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Introduction

Greetings “babies”! and welcome to the proceedings and session of the 2023 BabyLM Challenge, held
on December 6, 2023 as part of CoNLL (co-hosted with EMNLP) in Singapore. This challenge aims
to bring together researchers interested in developmentally plausible pre-training, sample efficiency, and
human language acquisition. Our challenge encourages researchers to “think small” by using training
corpora containing 100 million words—approximately the amount of data available to human language
learners, but far less data than is typically used for pre-training language models.

We received 31 papers, all of which were accepted on the basis of scientific and technical validity, rather
than model performance. We received 162 individual model submissions, the scores of which are hosted
online, at www.https://dynabench.org/babylm.

We are grateful to the participants for advancing our understanding of how best to train language models
on scaled-down and more developmentally plausible corpora.. Their contributions have provided insight
into important questions related to cognitive modeling, computational psycholinguistics, and sample-
efficient language modeling. We are also grateful to the program committee for their thoughtful reviews
of the submissions we received this year. Likewise, we are thankful to the CoNLL organizers for their
work in integrating the BabyLM challenge into their program.

– The BabyLM Organization Committee: Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan Wil-
cox, Chengxu Zhuang, Adina Williams, Tal Linzen, Ryan Cotterell.
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Ömer Veysel Çağatan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171

CogMemLM: Human-Like Memory Mechanisms Improve Performance and Cognitive Plausibility of
LLMs
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Abstract

Children can acquire language from less than
100 million words of input. Large language
models are far less data-efficient: they typically
require 3 or 4 orders of magnitude more data
and still do not perform as well as humans on
many evaluations. These intensive resource
demands limit the ability of researchers to
train new models and use existing models as
developmentally plausible cognitive models.
The BabyLM Challenge is a communal
effort in which participants compete to
optimize language model training on a fixed
data budget. Submissions are compared on
various evaluation tasks targeting grammatical
ability, downstream task performance, and
generalization. Participants can submit to up
to three tracks with progressively looser data
restrictions. From over 30 submissions, we
extract concrete recommendations on how best
to train data-efficient language models, and
on where future efforts should (and perhaps
should not) focus. The winning submissions
using the LTG-BERT architecture (Samuel
et al., 2023) outperformed models trained on
trillions of words. Other submissions achieved
strong results through training on shorter
input sequences or training a student model
on a pretrained teacher. Curriculum learning
attempts, which accounted for a large number
of submissions, were largely unsuccessful,
though some showed modest improvements.

1 Introduction

Although there have massive improvements in
the effectiveness of neural language models in the
last decade, humans are still the state of the art in
language learning. To achieve impressive results,
language models need to be trained on hundreds
of times more language input than a typical human
will be exposed to in an entire lifetime. The
BabyLM Challenge is a shared task that invites

*Equal contribution.

12 y.o.
Human

<100
Million

BERT
(2018)

3
Billion

RoBERTa
(2019)

30
Billion

GPT-3
(2020)

200
Billion

Llama 2
(2023)

2
Trillion

Figure 1: Data Scale: Modern Language Models are
trained multiple orders of magnitude more word tokens
than the amount available to a typical child. This image
is based on Fig. 1 from Warstadt and Bowman (2022).

members of the natural language processing,
linguistics, and cognitive science communities
to train language models in low-resource data
settings, where the amount of linguistic input
resembles the amount received by human language
learners. In doing so, our motivations (Section 2)
are to improve the relevance of language models as
cognitive models of human language acquisition,
find more effective and data-efficient training
algorithms for language models, and democratize
research on language model training by emphasiz-
ing research questions that can be addressed on a
smaller training budget.

Participants in the shared task could submit to
the Strict, Strict-Small, or Loose track, which, re-
spectively, required models to be trained on cor-
pora that constituted either 10 million words, 100
million words, or 100 million words plus an un-
limited amount of additional non-linguistic data
(Section 3). These corpora were constructed from
a mixture of sources including developmentally
plausible domains such as child-directed speech,
transcribed dialogue, and children’s literature (Sec-
tion 4). To enable standardized evaluation and
easy comparison of the resulting models, we create
a leaderboard and release an evaluation pipeline
(Section 5) targeting zero-shot grammatical perfor-
mance, finetunability on language understanding

1
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tasks, and model inductive bias. We also contribute
a novel set of zero-shot evaluation tasks targeting
semantic and discourse-level phenomena.

We received 31 papers making a variety of contri-
butions, ranging from designing novel architectures
and tuning hyperparameters to employing curricu-
lum learning and training teacher–student model
pairs (Section 6). We conduct a meta-analysis of
the results, yielding several concrete recommenda-
tions and scientific conclusions (Section 7). The
winners of the challenge’s various tracks made con-
tributions that led to impressive improvements in
our evaluation over not just the BabyLM baselines,
but also the massively pretrained Llama 2 model
(Touvron et al., 2023). The best-performing mod-
els overall (Charpentier and Samuel, 2023) use
the LTG-BERT architecture (Samuel et al., 2023),
which synthesizes a number of recent optimiza-
tions of the Transformer architecture. The winner
of the Loose track (Xiao et al., 2023) trains the
models continuously on the training samples be-
longing to the same source dataset while randomiz-
ing the dataset orders in each training epoch. Other
submissions did not achieve strong downstream re-
sults, but still provided valuable scientific contribu-
tions. We received many curriculum learning sub-
missions, including one that systematically tested
a variety of strategies (Martinez et al., 2023) and
reported few improvements over non-curriculum
baselines. Steuer et al. (2023) found that bench-
mark performance is not correlated with a greater
ability to predict human psycholinguistic data.

We plan to organize future BabyLM Challenges
that will build on the success of this first iteration
(Section 8). The winning submission from this
year sets a high baseline for next year. Future itera-
tions will need harder and more varied evaluations,
including those that emphasize human-like pro-
cessing and learning; they should emphasize new
approaches that were not thoroughly explored this
year, such as multimodality; and, they should in-
centivize compute-efficiency. Altogether, the first
BabyLM Challenge has been a successful initia-
tive, and we hope that this will continue to advance
research on small-scale language models.

2 Motivation

The observation at the center of the BabyLM Chal-
lenge is this: Children are incredibly data-efficient
language learners, and language models are not.
Children are exposed to less than 100 million word

tokens by age 13 (Gilkerson et al., 2017), while
modern language models are typically trained on
3 or 4 orders-of-magnitude more data (Figure 1).
This discrepancy raises two important questions:
First, how is it that humans are able to learn lan-
guage so efficiently? Second, what insights from
human language learning can be used to improve
language models?

A great deal of recent work in language
model training seeks improvements by scaling
up pretraining data and parameters (Raffel et al.,
2020; Brown et al., 2020; Hoffmann et al., 2022;
Touvron et al., 2023). Scaling is undoubtedly
central to building deployable models (though
see McKenzie et al. 2023 for counterexamples)
and raises its own set of scientific questions, such
as quantitative scaling laws (Kaplan et al., 2020)
and the emergence of new abilities (Wei et al.,
2022). However, increased emphasis on scaling is
unlikely to lead to answers to the two questions we
raised, and it excludes researchers without access
to massive computational resources.

Thus, there are three principal benefits to
data-limited language model training which the
BabyLM Challenge aims to highlight:

1. Building more cognitively and developmen-
tally plausible models of human language ac-
quisition and processing,

2. Optimizing training pipelines prior to scaling
by allowing for faster iteration on architec-
tures and hyperparameters, and

3. Enabling research on language model training
beyond highly funded industry groups.

Cognitive Modeling. Language models have
been used to model aspects of human language
learning and processing for decades (Elman, 1990;
Hale, 2001; Reali and Christiansen, 2005, o.a.).
While many researchers continue to advocate
for language models as cognitive models (Keller,
2010; Dupoux, 2018; Linzen, 2019; Baroni, 2022;
Warstadt and Bowman, 2022; Piantadosi, 2023;
Wilcox et al., 2023), most agree that it is critical
to make LMs learn in more human-like ways.
Warstadt and Bowman (2022) and Linzen (2020)
point to data quantity as the most egregious
advantage that modern language models have
over humans. When restricted to developmentally
plausible data volumes, language models no longer
perform well on benchmarks for human-like
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syntactic and semantic behavior (van Schijndel
et al., 2019; Zhang et al., 2021).

Working to close the data-efficiency gap between
language models and humans will have two prin-
cipal advantages for cognitive modeling. First,
by reverse-engineering known and hypothetical as-
pects of the human learning scenario—from mul-
timodal inputs and multi-agent interaction to in-
nate linguistic structural biases—we can determine
which factors are critical to our unique ability to
learn language efficiently (Dupoux, 2018). Second,
by minimizing differences between humans and
models, we make results from controlled experi-
ments carried out on models more likely to be ap-
plicable to humans (Warstadt and Bowman, 2022).

Faster iteration on architectures and hyperpa-
rameters for language modeling. Reducing
the scale of training provides researchers with a
sandbox in which to more fully explore this design
space and better optimize training pipelines. The
search space for design choices when training
language models is enormous. Thus, it can
be impractical, especially at large scales, to
experiment with new model architectures, training
objectives, or data preprocessing steps, in addition
to necessary hyperparameter tuning. Models such
as RoBERTa (Liu et al., 2019) have succeeded
in making some optimizations to the BERT
training pipeline, but more optimizations remain.
Indeed, there are anecdotes of basic design choices
for popular pipelines, such as the masking rate
for BERT training (Wettig et al., 2023), being
poorly tuned for years, despite hundreds or even
thousands of papers using this training pipeline.

There are numerous dimensions along which to
scale down training. Some works seek to optimize
pipelines for a limited amount of compute, time,
or money. Notable examples of such pipelines
for bidirectional encoder-only include ELECTRA
(Clark et al., 2020), 24-hour BERT (Izsak et al.,
2021), and MosaicBERT (Portes et al., 2023).
These pipelines typically combine multiple ap-
proaches, such as modifying training objectives to
increase the number of supervised predictions per
forward pass, using low-precision floating-point
computations for certain components, reducing se-
quence length or padding, and altering the attention
or feed-forward layers of the transformer block.

However, the objective of optimizing pipelines
for a fixed data budget is relatively underexplored.
This is changing in the last year with new models

optimized for small datasets such as LTG-BERT
(Samuel et al., 2023) and community-oriented
events centered around data-limited training
such as the Learning from Small Data workshop
(Breitholtz et al., 2023) and the MiniPile Challenge
(Kaddour, 2023).

Democratizing language model training re-
search. The third goal of the BabyLM Chal-
lenge is to democratize research on pretraining—
typically thought to be practical only for large in-
dustry groups—by drawing attention to challenging
and important open problems that can be explored
on a university budget. In recent years, efforts
aimed at widening participation in LM research
often take different avenues from the one proposed
here, including aggregation of distributed computa-
tion power (Diskin et al., 2021), reliance on public
computing infrastructure (Scao et al., 2022), aggre-
gation of expertise, data and stepwise contributions
(Don-Yehiya et al., 2023; Raffel, 2023) and mod-
ularity (Pfeiffer et al., 2023). Such a line of pre-
training research proposes to keep costs large but
to distribute them across funding sources through
many contributing factors.

Other works on decentralizing computation
(Diskin et al., 2021; Li et al., 2022; Lialin et al.,
2023) or model recycling works generally take
existing models and build upon them, proposing a
single adaptation finetuning (Choshen et al., 2022),
a single knowledge edit (De Cao et al., 2021),
combining several models (Yadav et al., 2023), or
iterative approaches showing that stacking such
improvements can continually improve models
(Don-Yehiya et al., 2023). Recently, a framework
for doing so was also released (Kandpal et al.,
2023). One can see the BabyLM challenge in
this context as a suggestion to persist in using a
centralized approach to pretraining, but making it
tractable, by reducing the cost through increased
focus on tractable research questions.

3 Guidelines and Timeline

Tracks. Submissions to BabyLM had to conform
to one of three sets of guidelines, which we term
tracks. In this section, we describe each competi-
tion track; for specific details about wording, see
the original Call for Papers (Warstadt et al., 2023).
The three tracks for the BabyLM challenges were
Strict, Strict-Small, and Loose. Participants in all
tracks were allowed a constant number of English-
language training tokens (100 million in Strict and
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Loose and 10 million in Strict-Small) to be used in
total for all software used in the pipeline. This data
was released by the organizing committee and is
described, in detail, in Section 4. Loose track sub-
missions were encouraged to train on data beyond
just the linguistic text data provided through the
shared task (e.g., speech audio signal, code, music,
or visual input). The Loose track also permitted the
use of expert-annotated data, but any language data
used to train the LM or auxiliary models counted
towards the 100M word budget. Thus, for exam-
ple, a Loose track submission could train a parser
on the Penn Treebank (Marcus et al., 1993) and
self-train to parse the pretraining corpus, as long as
the number of words in the Penn Treebank plus the
pretraining corpus total less than 100M.1

In general, seeing the same data twice (e.g.,
across different epochs) did not count as seeing
more text. While it is unlikely that humans process
data iteratively in a manner similar to epoch-based
training, there is evidence that humans do repeat
some of the information they process (e.g., in mem-
ory replay, Carr et al., 2011). Furthermore, epochs
are very useful for gradient-based methods.

Finally, participants across all tracks were
encouraged to submit models and papers even
if their work did not fit into any of the three
tracks. As the goal of the shared task is to advance
efficient and cognitively plausible LM training,
we did not want to curtail participant creativity.
While submissions using external linguistic data
did not qualify to win any of the tracks, they still
qualified to be presented in the competition and
to be published in the proceedings.

Community building. Given that the BabyLM
Challenge aims to encourage research in efficient
and cognitively plausible model pretraining, one
of our goals was to encourage the formation of a
research community with shared interests. Towards
that end, we hosted a public messaging forum on
Slack and enabled participants to interact with each

1In our initial announcement, external software trained
on linguistic input or expert annotations not included in our
corpus—including taggers, parsers, tokenizers, or models
were not allowed. However, numerous questions from partici-
pants prompted an announcement in April 2023 that we were
modifying the rules of the Loose track to allow such meth-
ods. We made this decision because we determined that the
interests of the community were better served by emphasizing
creativity and discovery in the Loose track. Text generated by
a language model that was trained only on a BabyLM corpus
was not counted towards the 100M word budget, nor was data
bootstrapped by such models.

other and with the task organizers. At the time
of paper writing, this forum had over 250 mem-
bers, including many interested researchers who
did not ultimately submit to the challenge. An in-
teractive forum was useful for both establishing
a community and building interest; it allowed the
community to clarify the track rules, debug the eval-
uation pipeline, and receive announcements from
the organizers.

Timeline. Below, we replicate the timeline from
the website.
• December 2022: The BabyLM Challenge is an-

nounced at CoNLL 2022, as well as on Twitter
and in several mailing lists.

• January 2023: The pretraining datasets for the
Strict and Strict-Small tracks were released.

• March 2023: The initial evaluation pipeline was
made public.

• 1 June 2023: Hidden (surprise) evaluations were
released and the Dynabench submission portal
was opened.

• 22 June 2023: Deadline for model submissions
(extended from 15 June 2023).

• 1 August 2023: Deadline for paper submissions.
• 6-7 December 2023: Presentation of the shared

task at CoNLL.

4 Pretraining Corpus

We compiled and distributed a pretraining corpus
inspired by the input received by children.2 Sub-
missions to the Strict track are required to train ex-
clusively on this corpus. Submissions to the Strict-
Small track are required to use only a scaled-down
version of the dataset, approximately 10% the size
of the Strict-track corpus. Two key properties of the
dataset—its size and its domain—are controlled in
order to make the data more developmentally plau-
sible than typical LM pretraining data.

Size: 100M words or less. The pretraining
corpus for the Strict track consists of under 100M
words, and the corpus for the Strict-Small track is
under 10M words. Children are exposed to 2M-7M
words per year (Gilkerson et al., 2017). Choosing
the beginning of adolescence (age 12) as a cutoff,
the dataset should be between 24M-84M words,
which we round up to 100M words. The 10M word

2Clicking on the following link will download the dataset
(240MB zipped, 700MB unzipped): https://github.com/
babylm/babylm.github.io/raw/main/babylm_data.zip
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# Words

Dataset Domain Strict-Small Strict Proportion

CHILDES (MacWhinney, 2000) Child-directed speech 0.44M 4.21M 5%
British National Corpus (BNC),1 dialogue portion Dialogue 0.86M 8.16M 8%
Children’s Book Test (Hill et al., 2016) Children’s books 0.57M 5.55M 6%
Children’s Stories Text Corpus2 Children’s books 0.34M 3.22M 3%
Standardized Project Gutenberg Corpus (Gerlach and Font-Clos, 2020) Written English 0.99M 9.46M 10%
OpenSubtitles (Lison and Tiedemann, 2016) Movie subtitles 3.09M 31.28M 31%
QCRI Educational Domain Corpus (QED; Abdelali et al., 2014) Educational video subtitles 1.04M 10.24M 11%
Wikipedia3 Wikipedia (English) 0.99M 10.08M 10%
Simple Wikipedia4 Wikipedia (Simple English) 1.52M 14.66M 15%
Switchboard Dialog Act Corpus (Stolcke et al., 2000) Dialogue 0.12M 1.18M 1%

Total – 9.96M 98.04M 100%

Table 1: The datasets we release for the Strict and Strict-Small tracks of the BabyLM Challenge. We present the
number of words in the training set of each corpus that we include. 1http://www.natcorp.ox.ac.uk 2https:
//www.kaggle.com/datasets/edenbd/children-stories-text-corpus 3https://dumps.wikimedia.org/
enwiki/20221220/ 4https://dumps.wikimedia.org/simplewiki/20221201/

Strict-Small dataset corresponds to the amount of
input in the first two to five years of development.
By contrast, contemporary widely used LMs such
as Llama 2 (Touvron et al., 2023) are trained on
trillions of words (Figure 1). Even BERT (Devlin
et al., 2019), which is comparatively small by to-
day’s standards, was trained on over 3B words, well
over the amount of input to a human in an entire
lifetime. This discrepancy in input volume between
LMs and humans is an oft-cited criticism of using
these artifacts out-of-the-box as cognitive models
(Warstadt and Bowman, 2022; Frank, 2023, a.o.).

Domain: Mostly transcribed speech. We
source the majority (≈ 56%) of the pretraining
corpus from transcribed or scripted speech. We
made this choice because the majority of the input
to a hearing child comes from speech (though this
proportion decreases with age as consumption
of written media increases). This contrasts with
standard LM training corpora, which consist
mostly of text that was intended to be read and
potentially edited. This is particularly significant
for studying grammar learning, as some grammat-
ical constructions (such as nominalizations and
passives) are far more frequent in writing, while
others (such as first- and second-person pronouns)
are more frequent in speech (Biber, 1991).

Domain: Child-directed language. About 40%
of the data in the pretraining corpus comes from
sources either intended for children or appropriate
for children, including child-directed speech, chil-
dren’s books, educational videos, and simplified
English. Child-directed speech has been used as
the sole or primary data source in some previous

work aiming to model child language acquisition
with LMs (Reali and Christiansen, 2005; Perfors
et al., 2011; Pannitto and Herbelot, 2020; Huebner
et al., 2021; Yedetore et al., 2023). We chose to in-
clude data from other domains (both child-directed
and not) for several reasons. First, fewer than 10M
words of transcribed child-directed speech are avail-
able, far below our 100M word budget. Second,
child-directed speech makes up only part of the
input to children. This amount can vary by a factor
of 10 or more across cultures and socio-economic
groups (Cristia et al., 2019). The estimate on which
we base the 100M word budget (Gilkerson et al.,
2017) counts all speech in the child’s environment
including overheard speech.

4.1 Contents

The contents of the BabyLM pretraining dataset
are summarized in Table 1. Descriptions of each
data source are provided in Appendix A.

4.2 Preprocessing

We release Strict and Strict-Small train, develop-
ment, and test splits of each of the ten data sources,
split approximately 83.3%/8.3%/8.3%. The 10M
word Strict-Small training set is sampled randomly
from the Strict training set. After any preprocess-
ing, we downsample and split each source by ran-
domly sampling chunks of 2000 lines or longer.
The code and instructions for downloading and pre-
processing the raw data are publicly available.3

We perform minimal preprocessing in terms of
filtering and reformatting text. Notably, we gener-

3https://github.com/babylm/babylm_data_
preprocessing.

5

http://www.natcorp.ox.ac.uk
https://www.kaggle.com/datasets/edenbd/children-stories-text-corpus
https://www.kaggle.com/datasets/edenbd/children-stories-text-corpus
https://dumps.wikimedia.org/enwiki/20221220/
https://dumps.wikimedia.org/enwiki/20221220/
https://dumps.wikimedia.org/simplewiki/20221201/
https://github.com/babylm/babylm_data_preprocessing
https://github.com/babylm/babylm_data_preprocessing
https://github.com/babylm/babylm_data_preprocessing
https://github.com/babylm/babylm_data_preprocessing


ally preserve newlines in the original texts, mean-
ing newlines do not consistently delimit documents,
paragraphs, or sentences, as in some pretraining
datasets. We use WikiExtractor (Attardi, 2015) to
extract text from the xml Simple English Wikipedia
dump dated 2022-12-01. We perform additional
preprocessing on Simple English Wikipedia to re-
move <doc> tags. We select the spoken subset of
the BNC by selecting only lines from the xml con-
taining the <stext> tag and extracting only the text
from the xml. We use code by Gerlach and Font-
Clos (2020) to download and preprocess data from
Project Gutenberg, which we additionally filter to
contain only English texts by authors born after
1850. The OpenSubtitles and Wikipedia portions
of the pretraining corpus were shared with us in pre-
processed form, having had duplicate documents re-
moved from OpenSubtitles and preprocessing steps
performed to Wikipedia similar to our Simple En-
glish Wikipedia procedure.4 We use regular expres-
sions to remove speaker and dialog act annotations
from the Switchboard Dialog Act Corpus. We per-
form no preprocessing on the remaining datasets.

5 Evaluation

To evaluate submissions, participants were asked
to upload their model predictions to Dynabench,
which is an online platform for dynamic data col-
lection and model benchmarking.5 Multiple sub-
missions to the Dynabench platform were allowed,
but at most one candidate was allowed to be chosen
as a competitor from each team.

5.1 Evaluation Tasks

The goal of the evaluation pipeline is to assess the
extent to which submitted models have learned the
latent syntactic and semantic structure of their pre-
training language. To evaluate the grammatical
abilities of LMs, we use BLiMP (Warstadt et al.,
2020a). BLiMP consists of tasks that evaluate the
ability of language models to behave in a man-
ner consistent with the structure of English. Each
example consists of a minimal pair of sentences,
where one sentence is acceptable and the other is
unacceptable (differing as minimally as possible
from the acceptable sentence otherwise); a model
is correct on a given example if it assigns higher
probability to the correct sentence in the minimal

4We thank Haau-Sing Li for allowing us to use this prepro-
cessed data.

5https://dynabench.org/

pair. We also release a supplement to the BLiMP
tasks, which tests for phenomena not captured by
BLiMP (see §5.1.1).

To assess the abilities of LMs on more typical
downstream NLP tasks, we evaluate on a mixture
of tasks from a subsample of (Super)GLUE, which
consists of text classification tasks. We include
a variety of task types, including paraphrase
detection (MRPC, QQP), sentiment classification
(SST-2), natural language inference (MNLI, QNLI,
RTE), question answering (BoolQ, MultiRC), ac-
ceptability judgments (CoLA), and commonsense
reasoning (WSC).

5.1.1 Hidden Tasks
Two weeks before the results deadline, we re-
leased three hidden evaluation tasks: the Mixed
Signals Generalization Set (MSGS), a supplement
to BLiMP, and an age-of-acquisition (AoA) pre-
diction task. MSGS and the BLiMP supplement
were mandatory; AoA prediction was provided as
an additional analysis point for participants in writ-
ing their papers. The motivation for using these
hidden tasks was to prevent our evaluations from
rewarding submissions that overfit to the BLiMP
and (Super)GLUE tasks.

The BLiMP supplement includes five test suites
consisting of BLiMP-style minimal pairs that
cover areas of linguistic knowledge not tested by
BLiMP—namely, dialogue and questions. The test
suites are semi-automatically generated using man-
ually filled templates. As with BLiMP, models are
evaluated on the supplement in a zero-shot manner,
by comparing the probabilities of the sequences
in a minimal pair, under the assumption that the
acceptable sequence will be more probable than its
unacceptable counterpart.

HYPERNYMS. We evaluate LMs’ knowledge of
lexical entailment, i.e., hypernym–hyponym rela-
tionships. This task bears similarity to natural lan-
guage inference (Dagan et al., 2006; Bowman et al.,
2015; Williams et al., 2018), but we instead mea-
sure whether models assign a higher likelihood to
valid statements of entailment compared to mini-
mally differing invalid statements. The evaluation
data is designed around manually written triples
consisting of ⟨hypernym, base, hyponym⟩—for ex-
ample, ⟨plant, herb, basil⟩. We also specify an
other noun (for example, flower) which shares the
hypernym but not the hyponym with the base noun.
From these nouns, plus a set of manually written
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contexts, we generate six types of minimal pairs,
shown in Table 5 in Appendix C. Additionally, we
randomly vary the text used to convey entailment,
e.g., If p then q, If p that means q, p therefore q, etc.

SUBJECT–AUXILIARY INVERSION. The
subject–auxiliary inversion rule applies in question
formation in English (e.g., relating Logan will go.
to Will Logan go?). This task has been used to
evaluate language models’ syntactic abilities and
preferences (e.g., McCoy et al., 2020; Mueller et al.,
2022; Yedetore et al., 2023; Mueller and Linzen,
2023). Our test data was created by Warstadt
(2022, Ch. 6), where it is described in more detail.

TURN-TAKING. Comprehending dialogue re-
quires tracking the grammatical properties of ut-
terances from multiple speakers. Pronouns such
as I, you, and she are indexicals, meaning their in-
terpretation depends on the speaker’s context and
identity. This test suite evaluates whether LMs can
predict which pronoun is appropriate to use when
there is a change in speaker. For example, if person
A asks person B a question of the form Can I ...,
person B’s response should begin with You, not I.
Our tests include (i) cases where the pronoun is
expected to change, and (ii) cases where it is not.
We also vary the context length (and therefore the
distance between the context pronoun and the tar-
get), and whether the context contains a distractor
pronoun in an embedded position. Finally, for each
example, we randomly select one from a set of for-
mats for indicating the speaker, e.g., A: ..., B: ..., or

“...,” he asked. “...,” she said., etc. Examples of each
format can be found in Table 6 in Appendix C.

QUESTION–ANSWER CONGRUENCE. The
syntax of a question constrains the acceptable
responses. For example, a congruent answer
to a who-question must be an animate noun (or
contain one in a suitable context). This test suite
evaluates whether LMs assign a higher likelihood
to congruent answers compared to incongruent
ones, and therefore learn the cross-sentential
dependency between a wh-word and an answer. In
addition to a set of EASY test cases, we construct a
set of adversarial TRICKY test cases where there is
a highly salient distractor answer that is not congru-
ent with the wh-word. We randomly vary whether
the answer appears as a fragment or in a complete
sentence as well as the format for indicating the
speaker. See Table 7 in Appendix C for examples.

Mixed Signals Generalization Set. The Mixed
Signals Generalization Set (MSGS; Warstadt et al.,
2020b) is a text classification task that evaluates the
inductive biases of language models. For a MSGS
subtask, models are finetuned on an ambiguous
training set where the labels are consistent with
both a syntactic generalization and a surface gen-
eralization, and then evaluated on examples that
disambiguate which generalization the model con-
verged on (if any).6

Ideally, models would be more sensitive to lin-
guistic features than surface features, as a system-
atic preference for abstract linguistic properties al-
lows models to generalize more robustly to unseen
structures. The metric for MSGS is the Matthews
correlation coefficient between the model’s pre-
dictions and the labels according to the linguistic
generalization on the test set. A coefficient of 1
corresponds to a systematic linguistic generaliza-
tion, and -1 to a systematic surface generalization.
Indeed, Warstadt et al. (2020c) find that linguistic
bias increases with the volume of pretraining data,
and that models with RoBERTa-like architectures
require more than a billion words of pretraining
data to achieve an overall linguistic bias (i.e., a
score greater than 0).

Age-of-acquisition Prediction. Optionally, par-
ticipants could evaluate on the age of acquisition
(AoA) prediction task of Portelance et al. (2023).
When humans are learning language, they tend to
acquire certain words at specific ages; the age of
acquisition of a word refers to the age at which hu-
mans acquire that word. The AoA prediction task
compares LMs’ word surprisals with children’s
AoA of the same words. A language model’s aver-
age surprisals are converted into AoA predictions,
and these are then compared to the actual average
AoA (in months) of those words. Models achieving
lower mean absolute deviation between the actual

6For example, one of the subtasks tests which of the fol-
lowing two generalizations the model’s inductive bias favors:
whether the word “the” is present (the surface generalization),
or whether the sentence contains an adjective (the syntactic
generalization). Thus, training examples will include only
ambiguous labeled pairs where these two properties are both
perfectly correlated with each other and with the binary labels,
such as (The big dog barked, 1) and (A dog barked,
0). At test time, the model must classify held-out sentences
where the features are anti-correlated, such as A big dog
barked and The dog barked. If the model predicts labels 1
and 0 respectively for these and other analogous examples, we
infer that it classifies examples based on the linguistic feature,
while if it predicts 0 and 1 respectively, it adopted the surface
generalization.
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age and predicted age are said to perform better on
the task.7 While we did not require participants
to submit these scores as part of their predictions,
we provided code to make evaluation on this task
simple, such that they could include this score as an
additional analysis point in their paper submissions.
7 teams (22.6%) evaluated on the AoA prediction
task; see Appendix E for results and discussion.

5.2 Evaluation Pipeline

The organizers provided code to unify the evalua-
tion setup across submissions. This was released
as a public repository on GitHub.8 The evalua-
tion pipeline supports models implemented in Hug-
gingFace, though we did not restrict the model
submissions to HuggingFace-based models.9 For
model and result submissions, users were required
to (i) upload a link to their model (on any file-
hosting service), and (ii) provide model predictions
for each example of each task (via Dynabench); we
provided a template specifying the format of the
predictions file.

Data preprocessing. NLP tasks in our evalua-
tion pipeline often contained vocabulary that is not
contained in the BabyLM pretraining corpora. To
address this mismatch, we filtered each task accord-
ing to its lexical content: if an example contained
any words that appear less than twice in the Strict-
Small training corpus, we filtered the example out.
Otherwise, each dataset is presented in its original
format. See Table 4 in Appendix B for details on
the size of the filtered datasets.

5.2.1 Evaluation Paradigms
Zero-shot evaluation. For zero-shot tasks—
BLiMP and the BLiMP supplement—we mod-
ify the BigScience fork of the lm-eval-harness
repository, originally by EleutherAI (Gao et al.,
2021). This provides functionality for scoring
autoregressive decoder-only LMs and encoder-

7It is not clear whether optimizing LM performance on this
task necessarily leads to better language models. It is possible
instead that LMs could have a different pattern of surprisals
than humans while learning particular linguistic concepts more
or less efficiently than humans. Thus, this task should be used
more as a measure of how well LMs align with humans—and
thus, as a measure of their usefulness as cognitive models of
language acquisition and processing—rather than as a measure
of quality or performance.

8https://github.com/babylm/
evaluation-pipeline

9Upon release of the evaluation pipeline, we announced
that we would provide support as needed to teams training
LMs not based in HuggingFace.

decoder LMs. For encoder-only LMs, we modify
the repository to support masked language model
scoring as described in Salazar et al. (2020).10

Finetuning. We first attempted zero-shot
learning and few-shot in-context learning for (Su-
per)GLUE and MSGS tasks. However, this often
resulted in random-chance accuracies from each of
our baselines; we, therefore employ finetuning.11

For tasks requiring finetuning—(Super)GLUE
(Wang et al., 2018, 2019) and MSGS (Warstadt
et al., 2020b)—we base our scripts on Hug-
gingFace’s example finetuning scripts for text
classification.12 We modified the script to support
encoder-decoder models, and to work for a wider
variety of tasks. We provide a default set of
hyperparameters that we found to work well across
our baseline models, though participants were
allowed to freely modify hyperparameters.

5.3 Dynabench Leaderboard

Dynabench is an open-source platform for dynamic
dataset creation, model evaluation, and leader-
board hosting (Kiela et al., 2021). In addition to
open-sourcing datasets—including adversarial and
human-in-the-loop datasets (Nie et al., 2020; Bar-
tolo et al., 2021; Potts et al., 2021; Sheng et al.,
2021; Vidgen et al., 2021; Kirk et al., 2022)—
Dynabench has offered leaderboard support for
several community challenges in the past (Wenzek
et al., 2021; Bartolo et al., 2022; Mazumder et al.,
2022). Given that we desire a dynamic leaderboard
that allows for submissions even after the end of
the challenge, this platform was well-suited to the
BabyLM Challenge. All model submissions to the
challenge were submitted via the Dynabench plat-
form, to the respective leaderboards for the Strict,13

Strict-Small,14 and Loose15 tracks.
Each leaderboard presents aggregate scores

across all tasks, which can be interactively bro-

10We use the implementation of Misra (2022) in the
minicons library.

11finetuning technically adds to the training set size. We
consider this acceptable, as finetuning on a single GLUE or
MSGS task does not meaningfully add to the domain-general
linguistic abilities of language models. The LM is finetuned
separately for each task, so we still see this as an evaluation of
the LM’s abilities in itself (albeit more confounded than the
zero-shot evaluations).

12https://github.com/huggingface/transformers/
blob/211f93aab95d1c683494e61c3cf8ff10e1f5d6b7/
examples/pytorch/text-classification/run_glue.py

13https://dynabench.org/tasks/baby_strict
14https://dynabench.org/tasks/baby_strict_small
15https://dynabench.org/tasks/baby_loose
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Figure 2: Number of participants who submitted to each
track, with multiple submissions counted once.

ken down into more fine-grained scores per task
and per subtask. To compute the aggregate score,
we weigh BLiMP and the BLiMP-supplement to-
gether at 50% (all subtasks weighted equally), (Su-
per)GLUE at 30%, and MSGS at 20%. This weight-
ing scheme was arrived at heuristically, though we
did observe that the winners for each track were
stable across a wide range of reasonable weight-
ings. Dynabench allows users to specify a custom
task weighting to compute an alternative aggregate
score. The leaderboard for the BabyLM challenge
will continue to accept submissions indefinitely.

5.4 Baselines and Skylines

Baselines. To provide simple baselines for
our evaluation tasks, we train multiple models
on the data released for Strict-Small and Strict
tracks and evaluate them on the evaluation tasks.
Three baseline models are provided: OPT-125M,
RoBERTa-base, and T5-base. These models use the
same objective function and network architecture
corresponding to their original papers (OPT; Zhang
et al., 2022, RoBERTa; Liu et al., 2019, T5; Raffel
et al., 2020). The network architecture of these
models covers both encoder-decoder (T5-base and
RoBERTa-base) and decoder-only (OPT-125M)
architectures. Their objective functions include
next-token prediction (OPT-125M), masked-token
prediction (RoBERTa-base), and sequence-to-
sequence (T5-base) matching losses. The baseline
models are trained using a fixed context length
of 128, a constant learning rate of 1e-4, a linear
learning-rate warmup from 0 in the first 5000 steps,
a batch size of 128, and AdamW (Loshchilov and
Hutter, 2019) as the optimizer. They are trained
for 20 epochs on the data, where each epoch
randomly and independently shuffles the whole
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Figure 3: Total number of submitted models that used
each of the nine approaches in our typology. We count
at most one submitted model per participant per track.

dataset. Although most of these hyperparameters
are loosely inspired by Huebner et al., we expect
that the specific choices on them can be further
improved and leave these potential improvements
as possible topics for submissions. We find
that our baseline models achieve reasonable
performance on the evaluation tasks, with clear
improvement from more data from Strict-Small
to Strict track and notable gap towards their
counterparts pretrained on much larger datasets.

Skylines. To get an approximation of how well
larger models could, in principle, perform in our
task and setting, we ran Llama 2 70B (Touvron
et al., 2023) and the fully trained RoBERTa-base
model through our evaluation pipeline. This is
meant to provide a comparison point to the state of
the art in 2023, as the Llama 2 model is pretrained
on much more data (2T tokens) than the challenge
allows, and it has far more parameters than we ex-
pect to find in submissions. We evaluate Llama
2 on (Super)GLUE using in-context learning, but
it is fully finetuned on MSGS. BabyLM submis-
sions that approach these scores can be considered
to have greater sample efficiency than the skyline
models, and may therefore provide stronger starting
points for future research in sample-efficient NLP.

6 Submissions Summary

We received 31 papers and 162 models in total.
Table 3 shows the submission counts for each track.
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Model BLiMP GLUE MSGS BLiMP-Supp. Aggregated
Llama 2 0.84 0.84 0.26 0.75 0.71
RoBERTa-Base 0.87 0.79 0.24 0.76 0.70

St
ri

ct

ELC-BERT (Charpentier and Samuel, 2023) 0.85 0.78 0.47 0.77 0.74
BootBERT (Samuel, 2023) 0.86 0.79 0.28 0.72 0.70
McGill-BERT (Cheng et al., 2023) 0.84 0.72 0.25 0.71 0.67
Best Baseline (OPT-125M) 0.75 0.70 0.13 0.68 0.60

St
ri

ct
-S

m
al

l ELC-BERT (Charpentier and Samuel, 2023) 0.80 0.74 0.29 0.67 0.66
MLSM (Berend, 2023b) 0.79 0.71 0.17 0.57 0.61
McGill-BERT (Cheng et al., 2023) 0.75 0.70 0.13 0.68 0.60
Best Baseline (OPT-125M) 0.63 0.62 0.10 0.53 0.50

L
oo

se

Contextualizer (Xiao et al., 2023) 0.86 0.73 0.58 0.63 0.73
McGill-BERT (Cheng et al., 2023) 0.80 0.68 -0.02 0.57 0.57
BabyStories (Zhao et al., 2023) 0.78 0.61 0.03 0.65 0.56

Table 2: Top 3 systems for each track, as well as the baseline model with the highest aggregate score. We also show
“skyline” models: RoBERTa-base and Llama 2 trained on their full pre-training corpora. Each task score is simply
the mean score across each of its subtasks. The aggregate score is a weighted average of each task. We bold the
highest-scoring system for each task within each track.

# Models # Participants

Loose 20 8
Strict-Small 118 29
Strict 24 11

total 162 31

Table 3: Total number of models and participants per
track. Participants who submitted to multiple tracks are
counted once in the total.

Some participants submitted to multiple tracks; we
show data for unique participants in Figure 2.

We found that many submissions focused their
efforts on similar techniques. To better quan-
tify this, we devised a typology of the nine most
common approaches and assigned each submitted
model one or more labels. Figure 3 shows the
number of submissions employing each approach.
§7.3 provides more detailed descriptions of each
approach, as well as results indicating which ones
were most effective.

All participants are affiliated with universities
or independent research institutions. Participants’
home institutions are located in 16 different coun-
tries. The number of participants by country is
as follows (multinational participants are counted
more than once): US (9), Germany (5), Netherlands
(3), UK (4), Canada (2), Norway (2), Austria (1),
Denmark (1), France (1), Hungary (1), Israel (1),
Japan (1), Norway (1), Switzerland (1), Turkey (1).

