
merged together. pulsing meloxaid for stomatogingvi-
tis." Output: Skinskin lesions, stomatogingvitis, mass
on R flank

Guidelines: - Extract only disease names (e.g., "Re-
nal failure", "Otitis externa", "Neoplasm"). - Do not
include symptoms, treatment plans, or general find-
ings (e.g., "not eating much", "Start on ear drops"). -
If multiple diseases are mentioned, extract each dis-
ease separately. - Maintain consistency in naming
diseases and conditions as per medical terminology.
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Abstract
CRISPR-Cas systems enable systematic inves-
tigation of gene function, but experimental
CRISPR screens are resource-intensive. Here,
we investigate the potential of Large Language
Models (LLMs) to predict the outcomes of
CRISPR screens in silico, thereby prioritizing
experiments and accelerating biological discov-
ery. We introduce a benchmark dataset derived
from BioGRID-ORCS and manually curated
sources, and evaluate the performance of sev-
eral LLMs across various prompting strategies,
including chain-of-thought and few-shot learn-
ing. Furthermore, we develop a novel, efficient
prediction framework using LLM-derived em-
beddings, achieving significantly improved per-
formance and scalability compared to direct
prompting. Our results demonstrate the feasi-
bility of using LLMs to guide CRISPR screen
experiments.

1 Introduction and Related Work

CRISPR-Cas technology has revolutionized biolog-
ical research. While gene editing with CRISPR
(Jinek et al., 2012) is a promising technology,
genome-wide CRISPR screens have become a cor-
nerstone of functional genomics. These screens al-
low researchers to systematically perturb genes and
identify their causal roles in cellular processes and
disease mechanisms (Shalem et al., 2014; Wang
et al., 2014). However, these screens are resource-
intensive, both in time, cost, and laboratory infras-
tructure. This can limit the scale and scope of bi-
ological investigations, hindering the discovery of
novel therapeutic targets and a comprehensive un-
derstanding of complex biological systems, such as
cancer progression and immune response (Doench
et al., 2016; Evers et al., 2016). The ability to ac-
curately predict the outcomes of CRISPR screens
in silico, before conducting experiments, would
dramatically accelerate biological discovery.

Prior work has explored computational meth-
ods for analyzing CRISPR screen data after ex-

CRISPR Gene Effect
LLM

Figure 1: Conceptual motivation for LLM-driven pre-
diction of CRISPR screen outcomes. An LLM-based
approach transforms the traditionally resource-intensive
experimental process of CRISPR screening into an in
silico prediction task, where an LLM infers the phe-
notypic consequences of gene perturbations based on
provided contextual information.

perimentation. For example, MAGeCK (Li et al.,
2014) and CRISPRAnalyzeR (Winter et al., 2017)
provide tools for identifying essential genes and
analyzing screen results. However, these methods
are inherently reactive, offering insights only after
resources have been expended on wet-lab experi-
ments. They do not provide the capability to predict
screen outcomes a priori. While other works have
explored LLMs for CRISPR experiment design
(e.g., guide RNA selection (Qu et al., 2024)) or dis-
covering novel CRISPR systems (Li et al., 2024),
our focus is distinctly on predicting the phenotypic
outcomes of established screen types by leveraging
an LLM’s existing biological knowledge.

LLMs have demonstrated remarkable capabil-
ities in understanding and reasoning about com-
plex concepts across diverse domains (Brown et al.,
2020; Chowdhery et al., 2023). Recent work shows
promising results in applying LLMs to biological
problems (Sarwal et al., 2023). For example, LLMs
have been applied towards summarizing gene func-
tion (Chen and Zou, 2024), medical question an-
swering (Singhal et al., 2023), cell-type annotation
(Hou and Ji, 2024), and identifying causal genes
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in statistical genetics (Shringarpure et al., 2024).
We hypothesize that LLMs possess the latent ca-
pacity to reason about and predict the outcomes
of CRISPR screens, effectively simulating the ef-
fects of gene perturbations on cellular phenotypes
(Figure 1). This would transform in silico biology
from a primarily analytical tool to a predictive one,
capable of guiding experimental design.

In this work, we investigate LLMs for CRISPR
screen prediction. Our contributions are as follows:

• Benchmark Dataset: We introduce a new bench-
mark dataset for a priori CRISPR screen out-
come prediction. It combines harmonized data
from BioGRID-ORCS (Oughtred et al., 2021)
with manually curated screens from recent high-
impact publications, carefully selected to post-
date LLM knowledge cutoffs, thus minimizing
data leakage and ensuring a rigorous test of pre-
dictive capabilities.

• Comprehensive LLM Evaluation: We compre-
hensively evaluate a diverse set of LLMs (includ-
ing variations of Llama-2 (Touvron et al., 2023),
Llama-3.x (Dubey et al., 2024), GPT-3.5 (Brown
et al., 2020), GPT-4 (Achiam et al., 2023), GPT-
4o (Hurst et al., 2024), and o1 (Jaech et al., 2024))
using zero-shot, few-shot, and chain-of-thought
(Wei et al., 2022) prompting strategies on our
benchmark.

• Embedding-Based Classifier: We propose a
novel, computationally efficient, and scalable
CRISPR screen prediction framework. This ap-
proach leverages LLM-derived embeddings of
CRISPR screen components (perturbation, gene,
cell line, phenotype) as input to a multilayer
perceptron (MLP) classifier, significantly outper-
forming direct LLM prompting, especially for
complex phenotypes.

Our results show that LLMs, particularly our
embedding-based model, can achieve promising
performance. To our knowledge, this is the first
systematic investigation of LLM potential for a
priori CRISPR screen prediction, offering a new
direction for computational biology.

2 Benchmark Dataset and Data
Preparation

To systematically evaluate LLMs for a priori
CRISPR screen prediction, we construct a new
benchmark dataset. This dataset combines data

Does [perturbation] of [gene] in [cells] result in [phenotype]?

LLM Prompting

LLM

Embedding Classifier

LLM

LLM

MLPObtain 
embeddings

Generate 
expanded 

summaries

LLM

1

2

Figure 2: Two approaches for LLM-based CRISPR
screen prediction: (Top) Direct prompting, where the
LLM predicts a binary hit/no-hit outcome from a natu-
ral language query describing the screen. (Bottom) An
embedding-based classifier, where LLM-derived embed-
dings of the screen components (perturbation, gene, cell
line, and phenotype) are used as input to a trained MLP
for outcome prediction. Embeddings are generated from
either (1) raw text descriptions of each component or
(2) LLM-generated summaries of these components.

from established repositories with manually cu-
rated data from recent publications. These publica-
tions were selected specifically because they were
published after the training cutoffs of the LLMs we
evaluate. This strategy ensures both a breadth of
biological scenarios and minimizes the risk of data
leakage, providing a fair assessment of the LLMs’
predictive reasoning.

2.1 Data Sources

Our benchmark is built upon two primary sources.
(1) BioGRID-ORCS (v1.1.16): The BioGRID
Open Repository of CRISPR Screens (ORCS)
(Oughtred et al., 2021) is the largest publicly avail-
able, harmonized database of CRISPR screens. It
provides a broad foundation, encompassing a wide
variety of experimental designs, cellular contexts,
and observed phenotypes. (2) Manually Curated
Screens: We complement BioGRID-ORCS with a
manually curated set of screens focusing on com-
plex phenotypes, extracted from two publications
released in late 2024 (Chen et al., 2024; Skoulidis
et al., 2024). This critical step ensures the dataset
includes real-world screens and stringently avoids
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data leakage by selecting articles published after
the knowledge cutoff of all evaluated LLMs.

2.2 Data Representation and High-Confidence
Hit Definition

We adopt the BioGRID-ORCS harmonization ap-
proach, considering only results deemed statisti-
cally significant (“Hits”) by the original study au-
thors. This standardization minimizes inconsisten-
cies arising from heterogeneous analysis pipelines.
We focus exclusively on screens performed in hu-
man or mouse cell models, aligning genes to the
GRCh38 (human) and GRCm39 (mouse) reference
genomes.

Each screen result is represented as a tuple: (per-
turbation method, gene, cell line, phenotype, hit/no-
hit). We refer to these tuples as gene-phenotype
queries. This structure enables us to pose the pre-
diction task as a natural language question: “Does
{perturbation method} of {gene} in {cell line}
causally result in {phenotype}?” The answer is
binary: “Yes” (hit) or “No” (no-hit).

Crucially, we employ a high-confidence hit def-
inition. A “Yes” (hit) indicates a statistically sig-
nificant observation of the hypothesized effect. A
“No” (no-hit) signifies a statistically significant ef-
fect in the opposite direction of the hypothesized
phenotype. This is more stringent than simply the
absence of the hypothesized effect. For example,
if the question is “Does knockout of CD28 in T
cells causally result in increased IL2 secretion?”,
a “No” outcome indicates that CD28 knockout de-
creases IL2 secretion significantly, not merely that
it does not increase or has no effect. This strict
definition is vital for evaluating LLM predictions,
further detailed in Section 4.1.

2.3 Simple and Difficult Benchmarks

To evaluate LLMs across varying levels of complex-
ity, we define two benchmarks (details in Appendix
Tables 3 and 4):

Simple Benchmark: This benchmark focuses
on relatively straightforward and well-understood
phenotypic effects, often involving direct gene-
phenotype relationships. We manually selected
4 screens from BioGRID-ORCS based on do-
main knowledge of the underlying biological path-
ways. This benchmark is comprised of 1175 gene-
phenotype queries, where 41.3% of these are hits.

Model F1 Score FPR

Llama-2-7B 0.58 ± 0.02 0.97 ± 0.05
Llama-2-13B 0.51 ± 0.12 0.80 ± 0.32
Llama-2-70B 0.47 ± 0.20 0.71 ± 0.36
Llama-3-8B 0.48 ± 0.24 0.85 ± 0.38
Llama-3-70B 0.53 ± 0.09 0.58 ± 0.24
Llama-3.1-8B 0.39 ± 0.17 0.39 ± 0.27
Llama-3.1-70B 0.44 ± 0.14 0.38 ± 0.23
Llama-3.2-1B 0.37 ± 0.25 0.57 ± 0.43
Llama-3.2-3B 0.26 ± 0.24 0.28 ± 0.35
Llama-3.3-70B 0.40 ± 0.19 0.40 ± 0.31
o1 0.16 ± 0.02 0.03 ± 0.00
o1-mini 0.31 ± 0.04 0.10 ± 0.03
GPT-4o 0.47 ± 0.06 0.22 ± 0.06
GPT-4o-mini 0.55 ± 0.04 0.77 ± 0.16
GPT-4-turbo 0.32 ± 0.10 0.15 ± 0.08
GPT-4 0.44 ± 0.12 0.38 ± 0.21
GPT-3.5-turbo 0.42 ± 0.13 0.39 ± 0.25
Random Baseline 0.47 0.36

Table 1: Performance on the Simple CRISPR screen
benchmark using LLM prompting. Results (mean and
std. dev.) are aggregated across up to 10 combinations
of Chain-of-Thought (CoT) and few-shot prompting
strategies for each model. Highlighted model which
maximizes F1 while minimizing FPR.

Difficult Benchmark: This benchmark presents
more complex phenotypes requiring multi-step
reasoning. For example, predicting “decreased
resistance to PD1 blockade and lung carcinoma
cell death” requires understanding the PD-1/PD-
L1 pathway, its role in cancer cell survival, and
the consequences of blocking this pathway. This
benchmark is comprised of 1814 gene-phenotype
queries from screens derived from the two manu-
ally curated, post-cutoff publications. Given the
high-confidence hit definition and the nature of
these complex screens, “hit” outcomes were rare.
To address label imbalance in this dataset, we em-
ployed an inversion strategy for “hit” labels uti-
lizing our high-confidence hit definition. For a
query where the true outcome was a significant
effect opposite to the hypothesized phenotype (a
“no-hit” by our strict definition), we formulated an
inverted query predicting this opposite phenotype
and labeled this new, inverted query as a “hit”. This
process resulted in a balanced split of positive and
negative examples for the Difficult Benchmark, to-
taling 907 positive and 907 negative instances. This
benchmark specifically tests a model’s ability to
reason about more intricate biological mechanisms.
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Model AUROC AUPRC F1 FPR PPV NPV Sens. Spec.

Raw Emb. 0.89 0.86 0.84 0.15 0.85 0.83 0.83 0.85
Summ. Emb. 0.72 0.69 0.67 0.26 0.71 0.67 0.64 0.74
GPT-4o (prompting) N/A N/A 0.35

±0.17
0.79

±0.19
0.32

±0.14
0.23

±0.13
0.41

±0.22
0.21

±0.19

Table 2: Performance on the Difficult CRISPR screen benchmark. Compares the embedding-based classifier using
embeddings of raw text (Raw Emb.) or embeddings of GPT-4o summaries (Summ. Emb.) against GPT-4o direct
prompting (results aggregated across prompting strategies). Standard classification metrics reported. GPT-4o
prompting gives binary outputs and thus AUROC and AUPRC are undefined. Best model highlighted.

3 Training Data for Embedding-Based
Classifier

In addition to the evaluation benchmarks, we pre-
pared a separate, larger training dataset for our
embedding-based classifier. From the BioGRID-
ORCS database, we selected screens performed in
human or mouse cells. We excluded screens that
indicated both significant positive and negative ef-
fects for the same gene-phenotype query, as this
ambiguity complicates the definition of a singular
phenotypic outcome from the free-text descriptions
provided by BioGRID-ORCS. Instead of attempt-
ing to extract precise phenotypes from these notes,
we utilize the entire phenotype note directly during
the embedding process for training.

Our final training dataset consists of 1,678
screens from BioGRID-ORCS (from an initial pool
of 1,924 total screens). This dataset yields ap-
proximately 22.6 million individual gene-level re-
sults across 3 perturbation methods, 40,461 unique
genes (human and mouse), 133 cell lines, and 613
distinct phenotype descriptions. Within this train-
ing set, 7.74% of the gene-phenotype pairs are
“hits” according to our high-confidence definition.
For model development, we randomly selected 5
screens from this training dataset to serve as a vali-
dation set, used for tasks such as early stopping and
hyperparameter tuning. To mitigate potential bias
from dataset similarity during final evaluation, our
embedding-based classifier is exclusively evaluated
on the Difficult Benchmark (Section 2.3), which
contains no data from BioGRID-ORCS.

4 CRISPR Screen Prediction Approaches

We explore two main approaches for in silico
CRISPR screen prediction: direct LLM prompting
and a scalable, embedding-based classifier (concep-
tualized in Figure 2).

4.1 LLM Prompting and Evaluation

We evaluated a diverse set of LLMs, including
open-source Llama models and proprietary OpenAI
models (see Appendix Table 7 for a complete list).
We systematically tested combinations of Chain-
of-Thought (CoT) (Wei et al., 2022) and few-shot
prompting strategies, as well as zero-shot prompt-
ing. For CoT prompting, we instruct the model
to explicitly reason through the relevant biological
processes step-by-step. For few-shot prompting,
we provide one or two example input-output pairs
(illustrating positive and/or negative outcomes) be-
fore the target question. When combining CoT
with few-shot prompting, the few-shot examples
also include the CoT reasoning steps. An example
prompt is provided in Appendix Table 5. Further
details of our benchmarking pipeline are provided
in Appendix Section A.1.

For each model and prompting strategy, we ex-
tract a binary answer (“Yes” or “No”) from the
generated text. Performance is primarily assessed
using the F1 score and False Positive Rate (FPR).
The F1 score is the harmonic mean of precision
and recall, providing a balance between them. FPR
(1 - Specificity) measures the proportion of actual
negatives incorrectly classified as positive. We pri-
oritize maximizing F1 and minimizing FPR due to
our high-confidence hit definition, where a false
positive (incorrectly predicting “Yes”) means the
model wrongly asserts a phenotypic effect in the
opposite direction to the true significant effect.

Table 1 shows the aggregated results of LLMs
on the Simple Benchmark. We report the mean
and standard deviation for each model across up
to 10 prompting strategy combinations. The ran-
dom baseline (detailed in Appendix Section A.2)
provides a performance floor. Compared to a
random baseline (F1=0.47, FPR=0.36), GPT-4o
(F1=0.47±0.06, FPR=0.22±0.06) is the only model
which achieved a comparable F1 while attaining
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a notably better FPR. The generally modest per-
formance of direct prompting, even on the Sim-
ple Benchmark, may stem from several factors.
General-purpose LLMs, despite vast training data,
may lack the specific, fine-grained biological nu-
ance required even for seemingly direct gene-
phenotype links. Additionally, the inherent com-
plexity and context-dependency of biological sys-
tems mean that even “simple” effects can be modu-
lated by cellular states or pathways not fully cap-
tured by the concise prompt. Nevertheless, GPT-
4o’s lower FPR suggests some capacity to avoid
confident incorrect predictions of positive effects.
We also observe relatively small variance in GPT-
4o’s performance across strategies compared to
other models. The full performance metrics for
GPT-4o across all prompting strategies on the Sim-
ple Benchmark are in Appendix Table 8.

4.2 Embedding-Based Classifier
Prompting LLMs for every gene in a genome-wide
screen (often tens of thousands of genes) is com-
putationally infeasible and cost-prohibitive. To ad-
dress this scalability challenge, we developed a
novel embedding-based classification framework.
This approach leverages pre-computed embeddings
of screen components, resulting in a small, efficient
classifier at inference time where only cell line or
phenotype descriptions may need new embeddings.

We use OpenAI’s text-embedding-3-large
model to generate embeddings for each component
of the CRISPR screen tuples (perturbation method,
gene symbol, cell line description, and phenotype
description) from our training dataset (Section 3).
We explored two strategies for generating these em-
beddings: (1) directly embedding the raw text terms
for each component, and (2) embedding concise
summaries of these terms, generated by GPT-4o,
following a strategy similar to Shringarpure et al.
(2024). An example prompt for summarization is
in Appendix Table 6.

We then train a 5-layer MLP classifier using
these concatenated LLM-derived embeddings as
input. Additional training details are in Appendix
Section A.3. The performance of our trained mod-
els on the Difficult Benchmark is presented in Table
2. We report Area Under the Receiver Operating
Characteristic curve (AUROC), Area Under the
Precision-Recall curve (AUPRC), F1 score, FPR,
Positive Predictive Value (PPV, Precision), Nega-
tive Predictive Value (NPV), Sensitivity (Recall,
True Positive Rate - TPR), and Specificity (True

Negative Rate - TNR). Predicted probabilities are
binarized using Youden’s J statistic.

Our embedding-based classifiers significantly
outperform direct GPT-4o prompting on the Dif-
ficult Benchmark. The model using raw text
embeddings (Raw Emb.: F1=0.84, FPR=0.15)
performs best, substantially exceeding GPT-4o’s
average prompting performance (F1=0.35±0.17,
FPR=0.79±0.19). Interestingly, embeddings of
raw text terms yield better results than embed-
dings of LLM-generated summaries (Summ. Emb.:
F1=0.67, FPR=0.26). We hypothesize that the sum-
marization process, while aiming for conciseness,
may inadvertently omit subtle but critical nuances
present in the original descriptions of cell lines or
complex phenotypes, which are crucial for accu-
rate prediction. This finding suggests that for tasks
requiring deep, nuanced understanding, providing
more complete and contextualized information to
the embedding model may be beneficial.

5 Conclusion and Broader Impact

In this work, we investigated the potential of LLMs
to predict CRISPR screen outcomes a priori. We
introduced novel benchmarks designed to evaluate
LLM capabilities across diverse biological contexts
while mitigating data leakage. Our comprehensive
evaluation of various LLMs and prompting strate-
gies revealed inherent limitations in direct prompt-
ing for this complex task. However, our scalable
and efficient embedding-based prediction frame-
work substantially outperformed direct prompting,
achieving an F1 score of 0.84 and an FPR of 0.15
on our Difficult Benchmark. This performance
underscores the broad potential of LLM-driven ap-
proaches in advancing functional genomics.

Specifically, we envision LLM-guided screening
as a powerful tool not only for CRISPR-based func-
tional genomics, but also for predicting outcomes
of diverse perturbation screens, thereby broadening
its impact across experimental biology. Further-
more, a critical application of this framework also
lies in identifying highly novel biological findings.
When an LLM, drawing upon its extensive train-
ing on established knowledge, fails to predict a
robust experimental hit, this discrepancy signals a
result potentially unexplainable by current under-
standing. Such instances pinpoint exciting areas
for discovering new biological mechanisms or gene
functions, thereby enabling researchers to focus on
novel leads and accelerating biological discovery.
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Limitations and Future Work

Our study, while demonstrating promising results,
has several limitations. The current prediction
task is framed as a binary “hit/no-hit” classifica-
tion, which simplifies the often quantitative and
nuanced nature of CRISPR screen outcomes (e.g.,
magnitude of effect). We relied on existing general-
purpose LLMs with fixed knowledge cutoffs; these
models cannot dynamically incorporate the latest
biological discoveries published after their training,
potentially limiting predictive accuracy on cutting-
edge research questions. While our Difficult Bench-
mark specifically used post-cutoff publications for
evaluation, this is a general concern for static mod-
els. The training data for the embedding classifier,
though large, may contain inherent biases (e.g.,
label imbalance, focus on protein-coding genes,
etc). Furthermore, the size of our Difficult Bench-
mark test set was constrained by the availability of
suitable, complex CRISPR screens published after
LLM knowledge cutoffs that also lent themselves
to our binary prediction framework; this reflects a
necessary trade-off between test set scale and the
rigor of avoiding data contamination for a priori
evaluation.

