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Introduction

Greetings “babies”! and welcome to the proceedings and session of the 2023 BabyLM Challenge, held
on December 6, 2023 as part of CoNLL (co-hosted with EMNLP) in Singapore. This challenge aims
to bring together researchers interested in developmentally plausible pre-training, sample efficiency, and
human language acquisition. Our challenge encourages researchers to “think small” by using training
corpora containing 100 million words—approximately the amount of data available to human language
learners, but far less data than is typically used for pre-training language models.

We received 31 papers, all of which were accepted on the basis of scientific and technical validity, rather
than model performance. We received 162 individual model submissions, the scores of which are hosted
online, at www. https://dynabench.org/babylm.

We are grateful to the participants for advancing our understanding of how best to train language models
on scaled-down and more developmentally plausible corpora.. Their contributions have provided insight
into important questions related to cognitive modeling, computational psycholinguistics, and sample-
efficient language modeling. We are also grateful to the program committee for their thoughtful reviews
of the submissions we received this year. Likewise, we are thankful to the CoNLL organizers for their
work in integrating the BabyLM challenge into their program.

— The BabyLM Organization Committee: Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan Wil-
cox, Chengxu Zhuang, Adina Williams, Tal Linzen, Ryan Cotterell.
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Abstract

Children can acquire language from less than
100 million words of input. Large language
models are far less data-efficient: they typically
require 3 or 4 orders of magnitude more data
and still do not perform as well as humans on
many evaluations. These intensive resource
demands limit the ability of researchers to
train new models and use existing models as
developmentally plausible cognitive models.
The BabyLM Challenge is a communal
effort in which participants compete to
optimize language model training on a fixed
data budget. Submissions are compared on
various evaluation tasks targeting grammatical
ability, downstream task performance, and
generalization. Participants can submit to up
to three tracks with progressively looser data
restrictions. From over 30 submissions, we
extract concrete recommendations on how best
to train data-efficient language models, and
on where future efforts should (and perhaps
should not) focus. The winning submissions
using the LTG-BERT architecture (Samuel
et al., 2023) outperformed models trained on
trillions of words. Other submissions achieved
strong results through training on shorter
input sequences or training a student model
on a pretrained teacher. Curriculum learning
attempts, which accounted for a large number
of submissions, were largely unsuccessful,
though some showed modest improvements.

1 Introduction

Although there have massive improvements in
the effectiveness of neural language models in the
last decade, humans are still the state of the art in
language learning. To achieve impressive results,
language models need to be trained on hundreds
of times more language input than a typical human
will be exposed to in an entire lifetime. The
BabyLM Challenge is a shared task that invites
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Figure 1: Data Scale: Modern Language Models are
trained multiple orders of magnitude more word tokens
than the amount available to a typical child. This image
is based on Fig. 1 from Warstadt and Bowman (2022).

members of the natural language processing,
linguistics, and cognitive science communities
to train language models in low-resource data
settings, where the amount of linguistic input
resembles the amount received by human language
learners. In doing so, our motivations (Section 2)
are to improve the relevance of language models as
cognitive models of human language acquisition,
find more effective and data-efficient training
algorithms for language models, and democratize
research on language model training by emphasiz-
ing research questions that can be addressed on a
smaller training budget.

Participants in the shared task could submit to
the Strict, Strict-Small, or Loose track, which, re-
spectively, required models to be trained on cor-
pora that constituted either 10 million words, 100
million words, or 100 million words plus an un-
limited amount of additional non-linguistic data
(Section 3). These corpora were constructed from
a mixture of sources including developmentally
plausible domains such as child-directed speech,
transcribed dialogue, and children’s literature (Sec-
tion 4). To enable standardized evaluation and
easy comparison of the resulting models, we create
a leaderboard and release an evaluation pipeline
(Section 5) targeting zero-shot grammatical perfor-
mance, finetunability on language understanding
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tasks, and model inductive bias. We also contribute
a novel set of zero-shot evaluation tasks targeting
semantic and discourse-level phenomena.

We received 31 papers making a variety of contri-
butions, ranging from designing novel architectures
and tuning hyperparameters to employing curricu-
lum learning and training teacher—student model
pairs (Section 6). We conduct a meta-analysis of
the results, yielding several concrete recommenda-
tions and scientific conclusions (Section 7). The
winners of the challenge’s various tracks made con-
tributions that led to impressive improvements in
our evaluation over not just the BabyLLM baselines,
but also the massively pretrained Llama 2 model
(Touvron et al., 2023). The best-performing mod-
els overall (Charpentier and Samuel, 2023) use
the LTG-BERT architecture (Samuel et al., 2023),
which synthesizes a number of recent optimiza-
tions of the Transformer architecture. The winner
of the Loose track (Xiao et al., 2023) trains the
models continuously on the training samples be-
longing to the same source dataset while randomiz-
ing the dataset orders in each training epoch. Other
submissions did not achieve strong downstream re-
sults, but still provided valuable scientific contribu-
tions. We received many curriculum learning sub-
missions, including one that systematically tested
a variety of strategies (Martinez et al., 2023) and
reported few improvements over non-curriculum
baselines. Steuer et al. (2023) found that bench-
mark performance is not correlated with a greater
ability to predict human psycholinguistic data.

We plan to organize future BabyLM Challenges
that will build on the success of this first iteration
(Section 8). The winning submission from this
year sets a high baseline for next year. Future itera-
tions will need harder and more varied evaluations,
including those that emphasize human-like pro-
cessing and learning; they should emphasize new
approaches that were not thoroughly explored this
year, such as multimodality; and, they should in-
centivize compute-efficiency. Altogether, the first
BabyLLM Challenge has been a successful initia-
tive, and we hope that this will continue to advance
research on small-scale language models.