The official leaderboard is available on Dyn-

abench.16 With the consent of participants, we
release links to submitted models, their complete
predictions for the evaluation tasks, their scores for
each task and subtask, and metadata about each
submission at the BabyLM’s GitHub at https://
github.com/babylm/submissions2023. We pro-
vide a summary of each submission in Appendix F.

7 Results & Analysis

7.1 Overall Results & Track Winners

The results from all submissions are shown in
Figure 4, with the scores of the top-performing
models in each track detailed in Table 2. In the
figure, dashed green lines show the performance
of the Llama 2 skyline. Solid green lines show
human performance on GLUE reported in Nangia
and Bowman (2019), and human performance on
BLiMP as reported by Warstadt et al. (2020a).

Before discussing the winning systems in
each track, we note a few high-level takeaways
from these results. The strongest results were
achieved by models in the Strict track. Given
the Strict track’s larger training corpus relative
to the Strict-Small corpus, it is not surprising
that these models could outperform those in the
Strict-Small track. However, there are two inter-
esting trends: First, Strict models did not outper-
form those in Strict-Small by a large amount, even
though the size of training data was an order-of-
magnitude larger. For example, there are only

16https://dynabench.org/babylm
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Figure 4: Summary of BabyLM Submission Results: Each point represents an official model submission. Scores
are broken down into performance on BLiMP (x-axis), GLUE (y-axis) and MSGS (color). Submissions that achieve
an aggregate score above 0.6 are labeled in gray. Green dashed lines show Llama 2 skyline performance, and green
solid lines show the human performance ceiling.

two models in the Strict track that achieve higher
GLUE scores than the best-performing Strict-Small
model. Second, models in the Loose track tended
to perform worse in the aggregate than those in
the Strict-Small track, even though they potentially
had access to additional (non-linguistic) data. One
conclusion we can draw from this is that learning
from multiple modalities of data presents a chal-
lenge in its own right, and that current model ar-
chitectures are not optimized to efficiently utilize
multiple types of inputs during training.

The other important high-level takeaway is that
many BabyLM models are very close to the Llama
2 skyline, and to achieving human-level perfor-
mance on BLiMP and GLUE (i.e., they are near the
green lines in Figure 4). Strong performance could
be expected in the case of (Super)GLUE, where
models were finetuned with additional data, but
we note that even for BLiMP, the top-performing
model is only about 3% shy of human performance.
Note that prior to the start of the challenge, we
explored the possibility of measuring zero-shot per-
formance on (Super)GLUE test sets, and found
zero-shot performance to be at or below chance for
our baselines. This fact, as well as the consider-
ation that GLUE has been traditionally evaluated
using finetuning, leads us to select finetuning eval-
uations for the (Super)GLUE benchmark(s).

Given that successful training on developmen-
tally plausible corpora could have ramifications

for cognitive and linguistic theories of learnability
(Wilcox et al., 2023; Warstadt and Bowman, 2022),
these results point to two important takeaways:
(1) Human-level results have not been achieved
yet. However, (2) given the strong performance of
the top-scoring models, human-level results appear
likely to be achieved very soon, possibly within
the next few years. Of course, one possible con-
cern is the following: current models may not be
close to human-level performance; rather, current
performance metrics, like BLiMP, might not ac-
curately measure human-level linguistic compe-
tence. We are sympathetic to such concerns, but
we also note that BLiMP, and other related syntac-
tic benchmarks such as those presented in Marvin
and Linzen (2018) and Gauthier et al. (2020), were
specifically designed to mimic the types of tests
invented by linguists and cognitive scientists to re-
veal syntactic competence—i.e., they are all based
on minimal pair sentences. Thus, while it is imper-
ative to continue building more comprehensive and
larger datasets, we believe it is fair to say that the
close-to-human scores observed in the BabyLM
challenge on BLiMP reflect genuine grammatical
generalizations learned by the models.

7.2 Winning Submissions

Below, we discuss the winning submissions from
each track in greater detail. We also mention the
winners of our “Most Interesting Paper” awards
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and provide a brief justification for each.

Strict track. The winner of the Strict track is
ELC-BERT submitted by Charpentier and Samuel
(2023). This model, as well as the runner-up sub-
mission Boot-BERT (Samuel, 2023), used as their
starting point the LTG-BERT architecture from
Samuel et al. (2023). Although these submis-
sions make additional incremental improvements
to the LTG-BERT training regime, their own base-
lines suggest that the backbone architecture plays
a large role in the submissions’ successes. LTG-
BERT’s main contribution is a synthesis of sev-
eral optimizations to the Transformer architecture,
namely: (1) additional layer normalization, fol-
lowing (Shleifer et al., 2021); (2) GEGLU feed-
forward modules (Shazeer, 2020); (3) disentangled
attention following DeBERTa (He et al., 2021); and
(4) scaled weight initialization following (Nguyen
and Salazar, 2019). ELC-BERT modifies this back-
bone such that the input to each layer is a weighted
sum of the outputs of all previous layers. Another
notable property of LTG-BERT is that all models
with this architecture so far have been trained for a
large number of epochs. Charpentier and Samuel
(2023) train models for over 450 epochs for their
Strict submission, and over 2000 epochs for their
Strict-Small submission. LTG-BERT models per-
formed exceptionally well on our set of evaluations,
outperforming not only every other submission to
the shared task but also the Llama 2 and RoBERTa-
Base skylines on overall score and on all test suites
except for (Super)GLUE (Table 2). The second
runner-up for this track was McGill-BERT (Cheng
et al., 2023).

Strict-Small track. The winner of the Strict-
Small track is, again, ELC-BERT (Charpentier and
Samuel, 2023). This double-win demonstrates that
the model’s architectural choices work well with
multiple scales of pretraining data. The runners-up
were MLSM (Berend, 2023b) and McGill-BERT
(Cheng et al., 2023).

Loose track. The winner of the Loose track is
the Contextualizer model of Xiao et al. (2023),
which used a data processing scheme in which
extra training samples are created by combining
chunks of texts from different contexts. Repeating
this process 40 times for each chunk gives a dataset
that has as many training samples as 4B word
dataset, but based on a dataset of only 100M words.
This augmentation technique outperforms training

for 40 epochs using the same training samples.
Runners-up for this track were McGill-BERT
(Cheng et al., 2023) and the BabyStories model
of Zhao et al. (2023).

Most interesting paper awards. These awards
are given to papers that go beyond achieving high
scores on a leaderboard, and instead demonstrate
contributions to the shared task based on inter-
esting analyses, useful negative results, creative
modeling choices, or a combination thereof. We
awarded two most interesting paper awards in two
different categories.

Outstanding evaluation. The most interesting
paper award for outstanding evaluation was given
to “Large GPT-like Models are Bad Babies: A
Closer Look at the Relationship between Linguis-
tic Competence and Psycholinguistic Measures”
(Steuer et al., 2023). This work goes beyond the
BabyLM evaluation tasks: the authors use mea-
sures of human cognitive processing effort and lin-
guistic competence and additionally correlate these
with BabyLM task performance. Their work as-
sesses BabyLM submissions as models of human
language processing, thus contributing to our un-
derstanding of how to better train cognitive models.

Compelling negative results. The most interest-
ing paper award for compelling negative results
was given to “CLIMB—Curriculum Learning for
Infant-inspired Model Building” (Martinez et al.,
2023). This work proposes a typology of com-
mon curriculum learning approaches and performs
a thorough and principled evaluation exploring this
design space. Although they find that none of the
tested approaches leads to widespread improve-
ments across the evaluation tasks, the exhaustive-
ness of this search and the careful controls and
baselines in the study make this negative result a
valuable contribution.

7.3 Common Methods

One of the main objectives of the BabyLM Chal-
lenge is to compare and contrast methodological
choices for sample-efficient pretraining. To do
so, we hand-coded each submission based on
the method(s) it employs. Figure 3 shows the
number of submissions using each approach,
and we visualize the performance of different
methods in Figure 5. We also present a similar
figure separated by the underlying architecture
(Figure 6). Each of these approaches is discussed

12



0.0

0.2

0.4

0.6

M
ult

im
od

al

Lin
gu

ist
ic 

 B
ias

Hyp
er

pa
ra

m
et

er
 

 Tu
nin

g

Cur
ric

ulu
m

 

 L
ea

rn
ing

Te
ac

he
r/S

tu
de

nt
 

 o
r A

ux
 M

od
el Dat

a 

 A
ug

m
en

ta
tio

n

Tra
ini

ng
 

 O
bje

cti
ve Dat

a 

 P
ro

ce
ss

ing

Arc
hit

ec
tu

ra
l 

 M
od

ific
at

ion
s

F
in

al
 S

co
re

Backbone Architecture

BabyBERTa

BERT

DeBERTa

ELECTRA

FLAVA

GPT2

Llama

LTG−BERT

OPT

RoBERTa

Track

Loose

Strict

Strict−Small
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in further detail below. We highlight two high-level
takeaways to start: First, curriculum learning,
which was the most popular approach, did not tend
to produce high scores (although one curriculum
learning model did perform well). Second, the
highest-performing models were ones that made
architectural modifications—namely, those based
on the LTG-BERT architecture.

Curriculum learning. This approach entails
sorting training steps with respect to some
complexity metric(s). This was the most popular
approach, with 13 teams (41.9%) attempting
some variant of curriculum learning. The majority
of these attempts did not produce consistent
improvements across the BabyLM evaluation
tasks. However, they did explore a large space of
possible curricula, for example: ranking sentences
by surprisal (Chobey et al., 2023; Hong et al.,
2023), lexical frequency (Borazjanizadeh, 2023;
Martinez et al., 2023), length (DeBenedetto,
2023; Edman and Bylinina, 2023), and syntactic
complexity (Mi, 2023; Oba et al., 2023; Bunzeck
and Zarrieß, 2023); sorting entire datasets by
difficulty (Opper et al., 2023; Martinez et al., 2023;
Xiao et al., 2023); gradually increasing vocabulary
size (Thoma et al., 2023; Edman and Bylinina,
2023); and gradually increasing the difficulty of
the training objective (Martinez et al., 2023).

Teacher–student or auxiliary model. Many pa-
pers trained their submitted models with the aid of

additional models. According to our rules, this was
permissible as long as any auxiliary models were
trained on the BabyLM corpus. Knowledge distilla-
tion using auxiliary models was often a successful
approach: Samuel (2023) considered an exponen-
tial moving average teacher model (Tarvainen and
Valpola, 2017), while Berend (2023b) modeled a
latent semantic feature distribution from a teacher
model. Timiryasov and Tastet (2023) performed
distillation on an ensemble of features. Others used
auxiliary models to select appropriate training ex-
amples for a curriculum (Chobey et al., 2023; Hong
et al., 2023), or trained a reward model for use in
reinforcement learning (Zhao et al., 2023).

Data preprocessing. Many submissions mod-
ified the format of the pretraining corpus. When
controlled comparisons were performed, these pre-
processing steps often led to improvements. In §7.2
we discuss the successful Contextualizer method
for constructing new training samples. Other
successful approaches used short sequences or in-
dividual sentences as training samples, rather than
long portions of documents (Govindarajan et al.,
2023; Cheng et al., 2023; Edman and Bylinina,
2023). Among the more unique approaches in this
space was Baby’s CoThought (Zhang et al., 2023),
which used an LLM to reformat unrelated sen-
tences from the corpus into coherent paragraphs.

Hyperparameter tuning and model scaling.
This was a relatively common approach. Many
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submissions performed extensive hyperparameter
searches, producing hard-won hyperparameters
that work well on smaller datasets while preserv-
ing features of the dataset. While extensive hy-
perparameter searching can be expensive and chal-
lenging when scaling up to full-sized pretraining,
in our limited data regime, consistently success-
ful modifications include reducing context length
(see “Data preprocessing”, above), and training for
more epochs or long epochs with data augmenta-
tion (Jumelet et al., 2023; Bhardwaj et al., 2023;
Yang et al., 2023; Xiao et al., 2023; Samuel, 2023;
Charpentier and Samuel, 2023).

However, results are mixed when modifying
model size: some participants achieved better re-
sults when scaling model sizes up (Çağatan, 2023),
while others were able to perform well when using
very small models (Proskurina et al., 2023). More
controlled studies using a variety of architectures
and datasets are needed to determine whether scal-
ing up or down is a better solution.

Multimodal learning. Multimodal learning was
one of the directions where we expected the most
interest and the most submissions; however, we
received few submissions based on multimodal
inputs, and the multimodal submissions did not
reliably contribute to higher overall accuracy. One
submission used music (Govindarajan et al., 2023),
another used vision and language data (Amariucai
and Warstadt, 2023), a third explored text-and-
audio (Wolf et al., 2023), and a fourth incorporated
text-and-image data and lexical sensorimotor data

as part of the embedding process using multiplex
networks (Stella et al., 2017; Ciaglia et al., 2023).
Music training produced minor improvements
on some subtasks, while the vision-and-language
system marginally improved over the baselines in
the Strict-Small track. The multiplex network did
not produce performance gains, though it did allow
the participants to reduce the number of parameters
while preserving performance relative to the base-
lines. WhisBERT was reported to be undertrained,
making its results difficult to interpret.

Architecture modifications. The winning sub-
mission made architectural modifications: Char-
pentier and Samuel (2023) made slight improve-
ments to LTG-BERT (see §7.2 for more on this
architecture) by taking a weighted sum over the
outputs of all previous layers. Momen et al. (2023)
used the relatively novel StructFormer architec-
ture (Shen et al., 2021), which encourages tree-
structured representations of inputs.

Training objectives. Some submissions trained
language models using a mixture of both a lan-
guage modeling objective and some other objective.
Knowledge distillation from teacher models (see
paragraphed titled “Teacher–student or auxiliary
model” above) was the most common modification.
Martinez et al. (2023) simplified the masked lan-
guage modeling objective by coarse-graining the
output classes, with little effect. Govindarajan et al.
(2023) achieved improvements on specific BLiMP
subtasks by modifying the masking procedure to
preferentially mask specific words thought to be rel-
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evant to a particular phenomenon tested by BLiMP.

Linguistic bias. Some submissions tried to im-
part human linguistic biases to models. Such ap-
proaches discussed above include curriculum learn-
ing based on linguistically motivated data sorting
methods and architectures like StructFormer that
encourage hierarchical analyses of inputs. Chen
and Portelance (2023) also pretrained with token
embeddings obtained via grammar induction, and
Thoma et al. (2023) iteratively updated the vocabu-
lary of the LM based on word simplicity measures
(motivated by human age-of-acquisition analyses).

Data augmentation. Arguably, the effective
Contextualizer approach (Xiao et al., 2023) is a
form of data augmentation (see §7.2). Jumelet
et al. (2023) used regular expressions to generate
question-answer pairs given the BabyLM training
data. Zhao et al. (2023) used an LLM to gener-
ate text merging disparate sentences into cohesive
paragraphs.

8 Future BabyLM Challenges

The first iteration of the BabyLM Challenge
yielded many successes, but also some organi-
zational and scientific challenges. The lessons
learned from our findings can improve future it-
erations of this challenge.

We were surprised that there were significantly
more submissions to the Strict-Small track than
the other two tracks combined, considering that
the Loose track allows for a much wider variety of
methods. However, this is understandable from the
perspective of compute: training on Strict-Small is
the least computationally expensive of each of the
tracks, and it constrains the model search space
enough that ideas are perhaps easier to define
and execute. In future iterations of the BabyLM
challenge, it could be interesting to provide more
specific and constrained Loose tracks, which focus
on particular research directions—for example,
LLM-assisted low-resource pretraining, allowing
expert annotations during pretraining, or joint text
and audio modeling.

We can also draw insights from the data pre-
processing and hyperparameter tuning submis-
sions in particular, and standardize them into the
dataset/evaluation pipeline. For example, we could
preprocess the data in ways the present challenge
has shown to be effective. This could include sort-
ing the data according to the curriculum learning

method that yielded performance gains, provid-
ing better-starting hyperparameters, and training a
baseline with the best architecture.

Although data quantity was the main focus of
this iteration, we may also consider rewarding com-
pute efficiency in the future. Many of the most
successful submissions consumed a lot of compute
by training for many epochs. Indeed, the winning
submission trained on about as many samples as
BERT, despite having a training set only about 3%
as large. While this finding is interesting, it does
little to help achieve our goals in §2. Training for
hundreds of epochs is not cognitively plausible, and
it is does not make it easier and more accessible to
test novel training approaches or train models on a
university budget.

The evaluation pipeline was built on the existing
lm-evaluation-harness repository,17 but main-
taining and updating it for this challenge was no
small feat for a single organizer. In future iterations
of the challenge, it would be beneficial to have a
larger dedicated support team for the evaluations.
A dedicated team could also allow us to handle a
greater variety of submissions, including those not
supported by HuggingFace.

9 Conclusions

The BabyLM Challenge encouraged participants to
think small. We asked: can we improve language
modeling on smaller and more cognitively plausi-
ble datasets? The submitted systems employed di-
verse methods, but the most consistent gains came
from modified model architectures, new training
objectives, principled preprocessing of the pretrain-
ing corpora, and hyperparameter searches. In one
case, a curriculum learning method resulted in sig-
nificant improvements. Future work can build on
these findings to further improve language mod-
eling for low-resource settings and for cognitive
modeling research.

Acknowledgments

We would like to thank the participants of
the BabyLM Challenge for their valuable
contributions—not just their models and papers,
but also their contributions to the evaluation
pipeline and the reviewing process.

17Originally released at https://github.com/
EleutherAI/lm-evaluation-harness. Note that
we based our implementation on the BigScience
fork at https://github.com/bigscience-workshop/
lm-evaluation-harness.

15

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/bigscience-workshop/lm-evaluation-harness
https://github.com/bigscience-workshop/lm-evaluation-harness


We would also like to thank the Dynabench team
at MLCommons for hosting our leaderboards and
integrating our challenge’s unique requirements
into their implementation. Thanks especially to
Max Bartolo, Douwe Kiela, and Hannah Rose Kirk
for feedback on earlier iterations of the BabyLM
evaluation setup.

Author Contributions

• Original concept: Alex Warstadt, Leshem
Choshen

• Primary organizers: Alex Warstadt, Ethan
Wilcox, Leshem Choshen, Aaron Mueller,
Chengxu Zhuang

• Pipeline implementation and maintenance:
Aaron Mueller

• Baseline model training: Chengxu Zhuang

• Publicity and communications with partici-
pants: Leshem Choshen, Ethan Wilcox

• Training dataset compilation: Alex
Warstadt

• BLiMP Supplement evaluation data cre-
ation: Alex Warstadt

• Dynabench integration: Juan Ciro, Rafael
Mosquera, Adina Williams

• Llama 2 evaluation: Bhargavi Paranjape

• Guidance on concept and workshop orga-
nization: Ryan Cotterell, Tal Linzen, Adina
Williams

• Reviewing submissions: Alex Warstadt,
Ethan Wilcox, Leshem Choshen, Aaron
Mueller, Chengxu Zhuang, Adina Williams

• Initial draft of findings paper: Alex
Warstadt, Ethan Wilcox, Leshem Choshen,
Aaron Mueller, Chengxu Zhuang

• Editing: All authors

References
Ahmed Abdelali, Francisco Guzman, Hassan Sajjad,

and Stephan Vogel. 2014. The AMARA corpus:
Building parallel language resources for the educa-
tional domain. In Proceedings of the Ninth Inter-
national Conference on Language Resources and
Evaluation, pages 1856–1862, Reykjavik, Iceland.
European Language Resources Association (ELRA).

Theodor Amariucai and Alexander Scott Warstadt. 2023.
Acquiring linguistic knowledge from multimodal in-
put. In Proceedings of the BabyLM Challenge. Asso-
ciation for Computational Linguistics (ACL).

Giusepppe Attardi. 2015. Wikiextractor. https://
github.com/attardi/wikiextractor.

Marco Baroni. 2022. On the proper role of
linguistically-oriented deep net analysis in linguis-
tic theorizing. Algebraic Structures in Natural Lan-
guage, pages 1–16.

Max Bartolo, Hannah Kirk, Pedro Rodriguez, Kate-
rina Margatina, Tristan Thrush, Robin Jia, Pontus
Stenetorp, Adina Williams, and Douwe Kiela, edi-
tors. 2022. Proceedings of the First Workshop on
Dynamic Adversarial Data Collection. Association
for Computational Linguistics, Seattle, WA.

Max Bartolo, Tristan Thrush, Robin Jia, Sebastian
Riedel, Pontus Stenetorp, and Douwe Kiela. 2021.
Improving question answering model robustness with
synthetic adversarial data generation. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 8830–8848, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Eden Bensaid, Mauro Martino, Benjamin Hoover, Jacob
Andreas, and Hendrik Strobelt. 2021. Fairytailor: A
multimodal generative framework for storytelling.
CoRR, abs/2108.04324.

Gábor Berend. 2023a. Masked latent semantic model-
ing: an efficient pre-training alternative to masked
language modeling. In Findings of the Associ-
ation for Computational Linguistics: ACL 2023,
pages 13949–13962, Toronto, Canada. Association
for Computational Linguistics.

Gábor Berend. 2023b. Better together: Jointly using
masked latent semantic modeling and masked lan-
guage modeling for sample efficient pre-training. In
Proceedings of the BabyLM Challenge. Association
for Computational Linguistics (ACL).

Khushi Bhardwaj, Raj Sanjay Shah, and Sashank Varma.
2023. Pre-training LLMs using human-like develop-
ment data corpus. In Proceedings of the BabyLM
Challenge. Association for Computational Linguis-
tics (ACL).

Douglas Biber. 1991. Variation across Speech and Writ-
ing. Cambridge University Press.

16

http://www.lrec-conf.org/proceedings/lrec2014/pdf/877_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/877_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/877_Paper.pdf
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://arxiv.org/abs/2106.08694
https://arxiv.org/abs/2106.08694
https://arxiv.org/abs/2106.08694
https://aclanthology.org/2022.dadc-1.0
https://aclanthology.org/2022.dadc-1.0
https://doi.org/10.18653/v1/2021.emnlp-main.696
https://doi.org/10.18653/v1/2021.emnlp-main.696
http://arxiv.org/abs/2108.04324
http://arxiv.org/abs/2108.04324
https://doi.org/10.18653/v1/2023.findings-acl.876
https://doi.org/10.18653/v1/2023.findings-acl.876
https://doi.org/10.18653/v1/2023.findings-acl.876
https://www.cambridge.org/core/books/variation-across-speech-and-writing/A546CF5ED8F8E62F1432CB2F369CF356
https://www.cambridge.org/core/books/variation-across-speech-and-writing/A546CF5ED8F8E62F1432CB2F369CF356


Nasim Borazjanizadeh. 2023. Optimizing GPT-2 pre-
training on BabyLM corpus with difficulty-based sen-
tence reordering. In Proceedings of the BabyLM
Challenge. Association for Computational Linguis-
tics (ACL).

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Ellen Breitholtz, Shalom Lappin, Sharid Loaiciga, Niko-
lai Ilinykh, and Simon Dobnik, editors. 2023. Pro-
ceedings of the 2023 CLASP Conference on Learning
with Small Data. Association for Computational Lin-
guistics, Gothenburg, Sweden.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901.

Bastian Bunzeck and Sina Zarrieß. 2023. GPT-wee: Ef-
fective pre-training for downsized language models.
In Proceedings of the BabyLM Challenge. Associa-
tion for Computational Linguistics (ACL).

Margaret F. Carr, Shantanu P. Jadhav, and Loren M.
Frank. 2011. Hippocampal replay in the awake state:
a potential substrate for memory consolidation and
retrieval. Nature Neuroscience, 14(2):147–153.

Lucas Georges Gabriel Charpentier and David Samuel.
2023. Not all layers are equally as important: Every
layer counts BERT. In Proceedings of the BabyLM
Challenge. Association for Computational Linguis-
tics (ACL).

Xuanda Chen and Eva Portelance. 2023. Grammar in-
duction pretraining for language modeling in low
resource contexts. In Proceedings of the BabyLM
Challenge. Association for Computational Linguis-
tics (ACL).

Ziling Cheng, Rahul Aralikatte, Ian Porada, Cesare
Spinoso-Di Piano, and Jackie C. K. Cheung. 2023.
McGill BabyLM shared task submission: The ef-
fects of data formatting and structure biases. In Pro-
ceedings of the BabyLM Challenge. Association for
Computational Linguistics (ACL).

Aryaman Chobey, Oliver Smith, Anzi Wang, and
Grusha Prasad. 2023. Can training neural language

models on a curriculum with developmentally plau-
sible data improve alignment with human reading
behavior? In Proceedings of the BabyLM Challenge.
Association for Computational Linguistics (ACL).

Leshem Choshen, Elad Venezian, Shachar Don-Yehiya,
Noam Slonim, and Yoav Katz. 2022. Where to start?
analyzing the potential value of intermediate models.
CoRR, abs/2211.00107.

Floriana Ciaglia, Massimo Stella, and Casey Kenning-
ton. 2023. Investigating preferential acquisition and
attachment in early word learning through cognitive,
visual and latent multiplex lexical networks. Phys-
ica A: Statistical Mechanics and its Applications,
612:128468.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In Proceedings of the 8th International
Conference on Learning Representations. OpenRe-
view.net.

BNC Consortium. 2007. The British National Corpus,
XML Edition. Oxford Text Archive.

Alejandrina Cristia, Emmanuel Dupoux, Michael Gur-
ven, and Jonathan Stieglitz. 2019. Child-directed
speech is infrequent in a forager-farmer popula-
tion: A time allocation study. Child Development,
90(3):759–773.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognising textual entailment
challenge. In Machine Learning Challenges. Evaluat-
ing Predictive Uncertainty, Visual Object Classifica-
tion, and Recognising Textual Entailment. Springer.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6491–
6506, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Justin DeBenedetto. 2023. Byte-ranked curriculum
learning for BabyLM strict-small shared task 2023.
In Proceedings of the BabyLM Challenge. Associa-
tion for Computational Linguistics (ACL).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Michael Diskin, Alexey Bukhtiyarov, Max Ryabinin,
Lucile Saulnier, Quentin Lhoest, Anton Sinitsin,
Dmitry Popov, Dmitriy Pyrkin, Maxim Kashirin,
Alexander Borzunov, Albert Villanova del Moral,
Denis Mazur, Ilia Kobelev, Yacine Jernite, Thomas

17

https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://aclanthology.org/2023.clasp-1.0
https://aclanthology.org/2023.clasp-1.0
https://aclanthology.org/2023.clasp-1.0
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.nature.com/articles/nn.2732
https://www.nature.com/articles/nn.2732
https://www.nature.com/articles/nn.2732
https://doi.org/10.48550/ARXIV.2211.00107
https://doi.org/10.48550/ARXIV.2211.00107
https://doi.org/https://doi.org/10.1016/j.physa.2023.128468
https://doi.org/https://doi.org/10.1016/j.physa.2023.128468
https://doi.org/https://doi.org/10.1016/j.physa.2023.128468
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
http://hdl.handle.net/20.500.12024/2554
http://hdl.handle.net/20.500.12024/2554
https://doi.org/10.1111/cdev.12974
https://doi.org/10.1111/cdev.12974
https://doi.org/10.1111/cdev.12974
https://link.springer.com/chapter/10.1007/11736790_9
https://link.springer.com/chapter/10.1007/11736790_9
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


Wolf, and Gennady Pekhimenko. 2021. Distributed
deep learning in open collaborations. In Advances in
Neural Information Processing Systems.

Shachar Don-Yehiya, Elad Venezian, Colin Raffel,
Noam Slonim, and Leshem Choshen. 2023. ColD fu-
sion: Collaborative descent for distributed multitask
finetuning. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 788–806, Toronto,
Canada. Association for Computational Linguistics.

Emmanuel Dupoux. 2018. Cognitive science in the
era of artificial intelligence: A roadmap for reverse-
engineering the infant language-learner. Cognition,
173:43–59.

Lukas Edman and Lisa Bylinina. 2023. Too much infor-
mation: Keeping training simple for BabyLMs. In
Proceedings of the BabyLM Challenge. Association
for Computational Linguistics (ACL).

Jeffrey L. Elman. 1990. Finding structure in time. Cog-
nitive Science, 14(2):179–211. Wiley Online Library.

Clayton Fields, Osama Natouf, Andrew McMains,
Catherine Henry, and Casey Kennington. 2023. Tiny
language models enriched with multimodal knowl-
edge from multiplex networks. In Proceedings of the
BabyLM Challenge. Association for Computational
Linguistics (ACL).

Michael C. Frank. 2023. Bridging the data gap between
children and large language models. Trends in Cog-
nitive Sciences.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.

Jon Gauthier, Jennifer Hu, Ethan Wilcox, Peng Qian,
and Roger Levy. 2020. SyntaxGym: An online plat-
form for targeted evaluation of language models. In
Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics: System Demon-
strations, pages 70–76, Online. Association for Com-
putational Linguistics.

Martin Gerlach and Francesc Font-Clos. 2020. A stan-
dardized project gutenberg corpus for statistical anal-
ysis of natural language and quantitative linguistics.
Entropy. An International and Interdisciplinary Jour-
nal of Entropy and Information Studies, 22(1). Num-
ber: 126 tex.pubmedid: 33285901.

Jill Gilkerson, Jeffrey A. Richards, Steven F. Warren, Ju-
dith K. Montgomery, Charles R. Greenwood, D. Kim-
brough Oller, John HL Hansen, and Terrance D. Paul.
2017. Mapping the early language environment using
all-day recordings and automated analysis. American
Journal of Speech-Language Pathology, 26(2):248–
265.

J.J. Godfrey, E.C. Holliman, and J. McDaniel. 1992.
SWITCHBOARD: Telephone speech corpus for re-
search and development. In IEEE International Con-
ference on Acoustics, Speech, and Signal Processing,
volume 1, pages 517–520 vol.1.

Venkata Subrahmanyan Govindarajan, Juan Diego Ro-
driguez, Kaj Bostrom, and Kyle Mahowald. 2023.
Lil-bevo: Explorations of strategies for training lan-
guage models in more humanlike ways. In Proceed-
ings of the BabyLM Challenge. Association for Com-
putational Linguistics (ACL).

John Hale. 2001. A probabilistic Earley parser as a psy-
cholinguistic model. In Second Meeting of the North
American Chapter of the Association for Computa-
tional Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. DeBERTa: Decoding-enhanced
BERT with disentangled attention. In International
Conference on Learning Representations.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2016. The Goldilocks principle: Reading
children’s books with explicit memory representa-
tions. In 4th International Conference on Learning
Representations.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katherine Millican, George van den Driessche, Bog-
dan Damoc, Aurelia Guy, Simon Osindero, Karen
Simonyan, Erich Elsen, Oriol Vinyals, Jack William
Rae, and Laurent Sifre. 2022. An empirical analysis
of compute-optimal large language model training.
In Advances in Neural Information Processing Sys-
tems.

Xudong Hong, Sharid Loáiciga, and Asad B. Sayeed.
2023. A surprisal oracle for active curriculum lan-
guage modeling. In Proceedings of the BabyLM
Challenge. Association for Computational Linguis-
tics (ACL).

Philip A. Huebner, Elior Sulem, Fisher Cynthia, and
Dan Roth. 2021. BabyBERTa: Learning more gram-
mar with small-scale child-directed language. In
Proceedings of the 25th conference on computational
natural language learning, pages 624–646, Online.
Association for Computational Linguistics.

Philip A. Huebner and Jon A. Willits. 2021. Using lexi-
cal context to discover the noun category: Younger
children have it easier. In Kara D. Federmeier and
Lili Sahakyan, editors, The Context of Cognition:
Emerging Perspectives, volume 75 of Psychology of
learning and motivation, pages 279–331. Academic
Press. ISSN: 0079-7421.

Peter Izsak, Moshe Berchansky, and Omer Levy. 2021.
How to train BERT with an academic budget. In Pro-
ceedings of the 2021 conference on empirical meth-

18

https://openreview.net/forum?id=FYHktcK-7v
https://openreview.net/forum?id=FYHktcK-7v
https://doi.org/10.18653/v1/2023.acl-long.46
https://doi.org/10.18653/v1/2023.acl-long.46
https://doi.org/10.18653/v1/2023.acl-long.46
https://doi.org/10.1016/j.cognition.2017.11.008
https://doi.org/10.1016/j.cognition.2017.11.008
https://doi.org/10.1016/j.cognition.2017.11.008
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://doi.org/10.1016/j.tics.2023.08.007
https://doi.org/10.1016/j.tics.2023.08.007
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.18653/v1/2020.acl-demos.10
https://doi.org/10.18653/v1/2020.acl-demos.10
https://doi.org/10.3390/e22010126
https://doi.org/10.3390/e22010126
https://doi.org/10.3390/e22010126
https://pubs.asha.org/doi/10.1044/2016_AJSLP-15-0169
https://pubs.asha.org/doi/10.1044/2016_AJSLP-15-0169
https://doi.org/10.1109/ICASSP.1992.225858
https://doi.org/10.1109/ICASSP.1992.225858
https://aclanthology.org/N01-1021
https://aclanthology.org/N01-1021
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/1511.02301
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=iBBcRUlOAPR
https://doi.org/10.18653/v1/2021.conll-1.49
https://doi.org/10.18653/v1/2021.conll-1.49
https://doi.org/https://doi.org/10.1016/bs.plm.2021.08.002
https://doi.org/https://doi.org/10.1016/bs.plm.2021.08.002
https://doi.org/https://doi.org/10.1016/bs.plm.2021.08.002
https://doi.org/10.18653/v1/2021.emnlp-main.831


ods in natural language processing, pages 10644–
10652, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Jaap Jumelet, Michael Hanna, Marianne
De Heer Kloots, Anna Langedijk, Charlotte
Pouw, and Oskar van der Wal. 2023. ChapGTP,
ILLC’s attempt at raising a BabyLM: Improving
data efficiency by automatic task formation. In
Proceedings of the BabyLM Challenge. Association
for Computational Linguistics (ACL).

Jean Kaddour. 2023. The minipile challenge for data-
efficient language models. CoRR, abs/2304.08442.

Nikhil Kandpal, Brian Lester, Mohammed Muqeeth,
Anisha Mascarenhas, Monty Evans, Vishal Baskaran,
Tenghao Huang, Haokun Liu, and Colin Raffel. 2023.
Git-theta: A git extension for collaborative devel-
opment of machine learning models. 202:15708–
15719.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. CoRR,
abs/2001.08361.

Frank Keller. 2010. Cognitively plausible models of hu-
man language processing. In Proceedings of the ACL
2010 Conference Short Papers, pages 60–67, Upp-
sala, Sweden. Association for Computational Lin-
guistics.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-
shia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel,
Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit
Bansal, Christopher Potts, and Adina Williams. 2021.
Dynabench: Rethinking benchmarking in NLP. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4110–4124, Online. Association for Computa-
tional Linguistics.

Hannah Kirk, Bertie Vidgen, Paul Rottger, Tristan
Thrush, and Scott Hale. 2022. Hatemoji: A test suite
and adversarially-generated dataset for benchmark-
ing and detecting emoji-based hate. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1352–1368,
Seattle, United States. Association for Computational
Linguistics.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike
Lewis, Tim Althoff, Noah A. Smith, and Luke Zettle-
moyer. 2022. Branch-train-merge: Embarrassingly
parallel training of expert language models. In First
Workshop on Interpolation Regularizers and Beyond
at NeurIPS 2022.

Vladislav Lialin, Namrata Shivagunde, Sherin Muck-
atira, and Anna Rumshisky. 2023. Stack more layers
differently: High-rank training through low-rank up-
dates. CoRR, abs/2307.05695.

Tal Linzen. 2019. What can linguistics and deep learn-
ing contribute to each other? Response to Pater. Lan-
guage, 95(1):e99–e108.

Tal Linzen. 2020. How can we accelerate progress
towards human-like linguistic generalization? In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5210–
5217, Online. Association for Computational Lin-
guistics.

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting large parallel corpora from
movie and TV subtitles. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation, pages 923–929, Portorož, Slovenia.
European Language Resources Association (ELRA).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Brian MacWhinney. 2000. The CHILDES project: The
database, volume 2. Psychology Press.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Richard Diehl Martinez, Hope McGovern, Zebulon
Goriely, Christopher Davis, Andrew Caines, Paula
Buttery, and Lisa Beinborn. 2023. Climb – curricu-
lum learning for infant-inspired model building. In
Proceedings of the BabyLM Challenge. Association
for Computational Linguistics (ACL).

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

Mark Mazumder, Colby R. Banbury, Xiaozhe Yao, Bo-
jan Karlas, William Gaviria Rojas, Sudnya Freder-
ick Diamos, Greg Diamos, Lynn He, Douwe Kiela,
David Jurado, David Kanter, Rafael Mosquera, Juan
Ciro, Lora Aroyo, Bilge Acun, Sabri Eyuboglu, Ami-
rata Ghorbani, Emmett D. Goodman, Tariq Kane,
Christine R. Kirkpatrick, Tzu-Sheng Kuo, Jonas
Mueller, Tristan Thrush, Joaquin Vanschoren, Mar-
garet Warren, Adina Williams, Serena Yeung, New-
sha Ardalani, Praveen K. Paritosh, Ce Zhang, James
Zou, Carole-Jean Wu, Cody Coleman, Andrew Y. Ng,

19

https://doi.org/10.48550/ARXIV.2304.08442
https://doi.org/10.48550/ARXIV.2304.08442
https://proceedings.mlr.press/v202/kandpal23b.html
https://proceedings.mlr.press/v202/kandpal23b.html
https://arxiv.org/pdf/2001.08361.pdf
https://aclanthology.org/P10-2012
https://aclanthology.org/P10-2012
https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.18653/v1/2022.naacl-main.97
https://doi.org/10.18653/v1/2022.naacl-main.97
https://doi.org/10.18653/v1/2022.naacl-main.97
https://openreview.net/forum?id=SQgVgE2Sq4
https://openreview.net/forum?id=SQgVgE2Sq4
https://doi.org/10.48550/ARXIV.2307.05695
https://doi.org/10.48550/ARXIV.2307.05695
https://doi.org/10.48550/ARXIV.2307.05695
https://arxiv.org/abs/1809.04179
https://arxiv.org/abs/1809.04179
https://doi.org/10.18653/v1/2020.acl-main.465
https://doi.org/10.18653/v1/2020.acl-main.465
https://aclanthology.org/L16-1147
https://aclanthology.org/L16-1147
https://aclanthology.org/L16-1147
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://childes.talkbank.org/access/Eng-NA/MacWhinney.html
https://childes.talkbank.org/access/Eng-NA/MacWhinney.html
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151


Peter Mattson, and Vijay Janapa Reddi. 2022. Data-
perf: Benchmarks for data-centric AI development.
CoRR, abs/2207.10062.

R. Thomas McCoy, Robert Frank, and Tal Linzen. 2020.
Does syntax need to grow on trees? sources of hier-
archical inductive bias in sequence-to-sequence net-
works. Transactions of the Association for Computa-
tional Linguistics, 8:125–140.