Future work will focus on addressing these lim-
itations and expanding the capabilities of our ap-
proach. We plan to:

• Expand our benchmark datasets to include more
diverse biological contexts and screens.

• Benchmark a wider range of model families,
including domain-specific LLMs pre-trained or
fine-tuned on biological data, to compare against
general-purpose models.

• Explore retrieval-augmented generation (RAG)
techniques to enable models to incorporate the
latest research findings at inference time, over-
coming fixed knowledge cutoffs.

• Develop methods to predict quantitative out-
comes or capture more nuanced aspects of phe-
notypic responses, moving beyond binary classi-
fication.

• Investigate more sophisticated prompting strate-
gies and model architectures for improved bio-
logical reasoning.

• Conduct in vitro validation of the model’s most
confident or novel predictions to assess real-
world utility.

• Develop systematic methods to analyze and pri-
oritize discrepancies between LLM predictions
and experimental outcomes to specifically flag
and investigate potentially novel biological hits.

• Compare LLM-derived embeddings against
other biological embedding methodologies for
a broader understanding of their representational
power for this task.

Ultimately, we aim to develop more robust and
interpretable LLM-based tools to further accelerate
biological discovery.

Ethics Statement

One potential ethical consideration is the availabil-
ity of our source data. We primarily use open ac-
cess data from BioGRID-ORCS. We additionally
manually curated CRISPR screen data from recent
publications. While one of the screens we curate
for the Difficult Benchmark is derived from a publi-
cation in Nature (PMID: 39567689), which may be
behind a paywall for some, the specific supplemen-
tal data containing the CRISPR screen results is
publicly accessible, and the full article is available
on PubMed Central. To the best of our knowl-
edge, we have provided comprehensive descrip-
tions, links to source code, and preprocessed data
necessary to reproduce our experiments, promoting
transparency and further research. Our software
and benchmark data are available at: https://
github.com/czbiohub-chi/immune-llm-acl.

Acknowledgements

The authors thank Shana Kelley, Adam Schauer,
Hongyuan Mei, and Imran Razzak for their valu-
able feedback. S. Song is supported by NIH train-
ing grant T32GM007281. V. Kindratenko is a re-
cipient of a Chan Zuckerberg Biohub Spoke Award.
A. A. Khan is supported in part by NIH award
DP2AI177884 and a Chan Zuckerberg Investigator
Award.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda

359

https://github.com/czbiohub-chi/immune-llm-acl
https://github.com/czbiohub-chi/immune-llm-acl


Askell, et al. 2020. Language models are few-shot
learners. Advances in Neural Information Processing
Systems, 33:1877–1901.

Yiqun Chen and James Zou. 2024. Genept: a simple but
effective foundation model for genes and cells built
from chatgpt. bioRxiv, pages 2023–10.

Yu-Jung Chen, Swathi V Iyer, David Chun-Cheng
Hsieh, Buren Li, Harold K Elias, Tao Wang, Jing
Li, Mungunsarnai Ganbold, Michelle C Lien, Yu-
Chun Peng, et al. 2024. Gliocidin is a nicotinamide-
mimetic prodrug that targets glioblastoma. Nature,
pages 1–8.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

John G Doench, Nicolo Fusi, Meagan Sullender, Mu-
dra Hegde, Emma W Vaimberg, Katherine F Dono-
van, Ian Smith, Zuzana Tothova, Craig Wilen, Robert
Orchard, et al. 2016. Optimized sgrna design to
maximize activity and minimize off-target effects of
crispr-cas9. Nature Biotechnology, 34(2):184–191.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Bastiaan Evers, Katarzyna Jastrzebski, Jeroen PM Hei-
jmans, Wipawadee Grernrum, Roderick L Beijers-
bergen, and Rene Bernards. 2016. Crispr knockout
screening outperforms shrna and crispri in identifying
essential genes. Nature Biotechnology, 34(6):631–
633.

Wenpin Hou and Zhicheng Ji. 2024. Assessing gpt-4 for
cell type annotation in single-cell rna-seq analysis.
Nature Methods, pages 1–4.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Martin Jinek, Krzysztof Chylinski, Ines Fonfara,
Michael Hauer, Jennifer A Doudna, and Emmanuelle
Charpentier. 2012. A programmable dual-rna–guided
dna endonuclease in adaptive bacterial immunity. Sci-
ence, 337(6096):816–821.

Wei Li, Han Xu, Tengfei Xiao, Le Cong, Michael I Love,
Feng Zhang, Rafael A Irizarry, Jun S Liu, Myles
Brown, and X Shirley Liu. 2014. Mageck enables
robust identification of essential genes from genome-
scale crispr/cas9 knockout screens. Genome Biology,
15:1–12.

Wenhui Li, Xianyue Jiang, Wuke Wang, Liya Hou,
Runze Cai, Yongqian Li, Qiuxi Gu, Qinchang Chen,
Peixiang Ma, Jin Tang, et al. 2024. Discovering
crispr-cas system with self-processing pre-crrna ca-
pability by foundation models. Nature Communica-
tions, 15(1):10024.

Rose Oughtred, Jennifer Rust, Christie Chang, Bobby-
Joe Breitkreutz, Chris Stark, Andrew Willems, Lor-
rie Boucher, Genie Leung, Nadine Kolas, Frederick
Zhang, et al. 2021. The biogrid database: A com-
prehensive biomedical resource of curated protein,
genetic, and chemical interactions. Protein Science,
30(1):187–200.

Yuanhao Qu, Kaixuan Huang, Henry Cousins,
William A. Johnson, Di Yin, Mihir Shah, Denny
Zhou, Russ Altman, Mengdi Wang, and Le Cong.
2024. Crispr-gpt: An llm agent for automated design
of gene-editing experiments. bioRxiv.

Varuni Sarwal, Viorel Munteanu, Timur Suhodolschi,
Dumitru Ciorba, Eleazar Eskin, Wei Wang, and
Serghei Mangul. 2023. Biollmbench: A compre-
hensive benchmarking of large language models in
bioinformatics. bioRxiv, pages 2023–12.

Ophir Shalem, Neville E Sanjana, Ella Hartenian,
Xi Shi, David A Scott, Tarjei S Mikkelsen, Dirk
Heckl, Benjamin L Ebert, David E Root, John G
Doench, et al. 2014. Genome-scale crispr-cas9
knockout screening in human cells. Science,
343(6166):84–87.

Suyash S Shringarpure, Wei Wang, Sotiris Karagounis,
Xin Wang, Anna C Reisetter, Adam Auton, and Aly A
Khan. 2024. Large language models identify causal
genes in complex trait gwas. medRxiv, pages 2024–
05.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mah-
davi, Jason Wei, Hyung Won Chung, Nathan Scales,
Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl,
et al. 2023. Large language models encode clinical
knowledge. Nature, 620(7972):172–180.

Ferdinandos Skoulidis, Haniel A Araujo, Minh Truong
Do, Yu Qian, Xin Sun, Ana Galan Cobo, John T Le,
Meagan Montesion, Rachael Palmer, Nadine Jahchan,
et al. 2024. Ctla4 blockade abrogates keap1/stk11-
related resistance to pd-(l) 1 inhibitors. Nature,
635(8038):462–471.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

360

https://doi.org/10.1101/2024.04.25.591003
https://doi.org/10.1101/2024.04.25.591003


Tim Wang, Jenny J Wei, David M Sabatini, and Eric S
Lander. 2014. Genetic screens in human cells using
the crispr-cas9 system. Science, 343(6166):80–84.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Jan Winter, Marc Schwering, Oliver Pelz, Benedikt
Rauscher, Tianzuo Zhan, Florian Heigwer, and
Michael Boutros. 2017. Crispranalyzer: Interactive
analysis, annotation and documentation of pooled
crispr screens. BioRxiv, page 109967.

A Appendix

A.1 Additional Benchmarking Details

All Llama models were accessed through Hugging-
Face and served using vLLM’s OpenAI-like API
server. This enabled a unified pipeline for bench-
marking both Llama and OpenAI models via the
OpenAI client’s chat completions method. For
Llama models, we used the “instruct” fine-tuned
variants for Llama 3 and newer versions, and the
“chat” variants for Llama 2. To ensure reproducibil-
ity, a fixed random seed was used, and the temper-
ature parameter for LLM generation was set to 0.
When benchmarking CoT prompting, additional in-
structions were provided to the model to explicitly
use chain-of-thought reasoning to analyze the bio-
logical processes involved. For few-shot prompt-
ing, one or two manually constructed examples
(positive and/or negative outcomes) were provided.
These examples were interleaved between the main
instructions and the final query, using transition text
to clearly demarcate them as examples. For Ope-
nAI’s “o1” family of models, explicit CoT prompts
were omitted as these models are designed to im-
plicitly use CoT reasoning. All benchmarking of
Llama models was conducted on a system with 2x
NVIDIA A100 80GB GPUs.

A.2 Baseline Model

We compare our LLM-based approaches against
a random baseline. This baseline predicts “hit” or
“no-hit” outcomes randomly, with the probabilities
of predicting “hit” weighted by the overall pro-
portion of actual “hits” in the specific benchmark
dataset being evaluated. This provides a simple
lower-bound performance reference.

A.3 Additional Training Details for
Embedding-Based Classifier

For our embedding-based classifier models, we uti-
lized OpenAI’s text-embedding-3-large model
to compute 3072-dimensional embeddings for the
raw text or summarized descriptions of CRISPR
screen components (perturbation method, gene
symbol, cell line, and hypothesized phenotype).
For each data sample, these four embeddings were
concatenated, resulting in an input vector of 12,288
dimensions (3072 * 4) for our 5-layer MLP. Each
subsequent hidden layer in the MLP had half the
number of neurons as the preceding layer, with
a final classification layer for binary output. The
hidden layer dimensions were thus [6144, 3072,
1536, 768]. The MLP was trained using a binary
cross-entropy loss function. We used the AdamW
optimizer with an initial learning rate of 0.001 and
a weight decay of 0.01, a batch size of 8192, and a
learning rate scheduler to reduce the learning rate
if there was no improvement in validation loss after
5 epochs. Early stopping was triggered if valida-
tion loss did not improve for 15 consecutive epochs.
The model weights corresponding to the epoch with
the lowest validation loss were selected for the final
model. The model trained on raw term embeddings
converged after 4 epochs, while the model using
summarized term embeddings trained for 3 epochs.
All training was performed on a single NVIDIA
A100 80GB GPU and took approximately 13 GPU
hours in total for both models.
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A.4 Supplemental Tables

Screen ID Perturbation Cell Line Hypothesized Phenotype Genes Hits

1837 activation
primary CD4+
human T cells

increased TNF-alpha
secretion

423 140

1885 activation J774 macrophages phagocytic inhibition 343 139

1835 activation
primary CD4+
human T cells

increased IL2 secretion 243 76

1733 knockout
HeLa cervical
adenocarcinoma cells

increased RelA nuclear
translocation

166 130

Table 3: Simple Benchmark: screens sourced from BioGRID-ORCS. “Genes” refers to the count of unique genes
screened for the given phenotype in that screen after filtering for those with a significant effect, per our strict
definition. “Hits” refers to the count of gene perturbations resulting in the hypothesized phenotype.

PMID Perturbation Cell Line Hypothesized Phenotype Genes Hits

39567689 knockout
NG2-3112 mouse
glioblastoma cells

increased sensitivity to gliocidin and
subsequently glioblastoma cell death

881 73

39385035 knockout
3LL Lewis lung
carcinoma cells

increased resistance to PD1 blockade
and lung carcinoma cell survival

26 23

39567689 knockout
NG2-3112 mouse
glioblastoma cells

decreased sensitivity to gliocidin and
subsequently glioblastoma cell survival

881 808

39385035 knockout
3LL Lewis lung
carcinoma cells

decreased resistance to PD1 blockade
and lung carcinoma cell death

26 3

Table 4: Difficult Benchmark: screens derived from publications in late 2024 (Chen et al., 2024; Skoulidis et al.,
2024). “Genes” refers to the count of unique genes screened for the given phenotype in that screen after filtering for
those with a significant effect, per our strict definition. “Hits” refers to the count of gene perturbations resulting
in the hypothesized phenotype. The two screens with high hit counts (808 and 23) correspond to the inverted
phenotypes used for balancing, as described in Section 2.3.
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Line Role Message

1 System You are an expert in the fields of Immunology, Computational Biology, Genetics,
and Molecular Biology.

2 System Instructions: Carefully analyze the question and think through the biological process.
Using the chain of thought method to clearly outline your reasoning, provide a step-
by-step causal mechanistic explanation of the biological process. Give a final answer
that is either “Final Answer: Yes” or “Final Answer: No”. Do not give additional
comments after your final answer.

3 System Here is a positive example:
4 User Question: Does knockout of BRCA1 in MCF-7 cells causally result in increased

sensitivity to DNA-damaging agents?
5 Assistant To address this question, let’s break down the process step by step:

1. **Understanding BRCA1**: BRCA1 is a tumor suppressor gene that
plays a crucial role in maintaining genome stability. It is involved in the repair of
DNA double-strand breaks through homologous recombination (HR). When BRCA1
is functioning properly, it helps to repair DNA damage, thereby preventing mutations
that can lead to cancer.

2. **Role of BRCA1 in DNA Repair**: In the absence of BRCA1, cells
are more likely to rely on non-homologous end joining (NHEJ) for DNA repair,
which is error-prone and can lead to genetic mutations. This is because BRCA1-
deficient cells have impaired HR, making them more susceptible to DNA damage.

3. **Effect of BRCA1 Knockout on MCF-7 Cells**: MCF-7 cells are a
human breast cancer cell line. Knocking out BRCA1 in these cells would likely
impair their ability to repair DNA damage through HR, making them more reliant on
NHEJ. This would increase the likelihood of genetic mutations and chromosomal
instability.

4. **Sensitivity to DNA-Damaging Agents**: DNA-damaging agents, such
as chemotherapy drugs, work by inducing DNA damage in cancer cells. In cells with
impaired DNA repair mechanisms, such as those with a BRCA1 knockout, the DNA
damage caused by these agents would be more difficult to repair. As a result, these
cells would be more likely to undergo cell death, making them more sensitive to
DNA-damaging agents.

5. **Causal Relationship**: The knockout of BRCA1 in MCF-7 cells would
causally result in increased sensitivity to DNA-damaging agents because it would
impair the cells’ ability to repair DNA damage, making them more susceptible to the
effects of these agents.

Final Answer: Yes
6 System Now answer the following question following the instructions and example above.
7 User Question: Does {crispr_strategy} of {gene} in {cell_type} causally result in {pheno-

type}?

Table 5: Example prompt used for benchmarking LLMs, illustrating Chain-of-Thought (CoT) and 1-shot (pos-
itive example) prompting. The prompt is input to models using their respective chat templates. Placeholders
{crispr_strategy}, {gene}, {cell_type}, and {phenotype} are replaced with terms specific to each screen.
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Line Role Message

1 User Generate a summary for the human gene {gene}. Include any relevant functions,
pathways, cell types, interactions, or other important information regarding the gene.

Table 6: Example prompt used for summarizing CRISPR screen terms (specifically gene symbols in this example).
Similar prompts were adapted for summarizing CRISPR perturbation methodology, cell line characteristics, and
target phenotype descriptions when generating embeddings from summaries.

Model Alias Model Version

o1 o1-2024-12-17
o1-mini o1-mini-2024-09-12
GPT-4o gpt-4o-2024-11-20
GPT-4o-mini gpt-4o-mini-2024-07-18
GPT-4-turbo gpt-4-turbo-2024-04-09
GPT-4 gpt-4-0125-preview
GPT-3.5 gpt-3.5-turbo-0125
Llama-2-7B meta-llama/Llama-2-7b-chat-hf
Llama-2-13B meta-llama/Llama-2-13b-chat-hf
Llama-2-70B meta-llama/Llama-2-70b-chat-hf
Llama-3-8B meta-llama/Llama-3-8B-Instruct
Llama-3-70B meta-llama/Llama-3-70B-Instruct
Llama-3.1-8B meta-llama/Llama-3.1-8B-Instruct
Llama-3.1-70B meta-llama/Llama-3.1-70B-Instruct
Llama-3.2-1B meta-llama/Llama-3.2-1B-Instruct
Llama-3.2-3B meta-llama/Llama-3.2-3B-Instruct
Llama-3.3-70B meta-llama/Llama-3.3-70B-Instruct

Table 7: List of LLMs benchmarked, with their common short name (Model Alias) and the specific version or
identifier used in the experiments.

Model Few-shot CoT F1 FPR PPV NPV Sensitivity Specificity

GPT-4o 0-shot N 0.48 0.28 0.53 0.65 0.44 0.72
GPT-4o 1-shot (+) N 0.49 0.23 0.56 0.66 0.43 0.77
GPT-4o 1-shot (-) N 0.31 0.09 0.62 0.62 0.21 0.91
GPT-4o 2-shot (+/-) N 0.53 0.24 0.58 0.68 0.48 0.76
GPT-4o 2-shot (-/+) N 0.53 0.32 0.54 0.67 0.53 0.68
GPT-4o 0-shot Y 0.53 0.25 0.58 0.68 0.49 0.75
GPT-4o 1-shot (+) Y 0.50 0.23 0.57 0.66 0.44 0.77
GPT-4o 1-shot (-) Y 0.46 0.20 0.57 0.65 0.39 0.80
GPT-4o 2-shot (+/-) Y 0.44 0.18 0.58 0.64 0.36 0.82
GPT-4o 2-shot (-/+) Y 0.45 0.21 0.56 0.65 0.38 0.79
Random N/A N/A 0.47 0.36 0.47 0.63 0.46 0.64

Table 8: Detailed performance of GPT-4o (model version gpt-4o-2024-11-20) on the Simple CRISPR screen
benchmark across different prompting strategies. Metrics include F1 Score, False Positive Rate (FPR), Positive
Predictive Value (PPV, Precision), Negative Predictive Value (NPV), Sensitivity (Recall, True Positive Rate), and
Specificity (True Negative Rate). CoT indicates Chain-of-Thought prompting. (+)/(-) indicate positive/negative
examples for 1-shot; (+/-) or (-/+) indicate order for 2-shot.
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Abstract
This paper presents the setup and results of the
third edition of the BioLaySumm shared task
on Lay Summarization of Biomedical Research
Articles and Radiology Reports, hosted at the
BioNLP Workshop at ACL 2025. In this task
edition, we aim to build on the first two edi-
tions’ successes by further increasing research
interest in this important task and encouraging
participants to explore novel approaches that
will help advance the state-of-the-art. Specifi-
cally, we introduce the new task of Radiology
Report Generation with Layman’s terms, which
is parallel to the task of lay summarization of
biomedical articles in the first two editions.
Overall, our results show that a broad range
of innovative approaches were adopted by task
participants, including inspiring explorations
of latest RL techniques adopted in the training
of general-domain large reasoning models.

1 Introduction

Lay Summarization describes the task of transform-
ing a technical or specialist text that into summaries
accessible to non-expert audience. By prioritizing
clarity, context, and relevance over specialized ter-
minologies, lay summaries bridge critical knowl-
edge gaps between experts and diverse stakehold-
ers, including practitioners, researchers in adjacent
fields, patients, and the public. Despite their value
in democratizing information, the creation of high-
quality lay summaries remains scarce and labour-
intensive, creating significant barriers to inclusive
knowledge dissemination.

The need for accessible communication spans
the entire biomedical ecosystem, from cutting-edge
research to routine clinical care. Biomedical re-
search publications, which contain the latest find-
ings on prominent health-related topics, represent a
key area where lay summarization is crucial. While
mandatory for some journals, lay summaries are
not universally adopted, leaving vital research in-
accessible to non-experts. Even when required,

authors who are often untrained in science com-
munication struggle to distill their work effectively.
Automatic lay summarization thus offers immense
potential to scale accessibility while alleviating au-
thorial burden, ensuring findings reach patients,
policymakers, and interdisciplinary researchers

Parallel challenges exist in clinical communica-
tion, particularly in radiology. The 21st Century
Cures Act (21st Century Cures Act, 2016) man-
dates immediate patient access to electronic health
records, yet radiology reports—designed for clini-
cians—use highly technical language. Fewer than
4% radiology reports meet the eighth-grade read-
ing level typical of U.S. adults (Martin-Carreras
et al., 2019), causing confusion, anxiety, and poor
adherence to follow-up care. Creating lay sum-
maries of these reports is therefore not just a matter
of convenience but a critical step toward a more
patient-centered, transparent, and effective health-
care system.