2 Motivation

The observation at the center of the BabyLM Chal-
lenge is this: Children are incredibly data-efficient
language learners, and language models are not.
Children are exposed to less than 100 million word

tokens by age 13 (Gilkerson et al., 2017), while
modern language models are typically trained on
3 or 4 orders-of-magnitude more data (Figure 1).
This discrepancy raises two important questions:
First, how is it that humans are able to learn lan-
guage so efficiently? Second, what insights from
human language learning can be used to improve
language models?

A great deal of recent work in language
model training seeks improvements by scaling
up pretraining data and parameters (Raffel et al.,
2020; Brown et al., 2020; Hoffmann et al., 2022;
Touvron et al., 2023). Scaling is undoubtedly
central to building deployable models (though
see McKenzie et al. 2023 for counterexamples)
and raises its own set of scientific questions, such
as quantitative scaling laws (Kaplan et al., 2020)
and the emergence of new abilities (Wei et al.,
2022). However, increased emphasis on scaling is
unlikely to lead to answers to the two questions we
raised, and it excludes researchers without access
to massive computational resources.

Thus, there are three principal benefits to
data-limited language model training which the
BabyLM Challenge aims to highlight:

1. Building more cognitively and developmen-
tally plausible models of human language ac-
quisition and processing,

2. Optimizing training pipelines prior to scaling
by allowing for faster iteration on architec-
tures and hyperparameters, and

3. Enabling research on language model training
beyond highly funded industry groups.

Cognitive Modeling. Language models have
been used to model aspects of human language
learning and processing for decades (Elman, 1990;
Hale, 2001; Reali and Christiansen, 2005, o.a.).
While many researchers continue to advocate
for language models as cognitive models (Keller,
2010; Dupoux, 2018; Linzen, 2019; Baroni, 2022;
Warstadt and Bowman, 2022; Piantadosi, 2023;
Wilcox et al., 2023), most agree that it is critical
to make LMs learn in more human-like ways.
Warstadt and Bowman (2022) and Linzen (2020)
point to data quantity as the most egregious
advantage that modern language models have
over humans. When restricted to developmentally
plausible data volumes, language models no longer
perform well on benchmarks for human-like



syntactic and semantic behavior (van Schijndel
et al., 2019; Zhang et al., 2021).

Working to close the data-efficiency gap between
language models and humans will have two prin-
cipal advantages for cognitive modeling. First,
by reverse-engineering known and hypothetical as-
pects of the human learning scenario—from mul-
timodal inputs and multi-agent interaction to in-
nate linguistic structural biases—we can determine
which factors are critical to our unique ability to
learn language efficiently (Dupoux, 2018). Second,
by minimizing differences between humans and
models, we make results from controlled experi-
ments carried out on models more likely to be ap-
plicable to humans (Warstadt and Bowman, 2022).

Faster iteration on architectures and hyperpa-
rameters for language modeling. Reducing
the scale of training provides researchers with a
sandbox in which to more fully explore this design
space and better optimize training pipelines. The
search space for design choices when training
language models is enormous. Thus, it can
be impractical, especially at large scales, to
experiment with new model architectures, training
objectives, or data preprocessing steps, in addition
to necessary hyperparameter tuning. Models such
as RoBERTa (Liu et al., 2019) have succeeded
in making some optimizations to the BERT
training pipeline, but more optimizations remain.
Indeed, there are anecdotes of basic design choices
for popular pipelines, such as the masking rate
for BERT training (Wettig et al., 2023), being
poorly tuned for years, despite hundreds or even
thousands of papers using this training pipeline.
There are numerous dimensions along which to
scale down training. Some works seek to optimize
pipelines for a limited amount of compute, time,
or money. Notable examples of such pipelines
for bidirectional encoder-only include ELECTRA
(Clark et al., 2020), 24-hour BERT (Izsak et al.,
2021), and MosaicBERT (Portes et al., 2023).
These pipelines typically combine multiple ap-
proaches, such as modifying training objectives to
increase the number of supervised predictions per
forward pass, using low-precision floating-point
computations for certain components, reducing se-
quence length or padding, and altering the attention
or feed-forward layers of the transformer block.
However, the objective of optimizing pipelines
for a fixed data budget is relatively underexplored.
This is changing in the last year with new models

optimized for small datasets such as LTG-BERT
(Samuel et al., 2023) and community-oriented
events centered around data-limited training
such as the Learning from Small Data workshop
(Breitholtz et al., 2023) and the MiniPile Challenge
(Kaddour, 2023).

Democratizing language model training re-
search. The third goal of the BabyLM Chal-
lenge is to democratize research on pretraining—
typically thought to be practical only for large in-
dustry groups—by drawing attention to challenging
and important open problems that can be explored
on a university budget. In recent years, efforts
aimed at widening participation in LM research
often take different avenues from the one proposed
here, including aggregation of distributed computa-
tion power (Diskin et al., 2021), reliance on public
computing infrastructure (Scao et al., 2022), aggre-
gation of expertise, data and stepwise contributions
(Don-Yehiya et al., 2023; Raffel, 2023) and mod-
ularity (Pfeiffer et al., 2023). Such a line of pre-
training research proposes to keep costs large but
to distribute them across funding sources through
many contributing factors.

Other works on decentralizing computation
(Diskin et al., 2021; Li et al., 2022; Lialin et al.,
2023) or model recycling works generally take
existing models and build upon them, proposing a
single adaptation finetuning (Choshen et al., 2022),
a single knowledge edit (De Cao et al., 2021),
combining several models (Yadav et al., 2023), or
iterative approaches showing that stacking such
improvements can continually improve models
(Don-Yehiya et al., 2023). Recently, a framework
for doing so was also released (Kandpal et al.,
2023). One can see the BabyLM challenge in
this context as a suggestion to persist in using a
centralized approach to pretraining, but making it
tractable, by reducing the cost through increased
focus on tractable research questions.