Ian R. McKenzie, Alexander Lyzhov, Michael Martin
Pieler, Alicia Parrish, Aaron Mueller, Ameya Prabhu,
Euan McLean, Xudong Shen, Joe Cavanagh, An-
drew George Gritsevskiy, Derik Kauffman, Aaron T.
Kirtland, Zhengping Zhou, Yuhui Zhang, Sicong
Huang, Daniel Wurgaft, Max Weiss, Alexis Ross,
Gabriel Recchia, Alisa Liu, Jiacheng Liu, Tom Tseng,
Tomasz Korbak, Najoung Kim, Samuel R. Bowman,
and Ethan Perez. 2023. Inverse scaling: When big-
ger isn’t better. Transactions on Machine Learning
Research.

Maggie Mi. 2023. Mmi01 at the BabyLM challenge:
Linguistically motivated curriculum learning for pre-
training in low-resource settings. In Proceedings of
the BabyLM Challenge. Association for Computa-
tional Linguistics (ACL).

Kanishka Misra. 2022. minicons: Enabling flexible be-
havioral and representational analyses of transformer
language models. CoRR, abs/2203.13112.

Omar Momen, David Arps, and Laura Kallmeyer. 2023.
Increasing the performance of cognitively inspired
data-efficient language models via implicit structure
building. In Proceedings of the BabyLM Challenge.
Association for Computational Linguistics (ACL).

Aaron Mueller, Robert Frank, Tal Linzen, Luheng Wang,
and Sebastian Schuster. 2022. Coloring the blank
slate: Pre-training imparts a hierarchical inductive
bias to sequence-to-sequence models. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 1352–1368, Dublin, Ireland. Association
for Computational Linguistics.

Aaron Mueller and Tal Linzen. 2023. How to plant trees
in language models: Data and architectural effects
on the emergence of syntactic inductive biases. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 11237–11252, Toronto, Canada.
Association for Computational Linguistics.

Nikita Nangia and Samuel R. Bowman. 2019. Human
vs. muppet: A conservative estimate of human perfor-
mance on the GLUE benchmark. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4566–4575, Florence,
Italy. Association for Computational Linguistics.

Toan Q. Nguyen and Julian Salazar. 2019. Transformers
without tears: Improving the normalization of self-
attention. In Proceedings of the 16th International
Conference on Spoken Language Translation, Hong
Kong. Association for Computational Linguistics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4885–4901, Online. Association for Computa-
tional Linguistics.

Miyu Oba, Akari Haga, Akiyo Fukatsu, and Yohei Os-
eki. 2023. CoNLL shared task BabyLM challenge:
Curriculum learning based on sentence complexity
approximating language acquisition. In Proceedings
of the BabyLM Challenge. Association for Computa-
tional Linguistics (ACL).

Mattia Opper, J. Morrison, and N. Siddharth. 2023. On
the effect of curriculum learning with developmental
data for grammar acquisition. In Proceedings of the
BabyLM Challenge. Association for Computational
Linguistics (ACL).

Ludovica Pannitto and Aurélie Herbelot. 2020. Recur-
rent babbling: evaluating the acquisition of gram-
mar from limited input data. In Proceedings of
the 24th Conference on Computational Natural Lan-
guage Learning, pages 165–176, Online. Association
for Computational Linguistics.

Isabel Papadimitriou and Dan Jurafsky. 2020. Learn-
ing Music Helps You Read: Using transfer to study
linguistic structure in language models. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6829–6839, Online. Association for Computational
Linguistics.

Andy Perfors, Joshua B. Tenenbaum, and Terry Regier.
2011. The learnability of abstract syntactic principles.
Cognition, 118(3):306–338.

Jonas Pfeiffer, Sebastian Ruder, Ivan Vulic, and
Edoardo Maria Ponti. 2023. Modular deep learning.
CoRR, abs/2302.11529.

Steven Piantadosi. 2023. Modern language models
refute chomsky’s approach to language. Lingbuzz.
Preprint.

Eva Portelance, Yuguang Duan, Michael C. Frank, and
Gary Lupyan. 2023. Predicting age of acquisition for
children’s early vocabulary in five languages using
language model surprisal. Cognitive Science.

Jacob Portes, Alexander R. Trott, Sam Havens, Daniel
King, Abhinav Venigalla, Moin Nadeem, Nikhil Sar-
dana, Daya Khudia, and Jonathan Frankle. 2023. Mo-
saicBERT: How to train BERT with a lunch money
budget. In Workshop on Efficient Systems for Foun-
dation Models at ICML2023.

Christopher Potts, Zhengxuan Wu, Atticus Geiger, and
Douwe Kiela. 2021. DynaSent: A dynamic bench-
mark for sentiment analysis. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint

20

https://doi.org/10.48550/ARXIV.2207.10062
https://doi.org/10.48550/ARXIV.2207.10062
https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.1162/tacl_a_00304
https://doi.org/10.1162/tacl_a_00304
https://openreview.net/forum?id=DwgRm72GQF
https://openreview.net/forum?id=DwgRm72GQF
https://doi.org/10.48550/ARXIV.2203.13112
https://doi.org/10.48550/ARXIV.2203.13112
https://doi.org/10.48550/ARXIV.2203.13112
https://doi.org/10.18653/v1/2022.findings-acl.106
https://doi.org/10.18653/v1/2022.findings-acl.106
https://doi.org/10.18653/v1/2022.findings-acl.106
https://doi.org/10.18653/v1/2023.acl-long.629
https://doi.org/10.18653/v1/2023.acl-long.629
https://doi.org/10.18653/v1/2023.acl-long.629
https://doi.org/10.18653/v1/P19-1449
https://doi.org/10.18653/v1/P19-1449
https://doi.org/10.18653/v1/P19-1449
https://aclanthology.org/2019.iwslt-1.17
https://aclanthology.org/2019.iwslt-1.17
https://aclanthology.org/2019.iwslt-1.17
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.conll-1.13
https://doi.org/10.18653/v1/2020.conll-1.13
https://doi.org/10.18653/v1/2020.conll-1.13
https://doi.org/10.18653/v1/2020.emnlp-main.554
https://doi.org/10.18653/v1/2020.emnlp-main.554
https://doi.org/10.18653/v1/2020.emnlp-main.554
https://www.sciencedirect.com/science/article/pii/S0010027710002593
https://doi.org/10.48550/ARXIV.2302.11529
https://github.com/evaportelance/multilingual-aoa-prediction
https://github.com/evaportelance/multilingual-aoa-prediction
https://github.com/evaportelance/multilingual-aoa-prediction
https://openreview.net/forum?id=WH1S0gonzR
https://openreview.net/forum?id=WH1S0gonzR
https://openreview.net/forum?id=WH1S0gonzR
https://doi.org/10.18653/v1/2021.acl-long.186
https://doi.org/10.18653/v1/2021.acl-long.186


Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2388–2404, Online. As-
sociation for Computational Linguistics.

Ofir Press, Noah A. Smith, and Mike Lewis. 2021.
Shortformer: Better language modeling using shorter
inputs. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 5493–5505, Online. Association for Computa-
tional Linguistics.

Irina Proskurina, Guillaume Metzler, and Julien Vel-
cin. 2023. Mini minds: Exploring Bebeshka and
Zlata baby models. In Proceedings of the BabyLM
Challenge. Association for Computational Linguis-
tics (ACL).

Colin Raffel. 2023. Building machine learning models
like open source software. Communications of the
ACM, 66(2):38–40.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Florencia Reali and Morten H. Christiansen. 2005. Un-
covering the richness of the stimulus: Structure de-
pendence and indirect statistical evidence. Cognitive
Science, 29(6):1007–1028.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Ka-
trin Kirchhoff. 2020. Masked language model scor-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2699–2712, Online. Association for Computational
Linguistics.

David Samuel. 2023. Mean BERTs make erratic lan-
guage teachers: the effectiveness of latent bootstrap-
ping in low-resource settings. In Proceedings of the
BabyLM Challenge. Association for Computational
Linguistics (ACL).

David Samuel, Andrey Kutuzov, Lilja Øvrelid, and Erik
Velldal. 2023. Trained on 100 million words and still
in shape: BERT meets British National Corpus. In
Findings of the Association for Computational Lin-
guistics: EACL 2023, pages 1954–1974, Dubrovnik,
Croatia. Association for Computational Linguistics.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilic, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, Jonathan Tow, Alexander M. Rush,
Stella Biderman, Albert Webson, Pawan Sasanka Am-
manamanchi, Thomas Wang, Benoît Sagot, Niklas
Muennighoff, Albert Villanova del Moral, Olatunji
Ruwase, Rachel Bawden, Stas Bekman, Angelina
McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile
Saulnier, Samson Tan, Pedro Ortiz Suarez, Victor

Sanh, Hugo Laurençon, Yacine Jernite, Julien Lau-
nay, Margaret Mitchell, Colin Raffel, and et al. 2022.
BLOOM: A 176b-parameter open-access multilin-
gual language model. CoRR, abs/2211.05100.

Noam Shazeer. 2020. GLU variants improve trans-
former. CoRR, abs/2002.05202.

Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald
Metzler, and Aaron Courville. 2021. StructFormer:
Joint unsupervised induction of dependency and con-
stituency structure from masked language modeling.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
7196–7209, Online. Association for Computational
Linguistics.

Sasha Sheng, Amanpreet Singh, Vedanuj Goswami,
Jose Magana, Tristan Thrush, Wojciech Galuba, Devi
Parikh, and Douwe Kiela. 2021. Human-adversarial
visual question answering. In Advances in Neural
Information Processing Systems, volume 34, pages
20346–20359.

Sam Shleifer, Jason Weston, and Myle Ott. 2021. Norm-
former: Improved transformer pretraining with extra
normalization. CoRR, abs/2110.09456.

Massimo Stella, Nicole M. Beckage, and Markus Brede.
2017. Multiplex lexical networks reveal patterns in
early word acquisition in children. Scientific Reports,
7(1):46730.

Julius Steuer, Marius Mosbach, and Dietrich Klakow.
2023. GPT-like models are bad babies: A closer
look into the relationship of linguistic competence
and psycholinguistic measures. In Proceedings of the
BabyLM Challenge. Association for Computational
Linguistics (ACL).

Andreas Stolcke, Klaus Ries, Noah Coccaro, Eliza-
beth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul
Taylor, Rachel Martin, Carol Van Ess-Dykema, and
Marie Meteer. 2000. Dialogue act modeling for au-
tomatic tagging and recognition of conversational
speech. Computational Linguistics, 26(3):339–374.

Antti Tarvainen and Harri Valpola. 2017. Mean teachers
are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning re-
sults. In Advances in Neural Information Processing
Systems, volume 30.

Lukas Thoma, Ivonne Weyers, Erion Çano, Stefan
Schweter, Jutta L. Mueller, and Benjamin Roth.
2023. Cogmemlm: Human-like memory mecha-
nisms improve performance and cognitive plausi-
bility of LLMs. In Proceedings of the BabyLM
Challenge. Association for Computational Linguis-
tics (ACL).

Inar Timiryasov and Jean-Loup Tastet. 2023. Baby
Llama: knowledge distillation from an ensemble

21

https://doi.org/10.18653/v1/2021.acl-long.427
https://doi.org/10.18653/v1/2021.acl-long.427
https://cacm.acm.org/magazines/2023/2/268952-building-machine-learning-models-like-open-source-software/fulltext
https://cacm.acm.org/magazines/2023/2/268952-building-machine-learning-models-like-open-source-software/fulltext
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1207/s15516709cog0000_28
https://doi.org/10.1207/s15516709cog0000_28
https://doi.org/10.1207/s15516709cog0000_28
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2023.findings-eacl.146
https://doi.org/10.18653/v1/2023.findings-eacl.146
https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.48550/arXiv.2211.05100
http://arxiv.org/abs/2002.05202
http://arxiv.org/abs/2002.05202
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://openreview.net/pdf?id=vsCCDVdTAx
https://openreview.net/pdf?id=vsCCDVdTAx
http://arxiv.org/abs/2110.09456
http://arxiv.org/abs/2110.09456
http://arxiv.org/abs/2110.09456
https://doi.org/10.1038/srep46730
https://doi.org/10.1038/srep46730
https://aclanthology.org/J00-3003
https://aclanthology.org/J00-3003
https://aclanthology.org/J00-3003
https://proceedings.neurips.cc/paper_files/paper/2017/file/68053af2923e00204c3ca7c6a3150cf7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68053af2923e00204c3ca7c6a3150cf7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68053af2923e00204c3ca7c6a3150cf7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68053af2923e00204c3ca7c6a3150cf7-Paper.pdf


of teachers trained on a small dataset with no per-
formance penalty. In Proceedings of the BabyLM
Challenge. Association for Computational Linguis-
tics (ACL).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Marten van Schijndel, Aaron Mueller, and Tal Linzen.
2019. Quantity doesn’t buy quality syntax with neu-
ral language models. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5831–5837, Hong Kong, China. As-
sociation for Computational Linguistics.

Bertie Vidgen, Tristan Thrush, Zeerak Waseem, and
Douwe Kiela. 2021. Learning from the worst: Dy-
namically generated datasets to improve online hate
detection. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1667–1682, Online. Association for Computa-
tional Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. SuperGLUE: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems, volume 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Alex Warstadt. 2022. Artificial Neural Networks as
Models of Human Language Acquisition. PhD The-
sis, New York University.

Alex Warstadt and Samuel R. Bowman. 2022. What
artificial neural networks can tell us about human lan-
guage acquisition. In Algebraic Structures in Natural
Language, pages 17–60. CRC Press.

Alex Warstadt, Leshem Choshen, Aaron Mueller, Adina
Williams, Ethan Wilcox, and Chengxu Zhuang. 2023.
Call for papers - the babylm challenge: Sample-
efficient pretraining on a developmentally plausible
corpus. CoRR, abs/2301.11796.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020a. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the
Association for Computational Linguistics, 8:377–
392.

Alex Warstadt, Yian Zhang, Xiaocheng Li, Haokun Liu,
and Samuel R. Bowman. 2020b. Learning which
features matter: RoBERTa acquires a preference for
linguistic generalizations (eventually). In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
217–235, Online. Association for Computational Lin-
guistics.

Alex Warstadt, Yian Zhang, Xiaocheng Li, Haokun Liu,
and Samuel R. Bowman. 2020c. Learning which
features matter: RoBERTa acquires a preference for
linguistic generalizations (eventually). In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
217–235, Online. Association for Computational Lin-
guistics.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent abilities of large language models. Transactions
on Machine Learning Research.

Guillaume Wenzek, Vishrav Chaudhary, Angela Fan,
Sahir Gomez, Naman Goyal, Somya Jain, Douwe
Kiela, Tristan Thrush, and Francisco Guzmán. 2021.
Findings of the WMT 2021 shared task on large-scale
multilingual machine translation. In Proceedings of
the Sixth Conference on Machine Translation, pages
89–99, Online. Association for Computational Lin-
guistics.

Alexander Wettig, Tianyu Gao, Zexuan Zhong, and
Danqi Chen. 2023. Should you mask 15% in masked
language modeling? In Proceedings of the 17th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 2985–
3000, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

22

https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.18653/v1/D19-1592
https://doi.org/10.18653/v1/D19-1592
https://doi.org/10.18653/v1/2021.acl-long.132
https://doi.org/10.18653/v1/2021.acl-long.132
https://doi.org/10.18653/v1/2021.acl-long.132
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://www.proquest.com/?parentSessionId=upB67EJc1DOj1W%2BQB5ke82dKZWTvWZ1xIK34hqR6yNY%3D
https://www.proquest.com/?parentSessionId=upB67EJc1DOj1W%2BQB5ke82dKZWTvWZ1xIK34hqR6yNY%3D
https://arxiv.org/abs/2208.07998
https://arxiv.org/abs/2208.07998
https://arxiv.org/abs/2208.07998
https://doi.org/10.48550/ARXIV.2301.11796
https://doi.org/10.48550/ARXIV.2301.11796
https://doi.org/10.48550/ARXIV.2301.11796
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://aclanthology.org/2021.wmt-1.2
https://aclanthology.org/2021.wmt-1.2
https://doi.org/10.18653/v1/2023.eacl-main.217
https://doi.org/10.18653/v1/2023.eacl-main.217


Ethan Gotlieb Wilcox, Richard Futrell, and Roger Levy.
2023. Using computational models to test syntactic
learnability. Linguistic Inquiry, pages 1–44.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Lukas Wolf, Eghbal A. Hosseini, Greta Tuckute, Kle-
men Kotar, Alex Warstadt, Ethan Wilcox, and
Tamar I Regev. 2023. WhisBERT: Multimodal text-
audio language modeling on 100m words. In Pro-
ceedings of the BabyLM Challenge. Association for
Computational Linguistics (ACL).

Chenghao Xiao, G. Thomas Hudson, and Noura
Al Moubayed. 2023. Towards more human-like lan-
guage models based on contextualizer pretraining
strategy. In Proceedings of the BabyLM Challenge.
Association for Computational Linguistics (ACL).

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raf-
fel, and Mohit Bansal. 2023. Resolving interference
when merging models. CoRR, abs/2306.01708.

Yahan Yang, Elior Sulem, Insup Lee, and Dan Roth.
2023. Penn & BGU BabyBERTa+ for strict-small
BabyLM challenge. In Proceedings of the BabyLM
Challenge. Association for Computational Linguis-
tics (ACL).

Aditya Yedetore, Tal Linzen, Robert Frank, and
R. Thomas McCoy. 2023. How poor is the stim-
ulus? evaluating hierarchical generalization in neu-
ral networks trained on child-directed speech. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 9370–9393, Toronto, Canada.
Association for Computational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022.
OPT: Open pre-trained transformer language models.
CoRR, abs/2205.01068.

Yian Zhang, Alex Warstadt, Xiaocheng Li, and
Samuel R. Bowman. 2021. When do you need bil-
lions of words of pretraining data? In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1112–1125, Online.
Association for Computational Linguistics.

Zheyu Zhang, Han Yang, Bolei Ma, David Rügamer,
and Ercong Nie. 2023. Baby’s CoThought: Lever-
aging large language models for enhanced reasoning
in compact models. In Proceedings of the BabyLM
Challenge. Association for Computational Linguis-
tics (ACL).

Xingmeng Zhao, Tongnian Wang, Sheri Osborn, and
Anthony Rios. 2023. BabyStories: Can reinforce-
ment learning teach baby language models to write
better stories? In Proceedings of the BabyLM Chal-
lenge. Association for Computational Linguistics
(ACL).
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A Data Source Descriptions

CHILDES. The Child Language Data Exchange System (CHILDES; MacWhinney, 2000) is a mul-
tilingual database compiling transcriptions from numerous researchers of adult–child interactions in a
range of environments, from structured laboratory activities to the home. Huebner and Willits (2021)
further process CHILDES, selecting only interactions with American English-speaking children ages 0–6,
removing all child utterances, and tokenizing the data. The resulting dataset18 contains about 5M words.

British National Corpus. The BNC (Consortium, 2007) is a 100M word multi-domain corpus of British
English from the second half of the 20th century. We select only the dialogue portion of the corpus,
totaling about 10M words.

Children’s Book Test. CBT is a compilation of over a hundred children’s books from Project Gutenberg
by Hill et al. (2016). The dataset was originally released with a set of questions for testing named entity
prediction, which we do not include in the pretraining data.

Children’s Stories Text Corpus. This dataset consists of manually selected children’s stories from
Project Gutenberg. It was compiled by Bensaid et al. (2021) for the development of a story generation
system.

Project Gutenberg. The Standardized Project Gutenberg Corpus (Gerlach and Font-Clos, 2020) is a
curated and preprocessed selection of over 50k literary books in the public domain from Project Gutenberg
totaling over 3B tokens.19 This distribution comes with extensive metadata that allows us to filter texts by
language and date.

OpenSubtitles. This dataset (Lison and Tiedemann, 2016) is a compilation of publicly available subtitles
from TV and movies on a third-party website.20 We use only the English portion.

QED. The QCRI Educational Domain Corpus (formerly QCRI AMARA Corpus; Abdelali et al., 2014)
consists of volunteer-written subtitles for educational videos. We use only the English portion.

Wikipedia. Wikipedia is a volunteer-authored encyclopedia hosted by the Wikimedia Foundation. We
use only the English portion.

Simple English Wikipedia. Simple English is classified as a separate language in Wikipedia, thus the
texts here are disjoint from those in English Wikipedia. The texts use shorter sentences and high-frequency
vocabulary and avoid idioms.

Switchboard Corpus. The Switchboard Corpus (Godfrey et al., 1992) is a collection of transcribed
telephone conversations between pairs of strangers. We accessed the text through the Switchboard Dialog
Act Corpus (Stolcke et al., 2000).

18https://github.com/phueb/BabyBERTa/blob/master/data/corpora/aochildes.txt
19https://gutenberg.org/
20http://opensubtitles.org/
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B Evaluation Data Details

As described in Section 5.2, we filter out evaluation examples that do not have lexical overlap with the
Strict-Small pretraining corpus. Here, we present the number of training and test examples for each
evaluation task after filtering. This allows us to partially control for the confound of the language style
of most NLP tasks not aligning well with the pretraining corpus that we constructed. However, we
only control for lexical content: other factors, such as sentence length, syntactic complexity, and overall
linguistic style, remain distinct between our corpus and these tasks. In the future, it would be helpful for
researchers to focus on designing tasks on which both children and language models can be reasonably
evaluated.

Note, too, that our filtering procedure means that we cannot directly compare results obtained from
the BabyLM Challenge to prior evaluations using the full datasets. We use a subset of the training and
evaluation examples, and therefore can only compare between models evaluated on our version of these
tasks.

Task |Train| |Test|

B
L

iM
P

Anaphor Agreement – 1956
Argument Structure – 8248
Binding – 6738
Control Raising – 4526
Determiner-Noun Agreement – 7542
Ellipsis – 1732
Filler-Gap – 6426
Irregular Forms – 1965
Island Effects – 2676
NPI Licensing – 6586
Quantifiers – 3882
Subject-Verb Agreement – 5535

B
L

iM
P

Su
pp

le
m

en
t

Hypernym – 860
Question-Answer Congruence (easy) – 64
Question-Answer Congruence (tricky) – 165
Subject-Auxiliary Inversion – 4099
Turn-taking – 280

(S
up

er
)G

L
U

E

CoLA 8164 1019
SST-2 50528 508
MRPC 1579 177
QQP 243498 26889
MNLI 259780 6562
MNLI-mismatched 259780 6284
QNLI 43917 2286
RTE 858 99
BoolQ 2072 723
MultiRC 4637 913
WSC 487 83

M
SG

S

Control Raising (Control) 6570 6731
Lexical Content (Control) 9086 9100
Main Verb (Control) 8166 8249
Relative Position (Control) 9068 9046
Syntactic Category (Control) 8930 8824
Control Raising–Lexical Content 6816 6910
Control Raising–Relative Token Position 8166 8167
Main Verb–Lexical Content 7306 7378
Main Verb–Relative Token Position 8177 8059
Syntactic Category–Lexical Content 8181 7597
Syntactic Category–Relative Position 9159 8298

Table 4: Number of training and test examples for each BabyLM evaluation task. We show the number of examples
after filtering based on the pre-training corpus vocabulary (Section 5.2).
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C Examples from the BLiMP Supplement

Contrast name Acceptable sentence Unacceptable sentence

BASE_AND_HYPONYM/ HYPERNYM If he is growing herbs, then he
is growing plants.

If he is growing herbs, then he is
growing basil.

BASE_NEG_AND_HYPERNYM_NEG/
CONVERSE

If he isn’t growing herbs, that
means he isn’t growing basil.

If he isn’t growing basil, that
means he isn’t growing herbs.

BASE_NEG_AND_HYPERNYM_NEG/
HYPONYM_NEG

If he isn’t growing herbs, that
means he isn’t growing basil.

If he isn’t growing herbs, that
means he isn’t growing plants.

HYPERNYM_AND_BASE/ CONVERSE If he is growing basil, that
means he is growing herbs.

If he is growing herbs, that means
he is growing basil.

HYPERNYM_AND_BASE/ OTHER If he is growing basil, then he is
growing herbs

If he is growing basil, then he is
growing flowers.

HYPERNYM_AND_OTHER_NEG/
BASE_NEG

He is growing basil, therefore
he isn’t growing flowers.

He is growing basil, therefore he
isn’t growing herbs.

Table 5: Representative examples from the HYPERNYMS test suite of the BLiMP supplement.

Type Length Acceptable dialogue Unacceptable dialogue

single short David: Should you quit?\n Sarah: No,
I shouldn’t.

David: Should she quit?\n Sarah: No, I
shouldn’t.

single long Did they try to finish it on time or
not?\n No, they didn’t.

Did we try to finish it on time or not?\n
No, they didn’t.

double short A: Did we say that you finished?\n B:
Yes, you did.

A: Did you say that you finished?\n B:
Yes, you did.

double long “Did you say that you will go some-
where after the movie is over?" he
asked.\n “No, I didn’t," she said.

“Did you say that you will go some-
where after the movie is over?" he
asked.\n “No, you didn’t," she said.

Table 6: Representative examples from the TURN-TAKING test suite of the BLiMP supplement.

Contrast name Dif. Acceptable dialogue Unacceptable dialogue

ANIMATE VS. INANIMATE easy A: What did you purchase?\n B: Bread. A: What did you purchase?\n B: David.
INANIMATE VS. ANIMATE easy “Who played the piano?" he asked. “A

teacher played the piano," she said.
“Who played the piano?" he asked. “A

car played the piano," she said.
LOC VS. NP easy David: Where did you put it?\n Sarah:

Behind the sofa.
David: Where did you put it?\n Sarah:

Eggs.
ANIMATE VS. INANIMATE tricky David: Who mopped?\n Sarah: A doctor. David: Who mopped?\n Sarah: The tiles.
LOC VS. NP tricky A: Where were you reading?\n B: By the

lake.
A: Where were you reading?\n B: An es-

say.
TEMP VS. NP tricky When did you eat?\n Several minutes ago. When did you eat?\n Dinner.
EXPL VS. NP tricky “Why were you reading?" he asked. “For

fun," she said.
“Why were you reading?" he asked. “A

book," she said.
NUM VS. NP tricky A: How many do you teach?\n B: A few. A: How many do you teach?\n B: History.
MANNER VS. NP tricky David: How did you vacuum?\n Sarah: I

vacuumed quickly.
David: How did you vacuum?\n Sarah: I

vacuumed the patio.

Table 7: Representative examples from the QUESTION-ANSWER CONGRUENCE test suite of the BLiMP supplement.
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D Subtask Results

Here, we present a more detailed breakdown of results by subtask. Each task has a subsection containing
a table where results are described, as well as a textual description containing and overview of the main
takeaways for each task.

D.1 MSGS

Matthews correlation coefficients on MSGS (Table 8) were largely negative, indicating that language
models trained at this scale tend to prefer surface features over linguistic features in ambiguous contexts.
However, certain models demonstrated a much stronger preference for linguistic features in specific
contexts: ELC-BERT showed high positive scores on average (sometimes significantly higher than Llama
2), as did Contextualizer. This shows us that architectural modifications can significantly improve scores,
as can princpled approaches to curriculum learning.

In general, comparable models trained on the Strict corpus have higher MCCs than those trained on
the Strict-Small corpus, but not always. This suggests that, while more pretraining data generally lead to
stronger syntactic inductive biases, these preferences may depend on the features being compared, and
that this will not always be the case depending on the architecture used.
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Llama 2 (Touvron et al., 2023) -0.24 0.93 0.23 -0.77 -0.96 -0.19 -0.74
RoBERTa-base (Liu et al., 2019) -0.37 0.46 -0.58 -0.95 -0.94 0.36 -0.57
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ELC-BERT (Charpentier and Samuel, 2023) 0.10 -0.51 -0.46 0.71 0.97 0.46 -0.53
Boot-BERT (Samuel, 2023) -0.22 0.37 -0.77 -0.99 0.96 -0.34 -0.58
McGill (Cheng et al., 2023) -0.35 0.65 -0.70 -0.99 -0.73 0.17 -0.49
Best Baseline (OPT-125M) -0.39 0.35 -0.70 -0.76 -0.99 0.34 -0.60
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l ELC-BERT (Charpentier and Samuel, 2023) -0.01 0.02 -0.71 0.95 0.50 -0.26 -0.59
MLSM (Thoma et al., 2023) -0.37 0.31 -0.56 -0.99 -0.49 -0.03 -0.44
McGill (Cheng et al., 2023) -0.60 -0.68 -0.37 -1.00 -0.79 -0.35 -0.42
Best Baseline (OPT-125M) -0.45 0.00 -0.70 -0.72 -0.77 0.13 -0.68
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Contextualizer (Xiao et al., 2023) 0.24 0.88 0.71 -0.32 0.30 0.21 -0.35
McGill (Cheng et al., 2023) -0.75 -0.56 -0.97 -0.99 -0.86 -0.66 -0.46
BabyStories (Zhao et al., 2023) -0.71 -0.24 -0.99 -0.99 -0.99 -0.23 -0.78

Table 8: MSGS results for each ambiguous subtask for the top performing models (by overall score) from each
track, as well as baselines and skylines. MCC (i.e., linguistic bias score) results presented, truncated to two decimal
places.

D.2 BLiMP

Accuracies on BLiMP (Table ??) show that bigger models do not, as a rule, perform better on targeted
grammatical evaluation. RoBERTa is the best-performing skyline model, despite that Llama 2 has
orders-of-magnitude more parameters and was trained on significantly more data. Among the BabyLM
submissions, Boot-BERT generally performs best, with ELC-BERT and McGill’s submission also per-
forming well in general on the Strict and Strict-Small tracks. ELC-BERT and Boot-BERT are both
based on LTG-BERT (Samuel et al., 2023), suggesting that this architecture is a good starting point for
pretraining on developmentally plausible amounts of linguistic input.

Analyzing specific test suites, we see that unsurprisingly that models in all tracks typically perform
best on agreement phenomena, though we find surprisingly high variability on ANAPHOR AGREEMENT. ?
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reported that ISLAND EFFECTS and QUANTIFIERS were the two most difficult test cases. We find that the
best BabyLM submissions actually outperform Llama by a wide margin on ISLAND EFFECTS. However,
QUANTIFIERS, on which most models achieve very consistent and mediocre results, is the one test suite
on which the Llama 2 skyline is stronger.

D.3 BLiMP Supplement

Accuracies on the BLiMP supplement tasks (Table 9) demonstrate similar trends as those in the BLiMP
tasks. As these individual test suites are new to this task, these fine-grained results are of particular interest.
We find that the HYPERNYM test suite is clearly beyond the ability of language models. All models
including the skylines perform very close to chance, suggesting either that their preferences are virtually
random guessing, or they show systematic biases that essentially cancel out due to counterbalancing in
the test data. However, we hesitate to conclude that these models have no knowledge of lexical entailment
relations for two reasons: First, these test sentences are somewhat unnatural logical statements which
are out-of-domain for the models, and second, there is less reason a priori to think that logically invalid
statements have lower probability than valid statements.

Among the QUESTION–ANSWER CONGRUENCE test suites, we do indeed find that the “tricky” exam-
ples are far more difficult than the “easy” ones. The “tricky” set is highly discriminative, due probably
to its adversarial nature, telling us that most models are easily fooled by locally coherent distractor
answers and pay too little attention to cross-sentential long-distance dependency between a wh-word and
a congruent answer. Only the top-performing models in the Strict track score better than chance, and the
RoBERTa skyline outperforms all models by a wide margin.

The tests for SUBJECT–AUXILIARY INVERSION are relatively easy, with the best models reaching
near-perfect accuracy. TURN TAKING is highly discriminative, with some models performing at or near
chance, while the best model achieves accuracy over 90%. Again, ELC-BERT outperforms the skylines.
This may be due in part to the fact that transcribed dialogue is a relatively large proportion of the BabyLM
training data, compared to the training data for typical pretrained language models.
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Llama 2 0.74 0.50 0.85 0.63 0.91 0.83
RoBERTa 0.75 0.48 0.87 0.72 0.98 0.73
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ELC-BERT 0.76 0.47 0.85 0.63 0.94 0.92
Boot-BERT 0.72 0.45 0.75 0.58 0.96 0.86
McGill 0.71 0.46 0.84 0.58 0.82 0.83
OPT 0.67 0.46 0.76 0.47 0.85 0.82
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l ELC-BERT 0.67 0.48 0.68 0.44 0.88 0.83
MLSM 0.57 0.47 0.70 0.33 0.82 0.52
McGill 0.58 0.49 0.73 0.35 0.77 0.57
OPT 0.52 0.50 0.54 0.31 0.70 0.57

L
oo

se

Contextualizer 0.63 0.47 0.73 0.42 0.91 0.62
McGill 0.56 0.49 0.64 0.29 0.80 0.61
BabyStories 0.64 0.49 0.71 0.50 0.79 0.73

Table 9: BLiMP Supplement accuracies for each subtask for the top performing systems (by overall score), best
baseline, and skylines. For each subtask, we mark the best performing system for each track, and the best non-
skyline and best performing system overall.
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D.4 GLUE/SuperGLUE

Scores on (Super)GLUE tasks (Table 10) show that ELC-BERT is generally the best-performing system
in both the Strict and Strict-Small tracks, and that Boot-BERT is also highly effective in the Strict track.
Contextualizer also performs well. This largely confirms findings from the BLiMP and BLiMP Supplement
tasks: LTG-BERT is an effective architecture for pretraining on smaller corpora, and curriculum learning
can improve performance over a naïve corpus ordering.
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Llama 2 0.83 0.63 0.95 0.87 0.81 0.85 0.87 0.89 0.81 0.85 0.86 0.75
RoBERTa 0.78 0.62 0.93 0.88 0.87 0.86 0.85 0.92 0.61 0.76 0.68 0.61
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ELC-BERT 0.78 0.59 0.92 0.90 0.88 0.84 0.83 0.89 0.64 0.73 0.72 0.62
Boot-BERT 0.78 0.57 0.92 0.89 0.88 0.85 0.84 0.91 0.65 0.72 0.73 0.61
McGill 0.72 0.49 0.89 0.83 0.86 0.79 0.79 0.84 0.53 0.66 0.65 0.61
OPT 0.70 0.36 0.88 0.82 0.83 0.76 0.77 0.83 0.63 0.66 0.60 0.54
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l ELC-BERT 0.73 0.47 0.86 0.87 0.86 0.78 0.79 0.84 0.60 0.69 0.68 0.62
MLSM 0.70 0.41 0.90 0.78 0.85 0.75 0.76 0.82 0.59 0.66 0.58 0.61
McGill 0.69 0.41 0.87 0.79 0.81 0.73 0.74 0.79 0.54 0.66 0.62 0.61
OPT 0.62 0.15 0.84 0.74 0.78 0.67 0.69 0.65 0.55 0.65 0.51 0.59
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Contextualizer 0.72 0.56 0.90 0.83 0.85 0.77 0.78 0.83 0.53 0.68 0.64 0.59
McGill 0.68 0.37 0.88 0.77 0.83 0.73 0.75 0.78 0.49 0.67 0.60 0.61
BabyStories 0.60 0.00 0.84 0.82 0.66 0.59 0.64 0.79 0.53 0.67 0.46 0.61

Table 10: (Super)GLUE results for each subtask for the top performing systems (by overall score), best baseline,
and skylines. For each subtask, we mark the best performing system for each track, and the best non-skyline and
best performing system overall.

E Age of Acquisition Prediction Results

Here, we present scores, separated by track, for each model that evaluated on the age of acquisition (AoA)
prediction task (Table 11). We also compare to the best-performing baseline within each track, as in
Table 2.

Almost all submissions which evaluated on the AoA prediction task were in the Strict-Small track.
Here, no model achieved closer predictions than the OPT-125M baseline, though many got very close. In
the Strict track, BabyStories achieved very close scores to the OPT-125M baseline.

Model Mean average deviation ↓
Overall Nouns Predicates Function Words

St
ri

ct BabyStories (GPT2-Large-PPO) (Zhao et al., 2023) 2.05 1.98 1.82 2.63
Best Baseline (OPT-125M) 2.04 1.97 1.83 2.61

St
ri

ct
-S

m
al

l

GPT-Wee (16k (cu.)) (Bunzeck and Zarrieß, 2023) 2.06 2.00 1.83 2.58
Bebeshka (Proskurina et al., 2023) 2.06 1.98 1.84 2.66
Zlata (Proskurina et al., 2023) 2.07 1.99 1.83 2.67
Too Much Information (Edman and Bylinina, 2023) 2.05 1.99 1.85 2.58
Mmi01 (RARITY) (Mi, 2023) 2.05 1.97 1.85 2.64
Baby Llama (Timiryasov and Tastet, 2023) 2.06 1.99 1.84 2.63
Lil-Bevo-X (Govindarajan et al., 2023) 2.05 1.99 1.85 2.59
Best Baseline (OPT-125M) 2.03 1.98 1.81 2.57
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Table 11: Mean average deviation (MAD) in months across cross-validation folds when predicting the age of
acquisition of words. Lower MAD scores are better. We present all systems that evaluated on AoA prediction, as
well as the baseline model with the best scores per track. We bold the highest-scoring system for each task within
each track.

F Summary of Each Submission

GPT-wee (Bunzeck and Zarrieß, 2023). This paper tests various approaches to reordering the examples
based on word and sentence statistics. The motivation comes from usage-based linguistics and the idea
that frequent lexical items, such as phrases or common groups of words, are learned early (rather than
words, for instance). They also find that training more—up to 10 epochs—helps, and that a medium-sized
model might be as good as larger models.

Tiny Language Models with Multiplex Networks (Fields et al., 2023). This approach leverages
multimodal data (including text/visual data and sensorimotor data) as part of the embeddings to an
ELECTRA language model. The proposed models are very small (as few as 7M parameters) and perform
well on BLiMP. For reference, the baseline models contain 125M to 220M parameters.

Mini Minds (Proskurina et al., 2023). This submission explores how scaling down models (in terms
of number of parameters) can help in low-data settings. The authors conduct a parameter search for
scaled-down versions of GPT-2 and RoBERTa, and find that optimal models have around a 2-to-1 ratio
of attention heads to layers. They train two models and find that they perform about as well as larger
parameter count models on GLUE. Furthermore, the authors test their models on an ethical reasoning
benchmark and find that the small models perform about as well as models which have about ten times
the parameters.

Grammar induction pretraining (Chen and Portelance, 2023). This submission introduces syntactic
bias into the static token embeddings of an LM. An unsupervised grammar induction system is trained on
a 1-million word subset of the Strict-Small corpus, and the resulting static token embeddings are used
to initialize the LM token embeddings. Although the results improve over the BabyLM Strict-Small
baseline, similar improvements are observed with a custom baseline model using randomly initialized
token embeddings. Thus, there is no evidence that the grammar induction step had a positive impact on
LM results.

ChapGTP (Jumelet et al., 2023). This work explores how targeted data augmentation can improve
the performance of masked language models in the Strict-Small track. The authors used regex patterns
to extract common phrases from the GLUE tasks and then used these patterns to generate follow-up
questions that served as additional training data. They also found that increasing the training epochs up to
200 epochs continues to help performance.

BabyBerta+ (Yang et al., 2023). The submission replicates the BabyBERTa training setup (Huebner
et al., 2021) and tests its ability after pretraining on the Strict-Small corpus. They find that a small model
trained on many epochs keeps improving and becomes better than baseline models in grammatical aspects,
but not downstream tasks.