The BioLaySumm shared task1 is dedicated
to advancing the automatic lay summarization
of biomedical texts. Building on the success
of the first two editions (Goldsack et al., 2023,
2024), this year’s shared task addresses two do-
mains: biomedical articles and radiology reports.
Through this shared task, we aim to encourage
the development of novel approaches and increase
research interest in developing techniques for mak-
ing scientific and clinical information accessible
to broader audiences. In this paper, we present
the results of the third edition of the BioLaySumm
shared task, hosted by the BioNLP Workshop at
ACL 2025. This year, we expand the scope of our
challenge to include two parallel tracks: (i) the es-
tablished task of Lay Summarization of Biomedical
Research Articles; and (ii) a new track on the Lay
Summarization of Radiology Reports.

In what remains of the paper, we address the
formulation of these two tasks (§2), the datasets

1https://biolaysumm.org
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used (§3), and the evaluation procedure (§4), before
providing a description of the participating systems
(§5), and notable insights (§6).

2 Task Description

As part of the BioLaySumm 2025 shared task, par-
ticipants developed systems capable of generating
accessible summaries of biomedical content for
non-expert audiences. Building upon previous edi-
tions, this year’s competition introduced new chal-
lenges while maintaining core evaluation frame-
works. The task was hosted using the CodaBench
platform (Xu et al., 2022), with submissions auto-
matically evaluated upon upload.

2.1 Task 1: Lay Summarization of Biomedical
Articles

In Task 1, participants were required to generate
plain-language summaries from technical research
articles, with two distinct subtasks:

Subtask 1.1: Plain Lay Summarization re-
quired generating summaries using only the arti-
cle’s abstract and main text as input. As in previous
editions, two separate datasets (PLOS and eLife)
with notable stylistic differences were provided.
Systems could employ either:

• Separate models trained independently on
each dataset

• A unified model trained on both datasets

Final rankings were determined by average perfor-
mance across both datasets.

Subtask 1.2: Lay Summarization with Exter-
nal Knowledge extended the plain summariza-
tion task by mandating incorporation of external
resources to address knowledge gaps for lay audi-
ences. Participants employed techniques such as
Retrieval-Augmented Generation (RAG) or man-
ual augmentation to integrate supplementary in-
formation (e.g., background context, terminology
definitions).

2.2 Task 2: Radiology Report Generation

New in 2025, this task focused on translating med-
ical imaging reports into patient-friendly explana-
tions:

Subtask 2.1: Radiology Report Translation in-
volved text-to-text simplification of professional ra-
diology reports. Participants utilized report-layman
term pairs from multiple datasets (Open-i, PadCh-
est, BIMCV-COVID19 ± MIMIC-CXR), with sep-
arate rankings for systems using three versus four
datasets.

Subtask 2.2: Multimodal Translation (op-
tional) required generating lay summaries directly
from medical images using end-to-end models (e.g.,
multimodal LLMs), with separate evaluation tracks
based on training data scope.

Competition Framework Consistent with previ-
ous editions:

• Participants received training/validation sets
with reference summaries alongside blind test
sets

• For text-only tasks (Task 1 and Subtask 2.1),
llama3 8B/Qwen2.5 7B will be used as the
primary baseline.

• For multimodal task (Subtask 2.2), we will
use finetuned Qwen-VL 7B as the finetuned
baseline.

Detailed dataset characteristics appear in §3, with
evaluation protocols in §4. Participants could at-
tempt any combination of subtasks based on their
research interests.

3 Datasets

The datasets used for the Task 1 are based on the
previous works of Goldsack et al. (2022) and Luo
et al. (2022), and are derived from two different
biomedical publications: Public Library of Sci-
ence (PLOS) and eLife. Each dataset consists
of biomedical research articles paired with expert-
written lay summaries.

As described in Goldsack et al. (2022), the lay
summaries of each dataset also exhibit numerous
notable differences in their characteristics, with
eLife’s lay summaries being longer, more abstrac-
tive, and more readable than those of PLOS.

Furthermore, for PLOS, lay summaries are
author-written, and articles are derived from 5
peer-reviewed journals covering Biology, Computa-
tional Biology, Genetics, Pathogens, and Neglected
Tropical Diseases. For eLife, lay summaries are
written by expert editors (in correspondence with
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Dataset Task # Train # Val # Test
eLife 1 4,346 241 142
PLOS 1 24,773 1,376 142*
PadChest 2 116,847 7,824 7,130
BIMCV-COVID19 2 31,364 2,042 3,221
Open-i 2 2,243 1,34 186
MIMIC-CXR 2 45,000 5,000 500

Table 1: Data split sizes for each dataset. * denotes that
this split is different for each subtask.

authors), and articles are derived from the peer-
reviewed eLife journal, covering all areas of the
life sciences and medicine. For a more detailed
analysis of dataset content, readers can refer to
Goldsack et al. (2022).

For Task 2, we utilized four radiology datasets:
PadChest (Bustos et al., 2020), BIMCV-COVID19+
(Vayá et al., 2020), Open-i (Demner-Fushman et al.,
2012), and MIMIC-CXR (Johnson et al., 2019).
The PadChest dataset comprises over 160,000 im-
ages from 67,000 patients, interpreted by radiolo-
gists at San Juan Hospital (Spain) between 2009
and 2017, and includes six positional views with
supplementary acquisition and demographic meta-
data. The BIMCV-COVID19+ dataset contains
chest X-rays (CXR/DX) and computed tomogra-
phy (CT) images of COVID-19 patients, accompa-
nied by radiographic findings, pathologies, poly-
merase chain reaction (PCR) tests, immunoglob-
ulin G (IgG)/M (IgM) antibody tests, and reports
from the Valencian Community Medical Image
Database (BIMCV). This database includes 21,342
CR, 34,829 DX, and 7,918 CT studies. Open-i of-
fers access to 3.7 million images from 1.2 million
PubMed Central articles, including 7,470 chest X-
rays with 3,955 reports. The MIMIC-CXR dataset
contains 377,110 JPEG images with structured la-
bels derived from 227,827 associated free-text re-
ports, de-identified to comply with HIPAA Safe
Harbor requirements by removing protected health
information (PHI).

For the layman-style reports of Task 2, we ap-
plied the method from Zhao et al. (2025) to cre-
ate the layman-style reports for all four datasets.
PadChest and BIMCV-COVID19+ reports were
first translated into English before transformation;
Open-i and MIMIC-CXR were converted directly.
A subset of MIMIC-CXR reports was selected for
training and testing in this shared task.

Table 1 summarizes the data split information
for all datasets of two Tasks. Note that the training
and validation sets used for both datasets are identi-

cal to those published in Goldsack et al. (2022) and
Zhao et al. (2025). By leveraging these datasets,
we aim to develop abstractive summarization mod-
els and layman-style report generation systems ca-
pable of producing accessible summaries for un-
seen biomedical articles and layman-style radiol-
ogy reports. This approach will facilitate effective
communication of significant new publications to
non-expert audiences and patients across diverse
biomedical domains.

4 Evaluation

Task1: Lay Summarization For both subtasks
of Task 1, we evaluate summary quality according
to three criteria - Relevance, Readability, and Fac-
tuality - where each criterion is composed of one
or more automatic metrics:

• Relevance: ROUGEROUGE - 1, 2, and L
(Lin, 2004), *BLEU (Papineni et al., 2002),
*METEOR (Banerjee and Lavie, 2005), and
BERTScore (Zhang et al., 2020).

• Readability: Flesch-Kincaid Grade Level
(FKGL), Dale-Chall Readability Score
(DCRS), Coleman-Laiu Index (CLI), and
LENS (Maddela et al., 2023).

• Factuality: AlignScore (Zha et al., 2023) and
SummaC (Zha et al., 2023)

Task2: Radiology Report Generation For both
subtasks of Task 2, we evaluate report quality ac-
cording to three criteria - Relevance, Readability,
and Clinical - where each criterion is composed of
one or more automatic metrics:

• Relevance: ROUGE - 1, 2, and L (Lin, 2004),
BLEU (Papineni et al., 2002), METEOR
(Banerjee and Lavie, 2005), and BERTScore
(Zhang et al., 2020), *Semantic Similarity
scores (Pesquita et al., 2009).

• Readability: Flesch-Kincaid Grade Level
(FKGL), Dale-Chall Readability Score
(DCRS), Coleman-Laiu Index (CLI).

• Clinical Metrics: *CheXbert (Smit et al.,
2020), and *RadGraph (Jain et al., 2021).

Here “*” indicates that the metric is newly intro-
duced for this year’s edition of the task. Specifi-
cally, the BLEU and METEOR metrics are intro-
duced to measure how closely a system-generated
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summary or report matches its reference at the
lexical level. To assess report quality at the se-
mantic level, we introduce a semantic score mea-
sured based on the cosine similarity between the
sentence-level embeddings of each generated re-
port and its reference. Additionally, CheXbert and
RadGraph are introduced to quantify clinical cor-
rectness, which can not be assessed by general
metrics. By incorporating these two domain-aware
metrics, the evaluation process could be more com-
prehensive.

For Task 1, The scores calculated for each met-
ric are the average of those calculated indepen-
dently for the generated lay summaries of PLOS
and eLife. As for Task 2 (open track), all scores
are computed on the combined public datasets —
PadChest, BIMCV-COVID19, and Open-i. While
for Task 2 (closed track), the reports are evaluated
on open-track datasets plus MIMIC-CXR, and each
metric is then averaged over the two scores.

The aim is to maximize the scores for all metrics
except for FKGL, DCRS, and CLI the Readability
metrics. For these metrics, the aim is to minimize
scores, as lower scores are indicative of greater
readability.2

Following the submission deadline for each sub-
task, an overall ranking is calculated based on the
average performance of submissions across all cri-
teria. Specifically, we first apply min-max nor-
malization to the scores of each metric (thus es-
tablishing a common value range), before averag-
ing across metrics within each criterion to obtain
criterion-level scores. Note that, for metrics that
we minimize (i.e., FKGL, DCRS, and CLI) we
calculate 1 minus the mix-max normalized value.
Finally, criterion-level scores are then averaged to
obtain an overall score, by which submissions are
then ranked.

Baselines We train Qwen2.5 (Qwen et al., 2025),
LLaMA3 (Grattafiori et al., 2024), and Qwen2.5-
VL (Bai et al., 2025) on the BioLaySumm 2025
training dataset as the baseline models. (1) For
Task 1 (Lay Summarization), we select Qwen2.5-
7B-Instruct and LLaMA3-8B-Instruct as the back-
bone models and train them on our training data by
using the whole article as input and the lay sum-
mary as output. (2) For the Task 2 (Radiology Re-
port Generation with Layman’s Terms), we train
Qwen2.5-7B-Instruct and LLaMA3-8B-Instruct on

2For these metrics, the scores are estimates of the US
Grade level of education required to comprehend a given text.

our training data for Subtask 2.1 (Radiology Report
Translation) and train Qwen2.5-VL-7B-Instruct for
the Subtask 2.2 (Multi-modal Radiology Report
Translation).

5 Submissions

Out of all participating teams, 13 teams submitted
system papers. Here, we provide a brief summary
of the approaches taken by these teams.

AEHRC (Zhang et al., 2025) This team pro-
duced the top-ranked submission for both open-
source and close-source tracks of Subtask 2.1, and
provided a comparison study between encoder-
decoder and decoder-only architectures. The paper
presents the surprising results that a 700M T5-large-
based model provides better performance than a
3B LLaMA-3.2-based model across nine out of ten
metrics, including relevance, readability, and clin-
ical accuracy, despite having significantly fewer
parameters. The findings highlight the continual
relevance of encoder-decoder models for lay sum-
marization tasks in the era of LLMs.

MetninOzu (Evgin et al., 2025) This team pro-
poses two innovative approaches, reverse data aug-
mentation and salient sentence injection, and a
detailed study of them. The authors curated a
dataset of child-friendly articles with correspond-
ing gold-standard summaries and used LLMs to
rewrite them into more complex scientific variants
to augment the training data beyond the shared-task
training set. They also investigated whether they
can insert salient sentences from the main article
into the summary to enrich the input, leveraging
sentence embedding models.

XSZ (Xu et al., 2025) This team investigates
(i) k-shot demonstration fine-tuning with LLMs,
and (ii) further employing latest reasoning-oriented
RL methods to LLMs. For the first method, they
use embedding models to retrieve top-K examples
and fine-tune a Llama3-8B with LoRA. They then
employ RL algorithms (PPO and GRPO) to fur-
ther fine-tune the models. The reward function
is specifically design to optimize the evaluated
metrics, including factual metrics, relevant metrics
and readability metrics. Although the RL results
are not submitted to the competition, the paper is
well-implemented and innovative, showing that RL
methods are useful for lay summarization.
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Rank Team Relevance Readability Factuality
ROUGE BLEU MTR BERTS FKGL DCRS CLI LENS AlignS SummaC

1 SUWMIT 0.370 10.07 0.308 0.864 11.74 9.08 12.58 72.61 0.750 0.682
2 Baseline-llama3-8B-sft 0.366 9.86 0.314 0.863 12.20 9.25 12.98 72.86 0.722 0.644
3 Baseline-qwen2.5-7B-sft 0.352 8.74 0.303 0.870 12.71 9.65 13.70 60.22 0.754 0.644
4 BDA-UCM 0.334 8.08 0.294 0.870 12.32 9.26 13.20 64.07 0.691 0.590
5 MetinOZU 0.330 6.95 0.290 0.857 16.45 11.22 17.01 34.86 0.881 0.920
6 MIRAGES 0.288 4.63 0.230 0.846 11.71 8.46 11.99 71.27 0.681 0.605
7 TupiQ 0.335 7.16 0.268 0.862 13.44 10.59 13.48 43.67 0.762 0.642
8 LaySummX 0.321 5.44 0.253 0.855 12.33 9.51 13.38 80.46 0.675 0.521
9 CUTN_Bio 0.268 3.25 0.226 0.848 10.52 8.84 11.43 84.14 0.589 0.549

10 Aard 0.319 5.45 0.293 0.851 14.56 10.02 15.36 71.51 0.695 0.509
11 LTRC 0.288 4.27 0.222 0.850 13.36 9.30 13.29 79.34 0.601 0.476
12 5cNLP 0.333 6.14 0.268 0.859 16.07 10.40 15.34 76.05 0.631 0.549
13 RainCityNLP 0.284 4.87 0.241 0.840 16.74 11.66 16.24 9.41 0.612 0.653
14 SXZ 0.165 1.33 0.153 0.801 12.59 11.83 13.29 6.56 0.862 0.528
15 demo 0.165 1.33 0.153 0.801 12.59 11.83 13.29 6.56 0.862 0.528
16 x2z 0.182 1.18 0.168 0.804 12.60 8.56 12.65 63.22 0.368 0.468

(a) SubTask 1.1: Plain Lay Summarization

Rank Team Relevance Readability Factuality
ROUGE BLEU MTR BERTS FKGL DCRS CLI LENS AlignS SummaC

1 Aard 0.292 4.32 0.262 0.848 11.16 8.36 11.94 81.50 0.614 0.537
2 CUTN_Bio 0.296 4.08 0.228 0.855 13.37 10.25 14.74 80.00 0.689 0.507
3 5cNLP 0.335 5.91 0.275 0.858 16.30 10.29 15.24 75.57 0.610 0.445
4 LTRC 0.215 2.01 0.169 0.818 13.71 9.66 13.60 74.48 0.378 0.429

(b) Subtask 1.2: Lay Summarization with External Knowledge

Rank Team Relevance Readability Clinical Metrics
ROUGE BLEU MTR BERTS SIM FKGL DCRS CLI CHEX RG

1 AEHRC 0.671 46.09 0.704 0.953 0.890 7.397 9.31 8.05 0.860 0.402
2 KHU_LDI 0.529 28.66 0.577 0.935 0.843 7.528 9.29 8.26 0.827 0.265

(c) Subtask 2.1: Radiology Report Translation (Open Track)

Rank Team Relevance Readability Clinical Metrics
ROUGE BLEU MTR BERTS SIM FKGL DCRS CLI CHEX RG

1 AEHRC 0.629 38.99 0.669 0.948 0.894 7.574 8.97 7.95 0.777 0.377
2 Baseline-qwen2.5-7B-sft 0.537 25.71 0.543 0.938 0.854 6.440 10.04 8.55 0.779 0.291
3 5cNLP 0.555 28.27 0.609 0.937 0.872 8.046 9.24 8.23 0.750 0.317
4 Baseline-llama3-8B-sft 0.527 25.18 0.527 0.936 0.847 6.785 8.53 8.67 0.806 0.286
5 CUTN_Bio 0.404 14.90 0.428 0.913 0.798 7.359 8.53 7.36 0.704 0.216

(d) Subtask 2.1: Radiology Report Translation (Closed Track)

Table 2: Task leaderboard - all metrics. BertS = BertScore, FKGL = Flesch-Kincaid Grade Level, DCRS = Dale-
Chall Readability Score, CLI = Coleman-Liau Index, MTR = METOR, SIM = Similarity, AlignS = AlignScore,
CHEX = F1 chexbert, RG = Radgraph.
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Aard (Gupta and Krishnamurthy, 2025) This
team introduced a modular and flexible system
designed for generating lay summaries by lever-
aging large language models, a BioBERT-based
named entity recognizer, and the UMLS knowledge
base. For Task 1.1, they focused on summarization
using only the internal content of articles, while
Task 1.2 enhanced this with external biomedical
knowledge like terminology definitions to improve
readability and factuality. Their approach involved
chunking articles, extracting key sentences, iter-
ative rewriting, and integrating simplified defini-
tions for complex terms. The LayForge system
demonstrated strong performance, especially in
readability metrics, highlighting the effectiveness
of domain-specific augmentation for lay summary
generation.

RainCityNLP (Wilson et al., 2025) This team
utilized TF-IDF for sentence scoring and exper-
imented with Pegasus-XSum and a Falcons.ai
model pre-trained on medical data. All experi-
ments were conducted on consumer-grade hard-
ware, demonstrating feasibility in low-resource set-
tings. Evaluation showed the Falcons.ai model
scored highest in relevance, while Pegasus-XSum
excelled in readability metrics like FKGL and
LENS. The original extractive summaries outper-
formed others in factuality. The team also created a
dictionary of medical terms translated to lay-terms
for future use. Their work highlights both eco-
nomic and practical accessibility in medical sum-
marization.

TLPIQ (Bechler et al., 2025) This team focused
on generating biomedical lay summaries using a
fine-tuned FLAN-T5 base model, leveraging ab-
stract and conclusion sections of articles along with
expert-written lay summaries. They improved ac-
cessibility and understanding by maintaining factu-
ality and domain relevance, despite falling short on
readability compared to larger models like Llama3
and Qwen2.5. Their approach included instruction
tuning with dataset tags and a specialized prompt
template, achieving competitive relevance and su-
perior factuality scores. However, the model’s read-
ability could be further enhanced through strategies
such as dataset-specific training and post hoc lexi-
cal simplification.

LaySummX (Lin and Yu, 2025) This team in-
troduced a retrieval-augmented fine-tuning frame-
work for biomedical lay summarization, utilizing

abstract-driven semantic retrieval with LoRA-tuned
LLaMA3.1 models. By incorporating relevant full-
text segments retrieved using the article abstracts
into the fine-tuning process, they improved rele-
vance and factuality metrics significantly compared
to base models and individually tuned models,
while maintaining competitive readability. Their
method efficiently addresses computational con-
straints by segmenting articles into manageable
units, demonstrating strong performance among
open-source systems and closed-source models like
GPT.

5cNLP (Lossio-Ventura et al., 2025) This team
leveraged a combination of prompting strategies,
retrieval techniques, and multimodal fusion for
generating lay summaries from scientific articles
and radiology reports. They utilized structured
(compositional) prompting with role-based instruc-
tions to guide large language models (LLMs) like
Llama-3.3-70B-Instruct and GPT-4.1 in producing
summaries that are accessible to a general audi-
ence. Their method also incorporated retrieval-
augmented generation (RAG) using biomedical
knowledge from UMLS to enrich context under-
standing and employed a multimodal pipeline com-
bining images and captions for radiology report
summarization. Notably, their approach achieved
second place in Subtask 2.1 close-source track and
third place in Subtask 1.2, demonstrating the ef-
fectiveness of their framework in improving acces-
sibility and understandability of complex medical
information.

MIRAGES (Pong et al., 2025) The team ap-
proached the BioLaySumm 2025 task by build-
ing on an extract-then-summarize framework, em-
phasizing the importance of high-quality data cu-
ration for biomedical lay summarization. They
experimented with various extractive summariza-
tion strategies and employed LoRA to fine-tune a
Llama-3-8B to enhance readability and factual ac-
curacy of downstream abstractive summaries. Ad-
ditionally, they explored counterfactual data aug-
mentation and post-processing definition insertion
to further improve factual grounding and accessibil-
ity. Their system ranked 4th overall and achieved
2nd place in readability, demonstrating that good
input design and targeted fine-tuning are critical for
effective biomedical lay summarization. Their find-
ings suggest that strategic data curation can have
a more positive impact than merely increasing the
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volume of fine-tuning samples in domain-specific
summarization tasks.