3 Guidelines and Timeline

Tracks. Submissions to BabyLLM had to conform
to one of three sets of guidelines, which we term
tracks. In this section, we describe each competi-
tion track; for specific details about wording, see
the original Call for Papers (Warstadt et al., 2023).
The three tracks for the BabyLLM challenges were
Strict, Strict-Small, and Loose. Participants in all
tracks were allowed a constant number of English-
language training tokens (100 million in Strict and



Loose and 10 million in Strict-Small) to be used in
total for all software used in the pipeline. This data
was released by the organizing committee and is
described, in detail, in Section 4. Loose track sub-
missions were encouraged to train on data beyond
just the linguistic text data provided through the
shared task (e.g., speech audio signal, code, music,
or visual input). The Loose track also permitted the
use of expert-annotated data, but any language data
used to train the LM or auxiliary models counted
towards the 100M word budget. Thus, for exam-
ple, a Loose track submission could train a parser
on the Penn Treebank (Marcus et al., 1993) and
self-train to parse the pretraining corpus, as long as
the number of words in the Penn Treebank plus the
pretraining corpus total less than 100M.!

In general, seeing the same data twice (e.g.,
across different epochs) did not count as seeing
more text. While it is unlikely that humans process
data iteratively in a manner similar to epoch-based
training, there is evidence that humans do repeat
some of the information they process (e.g., in mem-
ory replay, Carr et al., 2011). Furthermore, epochs
are very useful for gradient-based methods.

Finally, participants across all tracks were
encouraged to submit models and papers even
if their work did not fit into any of the three
tracks. As the goal of the shared task is to advance
efficient and cognitively plausible LM training,
we did not want to curtail participant creativity.
While submissions using external linguistic data
did not qualify to win any of the tracks, they still
qualified to be presented in the competition and
to be published in the proceedings.

Community building. Given that the BabyLM
Challenge aims to encourage research in efficient
and cognitively plausible model pretraining, one
of our goals was to encourage the formation of a
research community with shared interests. Towards
that end, we hosted a public messaging forum on
Slack and enabled participants to interact with each

'In our initial announcement, external software trained
on linguistic input or expert annotations not included in our
corpus—including taggers, parsers, tokenizers, or models
were not allowed. However, numerous questions from partici-
pants prompted an announcement in April 2023 that we were
modifying the rules of the Loose track to allow such meth-
ods. We made this decision because we determined that the
interests of the community were better served by emphasizing
creativity and discovery in the Loose track. Text generated by
a language model that was trained only on a BabyLM corpus
was not counted towards the 100M word budget, nor was data
bootstrapped by such models.

other and with the task organizers. At the time
of paper writing, this forum had over 250 mem-
bers, including many interested researchers who
did not ultimately submit to the challenge. An in-
teractive forum was useful for both establishing
a community and building interest; it allowed the
community to clarify the track rules, debug the eval-
uation pipeline, and receive announcements from
the organizers.

Timeline.

the website.

* December 2022: The BabyLLM Challenge is an-
nounced at CoNLL 2022, as well as on Twitter
and in several mailing lists.

Below, we replicate the timeline from

 January 2023: The pretraining datasets for the
Strict and Strict-Small tracks were released.

* March 2023: The initial evaluation pipeline was
made public.

* 1 June 2023: Hidden (surprise) evaluations were
released and the Dynabench submission portal
was opened.

e 22 June 2023: Deadline for model submissions
(extended from 15 June 2023).

* 1 August 2023: Deadline for paper submissions.

e 6-7 December 2023: Presentation of the shared
task at CoNLL.

4 Pretraining Corpus

We compiled and distributed a pretraining corpus
inspired by the input received by children.> Sub-
missions to the Strict track are required to train ex-
clusively on this corpus. Submissions to the Strict-
Small track are required to use only a scaled-down
version of the dataset, approximately 10% the size
of the Strict-track corpus. Two key properties of the
dataset—its size and its domain—are controlled in
order to make the data more developmentally plau-
sible than typical LM pretraining data.

Size: 100M words or less. The pretraining
corpus for the Strict track consists of under 100M
words, and the corpus for the Strict-Small track is
under 10M words. Children are exposed to 2M-7M
words per year (Gilkerson et al., 2017). Choosing
the beginning of adolescence (age 12) as a cutoff,
the dataset should be between 24M-84M words,
which we round up to 100M words. The 10M word

2Clicking on the following link will download the dataset
(240MB zipped, 700MB unzipped): https://github.com/
babylm/babylm.github.io/raw/main/babylm_data.zip
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# Words

Dataset Domain Strict-Small Strict Proportion
CHILDES (MacWhinney, 2000) Child-directed speech 0.44M  421M 5%
British National Corpus (BNC),! dialogue portion Dialogue 0.86M  8.16M 8%
Children’s Book Test (Hill et al., 2016) Children’s books 0.57M  5.55M 6%
Children’s Stories Text Corpus® Children’s books 0.34M  3.22M 3%
Standardized Project Gutenberg Corpus (Gerlach and Font-Clos, 2020)  Written English 0.99M  9.46M 10%
OpenSubtitles (Lison and Tiedemann, 2016) Movie subtitles 3.09M 31.28M 31%
QCRI Educational Domain Corpus (QED; Abdelali et al., 2014) Educational video subtitles 1.04M 10.24M 11%
Wikipedia® Wikipedia (English) 0.99M 10.08M 10%
Simple Wikipedia* Wikipedia (Simple English) 1.52M  14.66M 15%
Switchboard Dialog Act Corpus (Stolcke et al., 2000) Dialogue 0.12M  1.18M 1%
Total - 9.96M 98.04M 100%

Table 1: The datasets we release for the Strict and Strict-Small tracks of the BabyLM Challenge. We present the
number of words in the training set of each corpus that we include. 'http://www.natcorp.ox.ac.uk Zhttps:
//www.kaggle.com/datasets/edenbd/children-stories-text-corpus >https://dumps.wikimedia.org/
enwiki/20221220/ *https://dumps.wikimedia.org/simplewiki/20221201/

Strict-Small dataset corresponds to the amount of
input in the first two to five years of development.
By contrast, contemporary widely used LMs such
as Llama 2 (Touvron et al., 2023) are trained on
trillions of words (Figure 1). Even BERT (Devlin
et al., 2019), which is comparatively small by to-
day’s standards, was trained on over 3B words, well
over the amount of input to a human in an entire
lifetime. This discrepancy in input volume between
LMs and humans is an oft-cited criticism of using
these artifacts out-of-the-box as cognitive models
(Warstadt and Bowman, 2022; Frank, 2023, a.o.).