Keeping Training Simple for BabyLMs (Edman and Bylinina, 2023). This paper proposes a variety
of complexity metrics for reordering the BabyLM Strict-Small data from simple to complex. Compared
to no curricula and reversed curricula, the proposed curricula do not result in consistent performance
improvements on the BabyLM evaluation tasks. However, reducing the context length to 32 (from the
baselines’ 128) results in significant and consistent performance improvements.

Can Training Neural Language Models on a Curriculum with Developmentally Plausible Data
Improve Alignment with Human Reading Behavior? (Chobey et al., 2023). This paper explores
surprisal-based curricula for pretraining on the Strict-Small dataset of the BabyLM challenge. The authors
use an ensemble of LSTM “teacher” models to rank sentences by average surprisal, on which a final OPT
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model is trained. Results are mixed. The authors find that their model does not outperform a random
baseline. However, when this model is further trained on the randomly-ordered training dataset after
training on the curriculum-ordered data, it does beat the baseline. As an additional analysis, the authors
investigate the ability of their model to predict human reading times for syntactically complex sentences,
finding that the model is not particularly good at the task, but that it is about equivalent to baselines which
are trained on much larger datasets.

CLIMB (Martinez et al., 2023). This submission presents a thorough comparison of different ap-
proaches to curriculum learning in the Strict-Small setting. They consider three main criteria for cur-
riculum design: the size of the input vocabulary, the difficulty of the training sample, and the size of the
output space for MLM prediction. They conduct experiments exploring eight different curricula sorted
into these three main approaches. While there are many small differences in performance among these
settings, curricula provide no consistent improvements over more naive training algorithms.

Acquiring Linguistic Knowledge from Multimodal Input (Amariucai and Warstadt, 2023). The
authors explored whether vision-language co-training helps the learning of linguistic knowledge. They
trained models on Wiki texts with images using the state-of-the-art multi-modality model (FLAVA).
After varying the amount of training data and how many images are used, the authors found that visual
input only provides a slight improvement on grammar benchmarks for 10M-word training, but not for
100M-word training.

GPT-like Models are Bad Babies (Steuer et al., 2023). This paper trains a decoder-only model, trying
different hyperparameters, including reordering the training data by different orders (based on cues which
did not improve over regular shuffling), different sizes, layer widths, among other features. The main
focus of the paper is to test if models that perform better on BabyLM evaluation tasks are also better
at modeling reading difficulty in humans. Surprisingly, models performing better on BabyLM tasks
performed less well in modeling reading difficulty.

Baby’s CoThought (Zhang et al., 2023). This system leverages a large language model, GPT-3.5-Turbo,
to reformat semantically unrelated sentences into cohesive paragraphs. In low-data settings, this approach
can form better training examples for language models; the proposed approach results in improvements
across BLiMP tasks, though performance is not significantly different on (Super)GLUE or MSGS. Note
that the LLM is trained on far more than 100M words, so this submission technically does not qualify
under any track. However, this method does improve the sample efficiency of the student model, and it
aids our understanding of what types of data are best for supervising smaller language models.

ToddlerBERTa (Çağatan, 2023). This paper conducts a thorough hyperparameter investigation of the
BabyBERTa model, exploring different options for model sizes and training algorithms. The author finds
that larger models tend to perform better.

CogMemLM (Thoma et al., 2023). This work explores an approach to word segmentation and tok-
enization that is intended to model vocabulary growth during learning. A vocabulary is cumulatively built
using a cognitively-inspired model of word segmentation, in which strings are split into chunks based on
an activation weight which changes throughout training depending on how often the chunk is observed
together. While the approach achieves consistent improvements over the BabyLM Strict baseline results,
it is not clear whether these improvements are due to the segmentation scheme or other hyperparameter
modifications.

BabyStories (Zhao et al., 2023). This paper investigates how reinforcement learning from human
feedback (RLHF) improves the performance of causal language models pretrained on small scales of
datasets. The authors report that models finetuned by RLHF on short stories yield better performance on
language understanding benchmarks, though this improvement is only observed on larger models. Their
findings suggest that benefiting from RLHF requires a large number of trainable parameters.

Byte-ranked Curriculum Learning (DeBenedetto, 2023). This paper proposes a curriculum learning
approach for reordering data based on non-linguistic metrics. Specifically, they choose the order in which
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datasets are shown to the model starting from the minimal amount of bytes per sentence and going up.
This happens to also start from spoken data and follow with text data later. The paper also shows that a
larger model as well as more epochs improves the results.

McGill BabyLM Submission (Cheng et al., 2023). This paper finds that changes to the data format
have large positive impacts. Specifically, not using sequence packing, using sentences and not documents
as examples, not truncating, and reducing maximum sequence length are each highly effective. By
contrast, adding supervision from POS tags and using unsupervised syntactic induction have negligible
impact.

Mean BERTS make erratic language teachers (Samuel, 2023). This submission presents Boot-BERT,
a latent bootstrapping approach to language modeling in low resource settings. In the latent bootstrapping
set-up, a student model is trained to produce predictions over words as well as to match contextualized
embeddings from a teacher model. In turn, the teacher’s embeddings are obtained via a moving average
of the student’s. The authors use LTG-BERT (Samuel et al., 2023) as an encoder backbone, as well as for
a baseline.21 They find that their Boot-BERT outperforms LTG-BERT for some of the BabyLM tasks,
including GLUE for both the Strict and Strict-Small tracks.

Every Layer Counts BERT (ELC-BERT) (Charpentier and Samuel, 2023). This submission takes
as its starting point the very effective LTG-BERT architecture from Samuel et al. (2023) and modifies
it such that the input to each layer is a weighted sum of the outputs of all previous layers, where the
weights can be learned but also biased by initialization. Several variations are explored, including equal
initial weights, and initial weights biased towards the previous layer. Results on BabyLM evaluations
do not strongly suggest that any one variant is clearly better than the LTG-BERT baseline, though all
models perform significantly better than the BabyLM RoBERTa baseline. Additionally, inspection of the
learned weights for combining previous layer outputs suggests that the most important outputs are from
the previous few layers and the static embedding layer.

WhisBERT (Wolf et al., 2023). In this submission, the authors explore whether text-and-audio co-
training helps model performance on BLiMP tasks. After pretraining a multi-modal model (FLAVA) on
100M words with or without their corresponding word-aligned speech, they find that the speech-augmented
model outperforms the text-only model on 11 out of 17 grammatical tasks.

Surprisal-based active curriculum learning (Hong et al., 2023). This submission combines curriculum
and active learning to schedule training order for models. The authors use n-gram surprisals to determine
the sentences with the highest surprisal and then train their models on structurally similar examples to
these high-surprisal sentences. Models with active curriculum learning show noticeable performance
gains in (Super)GLUE but underperform the models without such learning on MSGS.

Linguistically Motivated Curriculum Learning (Mi, 2023). This submission tests 6 linguistic metrics
of complexity as curriculum learning approaches. On the Strict-Small track, this approach succeeds in
finding improvements over training on the whole corpus in a random order.

Baby Llama (Timiryasov and Tastet, 2023). This submission proposes a knowledge distillation
approach with two teacher models (a 300M-parameter Llama model and 700M-parameter GPT-2 model)
trained on the Strict-Small corpus. These are distilled into a 58M-parameter Llama model called Baby
Llama. The proposed model outperforms the BabyLM baselines, the teacher LMs, and a 58M-parameter
Llama model trained from scratch on the Strict-Small data without distillation.

Curriculum learning based on sentence complexity approximating language acquisition (Oba et al.,
2023). This submission assesses the impact of curriculum learning based on sentence complexity
within the context of the Strict-Small task. The authors order training data based on three sentence-
level complexity metrics: number of tokens, number of constituents, and max depth of the sentences’

21As described in §7.2, LTG-BERT makes multiple modifications to the standard Transformer encoder architecture: additional
layer normalization (Shleifer et al., 2021), GEGLU feed-forward modules (Shazeer, 2020), disentangled attention following
DeBERTa (He et al., 2021), and scaled weight initialization following (Nguyen and Salazar, 2019).
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dependency parse. They find that the dependency-based ranking leads to better models, however, all
curriculum-based models underperform a random baseline.

Masked Latent Semantic Modeling (Berend, 2023b). This paper adopts a method from Berend
(2023a) called Masked Latent Semantic Modeling (MLSM) in which the target output distribution can be
transformed from a one-hot distribution over the vocabulary into a sparse distribution over latent “semantic
property” vectors. Then, the same kind of student-teacher optimization as in knowledge distillation is
applied using this modified output distribution instead of the full vocabulary. MLSM on its own is found
to lead to degradation in BLiMP performance, although combining MLSM with typical MLM training in
a multitask setting leads to similar performance as MLM training alone.

Lil-Bevo (Govindarajan et al., 2023). This paper offered submissions to both Strict-Small and Strict
tracks and used three design choices for LM training: (i) initially pretraining on music data, following
work on transfer learning (Papadimitriou and Jurafsky, 2020), which suggested that musical structure
may form a reasonable basis upon which to learn language structure; (ii) subsequently using a training
curriculum starting from shorter sequences (128) before moving to longer ones (512), following insights
from Press et al. (2021), and (iii) masking critical tokens necessary to perform some of the BLiMP subtasks
(e.g., masking “not” for NPI-licensing). Taking final results into consideration alongside ablations, this
team found that sequence length matters, music pretraining may help a little, and targeted MLM training
seems to help (but only for some BLiMP subtasks, including NPI licensing and Argument Structure).

Contextualizer (Xiao et al., 2023). This paper sorts the corpora in the training dataset loosely based on
their age of acquisition and reading difficulty. The authors then introduce techniques to begin and end
the training with padding-separated datasets sorted from easy to hard, while the middle of the training
employs a noisier padding and sorting strategy to improve the model’s robustness. The final model
performs similarly to its counterpart pretrained with thousands of times more data.

Implicit Structure Building (Momen et al., 2023). This submission introduces an unsupervised
hierarchical bias into the transformer. The approach shows that such structural bias with StructFormer
improves over the classic MLM Transformer approach. Improvements are not consistent across scenarios:
the model excels in single-sentence or syntactic evaluation tasks, but less so in semantic tasks with
multi-sentence inputs.

Pretraining LLMs using human-like development data (Bhardwaj et al., 2023). This submission
trains RoBERTa, DistilBERT, and GPT-2 models on the Strict and Strict-Small data. They find that
training DistilBERT for 60 epochs is better than 20 epochs. They also claim that the performance of the
baseline RoBERTa model may not be replicable across random initializations and that hyperparameter
searches should be more thorough to hedge against such outlier models.

On the Effect of Curriculum Learning with Developmental Data for Grammar Acquisition (Opper
et al., 2023). This submission explores the effect of curriculum learning, using BabyBERTa models,
on the Strict-Small data track. The authors contrast three types of curriculum learning: one that orders
input by word frequency; one by sequence entropy; and one by increasing context length. They find that
neither of these methods produces results above a baseline random presentation. In a series of follow-up
experiments, the authors verify that model performance is linked to the amount of exposure to transcribed
speech data and suggest that speech data is a good foundation for curriculum learning.

Difficulty-based Sentence Reordering (Borazjanizadeh, 2023). This study explores two broad ap-
proaches to dataset preprocessing to improve LM training in the 10M-word setting: data reordering
(curriculum learning) and data cleaning. Results show that reordering a subset of the data by sentence dif-
ficulty may lead to marginal improvements, as long the local coherence of the samples is not damaged too
greatly. However, the clearest improvements come from cleaning the data of incoherent, ungrammatical,
or non-linguistic strings.
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G Results Broken Down by GLUE / BLiMP Subtask
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Figure 7: Submission Results by GLUE subtask: Points show the performance of each submission. Gray bars
show the across-submission average in each category.
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Figure 8: Submission Results by BLiMP subtask: Points show the performance of each submission. Gray bars
show the across-submission average in each category.
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Abstract

In this model report, we present an alterna-
tive approach to improving language models
through scaling up their architectures and train-
ing data. In contrast, we train significantly
smaller GPT-wee language models for the
CMCL and CoNLL shared task: the BabyLM
challenge. Drawing inspiration from usage-
based linguistics, specifically focusing on lan-
guage acquisition factors such as frequency,
word length, and lexical frames, we also con-
duct tests employing curriculum learning tech-
niques. Our findings demonstrate that even very
small models can achieve considerable profi-
ciency in standard evaluation tasks, performing
as good as or even better than much larger base-
line models, both on zero-shot evaluation and
tasks that require further fine-tuning. Our naïve
curriculum approach, however, does not show
any straightforward improvements, except for
certain, very specific tasks. Overall, the results
remain inconclusive and suggest interaction ef-
fects between model architecture, data make-up
and learning processes that warrant further in-
spection.

1 Introduction

In recent years, language model-based NLP has
witnessed remarkable advancements, surpassing
numerous benchmarks and continuously achiev-
ing new breakthroughs through increasingly larger
models. However, such large language models
come with certain difficulties. As their size ex-
pands, they demand substantial amounts of com-
puting power and training data, while also retain-
ing a certain degree of opaqueness and consum-
ing immense amounts of energy (Bender et al.,
2021). Besides, their overblown and complex
architectures hinder interpretability, while com-
monly used training data mostly comes from
non-naturalistic sources such as book corpora,
Wikipedia crawls, and web pages. Addressing
these concerns, the BabyLM challenge (Warstadt

et al., 2023b) emerges as an experimental test bed
for “smaller” or more optimized (and possibly more
cognitively plausible) models. By drastically reduc-
ing the allowed amount of training data compared
to state-of-the-art models, and by sourcing it from
more varied domains, it forces language model en-
gineers to come up with new solutions that are not
(only) grounded in increasing parameters, train-
ing data, and computing power. We respond to
this challenge by exploring language models with
drastically reduced GPT-2 architectures (Radford
et al., 2019) and the value of curriculum learning
(Bengio et al., 2009; Hacohen and Weinshall, 2019)
in training them, inspired by findings from usage-
based linguistics on the nature of child-directed
and child speech. Among the submissions to the
BabyLM challenge, our GPT-Wee models stand
out in the sense that we did not implement intricate
and highly complex learning strategies, but rather
examined how much simple architectures can be
reduced in size while still providing considerable
performance. Our models feature some of the low-
est, if not the lowest number of parameters among
the submissions.

Elman (1993) discusses how learning processes
(e.g. language acquisition) are tied to cognitive
maturation, and how during these processes, in-
creasingly complex human neural networks are con-
fronted with increasingly complex input. With re-
spect to the concrete nature of this linguistic input,
usage-based research has shown that its vocabulary
is compact and mainly concerned with children’s
immediate surroundings (Saxton, 2017). It fea-
tures a high amount of fragmentary utterances and
frequent, utterance-initial lexical frames (Cameron-
Faulkner et al., 2003). In turn, children’s earliest
utterances also revolve around lexically highly spe-
cific pivot schemas and item-based constructions
(Braine and Bowerman, 1976; Tomasello, 2000;
Diessel, 2013a), which only gradually expand to
more complex utterances. Due to the linguistically
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more diverse nature of training data in machine
learning – in the case of the present challenge it
is, for example, composed of realistic input from
CHILDES (MacWhinney, 2000) and other sources
like Wikipedia dumps or Open Subtitles – the com-
mon approach of providing it to the training al-
gorithm in random order does not mirror a devel-
opmentally plausible input trajectory. To better
understand the value of these two factors, the grow-
ing intricacy of natural neural networks and the
growing diversity of input, we (1) explore artificial
neural networks of increasing/decreasing complex-
ity, and (2) experiment with ordering the training
data according to its complexity and (with regard
to child-directed speech) prototypicality.

In sum, we find that a reduction of key parame-
ters, e.g. the number of hidden layers and attention
heads or the vocabulary size, does not immediately
materialize in detrimental effects. Only when they
are drastically reduced, the performance is affected
more strongly. Moreover, we find that the cur-
riculum approach does not always increase perfor-
mance, but indeed shows effects on the training and
evaluation losses that warrant further inspection.
To the shared task, we submit our medium-sized
model, as we observe the best size–performance
trade-offs for these variants. We submit the cur-
riculum variant (with a vocabulary size of 8k) of
this member of our model family, which we call
GPT-wee1 in honor of their wee architectures.

2 Language models and developmental
plausibility

Cognitive maturation in the form of an increasing
number of neurons (nodes) and synapses (connec-
tions) in human neural networks accompanies de-
velopmental processes, and thus also language ac-
quisition (Elman, 1993). The learning mechanisms
of current language models do not mirror this de-
velopment. Their architecture is defined before the
training process, and then the nodes’ and connec-
tions’ weights and biases are randomly initialized
and finally optimized, often based on randomly or-
dered input examples and influenced by the choice
of specific loss functions. Interestingly, alternative
approaches to ANNs, like dynamically growing
networks or weights with gradient values, which
were proposed during the 1980s and 1990s (for ex-
ample in Elman et al., 1996, 73), never achieved

1Our code can be found at https://github.com/
clause-bielefeld/gpt-wee

widespread adoption in NLP (although they exist,
with examples like NEAT (Stanley and Miikku-
lainen, 2002) having been shown to be useful for a
variety of tasks). The best proxy for investigating
the effects of neuronal growth are smaller models
like BabyBERTa (Huebner et al., 2021) or TinySto-
ries (Eldan and Li, 2023). They show that for small
data settings (in these cases further restrained by
linguistic simplicity through child-directed speech
or Simple English), much smaller architectures
trained for shorter periods of time can still exhibit
similar or even improved performance compared
to larger models.

Apart from model architecture, also the concrete
learning process (viz. the training goal) in cur-
rent language models requires theoretical scrutiny.
Whether it uses prediction in context, next word
prediction or next sentence prediction, learning
always involve a form of prediction. While pre-
diction effects in language are well documented
(for an overview, see Ryskin et al., 2020), it re-
mains an open question whether the current flavor
of prediction in language model training aligns
with its cognitive counterpart. While the unidi-
rectional prediction goal in autoregressive models
(like those from the GPT-family) appears cogni-
tively more plausible than bidirectional prediction,
as employed in e.g. BERT-like models – after all,
humans can only predict from what they have al-
ready processed, and not from the following (not
yet perceived) contexts – other modalities of lan-
guage acquisition like reading often involve explicit
instruction with bi-directional prediction (e.g. fill-
in-the-blank exercises).

3 Child-directed speech is tailored to
children’s needs

Child-directed speech differs from regular adult-
adult conversation in several crucial aspects. It
should be noted that its specific features2 are not
exclusive to child-directed speech, but rather pre-
ferred in this specific register. As such, child-
directed speech is a gradient concept, where certain
utterances stick out as more prototypical instances.
We use the following four features of child-directed
speech to define a prototypicality ranking that we
employ in our curriculum approach.

2The following section only reiterates the features directly
relevant to the current modelling task. For a more comprehen-
sive overview across all layers of linguistic analysis, Saxton
(2017) and Clark (2009, 32–41) should be consulted.
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The first feature is word length. Saxton (2017)
describes how the child-directed vocabulary is
mostly restricted to short words grounded in the
direct spatial and temporal proximity of the child.
Concrete objects are favoured over abstract con-
cepts. As Zipf (1935) already noted, word length is
inversely proportional to word frequency. Further-
more, longer words have a higher informational
content (Piantadosi et al., 2011) and are thus not
ideal for the – still developing – linguistic and cog-
nitive capabilities of children.

Secondly, word frequency itself, although it is a
contested notion (Saxton, 2009), plays an important
role in language acquisition. Apart from its role in
the input, it is also reflected in children’s earliest ut-
terances, which are highly item-based and revolve
around so-called pivot schemas (Braine and Bow-
erman, 1976; Tomasello, 2000; Diessel, 2013a),
for example more [NP], where more as the static
lexical element is combined with a slot for a noun
phrase. Ambridge et al. (2015) show evidence for
a direct relationship between the age of acquisition
of linguistic forms and their frequency in the in-
put. Importantly, the Zipfian distribution of lexical
elements in child-directed speech is stable across
the development span of children as well as across
typologically diverse languages (Lavi-Rotbain and
Arnon, 2023). From these empirical findings, we
deduce that child-directed utterances with more fre-
quent lexical items (across the entirety of the input)
can also be seen as more prototypical.

Thirdly, moving from the lexical to the syntactic
level, Cameron-Faulkner et al. (2003) show that
the majority of child-directed speech does not con-
sist of canonical subject-predicate sentences, but
rather of questions, imperatives and an enormous
amount of fragments without a regular predicate.
For different input types, these distributions vary
considerably. Children’s books, for example, fea-
ture a much higher amount of subject-predicate and
complex sentences (with two or more lexical verbs)
than ordinary speech (Cameron-Faulkner and No-
ble, 2013). Because the everyday child-directed in-
put (e.g. in toyplay or meal sessions) contains more
fragments compared to these specialised kinds of
input, we conclude that shorter utterances are also
more prototypical for child-directed speech.

Finally, Cameron-Faulkner et al. (2003) also
show that the majority of child-directed utterances
begin with what they call “lexical frames” – highly
frequent utterance-initial, mostly two- or three-

word, lexical sequences which are stable across
development and different caregivers. These spe-
cific frames are thought to facilitate the acquisi-
tion of item-based constructions, which then later
gradually emerge into a complete mental grammar.
From this, we conclude that child-directed utter-
ances beginning with highly frequent frames, here
measured in trigrams, are also more prototypical.

As Geeraerts (1989) notes, prototype theory is
prototypical in itself and not a monolithic frame-
work. For the sake of the present analysis, we
define the overall prototypicality of an utterance
as the shared centrality along all axes of the men-
tioned prototype criteria – in concrete terms this
means that we combine the utterance ranks to de-
termine a final rank for each utterance.

4 Curriculum learning

Curriculum learning is an approach to machine
learning where “the examples are not randomly pre-
sented but organized in a meaningful order which
illustrates gradually more concepts, and gradually
more complex ones” (Bengio et al., 2009, 41).
They propose two advantages: less training time
(as the learner does not waste time on predicting
noisy or hard examples too early), and an orienta-
tion into “better areas of the training space” – local
minima during optimization.

This approach has been proven effective across
a variety of tasks, for example in vision and lan-
guage (Zhang et al., 2021) or reinforcement learn-
ing (Narvekar et al., 2020), but it remains question-
able under which circumstances considerable ad-
vantages emerge. Wu et al. (2021) show that for es-
tablished benchmarks, the advantages are marginal
to non-existent. In contrast, the benefits are the
most pronounced for problems with noisy training
data. Child-directed speech, with its high amount
of fragmentary utterances, can also be considered
somewhat noisy input which, in conclusion, might
benefit from a curriculum approach.

Importantly, our flavor of curriculum learning
implements usage-based and cognitive principles
as the source of the concrete curriculum ordering,
and no engineering-based metrics, pacing functions
or other kinds of transfer learning, e.g. those with
teacher networks that determine the examples’ dif-
ficulty (as in Hacohen and Weinshall, 2019). Due
to the a priori nature of these aspects, we employ a
vanilla approach to curriculum learning (Soviany
et al., 2022), meaning that we only order the exam-

37



Small Medium Large
Vocabulary size 4k 8k 16k
Hidden layers 2 2 4
Attention heads 2 2 4
Embedding size 64 128 256
Context size 64 128 128
Parameters 0.42M 1.55M 7.52M

Table 1: Model parameters

ples once and then provide them to the training al-
gorithm in this static order, to maintain comparabil-
ity with equivalent no-curriculum models. Interest-
ingly, the BabyBERTa experiments implemented a
somewhat comparable functionality. They showed
that, in their own grammatical test suite, models
benefit from this scaffolding, i.e. first training on
child-directed speech and only later on more com-
plex registers and non-dialogue input data.

5 Implementation

5.1 Training

As training data, we used the babylm_10M data
set from the strict-small submission track for
the BabyLM challenge. It consists of a mixture
of child-directed and adult-directed speech, e.g.
from CHILDES (MacWhinney, 2000), as well as
written language, e.g. from Wikipedia. The exact
composition of the corpus is described in Warstadt
et al. (2023a). For evaluation during the training
process, we used the babylm_test3 data set.

We trained models of three different sizes, each
once with and once without curriculum learning.
Table 1 shows the different parameter configura-
tions4. The training process was implemented in
the huggingface transformers library (Wolf et al.,
2020). As already mentioned, we decided on a
GPT2 architecture (Radford et al., 2019) to ac-
count for the sequential nature of language. A
BPE tokenizer was trained with a vocabulary size
of 4k/8k/16k subword tokens. Before tokenization,
all textual input was normalized in terms of capital-
ization and eventual diacritics. For the curriculum
models, the pre-ordered examples were dynami-
cally loaded in unshuffled batches during training
time, which preserved the calculated order based

3A dev data set was also provided, but due to their equiva-
lent size it the choice between did not affect the outcome of
the training process.

4From this point onwards, we will denote the models by
the vocabulary size of their tokenizer.

on the prototypicality measures. We supplied the
models with training batches of size 32. Regard-
ing training hyperparameters, we used the cosine
learning rate scheduler with a learning rate if 5e-4,
weight decay of 0.1, 1k warm-up steps and 8 gra-
dient accumulation steps. All models were trained
for exactly 10 epochs in the non-curriculum setting
and roughly 10 epochs in the curriculum setting,
where we could not set the exact number of epochs
due to the dynamic data loading. The models were
evaluated after each training epoch. After those
10 epochs, the losses mostly stabilized. We did
not conduct any kind of extensive hyperparameter
search. Instead, we only used the default configura-
tions for GPT-2 training, including dropout proba-
bilities of 0.1 and layer normalization. By doing so,
we tried to stay as close as possible to the vanilla
configuration, which allows us to better assess the
effects of smaller architectures in isolation.

The models were trained on a GPU worksta-
tion equipped with an Intel Core i7-4770 CPU
(3.40GHz), 32GB of RAM and an NVIDIA
GeForce GTX 1080 Ti GPU. Due to the small num-
ber of parameters, training times varied between
3–4 hours for the smallest models to 20h for the
largest models.

5.2 Sentence scoring

To order the curriculum input sentences, we de-
termined four different scores based on the afore-
mentioned prototypicality criteria of child-directed
speech. For each utterance/sentence in the training
data (delimited by sentence-final punctuation or
line breaks, dependening on the corpus file), we
calculated the following:

• the average word length of a sequence, mea-
sured by the mean number of characters for
all tokens in a sequence

• the average word frequency of a sequence,
measured by taking the mean of the individual
token frequencies across the whole training
data

• the utterance length, measured as the number
of lexical tokens in the sequence

• the frame frequency, calculated as the
amount of times that the three utterance-initial
tokens occur in that configuration through the
training data
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Mean (SD)
Frame frequency 188.76 (917.04)
Utterance length 8.01 (9.21)
Mean word length 4.28 (1.37)
Mean word frequency 55153.93 (42877.18)

Table 2: Distribution of scoring variables

We operationalized the frame frequency as ex-
actly three utterance-initial tokens because this
number provides a good trade-off between the
open-ended nature of sentences (and their long-tail
distribution of final lexical items) and the number
of fixed lexical items that certain syntactical con-
structions are associated with.

For each value, we calculated the respective rank
of the utterance across all utterances. The final
“prototypicality rank” for each utterance was cal-
culated by taking the sum of these four ranks and
then ranking by this sum.

Mean values and standard deviations for the four
criteria are reported in table 2. Especially for the
frame frequency and the utterance length, the dis-
tributions are heavily skewed and indicate long-tail
distributions. The mean word length of approxi-
mately 4 with a standard deviation of 1.34 is to be
expected, whereas the distribution of the sentences’
mean word frequency also appears to be heavily
skewed. As Lavi-Rotbain and Arnon (2023) show
how pervasive Zipfian distributions are on a lexical
level, it is not surprising that other properties of
language, e.g. lexical frames, follow similar laws.

6 Results

6.1 Training

We evaluated the models after every 5k training
steps during the approximately 40k training steps,
returning 8 data points for training and evaluation
loss. Their development is reported in appendix A
(figures 1, 2 and 3). Across all models, the eval-
uation loss for the curriculum learning is initially
much higher than the other losses, whereas the
evaluation loss for the normal, randomized learn-
ing is the lowest. This is not surprising, however,
as the evaluation data was not re-ordered and thus
many linguistic features present in it were not yet
processed by the curriculum models during earlier
training steps. The regular training losses share a
very similar development across all model sizes.
Between the model sizes, differences are more pro-

nounced in the later stages of training. Noticeably,
the smallest model seems to converge the earliest,
while the largest model might have benefited from
even further training. Furthermore, the curriculum
evaluation loss stays much higher for the larger
model, whereas it converges in similar dimensions
of the training losses for the smaller models. As
such, both an effect of the curriculum learning (al-
beit not strictly positive) and an interaction between
model size and (non-)curriculum learning can be
reported.

6.2 Zero-shot evaluation with BLiMP

We tested our models with the evaluation suite
supplied by the BabyLM challenge (Gao et al.,
2022; Warstadt et al., 2023a), which included zero-
shot evaluation tasks as well as tasks requiring
additional fine-tuning. The zero-shot tasks are
taken from the BLiMP evaluation suite (Warstadt
et al., 2020a), which consists of minimal accept-
able/unacceptable pairs of sentences across a wide
variety of linguistic phenomena. To evaluate mod-
els, these sentences are scored by the models for
their likelihood. A model is said to have acquired
grammatical knowledge of a specific phenomenon
if it consistently scores the acceptable sentences
higher.

The results for the BLiMP tasks are shown in Ta-
bles 3 and 4. When comparing our own GPT-Wee
models, we find that there is no straightforward
effect of model size on task performance. For the
majority of tasks, the performance increases with
model size, whereas some tasks (e.g. hypernym,
island effects) show light inverse scaling behavior.
On most tasks, the effect of curriculum learning
is small and rather mixed (positive or negative),
when compared to the respective baseline (same
model size, without curriculum). Overall, model
size has a larger effect than curriculum learning.
In a few task-model combinations, though, cur-
riculum learning has a very strong positive effect
(16k model/anaphor agreement, 8k model/irregular
forms, 16kmodel /quantifiers) and in one case a
strong negative effect(8k/NPI). Thus, if at all, it
is rather the medium-sized or larger models than
the small models which seem to benefit from the
curriculum. For the quantifiers task, for example,
the curriculum model with a 16k vocabulary out-
performs all other models by approx. 18%.

Compared to the baseline results5, we find that

5Taken from https://github.com/babylm/
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anaphor
agree-
ment:

argument
struc-
ture:

binding: control
raising:

determiner
noun
agree-
ment:

ellipsis: filler
gap:

irregular
forms:

island ef-
fects:

4k 63.50 60.11 61.26 60.78 65.34 32.56 64.11 68.65 47.80
4k (cu.) 57.98 57.86 63.97 60.78 64.58 35.45 66.06 70.03 43.05
8k 71.06 64.69 65.75 62.64 78.69 44.11 62.68 82.29 42.49
8k (cu.) 64.37 63.86 65.94 62.88 75.96 44.86 65.70 90.13 37.07
16k 73.82 71.91 68.97 66.26 88.36 54.56 68.67 86.06 41.03
16k (cu.) 82.87 69.51 65.24 63.21 85.52 55.43 66.65 77.56 40.88
OPT 63.8 70.6 67.1 66.5 78.5 62 63.8 67.5 48.6
RoBERTa 81.5 67.1 67.3 67.9 90.8 76.4 63.5 87.4 39.9
T5 68.9 63.8 60.4 60.9 72.2 34.4 48.2 77.6 45.6

Table 3: Results (accuracies) of zeroshot BLiMP and BLiMP Supplement evaluation measures for our GPT-Wee
models and baseline models (OPT, RoBERTa and T5)

npi licens-
ing:

quantifiers: subject
verb agree-
ment:

hypernym: qa congru-
ence easy:

qa con-
gruence
tricky:

subject
aux inver-
sion:

turn
taking:

4k 49.95 54.87 50.62 52.21 48.44 39.39 81.53 45.71
4k (cu.) 49.47 55.41 52.09 50.00 43.75 44.85 80.09 43.57
8k 52.10 60.90 56.24 49.77 51.56 32.12 82.58 50.36
8k (cu.) 37.97 60.38 57.81 49.88 50.00 40.00 85.44 46.43
16k 51.97 59.61 66.49 49.42 57.81 28.48 80.09 54.29
16k (cu.) 46.60 78.54 65.82 50.93 53.12 33.33 83.46 56.79
OPT 46.7 59.6 56.9 50.0 54.7 31.5 80.3 57.1
RoBERTa 55.9 70.5 65.4 49.4 31.3 32.1 71.7 53.2
T5 47.8 61.2 65.0 48.0 40.6 21.2 64.9 45.0

Table 4: Results (accuracies) of zeroshot BLiMP and BLiMP Supplement evaluation measures for our GPT-Wee
models and baseline models (OPT, RoBERTa and T5), contd.

our smaller models do not perform considerably
worse on average, and outperform the baseline
models for selected tasks. For example, a few
of our small models are surprisingly good at is-
land effects, hypernyms, qa congruence, or subject-
auxiliary inversion. As the baseline results are
derived from BERT/OPT/T5 models with much
larger architectures and higher parameter numbers
(e.g. 125M parameters for the OPT model, with 12
hidden layers, 12 attention heads, a 50k token vo-
cabulary and intermediate embeddings of size 768),
we are pleasantly surprised by the comparatively
good results which our models achieve.

6.3 (Super)GLUE and MSGS evaluation
For the evaluation tasks requiring additional fine-
tuning, we only collected results for our submitted,
medium-sized curriculum model due to constraints
in computing power and time.

The GLUE (Wang et al., 2018) and SuperGLUE
(Wang et al., 2019) benchmarks involve fine-tuning
on a variety of tasks, e.g. question answering, cor-
rect identification of entailment or the extraction of
correct co-references. As such, this benchmark is

evaluation-pipeline

more focused on semantic and pragmatic aspects.
Regarding the (Super)GLUE scores (table 5),

a similar picture to the BLiMP scores emerges.
Across many of the tasks, our model performs in
similar ranges as the baselines, often better than the
T5 baseline and more similar to the OPT baseline.
Although our models are considerably smaller, they
seem to provide similar starting points for fine-
tuning on additional data.

Finally, the Mixed Signals Generalization Set
(MSGS) introduced by Warstadt et al. (2020b) also
contains different ambiguous binary classification
tasks. The test sentences are ambiguous in the
sense of allowing both surface generalizations and
generalizations that require deeper linguistic under-
standing of structure. Additionally, control exper-
iments are included that test whether a feature is
actually encoded. The scores reported in table 6
are correlations, where a value greater than zero
denotes a preference for linguistics generalizations,
and a value below zero shows a preference for
surface generalizations. The performance of our
model is (once more) very similar to the baselines.
The control tasks show that our model does encode
the tested features, but the test tasks show a system-
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CoLA
(MCC)

SST-2 MRPC
(F1)

QQP
(F1)

MNLI MNLI-
mm

QNLI RTE BoolQ MultiRC WSC

8k
(cu.)

4 80 82 66 60 61 61 60 61 55 60

Maj. 0.0 50.2 82.0 53.1 35.7 35.7 35.4 53.1 50.5 59.9 53.2
OPT 15.2 81.9 72.5 60.4 57.6 60.0 61.5 60.0 63.3 55.2 60.2
RoB. 25.8 87.0 79.2 73.7 73.2 74.0 77.0 61.6 66.3 61.4 61.4
T5 11.3 78.1 80.5 66.2 48.0 50.3 62.0 49.4 66.0 47.1 61.4

Table 5: (Super)GLUE scores (accuracies unless otherwise stated as MCC or F1) for our 8k curriculum GPT-Wee
model, the majority baseline and the three provided model baselines

CR
(Con-
trol)

LC
(Con-
trol)

MV
(Con-
trol)

RP
(Con-
trol)

SC
(Con-
trol)

CR_LC CR_RTP MV_LC MV_RTP SC_LC SC_RP

8k
(cu.)

43 93 37 100 76 0 -74 -99 -99 -57 -73

OPT 50.8 53.6 99.5 99.9 77.2 0.4 -70.3 -72.1 -77.6 13.8 -68.9
RoB. 43.1 100.0 97.7 76.7 86.2 -28.3 -77.7 -99.3 -79.4 16.3 -45.0
T5 21.1 100.0 33.4 82.5 77.6 -78.3 -62.0 -100.0 -79.7 -25.3 -39.4

Table 6: MSGS scores (MCC) for our 8k curriculum GPT-Wee model and the three provided model baselines

atic bias for surface generalizations. However, this
behavior is also (with minor deviations) observable
in the baseline models. All naïve models fail to
generalize based on the linguistic features.

6.4 Age-of-acquisition evaluation

Additionally, the BabyLM evaluation suite pro-
vided an age-of-acquisition evaluation (Portelance
et al., 2023). The calculated scores (table 7) are
Mean Absolute Deviation (MAD) values, measured
in months, representing the difference between
the actual average age-of-acquisition (AoA) of the
tested word among American English-speaking
children and the predicted AoA based on our mod-
els’ average surprisal scores. Lower MAD scores
indicate better performance. We calculate these
scores for all of our models and find that the indi-
vidual differences between the models are tiny or
nonexistent, and roughly the same as the baseline
results provided by the challenge. As such, also
here the effect of the choice of a specific language
model architecture does not seem to have much of
an influence on the evaluation metric.

7 Discussion

The present analysis set out to investigate the influ-
ence of a usage-based factors, input ordering, and
an architectural factor, model size, on the learn-
ing processes (and successes) of language models.
We found that both factors have a certain influence
on the training process and the model performance.
While model size affects the performance in linguis-

tic evaluation, the effect is not linear across tasks.
For zero-shot tasks, the majority show improved
scores, although a few scores decrease with increas-
ing model size. Compared to much larger baseline
models, our models’ performance is not consider-
ably worse. Especially the non-linear effects of
model size warrant further inspection: it remains
unclear which internal factors (context length, vo-
cabulary size, model parameters, number of train-
ing epochs, etc.) contribute to which developments,
and how these factors interact with each other. For
the tasks requiring additional fine-tuning, our 8k
curriculum model also performed similarly to the
baselines. Especially for the (SUPER)Glue bench-
mark, a more semantics- and pragmatics-oriented
benchmark, the performance was quite in line with
the baseline models, hinting at the acquisition of a
fair amount of the needed information. The MSGS
benchmark, however, showed that our model sys-
tematically picks up surface generalizations. Yet,
this also applies to the much larger baselines.

The usage-inspired naïve ordering approach to
curriculum learning also has no straightforward ef-
fects on model performance. Especially during the
training process, differences to traditional, random-
ized learning are observable. Although it appears
to be somewhat detrimental to overall performance,
certain specific evaluation tasks are positively influ-
enced. The results thus remain inconclusive. From
a usage-based viewpoint, Diessel (2013b) stresses
the importance of deictic pointing and joint atten-
tion as (extralinguistic) language acquisition fac-
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Overall Nouns Predicates Function words
4k 2.07 2.00 1.84 2.65
4k (cu.) 2.06 1.99 1.84 2.64
8k 2.07 2.00 1.82 2.65
8k (cu.) 2.06 2.00 1.82 2.64
16k 2.06 2.00 1.83 2.65
16k (cu.) 2.06 2.00 1.83 2.58
OPT 2.03 1.98 1.81 2.57
RoBERTa 2.06 1.99 1.85 2.65
T5 2.04 1.97 1.82 2.64

Table 7: MAD scores between actual AoA and the predicted AoA, for our GPT-Wee models and the three baselines

tors. Besides, also intention reading, role reversal
and imitation (Tomasello, 2003, 21–28) are impor-
tant acquisition factors that LLMs cannot mirror –
they are strictly confined to statistical/frequency-
driven aspects of usage-based theory (which are
nevertheless very important, as noted by Ambridge
et al., 2015). Still, we only have child-directed
speech for training, and no real child-directed com-
munication, which connects speech with such ex-
tralinguistic factors and influences utterance proto-
typicality beyond the modalities that we were able
to include in the present experiment.