SUWMIT (Basu et al., 2025) This team de-
veloped an open-source, end-to-end pipeline for
the automated generation of lay summaries from
biomedical articles, achieving top scores in two
out of four relevance metrics and the highest over-
all ranking in the plain lay summarization subtask.
Their approach involved fine-tuning a Llama-3.1-
8B model with LoRA, utilizing a contrastive de-
coding strategy known as DoLa to improve factual-
ity and readability. They experimented with vari-
ous preprocessing, extractive summarization, and
abstractive summarization techniques, ultimately
finding that including Flesch-Kincaid grade-level
targets in system messages and applying LoRA
weights during decoding were crucial for their
success. Additionally, they explored different
data transformation methods, including the use of
BioBERT embeddings for extractive summariza-
tion, to enrich input context for improved summary
quality.

KHU_LDI (Moriazi and Sung, 2025) This team
explored two approaches for generating lay radiol-
ogy reports: supervised fine-tuning of open-source
large language models using QLoRA, and a re-
finement process to improve the initial generated
output. They found that while the fine-tuned model
outperformed the refinement approach on test data,
the refinement method showed significant poten-
tial on the validation set, particularly when using
GPT-4o-mini as both the feedback and refinement
models. Their submission achieved second place
in the open track of Subtask 2.1, highlighting the
effectiveness of fine-tuning open-source models for
producing patient-friendly radiology reports.

BDA-UC3M (Ramzi and Bedmar, 2025) This
team focused on demonstrating that small-scale,
state-of-the-art language models (4B–7B param-
eters) can achieve competitive performance in
biomedical lay summarization. Utilizing models
such as Gemma3 4B, Qwen3 4B, and GPT-4.1-
mini, they employed dynamic 4-bit quantization,
extractive preprocessing, prompt engineering, data
augmentation, and Direct Preference Optimization
to enhance efficiency and factuality. Their system
ranked second in its category by generating high-
quality, accurate summaries, highlighting the po-
tential of compact models for making complex sci-
entific content accessible to non-expert audiences

without sacrificing performance.

CUTN_Bio (Sivagnanam et al., 2025) This team
focused on developing a prompt-based lay sum-
marization framework for biomedical articles and
radiology reports as part of the BioLaySumm 2025
shared task. For plain lay summarization, they uti-
lized Llama-3-8B with a Tree-of-Thought prompt-
ing strategy to generate simplified summaries. In
the lay summarization with external knowledge
subtask, they combined an extractive approach
(LEAD-K sentence extraction) with Llama-3-8B,
enriched by medical definitions from MedCAT and
Wikipedia, achieving the second position in Task
2.1. For radiology report translation, they imple-
mented a Retrieval-Augmented Generation (RAG)
method using the Zephyr model, achieving third in
this category. Their methodologies highlight the
effectiveness of combining external knowledge, ex-
tractive summarization techniques, and instruction-
tuned language models for generating accessible
summaries.

6 Results Analysis

The BioLaySumm 2025 shared task revealed crit-
ical insights about biomedical lay summarization
methodologies, emphasizing trade-offs, architec-
tural innovations, and emerging trends. The anal-
ysis below synthesizes key findings from both the
competition leaderboard (Table 2) and participant
approaches.

Trade-offs Between Evaluation Metrics No sin-
gle system dominated all evaluation dimensions
(relevance, readability, factuality), revealing inher-
ent conflicts in optimization objectives. For in-
stance, SUWMT (1st in Subtask 1.1) excelled in
relevance (ROUGE: 0.370) but produced complex
text (FKGL: 11.74), while MetinOZU achieved ex-
ceptional factuality (SummaC: 0.920) at the cost
of poor readability (FKGL: 16.45). Aard demon-
strated balanced readability (FKGL: 11.16) and fac-
tuality (SummaC: 0.537) in Subtask 1.2 but lagged
in relevance (ROUGE: 0.292). These cases illus-
trate how excelling in one metric often compro-
mises others, necessitating task-specific customiza-
tion.

Dominance of Retrieval-Augmented Genera-
tion Retrieval-augmented approaches emerged as
a dominant trend, with 5 of 13 teams (LaySummX,
BioSumEnhance, CUTN_Bio, Aard, and 5cNLP)
incorporating external knowledge. This strategy
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proved particularly effective in Subtask 1.2 (ex-
ternal knowledge), where Aard and CUTN_Bio
secured 1st and 2nd places with 7–9% factuality
gains over non-RAG baselines. Teams leveraged
UMLS, Wikipedia, and full-text segments to han-
dle domain terminology, though sometimes at the
cost of readability due to verbose outputs.

Persistence of Pipeline Approaches Pipeline
frameworks remained prevalent, with 7 of 13 teams
adopting multi-stage architectures rather than uni-
fied models. Examples include MIRAGES’ extract-
then-summarize approach using extractive sum-
marization followed by LoRA-tuned Llama3-8B
(ranking 6th with 2nd-best readability), and Aard’s
modular system combining BioBERT-based en-
tity recognition with iterative rewriting. These
pipelines offered interpretability advantages but
introduced potential error propagation risks com-
pared to end-to-end systems like SUWMT’s top-
ranked submission.

Competitiveness of Legacy Architectures
Encoder-decoder models demonstrated compara-
ble performance against larger LLMs. AEHRC’s
T5-large (700M parameters) outperformed 3B+
LLMs in 9 of 10 metrics for radiology report
translation (Subtask 2.1), dominating both com-
petition tracks. Similarly, TLPIQ’s FLAN-T5
base model achieved competitive relevance and
factuality despite its smaller size, underscoring
the continued efficiency of these architectures for
domain-specific generation tasks.

Emerging Methodological Innovations Several
novel techniques showed promise: XSZ explored
reinforcement learning (PPO/GRPO) with multi-
objective rewards optimizing factuality, readability,
and relevance; MetinOZU developed reverse data
augmentation by generating complex scientific text
from simple summaries; and BDA-UC3M imple-
mented efficiency techniques like 4-bit quantiza-
tion with Direct Preference Optimization. While
not all innovations were competition submissions,
they represent significant research directions.

Hardware Efficiency Demonstrations Several
teams validated cost-effective approaches, most
notably RainCityNLP which combined TF-IDF
sentence scoring with Pegasus-XSum and medi-
cal Falcons.ai models running on consumer-grade
hardware. These implementations demonstrate the
feasibility of deploying lay summarization systems

in resource-constrained environments while main-
taining reasonable performance.

Key Gaps and Future Directions Three critical
challenges emerged from the analysis: (1) The per-
sistent conflicts between readability and factuality
require new joint optimization strategies; (2) Exter-
nal knowledge integration through RAG sometimes
disrupted narrative coherence despite improving ac-
curacy; (3) Reinforcement learning approaches like
XSZ’s show untapped potential for metric-aligned
reward shaping that warrants deeper exploration.

7 Conclusion

The third edition of the BioLaySumm Shared Task
was hosted by the BioNLP Workshop@ACL 2025.
Several changes were implemented over the pre-
vious edition, including the incorporation of the
new task, lay summarization of radiology reports.
The competition outcomes underscore biomedical
lay summarization as a multi-faceted challenge re-
quiring context-aware solutions. While RAG and
pipeline methods dominated submissions, legacy
encoder-decoder models (T5, FLAN-T5) remained
surprisingly effective. Future work should priori-
tize hybrid approaches, particularly RAG-enhanced
end-to-end models with RL fine-tuning, to better
harmonize the competing demands of relevance,
readability, and factuality.
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A Appendix

Table 3 and Table 4 present the overview and de-
tailed metric performance after min-max normal-
ization.

# Team Relevance Readability Factuality Avg.

1 SUWMIT 0.971 0.816 0.616 0.801
2 Baseline-llama3-8B-sft 0.965 0.770 0.548 0.761
3 Baseline-qwen2.5-7B-sft 0.922 0.645 0.579 0.715
4 BDA-UC3M 0.892 0.726 0.406 0.675
5 MetninOzU 0.779 0.148 1.000 0.643
6 MIRAGES 0.531 0.886 0.466 0.628
7 TLPIQ 0.775 0.505 0.586 0.622
8 LaySummX 0.663 0.752 0.371 0.595
9 CUTN_Bio 0.470 0.972 0.316 0.586

10 Aard 0.708 0.505 0.376 0.530
11 LTRC 0.522 0.725 0.250 0.499
12 5cNLP 0.732 0.432 0.256 0.473
13 RainCityNLP 0.525 0.056 0.451 0.344
14 sxz 0.004 0.334 0.560 0.299
15 demo 0.004 0.334 0.560 0.299
16 x2z 0.054 0.787 0.014 0.285

(a) Subtask 1.1: Plain Lay Summarization

# Team Relevance Readability Factuality Avg.

1 Aard 0.696 1.000 0.879 0.858
2 CUTN_Bio 0.667 0.382 0.861 0.637
3 5cNLP 1.000 0.039 0.447 0.495
4 LTRC 0.000 0.327 0.000 0.109

(b) Subtask 1.2: Lay Summarization with External Knowledge

# Team Relevance Readability Clinical Avg.

1 AEHRC 1.000 0.667 1.000 0.889
2 KHU_LDI 0.000 0.333 0.000 0.111

(c) Subtask 2.1: Radiology Report Translation (Open Track)

# Team Relevance Readability Clinical Avg.

1 AEHRC 1.000 0.521 0.858 0.793
2 Baseline-qwen2.5-7B-sft 0.567 0.384 0.601 0.517
3 5cNLP 0.688 0.300 0.537 0.508
4 Baseline-llama3-8B-sft 0.510 0.262 0.718 0.497
5 CUTN_Bio 0.000 0.809 0.000 0.270

(d) Subtask 2.1: Radiology Report Translation (Closed Track)

Table 3: Task leaderboard with min–max normalization
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Rank Team Relevance Readability Factuality
ROUGE BLEU MTR BERTS FKGL DCRS CLI LENS AlignS SummaC

1 SUWMIT 1.000 1.0000 0.964 0.921 0.804 0.815 0.793 0.851 0.745 0.487
2 Baseline-llama3-8B-sft 0.977 0.9770 1.000 0.906 0.730 0.773 0.721 0.855 0.690 0.405
3 Baseline-qwen2.5-7B-sft 0.909 0.8504 0.933 0.996 0.648 0.646 0.593 0.692 0.753 0.406
4 BDA-UCM 0.917 0.7759 0.876 1.000 0.710 0.763 0.688 0.742 0.631 0.181
5 MetinOZU 0.880 0.6490 0.854 0.812 0.046 0.183 0.000 0.365 1.000 1.000
6 MIRAGES 0.598 0.3886 0.482 0.656 0.809 1.000 0.900 0.834 0.611 0.322
7 TupiQ 0.829 0.6733 0.717 0.862 0.531 0.369 0.642 0.478 0.762 0.642
8 LaySummX 0.759 0.4798 0.623 0.793 0.718 0.690 0.650 0.953 0.600 0.142
9 CUTN_Bio 0.503 0.2329 0.457 0.690 1.000 0.888 1.000 1.000 0.431 0.202

10 Aard 0.749 0.4805 0.871 0.730 0.350 0.537 0.295 0.837 0.637 0.118
11 LTRC 0.599 0.3473 0.430 0.711 0.543 0.752 0.667 0.938 0.455 0.045
12 5cNLP 0.820 0.5577 0.713 0.838 0.108 0.425 0.300 0.896 0.513 0.000
13 RainCityNLP 0.582 0.4152 0.544 0.561 0.000 0.051 0.138 0.037 0.476 0.426
14 sxz 0.000 0.0169 0.000 0.000 0.668 0.000 0.669 0.000 0.964 0.157
15 demo 0.000 0.0169 0.000 0.000 0.668 0.000 0.669 0.000 0.964 0.157
16 x2z 0.085 0.0000 0.094 0.036 0.666 0.713 0.782 0.730 0.000 0.028

(a) SubTask 1.1: Plain Lay Summarization

Rank Team Relevance Readability Factuality
ROUGE BLEU MTR BERTS FKGL DCRS CLI LENS AlignS SummaC

1 Aard 0.643 0.592 0.882 0.665 1.000 1.000 1.000 1.000 0.757 1.000
2 CUTN_Bio 0.676 0.532 0.559 0.902 0.570 0.020 0.150 0.787 1.000 0.722
3 5cNLP 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.155 0.745 0.149
4 LTRC 0.000 0.000 0.000 0.000 0.487 0.328 0.495 0.000 0.000 0.000

(b) Subtask 1.2: Lay Summarization with External Knowledge

Rank Team Relevance Readability Clinical Metrics
ROUGE BLEU MTR BERTS SIM FKGL DCRS CLI CHEX RG

1 AEHRC 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000
2 KHU_LDI 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

(c) Subtask 2.1: Radiology Report Translation (Open Track)

Rank Team Relevance Readability Clinical Metrics
ROUGE BLEU MTR BERTS SIM FKGL DCRS CLI CHEX RG

1 AEHRC 1.000 1.000 1.000 1.000 1.000 0.294 0.72 0.548 0.715 1.000
2 Baseline-qwen2.5-7B-sft 0.591 0.449 0.483 0.721 0.589 1.000 0.06 0.094 0.733 0.468
3 5cNLP 0.670 0.555 0.760 0.685 0.770 0.000 0.000 0.557 0.446 0.627
4 Baseline-llama3-8B-sft 0.546 0.427 0.414 0.649 0.512 0.786 0.000 0.000 1.000 0.436
5 CUTN_Bio 0.404 0.427 0.000 0.000 0.000 0.428 1.000 1.000 0.000 0.000

(d) Subtask 2.1: Radiology Report Translation (Closed Track)

Table 4: Task leaderboard with min-max normalization. BertS = BertScore, FKGL = Flesch-Kincaid Grade Level,
DCRS = Dale-Chall Readability Score, CLI = Coleman-Liau Index, MTR = METOR, SIM = Similarity, AlignS =
AlignScore, CHEX = F1 chexbert, RG = Radgraph.
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Abstract

In this paper, we present an overview of CLIN-
IQLINK a shared task, collocated with the 24th
BioNLP workshop at ACL 2025, designed to
stress-test large language models (LLMs) on
medically-oriented question answering aimed
at the level of a General Practitioner. The
challenge supplies 4 978 expert-verified, med-
ical source-grounded question–answer pairs
that cover seven formats - true/false, mul-
tiple choice, unordered list, short answer,
short-inverse, multi-hop, and multi-hop-inverse.
Participating systems, bundled in Docker or
Apptainer images, are executed on the Cod-
aBench platform or the University of Mary-
land’s Zaratan cluster. An automated harness
(Task 1) scores closed-ended items by exact
match and open-ended items with a three-tier
embedding metric. A subsequent physician
panel (Task 2) audits the top model responses.

1 Introduction

LLMs have increasingly demonstrated their abil-
ity to memorize information and answer ques-
tions (Carlini et al., 2023). This has led to their
increased use by consumers to ask medically rel-
evant questions (Yun and Bickmore, 2025). How-
ever, LLMs have been shown to "hallucinate", that
is, to generate factually incorrect, or even harmful
answers (Singhal et al., 2023). In high-stakes do-
mains, such as medicine, it is incredibly important
to be able to evaluate the veracity of any question
answering system. While there exist datasets, such
as MultiMedQA (Singhal et al., 2023), designed to
do just this, recent LLMs have been trained over
their data. This limits their usefulness in evalu-
ating the ability of these models to generalize to
out-of-distribution data.

New datasets are necessary for the evaluation of
medical question-answering systems and new sys-
tems are needed to increase accuracy and mitigate
hallucinations.

To this end, we introduce the ClinIQLink shared
task, inviting participants to submit question-
answering systems to be evaluated on a novel
dataset of medical questions. Participants are en-
couraged to submit systems that are capable of
demonstrating medical knowledge, while mitigat-
ing hallucinations. Our dataset consists of seven
question types, both closed and open ended, and a
wide range of medical topics. Our task had a total
of three runs from one team. Our contributions are
as follows:

• A dataset of 4,978 vetted medical question-
answer pairs

• Automated evaluation metrics

• A task design for participant-submitted sys-
tems

• A physician audit of system responses

2 Task Description

ClinIQLink 1 is a shared task that evaluates the abil-
ity of generative models to produce factually accu-
rate medical information aimed at the knowledge
level of a general practitioner. The submitted sys-
tems are executed in a containerized environment
on CodaBench 2 or via the University of Mary-
land (UMD) HPC Zaratan 3 (depending on the size
and model/system complexity), where the submit-
ted systems answered a corpus of expert-curated
atomic medical questions. Answers provided from
the systems submitted were judged only on factual
accuracy, so leaderboard ranking reflects a model’s
ability to retrieve correct information from its own
parametric memory or any retrieval mechanism the
team elected to integrate.

1https://cliniqlink.org/
2https://www.codabench.org/
3https://hpcc.umd.edu/hpcc/zaratan.html
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The question sets were divided into two types
(closed and open-ended QA pairs) and spanned
seven modalities, including true/false, multiple
choice, unordered list, short answer, short-inverse,
multi-hop and multi-hop-inverse. Across all of the
seven QA pair modalities, the ground truth was an-
chored in standard open-source medical texts, and
each item targets a single, clearly defined concept
such as a procedure, drug, diagnostic finding, or
anatomical fact.

The challenge comprised two sequential compo-
nents. Task 1 executed all baseline systems and par-
ticipant submissions within our automated bench-
marking harness. The script marked closed-ended
items strictly for precision and evaluated open-
ended answers with a semantic-similarity module
that awards full or partial credit according to their
closeness to the hidden ground-truth. Leaderboard
rankings are derived solely from these automatic
scores. Task 2 began after the leaderboard was
frozen: a panel of human-expert annotators re-
viewed the highest-scoring outputs, ranking them
from best to worst and annotating each answer on
a spectrum from “good” to “bad”. Participants
were allowed to employ any architecture, external
knowledge base, or retrieval-augmented pipeline
to generate answers to questions posed, provided
the final system can run end-to-end inside the sup-
plied containerised harness. Teams were limited to
three leaderboard submissions and were required
to accompany their final entry with a short paper
that details model design, data usage, and inference
strategy for inclusion in the BioNLP 2025 proceed-
ings. The full evaluation dataset remains private to
preserve its viability for later use.

3 Dataset Description

3.1 Generation and Vetting
A neuro-symbolic pipeline was employed to pro-
duce roughly ∼20K atomic question–answer pairs
from open-source medical texts. Each pair was
linked to its supporting passage so that later re-
viewers could verify every biomedical fact. The
QA Pairs were then ported to our online annotation
portal4, (which is now open to accredited medical
schools and hospitals who wish to contribute fur-
ther judgments), where human-experts (paid medi-
cal students) confirmed correctness, rated general-
practitioner (GP) relevance on a five-point scale,

4https://bionlp.nlm.nih.gov/ClinIQLink/
NIHLogin

and could file structured feedback or formal dis-
putes.

3.2 Human-verification Workflow
1. Primary review: an expert validated factual

accuracy against the source excerpt, assigned
a GP-relevance score, and could flag issues or
supply comments.

2. Secondary review: ∼ 45% of items received
an independent second pass; disagreements trig-
gered adjudication. By 1 May 2025 reviewers
had lodged 601 feedback notes and 461 disputes.
The 1062 QA Pairs that had been flagged as
feedback or disputes were not used for testing
and are presently still being held for later review.

3.3 Benchmark Snapshot (1 May 2025)
At the dataset freeze the repository contained 5,118
verified QA pairs (Table 1): 5,118 had a single ex-
pert judgement and 2,505 were double-annotated.
For leaderboard scoring, we retained only the 4,978
items rated maximally relevant (score = 5); 140
lower-relevance items were set aside for future anal-
ysis. The sample dataset plus the full evaluation
architecture are available at 5.

3.4 Question Modalities
Seven formats cover both machine-gradable closed-
ended items and semantically scored open-ended
prompts:

• Closed-ended

– True/False (TF)
– Multiple Choice (MC) — single-best an-

swer
– Unordered List (LIST) — enumerate all cor-

rect elements

• Open-ended

– Short Answer (SHORT) — concise factoid
– Short-Inverse (SHORT_INV) — explain

why the supplied wrong answer is incorrect
– Multi-hop (MULTI_HOP) — required sev-

eral leaps in knowledge to arrive at a fi-
nal answer; models must return answer and
knowledge leaps

– Multi-hop Inverse (MULTI_HOP_INV) —
locate the faulty step in a provided, erro-
neous multi-hop rationale

5https://github.com/Brandonio-c/ClinIQLink_
Sample-dataset
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Table 1: ClinIQLink benchmark composition at the baseline freeze (1 May 2025). “High” denotes GP-relevance
score 5 items used for leaderboard evaluation; “Low” items (< 5) were withheld.