Domain: Mostly transcribed speech. We
source the majority (= 56%) of the pretraining
corpus from transcribed or scripted speech. We
made this choice because the majority of the input
to a hearing child comes from speech (though this
proportion decreases with age as consumption
of written media increases). This contrasts with
standard LM training corpora, which consist
mostly of text that was intended to be read and
potentially edited. This is particularly significant
for studying grammar learning, as some grammat-
ical constructions (such as nominalizations and
passives) are far more frequent in writing, while
others (such as first- and second-person pronouns)
are more frequent in speech (Biber, 1991).

Domain: Child-directed language. About 40%
of the data in the pretraining corpus comes from
sources either intended for children or appropriate
for children, including child-directed speech, chil-
dren’s books, educational videos, and simplified
English. Child-directed speech has been used as
the sole or primary data source in some previous

work aiming to model child language acquisition
with LMs (Reali and Christiansen, 2005; Perfors
et al., 2011; Pannitto and Herbelot, 2020; Huebner
et al., 2021; Yedetore et al., 2023). We chose to in-
clude data from other domains (both child-directed
and not) for several reasons. First, fewer than 10M
words of transcribed child-directed speech are avail-
able, far below our 100M word budget. Second,
child-directed speech makes up only part of the
input to children. This amount can vary by a factor
of 10 or more across cultures and socio-economic
groups (Cristia et al., 2019). The estimate on which
we base the 100M word budget (Gilkerson et al.,
2017) counts all speech in the child’s environment
including overheard speech.

4.1 Contents

The contents of the BabyLM pretraining dataset
are summarized in Table 1. Descriptions of each
data source are provided in Appendix A.

4.2 Preprocessing

We release Strict and Strict-Small train, develop-
ment, and test splits of each of the ten data sources,
split approximately 83.3%/8.3%/8.3%. The 10M
word Strict-Small training set is sampled randomly
from the Strict training set. After any preprocess-
ing, we downsample and split each source by ran-
domly sampling chunks of 2000 lines or longer.
The code and instructions for downloading and pre-
processing the raw data are publicly available.?
We perform minimal preprocessing in terms of
filtering and reformatting text. Notably, we gener-

Shttps://github.com/babylm/babylm_data_
preprocessing.
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ally preserve newlines in the original texts, mean-
ing newlines do not consistently delimit documents,
paragraphs, or sentences, as in some pretraining
datasets. We use WikiExtractor (Attardi, 2015) to
extract text from the xml Simple English Wikipedia
dump dated 2022-12-01. We perform additional
preprocessing on Simple English Wikipedia to re-
move <doc> tags. We select the spoken subset of
the BNC by selecting only lines from the xml con-
taining the <stext> tag and extracting only the text
from the xml. We use code by Gerlach and Font-
Clos (2020) to download and preprocess data from
Project Gutenberg, which we additionally filter to
contain only English texts by authors born after
1850. The OpenSubtitles and Wikipedia portions
of the pretraining corpus were shared with us in pre-
processed form, having had duplicate documents re-
moved from OpenSubtitles and preprocessing steps
performed to Wikipedia similar to our Simple En-
glish Wikipedia procedure.* We use regular expres-
sions to remove speaker and dialog act annotations
from the Switchboard Dialog Act Corpus. We per-
form no preprocessing on the remaining datasets.

5 Evaluation

To evaluate submissions, participants were asked
to upload their model predictions to Dynabench,
which is an online platform for dynamic data col-
lection and model benchmarking.> Multiple sub-
missions to the Dynabench platform were allowed,
but at most one candidate was allowed to be chosen
as a competitor from each team.

5.1 Evaluation Tasks

The goal of the evaluation pipeline is to assess the
extent to which submitted models have learned the
latent syntactic and semantic structure of their pre-
training language. To evaluate the grammatical
abilities of LMs, we use BLiMP (Warstadt et al.,
2020a). BLiMP consists of tasks that evaluate the
ability of language models to behave in a man-
ner consistent with the structure of English. Each
example consists of a minimal pair of sentences,
where one sentence is acceptable and the other is
unacceptable (differing as minimally as possible
from the acceptable sentence otherwise); a model
is correct on a given example if it assigns higher
probability to the correct sentence in the minimal

*We thank Haau-Sing Li for allowing us to use this prepro-
cessed data.
5https ://dynabench.org/

pair. We also release a supplement to the BLiIMP
tasks, which tests for phenomena not captured by
BLiMP (see §5.1.1).

To assess the abilities of LMs on more typical
downstream NLP tasks, we evaluate on a mixture
of tasks from a subsample of (Super)GLUE, which
consists of text classification tasks. We include
a variety of task types, including paraphrase
detection (MRPC, QQP), sentiment classification
(SST-2), natural language inference (MNLI, QNLI,
RTE), question answering (BoolQ, MultiRC), ac-
ceptability judgments (CoLA), and commonsense
reasoning (WSC).

5.1.1 Hidden Tasks

Two weeks before the results deadline, we re-
leased three hidden evaluation tasks: the Mixed
Signals Generalization Set (MSGS), a supplement
to BLiMP, and an age-of-acquisition (AoA) pre-
diction task. MSGS and the BLiMP supplement
were mandatory; AoA prediction was provided as
an additional analysis point for participants in writ-
ing their papers. The motivation for using these
hidden tasks was to prevent our evaluations from
rewarding submissions that overfit to the BLiMP
and (Super)GLUE tasks.