The non-improvements added by the curricu-
lum approach also further add to the debate on
what language models mean for linguistic theory.
For example, Pannitto and Herbelot (2022) and Pi-
antadosi (2023) have stressed the anti-Chomskyan
evidence provided by the successes of language
models. Curriculum learning looks like an obvious
choice when trying to implement usage-based find-
ings in the training process for (smaller) language
models. However, this does not seem to work with
the simple form of curriculum learning based on
prototypicality measures that we used in this pa-
per. For that, several explanations are possible: 1)
more advanced curriculum approaches are needed,
with different and more directed ways of order-
ing and optimizing the curriculum, 2) curriculum
learning may not be the right choice for small mod-
els (it seems that, if at all, it was rather the larger
models which showed tendencies of improvement.
Also, other options for implementing usage-based
accounts might just work better (e.g. models with
dynamic structures and growing numbers of nodes).
After all, real human neural networks grow and ma-
ture while they are constantly shaped and re-shaped
by linguistic input and processing. As such, it also
remains hard to interpret language models, their

parts and their performance on various evaluation
suites in a coherent way. The integration of more
linguistic factors into the training process needs
to be tested in this regard. For example, Yehezkel
and Pinter (2023) propose a subword tokenization
algorithm that incorporates contextual information
and creates vocabularies that seem to align more
with classical ideas of morphology. It remains an
open question whether such alterations and other
linguistic experiments in the training process would
also improve the linguistic quality of the generated
output.

8 Conclusion

The BabyLM challenge set out to test different ap-
proaches to language modelling with small data.
When looking at the leaderboard6, we find that our
model is located in the lower section of the rank-
ings. However, the best-performing models imple-
ment much more complex learning strategies and
larger architectures. We, on the other hand, decided
on very small architectures. As such, our results
can be seen as a success: benchmark performance
seems to be much more strongly constrained by
the concrete linguistic make-up of the training data
and not so much by model size alone, as our down-
sizing apprach shows. This also confirms earlier
findings from BabyBERTa (Huebner et al., 2021)
and TinyStories (Eldan and Li, 2023). Our key
takeaway is that a one size fits all approach to lan-
guage model architectures should not be adopted
without further thought, and that training data qual-
ity and make-up should be valued more. Besides,
we also tested a usage-based approach to curricu-
lum learning. Although our curriculum models are
generally not superior to the regular, randomized

6At https://dynabench.org/babylm
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models, some zero-shot evaluation tasks did ben-
efit from it. Additionally, small model size and
the curriculum training did not have a detrimental
effect on pre-training for the tasks that require fine-
tuning. Still, our results show that a much more
fine-grained approach to the evaluation of such fac-
tors is needed. As language model engineers, we
can choose between a large variety of evaluation
suites that test along all levels of linguistic analysis
and across many different task set-ups. However,
we do not know how the changes in individual,
low-level variables (e.g. number of hidden layers,
context size) impact specific factors of linguistic
performance (e.g. the ability to judge acceptability
for island effects, or the ability to correctly predict
entailment). To correctly interpret such choices,
further systematic analyses are clearly needed.

Acknowledgements

We acknowledge financial support by the project
“SAIL: SustAInable Life-cycle of Intelligent Socio-
Technical Systems” (Grant ID NW21-059A),
which is funded by the program “Netzwerke 2021”
of the Ministry of Culture and Science of the State
of Northrhine Westphalia, Germany.

References
Ben Ambridge, Evan Kidd, Caroline F. Rowland, and

Anna L. Theakston. 2015. The ubiquity of frequency
effects in first language acquisition. Journal of Child
Language, 42(2):239–273.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
Dangers of Stochastic Parrots: Can Language Mod-
els Be Too Big? In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and
Transparency, pages 610–623, Virtual Event Canada.
ACM.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Confer-
ence on Machine Learning, pages 41–48, Montreal
Quebec Canada. ACM.

Martin D. S. Braine and Melissa Bowerman. 1976. Chil-
dren’s First Word Combinations. Monographs of the
Society for Research in Child Development, 41(1).

Thea Cameron-Faulkner, Elena Lieven, and Michael
Tomasello. 2003. A construction based analysis of
child directed speech. Cognitive Science, 27(6):843–
873.

Thea Cameron-Faulkner and Claire Noble. 2013. A
comparison of book text and Child Directed Speech.
First Language, 33(3):268–279.

Eve V. Clark. 2009. First Language Acquisition, 2nd
ed edition. Cambridge University Press, Cambridge ;
New York.

Holger Diessel. 2013a. Construction Grammar and First
Language Acquisition. In Thomas Hoffmann and
Graeme Trousdale, editors, The Oxford Handbook
of Construction Grammar. Oxford University Press,
Oxford.

Holger Diessel. 2013b. Where does language come
from? Some reflections on the role of deictic ges-
ture and demonstratives in the evolution of language.
Language and Cognition, 5(2-3):239–249.

Ronen Eldan and Yuanzhi Li. 2023. TinyStories: How
Small Can Language Models Be and Still Speak Co-
herent English?

Jeffrey L. Elman. 1993. Learning and development in
neural networks: The importance of starting small.
Cognition, 48(1):71–99.

Jeffrey L. Elman, Elizabeth L. Bates, Mark H. John-
son, Annette Karmiloff-Smith, Domenico Parisi, and
Kim Plunkett. 1996. Rethinking Innateness: A Con-
nectionist Perspective on Development. Neural Net-
work Modeling and Connectionism. MIT Press, Cam-
bridge, MA.

Leo Gao, Jonathan Tow, Stella Biderman, Charles
Lovering, Jason Phang, Anish Thite, Fazz, Niklas
Muennighoff, Thomas Wang, Sdtblck, Tttyuntian,
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Figure 1: Training and evaluation losses for the 4k vocabulary models, calculated every 5k steps
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Figure 2: Training and evaluation losses for the 8k vocabulary models, calculated every 5k steps
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Figure 3: Training and evaluation losses for the 16k vocabulary models, calculated every 5k steps
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Abstract
Large transformer language models trained ex-
clusively on massive quantities of text are now
the standard in NLP. In addition to the imprac-
tical amounts of data used to train them, they
require enormous computational resources for
training. Furthermore, they lack the rich array
of sensory information available to humans,
who can learn language with much less ex-
posure to language. In this study, performed
for submission in the BabyLM challenge, we
show that we can improve a small transformer
model’s data efficiency by enriching its embed-
dings by swapping the learned word embed-
dings from a tiny transformer model with vec-
tors extracted from a custom multiplex network
that encodes visual and sensorimotor informa-
tion. Further, we use a custom variation of the
ELECTRA model that contains less than 7 mil-
lion parameters and can be trained end-to-end
using a single GPU. Our experiments show that
models using these embeddings outperform
equivalent models when pretrained with only
the small BabyLM dataset, containing only 10
million words of text, on a variety of natural
language understanding tasks from the GLUE
and SuperGLUE benchmarks and a variation
of the BLiMP task.

1 Introduction

The field of natural language processing is now
dominated by large-scale transformer models such
as GPT-3 (Brown et al., 2020). These models are
characterized not only by their enormous size—
billions of parameters—but also the huge datasets
that are used in their pretraining. The 200 billion
text tokens used to train GPT-3 are dwarfed by
the 1.4 trillion used to train Chinchilla (Hoffmann
et al., 2022). Huge model sizes and enormous
pretraining datasets make research on pretraining
language models impractical for all but the most
lavishly funded industry research groups.

Beyond the practical problems posed by such
massive data inputs, the current methods for lan-

guage modeling require vastly more resources to
learn and perform language tasks than human be-
ings do. American children, for example, begin
speaking around the age of 1 year on average (Gilk-
erson et al., 2017), and studies suggest that they
have only heard around 5 million words before
the onset of recognizable words (i.e., beyond bab-
bling). Even the medium-sized BERT model was
trained with a 3.3 billion word corpus (Devlin et al.,
2019)—orders of magnitude more than human be-
ings require to begin speaking and reach language
proficiency. This disparity suggests that current
methods in natural language procession (NLP) are
missing crucial aspects of language learning.

One thing which models trained exclusively on
text undoubtedly lack is a genuine connection be-
tween concrete words, such as red, and the physical
world they describe. Human beings learn to speak
with the aid of their sensory impressions, emotions
and a rich environment of social cues (Smith and
Gasser, 2005), which is to say that human language
is grounded in the human sensory experience (Har-
nad, 1990). To use the same example, the word red
is grounded in the visual perception of color. In
contrast, transformer NLP models only have access
to text and can only define words in terms of other
words, following the distributional hypothesis of
linguistic meaning. The lack of concrete sensory in-
formation is one possible reason why transformers
require so much text and compute to learn perform
basic human language tasks.

In this study, conducted as part of the BabyLM
challenge (Warstadt et al., 2023), we seek to im-
prove a tiny transformer model’s data efficiency
by providing it with a facsimile of that missing
sensory information. Specifically, we follow the
approach taken by Kennington (2021) and replace
a pretrained model’s word embeddings with vector
representations that encode visual and sensorimotor
information. Our approach differs in that we extract
our embeddings from a custom multiplex network
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that captures visual and sensorimotor relationships
between words. Multiplex networks are multi-layer
graphs, and researchers such as Ciaglia et al. (2023)
have demonstrated their potential for representing
various types of semantic relationships. Our multi-
plex network consists of two layers: a visual layer
and a sensorimotor layer, which we explain below.

As one of the goals of our study, and the
BabyLM challenge in general, is to increase a
model’s data effeciency, we pretrain our models
with the cognitively plausible 10M word dataset
provided by the BabyLM organizers. Additionally,
with the aim of making research on pretraining
transformer models more accessible, we use a tiny
variation of ELECTRA (Clark et al., 2020) with
fewer than 7 million parameters that can be trained
on a single modestly priced GPU. This approach al-
lows us to simultaneously address the topics of data
efficiency and parameter efficiency. The contribu-
tions of our study can be summarized as follows:

• We show that tiny models can be as effective
as models twice their size in a scarce pretrain-
ing data regime.

• We show that embeddings from a multiplex
network that encodes visual and sensorimo-
tor information related to English words can
improve the data efficiency of a small trans-
former model.

• Models using these embeddings can perform
as well as similar models that are trained with
ten times the amount of pretraining data.

In the following section we present some work
related to the topics associated with our modeling
approach. In Section 3, we introduce both the pre-
training datasets and the data we use to evaluate our
models’ downstream performance. Section 4 de-
scribe the ELECTRA model we use as the basis for
our study and the multiplex network from which
we extract our novel embeddings. Finally, we de-
scribe our experiments in Section 5 and conclude
in Section 6.

2 Related Work

Data Efficient Pretraining for Language Mod-
els To date, model compression techniques for
transformers have recieved more attention than data
efficiency. There has, however, been some research
directly addressing pretraining data types and sizes

for transformers. Micheli et al. (2020) and Mar-
tin et al. (2019) experimented with reducing the
absolute amount of training data in French lan-
guage models. They showed that full sized French
language transformer models can perform well on
select tasks with significantly less pretraining data.
Warstadt et al. (2020b) and Zhang et al. (2020) in-
vestigated the effect of different pretraining data
volumes on the grammatical knowledge of the
RoBERTa-base model using probing techniques.
Another example is the BabyBERTa model intro-
duced in Huebner et al. (2021). Here the authors
used the CHILDES (MacWhinney, 2000), a small
dataset of transcribed, child-directed speech to train
a variation of RoBERTa (Liu et al., 2019). Notably,
the CHILDES dataset is one the components of the
dataset used in this study.

Small-Scale Language Models The process of
creating transformers with fewer parameters and
less computational demands has been an active
area of research. A number of techniques for com-
pressing transformers exist, but knowledge distilla-
tion is probably the most common. In knowledge
distillation, a full-sized teacher model is used to
train a smaller student network. DistilBERT (Sanh
et al., 2019), TinyBERT (Jiao et al., 2019), MiniLM
(Wang et al., 2020) and MobileBERT (Sun et al.,
2020) are popular examples of compact transform-
ers distilled using full sized BERT models as teach-
ers. These methods produce effective smaller mod-
els, but they can’t directly address the amount of
input data required, and the training process still
requires a using a full-sized teacher model trained
with a large text corpus.

Multiplex Networks and Language Multiplex
networks have been explored as a way of modeling
the language acquisition process in human children
(Stella et al., 2017, 2018). Citraro et al. (2023) used
a complex network that incorporated phonetic, co-
occurance, frequency, length, polysemy, (among
others) to explore potential mental strategies for
early word learning. Ciaglia et al. (2023) recently
brought aspects of NLP into multiplex networks by
including word-level embedding knowledge, which
we build on here.

3 Data & Benchmarks

In this section we describe the datasets we use both
for pretraining and for downstream evaluation of
our models. As this paper was intended as part of
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Dataset Domain Words- Words- Reference
10M 100M

CHILDES Child-directed speech 0.44M 4.21M MacWhinney (2000)
British National Corpus (BNC) Dialogue 0.86M 8.16M Consortium (2007)
Children’s Book Test Children’s books 0.57M 5.55M Hill et al. (2016)
Children’s Stories Text Corpus Children’s books 0.34M 3.22M Edenbd (2021)
Standardized Project Gutenberg Written English 0.99M 9.46M Gerlach and Font-Clos (2018)
OpenSubtitles Movie subtitles 3.09M 31.28M Lison and Tiedemann (2016)
QCRI Educational Domain Corpus Video subtitles 1.04M 10.24M Abdelali et al. (2014)
Wikipedia Wikipedia 0.99M 10.08M Wikimedia
Simple Wikipedia Wikipedia (Simple) 1.52M 14.66M Wikimedia
Switchboard Dialog Act Corpus Dialogue 0.12M 1.18M Stolcke et al. (2000)

Table 1: Composition of the BabyLM Datasets, from Warstadt et al. (2023).

the BabyLM competition, we use only the datasets
provided by the organizers and their evaluation
pipeline to assess our results. Although this infor-
mation is described in Warstadt et al. (2023) and its
associated references, we provide a brief summary
in the interest of completeness and readability.

BabyLM Datasets The pretraining data pro-
vided for the BabyLM competition consists of two
datasets with roughly 10 million and 100 million
words. We will refer to these as the BabyLM-10M
and the BabyLM-100M datasets. These datasets
are meant to be developmentally plausible and are
inspired by language input for children. The com-
positions of the datasets are described in Table 1
with references for each source dataset. The 10M
word dataset is a uniform sample of the 100M word
dataset.

GLUE and SuperGLUE Many of the datasets
we use for fine-tuning and evaluation, are drawn
from the GLUE (Wang et al., 2018) and Super-
GLUE (Wang et al., 2019) benchmarks. Each con-
sists of a suite of natural language understanding
tasks and they are among the most commonly used
benchmarks for evaluating natural language under-
standing. From GLUE, we use 7 of the 9 tasks
in the suite. COLA, a grammatical acceptabil-
ity task and SST-2, a sentiment classification task,
are both single sentence tasks. QQP and MRPC
are both two-sentence paraphrase tasks. Finally,
MNLI, QNLI and RTE are natural language infer-
ence tasks. From SuperGLUE we use three tasks:
BoolQ and MultiRC are both question answering
tasks, and WSC is a co-reference task.

BLiMP The Benchmark of Linguistic Minimal
Pairs (BLiMP) is a set of 67,000 pairs of sentences
designed to test a language model’s grasp of En-
glish grammar introduced in Warstadt et al. (2020a).
The full BLiMP set consists of 67 sets of 1,000

pairs of English sentences covering 12 different
grammatical phenomena. The sentences were gen-
erated from grammars created by linguists with
each pair containing one grammatically correct and
one incorrect sentence that differ by only a single
edit. On aggregate, the creators found that humans
agreed with the labels over 96 percent of the time.
For each pair, a language model trained with causal
language modeling, e.g. GPT-3, is considered to
be successful if it assigns a higher likelihood to
the grammatically correct sentence. BLiMP was
concieved as a zero-shot task and many popular
language models can be evaluated on BLiMP with-
out fine-tuning using either the log-likelihood or
the pseudo-log-likelihood scoring method (Wang
and Cho, 2019; Salazar et al., 2020). Unfortunately,
the ELECTRA model (Clark et al., 2020) that we
use in our experiments is not one of them and we
therefore adopt a minimal fine-tuning approach to
the BLiMP task. To keep with the zero-shot spirit
of the task as much as possible, we cast BLiMP
as binary choice task with only enough training to
remove large variances from run to run. The details
of the fine-tuning regime that we used can be found
in Section 5.2.

MSGS The MSGS dataset, pronounced mes-
sages, was introduced in Warstadt et al. (2020b)
with the goal of studying the inductive biases of
NLP models. The task challenges models to clas-
sify sentences based on either surface features, e.g.
Does the sentence contain the word "the"?, or lin-
guistic features, Does the sentence contain an ir-
regular past-tensed verb?. In total the set contains
4 surface features and 5 linguistic features. By pair-
ing a sentences containing a surface feature and a
linguistic feature, the task tests a model’s prefer-
ence for surface features versus more meaningful
linguistic features. The MSGS dataset contains 20
tasks, one for each possible combination of surface
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Figure 1: The ELECTRA model is a Generator-
Discriminator ensemble. The Discriminator is tasked
with determining if the Generator properly guessed a
masked word; borrowed from (Clark et al., 2020).

and linguistic features, as well as 9 control tasks
whose sentences contain only a surface or linguis-
tic feature being tested. From this set we use 5
control tasks and 6 from the set of combinations.
A more detailed description of these tasks can also
be found in Section 5.2.

4 Method

4.1 ELECTRA-Tiny

In this subsection we describe ELECTRA (Clark
et al., 2020), the language model that forms the
basis of our experiments. In place of masked
language modeling, ELECTRA pretrains a trans-
former encoder stack, structurally identical to
BERT’s, by corrupting some input tokens through
replacing them with plausible alternative words
sampled from a small generator network. A larger
discriminator model then predicts whether each
token is corrupted or not. After training, the gener-
ator is discarded and the discriminator is used for
downstream tasks. See Figure 1 for an illustration
of the ELECTRA model. Clark et al. (2020) show
that this strategy leads to better results with less
data and less compute than causal language model-
ing or standard masked language modeling, making
it a natural choice for use in these experiments.

We make use of two architectural variations of
ELECTRA. ELECTRA-Small is a scaled down ver-
sion of the base model that was also introduced in
Clark et al. (2020). This small version of ELEC-
TRA has embedding vectors of dimension 128, 12
layers and a hidden size of 256. Following the
original transformer architecture in (Vaswani et al.,
2017), the intermediate size of each layer’s feed-
forward network is 4 times the model’s hidden size,
or 1024. In total, it contains only 14 million param-
eters and can be trained end to end using a single
GPU. The other model we use is an even smaller
variation that we call ELECTRA-Tiny and it was
introduced and evaluated in Fields and Kenning-

Figure 2: Relative size comparison of ELECTRA-Small
(blue) with ELECTRA-Tiny (red). ELECTRA-Tiny has
smaller embeddings, hidden size, and intermediate size,
but has more hidden layers.

ton (2023). ELECTRA-Tiny is very small, con-
taining only 6.7 million parameters, approximately
half as many as ELECTRA-Small. The tiny vari-
ation of ELECTRA however, is not simply scaled
down with the same proportions. The model has
an embedding size of 96, a hidden size of 196 and
rather than a 4-fold expansion of the feed-forward
network’s intermediate layer, reduces the layer’s
size to 128. Finally, to compensate for the models
decreased width, it contains 18 layers. The combi-
nation of an efficient pretraining method and small
model sizes make these models ideal for our pur-
poses. Figure 2 shows how ELECTRA-Small and
ELECTRA-Tiny compare in their underlying sizes.

4.2 Enriching ELECTRA-Tiny with
Multimodal Knowledge: Multiplex
Networks

A multiplex network is a type of conceptual net-
work that consists of multiple layers, where each
layer represents a different type of relationship or
interaction between nodes. In a multiplex network,
the nodes can be the same across layers (which
means nodes can be duplicated across different lay-
ers), but the relationships between them may vary.
Figure 3 shows an example of a multiplex network
that has five nodes composed of two layers.

A multiplex network can be represented as a
multilayer graph, where the nodes are connected
by edges in each layer and potentially across differ-
ent layers. The layers can capture different aspects
or modalities of the interactions between the en-
tities. For example, in Ciaglia et al. (2023), the
authors used a small vocabulary of words as the
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nodes, where the layers of their multiplex network
were represented by free association (i.e., when
presented with a word, participants were asked to
write the first word that comes to mind), visual rela-
tionships, sensory relationships, and distributional
semantic relationships.

In any weighted multiplex network, the connec-
tions between nodes can have different types or
strengths, depending on the layer and the weight
on the edge. This allows for a more comprehen-
sive representation of the relationships between
nodes, as different layers capture different aspects
of the relationships. Multiplex networks can pro-
vide richer information than a standard network
that is made up of only one layer.

Ciaglia et al. (2023)’s network was composed
of layers derived from word embeddings, free as-
sociation, visual and sensorimotor vectors. Their
work only included a vocabulary of 531; we extend
their work by dramatically increasing the vocabu-
lary covered in the multiplex network. Important
for our work here is to only use layers that are cog-
nitively plausible for a language learning child to
have as they speak their initial words. As the em-
bedding and free association layers were derived
using adult written text and adult participants re-
spectively, we leave them out of our model here and
focus only on the visual and sensorimotor layers;
modalities that children certainly have access to
and from which they build their language learning.

Figure 3: From Bródka et al. (2018). A visual represen-
tation of a multiplex network demonstrating intercon-
nected layers. The dotted lines represent the interlayer
connections (node relationships across layers) while the
solid lines represent intralayer connections (node rela-
tionships within a layer).

Visual Layer: Words-as-Classifiers To repre-
sent the visual layer, we use the word-as-classifiers

(WAC) model of grounded lexical semantics (Ken-
nington and Schlangen, 2015). We train a binary
logistic regression classifier that learns the fitness
of identifying a visual aspect (e.g., redness) on im-
ages for each vocabulary word (e.g., images of dogs
for the word dog) and randomly sampled negative
images from other words. We use 100 positive
images for each word with a ratio of 3 negative
examples for each positive example. Each image
is encoded as a vector for training using the CLIP
model (Radford et al., 2021). Once each classi-
fier for each word is trained, we take the learned
coefficients and bias term as the vector (size 513)
representing the word.

Sensorimotor Layer: Lancaster Sensorimo-
tor Norms The Lancaster dataset (Lynott et al.,
2020) uses the Lancaster Norms rating as a mea-
sure of perceptual and action strength on about 40K
English words. Sensorimotor information plays a
fundamental role in cognition and provides a use-
ful connection between words and understanding.
For example, the word kick has a strong sensorimo-
tor grounding in leg and foot movement, the word
sour is grounded in taste, and the word ping is
grounded in auditory processing. For each word in
the dataset, raters were asked to rate how strongly
that word is associated with a specific perceptual
modality including touch, hearing, smell, taste, vi-
sion, and interoception, and five action effectors
including mouth/throat, hand/arm, foot/leg, head
excluding mouth/throat, and torso. The dataset re-
ports the mean and standard deviation of the ratings,
as well as ways of aggregating the ratings, which
we use as a vector (size of 39) for each word.

Constructing the Multiplex Network Kenning-
ton (2021) used the WAC and Lancaster vectors as
the embedding layer for a language model in their
experiments. We use the same modalities here, but
we first combine the two modalities into a multi-
plex network and then extract the embeddings from
the network to use for the embedding layer. This
approach, we argue, is more cognitively plausible
because words are associated by vision and sensori-
motor modalities at a more categorical level, which
is the basis of cognition (Harnad, 2017).

To create the network, we had to determine if
two words had a relationship within a layer. To do
so, we computed the cosine distance between all
possible word pairs in each layer, forming relation-
ships between words (i.e., the nodes) if the cosine
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Figure 4: Our Methodology: vectors from vision (red, top) and sensorimotor (purple, bottom) are compared
to each other using cosine distance. Word pairs that are above a specific threshold are added to the network,
where connections from different modalities are retained in a multiple network (e.g., ball and kick are similar
in sensorimotor vectors, whereas ball and sun are shaped similarly visually). Finally, we use the MultiVERSE
algorithm to map from the multiplex network to the vector embeddings used in ELECTRA-Tiny.

distance was above a specific threshold. The selec-
tion of these thresholds was motivated by the goal
of striking a balance between sparsity and density
in the network, taking into account computational
constraints associated with extracting the network
embeddings. We then used those resulting embed-
dings in the ELECTRA-Tiny model. The process
is depicted visually in Figure 4. In our experiments,
we use three networks: visual only (cosine distance
threshold of 0.94, vocabulary size of 21,235), sen-
sorimotor only (cosine distance threshold of 0.27,
vocabulary size of 22,054), and a multiplex combi-
nation of visual and sensorimotor (same thresholds
as individual layers, vocabuary size of 35,607).

From Multiplex Network back to Embeddings:
MultiVERSE We use the MultiVERSE algo-
rithm, introduced in Pio-Lopez et al. (2021) to map
from our multiplex network representation back
to embeddings to be used in a language model.
MultiVERSE is a network representation learn-
ing algorithm tailored for multiplex networks that
aims to capture complex interactions by consider-
ing interdependencies between layers. By employ-
ing a unified framework integrating the multiplex
network structure, node attributes, and meta-path-
guided random walks, MultiVERSE learns low-
dimensional node representations, clustering nodes
with similar relationships. Importantly, the Ran-
dom Walk with Restart algorithm explores different
layers in parallel (i.e., the layers are represented as
separate sub-networks instead of a complete net-
work), retraining multiplex relationships. In con-
trast, other well-known algorithms that map from
networks to embeddings, like node2vec (Grover
and Leskovec, 2016), do not adequately retain mul-
tiplex information from each individual layer, mak-

ing MultiVERSE a superior choice for mapping
multiplex network representations to meaningful
embeddings for downstream language model appli-
cations while maintaining the meaning from differ-
ent relationships in different layers. This resulted
in embeddings for many words in the ELECTRA
vocabulary, but for the words that were not repre-
sented, we simply used zero vectors.

5 Experiments

5.1 Experiment 1: GLUE and SuperGLUE
Tasks

In this experiment we determine to what extent
embeddings extracted from our multiplex network
can improve our small scale models on natural lan-
guage understanding tasks. We begin by pretrain-
ing ELECTRA-Tiny on the BabyLM-10M word
dataset described in Section 3 for 10 epochs us-
ing the Adam optimizer (Kingma and Ba, 2014),
with a lerning rate of 1e-5 and a batch size of 64.
Following Kennington (2021), our strategy is to
swap the learned word embeddings from the pre-
trained model with our own embeddings prior to
finetuning and evaluation. Using the MultiVERSE
algorithm we extract three sets of embeddings
from our network corresponding to the WAC visual
layer, the Lancaster Norm layer and the multiplex
combination of both layers. We then finetune the
ELECTRA-Tiny model with each embedding set as
well as a control model using ELECTRA’s learned
word embeddings. We fine-tune each model for ten
epochs with a learning rate of 5e-5, and a batch size
of 64. For the sake of comparison, we also trained
ELECTRA-Tiny on the 100M word dataset and the
original ELECTRA-Small (Clark et al., 2020) on
the 10M dataset.
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Model Data COLA RTE MultiRC QQP QNLI MNLI MNLI-mm SST2 Avg.
Tiny 10M 69.5 48.9 60.4 63.2 56.6 42.2 42.8 81.0 60.7
Tiny-L 10M 69.5 49.5 55.9 63.4 57.4 48.6 49.1 78.0 58.9
Tiny-V 10M 67.1 62.6 59.5 62.4 57.9 49.6 51.2 82.1 63.2
Tiny-LV 10M 67.1 62.6 59.5 62.4 57.9 49.6 51.2 82.1 63.2
Small 10M 69.3 50.5 56.3 62.2 57.0 39.5 39.0 81.3 59.9
Tiny 100M 69.5 54.5 56.0 64.3 58.8 51.5 51.5 81.7 62.8
Maj. Label 10M 69.5 53.1 59.9 53.1 35.4 35.7 35.7 50.2 52.6
OPT-125m 10M 64.6 60.0 55.2 60.4 61.5 60.0 57.6 81.9 63.4
RoBERTa 10M 70.8 61.6 61.4 73.7 77.0 73.2 74.0 87.0 71.4
T5-base 10M 61.2 49.4 47.1 66.2 62.0 48.0 50.3 78.1 60.9

Table 2: GLUE and SuperGLUE results for the initial datasets on our various models. Note that the last size
models in the table are baselines included for the sake of comparison.

Model Data MRPC RTE MultiRC QQP QNLI MNLI MNLI-mm SST2 Avg.
Tiny 10M 82.0 53.5 56.6 66.3 53.1 62.4 62.0 82.7 64.5
Tiny-L 10M 82.0 49.5 58.1 78.8 53.2 64.9 66.7 82.3 66.9
Tiny-V 10M 82.0 63.6 59.8 76.4 53.1 63.3 65.8 85.2 67.3
Tiny-LV 10M 81.6 54.5 57.0 76.5 59.4 66.3 67.2 84.4 67.1
Small 10M 82.0 50.5 58.1 73.2 53.1 60.3 60.7 81.1 64.5
Tiny 100M 82.0 53.5 50.9 79.3 61.3 67.4 67.6 86.6 67.2

Table 3: GLUE and SuperGLUE results for our various model using the held-out portion of data. Note that
the last two models in the table are baselines, provided for the sake of comparison.

Results For ease of comparison we present our re-
sults for initial datasets and the portion held out by
the BabyLM challenge organizers separately. The
results for each model on the various tasks are dis-
played in Tables 2 and 3. Table 2 also includes the
baseline values provided by the BabyLM organiz-
ers using the 10M dataset. Firstly, we note that the
standard ELECTRA-Tiny model performs nearly
identically with ELECTRA-Small when trained on
the 10M word dataset and the T5-base model that
was provided as a baseline by the BabyLM orga-
nizers. This indicates that larger models are not
necessarily superior when using a very small train-
ing corpus. The model using embeddings derived
from our Lancaster Norm layer showed little dif-
ference over the standard ELECTRA-Tiny model.
The model using embeddings from the WAC visual
layer, however, performed substantially better. In
particular, it produced the highest score that we
tested on the RTE textual entailment task. It also
performed nearly as well on the MNLI tasks as the
ELECTRA-Tiny model trained with ten times as
much data.

The model using embeddings extracted from the
combined layer performed nearly identically to the
model containing embeddings from the visual layer
on both data splits. This suggests that the model is
better able to use the visual information provided
via embeddings from the WAC layer of our multi-

plex than the embeddings extracted from the mul-
tiplex’s Lancaster Norm layer on natural language
understanding tasks. Whether the model benefits
more from visual information than sensorimotor
information or whether the disparity comes from
the nature of our multiplex network can’t be deter-
mined within the confines of this study. We can,
however, definitively say that the visual informa-
tion in our multiplex embeddings provide a signif-
icant boost to model performance in a low data
training regime. These results verify prior work
(Kennington, 2021), with some differences, that
suggest that mapping the visual and sensorimotor
sources of information to a network representation,
then back to embeddings provides rich and useful
information.

Several of the tasks produced identical scores for
each model that we evaluated, even the model that
was pretrained on the 100M dataset. Each varia-
tion yielded a score of 59.9 on BoolQ and 61.4 on
WSC using both the initial and held-out datasets.
Using the initial dataset each model scored 82.0
on MRPC. Each model also uniformly scored 69.5
on COLA using the held-out data. These results
aren’t displayed in the tables though their values
contribute to the figures listed in the Avg. column
of each table. Though this is somewhat surpris-
ing, we surmise that these scores would vary with
additional data and extending training times.
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Model Data BLiMP CR_LC CR_RP MV_LC MV_RP SC_LC SC_RP
Tiny 10M 60.1 66.2 66.7 66.6 67.0 67.5 66.6
Tiny-L 10M 63.1 66.0 66.6 66.6 66.8 70.6 58.9
Tiny-V 10M 64.1 66.5 66.9 66.6 66.4 67.5 72.0
Tiny-LV 10M 65.1 66.6 66.7 66.6 67.2 68.0 67.6
Small 10M 61.8 66.0 66.7 66.6 66.4 67.4 63.6
Tiny 100M 64.6 66.0 68.2 66.6 67.6 71.3 68.5
OPT-125m 10M N/A 66.5 67.0 66.5 67.6 80.2 67.5
RoBERTa 10M N/A 67.7 68.6 66.7 68.6 84.2 65.7
T5-base 10M N/A 66.7 69.7 66.6 66.9 73.6 67.8

Table 4: BLiMP and MSGS results for various models. Note that the last 5 models are baselines included for the
sake of comparison. BLiMP scores are note included for baselines provided by the BabyLM organizers as they are
not directly comparable to our scores produced through minimal fine-tuning.

5.2 Experiment 2: BLiMP and MSGS
Syntactic Tasks

In this experiment we evaluate our models on a
set of tasks devoted to testing their grammatical
capacity and their inductive biases. Following the
BabyLM guidelines, we use the BLiMP dataset
to measure the grammatical capacity of our mod-
els. The evaluation pipeline for BabyLM treats
BLiMP as a zero-shot task using the method of
Wang and Cho (2019) or Salazar et al. (2020). Un-
fortunately, ELECTRA’s novel pretraining task is
not compatible with either method and produces
scores at chance levels for every model variation.
In order to make use of BLiMP, and to do so in the
closest way possible to the zero-shot paradigm, we
create a minimal fine-tuning regime for BLiMP. We
treat BLiMP as a binary choice task and train for 1
epoch with only ten percent of each of BLiMP’s 67
data subsets in the training split. We use the ADAM
optimizer (Kingma and Ba, 2014), with a learning
rate of 2e-5 and a batch size of 32. This allows us to
obtain consistent results using minimal finetuning.
We use the default methods and hyper-parameters
provided and finetune for ten epochs with a learn-
ing rate of 5e-5 and a batch size of 64. Per BabyLM,
we use 5 control tasks and 6 of the ambiguous eval-
uation tasks. Of the 5 controls, we have two surface
features, Lexical Content (LC) and Relative Posi-
tion (RP), and three linguistic features, Control
Raising (CR), Main Verb (MV) and Syntactic Cat-
egory (SC). The features are combined to form the
MSGS tasks in which our models are measured for
preference of linguistic features over surface fea-
tures via Matthews correlation (Matthews, 1975).

Results As our results for BLiMP are not di-
rectly comparable to the zero-shot baselines of
the BabyLM submissions, we list only the over-
all average BLiMP score over all 67 data subsets

it contains. In the third column of Table 4 we
see the BLiMP results for our various models. In
each case, the embeddings derived from our mul-
tiplex network improved the results over our base-
line ELECTRA-Tiny model trained on the 10M
dataset. This result is somewhat surprising in that
we had not expected concrete sensory information
to benefit an abstract task such a grammatical ac-
ceptability. Further, we noticed no similar effect
relative to the COLA task, the only grammatical
acceptability task conducted in the first experiment.
That said, we feel confident in claiming that our
models derive definite benefit from multi-modal
embeddings in a fine-tuning variation of BLiMP.

The results that we obtain for the various MSGS
tasks are less definitive. The results for the main
task are displayed in Table 4. None of our em-
beddings seem to have a significant effect, either
positive or negative, on model performance for the
main MSGS tasks. The only model that we trained
that showed a broad increase in performance was
the ELECTRA-Tiny model trained with the 100M
word dataset. When considered with our other re-
sults, this suggests that a model’s tendency to adopt
favorable inductive biases may primarily be a func-
tion of dataset size.

6 Conclusion

In this study, performed in response to the BabyLM
challenge, we have shown that small language mod-
els can be made more data efficient by enriching
their embeddings with sensory information. In par-
ticular, the embeddings derived from the Words
as Classifiers layer of our multiplex network im-
prove model performance on a variety of tasks from
GLUE, SuperGLUE and a version of BLiMP re-
cast as a fine-tuning task. Embeddings derived
from Lancaster Sensorimotor Norms likewise pro-
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vided useful information for the language models
that we evaluated on the BLiMP task, but were less
effective on the GLUE and SuperGLUE tasks. Our
results from the MSGS evaluations suggest that our
models don’t gain strong inductive biases toward
deep linguistic features as defined by the MSGS
task.

Limitations

Our choice to conduct our study on very small mod-
els means that our results cannot be assumed to gen-
eralize to much larger models. This of course limits
the applicability of the findings we have presented.
It also stands to reason that multimodal informa-
tion, like the kind we used to enrich our models,
could improve the performance of language models
trained on traditional large-scale datasets. Due to
the dataset restrictions of the BabyLM challenge,
this was also outside the scope of our study and is
left to future research.
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Abstract
In this paper, we describe the University of
Lyon 2 submission to the STRICT-SMALL track
of the BabyLM competition. The shared task
is created with an emphasis on small-scale lan-
guage modelling from scratch on limited-size
data and human language acquisition. Dataset
released for STRICT-SMALL track has 10M
words, which is comparable to children’s vo-
cabulary size. We approach the task with an
architecture search, minimizing masked lan-
guage modelling loss on the data of the shared
task. Having found an optimal configuration,
we introduce two small-size language models
(LMs) that were submitted for evaluation, a
4-layer encoder with 8 attention heads and a
6-layer decoder model with 12 heads which we
term Bebeshka and Zlata, respectively. Despite
being half the scale of the baseline LMs, our
proposed models achieve comparable perfor-
mance. We further explore the applicability of
small-scale language models in tasks involving
moral judgment, aligning their predictions with
human values. These findings highlight the po-
tential of compact LMs in addressing practical
language understanding tasks. We make our
code and models publicly available.1

1 Introduction

LMs accurately encode language-specific phenom-
ena required for natural language understanding
and generating coherent continuation of text. LMs
gain language understanding about morphosyn-
tax and grammar from large corpora during pre-
training. However, they demonstrate partial func-
tional linguistic competence when applying gram-
matical knowledge to novel expressions at infer-
ence time, which is caused by memorising the most
occurring linguistic patterns from the training cor-
pus and limited generalization ability of learnt lin-
guistic representations (Wu et al., 2022; Tucker
et al., 2022; Mahowald et al., 2023).

1https://github.com/upunaprosk/
small-language-models

Recent pre-training dynamics studies revealed
that the performance of LMs can be seen as a func-
tion of training corpus vocabulary: (1) grammatical
knowledge improves with the expansion of the pre-
training data vocabulary (van Schijndel et al., 2019)
and (2) small-scale LMs can perform on par with
RoBERTa if the vocabulary of used tokenizer is
close to the actual human and even child’s vocabu-
lary (Liu et al., 2019).