QA Format Counts Subset with Two Independent Reviews

High Low Total High Low Total Percent Double

True/False (TF) 813 38 851 369 – 369 43.4%
Multiple Choice (MC) 765 29 794 346 – 346 43.6%
Unordered List (LIST) 714 28 742 341 – 341 46.0%
Short Answer (SHORT) 427 9 436 339 – 339 77.8%
Short-Inverse (SHORT_INV) 742 16 758 353 – 353 46.6%
Multi-hop (MULTI_HOP) 771 8 779 331 – 331 42.5%
Multi-hop Inverse (MULTI_HOP_INV) 746 12 758 318 – 318 42.0%

Totals 4 978 140 5 118 2 497 – 2 505 48.8%

4 Evaluation Protocol

Our assessment of CLINIQLINK was conducted
in two sequential phases. First, we relied on a
fully automated evaluation script (Task-1) that in-
gested model/participant system responses; second,
we complemented the automated evaluation with
an expert preference study (Task-2) in which paid
medical students compared top-performing model
responses.

4.1 Task-1: automatic scoring
Each submission returned answers for seven dis-
tinct question classes. True/False and single-best
multiple-choice items were judged by straightfor-
ward accuracy

Accuracy =
#correct

N
,

whereas multiple select list questions were
graded with both macro- and micro F1 (Manning
et al., 2008):

Fmacro
1 =

1

N

N∑

i=1

F
(i)
1 ,

Fmicro
1 =

2TP

2TP + FP + FN
.

All free-text tasks (short, multi hop, and their
inverse variants) were assessed twice; once with the
ClinIQLink semantic-similarity score and again
with the conventional n-gram metrics BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), and ME-
TEOR (Banerjee and Lavie, 2005).

ClinIQLink semantic-similarity score. The score
blended three complementary cosine layers:

(1) Token layer: an IDF-weighted, greedy token-
alignment F1, rewarding exact overlap on in-
frequent clinical terms.

(2) Sentence layer: cosine similarity of
SBERT–MINILM 6 CLS embeddings, cap-
turing broader paraphrase.

(3) Paragraph layer: cosine similarity of the raw
answer strings, offering global context.

Let Ctok, Csent, Cpara ∈ [0, 1] denote these three
cosines. With weights wtok = wsent = 0.4 and
wpara = 0.2 the raw score is

Sraw = 0.4Ctok + 0.4Csent + 0.2Cpara.

Because SBERT assigns unrelated sentence pairs
a baseline similarity of about β = 0.25, we subtract
that offset, floor negatives, and snap near-perfect
matches:

S = min
(
1, max

(
0, Sraw − β

))
,

S ≥ 0.95 =⇒ S := 1.

Penalty for multi-hop inverse. If a model
highlighted the wrong reasoning step, the se-
mantic score was down-weighted. Let d =
| predicted step − gold step | be the absolute dis-
tance; then

α(d) =





1 d = 0,

0.7 d = 1,

0.3 d = 2,

0.3 2−(d−2) d ≥ 3,

S∗ = α(d)S.

Hence, the final similarity S∗ combined graded
lexical alignment, distributional semantics, and ex-
plicit reasoning correctness, while conventional

6https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2
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BLEU/ROUGE/METEOR offered secondary diag-
nostics. A complete implementation of the evalua-
tion script that implements the above can be found
with the testing harness7.

4.2 Task-2: expert preference study
We found that the automated metrics employed
for analysis of the open-ended QA pairs were
not effective for evaluation of model responses,
nor were they effective in discriminating top-
ranking model responses from mediocre model re-
sponses. Hence, to complement the automated
evaluation metrics we organized a human eval-
uation in which we required our annotators to
rank the six strongest foundation models on our
public leaderboard (Falcon-10B, Llama-3.3-70B,
Llama-4 Scout, Mistral-Large-2411, Microsoft Phi-
4 Base, Qwen-3-32B) together with the best partici-
pant submission, Preceptor-AI and the ClinIQLink
ground-truth answers. For every question we shuf-
fled these seven model responses plus the Clin-
IQLink dataset reference solution, and asked hu-
man annotators to rank them from best to worst.
Each answer also received a coarse quality tag
(good/okay/bad). The annotation portal that we
built for this experiment is now open to accred-
ited medical schools and hospitals who wish to
contribute further judgments 8.

5 Baseline Systems

To provide a strong reference point for future work
we evaluated a broad range of publicly–available
large language models on the frozen CLINIQLINK

test split. For transparency, it should be noted
that the LLM utilised as the "neuro" component
of our neurosymbolic pipeline for data generation
was Llama 3.3-70B–Instruct. All baseline check-
points were used as-is and therefore reflect their
pre-training and instruction-tuning quality rather
than any task-specific fine-tuning.

5.1 Llama family.
The Meta Llama 3 (Grattafiori et al., 2024) decoder-
only transformer was represented by four parameter
scales; 1B, 3B, 8B and 70B weights as well as an
intermediate commercial variant (llama_4-scout,

7https://github.com/Brandonio-c/ClinIQLink_
CodaBench_docker-setup/blob/main/submission/
evaluate.py

8https://bionlp.nlm.nih.gov/ClinIQLink2/
NIHLogin

≈ 45B). All are dense models built with a 32-
layer architecture (70B: 80 layers) and grouped-
query attention; the instruction checkpoints add a
supervised fine-tuning and reinforcement learning
step to the base weights.

5.2 Mistral / Mixtral family.
We included the 7-billion-parameter Mistral-
7B (Jiang et al., 2023) dense decoder and the
Mistral-Large-Instruct-2411 release (8 × 22B
experts, two experts routed per token, giving
47B active parameters). The Mixtral series
consisting of Mixtral-8×7B (Jiang et al., 2024)
and Mixtral-8×22B tested share the same sparse
Mixture-of-Experts (MoE) scaffold, however, only
two of the eight experts are selected for each in-
put token, keeping inference costs close to their
12–13 B dense peers while exposing > 140B total
capacity.

5.3 Qwen3 family.
Alibaba’s Qwen3 (Yang et al., 2025) decoder stack
(RoPE positional encoding, grouped-query atten-
tion) was tested at five scales: 1.7B, 3B, 4B, 8B,
and 32B parameters. All checkpoints were released
under an open-source licence together with align-
ment (“-Instruct”) variants that follow the Su-
pervised Fine-Tuning (SFT) + Direct Preference
Optimisation recipe.

5.4 Phi family.
We evaluated Microsoft’s Phi-4 (Abdin
et al., 2024) (∼ 14B dense decoder) and its
lightweight derivatives (phi-4-mini-instruct
and phi-4-mini-reasoning (Abdin et al., 2025),
∼ 3.8B). This family of LLMs was designed as
“small-data curriculum models” whose pre-training
is dominated by synthetic textbook-style content
rather than filtered web corpora.

5.5 Falcon Family
For completeness, we benchmarked Falcon-10B-
Instruct (Almazrouei et al., 2023), an Apache–2.0
decoder model trained on the RefinedWeb dataset
and alignment-tuned with RLHF.

5.6 Google Flan family.
Encoder–decoder baselines were covered by Flan-
T5-XXL (Chung et al., 2022) (11B parameters) and
Flan-UL2 (Tay et al., 2023) (20B). Both models
extend the original T5/UL2 sequence-to-sequence
architecture with instruction tuning on a curated
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mixture of over one thousand NLP tasks; an addi-
tional attrscore_flan_t5_xxl (Yue et al., 2023)
checkpoint was tested, which augments the T5-
XXL Weights with token-level attribution heads
for explanation capabilities.

6 Participants and Methods

The CLINIQLINK shared task was publicly re-
leased through the Codabench evaluation platform9,
with an accompanying containerized setup for local
validation and submission via Docker and App-
tainer10. Submissions of models/systems over
10GB in size and requiring more compute than
what is offered via codabench were also enabled
via direct submission to organizers to be run on
the University of Maryland HPC Zaratan. In total,
43 participants registered for the challenge during
the initial release window. The competition re-
mains open for new submissions on Codabench
for smaller models that can run via the Codabench
platform.

6.1 Preceptor AI
Although forty-three teams registered, only PRE-
CEPTOR AI submitted runnable systems. They
provided three containerised runs, v001, v002, and
v003, but discuss only v001 in their participant
paper.

v001 – VeReaFine (Verifier-augmented RAG).
v001 is an iterative, evidence-seeking pipeline that
couples a Qwen-7B-Instruct generator with a sepa-
rately fine-tuned Qwen-8B medical-reasoning veri-
fier. For each question the system:
1. retrieves up to 20 passages from a Col-

BERT (Khattab and Zaharia, 2020) +
BM25 (Robertson et al., 2009) hybrid in-
dex built over PubMed abstracts and StatPearls;

2. drafts an answer with inline citations;
3. scores every generated claim with the verifier’s

token-level entailment head;
4. if any claim falls below a 0.8 confidence thresh-

old, expands the evidence pool and repeats steps
(1)–(3) (max. four rounds).
The loop stops when all claims are verified or the

round limit is reached, after which the final answer
and citation list are emitted. This design yields
strong gains on all four open-ended modalities (top-
10 P75 recall) but was not tuned for the closed-

9https://www.codabench.org/competitions/5117/
10https://github.com/Brandonio-c/ClinIQLink_

CodaBench_docker-setup

ended formats, explaining its low rank on multiple-
choice and true/false items (see Table 2).

v002 and v003. The team also submitted v002
(a retrieval-free Qwen-32B classifier optimised for
closed-ended questions) and an ablation run v003.
Because their accompanying paper focuses on the
verifier-augmented strategy, only v001 is analysed
in detail there; we include the headline numbers for
all three runs in the leaderboard for completeness.

7 Results

Figure 1: Average performance on closed-ended tasks
(True/False accuracy, multiple-choice accuracy and list
F1).

Figure 2: Distributions of individual n-gram scores
(BLEU, ROUGE, METEOR) and semantic similarity
for each open-ended question type.

Figure 1 summarised mean performance on the
three closed-ended tasks. The spread between
True/False, multiple-choice and list accuracy was
modest, indicating that the leading models handled
discrete answer formats with broadly comparable
competence.

Open-ended behaviour was more nuanced. The
per-task distributions in Figure 2 showed markedly
heavier tails for semantic-similarity than for surface
n-gram metrics, confirming that several systems
produced answers that were lexically novel yet se-
mantically similar. This pattern was especially
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Table 2: ClinIQLink leaderboard snapshot (higher is better). Models were evaluated across all seven modalities
of the ClinIQLink challenge. All models were retrieved from their public Hugging Face repositories, except for
Preceptor_AI, which is private.

Rank Model Overall MC Acc TF Acc List F1 Short S-Inv MHop MH-Inv

1 llama_3-3-70B 0.541 0.796 0.822 0.682 0.235 0.488 0.313 0.450
2 Mistral-Large-Instruct-2411 0.530 0.797 0.822 0.645 0.260 0.472 0.313 0.398
3 phi-4 0.528 0.775 0.790 0.658 0.229 0.493 0.311 0.440
4 llama_4-scout 0.524 0.776 0.822 0.652 0.238 0.492 0.302 0.388
5 Mixtral-8x22B 0.521 0.752 0.800 0.643 0.227 0.491 0.306 0.428
6 Preceptor_AI_v002 0.512 0.762 0.817 0.583 0.213 0.479 0.298 0.430
7 llama_3-1-8B 0.499 0.720 0.765 0.613 0.223 0.479 0.293 0.396
8 Phi-4-mini-instruct 0.498 0.672 0.745 0.636 0.222 0.485 0.299 0.424
9 falcon3_10b_instruct 0.482 0.673 0.760 0.538 0.219 0.487 0.302 0.396

10 Qwen3-32B 0.477 0.737 0.803 0.373 0.233 0.474 0.307 0.415
11 Mixtral-8x7B 0.474 0.656 0.750 0.570 0.213 0.472 0.304 0.353
12 qwen_2_5_3b 0.461 0.629 0.726 0.535 0.216 0.484 0.292 0.347
13 Qwen3-8B 0.454 0.722 0.748 0.293 0.223 0.477 0.316 0.397
14 llama_3-2-3B 0.436 0.502 0.733 0.517 0.200 0.463 0.271 0.369
15 Mistral-7B 0.427 0.425 0.701 0.491 0.216 0.483 0.295 0.378
16 Qwen3-4B 0.423 0.515 0.752 0.294 0.212 0.470 0.310 0.408
17 Qwen3-1_7B 0.419 0.393 0.681 0.484 0.206 0.483 0.299 0.390
18 flan_t5_xxl 0.390 0.599 0.705 0.558 0.220 0.420 0.220 0.005
19 flan_ul2 0.383 0.567 0.695 0.556 0.205 0.430 0.223 0.003
20 attrscore_flan_t5_xxl 0.383 0.571 0.680 0.552 0.214 0.428 0.227 0.005
21 llama_3-2-1B 0.354 0.379 0.610 0.477 0.181 0.450 0.269 0.111
22 Preceptor_AI_v001 0.295 0.047 0.713 0.021 0.163 0.482 0.277 0.363
23 Phi-4-mini-reasoning 0.249 0.095 0.068 0.256 0.196 0.456 0.281 0.389
24 Preceptor_AI_v003 0.221 0.000 0.581 0.074 0.111 0.286 0.233 0.263
25 Phi-4-reasoning-plus 0.167 0.000 0.000 0.070 0.206 0.470 0.290 0.135

pronounced for the multi-hop and multi-hop
inverse questions, where BLEU occasionally
under-estimated quality relative to the embedding-
based score.

To illustrate model-specific traits, Figures 3–5
present the full metric dashboards for three repre-
sentative baselines. The FLAN-UL2 run exhibited
tight clustering around mid-range similarity values
and an extreme outlier for the multi-hop inverse
modality.

LLAMA-3 70B displayed a broader inter-
quartile range on semantic scores but maintained
competitive n-gram fidelity, suggesting flexible
paraphrasing capabilities.

Similarly, the PHI-4-REASONING-PLUS sub-
mission produced a long tail of semantically sim-
ilar scores when evaluated with the CLinIQLInk
semantic similarity metric, but low scoring across
all the n-gram scoring metrics utilised; further in-
spection of the model responses revealed that, de-
spite using the prescribed stop tokens and output
template, the model frequently emitted extensive
chain-of-thought traces capped by an ambiguous
or missing “final answer” cue. Our automated eval-
uation script extracted only the required answers
utilising pre-determined queues (i.e. the prompt
templates used explicitly constrained models to pro-

vide list-type responses as comma-separated lists,
etc.) and as such, the digressions observed from
the Phi-4-Reasoning-Plus (amongst others) trans-
lated into poor task compliance rather than genuine
comprehension deficits.

A consolidated leaderboard is provided in Ta-
ble 2. The ranking served solely as an empirical ref-
erence from the evaluation metrics gathered from
task 1 automated evaluation script.

8 Discussion

8.1 Closed-ended tasks (Figure 1).
Table 2 confirms what is visually apparent in the
right-hand side of Figure 1, which is that single-
labelled questions (e.g., t/f, MC, etc.) are close
to saturation for modern LLMs. The top five
systems tested (llama_3-3-70B, Mistral-Large,
phi-4, llama_4-scout, and Mixtral-8x22B) all
scored between 0.75 – 0.80 on multiple-choice and
0.79 – 0.82 on True/False. By contrast, list ques-
tions remained challenging with macro–micro F1

not exceeding 0.68. List answers required both
recognition of all correct options and rejection
of distractors, and as such, the metric penalised
even minor hallucinations; consequently, models
whose generation style tended to “hedge” with ex-
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Figure 3: Comprehensive dashboard for FLAN-UL2
showing boxplots, jitter plots and histograms across
semantic and n-gram metrics.

tra choices (e.g. falcon3_10b_instruct) under-
performed relative to their multiple-choice score.
The tight inter-quartile ranges on True/False and
multiple-choice further suggest that most contem-
porary LLMs share a common ceiling on purely
factual one-shot classification, leaving little room
for architectural distinctions to distinguish in these
settings.

8.2 Aggregate open-ended behavior
Figure 2 shows that, across all models evaluated,
the short inverse distributions peaked around
0.50 semantic similarity, while the forward short
items clustered near 0.25, indicating that simply cri-
tiquing providing an answer was easier than gener-
ating an answer from scratch. The gap between se-
mantic and n-gram scores widens for larger check-
points. Mixtral-8×22B and LLaMA 3.3 70B fre-
quently achieved high semantic similarity scores
(above 0.60) despite very low BLEU scores (be-
low 0.1), indicating that their correct answers were
often paraphrased rather than copied verbatim, sup-
porting the long-tailed distribution of paraphrastic
responses seen in Figure 2. Inspection of the model
responses for multi-hop inverse QA types also re-
vealed answers that often diagnosed the wrong
knowledge hop step, which in turn attracted the
multiplicative penalties. Traditional n-gram met-
rics failed to flag these omissions, underscoring
the necessity of the custom semantic evaluation
platform.

Figure 4: Comprehensive dashboard for LLaMA-70B
showing boxplots, jitter plots and histograms across
semantic and n-gram metrics.

8.3 Model-specific open-ended evaluations
Figures 3–5 illustrate how aggregate patterns mate-
rialised at the system level. The model-specific
open-ended evaluations are shown for only the
highest performing model across the board (llama-
3.3 70B and the lowest performing model for
closed and open-ended metrics (Phi-4-reasoning
and FLAN-UL2, respectively).

• FLAN-UL2 Figure 3 reveals that FLAN-
UL2’s outputs cluster tightly between 0.20
and 0.60 for the three forward-facing open-
ended tasks, yet its multi-hop inverse
scores collapse toward the origin on all four
axes—semantic similarity, BLEU, ROUGE,
and METEOR rarely rise above 0.05. The
dashboard traces that floor effect to the
model’s habit of supplying only a step la-
bel (e.g., “Step 5”) with no explanatory text,
which earns minimal credit under the step-
penalised rubric. Elsewhere, list questions are
answered with bare option letters (e.g. “B,
C, D”), boosting recall but cutting precision
to roughly 0.33–0.50, while short prompts re-
ceive one or two-word noun phrases, driving
n-gram metrics to zero even when the seman-
tics are acceptable. These abrupt, template-
bound behaviours keep variance low and pre-
vent catastrophic errors, but they also cap the
weighted open-ended average at 0.14 and hold
FLAN-UL2 in 18th place despite competent
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Figure 5: Comprehensive dashboard for Phi-4-
reasoning-plus showing boxplots, jitter plots and his-
tograms across semantic and n-gram metrics.

closed-ended performance.

• LLaMA-3-3-70B Figure 4 shows that
LLaMA-3 70 B’s open-ended answers cluster
in the mid-range for every metric, not at the
extremes. Its semantic-similarity box-plot sits
roughly between 0.35 and 0.55, with whiskers
reaching only the mid-0.70s; BLEU, ROUGE,
and METEOR centre much lower (BLEU’s
median is barely above 0.04, ROUGE around
0.20, METEOR around 0.25). The small band
of higher-value semantic outliers (around
0.65–0.75) is confined to short inverse
and multi-hop inverse items in which the
model repeated key medical terms but re-
ordered the surrounding sequence of words,
so n-gram overlap stayed muted. Conversely,
many short replies are abrupt noun-phrases,
depressing all four metrics and keeping the
inter-quartile ranges tight.

• Phi-4-Reasoning-Plus (Figure 5). The cloud
at the extreme lower-left of the dashboard mir-
rors the 624 malformed list entries and 813 in-
valid True/False lines produced by this model.
Extensive “chain-of-thought” preambles ob-
scured the required delimiters, so the auto-
mated evaluation script extracted empty or
partial lines. BLEU/ROUGE medians (around
0.04) remained higher than the semantic me-
dian (around 0.02) because the responses still
shared surface n-grams with the references.

8.4 Cross-metric contrasts.
1. The ClinIQLink Semantic similarity metric

displayed higher variance than any n-gram
metric across every model dashboard, reflect-
ing sensitivity to both omissions and verbose
digressions.

2. The gap between ClinIQLink Semantic sim-
ilarity metric and BLEU was inversely
correlated with parameter count; smaller
Qwen checkpoints recycled reference word-
ing, whereas 70-B LLaMAs paraphrased ag-
gressively.

3. Multi hop inverse was the most discrimi-
native sub-task; its step-penalty compressed
medians for every system (lowest boxes in
Figure 2), frequently reshuffling neighbouring
ranks in Table 2.

8.5 Findings
• High closed-ended scores hide residual hal-

lucinations. Even with a vocabulary capped
at just true/false or four choice-letters, every
model occasionally invented an out-of-range
option, proving that 0.75–0.82 headline accu-
racies do not equal flawless control.

• List questions are the singular closed-ended
format that is still able to effectively discrimi-
nate model effectiveness because they demand
selecting all true items while rejecting distrac-
tors, and as such, macro–micro F1 was found
to be spread from 0.30 to 0.68. Those wider
answer sets surface the hallucinated extras that
multiple-choice and true/false conceal.