The BLiMP supplement includes five test suites
consisting of BLiMP-style minimal pairs that
cover areas of linguistic knowledge not tested by
BLiMP—namely, dialogue and questions. The test
suites are semi-automatically generated using man-
ually filled templates. As with BLiMP, models are
evaluated on the supplement in a zero-shot manner,
by comparing the probabilities of the sequences
in a minimal pair, under the assumption that the
acceptable sequence will be more probable than its
unacceptable counterpart.

HYPERNYMS. We evaluate LMs’ knowledge of
lexical entailment, i.e., hypernym—hyponym rela-
tionships. This task bears similarity to natural lan-
guage inference (Dagan et al., 2006; Bowman et al.,
2015; Williams et al., 2018), but we instead mea-
sure whether models assign a higher likelihood to
valid statements of entailment compared to mini-
mally differing invalid statements. The evaluation
data is designed around manually written triples
consisting of (hypernym, base, hyponym)—for ex-
ample, (plant, herb,basil). We also specify an
other noun (for example, flower) which shares the
hypernym but not the hyponym with the base noun.
From these nouns, plus a set of manually written
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contexts, we generate six types of minimal pairs,
shown in Table 5 in Appendix C. Additionally, we
randomly vary the text used to convey entailment,
e.g., If p then q, If p that means q, p therefore q, etc.

SUBJECT-AUXILIARY INVERSION. The
subject—auxiliary inversion rule applies in question
formation in English (e.g., relating Logan will go.
to Will Logan go?). This task has been used to
evaluate language models’ syntactic abilities and
preferences (e.g., McCoy et al., 2020; Mueller et al.,
2022; Yedetore et al., 2023; Mueller and Linzen,
2023). Our test data was created by Warstadt
(2022, Ch. 6), where it is described in more detail.

TURN-TAKING. Comprehending dialogue re-
quires tracking the grammatical properties of ut-
terances from multiple speakers. Pronouns such
as 1, you, and she are indexicals, meaning their in-
terpretation depends on the speaker’s context and
identity. This test suite evaluates whether LMs can
predict which pronoun is appropriate to use when
there is a change in speaker. For example, if person
A asks person B a question of the form Can I ...,
person B’s response should begin with You, not 1.
Our tests include (i) cases where the pronoun is
expected to change, and (i1) cases where it is not.
We also vary the context length (and therefore the
distance between the context pronoun and the tar-
get), and whether the context contains a distractor
pronoun in an embedded position. Finally, for each
example, we randomly select one from a set of for-
mats for indicating the speaker, e.g., A: ..., B: ..., or
“..." he asked. “...,” she said., etc. Examples of each
format can be found in Table 6 in Appendix C.

QUESTION-ANSWER CONGRUENCE. The
syntax of a question constrains the acceptable
responses. For example, a congruent answer
to a who-question must be an animate noun (or
contain one in a suitable context). This test suite
evaluates whether LMs assign a higher likelihood
to congruent answers compared to incongruent
ones, and therefore learn the cross-sentential
dependency between a wh-word and an answer. In
addition to a set of EASY test cases, we construct a
set of adversarial TRICKY test cases where there is
a highly salient distractor answer that is not congru-
ent with the wh-word. We randomly vary whether
the answer appears as a fragment or in a complete
sentence as well as the format for indicating the
speaker. See Table 7 in Appendix C for examples.

Mixed Signals Generalization Set. The Mixed
Signals Generalization Set (MSGS; Warstadt et al.,
2020b) is a text classification task that evaluates the
inductive biases of language models. For a MSGS
subtask, models are finetuned on an ambiguous
training set where the labels are consistent with
both a syntactic generalization and a surface gen-
eralization, and then evaluated on examples that
disambiguate which generalization the model con-
verged on (if any).®

Ideally, models would be more sensitive to lin-
guistic features than surface features, as a system-
atic preference for abstract linguistic properties al-
lows models to generalize more robustly to unseen
structures. The metric for MSGS is the Matthews
correlation coefficient between the model’s pre-
dictions and the labels according to the linguistic
generalization on the test set. A coefficient of 1
corresponds to a systematic linguistic generaliza-
tion, and -1 to a systematic surface generalization.
Indeed, Warstadt et al. (2020c) find that linguistic
bias increases with the volume of pretraining data,
and that models with RoBERTa-like architectures
require more than a billion words of pretraining
data to achieve an overall linguistic bias (i.e., a
score greater than 0).

Age-of-acquisition Prediction. Optionally, par-
ticipants could evaluate on the age of acquisition
(AoA) prediction task of Portelance et al. (2023).
When humans are learning language, they tend to
acquire certain words at specific ages; the age of
acquisition of a word refers to the age at which hu-
mans acquire that word. The AoA prediction task
compares LMs’ word surprisals with children’s
AoA of the same words. A language model’s aver-
age surprisals are converted into AoA predictions,
and these are then compared to the actual average
AoA (in months) of those words. Models achieving
lower mean absolute deviation between the actual

For example, one of the subtasks tests which of the fol-
lowing two generalizations the model’s inductive bias favors:
whether the word “the” is present (the surface generalization),
or whether the sentence contains an adjective (the syntactic
generalization). Thus, training examples will include only
ambiguous labeled pairs where these two properties are both
perfectly correlated with each other and with the binary labels,
such as (The big dog barked, 1) and (A dog barked,
Q). At test time, the model must classify held-out sentences
where the features are anti-correlated, such as A big dog
barked and The dog barked. If the model predicts labels 1
and 0 respectively for these and other analogous examples, we
infer that it classifies examples based on the linguistic feature,
while if it predicts @ and 1 respectively, it adopted the surface
generalization.



age and predicted age are said to perform better on
the task.” While we did not require participants
to submit these scores as part of their predictions,
we provided code to make evaluation on this task
simple, such that they could include this score as an
additional analysis point in their paper submissions.
7 teams (22.6%) evaluated on the AoA prediction
task; see Appendix E for results and discussion.