In this paper, we introduce small-scale LMs with
an architecture optimized for the STRICT-SMALL

track data of BabyLM competition (Warstadt et al.,
2023). Our objective is to estimate the general
performance and capabilities of shallow LMs in
downstream tasks beyond the ones suggested in
the evaluation pipeline of shared task. That was
achieved through two main contributions.
Contribution 1. We determine an optimal ar-
chitecture of encoder-based LMs using the Tree-
structured Parzen Estimator algorithm and minimal
perplexity as a minimizing objective function. Our
parameter search results suggest that optimal LMs
have a ratio of attention heads to layers around 2,
while the ratio of previously tested and existing
LMs at their base configuration is equal to one.
We introduce new small-scale LMs submitted to
the shared task: (i) 4-layer encoder Bebeshka2 and
(ii) 6-layer decoder Zlata.3 The parameters of the
models are presented in Table 1. Our LMs perform
on par with the shared task baselines, while they
are half the size of those.

Contribution 2. We investigate the alignment of
small-scale LMs predictions with shared human
values in the context of moral judgment tasks. We
find that shallow LMs, yet trained on limited cor-
pora, perform on par with base LMs in common-
sense morality scenarios, and, surprisingly outper-

2A word used to call a baby in a range of South and East
Slavic languages.

3From Zlato (“Golden sweetheart”) used to call babies in
West and East Slavic languages.
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Parameter RoBERTa Bebeshka GPT-2 Zlata

Pre-training objective MLM MLM CLM CLM
Vocabulary size 50K 8K 50K 30K

#Parameters 125M 16M 345M 66M
Positional embedding type absolute rel. key query absolute absolute
Maximum sequence length 512 128 1024 1024
(L, A, H , F ) (12, 12, 64, 3072) (4, 8, 70, 1412) (24, 16, 64, 4x 1024) (6, 12, 64, 4x 768)
Activation function GELU New GELU New GELU GELU
Dropout probability 0.1 0.15 0.1 0.2
Attention dropout 0.1 0.3 0.1 0.2

Processing 1024x V100 4x IPU-M2000 64x V100 4x IPU-M2000
Processing time 1 day 4h >30 days 6h
Epochs >40 10 >40 10

Table 1: Model configurations and pre-training details of Bebeshka and Zlata LMs compared to RoBERTa-base and
GPT-2 medium. Our LMs have configurations of optimal architecture determined with an architecture search (§3.2).
GPT-2 official training information has not been publicly disclosed; we report GPT-2 pre-training hardware details
when using model parallelism specified by Shoeybi et al., 2019. We use Graphcore Intelligence Processing Units
(IPUs) for pre-training our LMs (Jia et al., 2019 provide a detailed review on IPUs). MLM=Masked Language
modelling, CLM=Causal Language modelling, L=Layers, A=Attention heads, H=Hidden size per head, F=Feed-
forward (intermediary) layer size.

forming existing baselines in such tasks as virtue
and justice assessment. To the best of our knowl-
edge, our work represents one of the earliest at-
tempts to investigate how predictions made by tiny
language models trained on a developmentally plau-
sible corpus correlate with human-shared values.

This paper has the following structure. After
a short section dedicated to related work (§2),
we first describe tokenizer training (§3.1), archi-
tecture search results and optimal model selec-
tion (§3.2), and the final architecture of the pre-
trained LMs (§3.3). Then, we present scores on
datasets included in the shared task (§4), and we
present ethics evaluation results (§5).

2 Related Work

Recent large LMs found applications in many NLP
tasks, such as grammatical correction, text com-
pletion, and question answering; yet, their usage
is constrained by their computational cost. Pre-
vious works reduce the model size and inference
time with knowledge distillation, parameter quan-
tization and other compression techniques (Sanh
et al., 2019; Yao et al., 2021; Tao et al., 2022).
Other studies investigated the relationship between
model parameter count and performance. Kaplan
et al., 2020 has introduced scaling laws, showing
the power-law dependency between perplexity and
the model size, as well as between the training loss
and dataset size. The paradigm of scaling laws
further formed the basis for recent research exam-
ining the behaviour of LMs at a small scale (Fedus

et al., 2022; Fu et al., 2023). For instance, Puvis de
Chavannes et al., 2021 presented results of Neu-
ral Architecture Search in limited parameter space,
suggesting that optimal LMs are smaller than the
existing base configurations.

In parallel, there is numerous research focusing
on the efficiency of dataset size, vocabulary and
representation that can help to reduce computation
cost by minimizing the training steps (van Schijn-
del et al., 2019; Huebner et al., 2021; Schick and
Schütze, 2021; Warstadt and Bowman, 2022). van
Schijndel et al., 2019 have demonstrated that LMs
trained on a small-volume corpus can reach human
performance under some grammatical knowledge
evaluation scenarios, questioning the necessity of
large datasets for pre-training. Huebner et al., 2021
introduced a small encoder-based LM BabyBERTa
with 5M parameters and showcased the efficiency
of small training data; that work bridged the gap
between earlier studies on model size reduction and
optimal data size.

The aforementioned related works mainly anal-
yse the difference between compact LMs and their
larger counterparts with throughput time measures
and performance on GLUE benchmark (Wang
et al., 2018). In this paper, we evaluate LMs at
a small scale trained on a 10M size dataset of
BabyLM shared tasks and try to complement ex-
isting research with additional evaluation on moral
judgment tasks. The decision to focus on the moral
judgment task is driven by recent studies that reveal
human-like biases in the moral acceptability judg-
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ments made by large language models trained on
extensive corpora (Schramowski et al., 2022). This
paper complements existing research by conduct-
ing a moral judgment evaluation for small language
models.

3 Methodology

We follow pre-training tasks of RoBERTa (Liu
et al., 2019) and GPT-2 (Radford et al., 2019)
and refer to these as the architecture baselines in
this section. We train Bebeshka4 and Zlata5 with
masked language and causal language modelling
objectives, respectively, and compare their vocabu-
laries and architectures with the baselines.

3.1 Vocabulary
Training Data We use data provided within the
STRICT-SMALL track of the shared task. We re-
port statistics of the training corpus in Table 6 (Ap-
pendix A). The transcribed speech, extracted from
recordings of casual speech addressed to children
and educational movie subtitles, makes up the bulk
of the corpus. The average length of the texts is
around 30 tokens; considering that and the maxi-
mum text length, we lower the maximum sequence
length from the base 512 to 128 tokens for the
configuration of our LMs.

Input Representation We follow tokenization
models of the baselines (GPT-2, RoBERTa) and
BabyBERTa (Huebner et al., 2021) and use byte-
level Byte-Pair Encoding (BPE) algorithm (Sen-
nrich et al., 2016); that is, a tokenization method
based on iterative merging of the most occurring
bytes pairs in a further shared vocabulary. For the
encoder Bebeshka, we build a case-insensitive vo-
cabulary6 of size 8K. We find a few mismatches
between Bebeshka and RoBERTa tokenization and
provide more details in Appendix B. The decoder
Zlata has a 30K vocabulary constructed with de-
fault parameter settings of Tokenizers trainer;7 that
value also allows for bypassing the inclusion of ono-
matopoeic words that prevail in some transcribed
texts of the shared task data.

3.2 Model Selection
To determine an optimal configuration of encoder
LM, we use an Optuna-implemented Bayesian op-

4https://huggingface.co/iproskurina/bebeshka
5https://huggingface.co/iproskurina/zlata
6We use BPE implementation available under Hugging-

Face Tokenizers library (Moi and Patry, 2023).
7https://github.com/huggingface/tokenizers

timization algorithm (Akiba et al., 2019) and tune
parameters listed in Table 2 that determine the ar-
chitecture. The upper bounds of the numerical pa-
rameters in a search space are chosen in accordance
with the base RoBERTa configuration. We set the
lower bounds to 1, ensuring a thorough exploration
of architectural variations to find the optimal con-
figuration for the masked language modelling task.
Optuna features efficient implementation of opti-
mization algorithms; in our optimization study, we
use a standard Tree-structured Parzen Estimator
(TPE) algorithm, which uses tree-structured repre-
sentations and Parzen windows for modelling the
probability distributions of hyper-parameters and
their density estimation. We use TPE to sample
parameter values from the search space and an au-
tomated early-stopping based on pruning runs with
an intermediary perplexity higher than the median
of preceding runs.

We set masked language modelling loss (perplex-
ity) of RoBERTa initialized with the TPE sampled
configuration parameters as a minimizing objec-
tive function. The perplexity is calculated on the
STRICT-SMALL validation set after training the
model for 10 epochs on written English texts sam-
ple (Gutenberg and Children’s Book Test corpora
and Wikipedia) from the training BabyLM corpus
(see Table 6). We choose a corpus sample to re-
duce parameter search executing time since dataset
size directly impacts an LM training time at each
optimization step. We manually found that training
on written texts yields a better score. Optimization
study with an upper bound of 100 trial runs ran for
roughly two days on a single A100 GPU.

Table 2 reports parameter search results for the
best and worst runs according to perplexity on the
validation dataset.

The optimal configuration for encoder LMs
can be summarized as follows: (1) the ratio of the
number of attention heads to the number of layers
fluctuates within the 1.5-2 range, (2) employing rel-
ative key query type positional embeddings, (3) the
dropping ratio 0.3 for attention probabilities. We
further use these three key configuration attributes
to initialize Bebeshka. Parameters other than po-
sitional embeddings type, dropout ratio and the
number of layers/heads vary significantly across
the top 10% runs. Precisely, all types of activation
functions, except for ReLU, appear evenly in the
best range. When it comes to the hidden size per
head, it takes values from 65 to 85, with a mean
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Parameter Search range 10% Best runs Mean 10% Worst runs Mean

Positional embedding type (rel. key, rel. key query, absolute) rel. key query absolute
# Hidden layers [1-12] 6.2 10.9
# Attention heads [1-18] 11.9 7.1
Hidden size per head [1-100] 81.6 64.1
Feed-forward layer size [1-3072] 1446.3 2034.5
Activation function (New GELU, GELU, SiLU, ReLU) New GELU ReLU
Dropout probability [0.1-1.0] 0.16 0.63
Attention dropout [0.1-1.0] 0.33 0.70

Avg. perplexity - 24.53 992.27

Table 2: Parameter search space of Optuna study for pre-training encoder LMs on STRICT-SMALL corpus and mean
parameter values across 10 best and worst runs sorted by the perplexity. For non-numerical parameters, we report
the most common parameter values among study runs.

Model Loss Run time
Val Test Val Test

MLM

RoBERTa (125M) 3.72 4.42 1519 1592
Bebeshka (16M) 3.54 4.30 485 649

CLM

OPT (125M) 7.11 7.10 1493 1567
Zlata (66M) 4.64 4.69 831 869

Table 3: Pre-training objective loss on validation and
test data of Bebeshka and Zlata compared to baseline
models and average run time in seconds. We run an
evaluation of all LMs on the same V100 GPU and use
Hugging Face Trainer API for calculating the scores.
The best score is in bold, and the second-best score is
underlined.

of 81.6. We also observe a notable deviation of
intermediary size from the mean value. Altogether
our results show that the best-performing encoder
LMs are smaller than the base configuration of
RoBERTa, which aligns with Puvis de Chavannes
et al., 2021.

3.3 Model Pre-training

We train our models on 4 Graphcore IPUs with
two encoder layers trained on each with mixed
precision8 and use STRICT-SMALL training split.
Table 1 shows the configuration settings of our
LMs.

Bebeshka The 16M parameters model is based
on RoBERTa architecture with determined optimal
layer sizes (§3.2). We train Bebeshka on the 10M
training corpus of the shared task. We decrease
the probability for selecting masked tokens from
standard 15% to 13.5%, which is one of the equiv-
alents to set RoBERTa unmasking probability to 0
discussed by Huebner et al., 2021.

8https://www.graphcore.ai/products/ipu

Zlata That decoder LM is a light 66M version of
GPT-2 with 6 layers trained for 10 epochs on the
training STRICT-SMALL data. Motivated by the
configuration of the best encoder LM, we use the
ratio of attention heads to decoder layers equal to
2. We explain parameter choice in Appendix C.

4 Experiments Results

In this section, we report the results submitted for
the BabyLM shared task. LMs discussed in this
section are pre-trained on the shared task data, in-
cluding the baselines. We use baselines that were
created with existing tokenizers and released by the
organizers of the BabyLM competition.9

4.1 Pre-training Objective Loss
We present the evaluation results of our LMs in Ta-
ble 3, where we compare their performance against
the shared task baselines and evaluation runtime.
While the baselines were trained for 20 epochs, we
can observe competitive results by pre-training our
small-scale models for ten epochs. One of the main
advantages of the introduced models lies in their
compact size, which makes them more efficient at
inference time, even though they do not outperform
the baselines by a large margin, which can be seen
from the average run time.

4.2 Linguistic Minimal Pairs
Figure 1 depicts the evaluation results of our LMs
on the BLiMP dataset (Warstadt et al., 2020a) in a
zero-shot setting. The goal of this evaluation bench-
mark is to assess a model’s ability to distinguish be-
tween grammatically acceptable and unacceptable
sentences without specific fine-tuning on the task.
The dataset consists of minimal pairs annotated

9We also report scores for the version of the model trained
with full precision weights, which we dub Bebeshka-2. How-
ever, we do not discuss those since they were submitted after
the leaderboard release.
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Model CoLA SST-2 MRPC QQP MNLI MNLImm QNLI RTE BoolQ MultiRC WSC
MCC Acc. F1 F1 Acc. Acc. Acc. Acc. Acc. Acc. Acc.

OPT 15.2 81.9 72.5 60.4 57.6 60.0 61.5 60.0 63.3 55.2 60.2
RoBERTa 25.8 87.0 79.2 73.7 73.2 74.0 77.0 61.6 66.3 61.4 61.4
T5 11.3 78.1 80.5 66.2 48.0 50.3 62.0 49.4 66.0 47.1 61.4

Bebeshka 0.11 81.3 73.5 66.4 58.7 62.0 59.0 45.4 63.9 48.7 61.4
Zlata 0.05 81.7 77.6 65.9 61.9 63.9 61.7 56.6 65.3 53.8 61.5

Bebeshka-2 24.5 83.5 77.7 77.3 65.4 66.9 64.0 56.6 60.2 46.9 61.4

Table 4: Evaluation results on GLUE and SuperGLUE (BoolQ, MultiRC, WSC) benchmark datasets. We report
metrics suggested in the shared task evaluation pipeline and baselines. The best score is in bold, and the second-best
score is underlined.
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RoBERTa

T5

Bebeshka

Zlata

0.64 0.71 0.67 0.67 0.79 0.62 0.64 0.68 0.49 0.47 0.60 0.57

0.81 0.67 0.67 0.68 0.91 0.76 0.64 0.87 0.40 0.56 0.70 0.65

0.69 0.64 0.60 0.61 0.72 0.34 0.48 0.78 0.46 0.48 0.61 0.65

0.52 0.57 0.61 0.57 0.58 0.38 0.65 0.84 0.45 0.39 0.50 0.53

0.72 0.68 0.67 0.62 0.80 0.49 0.65 0.92 0.40 0.50 0.66 0.60

Figure 1: Accuracy on BLiMP tasks of our LMs with
RoBERTa-base, OPT-125M, and T5-base baselines.
The lighter colours correspond to greater accuracy and,
hence, better scores. Morphology: Anaphor Agr., D-N
Agr., Irregular Forms, S-V Agr.. Semantics: NPI Li-
censing, Quantifiers. Syntax-Semantics:Binding, Con-
trol/Raising. The rest phenomena correspond to the
Syntax category.

with a grammatical phenomenon. We report de-
tailed LMs accuracy scores across various BLiMP
tasks in Table 7 (Appendix D). The general trend
is that LMs trained on BabyLM data perform well
on minimal pairs with morphological tasks, such as
Irregular Forms and Determiner-Noun Agreement.

Zlata achieves the best accuracy (92.1%) on Ir-
regular Forms and outperforms OPT-125M base-
line on some morphological tasks (Anaphor Agree-
ment, Subject-Verb Agreement), minimal pairs with
a violation in phrasal movements (Filler Gap) and
other tasks, such as NPI Licensing. Bebeshka
achieves the second-best accuracy (64.7%) on
Filler Gap minimal pairs and distinguishes sen-
tences with syntactic errors in pronoun and its an-
tecedent relationship or syntactic islands (Binding,
Island Effects). The results show that LMs trained
on the BabyLM corpus have syntactic and mor-
phology understanding which influences their be-
haviour on downstream tasks discussed next.

4.3 GLUE

Table 4 shows results of fine-tuned LMs evaluation
on a variety of tasks present in GLUE and Super-
GLUE benchmarks.10 Submitted to the shared task,
Bebeshka and Zlata were fine-tuned for ten epochs
on most of the tasks (see Appendix C for more
detail). The overall trend is that the introduced
small-scale encoder Bebeshka and decoder Zlata
demonstrate scores comparable with large baseline
LMs on downstream tasks. That highlights that
LMs at a small scale can quickly adapt to the fine-
tuning task, though may achieve lower performance
in a zero-shot evaluation on BliMP. When compar-
ing decoder LMs, we observe that the introduced
Zlata outperforms OPT-baseline on paraphrase de-
tection (MRPC & QQP), entailment/contradiction
detection (MNLI), and question answering (BoolQ)
downstream tasks. As for the encoder LMs, the
encoder Bebeshka has moderate scores compared
to RoBERTa, which, in general, achieves the best
scores on GLUE. However, Bebeshka outperforms
OPT-125M baseline on QQP and MRPC tasks with
F1 scores of 73.5% and 66.4%, respectively.

The most difficult task for shallow LMs seems to
be Recognizing Textual Entailment (RTE). We sup-
pose that LMs trained on STRICT-SMALL corpus
with an average length of 28.65 tokens (Table 6,
Appendix D) or restricted to the 128 maximum se-
quence length, can perform well on datasets with
short sequences and contexts, which can explain
lower results on some fine-tuned tasks; another is-
sue can be the fine-tuning hyper-parameters search:
perhaps, shallow LMs require more epochs to im-
prove the submitted scores.

10Provided datasets within the shared task were filtered ac-
cording to the vocabulary of BabyLM STRICT-SMALL corpus.
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Model Justice Deontology Virtue Utilitarianism Commonsense

RoBERTa-large (355M) 56.7 60.3 53.0 79.5 90.4
GPT-3 few-shot (175B) 15.2 15.9 18.2 73.7 73.3

Bebeshka (16M) 64.6 71.4 74.1 69.0 -
Zlata few-shot (66M) 50.7 49.6 72.0 50.3 53.3

Table 5: Accuracy scores on ETHICS benchmark. LMs trained on STRICT-SMALL corpus reach results close to
the large model baselines reported by Hendrycks et al., 2020. We do not report results for the fine-tuning tasks which
require the maximum sequence length exceeding the one of an LM. The best score is in bold, and the second-best
score is underlined.

4.4 Mixed Signals Generalization

The MSGS dataset introduced by (Warstadt et al.,
2020b) comprises 20 binary classification tasks
and is used to test whether a LM has a prefer-
ence for linguistic or surface generalizations. The
evaluation pipeline of the shared task includes
11 MSGS tasks; we report obtained accuracy
scores for the fine-tuned LMs in Table 8 (Ap-
pendix D). The Matthew’s Correlation Coefficient
(MCC; Matthews, 1975) scores suggest that all
LMs fine-tuned in a controlled setting show better
results (>0.9) than those fine-tuned in an ambigu-
ous scenario, with the only exception for Control
Raising category; the highest scores are achieved
on Lexical content and Relative position tasks. Lex-
ical Content is a task of classifying sentences with
“the” (the mouse vs a mouse) when Relative Po-
sition is a task of determining whether “the” pre-
cedes “a” in a sentence. Decoder LMs perform
similarly on MSGS tasks chosen for the BabyLM
competition, excluding Syntactic Category-Lexical
Content (SC-LC) classification task, where SC is
a task of detecting sentences with adjectives. A
decoder LM Zlata seems to adopt surface gener-
alization during fine-tuning on unambiguous data
(SC-LC), whereby the baseline model OPT learns
to represent linguistic features. Bebeshka behaves
likewise on the Syntactic Category task and reaches
scores close to RoBERTa on Lexical Content and
Main Verb classification problems, suggesting that
Bebeshka tends to encode surface features.

4.5 Age of Acquisition

Portelance et al., 2023 introduced a method for
measuring the age-of-acquisition in LMs compared
to the actual age-of-acquisition by English Ameri-
can children on words set from the CHILDES cor-
pus. Table 9 (Appendix D) illustrates that deviation
measured in months for the introduced and baseline

LMs. The models Zlata and Bebeshka demonstrate
comparable scores to the baselines.

5 Moral Judgments

In this section, we present the results of additional
experiments on moral judgements that we conduct
outside of the main shared task evaluation.

We evaluate small-scale LM’s understanding of
fundamental moral principles in various scenar-
ios covered by ETHICS benchmark (Hendrycks
et al., 2020). The benchmark consists of 5 moral-
ity judgment tasks, including reasonable and fair
justice, virtue responses, permitted behaviour de-
pending on context-specified constraints (deontol-
ogy ethics), pleasant scenario choice (utilitarianism
ethics), and commonsense morality. We grid search
hyper-parameters for our LMs and use test splits for
further evaluation. We fine-tune Bebeshka for ten
epochs on each of the tasks and evaluate Zlata in a
few-shot setting (see more details in Appendix C).
Table 5 outlines the moral judgements classifica-
tion results. Our small LMs generally outperform
existing baselines with respect to accuracy scores
on sentence-level tasks, and the best results are
achieved on Virtue moral judgements.

We suggest that the efficiency of small LMs
in these tasks can be explained by some prop-
erties of pre-training data, such as lower mean
sequence length, transcribed speech prevalence
with single-word reactions or responses, children-
directed speech, and imperatives. For example,
Virtue task is a collection of scenario-trait pairs,
such as “Jordan will never do harm to his friends.
<sep> caring”, which have a structure similar to
one-word responses in transcribed dialogues.

6 Conclusion and Future Work

In this paper, we present our results for the STRICT-
SMALL track of the BabyLM competition. Our
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submission to the shared task consists of two LMs,
namely encoder Bebeshka and decoder Zlata. We
first search for an optimal architecture, minimiz-
ing perplexity on the released training corpus, and
find that the best models have around 6 encoder
layers on average, down from 12 layers of exist-
ing base models, and have twice as many atten-
tion heads. When the number of encoder layers
fluctuates among the best models, we find that
they all have an attention-heads-to-layers ratio of
two, which we further use for building our LMs.
Our final LMs, which are scaled-down versions
of RoBERTa and GPT-2 with a total of 16M and
66M parameters, perform better than the baseline
LMs on development and test BabyLM corpora.
Zero-shot evaluation results suggest that our shal-
low LMs have some basic grammatical knowledge
of language syntax and morphology. The intro-
duced LMs also perform better than OPT model
on several downstream tasks when having 2 times
fewer parameters. We also observe a good per-
formance of our small LMs in a range of ethics
judgment tasks, showing that their vocabulary and
after-training knowledge can positively contribute
to the morality assessment of the described scenar-
ios. These results can serve as baselines for the
evaluation of ethical judgment capabilities in small
language models. The achieved scores may be at-
tributed to the interplay between ethical and linguis-
tic rules, particularly in encoding action verbs used
to describe moral and immoral behaviour. This
aspect can be further explored by examining the
usage of verbs in various syntactic contexts within
the BabyLM corpus and their encoding by trained
language models.

In our future work, we plan to determine more
capabilities of small LMs, trained on small-size cor-
pora, such as short stories data containing words
only 4-year-old children can understand (Eldan and
Li, 2023). We also plan to extend our experiments
with an analysis of fine-tuning dynamics to investi-
gate how small models adapt to the tasks.

Limitations

Despite achieving good performance on BabyLM
test data, our approach has some limitations. We
use a variant of Bayesian optimization (TPE algo-
rithm, §3.2) to find an optimal range of parame-
ters that we further use for building our LMs. We
predefine constraints for parameters (Table 2) that
narrows down the search space and can influence

further parameter distributions built with Parzen
(kernel density) estimators and, thus, future candi-
date selection. Future work can benefit from both
expanded search space and parameter limits range.
The architecture of our small language models, in-
cluding the number of layers, heads, and hidden
layer size, can serve as a minimum lower bound
for the parameter search space.
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A Experimental Framework

Dataset # Sentences Avg. length∗ Questions (Proportion) Proportion

CHILDES 64258 7.17 39% 5%
British National Corpus (BNC) 66100 16.06 17% 8%
Children’s Book Test 25946 25.49 3% 6%
Children’s Stories Text Corpus 5569 60.58 1% 3%
Standardized Project Gutenberg Corpus 90402 16.22 0% 10%
OpenSubtitles 417984 9.94 17% 31%
QCRI Educational Domain Corpus 91904 16.38 0% 11%
Wikipedia 40876 51.28 0% 10%
Simple Wikipedia 9938 14.57 6% 15%
Switchboard Dialog Act Corpus 5569 60.58 0% 1%

Total 832274 28.65 13.1% 100%

Table 6: Statistics of the training corpus offered in the STRICT-SMALL track of BabyLM competition. ∗= Average
tokenized text length.

B Tokenization Tests

We compare the tokenization of Bebeshka and RoBERTa on the corpus of STRICT-SMALL track and find
that the tokenization coincides on 87% of the sequences. We manually analyse a random sample of 100
non-matching tokenization cases and find that those fall on transcribed speech sentences with no more
than three words or include two words missing in RoBERTa vocabulary but processed as a whole word by
Bebeshka LM (sweetie and duke). We also found that the RoBERTa tokenizer splits non-capitalised first
names or other terms used for addressing (th-omas, m-ister, mom-my) opposed to Bebeshka.

C Training Details

C.1 Pre-training parameters
We experimented with the same configuration for our decoder LM Zlata as we used for Bebeshka,
including 4 layers and the same type of positional embeddings; however, that always resulted in gradients
underflow and that loss was not decreasing. We manually found the 6-layer and absolute positional
embedding configurations by increasing and traversing values of the parameters that were grid searched
for Bebeshka (Table 2). We pre-train our LMs using 4x IPUs freely available in Paperspace11 and use
IPU Trainer API. We use auto-loss scaling with an initial value of 16384 and half-precision for training
our LMs. Training with IPUs requires specifying IPU configuration, containing instructions for mapping
layers between the devices; for Bebeshka, we use one layer per IPU, and for Zlata, we use that parameter
equal to 2. For both LMs, we use per-device training batch size equal to 1 and gradient accumulation
steps equal to 64. Each batch consists of 1,000 concatenated data examples from the training corpus. The
time for the computational graph construction took under 10 minutes for both training both LMs.

C.2 Fine-tuning parameters
BabyLM Evaluation For Bebeshka fine-tuning, we use parameters used by default in the evaluation
pipeline of the competition, that is, learning rate equal to 5e-5, batch size equal to 64, and maximum
epochs equal to 10. For Zlata fine-tuning, we use the learning rate equal to 1e-4 and fine-tune the tasks
for 5 epochs. That allowed us to reduce fine-tuning time. Note that the performance of our LMs can be
improved upon the submitted results if grid search the optimal hyper-parameters.

Moral Judgement We use a weighted loss for fine-tuning Bebeshka and grid search optimal parameters
using an official implementation by the authors of the dataset.12 For our GPT-2 based model Zlata, we use
an existing evaluation harness benchmark in the k-shot setting with k equal to 15.13

11https://www.paperspace.com
12https://github.com/hendrycks/ethics
13https://github.com/EleutherAI/lm-evaluation-harness/

67

https://www.paperspace.com
https://github.com/hendrycks/ethics
https://github.com/EleutherAI/lm-evaluation-harness/


D Evaluation Results

Model An
ap

ho
r A

gr
.

Ar
g.

St
ru

ct
ur

e

Bi
nd

in
g

Co
nt

ro
l/R

ai
sin

g

D-
N

Ag
r.

El
lip

sis

Fi
lle

r-G
ap

Ir
re

gu
la

r F
or

m
s

Is
la

nd
Ef

fe
ct

s

NP
I L

ice
ns

in
g

Q
ua

nt
ifi

er
s

S-
V

Ag
r.

OPT-125M 63.8 70.6 67.1 66.5 78.5 62.0 63.8 67.5 48.6 46.7 59.6 56.9
RoBERTa-base 81.5 67.1 67.3 67.9 90.8 76.4 63.5 87.4 39.9 55.9 70.5 65.4
T5-base 68.9 63.8 60.4 60.9 72.2 34.4 48.2 77.6 45.6 47.8 61.2 65.0

Bebeshka 52.0 57.3 61.5 56.8 58.0 37.9 64.7 84.5 44.8 39.2 49.7 53.2
Zlata 72.0 68.1 66.9 61.7 80.0 48.6 65.4 92.1 40.3 50.4 66.4 60.3

Bebeshka-2 77.7 60.2 68.0 56.2 87.4 68.8 64.7 92.8 37.0 45.1 70.2 60.5

Table 7: Model evaluation results on BLiMP dataset. The scores show the model’s accuracy in distinguishing
between the grammatical and ungrammatical sentences within each minimal pair. The best score is in bold, and the
second-best score is underlined.

Model CR LC MV RP SC CR LC CR RTP MV LC MV RTP SC LC SC RP

Control Ambiguous

OPT 50.8 53.6 99.5 99.9 77.2 0.4 -70.3 -72.1 -77.6 13.8 -68.9
RoBERTa 43.1 100.0 97.7 76.7 86.2 -28.3 -77.7 -99.3 -79.4 16.3 -45.0
T5 21.1 100.0 33.4 82.5 77.6 -78.3 -62.0 -100.0 -79.7 -25.3 -39.4

Bebeshka 13.0 100.0 97.0 72.0 41.0 -95.0 -63.0 -100.0 -66.0 -58.0 -62.0
Zlata 37.0 79.0 90.0 87.0 64.0 -9.0 -85.0 -70.0 -94.0 -58.0 -39.0

Bebeshka-2 49.4 100.0 98.2 88.3 61.5 -28.9 -80.4 -100.0 -40.8 -57.2 -46.4

Table 8: Model evaluation results: Matthews Correlation Coefficient (MCC) on the synthetic MSGS dataset,
multiplied by 100. CR=Control Raising, LC=Lexical Content, MV=Main Verb, RP=Relative Position, SC=Syntactic
Category, RTP=Relative Token Position. Control columns correspond to the control experiments when an LM is
trained to classify sentences with certain linguistic and surface features. Ambiguous correspond to the experiments
when an LM is tested on a single-feature dataset (for example, LC) after training on a set with labels consistent
across both linguistic and surface features (SC LC). The highest score is in bold, and the second-highest score is
underlined.

Model Overall (591 words) Nouns (322) Predicates (167) Function words (102)

OPT-125M 2.03 1.98 1.81 2.57
RoBERTa-base 2.06 1.99 1.85 2.65
T5-base 2.04 1.97 1.82 2.64

Bebeshka 2.06 1.98 1.84 2.66
Zlata 2.07 1.99 1.83 2.67

Table 9: Age-of-acquisition (AoA) predictions on child-directed utterances from CHILDES data. The scores are
Mean Absolute Deviation scores in months between the actual average AoA of the words by American English-
speaking children and model predicted AoA, measured as a likelihood of the words’ usage across all the contexts
(surprisal scores). The lower the MAD scores, the better. Top-5 words with the highest surprisal scores for LMs:
Zlata: snowsuit, applesauce, lawn mower, sprinkler, tricycle; Bebeshka: snowsuit, hen, turkey, belt, lamb.

68



Proceedings of the 27th Conference on Computational Natural Language Learning:
Volume 2: The BabyLM Challenge, pages 69–73

December 6-7, 2023 ©2023 Association for Computational Linguistics

Grammar induction pretraining for language modeling in low resource
contexts

Xuanda Chen and Eva Portelance∗
Department of Linguistics, McGill University
Mila - Quebec Artificial Intelligence Institute

Abstract

In the context of the BabyLM challenge, we
present a language model which uses pretrained
embeddings from a grammar induction model
as its first layer. We compare it to one of the
challenge’s baseline models and a minimally
different baseline which uses random embed-
dings. We find that though our model shows
improvement over the challenge’s baseline, the
model with randomly initialized embeddings
performs equally well. Our results suggest
that it is not the pretrained embeddings which
aided performance, but likely our tokenizer and
choice of hyperparameters.

1 Introduction

The BabyLM Challenge (Warstadt et al., 2023)’s
goal is to develop language models and training
pipelines that can learn reasonable linguistic repre-
sentations for downstream language modeling task
using much more constrained datasets. With this
goal in mind, we hypothesized that giving mod-
els additional information about syntactic structure
may help them learn more generalizable represen-
tations of language. As part of the strict track of the
challenge, we were not allowed to give additional
syntactic labels as part of our training data, so in-
stead we propose to first induce a compound prob-
abilistic context-free grammar (compound-PCFG)
over the data using a neural grammar induction
model (Kim et al., 2019). There are many ways we
can then integrate this syntactic information into
a language model. Here, we test a simple method:
we initialize a language model using the terminal
token embeddings of a trained grammar induction
model as its embedding layer. We test the effec-
tiveness of this method on the BabyLM strict-small
challenge.1

∗Corresponding author: eva.portelance@mcgill.ca
1All code for this project is available in this github reposi-

tory. The trained models and preprocessed data can be down-
loaded from this OSF Project repositorythis Open Science
Framework (OSF) project repository.

2 Data and preprocessing

In the experiments which follow, we use the 10
Million word BabyLM task dataset (the strict track
small dataset) to train our language models. Prior to
training, we preprocessed the dataset to remove any
blank lines or unecessary formatting punctuation
(e.g. ‘== Title ==’ became ’Title’). Additionally,
we split paragraphs such that each new line repre-
sented a single sentence and removed any sentence
that was longer than 40 words.

2.1 Grammar induction data

Since grammar induction algorithms can be quite
memory intensive, we use a subset of the 10M
BabyLM dataset to train our grammar induction
model. We randomly sampled a tenth of the sen-
tences from the corpus, resulting is a smaller gram-
mar induction dataset containing 991,510 words.

2.2 Tokenizer

We trained a custom tokenizer on the 10M BabyLM
dataset. To guarantee coverage we created a tok-
enizer that produces both subwords and word-level
tokens. Since previous grammar induction models
used word-level tokens, we wanted to maximize the
number of word-level tokens and keep subwords
and character tokens to only a limited necessary
number. We therefore trained a tokenizer using
the WordPiece algorithm with a vocabulary size of
10,000 and a maximum alphabet of 72 tokens.

3 Models

3.1 Grammar induction model

We first trained a compound-PCFG grammar (Kim
et al., 2019) over our subset of the BabyLM small
corpus described above. PCFG embeddings are
trained to encode terminal rule information, e.g.,
reflecting syntactic categories in grammar, which
could further improve model’s language under-
standing ability. We used our tokenizer to split
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Table 1: Overall mean performance on each benchmark

benchmark baseline baseline-
token

grammar

BLiMP 62.63 64.78 64.44
BLiMP suppl. 54.72 54.66 54.88
SuperGLUE 63.38 68.21 67.93
MSGS 69.22 67.45 68.08

sentences into tokens and then induced trees over
the corpus2. During learning, the model induces
embedding representations for the grammar rules
and terminals, where the terminals are the token
embeddings.3

Once the grammar is induced, we extract the
token embedding layer of the grammar and use it
as the initial embedding layer for an OPT-125m-
like 4 language model with a vocabulary size of
10,000 5. We then trained this language model on
next token prediction using the full BabyLM 10M
dataset. The embedding layer is trained with other
layers and not frozen during training. We will refer
to this model as the grammar model in the sections
which follow.

3.2 Baseline models
We compare our model results to the OPT-125m
baseline model supplied by the BabyLM challenge
(baseline) and to a baseline OPT-125m language
model that we trained using our tokenizer and
randomly initialized embeddings (baseline-token),
thus using a vocabulary size of 10,000 tokens.
Baseline-token has the exact same hyperparameters
as our grammar model and only differs in terms of
its initial embeddings, here random ones.

4 Results

Results for the baseline model were taken directly
from the BabyLM evaluation pipeline project page
(github.com/babylm/evaluation-pipeline).
For the baseline-token and grammar models, these
were trained for 3 epochs and tested on validation
accuracy every 100,000 sentences; we report the
best models found during training based on next
token prediction on the validation dataset.

2See Appendix D for example induced parses
3Hyperparameters for the grammar induction model are

reported in Appendix A.
4We refer to these models as as OPT-125M-like since they

minimally vary from this baseline, however since their vocab-
ulary size is 10,000, they in fact have 94M parameters.

510,000 was the original vocabulary size used in Kim et al.
(2019). Since we did not do hyperparameter search over the
grammar induction model, we followed their ideal settings.

We tested all models on the BabyLM evaluation
tasks, which included the Benchmark of Linguistic
Minimal Pairs (BLiMP) (Warstadt et al., 2020a),
a custom supplementary set of BLiMP-like tasks,
‘Super’ benchmark for General Language Under-
standing Evaluation (SuperGLUE) (Wang et al.,
2019), and the Mixed Signals Generalization Set
evaluation (MSGS) (Warstadt et al., 2020b). Re-
sults are reported in Table 1. The complete perfor-
mance results by individual task are presented in
Tables 4-7 in Appendix C.

The baseline-token and grammar models gener-
ally do better than the baseline on all benchmarks
except MSGS, where they perform slightly worse.
Overall, the gains in performance are small, though
the baseline-token and grammar do seem to do
quite a lot better on the SuperGLUE benchmark
than the baseline in particular. Importantly, we
do not find that the grammar model performs bet-
ter than the baseline-token model, suggesting the
the addition of our pretrained embeddings did not
help the model perform better on the evaluation
pipeline.

5 Discussion

Though our grammar model did do better overall
than the BabyLM OPT-125m baseline, when we
compared it to our baseline-token model, we did
not find that initializing the model with pretrained
grammar induction embeddings helped perfomance
overall. Instead, it may be our tokenizer and
choice of hyperparameters which helped improve
performance between the baseline and baseline-
token/grammar models.

Simply using the terminal embedding layer of a
grammar induction model to initialize a language
model is not be the most effective way to encode
syntactic information into the model. In future
work, we would like to consider other methods
for combining these two types of models, like en-
riching the training set with copies of induced con-
stituents or more complex architectural modifica-
tion to condition recurrent states with rule embed-
dings representing the syntactic rules applied to
generate a sub-string at each state.

References
Yoon Kim, Chris Dyer, and Alexander Rush. 2019.

Compound probabilistic context-free grammars for
grammar induction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational

70

https://github.com/babylm/evaluation-pipeline
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/P19-1228


Linguistics, pages 2369–2385, Florence, Italy. Asso-
ciation for Computational Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Alex Warstadt, Leshem Choshen, Ryan Cotterell, Tal
Linzen, Aaron Mueller, Ethan Wilcox, Williams Ad-
ina, and Chengxu Zhuang. 2023. Findings of the
BabyLM Challenge: Sample-efficient pretraining on
developmentally plausible corpora. In Proceedings
of the BabyLM Challenge. Association for Computa-
tional Linguistics (ACL).

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020a. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the
Association for Computational Linguistics, 8:377–
392.

Alex Warstadt, Yian Zhang, Xiaocheng Li, Haokun Liu,
and Samuel R. Bowman. 2020b. Learning which
features matter: RoBERTa acquires a preference for
linguistic generalizations (eventually). In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
217–235, Online. Association for Computational Lin-
guistics.