• “Critique” is easier than “generate”. Across
the board, short inverse prompts (spot the
error) cluster around 0.50 semantic similarity
which is roughly double the median for for-
ward short prompts that require composing
a fresh answer.

• Multi-hop-inverse is the most discriminative
open-ended task. Its step-distance penalty
drags every model’s median to the bottom of
Figure 2, reshuffling several adjacent leader-
board positions and exposing brittle reasoning
chains.

• Embedding-level similarity scores for LLM
evaluation tasks are now required as the min-
imum standard. High-ranked systems such
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as Mixtral 22B and LLaMA-3.3 70B often
score > 0.60 on the semantic metric while
BLEU, ROUGE and METEOR sit < 0.05, con-
firming that lexically novel yet faithful para-
phrases fool token-overlap measures. Con-
versely, runs that recycle reference text earn
decent n-gram scores but remain low on the
embedding metric, demonstrating that overlap
alone no longer tracks answer fidelity.

• Note on open-ended evaluation challenges.
Despite impressive progress in embedding-
based metrics (e.g., BERTScore, Sentence-
Mover, BLEURT, COMET etc.) and NLI-
based metrics (e.g., MENLI, UniEval), no sin-
gle method can yet (a) decide with high confi-
dence that two free-form LLM responses con-
vey the same meaning, while also (b) ground-
ing that decision in consistent entity and rela-
tion alignment across passages. Embedding
similarity captures distributional closeness but
is blind to logical entailment; NLI classifiers
reason over sentence-level entailment yet lack
explicit entity grounding and scale poorly be-
yond short contexts, and recent surveys and
benchmark studies conclude that integrating
these complementary views into a robust, scal-
able metric remains an unsolved problem and
a key direction for future work (Ito et al., 2025;
Croxford et al., 2025).

9 Conclusion

The CLINIQLINK evaluation shows that modern
LLMs reach impressive headline scores on tightly
constrained True/False and single-letter multiple-
choice items, yet every model evaluated still spo-
radically produces out-of-vocabulary or otherwise
invalid answers; unordered list questions, with
their wider response space, remain the only closed-
ended format able to expose this fragility. On
open-ended tasks, embedding-based semantic sim-
ilarity distinguishes genuinely informative para-
phrases from superficial n-gram overlap. Con-
ventional n-gram indices systematically mis-score
open responses, rewarding superficial token over-
lap while penalising lexically novel yet factually
correct paraphrases; embedding-based similarity
aligns far more closely with clinical accuracy and,
through the step-penalised multi-hop-inverse task,
reveals brittle reasoning chains. More work is re-
quired to produce an effective semantic similarity
scoring metric with explicit reasoning validation

into a composite metric that more rigorously cap-
tures factuality, logical coherence, entity relation-
ship framing, and schema compliance. To sup-
port this goal, future iterations of CLINIQLINK

will link each question–answer pair to a machine-
readable knowledge graph for graph-based verifi-
cation of multi-step rationales and will introduce
multimodal variants that couple text queries with
images, thereby challenging models to ground their
answers in heterogeneous clinical evidence.
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Abstract
We organized the SMAFIRA Shared in the
scope of the BioNLP’2025 Workshop. Given
two articles, our goal was to collect annotations
about the similarity of their research goal. The
test sets consisted of a list of reference articles
and their corresponding top 20 similar articles
from PubMed. The task consisted in annotat-
ing the similar articles regarding the similarity
of their research goal with respect to the one
from the corresponding reference article. The
assessment of the similarity was based on three
labels: “similar”, “uncertain”, or “not similar”.
We released two batches of test sets: (a) a first
batch of 25 reference articles for five diseases;
and (b) a second batch of 80 reference articles
for 16 diseases. We collected manual annota-
tions from two teams (RCX and Bf3R) and auto-
matic predictions from two large language mod-
els (GPT-4omini and Llama3.3). The prelimi-
nary evaluation showed a rather low agreement
between the annotators, however, some pairs
could potentially be part of a future dataset.

1 Introduction
Many countries require the researchers to ask for a
permission before they carry out an animal experi-
ment (Vasbinder and Locke, 2017). Some countries,
e.g., Germany, require a through search of the scien-
tific literature in order to certify that no alternative
methods are already available.

We recently developed the SMAFIRA tool1
(Butzke et al., 2024) to support the above task. The
input to the tool is a PubMed identifier (PMID) of
an animal experiment, hereafter called “reference
article”. From PubMed, the tool retrieves the simi-
lar articles to the reference article, for which it per-
forms two automatic tasks: (a) classification of the
methods (Neves et al., 2023a), and (b) re-ranking
of the retrieved similar articles.

For the latter, the goal is to rank the similar arti-
cles according the similarity of their research goal,

1https://smafira.bf3r.de/

i.e., with respect to the research goal of the corre-
sponding reference article. Previously, we created
the SMAFIRA-c dataset (Butzke et al., 2020), for
which we annotated the top 100 (approximately)
for four reference articles (cf. Section 2). Based on
this dataset, we recently performed an evaluation
of various similarity methods (Neves et al., 2023b).
However, the dataset is rather small for training
or even for a comprehensive evaluation of various
methods.

The SMAFIRA Shared Task2 is a collaborative
effort that aimed to collect additional data for this
task. We released a list of various reference arti-
cles, grouped according to some pre-selected dis-
eases (MeSH terms). Participants were asked vali-
date the top 20 similar articles for any number of
reference articles. The similarity was assessed in
terms of three labels, namely, “similar”, “uncer-
tain”, and “not similar”. The annotations could be
performed either automatically, with any system of
their choice, or manually using the SMAFIRA tool.

We describe the shared task in the next section of
this publication, including the test sets, annotation
tasks, guidelines, and the available dataset. In Sec-
tion 3 we list the various teams (manual and auto-
matic annotations), including how we retrieved au-
tomatic annotations from two large language mod-
els (LLMs). We give and overview of the annota-
tions that we obtained in Section 4, as well as the
computation of the agreement. Finally, we present
an analysis of the annotations in Section 5.
2 SMAFIRA Shared Task
2.1 Test Sets
We compiled a list of reference articles for vari-
ous disease categories. We started with a list of
23 diseases from the “Diseases (C)” category in
the MeSH terms3. For each sub-category (MeSH

2https://smafira-bf3r.github.io/smafira-st/
3https://meshb.nlm.nih.gov/treeView

388

https://smafira.bf3r.de/
https://smafira-bf3r.github.io/smafira-st/
https://meshb.nlm.nih.gov/treeView


batch1
Infections [C01] 36159784 36577999 32485164 37071015 31689515
Neoplasms [C04] 34233949 33320838 36311701 37429473 35623658
Nervous System Diseases [C10] 35709748 37084732 37339207 37749256 37126714
Cardiovascular Diseases [C14] 33635944 37010266 37380648 37268711 35917178
Immune System Diseases [C20] 34503569 36179018 37079985 37256935 37168850
batch2
Musculoskeletal Diseases [C05] 37775153 36328744 36209953 36661300 36302840
Digestive System Diseases [C06] 26313006 34089528 36717026 30974318 34774008
Stomatognathic Diseases [C07] 32541832 34190354 33673616 35082168 37143319
Respiratory Tract Diseases [C08] 31694835 33524990 33166988 32707078 37730992
Otorhinolaryngologic Diseases [C09] 38531465 35331657 38608332 31570054 30970038
Eye Diseases [C11] 37345657 32721019 32341164 37429715 37757825
Urogenital Diseases [C12] 36581059 37324943 35264456 38688639 34270549
Hemic and Lymphatic Diseases [C15] 32001657 32494068 33639162 31797883 38713510
Congen., Heredit., and Neonatal Dis. and Abnorm. [C16] 33922602 31476705 34533563 38891999 33729473
Skin and Connective Tissue Diseases [C17] 32440554 33391503 34078596 38361478 31481954
Nutritional and Metabolic Diseases [C18] 33762572 38263084 36463128 37245586 36854163
Endocrine System Diseases [C19] 21211517 1617104 23777580 26517045 37480416
Pathological Conditions, Signs and Symptoms [C23] 33744277 32544087 26667043 38690023 24286894
Occupational Diseases [C24] 34139709 27775689 38669965 33705732 28762870
Chemically-Induced Disorders [C25] 23449255 7236062 28263289 31641018 36162952
Wounds and Injuries [C26] 26123115 31111883 29603350 19841895 16929202

Table 1: List of reference articles (test sets) for batch1 and batch2.

term) from the list, we queried PubMed with the
corresponding term and for animal models4. Sub-
sequently, we filtered for articles with available ab-
stract and that were published in the last five years.

For each disease, we screened the list of results
and selected five reference articles that described an
animal experiment. We skipped surveys and review
articles and checked that the reference article con-
tained a pre-compiled list of similar articles. We
aimed at selecting reference articles that referred
to distinct diseases, e.g., distinct cancer types for
the category “Neoplasms”. From the original list
of 23 categories, we ended up with 21 categories.
We could not find five interesting animal experi-
ments for two categories, namely, “Disorders of En-
vironmental Origin [C21]” and “Animal Diseases
[C22]”.

We split the above reference articles into two
groups: “batch1” and “batch2”. Batch1 was re-
leased in February/2025 and contains five pre-
selected disease categories, namely, “Infections
[C01]”, “Neoplasms [C04]”, “Nervous System Dis-
eases [C10]”, “Cardiovascular Diseases [C14]”,
and “Immune System Diseases [C20]”. Batch2 con-
tains the remaining 16 disease categories and was
released in the end of April/2025. Table 1 shows
all reference articles for both batches.

4e.g., “(Infections[MeSH Major Topic]) AND (Models,
Animal[MeSH Major Topic])”

2.2 Annotation Tasks
We proposed two annotation tasks: manual and
automatic annotation. For both tasks, for any ref-
erence article, the top 20 similar articles should be
annotated. The annotation should be based on the
similarity of the research goal (cf. Section 2.3),
and over three possible values for the similarity:
“similar”, “uncertain”, and “not similar”.

For the manual annotation, the task should be car-
ried out in the SMAFIRA tool. Participants should
enter one of the reference articles (cf. Table 1) in
the input field and the tool retrieves the list of sim-
ilar articles as available in PubMed. The top 20
similar articles should be annotated based on the
SMAFIRA-Rank option (the default option). After
the annotation, participants have two possibilities to
submit their annotations to us per e-mail: (a) share
their session URL, or (b) export the annotations
into a file. More details about the annotation with
the SMAFIRA tool is available on the web site of
the shared task.

For the automatic annotation, we provide the ref-
erence articles, their corresponding top 20 similar
articles, and all titles and abstracts, which were re-
trieved using the TeamTat tool (Islamaj et al., 2020).
This data is available for download in the JSON for-
mat in the GitHub repository5. There is one folder
for each of the batches, in which we released the
following files:

5https://github.com/smafira-bf3r/smafira-st
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• (a) “batch1.json” or “batch2.json”: complete
JSON file with all reference articles, their re-
spective top 20 similar articles, as well as title
and abstracts for all PMIDs;

• (b) (optional) “batch1_teamtat.zip” or
“batch2_teamtat.zip”: zip file with all articles
as exported by TeamTat;

• “sample_submission.json”: sample submis-
sion file that include all reference articles and
their similar articles, but not the labels.

2.3 Guidelines
For each pair, i.e., a reference article and one of the
similar articles, our goal is to assess their similarity
based on three labels: “similar”, “uncertain”, or
“not similar”. We decided some simple aspects that
should be taken into account during the annotation:

• The assessment should only be based on the ti-
tle and the abstract, thus, the annotator should
not consider the full text of the article.

• The methods should not be considered, since
two research goals can be similar even if, for
instance, one article describes an in vivo ex-
periment and the other an in vitro experiment.

The actual decision of the label for a particu-
lar pair is very subjective and dependent on the
opinion of the annotator. The SMAFIRA-c dataset
(cf. below) has some examples that can be used
for better understanding the various similarity sit-
uations. Further, we give some examples on the
web site based on three aspects that were curated in
the JRC’s reports (e.g., (Commission et al., 2020)),
namely, application, disease, and disease feature.

The application refers to the the main scientific
aim of the article or the application of the described
model or method, e.g., whether the article describes
the mechanism of the disease or the development of
a new treatment. When addressing a certain disease,
an article usually describe which specific aspects
of the latter are under study, e.g., the progression
of the tumor into an invasive form.

The assessment of the similarity could be based
on these three aspects, though this is not manda-
tory. Pair of articles in which all these aspects are
equal (or very similar) could certainly be tagged as
“similar”. Since our annotation is based on the list
of similar articles, all articles are somehow similar
to the reference article. For instance, the disease

is usually the same, and exceptions to this usually
constitute a good reason for tagging an article as
“not similar”. However, the disease feature is often
not the same, or more than one are described, and
their similarity (or lack of similarity) is usually the
main aspect to be observed when deciding about
the label. Finally, the application is also usually the
same across the articles and exceptions could also
be tagged as “not similar”.
2.4 Available data
Previously, we have annotated (approximately) the
top 100 similar articles for four reference articles,
namely, the SMAFIRA-c dataset6 (Butzke et al.,
2020). This data could be used for manually check-
ing some annotated examples, e.g., for training pur-
poses. Further, for automatic methods, it could be
used for few-shot strategies or for the evaluation.
However, given its small size, it might not be ap-
propriate for supervised learning purposes. The
mapping between the annotations in SMAFIRA-c
(“Equivalence” column) and the three labels used
in the shared task is shown below:

• “similar”: equivalent “++”, partially equiva-
lent “+(+)” or “+”, noteworthy “n”

• “uncertain”: limbo “L”
• “not similar”: not equivalent “-”

3 Teams and Systems
In this section we give details of the participants
of the shared task. For the sake of simplicity, we
will sometimes refer to all of participants, whether
manual annotators or automatic systems, as “teams”
throughout this publication.

For the manual annotation, we had the participa-
tion of two teams:

• “RCX” (RECETOX, Faculty of Science,
Masaryk University, Czechia);

• “Bf3R” (German Centre for the Protection of
Laboratory Animals, Germany).

The annotations from “Bf3R” were carried out
by five experts. Some of them annotated the same
reference article in order to compare their results,
but they did not try to reach a consensus. In these
cases, we selected one of them as the official sub-
mission of the team.

6https://github.com/SMAFIRA/c_corpus
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For the automatic annotations, we relied on
a zero-shot approach with two LLMs: (a) the
GPT-4o-mini model using the OpenAI API7; and
(b) Llama3.3 (llama-3.3-70b-versatile) using the
Groq API8. We provided the two texts (title and
abstract) in the prompt, i.e., first the one for the
reference article and then the one for one of the
similar article, followed by the questions with
detailed instruction on how to assess the similarity.
We used the following user message:

You are a helpful assistant designed to evaluate the
similarity between two texts.

and the following user content:

Text 1: REF_ARTICLE_TEXT
Text 2: SIMILAR_ARTICLE_TEXT
Are the the research goals of the two texts above
similar? You should compare the research goal
based on four aspects: (1) Are the disease(s) ad-
dressed in the texts the same? (2) Do they address
the same characteristic symptom/feature of the
disease? (3) Do they refer to the same biological
endpoints, e.g., the same disease mechanism,
gene/protein or chemical coumpounds? (4) Is
the scientific aim or the future application of the
results the same, e.g., for drug development, model
development, disease treatment or diagnosis?
Answer with either ’similar’, ’uncertain’, or ’not
similar’. The answer is:

We evaluated our prompts with the cases studies
of the SMAFIRA-c dataset (cf. Section 2.4) and
show the statistics of the corpus (cf. Table 3) and
the results (cf. Table 4) in the Appendix A. The
same prompt was used for both LLMs when ob-
taining annotations for the shared task, as well as
for the evaluation of the SMAFIRA-c dataset. We
retrieved annotations from the two LLMs for all
reference articles in batch1.

4 Results

4.1 Overview of the annotations
We describe the annotations that we obtained from
two participants and from two LLMs. In this publi-
cation, we present results only for batch1.

7https://openai.com/
8https://console.groq.com/docs/model/llama-3.

3-70b-versatile

Figure 1: Overview of the annotations per disease in
terms of number of annotations (y-axis). The x-axis
shows the five reference article (in the order shown in
Table 1) and the teams: (R)CX, (B)f3R, (G)PT-4o-mini,
and (L)lama3.3. The three-value similarity is the fol-
lowing (from darker to lighter color, from top to bottom
in each graph): “similar”: dark blue (top color), “un-
certain”: dark blue/green (middle color), “not similar”:
light green (bottom color).

We obtained manual annotations for all 25 refer-
ence articles from RCX and for 14 reference articles
from Bf3R. Further, we collected annotations for all
reference articles from the two LLMs. Regarding
the three similarity labels, we obtained the follow-
ing number of annotations (from a total of 1,780):
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948 (53%) for “similar”, 202 (11%) for “uncertain”,
and 630 (35%) for “not similar”. All annotations
are available in our GitHub repository.

We depict the number of annotations for each
label in Figure 1, from which we can observe some
differences across the teams. On the one hand, RCX
and Llama3.3 frequently assigned the “similar” la-
bel to all (or most) of the similar articles of some
reference articles. On the other hand, GPT-4o-mini
frequently assigned the “not similar” label for all
(or most) of the similar articles of some reference
articles. Further, the “uncertain” label was more
frequently assigned by human annotators, but rarely
returned by GPT-4o-mini, and never by Llama3.3.

We did not observe considerable differences
across the diseases. For all five diseases, the “simi-
lar” label was the most frequent one (45% to 62%),
followed by “not similar” (28% to 41%) and “un-
certain” (7% to 16%).
4.2 Agreement between teams
We analyzed the agreement of the annotations in
various ways, e.g., pairwise comparison between
two teams, or multiple comparison across all teams.
We present the results below.
Agreement for manual annotation. For the
RCX and Bf3R teams and for the 14 reference ar-
ticles annotated by both teams, we observed the
following (cf. Figure 1):

• Three cases with good agreement: “36159784”
(no. 1) of “Infections”, “33320838” (no. 2)
of “Neoplasms” and “37268711” (no. 4) of
“Cardiovascular Diseases”.

• Two cases had some agreement: “35709748”
(no. 1) and “37339207” (no. 3) of “Nervous
System Diseases”.

• Four cases in which one assigned mostly the
“uncertain” label, which might overlap with
the “similar” or “not similar” labels from the
other: “34233949” (no. 1) of “Neoplasms”,
“33635944” (no. 1) and “35917178” (no. 5)
of “Cardiovascular Diseases”, and “37168850”
(no. 5) of “Immune System Diseases”.

• Five cases with very bad agreement:
“37071015” (no. 4) and “31689515” (no.
5) of “Infections”, “37429473” (no. 4)
of “Neoplasms”, “37749256” (no. 4) of
“Nervous System Diseases”, and “34503569”
(no. 1) of “Immune System Diseases”.

In general, the agreement for the manual annota-
tion was rather good for the reference articles in the
“Cardiovascular Diseases”. However, this compari-
son did not consider the labels for each particular
article, nor agreements that might have occurred by
chance.
Pairwise agreement. We computed the kappa
score9 (McHugh, 2012) for all pairwise compar-
ison between the teams and plotted a heatmap in
Figure 2. From a total of 114 pairs, 26 of them were
negative, (no agreement), 42 between zero and 0.2
(slight agreement), 12 between 0.2 and 0.4 (fair
agreement), four between 0.4 and 0.6 (moderate
agreement), and none above these values (substan-
tial or perfect agreement). As already observed
above, there are less negative scores for the “Car-
diovascular Diseases”. From the 14 reference arti-
cles annotated by human annotators, seven of them
had a negative agreement. The three highest scores,
namely, 0.52, 0.51, and 0.49 were obtained between
RCX and Llama3.3, followed by a good agreement
(0.44) by Bf3R and GPT-4o-mini.
Multiple agreement. For each reference article,
we also computed the krippendorff’s alpha score10
across annotations from all teams (whenever avail-
able). We plot the scores on Figure 3. From the 25
reference article, 22 of them were negative, which
mean a systematic disagreement. The highest (and
positive) scores, i.e., 0.056, 0.051, and 0.035, were
obtained by the following reference articles, respec-
tively: “37380648” and “35917178” of “Cardiovas-
cular Diseases”, and “37126714” from “Nervous
System Diseases”.
5 Discussion
5.1 Analysis of the annotations
We analyzed the articles that could already be part a
future dataset, as well as potential articles that could
be included after an additional round of consensus.
Further, we also analyzed whether articles tagged
as “similar” were usually ranked higher in the top
20 list.
Pairs of articles with high agreement. The aim
of this shared task was to build a dataset for pairs
of articles with respect to the similarity of their re-
search goal. Our previous effort, i.e., SMAFIRA-c,

9https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.cohen_kappa_score.html

10https://pypi.org/project/krippendorff/
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Figure 2: Cohen’s kappa scores for each pair of teams. The x-axis shows the five reference article (in the order
shown in Table 1) and the teams: (R)CX, (B)f3R, (G)PT-4o-mini, and (L)lama3.3. The y-axis depicts the teams
along with the five diseases. Cells with negative scores are depicted with a minus (“-”).