5.2 Evaluation Pipeline

The organizers provided code to unify the evalua-
tion setup across submissions. This was released
as a public repository on GitHub.® The evalua-
tion pipeline supports models implemented in Hug-
gingFace, though we did not restrict the model
submissions to HuggingFace-based models.’® For
model and result submissions, users were required
to (i) upload a link to their model (on any file-
hosting service), and (ii) provide model predictions
for each example of each task (via Dynabench); we
provided a template specifying the format of the
predictions file.

Data preprocessing. NLP tasks in our evalua-
tion pipeline often contained vocabulary that is not
contained in the BabyLLM pretraining corpora. To
address this mismatch, we filtered each task accord-
ing to its lexical content: if an example contained
any words that appear less than twice in the Strict-
Small training corpus, we filtered the example out.
Otherwise, each dataset is presented in its original
format. See Table 4 in Appendix B for details on
the size of the filtered datasets.

5.2.1 Evaluation Paradigms

Zero-shot evaluation. For zero-shot tasks—
BLiMP and the BLiMP supplement—we mod-
ify the BigScience fork of the Im-eval-harness
repository, originally by EleutherAl (Gao et al.,
2021). This provides functionality for scoring
autoregressive decoder-only LMs and encoder-

"It is not clear whether optimizing LM performance on this
task necessarily leads to better language models. It is possible
instead that LMs could have a different pattern of surprisals
than humans while learning particular linguistic concepts more
or less efficiently than humans. Thus, this task should be used
more as a measure of how well LMs align with humans—and
thus, as a measure of their usefulness as cognitive models of
language acquisition and processing—rather than as a measure
of quality or performance.

8https://github.com/babylm/
evaluation-pipeline

Upon release of the evaluation pipeline, we announced
that we would provide support as needed to teams training
LMs not based in HuggingFace.

decoder LMs. For encoder-only LMs, we modify
the repository to support masked language model
scoring as described in Salazar et al. (2020).10

Finetuning. We first attempted zero-shot
learning and few-shot in-context learning for (Su-
per)GLUE and MSGS tasks. However, this often
resulted in random-chance accuracies from each of
our baselines; we, therefore employ finetuning.!!
For tasks requiring finetuning—(Super)GLUE
(Wang et al., 2018, 2019) and MSGS (Warstadt
et al., 2020b)—we base our scripts on Hug-
gingFace’s example finetuning scripts for text
classification.!”> We modified the script to support
encoder-decoder models, and to work for a wider
variety of tasks. We provide a default set of
hyperparameters that we found to work well across
our baseline models, though participants were
allowed to freely modify hyperparameters.

5.3 Dynabench Leaderboard

Dynabench is an open-source platform for dynamic
dataset creation, model evaluation, and leader-
board hosting (Kiela et al., 2021). In addition to
open-sourcing datasets—including adversarial and
human-in-the-loop datasets (Nie et al., 2020; Bar-
tolo et al., 2021; Potts et al., 2021; Sheng et al.,
2021; Vidgen et al., 2021; Kirk et al., 2022)—
Dynabench has offered leaderboard support for
several community challenges in the past (Wenzek
et al., 2021; Bartolo et al., 2022; Mazumder et al.,
2022). Given that we desire a dynamic leaderboard
that allows for submissions even after the end of
the challenge, this platform was well-suited to the
BabyLM Challenge. All model submissions to the
challenge were submitted via the Dynabench plat-
form, to the respective leaderboards for the Strict, 13
Strict-Small,'"* and Loose'> tracks.

Each leaderboard presents aggregate scores
across all tasks, which can be interactively bro-

'We use the implementation of Misra (2022) in the
minicons library.

"'finetuning technically adds to the training set size. We
consider this acceptable, as finetuning on a single GLUE or
MSGS task does not meaningfully add to the domain-general
linguistic abilities of language models. The LM is finetuned
separately for each task, so we still see this as an evaluation of
the LM’s abilities in itself (albeit more confounded than the
zero-shot evaluations).

12https: //github.com/huggingface/transformers/
blob/211f93aab95d1c683494e61c3cf8ff10e1f5d6b7/
examples/pytorch/text-classification/run_glue.py

Bhttps://dynabench.org/tasks/baby_strict

14https ://dynabench.org/tasks/baby_strict_small

15https: //dynabench.org/tasks/baby_loose
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Figure 2: Number of participants who submitted to each
track, with multiple submissions counted once.

ken down into more fine-grained scores per task
and per subtask. To compute the aggregate score,
we weigh BLiMP and the BLiMP-supplement to-
gether at 50% (all subtasks weighted equally), (Su-
per)GLUE at 30%, and MSGS at 20%. This weight-
ing scheme was arrived at heuristically, though we
did observe that the winners for each track were
stable across a wide range of reasonable weight-
ings. Dynabench allows users to specify a custom
task weighting to compute an alternative aggregate
score. The leaderboard for the BabyLM challenge
will continue to accept submissions indefinitely.