A Hyperparameters for Grammar
Induction

Table 2: Hyper-parameter setting for grammar induc-
tion

parameters values
latent dimension 64
number of preterminal states 60
number of nonterminal states 30
symbol embedding dimension 256
hidden dim for variational LSTM 768
word embedding dim 768
sentence max length 40
vocab size 10000
number of epochs 15
batch size 5
learning rate 1e-4
random seed 1213

B Hyperparameters for OPT language
models

Table 3: Hyper-parameter setting for language model-
ing

parameters values
embedding size 10000
number of epochs 3
batch size 20
learning rate 1e-4
warm-up steps 2000
gradient clipping threshold 3
max grad norm for gradient clipping 1.0
random seed 527

Table 4: Compute resources for language modeling

parameters values
Device A100
Memory 32G of GPU memory
Training time 12 hours

C Complete evaluation results

Table 5: BLiMP accuracy scores

task baseline baseline-
token

grammar

Anaphor agr. 63.8 68.6 69.7
Arg. structure 70.6 65.7 63.4
Binding 67.1 66.5 67.6
Control/Raising 66.5 62.2 60.4
Det.-Noun agr. 78.5 77.8 77.2
Ellipsis 62 49.3 51.6
Filler-Gap 63.8 62.1 63
Irregular forms 67.5 81.4 81.2
Island effects 48.6 48.5 47.9
NPI licensing 46.7 56.3 55
Quantifiers 59.6 71.4 68.9
Subject-verb agr. 56.9 67.5 67.4
Overall mean 62.63 64.78 64.44

Table 6: BLiMP-Supplement accuracy scores

task baseline baseline-
token

grammar

Hypernym 50 52.3 53.3
QA congr. (easy) 54.7 57.8 45.3
QA congr. (tricky) 31.5 41.8 40
Subj.-aux. inversion 80.3 67.5 82.9
Turn taking 57.1 53.9 52.9
Overall mean 54.72 54.66 54.88
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Table 7: Super(GLUE) accuracy scores

task baseline baseline-
token

grammar

CoLA 64.6 69.6 68.8
SST-2 81.9 85 83.3
MRPC (F1) 72.5 76.1 73.7
QQP (F1) 60.4 78.9 79.1
MNLI 57.6 66.4 65.9
MNLI-mm 60 66 67.8
QNLI 61.5 66.5 66.5
RTE 60 52.5 52.5
BoolQ 63.3 67.6 65.8
MultiRC 55.2 60.2 62.3
WSC 60.2 61.5 61.5
Overall mean 63.38 68.21 67.93

Table 8: MSGS accuracy scores

task baseline baseline-
token

grammar

contr.-raising/lex. cat. 66.5 66.7 68.9
contr.-raising/rel. tok. pos. 67 67.2 67.2
main verb/lex. cat. 66.5 66.8 66.6
main verb/rel. tok. pos. 67.6 66.8 66.8
synt. cat./lex. cat. 80.2 69 71.3
synt. cat./rel. pos. 67.5 68.2 67.7
Overall mean 69.22 67.45 68.08

D Example trees from grammar
induction model
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Figure 1: Induced tree for “do you know how long he’s out of work?"

Figure 2: Induced tree for “at the time this was the only coast guard air base in california."

Figure 3: Induced tree for “they don’t live anywhere, they sail all the time, but they often come ashore to talk to me."
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Abstract

We present the submission of the ILLC at
the University of Amsterdam to the BabyLM
challenge (Warstadt et al., 2023), in the
strict-small track. Our final model,
ChapGTP, is a masked language model that
was trained for 200 epochs, aided by a novel
data augmentation technique called Automatic
Task Formation. We discuss in detail the per-
formance of this model on the three evaluation
suites: BLiMP, (Super)GLUE, and MSGS. Fur-
thermore, we present a wide range of methods
that were ultimately not included in the model,
but may serve as inspiration for training LMs
in low-resource settings.

1 Introduction

Modern language models (LMs) are trained on
datasets that are many orders of magnitude larger
than the amount of text a human can read in a sin-
gle lifetime. Driven by the scaling law paradigm,
which states that model performance scales as a
power law with model and data size, language
model training has become increasingly data hun-
gry (Kaplan et al., 2020; Hoffmann et al., 2022).
This has raised questions about the efficiency of the
paradigm: is it possible to train proficient models
on amounts of data similar to that what humans
process when learning language? The BabyLM
challenge (Warstadt et al., 2023) proposes a com-
munity effort to find efficient training strategies for
model training, providing a fixed, “developmen-
tally plausible” training data set.

This paper presents the submission of the Insti-
tute of Logic, Language and Computation at the
University of Amsterdam to the BabyLM challenge.
We participated in the strict-small track of the
challenge, which limits the amount of training data
to a fixed set of 10 million tokens. The usage of
any sources trained on external data was not al-
lowed, which forced us to utilize the training data
as efficiently as possible. Evaluation is based on

various benchmarks, including BLiMP (Warstadt
et al., 2020a), (Super)GLUE (Wang et al., 2018,
2019), and MSGS (Warstadt et al., 2020b).

Our final model, ChapGTP1, is a bidirectional
masked LM based on the DeBERTa architecture (He
et al., 2023). Our core contribution is a novel data
augmentation technique called Automatic Task
Formation (ATF), which generates meaningful
textual formulations from the existing training data
based on pre-defined templates. These formula-
tions are tailored for learning specific tasks such as
question answering and sentiment classification.
The procedure relies solely on shallow surface
heuristics, and requires no external data or expert
labeling.

Besides ATF, we explored many other strategies:
prosodic guidance, formal languages, tokenizer and
model engineering, emergent language games, and
grokking. Although not all of these were included
in ChapGTP, many showed potential. Notably, we
find that “pre-pre-training” a language model on
constituency-labeled text (induced by an unsuper-
vised constituency parser) or on synthetic emer-
gent languages (generated by neural agents in a
referential game with real images) can lead to im-
provements on the final evaluation benchmarks—
but more research is needed to explore the prac-
ticality and effectiveness of these approaches in
more detail. We hope that our discussion of the var-
ious strategies for training data-efficient language
models will inspire other researchers and engineers
working on NLP in low-resource settings.

2 Data-efficient NLP

The exponential growth in computing resources
needed to train recent language models has un-
derscored the need for more data-efficient models.
Increased model training efficiency would avoid

1Chaperoned Generalised Task formation and Pretraining,
DynaBench ID 1448. HuggingFace hub link: https://
huggingface.co/mwhanna/ChapGTP

74

https://huggingface.co/mwhanna/ChapGTP
https://huggingface.co/mwhanna/ChapGTP


environmental harms (Schwartz et al., 2020) and
ensure the model openness and accountability that
is needed to democratize technological develop-
ment (Ahmed and Wahed, 2020; Liesenfeld et al.,
2023). From a cognitive perspective, which aims
to model human-like generalization abilities, sam-
ple efficiency should be more of priority than is
currently reflected in leaderboard-like model com-
parisons (Linzen, 2020).

Language models’ resource consumption can be
decreased at all stages of model development, on
both the model and data sides; see He et al. (2023)
for an overview. On the modeling side, many stud-
ies have aimed to improve data-efficiency by in-
jecting neural models with inductive biases that
aid generalization. Examples of such work include
distilling inductive biases from other neural mod-
els (Abnar et al., 2020) or Bayesian learning algo-
rithms (McCoy and Griffiths, 2023). Other work
has compared different types of bias by transfer
learning to English after “pre-pre-training” mod-
els on synthetically generated structures (Papadim-
itriou and Jurafsky, 2023).

Most relevant to the BabyLM challenge is
Huebner et al.’s (2021) work inspired by child
language learning abilities, which drastically de-
creased model parameters as well as training data
size. They pre-trained RoBERTa-base from scratch
on a developmentally plausible amount of data,
resulting in a model with lower grammatical com-
petence than the original, large-scale model (Liu
et al., 2019). However, via careful hyperparam-
eter tuning, they developed BabyBERTa, which
performs well even with acquisition-scale training
data. Their model has only 8 million parameters,
8912 vocabulary items and—importantly—does
not predict unmasked tokens.

Data-oriented approaches provide a complemen-
tary strategy for improving training efficiency. One
successful strategy is to filter the training data, for
example by removing duplicates (Lee et al., 2022),
or excluding thematic document clusters that lead
to undesirable model behavior (Kaddour, 2023).
Mishra and Sachdeva (2020) used human-inspired
heuristics to remove irrelevant and redundant data,
aiming to select the optimal dataset for learning a
specific task. Via a combination of coarse and fine
pruning techniques, they achieved competitive re-
sults on out-of-distribution NLI datasets with only
∼2% of the SNLI training set.

Finally, data augmentation has proven to be use-

ful in low-resource settings. Such techniques aim
to diversify the set of training examples without col-
lecting more data (Feng et al., 2021); this can lead
to task-specific or domain-general improvement on
model performance. Fabbri et al. (2020) showed
that performance on a downstream question an-
swering (QA) task increased when models’ training
data was augmented with synthetically generated
questions that helped models learn more complex
question-context relationships. Their most success-
ful approach used simple templates to generate
wh-questions based on sentences retrieved from
the original training data.

Jia et al. (2022) showed that including auto-
matically generated question-answer pairs in pre-
training data leads to a better encoding of con-
textual information in token-level representations.
They found that this question-infused pre-training
strategy results in improved model performance on
a range of standard NLP tasks beyond QA, includ-
ing paraphrase detection, named entity recognition,
and sentiment analysis.

3 The BabyLM Challenge

The BabyLM Challenge is a shared task that chal-
lenges researchers to train a language model from
scratch on an amount of linguistic data similar to
what is available to a child. The task has two main
goals: 1) developing novel techniques for learning
efficiently in low-resource settings; and 2) increas-
ing access to cognitively plausible models of lan-
guage, which could improve our understanding of
human language learning.

Training Data The BabyLM Challenge offers a
developmentally plausible training dataset, draw-
ing inspiration from the linguistic input children
typically receive until the age of 13. The dataset
contains fewer than 100 million words and pre-
dominantly uses transcribed speech, as children are
primarily exposed to spoken language during their
early years. The data come from various domains:
child-directed speech (CHILDES; MacWhinney,
2000), dialogue (Switchboard Dialog Act Corpus;
Stolcke et al., 2000), subtitles (OpenSubtitles, Li-
son and Tiedemann, 2016, and QCRI Educational
Domain Corpus (QED), Abdelali et al., 2014), sim-
ple written English (Simple Wikipedia, Children’s
Book Test Hill et al., 2015, Children Stories Text
Corpus), and regular written English (Wikipedia,
Standardized Project Gutenberg Corpus Gerlach
and Font-Clos, 2018).

75



The challenge features three participation tracks:
strict, strict-small, and loose. In the strict
track, the training dataset is limited to 100 million
written words extracted from the sources above.
In the strict-small track, the training dataset is
further restricted to a subset of merely 10 million
words from the strict dataset. In the loose track,
models could additionally be trained on an unlim-
ited amount of non-linguistic data (e.g. symbolic
data, audio, images, etc.). For the exact number and
proportion of words per data source included in the
strict and strict-small dataset, see Warstadt
et al. (2023).

Evaluation The evaluation of BabyLM models
is based on various benchmarks, namely BLiMP
(Warstadt et al., 2020a), (Super)GLUE (Wang et al.,
2018, 2019), and MSGS (Warstadt et al., 2020b).
These benchmarks cover a wide range of linguis-
tic phenomena and aim to collectively provide a
comprehensive assessment of a model’s linguistic
capabilities. BabyLM provides filtered versions of
the benchmarks, where each example only includes
words that have appeared in the strict-small
training set at least twice.

BLiMP (Benchmark of Linguistic Minimal Pairs
for English) targets linguistic acceptability judg-
ments, and contains sentence pairs that differ in
grammatical acceptability based on only one dis-
tinct linguistic element. The sentence pairs cover
12 phenomena from English morphology, syntax
and semantics, such as anaphor agreement, binding
and filler-gap constructions. If a language model is
sensitive to the linguistic phenomenon under con-
sideration, it should assign higher probability to the
acceptable sentence of the minimal pair.

GLUE (General Language Understanding Eval-
uation) is a collection of diverse natural language
understanding tasks, such as sentiment analysis
and textual entailment. SuperGLUE is an improve-
ment upon GLUE and additionally includes corefer-
ence resolution and question answering tasks. Both
GLUE and SuperGLUE are used for BabyLM eval-
uation, summing to 11 tasks in total.

MSGS (Mixed Signals Generalization Set) aims
to test whether a model prefers linguistic or surface
generalizations, through a range of binary classi-
fication tasks. It contains unambiguous tasks that
can be solved by relying on either a surface or a lin-
guistic feature (not both), and ambiguous tasks that
can be solved both by relying on a surface feature
and by relying on a linguistic feature. The unam-

biguous tasks test whether a model represents the
features of interest in the first place. The ambigu-
ous tasks tests the model’s preference for linguistic
or surface generalization. The BabyLM evaluation
includes 5 unambiguous tasks and 6 ambiguous
tasks.

Evaluation on BLiMP is performed in a zero-
shot setting, by calculating the proportion of mini-
mal pairs for which the model assigns higher proba-
bility to the acceptable sentence. For (Super)GLUE
and MSGS, evaluation involves fine-tuning mod-
els on each task and then calculating accuracy or
macro-F1. The task-specific scores are averaged to
arrive at a final score for each of the three bench-
marks.

4 ChapGTP

In this section we describe the components of our
final model, ChapGTP, that we submitted to the
strict-small track of BabyLM. The results of
the model are presented in §6. In §7 we describe
various approaches that were not successful, but
that may inspire future work on improving data
efficiency in language modeling.

Model Architecture In our experiments we ini-
tially considered both causal and masked LM archi-
tectures; we ultimately chose a masked LM since
it outperformed causal LMs on all evaluation tasks.
The model is based on the DeBERTa-small archi-
tecture (He et al., 2023): a 6 layer bidirectional
transformer, 12 attention heads, a hidden state size
of 768, and intermediate state size of 3072. The
final model has 43.5 million parameters.

Data Processing We use a Byte-Pair Encoding
tokenizer (Sennrich et al., 2016), which we train
on the strict-small corpora, limited to a vocab-
ulary size of 10,000 tokens. This relatively small
vocabulary size was sufficient for the challenge,
and allowed for more compact models and faster
model training.

We preprocessed the corpora by appending all
sentences together, separated by a special separa-
tor token. This ensures that consecutive sentences
within a paragraph will occur together in a sin-
gle batch item, allowing the model to leverage
inter-sentential information. It also significantly
improves training speed, since all batches are fully
filled up, with little to no padding overhead.

Model Training We train the model with a
masked token prediction objective, with a token
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masking probability of 15%. We train for 200
epochs with a batch size of 64 and a maximum
sentence length of 128. We investigate the impact
of the number of epochs in more detail in §6. We
use the AdamW optimizer (Loshchilov and Hutter,
2019), with a cosine learning rate scheduler that
interpolates from 5 · 10−4 to 0, weight decay set
to 0.1, and gradient accumulation for 8 steps. We
train models using the transformers library (Wolf
et al., 2020).

5 ATF: Automatic Task Formation

The strict-small track of the BabyLM challenge
did not permit the usage of external data sources
to improve the learning procedure. It was there-
fore vital to use all data in the training corpora as
efficiently as possible. To this end, we defined Au-
tomatic Task Formation (ATF), a procedure that
looks for simple regex patterns in the training data
that we can use to augment the data. The main
goal of ATF was to improve performance on the
GLUE tasks: we hoped that if the training data
were augmented with patterns that resembled data
found in GLUE, the model could already start learn-
ing representations useful for GLUE tasks during
pre-training.

Question Answering The text in the pre-training
corpora already contains questions, such as those
found in dialogue. However, most of these ques-
tions do not require a retrieval-based approach of
finding the answer to the question (e.g. “How are
you doing?”). To aid the model with retrieval-based
question answering, which is vital for GLUE tasks
like QNLI (Rajpurkar et al., 2018), we augment the
training corpus with question-answer pairs about
various topics. The patterns we consider are:

1. Birth date
The (Simple) Wikipedia data contains many
patterns of the form ‘⟨Name⟩ (born ⟨DD⟩
⟨Month⟩ ⟨YYYY⟩)’. For each such instance, we
add a question-answer pair of the form ‘On
what date was ⟨Name⟩ born? [SEP] ⟨DD⟩
⟨Month⟩ ⟨YYYY⟩’.

2. Nationality & Profession
The Simple Wikipedia articles describe peo-
ple in the same template: ‘⟨Name⟩ (born X)
is a ⟨Profession⟩ from ⟨Nationality⟩’. We
use this pattern to augment the data with
question-answer pairs of the form ‘Where is

⟨Name⟩ from?’ and ‘What is the profession of
⟨Name⟩?’.

3. Discovery, Founding & Naming
We consider three other patterns, of the form
‘⟨Name⟩ was discovered in ⟨Year⟩’, ‘⟨Name⟩
was founded in ⟨Year⟩’, and ‘⟨Name1⟩ was
named after ⟨Name2⟩’.

In total this procedure yielded 1663 question-
answer pairs that we append to the training corpus.

Sentiment Classification To aid the model with
the sentiment classification task of SST-2 (Socher
et al., 2013), we augment our dataset by exploit-
ing sentences containing sentiment carrying tokens.
After each sentence that contains a token from a
list of positive tokens (great, terrific, etc.) or neg-
ative tokens (not good, terrible, etc.)2, we add a
special sentiment token followed by the sentence
sentiment. Sentence sentiment is solely based on
the presence of a positive or negative token; we
skip sentences containing both positive and nega-
tive tokens. The procedure yielded 2500 positive
and 2500 negative sentences, which we appended
to the training corpus.

Note that we do not modify the masked language
modeling training objective for this: the prediction
of answers (as well as questions) is performed in
the same way as any other token prediction. In-
corporating the procedure with a separate classi-
fication head is something that we leave open for
future work.

6 Results

We report the results of our models in Table 1. Re-
sults are aggregated over individual subtasks in
BLiMP, GLUE, and MSGS. Our final ChapGTP
model, trained for 200 epochs with ATF data aug-
mentation, obtained an average score of 77.2. Next
to this model we report various alterations to the
training regime. To investigate the impact of the
ATF procedure, we also train a model without the
augmented data. The strongest gains of ATF are
achieved in the GLUE tasks (+1.7 points), which
is in line with our original goal of aligning the
pre-training data more with that of the fine-tuning
tasks. Furthermore, prolonging model training has
a strong positive impact on both BLiMP and GLUE,
but not for the MSGS tasks. In Figure 1 we present
a more fine-grained overview of the results split

2We report the full lists in Appendix A.
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Model BLiMP GLUE MSGS Avg.

ChapGTP(20E) 73.5 72.3 79.2 75.0

¬ ATF (§5) 73.1 70.6 80.4 74.7
+ 40E 74.8 73.4 80.7 76.3
+ 100E 76.5 73.8 80.0 76.8
+ 200E 76.6 74.0 80.9 77.2
+ FLOTA 57.8 – – –
+ BRAK (40E, §7.4) 75.0 72.0 82.1 76.4

dGPT-2 (¬ATF, 40E) 68.9 70.2 79.9 73.0
+ OMG (§7.3) 70.8 69.7 80.0 73.5

OPT† 62.6 63.4 79.8 68.6
RoBERTa† 69.5 71.4 80.9 73.9

Table 1: Aggregate results for the ChapGTP model with
various configurations on the three evaluation suites.
nE denotes a model trained for n epochs. † models
are baseline models made available by the BabyLM
organisers. Best performing model per suite is in bold.

out for each individual task in the evaluation suites,
for a subset of models that showcase improvements
driven by ATF and prolonged model training.

BLiMP For BLiMP, increasing the amount of
epochs has a positive effect on almost all tasks. One
clear outlier, however, is the Irregular Forms tasks,
where our 200 epoch model performs significantly
worse than models trained for shorter. We plot this
behavior for models trained on increasing amounts
of epochs in Figure 1B, from which it can be seen
that this task follows a peculiar inverse scaling
pattern (McKenzie et al., 2023). Exploring this
pattern in more detail could provide an interesting
direction for future research, connecting it to the
rule learning of irregular forms in LMs (Dankers
et al., 2021).

GLUE The impact of training longer is less pro-
nounced on GLUE than for BLiMP, but it still has
a positive effect for most tasks. The ATF proce-
dure appears to have a positive effect on only a
small number of tasks, especially MultiRC and
MRPC. Surprisingly, performance on QNLI and
SST2, the tasks targeted by ATF, did not improve
significantly.

7 Additional Experiments

Our final ChapGTP model adopted only a small
number of the techniques we investigated for the
BabyLM challenge. In this section we highlight
various approaches that were not entirely success-
ful, but could serve as inspiration for future work.

Note that some of these approaches would not
be permitted under the strict-small conditions
of the BabyLM challenge, but would be possible
within the loose track.

7.1 Model Architecture

FLOTA Our ChapGTP model uses a BPE sub-
word tokenizer, a common tokenizer used by many
LMs, such as GPT-3 (Brown et al., 2020). From a
linguistic point of view, this tokenization procedure
may be sub-optimal: it is based solely on frequency
statistics, and takes no morphological information
into account (e.g. undesirable → undesi+rable).
The FLOTA tokenizer (Hofmann et al., 2022) ad-
dresses this concern, and presents a tokenization
procedure that adheres more strongly to the mor-
phological formation of English words (e.g. un-
desirable → un+desirable). We incorporated this
tokenizer in our pipeline, but unfortunately it re-
sulted in sub-par results on BLiMP (Table 1). A
reason for this might be the relatively low vocab-
ulary size (10.000), though it remains surprising
that this tokenizer led to such a significant drop in
performance.

LLaMA LLaMA (Touvron et al., 2023) is a pre-
trained model whose performance rivals that of
many larger models trained on more data. In or-
der to achieve this performance, it incorporates
a variety of architectural tweaks that aim to im-
prove performance or training stability; these in-
clude pre-normalization of transformer block in-
puts using RMSNorm (Zhang and Sennrich, 2019),
the SwiGLU activation function (Shazeer, 2020),
and rotary embeddings (Su et al., 2022). Unlike our
ChapGTP model, LLaMA uses the SentencePiece
tokenizer (Kudo and Richardson, 2018).

Motivated by LLaMA’s successful training on
smaller data using a smarter architecture, we
trained our own LLaMA model. We used a va-
riety of scaled-down model architectures, e.g. with
a hidden (residual stream) size of 64, an intermedi-
ate (MLP) size of 256, 4 layers, 4 attention heads,
and a vocabulary size of 10000. However, these
models exhibited no performance gains over sim-
ilarly sized models that used a more traditional,
GPT-like architecture.

7.2 Model Training

Prosodic Guidance Information in speech is not
only conveyed through which words are said, but
also how they are spoken (Wallbridge et al., 2023).
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Figure 1: (A) Results for BLiMP on the individual conditions, ordered increasingly by the performance of the final
200E model. (B) Inverse scaling behavior on the Irregular Forms condition, which worsens as the amount of training
is increased. For other tasks the opposite is true: training for longer leads to a monotonic improvement. (C) Results
for the individual GLUE tasks, ordered similarly to the BLiMP scores in (A). (D) Results for the individual MSGS
tasks, including the BRAK model that outperforms the ChapGTP on average.

Hence even models trained on transcribed speech
data miss out on the rich auditory cues available
in spoken language, which could be informative
for learning (Chrupała, 2023). We explored the use
prosodic information as one such guiding signal
for language model training. Prosody is thought
to play an important role in scaffolding human lan-
guage learning (Gervain et al., 2020), for example
in helping infants learn non-adjacent dependen-
cies by highlighting the relevant linguistic elements
(Martinez-Alvarez et al., 2023).

One way to provide a text-based language model
with a similar learning signal would be to train the
model on spoken language transcriptions for which
audio recordings are available. Prosodic promi-
nence cues based on properties like pitch and dura-
tion, or more advanced scores estimated based on
continuous wavelet transforms (Suni et al., 2017),
could be extracted from the audio recordings to
guide model training. Though we considered this a
promising approach to study if language modeling
can be improved with access to prosodic informa-
tion, it was not feasible for us to pursue within the
constraints of the BabyLM challenge—curating an
audio-aligned text dataset at the 10M- or 100M-
word scale poses a significant challenge on its own.
We therefore left experiments into using prosodic
information for language model training out of our
BabyLM submission and hope to work on this idea
separately in the future.

Grokking Grokking is a phenomenon in which
models seemingly neural networks begin to gen-
eralize better after overfitting (Power et al., 2022).
In such scenarios, models initially achieve high
training performance, but poor held-out (evalua-
tion) performance. Extended training leads models
to suddenly generalize, achieving higher evaluation
performance. Grokking has been shown to occur
not only on toy algorithmic tasks, but also image
and sentiment classification (Liu et al., 2022, 2023).
More recent work has suggested that transformers
can grok hierarchical linguistic structure after ex-
tremely prolonged training (Murty et al., 2023).

On the basis of this recent evidence, we con-
duct experiments to determine if longer training
can help language models capture the hierarchical
structure of language, even when trained on small
data. Our grokking setup is simple: we train a
DistilGPT2 model for 500 epochs on the small
(10M word) dataset. We set training hyperparame-
ters as in Murty et al. (2023). We find that grokking
does not occur in this scenario: evaluation loss does
not improve. Moreover, while our long-training
model performed reasonably well on the zero-shot
linguistic tasks from BLiMP, performance on the
SuperGLUE tasks, which required fine-tuning, is
much worse. We conclude that while longer train-
ing may not have hurt linguistic knowledge, it may
have hurt the model’s ability to be fine-tuned.

These results may be surprising, given that in
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§6, longer training generally led to better perfor-
mance on BLiMP and GLUE. Unfortunately, differ-
ences in model architecture and training procedure
(particularly ATF) could have led to different train-
ing dynamics, making direct comparison difficult.
Moreover, prior work suggests that the occurrence
of grokking is reliant on specific conditions such
as a large initial weight norm, or specific adaptive
optimizers (Thilak et al., 2022; Liu et al., 2023).
More controlled and extensive study is needed to
shed light on grokking in LMs.

7.3 OMG: Data from Object Mediated Games

Simulating cooperative games with deep neural
agents that need to communicate about objects in
their environment is an active area of research; the
communication protocols emerging in these set-
tings have been studied extensively in previous
works (Havrylov and Titov, 2017; Kottur et al.,
2017; Bouchacourt and Baroni, 2018; Lazaridou
and Baroni, 2020; Luna et al., 2020, i.a.).

An important motivation for these experiments is
to simulate conditions under which certain natural
language properties may develop (e.g. Kirby, 2002;
Kirby et al., 2015). Others suggest that these set-
tings may enable language models to learn aspects
of human communication difficult to acquire from
passive language modeling alone (e.g. Lazaridou
et al., 2020).

Interestingly, Yao et al. (2022) show that pre-
pre-training LMs on synthetic emergent languages
generated in referential games with images can in
fact improve their performance in low-resource set-
tings. We aim to reproduce the findings of Yao et al.
with our particular setup; as such, compare the per-
formance of DistilGPT2 trained on BabyLM with
and without first pre-pre-training on their synthetic
emergent languages.

Approach We pre-pre-train DistilGPT2 on a
synthetic emergent language coming from a refer-
ential game played with neural agents, as provided
by Yao et al. (2022).3 In this referential game, deep
neural agents successfully communicate about im-
ages from the Conceptual Captions dataset (Sharma
et al., 2018). We use the set of messages with vo-
cabulary size 4035 and maximum message length
15, sampling 2, 721, 927 messages for the training
data, and 143, 260 for the development set (split in

3https://github.com/ysymyth/ec-nl/

Task OMG ∆baseline BRAK ∆baseline

BLiMP 70.8 +0.7 75.0 -0.6
GLUE 69.7 +1.4 72.0 -0.7
MSGS 80.0 -0.1 82.1 +3.2

Table 2: Aggregate results for pre-pretraining Distil-
GPT2 with text from object mediated games (OMG)
and ChapGTP with constituency labelled text (BRAK).
We also show the difference with their respective base-
lines (∆baseline) as discussed in §7.3 and §7.4, where +
indicates an improvement. All models shown here are
further trained on the BabyLM dataset for 40 epochs
without the ATF data augmentation (§5).

roughly 95% and 5%, respectively).4

We pre-pre-train on the emergent language for 8
epochs, after which we continue pre-training on the
BabyLM 10M dataset (¬ ATF) for 40 epochs. We
compare this to the baseline where we do not pre-
pre-train DistilGPT2 on the emergent messages.5

Results Table 2 shows the aggregate results of
pre-pre-training on synthetic emergent languages
(OMG). Curiously, OMG pre-pre-training seems
to result in a better performance on BLiMP and
GLUE compared to the baseline. In our experi-
ments, we also noticed that the loss curves con-
verge faster during training, indicating that OMG
pre-pre-training may be a viable strategy for ini-
tializing language models in low-resource settings;
this is in line with the findings of the original au-
thors (Yao et al., 2022).

7.4 BRAK: Bracketed pre-pre-training
Can initially pre-training on texts where the struc-
ture is explicitly marked be used to improve the
LM’s performance later on? To test this approach,
we train the Deep Inside-Outside Recursive Au-
toencoders model (DIORA, Drozdov et al., 2019), to
augment a portion of the training data with brack-
eting that indicate the constituents of the sentences.
The general idea is that the bidirectional ChapGTP
can use this extra training signal to quickly learn
the syntactic structures of the data—bootstrapping
its further language modeling.

Approach We pre-pre-train ChapGTP for 4
epochs on a subset of 15, 030 sentences from the

4An example of an emergent message (before tokenization
and converting to integers) is: 1019 3876 601 2194 3360
3360 3360 3360 3360 3360 3360 3360 3360 3360 0.

5Note that the results for this baseline are slightly different
from Table 1 but comparable, as we used another random seed
for training the 40E DistilGPT2.
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BabyLM 10M dataset, where the constituents of
each sentence is marked using the “[” and “]” to-
kens.6 After this, pre-training continued on the
entirety of the unbracketed BabyLM dataset (with-
out ATF) for 40 epochs.

To obtain the constituents for the 15, 030 sen-
tences, we trained a DIORA model with a hidden
dimension of 50 and batch size of 128 for a max-
imum of 5 epochs. We initialized its embeddings
using GloVe (Pennington et al., 2014) (embedding
size 16) trained on the same corpus as DIORA. Since
DIORA requires sentences as input, we use the dot
(“.”) to split the documents in the datasets into in-
dividual sentences, which are then split into words
using the space token. We lower-cased each token
and removed all punctuation from the sentences.
This approach is deliberately kept simple to avoid
using any techniques requiring non-trivial expert
knowledge. From this set, we labeled 15, 030 sen-
tences with a minimum length of three with the
trained DIORA model. As a baseline, we pre-pre-
train ChapGTP on the same 15, 030 sentences, but
without the bracketing.

Results The aggregate results of the bracketed
pre-pre-training (BRAK) are shown in Table 1 and
compared to the baseline in Table 2. While BRAK
ChapGTP performs slightly worse on BLiMP and
GLUE, it performs considerably better on the
MSGS tasks, as seen in Figure 1D. BRAK’s main
gains stem from two tasks: ‘Main Verb Lexical
Control The’, and ‘Main Verb Relative Token Posi-
tion’. We encourage future work on how including
inductive biases can improve the performance of
language models in low-resource settings.

8 Conclusion

In this paper, we introduced our submission to
the strict-small track of the BabyLM chal-
lenge. ChapGTP is a DeBERTa-based masked
LM, trained for 200 epochs with help of our novel
data augmentation technique: Automatic Task For-
mation (ATF). We proposed ATF as a means of
creating more task-specific textual formulations
based on the existing training data. In particu-
lar, we focused on improving representations for
question answering and sentiment classification.
The idea behind these specific ATF augmentations

6An example of a constituency-labeled sentence is: [ [ [
[ they are ] placed ] into ] [ [ [ one [ character
[ and [ it is ] ] ] ] [ [ mostly [ used with ] ]
[ east asian ] ] ] fonts ] ].

was that they might lead our model to learn useful
representations for the retrieval- and classification-
based GLUE tasks during pre-training; such rep-
resentations could be harder to learn from the
primarily spoken language data in the BabyLM
strict-small training set alone.

Our results show that the ATF procedure indeed
improved performance on GLUE tasks, especially
for the paraphrase detection (MRPC) and multi-
sentence reading comprehension (MultiRC) sub-
tasks. The QNLI and SST2 tasks targeted by the
Sentiment Classification component of ATF did not
improve significantly. Our experiments with pro-
longed training of ChapGTP up to 200 epochs re-
sulted in increased performance for most evaluation
benchmarks, but we also found inverse scaling be-
havior for the Irregular Forms BLiMP task. Based
on this result, exploring how prolonged training
affects LM’s memorization of linguistic patterns
beyond generalizable rules seems an interesting
direction for future research.

ChapGTP outperforms the baseline models pro-
vided by the BabyLM challenge, and our ATF aug-
mentation technique proved successful at improv-
ing performance on specific targeted tasks. Jia et al.
(2022) motivated their QA-infused pre-training ap-
proach by the intuition that phrase representations
should encode all questions that the phrase can
answer in context. Such relational information inte-
gration might be encouraged by the addition of ATF
question-answer pairs in our augmented training
data as well, and could potentially result in more
human-like encodings of contextual knowledge.

Nevertheless, the performance of ChapGTP on
BabyLM admittedly does not present significant
advances in terms of cognitive plausibility. We
believe that promising approaches for stimulating
more human-like learning in language models in-
corporate some form of human-like inductive bi-
ases in model training. Since humans presumably
come to the language learning task from much less
of a “blank slate” state than randomly-initialized
masked language models, this area leaves much
potential for further research. Our use of unsuper-
vised constituency parsers for BRAK ChapGTP
(§7.4) was an attempt to make use of such induc-
tive biases in the syntactic domain, and resulted in
notable performance gains on hierarchical general-
ization tasks (MSGS), although ideally such biases
would be integrated into LMs more holistically.

Finally, ChapGTP is only trained only on text,
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while children rely on many other modalities to
learn language (e.g. audition and vision). Although
we made efforts to indirectly incorporate multi-
modal cues through speech prosody and object-
mediated referential games, we only scratched the
surface of what is possible. The BabyLM challenge
provided an inspiring start to explore such possi-
bilities, and we hope that our range of experiments
presented here will usefully inform future work on
data-efficient and cognitively plausible NLP.

Limitations

There are various aspects in our setup that could
have been addressed more rigorously. For repro-
ducibility, the number of random seeds should be
increased to obtain more robust insights into the
impact of various training enhancements. The opti-
mality of our hyperparameter setup is not guaran-
teed, a wider hyperparameter search sweep would
be necessary for this.
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Abstract

The BabyLM Challenge aims at pre-training
a language model on a small-scale dataset of
inputs intended for children. In this work, we
adapted the architecture and masking policy
of BabyBERTa (Huebner et al., 2021) to solve
the strict-small track of the BabyLM challenge.
Our model, Penn & BGU BabyBERTa+, was
pre-trained and evaluated on the three bench-
marks of the BabyLM Challenge. Experimen-
tal results indicate that our model achieves
higher or comparable performance in predict-
ing 17 grammatical phenomena, compared to
the RoBERTa baseline. 1

1 Introduction
With the emergence of deep-learning techniques
(Liu et al., 2019; Vaswani et al., 2017), large
language models pre-trained on massive datasets
containing billions or trillions of words have
achieved remarkable performance across various
downstream tasks. However, the BabyLM chal-
lenge (Warstadt et al., 2023) highlights the impor-
tance of investigating the impact of small-scale
pretraining and cognitive modeling. BabyBERTa
(Huebner et al., 2021), a variant of the RoBERTa ar-
chitecture in a smaller size, demonstrated superior
performance and data efficiency in learning gram-
mar phenomena with child-directed inputs com-
pared to RoBERTa-base (Liu et al., 2019). Inspired
by this work, we propose a model named Penn &
BGU BabyBERTa+2 (encoder-only), which shares
the architecture and pretraining policies, for the
BabyLM challenge with BabyBERTa. In this work,
we consider the strict-small challenge which con-
tains approximately 10M words for small-scale
pretraining. We provide the details of our Baby-

1Our Dynabench submission ID is 1372. The link to access
the model is https://huggingface.co/yangy96/BabyLM_
strict_small_Penn-BGU-BabyBERTa/tree/main.

2In our paper, we use Penn & BGU BabyBERTa+ and
BabyBERTa+ interchangeably.

BERTa+ in Section 2 and show the result of the
BabyLM challenge in Section 3.

2 Methodology
In this section, we provide the descriptions of our
BabyBERTa+ model including the architectures,
tokenizers, training objectives and so on. As shown
in Table 1, our model is much smaller compared
to RoBERTa-base in terms of depth and width but
uses a different masking policy3. The pre-training
hyperparameters are the same as in the RoBERTa
baseline as used in Warstadt et al. (2023) if not
specified in Table 1 and the architecture choices
are based on (Huebner et al., 2021). The model
is pre-trained on the dataset (∼ 10M words) pro-
vided in the strict-small track of the challenge.
In other words, BabyBERTa+ differs from Baby-
BERTa (Huebner et al., 2021) by its vocabulary
size and training corpus.

RoBERTa-base BabyBERTa+
layers 12 8

attention heads 12 8
hidden size 768 256

intermediate size 3072 1024
vocabulary size 50265 30000

epochs 20 100

Table 1: Comparison of RoBERTa and BabyBERTa+ in
terms of their architectures.
2.1 Tokenizer
Following previous work (Liu et al., 2019; Huebner
et al., 2021), our model utilizes Byte-Pair Encoding
to create a vocabulary containing both words and
subwords. We create a tokenizer with a vocabulary
size of 30,000 and train it on the strict-small dataset.

2.2 Unmasking Removal Policy
To train the masked language model, the standard
RoBERTa masking strategy replaces 80% of the
corrupted tokens with the "<mask>" token, while
10% of the tokens are replaced with random tokens,
and the remaining 10% are left unchanged. The

3Our implementation of the model is based on the Hug-
gingface transformer library (Wolf et al., 2020).
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Acc. Ana Agr. Agr. Str Binding C/R D-N Agr. Ellipsis Filler-Gap Irregular Isl. Eff
R 81.5 67.1 67.3 67.9 90.8 76.4 63.5 87.4 39.9

B+ 83.6 68.2 66.9 65.9 92.4 82.5 65.8 92.1 39.7
NPI Quan. S-V Agr. Hypernym QA (easy) QA (tricky) Subj.-Aux. Turn Taking

R 55.9 70.5 65.4 49.4 31.3 32.1 71.7 53.2
B+ 68.8 75.9 68.1 50.2 71.9 40.6 87.6 67.5

Table 2: Zeroshot performance of RoBERTa (R) and BabyBERTa+ (B+) on the BLiMP benchmark. The perfor-
mances were reported in terms of accuracy.

Acc. CoLA SST-2 MRPC QQP MNLI MNLI-mm QNLI RTE BoolQ MultiRC WSC
R 70.8 87 79.2 73.7 73.2 74 77 61.6 66.3 61.4 61.4

B+ 69.48 86.42 82 81.08 70.39 71.18 69.29 51.52 61.69 60.02 61.45
Table 3: Comparison of RoBERTa (R) and BabyBERTa+ (B+) on the SuperGLUE benchmark. The performances
were reported in terms of accuracy, except for MRPC and QQP, where the F1 score was used instead.