Figure 3: Krippendorff’ alpha scores for each reference
article across all teams. The x-axis shows the five refer-
ence articles (in the order shown in Table 1). The y-axis
depicts the five diseases.

is a rather large dataset (around 400 articles), but in-
cludes only four reference articles. For all reference
articles in batch1, the low kappa and krippendorff’s
alpha scores showed above indicate that such as
dataset should not include all articles from top 20
list. Therefore, we identified the articles (PMIDs)
that have high agreement across the teams and that
could potentially be included in a dataset. We only
considered PMIDs with four equal votes of the same
label, i.e., agreement across all teams. We obtained

28 PMIDs from all five diseases with unanimous
agreement, 14 “similar” pairs and 14 “not similar”
(cf. Table 2).
Pairs of articles with good agreement. Many
pairs have a good agreement, even though they have
no agreement across the four teams. We identified
55 articles with three unanimous labels, i.e., from
the RCX team and the two LLMs. From these, 50 of
them were tagged as “similar” and 5 of them as “not
similar”. These articles come from 11 reference ar-
ticles, and these are the ones whose annotation from
team Bf3R should be prioritized, especially those
with already many unanimous labels from the three
teams, namely, reference articles “37084732” from
“Nervous System Disease” and “32485164” from
“Infections”. Further, from the 14 reference articles
with annotations from the four teams, we identified
77 articles with just one different annotation, e.g.,
three “similar” annotations and one “not similar”.
These constitute potential additional 42 “similar”
articles and 35 “not similar” articles. A consensus
round of annotation could potentially solve these
disagreements.
Cases with very low agreement. From the ref-
erence articles annotated by all four teams, two
of them had no article with an unanimous label,
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Diseases Ref. articles Articles Label

Infections

37071015 35605915 similar36441775

31689515
28456941

similar26920550
35798933
26189763

36159784 34228857 not similar

Neoplasms

34233949 35027827 similar

33320838
36339405

not similar37376562
35995402
35507699

37429473 36740846 not similar

Nervous S.

35709748 25362208 not similar

37339207
31010153

not similar27174093
27045344
34788059

Cardiov. S. 37268711
31140393 similar
36674651

not similar31780864
36990303

35917178 23563994 similar

Immune. S.
34503569 35325396

similar23335001
32693359

37168850 22673798
similar25778936

Table 2: Selected unanimous pairs for each disease.

i.e., namely “37749256” of “Nervous System Dis-
ease” and “33635944” of “Cardiovascular Dis-
eases”. However, some articles in these reference
articles had three votes of the same label (cf. above).
Further, the reference article “36179018” from “Im-
mune System Disease” was annotated by three
teams and did not obtain any article with unan-
imous label. Finally, in general, the “uncertain”
label had a very low agreement, and no article ob-
tained an unanimous label of this type, not even
three unanimous labels (cf. above).

Ranks of the articles. For the articles with full
agreement across the four teams (cf. above), we
checked whether articles tagged as “similar” were
usually on the top of the list, and those tagged as
“not similar” were rather at the bottom of the list.
For the 14 articles tagged as “similar”, their posi-
tions in the list varied from 1 to 14 (average of 5.5).
For the 14 articles tagged as “not similar”, their
positions in the list varied from 6 to 19 (average
of 11.6). On the one hand, and even if the sam-
ple is rather small for significant insights, it seems
that “similar” articles were actually found in rather
higher ranks and “not similar” ones in rather lower
ranks. On the other hand, there are some cases of

“not similar” ones in the top 10, namely, positions
6, 7, and 9, and “similar” ones below the top 10,
namely positions 14 and 15.

6 Conclusion

We proposed the SMAFIRA Shared Task with the
aim to collect data for a dataset about the similarity
of the research goal between two articles, namely,
a reference article and one candidate article from
the list of similar articles. We released two batches
of references articles: (i) a first one related to five
diseases, five reference articles each; (ii) a second
one with 16 diseases, also five reference articles
each. For any reference article in these batches, we
asked the participants to annotate the top 20 similar
articles, as available in PubMed. The annotation
consisted on assessing the similarity in terms of
three labels, namely, “similar”, “uncertain”, and
“not similar”.

For the first batch, we collected annotations from
two teams that performed manual annotation and
two LLMs for automatic annotations. For each
reference article, we presented a detailed analy-
sis based on the number of the labels, as well as
agreement based on the kappa and the kippendorff’s
alpha scores. These scores were very low (often
negative) for most reference articles, which means
that there is a systematic disagreement across most
articles on the top 20.

In spite of the above, there are some articles with
high agreement and which could already be part
of a dataset. Additionally, some more articles re-
ceived three equal labels (out of four teams) and
could also possibly be included after a consensus
round. Finally, some more articles have three unan-
imous labels and could also potentially be selected
after an annotation round from the Bf3R teams. Fi-
nally, the RCX team has already agreed to further
annotate the second batch, and we could also obtain
annotations from the two LLMs, as well as some
additional ones from the Bf3R team.

Finally, a preliminary analysis of the ranks of the
articles tagged as “similar” or “not similar” con-
firmed that some articles could have been pushed
higher in the top 20 list. Therefore, we need better
methods for assessing the similarity of the articles’
research goals. However, a comprehensive dataset
is essential for a reliable evaluation of these meth-
ods, and for training few-shot approaches.
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A Evaluation of the LLMs with
SMAFIRA-c dataset

We show the statistics of the annotation of the cor-
pus are in Table 3. Further, we evaluated both

ref. PMIDs similar uncertain not similar
16850029 11 14 71
19735549 12 5 81
21494637 5 42 56
24204323 26 0 76

Table 3: Number of annotations in the SMAFIRA-c
dataset.

GPT-4omini Llama3.3
16850029 P R F1 P R F1
similar 0.31 0.90 0.46 0.15 1.00 0.26
not similar 0.84 0.75 0.79 0.89 0.35 0.51
uncertain 0.33 0.07 0.12 0 0 0
overall 0.66 0.66 0.66 0.37 0.37 0.37
19735549 P R F1 P R F1
similar 0.46 0.55 0.50 0.13 1.00 0.23
not similar 0.87 0.86 0.87 1.00 0.17 0.29
uncertain 0 0 0 0 0 0
overall 0.78 0.78 0.78 0.26 0.26 0.28
21494637 P R F1 P R F1
similar 0.42 0.56 0.48 0.42 1.00 0.59
not similar 0.58 0.43 0.49 1.00 0.07 0.13
uncertain 0 0 0 0 0 0
overall 0.46 0.46 0.46 0.44 0.44 0.44
24204323 P R F1 P R F1
similar 0.52 0.48 0.50 0.39 0.92 0.55
not similar 0.84 0.82 0.83 0.95 0.53 0.68
uncertain 0 0 0 0 0 0
overall 0.73 0.73 0.73 0.62 0.62 0.62

Table 4: Evaluation of the LLMs on the SMAFIRA-c
dataset.

LLMs in the SMAFIRA-c dataset with the corre-
sponding mapping for the labels (cf. Section 2.4).
We show results in Table 4.
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Abstract

This paper presents an overview of the
ArchEHR-QA 2025 shared task, which was
organized with the 24th BioNLP Workshop at
ACL 2025. The goal of this shared task is to
develop automated responses to patients’ ques-
tions by generating answers that are grounded
in key clinical evidence from patients’ elec-
tronic health records (EHRs). A total of 29
teams participated in the task, collectively sub-
mitting 75 systems, with 24 teams providing
their system descriptions. The submitted sys-
tems encompassed diverse architectures (in-
cluding approaches that select the most relevant
evidence prior to answer generation), leverag-
ing both proprietary and open-weight large lan-
guage models, as well as employing various
tuning strategies such as fine-tuning and few-
shot learning. In this paper, we describe the
task setup, the dataset used, the evaluation cri-
teria, and the baseline systems. Furthermore,
we summarize the methodologies adopted by
participating teams and present a comprehen-
sive evaluation and analysis of the submitted
systems.

1 Introduction

The volume of messages received through patient
portals is on the rise, which includes requests from
patients for medical information (Holmgren et al.,
2023; Martinez et al., 2024). This is one of the main
contributors to increasing clinician burden. One
promising strategy to address this challenge is to
assist clinicians in formulating responses to patient
inquiries. To this end, automatically generating an-
swers to questions from patients considering their
medical records is important.

While there is extensive work on answering gen-
eral health-related queries from patients (Welivita
and Pu, 2023), relatively little focuses on address-
ing patient questions specifically about their own
medical records. Within the work on patient portal
messages, most research has focused on message

triage (Ren et al., 2023; Liu et al., 2024c) or on help-
ing patients formulate their questions (Liu et al.,
2024b). Efforts to automatically generate answers
to patient questions rarely incorporate relevant in-
formation from the patient’s medical record (Liu
et al., 2024a; Chen et al., 2024). Among the few
that do, none evaluate how effectively the gener-
ated responses leverage that evidence (Small et al.,
2024; Garcia et al., 2024).

Grounding an answer in evidence is the process
of citing or referencing specific segments of the
input evidence to support the generated response
(Chandu et al., 2021). This practice is especially
critical in medicine, where accuracy and trace-
ability are paramount–particularly when the tar-
get users are not proficient in medical knowledge
(Haug and Drazen, 2023). Although grounding has
been extensively studied in open-domain (Wang
et al., 2025; Sung et al., 2025), its application in the
clinical domain remains relatively underexplored.

To foster research in these underexplored ar-
eas of clinical natural language processing (NLP),
we introduced the ArchEHR-QA (pronounced

“Archer”) shared task1. The goal of the task is to
develop automated systems that generate answers
to patients’ questions, grounded in key clinical evi-
dence from their electronic health records (EHRs).
Participants were provided with patient-posed ques-
tions, their clinician-interpreted versions, and cor-
responding clinical notes. Systems were expected
to produce answers accompanied by sentence-level
citations to the relevant sentences of the clinical
note.

2 ArchEHR-QA 2025 Task Description

Given a patient-posed natural language question,
the corresponding clinician-interpreted question,
and the patient’s clinical note excerpt, the task is to
generate a natural language answer with sentence-

1archehr-qa.github.io
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Patient Question I had severe abdomen pain and was hospitalised for 15 days in ICU, diagnosed with CBD sludge
thereafter on udiliv. Doctor advised for ERCP. My question is if the sludge was there does not the
medication help in flushing it out? Whether ERCP was the only cure?

Clinician Question Why was ERCP recommended to him over continuing a medication-based treatment?

Clinical Note
Excerpt

1: During the ERCP a pancreatic stent was required to facilitate access to the biliary system (removed
at the end of the procedure), and a common bile duct stent was placed to allow drainage of the
biliary obstruction caused by stones and sludge. 2: However, due to the patient’s elevated INR, no
sphincterotomy or stone removal was performed. 3: Frank pus was noted to be draining from the
common bile duct, and post-ERCP it was recommended that the patient remain on IV Zosyn for at
least a week. 4: The Vancomycin was discontinued.

5: On hospital day 4 (post-procedure day 3) the patient returned to ERCP for re-evaluation of her biliary
stent as her LFTs and bilirubin continued an upward trend. 6: On ERCP the previous biliary stent was
noted to be acutely obstructed by biliary sludge and stones. 7: As the patient’s INR was normalized
to 1.2, a sphincterotomy was safely performed, with removal of several biliary stones in addition to
the common bile duct stent. 8: At the conclusion of the procedure, retrograde cholangiogram was
negative for filling defects.

Clinician Answer An endoscopic retrograde cholangiopancreatography, ERCP, was recommended to place a common
bile duct stent [1]. This stent was placed to allow drainage of the biliary obstruction which was caused
by stones and sludge [1]. Due to no improvement in liver function, the patient needed a repeat ERCP
[5]. The repeat ERCP showed that the biliary stent placed in the first ERCP was obstructed by stones
and sludge [6]. The stones and stent were successfully removed during this procedure by performing a
sphincterotomy [7].

Sample System
Answer

ERCP was recommended as medication alone may not effectively clear the biliary obstruction caused
by stones and sludge [1]. The procedure allowed for direct visualization, stenting, and subsequent
removal of biliary stones and sludge [1,7,8]. Medication, such as IV Zosyn, was used adjunctively to
manage infection but was not sufficient to flush out the sludge and stones on its own [3].

Table 1: Example annotated patient case from the ArchEHR-QA dataset. Focus areas in the patient question are
underlined, which are taken into account when creating the clinician question. In the clinical note excerpt, the
sentences with identifiers [1,5,6,7] are essential, [2,8] are supplementary, and [3,4] are not-relevant.

level citations to the specific clinical note sen-
tences.

3 Data Description

We used a subset of 120 patient cases from the
ArchEHR-QA dataset (Soni and Demner-Fushman,
2025). Each patient case in the dataset com-
prises a hand-curated, realistic patient question
(reflective of patient portal messages), relevant
focus areas identified within the question (as de-
termined by a clinician), corresponding clinician-
rewritten version (crafted to aid in formulating re-
sponses), and note excerpt providing essential clin-
ical context (Table 1). The dataset was curated
by aligning real patient questions posted to public
health forums with clinical notes from publicly ac-
cessible EHR databases, namely, MIMIC-III and
MIMIC-IV (Johnson et al., 2016, 2023). Each sen-
tence in the note excerpt is manually annotated
to mark its importance in answering the question
as “essential” (must be cited in the answer),
“supplementary” (may be cited to provide sup-
port), or “not-relevant” (should not be cited).
For more details about the dataset curation process,

please refer to the dataset paper (Soni and Demner-
Fushman, 2025).

A total of 20 patient cases were provided to the
participants with sentence relevance keys for the
development and validation of systems. The re-
maining 100 patient cases were used for testing the
participant systems and released to the participants
closer to the final submission date without the sen-
tence relevance labels. Tables 2 and 3 provide the
dataset statistics.

4 Evaluation

4.1 Metrics

Submissions were evaluated based on their use
of clinical evidence for grounding (“Factuality”)
and the relevance of the generated answers (“Rel-
evance”). The scoring script is available on
GitHub2.

Factuality is assessed by calculating Precision,
Recall, and F1 Scores between the cited evi-
dence sentences in the generated answers (i.e., pre-
dicted as “essential”) and the manually anno-

2github.com/soni-sarvesh/archehr-qa
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Patient Question Clinician Question Note Excerpt Clinician Answer

Dev Test Dev Test Dev Test Dev Test

Mean 85.2 92.3 10.8 10.6 320.8 380.4 73.6 72.4
Median 81.0 74.5 10.0 10.0 320.5 345.0 74.0 73.0
S.D. 35.1 62.4 2.8 3.9 174.6 213.3 2.3 3.6
Min 40.0 33.0 7.0 3.0 109.0 76.0 66.0 55.0
Max 170.0 440.0 17.0 21.0 678.0 1028.0 78.0 76.0

Table 2: Word count statistics by dataset split. Dev: development; S.D.: standard deviation.

Sentences

Relevance Dev Test

all 21.4 (100%) 26.0 (100%)
essential 6.0 (28.3%) 6.6 (25.3%)
supplementary 1.3 (6.1%) 5.5 (21.3%)
not-relevant 14.1 (65.7%) 13.9 (53.4%)

Table 3: Average sentence counts by relevance and
dataset split. Dev: development.

tated ground truth sentence relevance labels. Two
variations of Citation F1 Scores are calculated. In
the “strict” variation, only essential sentences
are considered as answers. In the “lenient” vari-
ation, both essential and supplementary sen-
tences are considered as answers.

Relevance is evaluated by comparing the gener-
ated answer text with the ground truth answer. Two
variations of ground truth answers were used for
relevance computations: clinician-authored answer
and a concatenation of essential note sentences
with patient and clinician questions. A suite of text
and semantics based relevance metrics are used
to compare the predicted and ground truth text:
BLEU (Papineni et al., 2002), ROUGE-LSum (Lin,
2004), SARI (Xu et al., 2016), BERTScore (Zhang
et al., 2019), AlignScore (Zha et al., 2023), and
MEDCON (Yim et al., 2023).

4.2 Baseline
As a simple yet strong baseline, we prompted the
LLaMa 3.3 70B model (Grattafiori et al., 2024) in a
zero-shot setting to generate an answer using both
the patient and clinician questions, along with the
note excerpt as input. We provided the note sen-
tence identifiers to the model and instructed it to
cite the specific sentence IDs within its generated
answer. In instances where the model failed to fol-

low the required formatting or citation guidelines,
we iteratively prompted the model with specific
feedback from the previous attempt (e.g., an in-
valid citation) up to five times.

5 Participation

5.1 Participating Teams
We used the Codabench platform3 to facilitate
shared task submission process (Xu et al., 2022). In
total, 29 teams participated in the task and submit-
ted a total of 75 systems. Of these, 24 teams pro-
vided a description of their submitted system. We
report the evaluation scores exclusively for those
submissions accompanied by a system description.

5.2 Results
Participants were provided with a preliminary ver-
sion of sentence relevance keys during the devel-
opment phase, where note excerpts and questions
were used to compute the relevance scores. Table
4 presents the submission results on the test set
(with hidden keys) using this setup. In this setting,
DMIS Lab (Hwang et al., 2025) achieved the high-
est overall score of 53.7% with a strict micro F1
score of 58.6% and an average relevance score of
48.8%. This was followed by Neural (Bogireddy
et al., 2025) and LAILab (Le et al., 2025), which
attained overall scores of 51.5% and 51.0%, re-
spectively. Notably, ArgHiTZ (Cortes et al., 2025)
obtained the highest strict micro F1 score of 60.5%.

Upon completion of the annotation reconcilia-
tion process, we recalculated the evaluation metrics
using revised sentence relevance keys and clinician-
authored reference answers. These results are re-
ported in Table 5. While the overall score range
remained relatively stable, there were substantial
changes in the ranking of individual systems, and
we observed a general drop in the overall scores for

3codabench.org/competitions/5302

398

https://www.codabench.org/competitions/5302/


Rank Team Factuality Relevance
Lenient Strict Text Semantics

O F R ID P R F1 P R F1 BL RG SA BS AS MD Avg OS

1 4 1 DMIS Lab 61.2 59.2 60.2 57.9 59.3 58.6 14.3 46.5 36.7 53.9 92.4 49.3 48.8 53.7
2 3 2 Neural 58.4 63.7 60.9 55.4 63.8 59.3 8.5 34.1 73.1 39.1 67.3 40.0 43.7 51.5
3 2 4 LAILab 59.7 66.0 62.7 56.0 65.5 60.4 6.5 32.7 69.2 37.4 65.3 38.4 41.6 51.0
4 6 5 LAMAR 64.0 53.5 58.3 60.6 53.6 56.9 6.0 32.1 65.8 36.4 64.3 43.6 41.4 49.1
5 14 3 ssagarwal 71.7 35.6 47.6 68.8 36.2 47.5 4.7 31.1 70.0 36.9 74.9 38.0 42.6 45.0
6 7 8 LIMICS 63.6 49.6 55.8 59.9 49.4 54.2 3.0 26.2 61.2 31.2 52.3 39.4 35.5 44.9
7 10 7 cuni-a 60.2 48.1 53.5 56.9 48.1 52.1 5.1 26.5 63.2 32.0 58.2 37.7 37.1 44.6
8 1 22 ArgHiTZ 58.9 65.8 62.1 55.8 65.9 60.5 0.9 21.1 48.1 22.1 42.3 30.9 27.6 44.0
9 5 16 Loyola 51.1 70.5 59.3 48.3 70.5 57.3 2.9 25.5 54.4 26.1 42.4 30.8 30.4 43.9

10 8 11 unibuc-sd 66.5 47.2 55.2 62.7 47.0 53.8 1.4 22.2 53.3 27.5 53.4 38.2 32.7 43.2
11 15 6 SzegedAI 69.7 37.0 48.4 65.6 36.9 47.2 3.2 27.8 63.6 32.9 64.2 37.8 38.2 42.7
12 11 12 KRLabs 50.7 56.6 53.5 48.1 56.8 52.1 2.0 21.4 57.9 26.3 49.0 35.2 31.9 42.0
13 12 10 FK 70.0 37.9 49.2 66.7 38.2 48.6 2.0 25.4 54.4 28.2 55.8 36.8 33.8 41.2
14 9 20 UTSA-NLP 47.0 68.4 55.7 43.7 67.2 53.0 0.7 17.8 56.6 22.7 40.4 29.4 27.9 40.4
15 17 13 UIC 70.4 35.2 46.9 67.3 35.6 46.5 0.7 19.4 55.6 24.6 57.7 31.4 31.6 39.0
16 13 21 utsamuel 55.1 45.3 49.7 51.4 44.7 47.8 0.6 20.0 56.7 24.2 35.4 29.6 27.8 37.8
17 16 23 aehrc 55.5 42.0 47.8 52.9 42.4 47.1 0.6 19.0 48.4 22.5 41.9 30.3 27.1 37.1
18 18 19 unibuc-sb 61.7 35.9 45.4 58.7 36.1 44.7 0.6 19.9 49.0 23.9 43.0 32.4 28.1 36.4
19 20 17 HurLab 52.9 34.8 41.9 49.3 34.3 40.4 1.8 24.0 47.3 24.9 48.1 34.5 30.1 35.2
20 19 18 JUNLP 57.5 32.4 41.4 54.2 32.3 40.5 1.5 22.8 49.3 24.4 49.1 30.9 29.6 35.1
21 21 9 WisPerMed 59.1 27.1 37.1 55.4 26.9 36.2 2.0 22.6 61.0 29.5 62.3 25.9 33.9 35.0
22 22 15 DKIT 59.9 23.1 33.4 56.5 23.1 32.7 1.7 23.6 49.8 26.2 47.8 33.9 30.5 31.6
23 23 14 heiDS 71.2 16.0 26.2 67.7 16.1 26.0 0.7 18.1 53.6 22.2 61.0 29.9 30.9 28.5
24 24 24 razreshili 39.7 8.4 13.9 36.8 8.2 13.5 0.4 16.8 45.8 19.9 43.9 24.5 25.2 19.3
- - - baseline 77.0 22.3 34.6 71.6 21.9 33.6 0.1 15.2 47.8 20.5 57.7 25.6 27.8 30.7

Table 4: Submission scores using the preliminary version of answer keys, with note excerpts and questions used for
evaluating relevance. Factuality scores are reported at the micro level. O, F , R: Rank using Overall, Factuality
(Strict F1), and the average Relevance score. ID: Team identifier; P: Precision; R: Recall; F1: F1 Score; BL: BLEU;
RG: ROUGE; SA: SARI; BS: BERTScore; AS: AlignScore; MD: MEDCON; Avg: Overall Relevance Score; OS:
Overall Score. All scores are percentages.

most submissions. Under this revised evaluation,
LAMAR (Yoadsanit et al., 2025) achieved the high-
est overall score and strict micro F1 score of 46.9%
and 58.8%, respectively. FK and unibuc-sd (Gh-
inea and Rîncu, 2025) followed closely, securing
the second and third positions with overall scores
of 46.6% and 45.6%, respectively.