5.4 Baselines and Skylines

Baselines. To provide simple baselines for
our evaluation tasks, we train multiple models
on the data released for Strict-Small and Strict
tracks and evaluate them on the evaluation tasks.
Three baseline models are provided: OPT-125M,
RoBERTa-base, and T5-base. These models use the
same objective function and network architecture
corresponding to their original papers (OPT; Zhang
et al., 2022, RoBERTa; Liu et al., 2019, T5; Raffel
et al., 2020). The network architecture of these
models covers both encoder-decoder (T5-base and
RoBERTa-base) and decoder-only (OPT-125M)
architectures. Their objective functions include
next-token prediction (OPT-125M), masked-token
prediction (RoBERTa-base), and sequence-to-
sequence (T5-base) matching losses. The baseline
models are trained using a fixed context length
of 128, a constant learning rate of le-4, a linear
learning-rate warmup from O in the first 5000 steps,
a batch size of 128, and AdamW (Loshchilov and
Hutter, 2019) as the optimizer. They are trained
for 20 epochs on the data, where each epoch
randomly and independently shuffles the whole
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Figure 3: Total number of submitted models that used
each of the nine approaches in our typology. We count
at most one submitted model per participant per track.

dataset. Although most of these hyperparameters
are loosely inspired by Huebner et al., we expect
that the specific choices on them can be further
improved and leave these potential improvements
as possible topics for submissions. We find
that our baseline models achieve reasonable
performance on the evaluation tasks, with clear
improvement from more data from Strict-Small
to Strict track and notable gap towards their
counterparts pretrained on much larger datasets.

Skylines. To get an approximation of how well
larger models could, in principle, perform in our
task and setting, we ran Llama 2 70B (Touvron
et al., 2023) and the fully trained ROBERTa-base
model through our evaluation pipeline. This is
meant to provide a comparison point to the state of
the art in 2023, as the Llama 2 model is pretrained
on much more data (2T tokens) than the challenge
allows, and it has far more parameters than we ex-
pect to find in submissions. We evaluate Llama
2 on (Super)GLUE using in-context learning, but
it is fully finetuned on MSGS. BabyLLM submis-
sions that approach these scores can be considered
to have greater sample efficiency than the skyline
models, and may therefore provide stronger starting
points for future research in sample-efficient NLP.

6 Submissions Summary

We received 31 papers and 162 models in total.
Table 3 shows the submission counts for each track.



Model BLiMP GLUE MSGS BLiMP-Supp. Aggregated
Llama 2 0.84 0.84 0.26 0.75 0.71
RoBERTa-Base 0.87 0.79 0.24 0.76 0.70
ELC-BERT (Charpentier and Samuel, 2023) 0.85 0.78 0.47 0.77 0.74
5 BootBERT (Samuel, 2023) 0.86 0.79 0.28 0.72 0.70
& McGill-BERT (Cheng et al., 2023) 0.84 0.72 0.25 0.71 0.67
Best Baseline (OPT-125M) 0.75 0.70 0.13 0.68 0.60
= ELC-BERT (Charpentier and Samuel, 2023) 0.80 0.74 0.29 0.67 0.66
& MLSM (Berend, 2023b) 0.79 0.71 0.17 0.57 0.61
g McGill-BERT (Cheng et al., 2023) 0.75 0.70 0.13 0.68 0.60
@  Best Baseline (OPT-125M) 0.63 0.62 0.10 0.53 0.50
» Contextualizer (Xiao et al., 2023) 0.86 0.73 0.58 0.63 0.73
¢ McGill-BERT (Cheng et al., 2023) 0.80 0.68 -0.02 0.57 0.57
- BabyStories (Zhao et al., 2023) 0.78 0.61 0.03 0.65 0.56

Table 2: Top 3 systems for each track, as well as the baseline model with the highest aggregate score. We also show
“skyline”” models: RoBERTa-base and Llama 2 trained on their full pre-training corpora. Each task score is simply
the mean score across each of its subtasks. The aggregate score is a weighted average of each task. We bold the

highest-scoring system for each task within each track.

# Models # Participants
Loose 20 8
Strict-Small 118 29
Strict 24 11
total 162 31

Table 3: Total number of models and participants per
track. Participants who submitted to multiple tracks are
counted once in the total.

Some participants submitted to multiple tracks; we
show data for unique participants in Figure 2.

We found that many submissions focused their
efforts on similar techniques. To better quan-
tify this, we devised a typology of the nine most
common approaches and assigned each submitted
model one or more labels. Figure 3 shows the
number of submissions employing each approach.
§7.3 provides more detailed descriptions of each
approach, as well as results indicating which ones
were most effective.

All participants are affiliated with universities
or independent research institutions. Participants’
home institutions are located in 16 different coun-
tries. The number of participants by country is
as follows (multinational participants are counted
more than once): US (9), Germany (5), Netherlands
(3), UK (4), Canada (2), Norway (2), Austria (1),
Denmark (1), France (1), Hungary (1), Israel (1),
Japan (1), Norway (1), Switzerland (1), Turkey (1).

The official leaderboard is available on Dyn-
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abench.!® With the consent of participants, we
release links to submitted models, their complete
predictions for the evaluation tasks, their scores for
each task and subtask, and metadata about each
submission at the BabyLM’s GitHub at https://
github.com/babylm/submissions2023. We pro-
vide a summary of each submission in Appendix F.

7 Results & Analysis

7.1 Overall Results & Track Winners

The results from all submissions are shown in
Figure 4, with the scores of the top-performing
models in each track detailed in Table 2. In the
figure, dashed green lines show the performance
of the Llama 2 skyline. Solid green lines show
human performance on GLUE reported in Nangia
and Bowman (2019), and human performance on
BLiMP as reported by Warstadt et al. (2020a).
Before discussing the winning systems in
each track, we note a few high-level takeaways
from these results. The strongest results were
achieved by models in the Strict track. Given
the Strict track’s larger training corpus relative
to the Strict-Small corpus, it is not surprising
that these models could outperform those in the
Strict-Small track. However, there are two inter-
esting trends: First, Strict models did not outper-
form those in Strict-Small by a large amount, even
though the size of training data was an order-of-
magnitude larger. For example, there are only

lf’ht’cps ://dynabench.org/babylm
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Figure 4: Summary of BabyLM Submission Results: Each point represents an official model submission. Scores
are broken down into performance on BLiMP (z-axis), GLUE (y-axis) and MSGS (color). Submissions that achieve
an aggregate score above 0.6 are labeled in gray. Green dashed lines show Llama 2 skyline performance, and green

solid lines show the human performance ceiling.

two models in the Strict track that achieve higher
GLUE scores than the best-performing Strict-Small
model. Second, models in the Loose track tended
to perform worse in the aggregate than those in
the Strict-Small track, even though they potentially
had access to additional (non-linguistic) data. One
conclusion we can draw from this is that learning
from multiple modalities of data presents a chal-
lenge in its own right, and that current model ar-
chitectures are not optimized to efficiently utilize
multiple types of inputs during training.