5.3 Approaches

Table 6 summarizes the key characteristics of the
systems submitted to the shared task. The majority
of teams (20 [83.3%]) adopted a two-stage pipeline
in which relevant evidence was first identified from
the note excerpts, followed by answer generation in
a subsequent stage. Several teams also incorporated
additional post-generation steps, such as citation
assignment (5 [20.8%]) or answer reformulation (8
[33.3%]) with an aim to further enhance the quality
of responses.

All participating teams utilized language models
as part of their systems. Over half of the teams
(14 [58.3%]) employed proprietary models, such as
OpenAI’s GPT, while 11 teams (45.8%) used open-
weight large language models (LLMs), e.g., Meta’s
LLaMA. Additionally, 9 teams (37.5%) integrated
small language models (SLMs), such as BERT, into
their systems. Model tuning strategies varied, with
fine-tuning being the most common (6 [25.0%]),
followed by few-shot learning (5 [20.8%]), the use
of synthetic data (3 [12.5%]), and hyperparameter
tuning (2 [8.3%]). Postprocessing steps to refine
the generated answers were also reported, with
some teams leveraging the language model itself
for editing (5 [20.8%]) and some applying heuristic-
based approaches (4 [16.7%]).

Among the top-scoring systems, answer refor-
mulation emerged as a common component, so did
the use of proprietary LLMs. Notably, the leading
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Rank Team Factuality Relevance
Lenient Strict Text Semantics

O F R ID P R F1 P R F1 BL RG SA BS AS MD Avg OS

1 1 2 LAMAR 72.9 57.4 64.2 49.6 72.0 58.8 8.4 24.8 55.9 40.8 36.9 43.2 35.0 46.9
2 3 1 FK 78.8 40.3 53.3 59.1 55.6 57.3 7.4 24.6 53.9 40.2 47.9 41.6 35.9 46.6
3 2 6 unibuc-sd 75.4 50.4 60.4 53.0 65.2 58.4 4.2 21.3 53.0 41.0 34.6 41.9 32.7 45.6
4 5 5 ssagarwal 79.0 37.0 50.4 58.3 50.3 54.0 8.1 24.1 54.3 36.8 33.7 39.3 32.7 43.4
5 10 3 UIC 77.6 36.6 49.7 55.5 48.2 51.6 4.5 22.8 54.5 41.7 40.5 38.9 33.8 42.7
6 9 4 SzegedAI 78.4 39.3 52.3 54.4 50.2 52.2 7.1 23.4 54.1 39.3 35.0 39.1 33.0 42.6
7 6 10 LIMICS 71.2 52.3 60.3 46.9 63.5 54.0 5.5 22.2 54.3 38.6 25.7 39.3 30.9 42.5
8 4 18 Neural 67.5 69.3 68.4 42.8 81.0 56.0 6.3 20.7 53.1 30.6 25.9 33.3 28.3 42.2
9 7 13 LAILab 65.7 68.4 67.0 40.6 77.8 53.3 7.4 22.0 53.3 33.9 26.8 34.4 29.6 41.5

10 13 7 JUNLP 64.9 34.5 45.0 49.5 48.5 49.0 5.2 21.7 51.6 38.7 39.9 37.8 32.5 40.8
11 11 16 cuni-a 65.7 49.4 56.4 43.3 60.0 50.3 4.4 19.1 52.3 31.6 30.7 34.8 28.8 39.6
12 14 12 utsamuel 62.8 48.7 54.9 41.6 59.4 49.0 4.3 23.2 53.4 39.5 23.3 34.5 29.7 39.3
13 16 8 unibuc-sb 66.9 36.6 47.3 45.6 46.0 45.8 5.1 22.9 53.5 40.8 31.2 39.8 32.2 39.0
14 12 21 ArgHiTZ 64.7 68.1 66.3 38.0 73.6 50.1 2.9 18.4 48.5 34.9 25.8 32.8 27.2 38.6
15 17 9 KRLabs 57.6 60.6 59.1 34.3 66.4 45.2 5.5 23.4 53.8 38.2 27.8 42.8 31.9 38.6
16 15 19 Loyola 54.6 70.9 61.7 32.8 78.4 46.2 6.2 21.8 50.6 31.5 24.3 34.3 28.1 37.2
17 19 15 aehrc 57.7 41.2 48.1 37.5 49.2 42.5 2.8 20.6 51.3 38.5 28.5 33.4 29.2 35.9
18 18 22 UTSA-NLP 53.2 72.9 61.5 30.4 76.7 43.6 2.5 17.5 51.5 33.9 22.7 30.9 26.5 35.0
19 8 24 DMIS Lab 68.3 62.3 65.2 42.1 70.7 52.8 0.6 12.7 34.8 19.1 9.2 16.2 15.4 34.1
20 20 17 HurLab 56.2 34.8 43.0 36.5 41.6 38.9 4.6 21.0 48.6 37.3 26.5 33.2 28.5 33.7
21 22 11 heiDS 79.0 16.7 27.6 63.0 24.6 35.4 4.4 18.7 51.5 36.1 37.4 33.6 30.3 32.8
22 21 14 DKIT 64.6 23.5 34.5 44.2 29.6 35.5 5.1 21.3 49.8 37.2 27.9 35.1 29.4 32.4
23 23 23 WisPerMed 63.7 27.5 38.4 40.0 31.8 35.4 4.2 18.8 51.7 29.3 24.7 26.0 25.8 30.6
24 24 20 razreshili 40.5 8.1 13.5 30.2 11.1 16.2 2.9 19.4 48.7 32.7 29.4 31.9 27.5 21.9
- - - baseline 83.7 22.9 35.9 65.3 32.8 43.7 2.4 21.0 49.2 39.3 47.0 36.7 32.6 38.1

Table 5: Submission scores using the reconciled answer keys, with clinician-authored answers used for evaluating
relevance. Factuality scores are reported at the micro level. O, F , R: Rank using Overall, Factuality (Strict F1), and
the average Relevance score. ID: Team identifier; P: Precision; R: Recall; F1: F1 Score; BL: BLEU; RG: ROUGE;
SA: SARI; BS: BERTScore; AS: AlignScore; MD: MEDCON; Avg: Overall Relevance Score; OS: Overall Score.
All scores are percentages.

systems favored few-shot learning paradigms or
the incorporation of synthetic data generated by
LLMs over traditional fine-tuning setup. For exam-
ple, LAMAR (Yoadsanit et al., 2025) created syn-
thetic examples using an LLM to facilitate few-shot
prompting with a separate LLM, which was em-
ployed to identify relevant note sentences. These
sentences were subsequently leveraged to generate
the final answer text. In contrast, some systems
opted to utilize pre-trained models directly without
substantial modifications (e.g., FK).

6 Conclusion

We presented an overview of the ArchEHR-QA
Shared Task organized at the BioNLP Workshop
in ACL 2025. We discussed the proposed task,
the dataset used, the evaluation metrics, and a sum-
mary of the baseline and participants’ systems. The
shared task attracted significant interest, with 29

teams submitting a total of 75 systems and 24
teams providing their system descriptions. Our
analysis indicated that systems leveraging propri-
etary language models achieved higher overall per-
formance, and that top-performing approaches fa-
vored few-shot learning strategies over traditional
fine-tuning. Additionally, system architectures in-
corporating an answer reformulation step demon-
strated notable improvements in answer quality.
The strong interest and competitive submissions
underscore the growing momentum in this field.
We believe that the insights and resources provided
by the ArchEHR-QA Shared Task will promote
further advancements in the development and eval-
uation of EHR-based question answering systems
for patient-centered applications.
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Rank Team Components Model Adaptation Postprocess
O F R ID ES → AG → CA → AR Pty O-LLM O-SLM FT FS SD HT Mod Heur

1 1 2 LAMAR ✓ ✓ ✓ ✓ ✓
2 3 1 FK ✓ ✓
3 2 6 unibuc-sd ✓ ✓ ✓ ✓ ✓
4 5 5 ssagarwal ✓ ✓ ✓ ✓ ✓ ✓
5 10 3 UIC ✓ ✓ ✓ ✓ ✓
6 9 4 SzegedAI ✓ ✓ ✓ ✓ ✓ ✓
7 6 10 LIMICS ✓ ✓ ✓ ✓ ✓
8 4 18 Neural ✓ ✓ ✓
9 7 13 LAILab ✓ ✓ ✓ ✓ ✓
10 13 7 JUNLP ✓ ✓ ✓
11 11 16 cuni-a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
12 14 12 utsamuel ✓ ✓ ✓
13 16 8 unibuc-sb ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
14 12 21 ArgHiTZ ✓ ✓ ✓ ✓ ✓ ✓
15 17 9 KRLabs ✓ ✓ ✓ ✓ ✓
16 15 19 Loyola ✓ ✓ ✓ ✓ ✓ ✓
17 19 15 aehrc ✓ ✓ ✓
18 18 22 UTSA-NLP ✓ ✓ ✓ ✓
19 8 24 DMIS Lab ✓ ✓ ✓
20 20 17 HurLab ✓ ✓ ✓ ✓ ✓
21 22 11 heiDS ✓ ✓ ✓
22 21 14 DKIT ✓ ✓ ✓ ✓ ✓
23 23 23 WisPerMed ✓ ✓ ✓ ✓ ✓ ✓ ✓
24 24 20 razreshili ✓ ✓ ✓ ✓ ✓

Table 6: Characteristics of the submitted systems with their rankings based on reconciled keys and human answers.
O, F , R: Rank using Overall, Factuality (Strict F1), and Relevance score. ID: Team identifier. Broad categories of
system components comprise Evidence Selection (ES), Answer Generation (AG), Citation Assignment (CA), and
Answer Reformulation (AR). Different types of models employed can be categorized into Proprietary model (Pty),
Open-weight large language model (O-LLM), and Open-weight small language model (O-SML). Adaptation or
learning methods employed were: Fine Tuning (FT), Few-shot Learning (FS), Use of Synthetic Data (SD), and
Hyperparameter Tuning (HT). Postprocessing was performed using the Model itself (Mod) or using Heuristics
(Heur).

Limitations

The primary evaluation of system submissions in
this shared task relied on automated metrics, which
serve as practical proxies for system performance.
While such metrics offer scalability and efficiency,
they may not fully capture the nuances of answer
quality, especially in the clinical domain. Human
evaluation that assesses system-generated answers
considering the input question and the correspond-
ing clinical note remains the gold standard for deter-
mining answer relevance, accuracy, and evidence
grounding. However, due to the intensive time and
resource requirements, as well as the limited win-
dow between the submission deadline and the pro-
ceedings release, comprehensive manual evaluation
was not feasible within the scope of the shared task.
To address this limitation, we plan to conduct a
thorough manual assessment of the top submissions

from each participating team, focusing on three key
criteria: (i) whether the system response adequately
answers the question, (ii) whether it leverages rel-
evant clinical evidence, and (iii) whether it uses
general knowledge. We anticipate that this forth-
coming analysis will provide deeper insights into
system performance and help inform and acceler-
ate future development of patient-centered EHR
question answering systems.
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Rank Team Micro Macro
Lenient Strict Lenient Strict

O ID P R F1 P R F1 P R F1 P R F1

1 DMIS Lab 61.2 59.2 60.2 57.9 59.3 58.6 66.6 67.1 63.2 62.1 69.0 61.2
2 Neural 58.4 63.7 60.9 55.4 63.8 59.3 68.1 69.8 64.8 62.7 71.3 62.6
3 LAILab 59.7 66.0 62.7 56.0 65.5 60.4 67.2 72.1 64.6 62.1 72.8 61.5
4 LAMAR 64.0 53.5 58.3 60.6 53.6 56.9 70.0 62.2 61.8 65.4 64.0 60.2
5 ssagarwal 71.7 35.6 47.6 68.8 36.2 47.5 77.8 44.9 52.1 72.9 46.5 51.4
6 LIMICS 63.6 49.6 55.8 59.9 49.4 54.2 71.0 58.2 59.4 66.6 59.8 57.4
7 cuni-a 60.2 48.1 53.5 56.9 48.1 52.1 66.0 54.2 55.6 61.1 56.0 53.6
8 ArgHiTZ 58.9 65.8 62.1 55.8 65.9 60.5 62.4 69.1 61.9 57.0 69.5 58.5
9 Loyola 51.1 70.5 59.3 48.3 70.5 57.3 56.2 72.9 60.4 52.1 74.0 57.6
10 unibuc-sd 66.5 47.2 55.2 62.7 47.0 53.8 70.8 55.7 58.4 65.7 56.5 56.2
11 SzegedAI 69.7 37.0 48.4 65.6 36.9 47.2 73.6 46.1 53.1 68.3 47.1 51.4
12 KRLabs 50.7 56.6 53.5 48.1 56.8 52.1 60.4 60.6 56.2 55.8 62.3 54.3
13 FK 70.0 37.9 49.2 66.7 38.2 48.6 74.9 49.8 54.5 70.8 51.3 53.4
14 UTSA-NLP 47.0 68.4 55.7 43.7 67.2 53.0 49.6 77.4 56.7 45.1 77.3 52.6
15 UIC 70.4 35.2 46.9 67.3 35.6 46.5 79.1 42.1 51.2 74.7 44.1 51.4
16 utsamuel 55.1 45.3 49.7 51.4 44.7 47.8 57.0 55.4 51.8 52.2 56.0 49.0
17 aehrc 55.5 42.0 47.8 52.9 42.4 47.1 65.4 48.0 50.4 61.4 49.5 49.1
18 unibuc-sb 61.7 35.9 45.4 58.7 36.1 44.7 68.5 41.4 47.8 63.6 42.7 46.4
19 HurLab 52.9 34.8 41.9 49.3 34.3 40.4 61.2 42.0 44.8 56.7 43.0 42.7
20 JUNLP 57.5 32.4 41.4 54.2 32.3 40.5 62.4 43.6 46.9 58.4 45.0 45.8
21 WisPerMed 59.1 27.1 37.1 55.4 26.9 36.2 59.5 33.9 39.9 54.0 34.0 37.7
22 DKIT 59.9 23.1 33.4 56.5 23.1 32.7 63.4 31.1 36.5 60.0 32.4 35.9
23 heiDS 71.2 16.0 26.2 67.7 16.1 26.0 73.9 22.5 30.7 69.7 24.0 30.7
24 razreshili 39.7 8.4 13.9 36.8 8.2 13.5 53.8 13.6 19.1 49.6 14.5 19.0
- baseline 77.0 22.3 34.6 71.6 21.9 33.6 83.0 30.8 39.9 77.4 31.5 39.0

Table 7: Factuality scores using the preliminary version of answer keys, with both micro and macro level calculations.
O: Rank using Overall score. ID: Team identifier; P: Precision; R: Recall; F1: F1 Score. All scores are percentages.
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Rank Team Micro Macro
Lenient Strict Lenient Strict

O ID P R F1 P R F1 P R F1 P R F1

1 LAMAR 72.9 57.4 64.2 49.6 72.0 58.8 78.3 67.2 68.4 56.7 75.5 61.9
2 FK 78.8 40.3 53.3 59.1 55.6 57.3 81.8 52.5 58.7 64.3 60.8 59.8
3 unibuc-sd 75.4 50.4 60.4 53.0 65.2 58.4 80.2 59.8 65.2 60.7 69.1 62.3
4 ssagarwal 79.0 37.0 50.4 58.3 50.3 54.0 84.6 47.5 55.9 67.0 55.2 56.8
5 UIC 77.6 36.6 49.7 55.5 48.2 51.6 86.8 43.7 54.1 68.7 51.1 54.5
6 SzegedAI 78.4 39.3 52.3 54.4 50.2 52.2 80.7 47.9 56.2 58.5 53.8 53.4
7 LIMICS 71.2 52.3 60.3 46.9 63.5 54.0 78.6 61.5 64.4 55.5 67.2 57.5
8 Neural 67.5 69.3 68.4 42.8 81.0 56.0 76.5 75.6 72.3 54.6 82.8 62.1
9 LAILab 65.7 68.4 67.0 40.6 77.8 53.3 73.3 74.3 68.9 51.9 79.9 57.8
10 JUNLP 64.9 34.5 45.0 49.5 48.5 49.0 68.9 46.5 51.0 53.6 54.4 52.0
11 cuni-a 65.7 49.4 56.4 43.3 60.0 50.3 72.5 56.6 59.3 54.5 64.3 54.8
12 utsamuel 62.8 48.7 54.9 41.6 59.4 49.0 63.8 58.0 56.6 45.1 63.8 50.6
13 unibuc-sb 66.9 36.6 47.3 45.6 46.0 45.8 72.5 43.2 49.5 54.1 48.9 48.4
14 ArgHiTZ 64.7 68.1 66.3 38.0 73.6 50.1 68.4 71.1 65.6 45.8 74.4 52.8
15 KRLabs 57.6 60.6 59.1 34.3 66.4 45.2 67.4 64.9 62.0 48.0 69.0 51.9
16 Loyola 54.6 70.9 61.7 32.8 78.4 46.2 59.0 73.9 62.4 40.1 78.4 49.9
17 aehrc 57.7 41.2 48.1 37.5 49.2 42.5 68.7 47.6 51.4 51.5 52.7 47.8
18 UTSA-NLP 53.2 72.9 61.5 30.4 76.7 43.6 56.4 80.3 61.7 35.5 79.8 46.2
19 DMIS Lab 68.3 62.3 65.2 42.1 70.7 52.8 73.9 70.3 68.6 50.5 74.7 57.2
20 HurLab 56.2 34.8 43.0 36.5 41.6 38.9 63.9 41.3 45.4 45.6 44.5 41.1
21 heiDS 79.0 16.7 27.6 63.0 24.6 35.4 82.4 24.5 32.9 66.3 28.5 36.7
22 DKIT 64.6 23.5 34.5 44.2 29.6 35.5 68.1 32.3 38.3 51.1 34.6 37.6
23 WisPerMed 63.7 27.5 38.4 40.0 31.8 35.4 62.9 34.8 40.8 39.7 35.1 35.3
24 razreshili 40.5 8.1 13.5 30.2 11.1 16.2 57.8 13.4 18.3 47.4 14.6 20.2
- baseline 83.7 22.9 35.9 65.3 32.8 43.7 89.2 32.4 42.2 74.2 38.6 47.3

Table 8: Factuality scores using the reconciled answer keys, with both micro and macro level calculations. O: Rank
using Overall score. ID: Team identifier; P: Precision; R: Recall; F1: F1 Score. All scores are percentages.

405



Author Index

Abdrabou, Abdalla, 354
Aizawa, Akiko, 328
Al Moubayed, Noura, 341, 365
Ananiadou, Sophia, 34, 365
Arase, Yuki, 27
Arcuri, Giovanni, 190

Bahrololloomi, Farnod, 63
Barreiros, Leonor, 225
Bartels, Davis, 378
Basu, Tanmay, 56
Bert, Bettina, 388
Bhat, Ajaz, 319
Boudin, Florian, 328
Brown, James, 263
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