The other important high-level takeaway is that
many BabyLM models are very close to the Llama
2 skyline, and to achieving human-level perfor-
mance on BLiMP and GLUE (i.e., they are near the
green lines in Figure 4). Strong performance could
be expected in the case of (Super)GLUE, where
models were finetuned with additional data, but
we note that even for BLiMP, the top-performing
model is only about 3% shy of human performance.
Note that prior to the start of the challenge, we
explored the possibility of measuring zero-shot per-
formance on (Super)GLUE test sets, and found
zero-shot performance to be at or below chance for
our baselines. This fact, as well as the consider-
ation that GLUE has been traditionally evaluated
using finetuning, leads us to select finetuning eval-
uations for the (Super)GLUE benchmark(s).

Given that successful training on developmen-
tally plausible corpora could have ramifications
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for cognitive and linguistic theories of learnability
(Wilcox et al., 2023; Warstadt and Bowman, 2022),
these results point to two important takeaways:
(1) Human-level results have not been achieved
yet. However, (2) given the strong performance of
the top-scoring models, human-level results appear
likely to be achieved very soon, possibly within
the next few years. Of course, one possible con-
cern is the following: current models may not be
close to human-level performance; rather, current
performance metrics, like BLiMP, might not ac-
curately measure human-level linguistic compe-
tence. We are sympathetic to such concerns, but
we also note that BLIMP, and other related syntac-
tic benchmarks such as those presented in Marvin
and Linzen (2018) and Gauthier et al. (2020), were
specifically designed to mimic the types of tests
invented by linguists and cognitive scientists to re-
veal syntactic competence—i.e., they are all based
on minimal pair sentences. Thus, while it is imper-
ative to continue building more comprehensive and
larger datasets, we believe it is fair to say that the
close-to-human scores observed in the BabyLM
challenge on BLiMP reflect genuine grammatical
generalizations learned by the models.

7.2  Winning Submissions

Below, we discuss the winning submissions from
each track in greater detail. We also mention the
winners of our “Most Interesting Paper” awards



and provide a brief justification for each.

Strict track. The winner of the Strict track is
ELC-BERT submitted by Charpentier and Samuel
(2023). This model, as well as the runner-up sub-
mission Boot-BERT (Samuel, 2023), used as their
starting point the LTG-BERT architecture from
Samuel et al. (2023). Although these submis-
sions make additional incremental improvements
to the LTG-BERT training regime, their own base-
lines suggest that the backbone architecture plays
a large role in the submissions’ successes. LTG-
BERT’s main contribution is a synthesis of sev-
eral optimizations to the Transformer architecture,
namely: (1) additional layer normalization, fol-
lowing (Shleifer et al., 2021); (2) GEGLU feed-
forward modules (Shazeer, 2020); (3) disentangled
attention following DeBERTa (He et al., 2021); and
(4) scaled weight initialization following (Nguyen
and Salazar, 2019). ELC-BERT modifies this back-
bone such that the input to each layer is a weighted
sum of the outputs of all previous layers. Another
notable property of LTG-BERT is that all models
with this architecture so far have been trained for a
large number of epochs. Charpentier and Samuel
(2023) train models for over 450 epochs for their
Strict submission, and over 2000 epochs for their
Strict-Small submission. LTG-BERT models per-
formed exceptionally well on our set of evaluations,
outperforming not only every other submission to
the shared task but also the Llama 2 and RoBERTa-
Base skylines on overall score and on all test suites
except for (Super)GLUE (Table 2). The second
runner-up for this track was McGill-BERT (Cheng
etal., 2023).

Strict-Small track. The winner of the Strict-
Small track is, again, ELC-BERT (Charpentier and
Samuel, 2023). This double-win demonstrates that
the model’s architectural choices work well with
multiple scales of pretraining data. The runners-up
were MLSM (Berend, 2023b) and McGill-BERT
(Cheng et al., 2023).

Loose track. The winner of the Loose track is
the Contextualizer model of Xiao et al. (2023),
which used a data processing scheme in which
extra training samples are created by combining
chunks of texts from different contexts. Repeating
this process 40 times for each chunk gives a dataset
that has as many training samples as 4B word
dataset, but based on a dataset of only 100M words.
This augmentation technique outperforms training
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for 40 epochs using the same training samples.
Runners-up for this track were McGill-BERT
(Cheng et al., 2023) and the BabyStories model
of Zhao et al. (2023).

Most interesting paper awards. These awards
are given to papers that go beyond achieving high
scores on a leaderboard, and instead demonstrate
contributions to the shared task based on inter-
esting analyses, useful negative results, creative
modeling choices, or a combination thereof. We
awarded two most interesting paper awards in two

different categories.

Outstanding evaluation. The most interesting
paper award for outstanding evaluation was given
to “Large GPT-like Models are Bad Babies: A
Closer Look at the Relationship between Linguis-
tic Competence and Psycholinguistic Measures”
(Steuer et al., 2023). This work goes beyond the
BabyLM evaluation tasks: the authors use mea-
sures of human cognitive processing effort and lin-
guistic competence and additionally correlate these
with BabyLM task performance. Their work as-
sesses BabyLM submissions as models of human
language processing, thus contributing to our un-
derstanding of how to better train cognitive models.

Compelling negative results. The most interest-
ing paper award for compelling negative results
was given to “CLIMB—Curriculum Learning for
Infant-inspired Model Building” (Martinez et al.,
2023). This work proposes a typology of com-
mon curriculum learning approaches