Acc. CR_C LC_C MV_C RP_C SC_C CR_LC CR_RTP MV_LC MV_RTP SC_LC SC_RP
R 84.1 100 99.4 93.5 96.4 67.7 68.6 66.7 68.6 84.2 65.7

B+ 85.6 100.0 98.7 96.2 87.3 66.3 66.7 66.6 66.9 67.4 64.2
Table 4: Comparison of RoBERTa (R) and BabyBERTa+ (B+) on the MSGS benchmark. The performances were
reported in terms of accuracy.

unmasking removal policy proposed in Huebner
et al. (2021) takes a different approach by removing
the prediction for unchanged tokens. In this case,
90% of the corrupted tokens are masked with the
"<mask>", and the remaining are replaced with
random tokens. We utilize the same masking policy
when pre-training BabyBERTa+.

3 BabyBERTa+ on downstream tasks of
BabyLM challenge

In this section, we evaluate our pre-trained models
on the tasks in BabyLM challenges of the strict-
small tracks. There are three different evaluation
benchmarks: BLiMP test suites (Warstadt et al.,
2020a), SuperGLUE (Wang et al., 2019) and Mixed
Signals Generalization Set (MSGS) (Warstadt et al.,
2020b). The BLiMP test suite evaluates the ability
of language models to handle grammar. MSGS is a
syntactic dataset to test the inductive bias for down-
stream tasks. SuperGLUE is a standard benchmark
to evaluate the capabilities of the pre-trained lan-
guage models on natural language understanding
downstream tasks. We presented the detailed per-
formance of predicting grammatical phenomena
in Table 2 and downstream tasks in Table 3 and 4.
We use the default hyperparameters as defined in
(Warstadt et al., 2023) to fine-tune our system on
BabyLM challenges. Our model gets 6% improve-
ment on BLiMP test suite compared to the baseline
RoBERTa (69.86% vs 63.02%). The average score
on all SuperGLUE tasks in Table 3 is 69.50% while
the performance of the baseline model is 71.42%.
The average score on MSGS is 78.72% while the
RoBERTa-base’s score is 81.35%.4

4The RoBERTa’s results are provided in the BabyLM chal-
lenge.

Figure 1: Average accuracy of BabyBERTa+ on three
tasks versus the number of pre-training epochs.

We additionally plot the average accuracy on
grammaticality tests and downstream tasks versus
the number of pre-training epochs in Figure 1. We
observe that when continually pre-training with
more epochs, both grammatical phenomena pre-
diction and SuperGLUE downstream task perfor-
mance improve.

4 Conclusion

In this study, we propose a model named Baby-
BERTa+ by adapting BabyBERTa (Huebner et al.,
2021) for the BabyLM challenge (Warstadt et al.,
2023) on strict-small tasks and demonstrate the
effectiveness of pre-training a smaller model in
learning grammatical phenomena compared to
RoBERTa (Liu et al., 2019) and other baselines.
However, while our model exhibits promising re-
sults in learning grammatical features, its perfor-
mance on downstream tasks remains lower than
larger models like RoBERTa. In the future, we aim
to explore the impact of the various pre-training fac-
tors when pre-training the small model on a limited
size of child-directed data corpora and enhance the
small model’s performance on downstream tasks.
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Abstract

This paper details the work of the Univer-
sity of Groningen for the BabyLM Challenge
(Warstadt et al., 2023). We follow the idea
that, like babies, language models should be
introduced to simpler concepts first and build
off of that knowledge to understand more
complex concepts. We examine this strategy
of simple-then-complex through a variety of
lenses, namely context size, vocabulary, and
overall linguistic complexity of the data. We
find that only one, context size, is truly benefi-
cial to training a language model. However
this simple change to context size gives us
improvements of 2 points on average on (Su-
per)GLUE tasks, 1 point on MSGS tasks, and
12% on average on BLiMP tasks. Our context-
limited model outperforms the baseline that
was trained on 10× the amount of data.

1 Introduction

The pretraining of language models has tradition-
ally relied on large amounts of data, which, for
many languages, is readily available. However
there exist several low-resource languages in which
even unlabeled data is not so readily available.
While transferring knowledge from other languages
is often an effective way to achieve better perfor-
mance, there may be implicit biases also trans-
ferred from the text of the higher-resource lan-
guage, which could be potentially harmful. Ad-
ditionally, given that a 13 year old sees less than
100 million words in their lifetime (orders of magni-
tude less than the amount used in LM pretraining),
there ought to be methods that more efficiently
learn from limited data.

Such is the motivation for the BabyLM Chal-
lenge and subsequently our work. We focus on the
strict-small track, which limits the training data
to only 10 million words, from a selection of do-
mains with varying complexity (from child speak
up to Wikipedia articles).

In our work, we investigate different methods
for introducing the model to varying levels of com-
plexity. Namely we ramp up the difficulty of the
pretraining along 3 avenues:

1. Context length

2. Dataset complexity

3. Vocabulary size

Concerning context length, we adopt the strategy
of starting with a small number of tokens per in-
put and increasing this over the course of training,
with the intuition that a human typically learns a
language starting with short sentences with limited
cross-sentential context, and builds up from there
to longer contexts.

In addition, the sentences initially learned by
a human are also simpler conceptually, starting
with frequently-used words and building up to rarer
words. To this end, we develop a strategy to filter
the dataset such that the model starts training on
simpler data and later trains on more complex data.

Similarly, we also follow the intuition that a hu-
man develops a vocabulary over time, originating
from the chunking of characters within the words,
and as such we start with a character-level vocabu-
lary and introduce a transfer method to give a good
initialization for a larger subword vocabulary.

2 Related Work

Concerning context size, prior work (Edman et al.,
2022) has shown that in low-resource language
modeling, using a lower context size can greatly
help with model convergence. The concept of in-
creasing context size is not novel: BERT (Devlin
et al., 2018) was initially trained on a smaller con-
text size of 128 tokens before being increased to
512, though, to our knowledge, this was done for
efficiency reasons. There have been several works
on internally reducing the scope of contextualiza-
tion by limiting attention to local patches (Beltagy

89



et al., 2020; Zaheer et al., 2020), thereby decreas-
ing the complexity of self-attention. These works
were done with processing long documents in mind,
however, and can have a negative impact on model
speed given an extra layer of complexity in calcu-
lating self-attention.

Concerning vocabulary size, there is ample work
on character-level models, where they have been
shown to require less data for pretraining while
achieving the same or better performance at the
cost of training and inference speed (Xue et al.,
2022). Character models also can greatly out-
perform subword models on out-of-domain tasks
(Boukkouri et al., 2020), low-resource translation
(Edman et al., 2023), and tasks which require mor-
phology or character-level perturbations (Xue et al.,
2022; Ingólfsdóttir et al., 2023). Their performance
in these scenarios has been largely attributed to
their non-static vocabulary, allowing for good ini-
tializations to unseen or rarely-seen words. All
of this points to character-informed models being
potentially useful for this shared task.

Concerning lexical complexity, (Eldan and Li,
2023) has shown that using a synthetic dataset of
children’s stories, written for a 3 or 4 year old to
understand, one can train a small (<10M parameter)
Transformer model and generate stories near the
quality of much larger models.

Another group of NLP approaches that condi-
tion learning on linguistic complexity is a branch
of curriculum learning, exploring potential bene-
fits from exposing models to training samples in a
meaningful order, from easy to hard (Bengio et al.
2009; Kocmi and Bojar 2017; Zhang et al. 2018
among many others). These approaches show con-
ceptual promise but are complicated by the choice
of appropriate complexity measures and the pacing
function.1

3 Method

3.1 Model Choice

We opted to use encoder-only models. We initially
experimented with encoder-decoder models, but
found that the evaluation metrics for this shared
task being non-generative gave encoder-only mod-
els an advantage, as it allows for full attention,
rather than only causal attention. In terms of spe-
cific model selection, we opted for RoBERTa-base

1Pacing function is a broad term used by Soviany et al.
(2022), describing the method for ramping up difficulty across
the course of training.

(Liu et al., 2019) in order to directly compare with
the provided baseline. We also experimented with
(and ultimately submitted) DeBERTa-large (He
et al., 2021) as it is a larger model and considered
state-of-the-art for encoder-only models.

3.2 Training and Evaluation

Our pretraining uses the standard MLM scheme
(Liu et al., 2019), which proved most effective
initial tests.2 Table 1 shows the hyperparameters
we used for our pretraining experiments. For fine-
tuning, we use the default hyperparameters pro-
vided by the shared task organizers.

Hyperparameter Value

Learning rate 1e-4
Decay 0.01
Warmup steps 10000
Optimizer AdamW
Batch size 256
Epochs 50

Table 1: Hyperparameters used.

We primarily evaluate with BLiMP (Warstadt
et al., 2020a), due to its speed of evaluation and
not requiring a fine-tuning step. We also report
results of our best models for the BLiMP supple-
ment, (Super-)GLUE (Wang et al., 2018, 2019),
and MSGS (Warstadt et al., 2020b) tasks.

3.3 Vocabulary size

We first experiment with vocabulary size. For cre-
ating the vocabulary, we use SentencePiece’s Un-
igram model (Kudo and Richardson, 2018; Kudo,
2018). We found that a vocabulary size of 40k pro-
vided the best standalone performance on BLiMP
(we report this in Appendix A).

We further experiment with a character-level vo-
cabulary, and transferring to a subword vocabulary
(of size 40k). To enable this transfer, we copy over
all character-only embeddings, and initialize sub-
word embeddings as the sum of their respective
character embeddings. The main body of the trans-
former model is also directly copied. The language
modelling head is simply re-trained from scratch.

2We also varied masking amounts to 20% and 40% fol-
lowing Wettig et al. (2022), but did not see any increased
performance on BLiMP.
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3.4 Context size
We also experiment with context sizes in powers
of 2, from 16 to 256. To achieve a consistent and
coherent context size, we split the data into n-token
examples (with n being the context size), prior to
shuffling. Our initial experiments with determining
the optimal vocabulary size use a context size of
64, although we later find that a context size of 32
performs slightly better.

3.5 Curriculum learning
We explored potential gains from different order
of exposure of the model to training data, inspired
by curriculum learning approaches (see Bengio
et al. 2009 and much subsequent work; for a recent
comprehensive survey of the field of curriculum
learning, see Soviany et al. 2022).

The basic motivating intuition is to start the train-
ing with subsets of data that are ‘simpler’ than oth-
ers in some relevant sense, gradually increasing the
complexity of data the model is trained on. Hope-
fully, simple data can give the model a head start
that would also form a foundation for linguistic
generalization. To try out this idea, we formulate a
complexity measure that we use in data reorder-
ing. The measure is a combination of the following
features:

• Type/Token Ratio: The number of unique
words in a text divided by the length of the text
in words. The feature targets lexical diversity
of the text per text unit.

• Mean word rarity: The mean of rarity scores
across all words in the text (word rarity score
is 1 - normalized log-frequency; it ranges from
0 to 1, the higher the rarer). This is another
measure of text complexity via lexical diver-
sity – this time, based on how rare the words
used in the text are, as judged based on the
whole training dataset.

• Max word rarity: The maximum of word
rarity scores in the text. Same as above,
but picking out the maximum – the peak of
complexity-as-rarity reached in the text.

• Punctuation density: The proportion of punc-
tuation marks in the union of words and punc-
tuation marks in the text. This proportion is
used as a proxy to syntactic complexity.

• Mean sentence length in the text, in words.

• Mean word length in the text, in characters.
These last two scores approximate syntactic
and morphological/lexical complexity, respec-
tively.

Features like these and their different combina-
tions are often used to measure text complexity
and/or readability (Bengio et al., 2009; Spitkovsky
et al., 2009; Cirik et al., 2016; Kocmi and Bojar,
2017; Zhang et al., 2018; Platanios et al., 2019;
Chang et al., 2021).

In our experiments, we scale all these features to
fit into the [0,1] interval (with MinMax scaler) and
use their mean as our complexity measure.

To assess the role of data ordering along the
complexity scale based on the measure above, we
trained triples of minimally different models, keep-
ing everything apart from the data ordering fixed:

• Curriculum model: All training data is or-
dered by increasing complexity.

• No-curriculum model: No particular order is
imposed on the training data.

• Reversed-curriculum model: Training data
is ordered by decreasing complexity.

All models in this set of experiments are
RoBERTa-base models trained following the two-
stage procedure described in Section 4.1 – first,
the models are trained on context size 32, then the
context is increased to 128. Unlike in other ex-
periments, however, each of the stages was further
divided into three consecutive phases:

• Phase 1: The first 1/3 of the data is used in
training, the other 2/3 are withheld. The cur-
riculum model just sees the ‘easiest’ data here;
the reversed-curriculum model sees the ‘most
difficult’ portion; the baseline, no-curriculum
model sees 1/3 of data without any particular
selection;

• Phase 2: Another 1/3 of the data is unlocked.
Now all models are being trained on 2/3 of
all training data. Both the curriculum model
and the reversed-curriculum model now have
access to the middle of the complexity range.

• Phase 3: The final 1/3 of data is unlocked.
Now all models are being trained on the whole
range of complexity.
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Figure 1: Average BLiMP score for models trained
using various context sizes. 32→128 indicates a model
trained initially on context size 32, then trained again
on 128.

Figure 2: Average (Super-)GLUE score for models
trained using various context sizes. 32→128 indicates a
model trained initially on context size 32, then trained
again on 128.

The data-unlocking procedure above happens
twice: first, on a small context size (32 tokens),
and later when the context size is increased (128
tokens).

Using the taxonomy of curriculum learning in
(Soviany et al., 2022), we can describe our ap-
proach as vanilla data-level curriculum learning
with easy-then-hard iterative schedule.

4 Results

4.1 Context Size

The vast majority of our improvement comes from
limiting the context size. We show this in Figures
1 and 2. Here we can see that a context size of 32
gives the best performance on BLIMP, whereas 64
gives the best performance on GLUE. The overall
shift in trend between the two benchmarks fits with
the fact that the average input length is longer in
GLUE than in BLIMP. There is a substantial drop
in performance using a context size of greater than

64. To our understanding, the baselines provided by
the task organizers use a context size of 128, which
may explain their relatively poorer performance (as
shown later in Figure 4).

However, if we simply first train with a context
size of 32, then increase the context size to 128,
we see a substantial gain over training on 128 from
the beginning. In the case of GLUE, we see that
increasing the context size from 32 to 128 increases
the performance beyond what simply training on
32 or 128 alone can accomplish. This suggests that
a larger context size is indeed necessary for perfor-
mance on (Super-)GLUE, but pretraining initially
on a smaller context can guide the model to more
efficient training on larger context sizes.

4.2 Vocabulary Expansion

Next, we look at the performance of our models
which were initially trained on a character-level
vocabulary, then transferred to our 40k subword
vocabulary. We show the results in Table 2.

Vocabulary size

40k Char→40k

Context size
32 78.6 77.1
64 77.8 78.6

Table 2: Average performance on BLiMP across context
and vocabulary sizes.

As we can see, the performance is mixed and
depends on the context size. For context size 64,
there appears to be an improvement, however for
context size 32, the performance drops. The lack
of improvement for context size 32 led us to leave
out this technique in our final model, as the poten-
tial gains are inconsistent and training first on the
character level adds a costly extra pretraining step.

As for the use of characters in low-resource pre-
training, we suspect that there are better ways of
integrating rather than via an extra initial pretrain-
ing step. Using our method, the model is suscep-
tible to forgetting what it has learned during the
character-level pretraining when it is pretraining
for the second time.

Additionally, the evaluation metrics chosen for
this shared task do not stand out as tasks where
character models would be particularly beneficial.
Other tasks where character-level models have been
shown to greatly outperform subword-level models
such as morphological inflection would be perhaps
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Figure 3: Loss dynamics for three minimally different
models: curriculum; no curriculum; reversed curricu-
lum.

more suitable for assessing the potential benefits of
our character-informed model.

4.3 Curriculum learning
We evaluate the results of data ordering from sim-
ple to complex against two alternatives: no data
ordering and reversed data ordering (from difficult
to simple). We train triples of models that min-
imally differ from each other – everything apart
from the order of data is kept constant.

Figure 3 shows evaluation loss dynamics of one
typical model triples during training (we set up
several training experiments, varying the number
of epochs per phase, without qualitative change in
results, so here we only report one of them).

While there are stages in training where the loss
seems to indicate an advantage of the curriculum
model against the baseline one, the no-curriculum
model eventually catches up. Perhaps more sur-
prisingly, the reversed-curriculum model shows
systematically lower loss during longer phases of
training.

Targeted linguistic evaluation also shows mixed
results. Table 3 lists BLiMP scores for the model
triple:

We don’t see a clear pattern in what types of lin-
guistic phenomena benefit from a particular order
of data exposure and can’t conclude whether the
observed effects are robust and systematic.

The lack of a clear benefit from the curriculum
might be traced back to at least one of the follow-
ing:

• Low quality of the complexity metric;

• Inadequacy of the complexity metric for the
training objective;

• Interfering data noise;

BLiMP Scores Cur. Rev. cur. No cur.

Anaph. agree. 89.4 89.4 90.1
Arg. struct. 73.6 71.3 72.5
Binding 69.3 70.7 68.8
Control raising 71.1 71.0 70.5
Det. noun agree. 95.3 94.0 95.3
Ellipsis 86.2 82.2 83.7
Filler gap 75.9 70.7 72.8
Irregular forms 83.7 83.0 86.5
Island effects 54.9 62.1 53.5
NPI licensing 67.1 66.8 70.5
Quantifiers 68.9 69.3 66.2
SV agree. 81.2 81.8 78.8

Average 76.4 76.0 75.8

Table 3: The effect of data ordering on linguistic gener-
alization.

• Non-optimal pacing function;

• The genuine lack of advantage from data re-
ordering.

To illustrate some of these considerations, we
pick three typical samples from the ordered dataset
for context size 32 – from the ‘simplest’ end, from
the middle, and from the ‘most complex’ end, re-
spectively:

(a) down!
up up up up up up up up up
up up up up up down!

(b) the flared skirt of the cone yet to
be combed, and this provide

(c) p;amp;gt;&amp;amp;gt;Exactly.
&amp;amp;gt;&amp;amp;gt;Combining

The easiest samples are indeed linguistically sim-
ple – they contain a lot of repetitions, very simple
syntactic structures and very frequent words. At
the same time they are not very representative of
the rest of the dataset, both grammatically and lex-
icaly. The typical sample from the main body of
the dataset – samples like (b) – do not show the
characteristic repetitive pattern and a large propor-
tion of the lexical material across the dataset falls
outside of what the simplest samples contain. The
simplest data defined the way we do it is useful
for generalization to the rest of the data only to a
very limited degree: the model does see the most
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frequent words, but the contexts of their use are
pretty different from how they are typically used
elsewhere. For a model with non-character-level
tokenization, it might not be particularly helpful.

On the other side of the complexity scale, a lot
of samples are indeed difficult, but in a way that
does not necessarily reflect true linguistic complex-
ity: vocabulary and punctuation features push up
samples that contain elements of HTML, have col-
lapsed space symbols, are lists or are written in
languages that are not the main language of the
dataset.

In a sense, both extreme ends of the complex-
ity scale contain samples that are probably not
good grounds for linguistic generalization given
the MLM training objective, but in different ways.

4.4 Model Size

Table 4 shows the performances of the two mod-
els we used, as well as DeBERTa-base to con-
trol for the differences in model architecture be-
tween RoBERTa and DeBERTa. We can see that
DeBERTa-large generally performs best. Interest-
ingly, we see that switching from RoBERTa to
DeBERTa seems to account for the difference in
GLUE scores, but scaling up to large accounts for
the increase in BLiMP scores. This shows that
when limiting the context size, we can potentially
scale up to larger models even when data is scarce.

Ro-base De-base De-large

BLiMP 78.6 79.0 81.0
BLiMP supp. 63.8 59.8 63.8
MSGS -70.7 -62.2 -53.7
GLUE 70.3 72.5 72.5

Table 4: RoBERTa-base versus DeBERTA-base and
large on all tasks. MSGS is the average Matthew’s
Correlation Coefficient multiplied by 100. Best in bold.

We also experimented with training a Deberta-
XL model, which is identical to Deberta-Large ex-
cept with 48 layers rather than 24. Our results
on BLiMP were however not better (roughly 2%
worse than the comparable large model), so it
would seem that there is a limit to how much one
can simply scale up model size and see perfor-
mance improvements when it comes to pretraining
on limited data.
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25
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BLiMP BLiMP supplement MSGS GLUE Average

Baseline (10M) Baseline (100M) 32 32→128 (10) 32→128 (50)

Figure 4: Average scores for submitted models com-
pared to baselines. 32→128 indicates a model trained
initially on context size 32, then trained again on 128.
The number in parentheses indicates the number of
epochs trained on for the second iteration of pretraining.
MSGS scores are the average Matthew’s Correlation
Coefficient, multiplied by 100.

4.5 Submission

In Figure 4, we show the overall results for our best
models, compared to the baselines. We also report
results on each individual sub-task in Appendix B.
Our final models include a model trained only on
context size 32, and two trained again on context
size 128, one for 10 epochs and one for 50 epochs.
As our one trained with 10 additional epochs per-
formed best on average, this was our final submis-
sion. We can see the trade-off for context size
between the GLUE and BLiMP scores, as BLiMP
favors models trained on a shorter context while
GLUE favors models trained on a longer context.
MSGS appears to also have some slight preference
for models trained on a shorter context, though the
differences between all models is comparatively
small. Interestingly, the 10M baseline is better on
average than the 100M baseline on MSGS, as well
as the BLiMP supplement. We see the largest differ-
ence in the BLiMP supplement, where our models
outperform the baselines by around 20 points on av-
erage. Much of this improvement comes from the
qa_congruence_easy set, where our best model
achieved a score of 81%, compared to the baseline
score of 31%.

5 Conclusion

Our conclusion is very simple: if you want to pre-
train a model on little data, train with a smaller
context size. This can greatly aid in model conver-
gence such that no specific hyperparameter tuning
or complex methods need to be used for superior
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performance.
In fact, both of our more “complex” approaches

concerning initialization with a character vocabu-
lary and curriculum learning proved to be unreli-
able, where gains paled in comparison to the gains
realized from simply lowering context size.

If a larger context size is eventually needed, such
as for some GLUE tasks, continuing training with
a larger context size can provide some benefit. We
do think that there may be a smarter way to control
context size, such as a gradual increasing during
training, which could lead to smoother and faster
training. Additionally we expect that there are other
potential ways to implicitly limit context size, such
as limiting self-attention, which may achieve a sim-
ilar effect.
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A Vocabulary Size

We experiment with vocabulary size, as shown in
Table 5. Here, we initially chose a context size of

64, which we later show to be a close to optimal.
The results favor a vocabulary size of 40k, however
we note that certain aspects of the character model,
namely its performance on quantifiers, indicates
that it could complement the subword vocabulary.

B Final Full Results

We report the results for the baselines and our sub-
mitted models in Table 6.
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Vocabulary Size

BLiMP Scores (%) Char 8k 16k 24k 32k 40k 48k 64k

Anaphor agreement 44.0 88.3 90.1 92.9 92.6 91.8 92.8 91.3
Argument structure 59.4 69.0 73.8 73.6 73.6 74.6 74.4 74.7
Binding 61.5 69.2 69.3 70.4 69.3 71.5 68.9 68.3
Control raising 60.0 63.0 68.2 69.1 69.6 70.9 71.7 69.5
Determiner noun agreement 89.2 89.5 88.0 89.8 94.5 95.4 96.6 96.5
Ellipsis 42.4 85.8 84.9 87.1 86.4 88.6 84.5 87.3
Filler gap 70.3 73.9 73.0 73.7 73.0 72.0 74.0 73.5
Irregular forms 78.9 84.4 89.6 89.3 89.6 92.6 85.8 88.8
Island effects 43.9 44.4 46.8 48.9 51.8 50.9 53.0 53.4
NPI licensing 55.0 56.0 63.5 68.3 70.2 73.0 67.0 67.1
Quantifiers 80.4 66.5 70.8 68.3 69.0 70.9 71.0 68.5
Subject verb agreement 71.4 78.2 79.3 80.3 83.5 81.3 81.7 81.1

Average 63.0 72.3 74.8 76.0 76.9 77.8 76.8 76.7

Table 5: BLiMP scores for each vocabulary size tested. “Char” refers to a character-level model. Best in bold.

Baseline (10M) Baseline (100M) 32 32→128 (10) 32→128 (50)

BLiMP

Anaphor agreement 81.5 89.5 94.5 93.0 88.0
Argument structure 67.1 71.3 76.3 74.5 72.9

Binding 67.3 71.0 77.0 76.3 74.9
Control raising 67.9 67.1 75.5 74.2 72.8

Determiner noun agreement 90.8 93.1 95.6 94.4 91.0
Ellipsis 76.4 83.8 84.1 78.5 77.4

Filler gap 63.5 68.0 80.0 78.8 76.0
Irregular forms 87.4 89.6 87.9 85.8 83.2

Island effects 39.9 54.5 68.4 70.7 68.8
NPI licensing 55.9 66.3 72.5 73.2 69.9

Quantifiers 70.5 70.3 70.8 66.4 66.0
Subject verb agreement 65.4 76.2 89.0 87.8 84.3

BLiMP Supp.

hypernym 49.4 50.8 46.9 49.1 45.4
qa_congruence_easy 31.3 34.4 76.6 81.3 73.4

qa_congruence_tricky 32.1 34.5 45.5 49.1 46.7
subject_aux_inversion 71.7 45.6 82.8 84.3 83.3

turn_taking 53.2 46.8 67.1 68.9 73.6

GLUE

CoLA 70.8 75.9 76.8 76.8 77.4
SST-2 87.0 88.6 87.8 88.6 88.0

MRPC (F1) 79.2 80.5 70.6 72.9 73.5
QQP (F1) 73.7 78.5 86.6 86.6 87.1

MNLI 73.2 68.7 76.4 76.2 77.1
MNLI-mm 74.0 78.0 77.3 76.3 77.0

QNLI 77.0 82.3 83.2 83.5 79.7
RTE 61.6 51.5 50.5 55.6 56.6

BoolQ 66.3 59.9 65.2 67.9 67.2
MultiRC 61.4 61.3 61.9 62.0 64.4

WSC 61.4 61.4 61.5 61.5 61.5

MSGS

CR_LC -0.28 -0.89 -0.98 -0.92 -0.49
CR_RTP -0.78 -0.91 -0.52 -0.85 -0.84
MV_LC -0.99 -1.00 -1.00 -1.00 -1.00

MV_RTP -0.79 -0.15 -0.32 -0.18 -0.60
SC_LC 0.16 -0.58 -0.38 -0.29 -0.18
SC_RP -0.45 -0.39 -0.51 -0.53 -0.55

AoA

Overall 2.06 2.06 2.06 2.05 2.05
Nouns 1.99 1.99 2.00 1.99 2.00

Predicates 1.85 1.82 1.85 1.85 1.83
Function words 2.65 2.66 2.60 2.58 2.55

Table 6: All individual results for our final models, versus the baselines. Best in bold.
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Abstract

The use of neural language models to model
human behavior has met with mixed success.
While some work has found that the surprisal
estimates from these models can be used to
predict a wide range of human neural and be-
havioral responses, other work studying more
complex syntactic phenomena has found that
these surprisal estimates generate incorrect be-
havioral predictions. This paper explores the
extent to which the misalignment between em-
pirical and model-predicted behavior can be
minimized by training models on more develop-
mentally plausible data, such as in the BabyLM
Challenge. We trained teacher language models
on the BabyLM “strict-small” dataset and used
sentence level surprisal estimates from these
teacher models to create a curriculum. We
found tentative evidence that our curriculum
made it easier for models to acquire linguis-
tic knowledge from the training data: on the
subset of tasks in the BabyLM challenge suite
evaluating models’ grammatical knowledge of
English, models first trained on the BabyLM
data curriculum and then on a few randomly
ordered training epochs performed slightly bet-
ter than models trained on randomly ordered
epochs alone. This improved linguistic knowl-
edge acquisition did not result in better align-
ment with human reading behavior, however:
models trained on the BabyLM dataset (with
or without a curriculum) generated predictions
that were as misaligned with human behavior as
models trained on larger less curated datasets.
This suggests that training on developmentally
plausible datasets alone is likely insufficient to
generate language models capable of accurately
predicting human language processing.

1 Introduction

The rapidly increasing success of neural language
models has resulted in a corresponding increase
the use of these models to model human neural
and behavioral responses. This research direction
has yielded mixed success — while the surprisal

estimates from these language models (i.e., the
negative log probability of words given their pre-
ceding context) can certainly predict a wide range
of neural and behavioral responses (Schrimpf et al.,
2021), there are cases where surprisal estimates
from these models generate quantitiatively (Huang
et al., 2023; Van Schijndel and Linzen, 2021) and
even qualitatively (Arehalli and Linzen, 2020) in-
correct predictions.

To what extent are these incorrect predictions
a consequence of the fact that these models are
trained on orders of magnitude more data than
an average human is exposed to in their lifetime
(Linzen, 2020)? Can training these models on more
developmentally plausible datasets, such as in the
BabyLM challenge (Warstadt et al., 2023), bridge
the gap between empirical and predicted behavior?
Does increased alignment with human behavior
come at the cost of success on other NLP tasks?
We explore these questions in this paper by train-
ing models on the the “strict-small” dataset of the
BabyLM Challenge (∼10M tokens) and evaluat-
ing the models on two types of tasks: first, tasks
from the BabyLM challenge designed to test these
models’ linguistic abilities; second, a large scale
reading time dataset of syntactically complex sen-
tences designed to evaluate models’ ability to cap-
ture aspects of human language processing (SAP
benchmark; Huang et al., 2023).

Concretely, we explored whether training mod-
els on an easy-to-difficult curriculum (Elman,
1993) could result in improved performance on
the BabyLM suite of challenge tasks and/or an im-
proved fit to human reading behavior in the SAP
Benchmark. To design the curriculum, we used the
Cross-Review method (Xu et al., 2020): we trained
teacher language models on different subsets of the
training dataset and then generated sentence level
surprisal estimates for held out sentences from each
of the teacher models. For every sentence, the sur-
prisal estimates from multiple teachers were av-
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Figure 1: Schematic for how Cross-Review can be used to generate an easy-to-difficult order for the training dataset.

eraged together to compute a “difficulty” score,
which was then used to generate an ordered se-
quence of training sentences (or “curriculum”).

To foreshadow our results, we found that models
trained on our curriculum alone performed worse
on the BabyLM suite of challenge tasks compared
to models trained for the same number of steps
without a curriculum. However, for a subset of the
challenge tasks evaluating models’ grammatical
knowledge, models which were trained on the cur-
riculum followed by a few randomly ordered train-
ing epochs performed better than models trained on
the randomly ordered epochs alone. This suggests
that while training on the curriculum alone was not
sufficient to acquire relevant linguistic knowledge,
it might have induced useful biases in the mod-
els which made it easier for the models to acquire
linguistic knowledge from the training data.

However, any useful biases that training on the
the curriculum might have induced did not result
in improved alignment with human reading behav-
ior: models trained on the BabyLM data (with or
without the curriculum) had nearly identical perfor-
mance on the SAP benchmark to each other and to
models trained on larger and less curated datasets.
This result, along with prior work on training mod-
els on child directed speech (Yedetore et al., 2023),
suggests that merely training on developmentally
plausible data is likely insufficient for bridging the
gap between human behavior and language-model
predicted behavior.

2 Background

Curriculum learning (Bengio et al., 2009) refers to
training models through a difficulty-based order-
ing of training examples (i.e. a curriculum), most
often “starting small” (Elman, 1993) from easy ex-
amples before progressing to increasingly difficult
sentences. In NLP, curriculum learning has been
widely used for Machine Translation (e.g., Platan-
ios et al., 2019), but has also been applied more
recently to other natural language understanding
tasks (Xu et al., 2020). For a survey see Soviany
et al. (2022); Wang et al. (2021).

There are two steps involved in designing a
curriculum: assigning a difficulty score to every
training example (“difficulty measurer”) and using
these difficulty scores to determine the order in
which training examples are presented to the model
(“training scheduler”) (Wang et al., 2021).

2.1 Difficulty measurer
Prior work exploring the efficacy of curriculum
learning for NLU tasks has used a wide range of
properties to compute sentence difficulty such as
sentence length, word frequency (or rarity), tree
depth, diversity and understandability (for a review,
see Soviany et al., 2022). None of these properties
by themselves can comprehensively capture what
makes one sentence more difficult to process or
acquire than another. For example, while long sen-
tences are in general more difficult than short sen-
tences, a shorter ambiguous sentence (“the horse
raced past the barn fell”) is more difficult to pro-
cess than a longer unambiguous one (“the horse
which was raced past the barn is the same horse
that fell”). Given the complex ways in which all of
the individual properties can interact, a holistic way
of combining these properties is likely necessary
to generate good measures of sentence difficulty.

A natural way of combining these properties to
compute a difficulty measure is to use a “teacher”
language model to compute the predictability of
words in a sentence: given some context, a good
language model will assign lower probabilities to
words that result in long continuations with infre-
quent words and structures and/or continuations
that describe improbable or hard-to-understand
events. Concretely, in this work we define diffi-
culty of a sentence as the mean surprisal of words
in the sentence, as given in equation 1, where D is
difficulty, L is the model being used to compute dif-
ficulty, sk is the k-th sentence, and n is the number
of words in sk.

D(sk, L) = − 1

n

n∑

i=0

logP (wi | w0...wi−1, L)

(1)
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There are two issues with estimating sentence
difficulty in this manner. First, the difficulty es-
timates can be inaccurate if the teacher language
model is trained on the same data for which dif-
ficulty scores are being computed. Second, the
difficulty estimates can be affected by noisy id-
iosyncrasies if they are computed from just one
teacher language model. To avoid these two is-
sues, we use the Cross-Review method proposed
by Xu et al. (2020). In this method each teacher is
trained on a subset of the data, and then evaluated
on all subsets other than the one it was trained on.
Therefore if there are n teachers, there are n-1 dif-
ficulty scores for each sentence which can then be
averaged together for a final difficulty score for the
sentence (see Equation 2 and Figure 1).

D(sk) =
1

M

M∑

m=1

D(sk,m) (2)

2.2 Training scheduler
Given a training dataset E in which examples are
ordered by difficulty and a training time step t,
the training scheduler determines the subset of E
that the model can be exposed to at t. At a broad
level there are two types of schedulers: discrete and
continuous (see Wang et al., 2021 for a more de-
tailed taxonomy of training schedulers). In discrete
schedulers, the training proceeds in stages with m
training time steps; at all training time steps in a
stage ti...ti+m, the model is exposed to the same
subset of E.1 In continuous schedulers on the other
hand, the subset of E that the model is exposed to
changes at every training time step.

In this work we use a continuous scheduler pro-
posed by Platanios et al. (2019), in which the pro-
portion of E that the model can be exposed to at t,
croot−p(t), is given by the formula below, where T
is the maximum number of training time steps and
c0 is the proportion of sentences that the model is
exposed in the first time step:

croot−p(t) = min
(
1,

p

√

t
1− cp0
T

+ cp0

)
(3)

Our primary reason for using the scheduler
above is that it has only three hyperparameters:
c0, T and p. The authors demonstrate that hyper-
parameters like warmup steps, which are normally

1This is equivalent to saying that the at any given training
stage, the model is trained on m epochs of a subset of E.

very highly tuned, do not have to be tuned with
their scheduler. Given our compute limitations, hy-
perparameter tuning was infeasible, thus making
this approach appealing.

3 Designing the curriculum

3.1 Datasets
We trained our random baselines and designed
our curriculum using the datasets provided in the
“strict-small” track of the BabyLM challenge. The
data for this track was made up of 10 datasets, with
a total of about∼10M tokens and∼920K sentences
(where sentences were defined as sequences sepa-
rated by a new line character). As specified in the
BabyLM call for papers, the relative distribution of
the ten datasets at the token level was intended to
be developmentally plausible – for example, about
55% of all the tokens in the “strict-small” dataset
comes from transcribed speech, and another 19%
of the tokens come from stories (see Table 1).

While the BabyLM challenge datasets were con-
structed at the token level, we designed our curricu-
lum at the sentence level, where we defined sen-
tences as sequences separated by a new line charac-
ter. We did this because it was more straightforward
to sort the training dataset based on the difficulty of
entire sentences; creating a token-level curriculum
would require specifying an additional mechanism
for ensuring that contextual integrity was main-
tained. The relative distribution of the ten datasets
at the sentence level was very different from the
relative distribution of tokens (see Table 1). Specif-
ically, the proportion of more “complex” datasets
(such as Wikipedia and Simple Wikipedia) was
much lower at the sentence level than at the to-
ken level. We discuss the consequence of these
distributional differences in § 7.

3.2 Computing sentence difficulty
As discussed in § 2.1, we used the Cross-Review
method proposed by Xu et al. (2020) to compute
the difficulty of every sentence in the training
dataset. We divided the training dataset into five
metasets, each with approximately the same num-
ber of tokens and number of sentences. Then, we
used the neural-complexity codebase (van Schijn-
del and Linzen, 2018)2 to train five LSTM teachers
on each of these metasets.

Our LSTM teachers each had two hidden layers
with 200 units in each layer. Training sentences

2https://github.com/vansky/neural-complexity
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Dataset Speech? # tokens Proportion # sentences Proportion

CHILDES Yes 0.44 M 4% 80K 9%
BNC Spoken Yes 0.84 M 9% 73.41 K 8%
Children’s book test No 0.57 M 6% 26 K 3%
Children stories No 0.34 M 3% 5.72 K 1%
Project Gutenberg No 0.99 M 10% 91.81 K 10%
Open Subtitles Yes 3.03 M 31% 470.89 K 51%
QED Yes 1.03M 10% 91.91 K 10%
Simple Wikipedia No 1.51 M 15% 48.80 K 5%
Switchboard Yes 0.11 M 1% 11.09 K 1%
Wikipedia No 0.99 M 10% 19.35 K 2%

Total 9.87 M 918.98 K

Table 1: Number of tokens and sentences in each of the sub-datasets in the BabyLM “strict-small” datasets. The
number of tokens are based on a BPE tokenizer we trained and we exlcude tokens from lines with just a tab or space.
Therefore the numbers are slightly different from those in the BabyLM call for papers.
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Figure 2: Proportion of sentences from each of the sub-datasets in our training curriculum for every 28937 training
steps (i.e. equivalent to 1 epoch in the random models), as well as the proportions in the entire training dataset.

were pre-tokenized using a BPE tokenizer that we
trained (described in § 4.2) and were passed to the
teacher models in 20 batches. They were trained
until their validation loss did not improve for three
epochs, or until they reached 100 epochs. All teach-
ers converged within 67 epochs, with the fastest
teacher converging in 54 epochs.

We then evaluated each of the teacher LSTMs
on all metasets except the one they were trained
on, and then used the resulting surprisal values
to compute the difficulty of every sentence in the
training dataset (see Equation 2 and Figure 1).

Why use LSTM teachers? We trained LSTM
language models instead of transformers because
prior work has demonstrated that for datasets with
4 million tokens or less, such as our metasets,
LSTM language models outperform their trans-
former counterparts (Hu et al., 2020), and therefore
would make better “teachers”. Note, we did not use
state-of-the-art language models as our teachers be-

cause of the constraints of the strict-small track of
the BabyLM challenge.

3.3 Creating the training dataset

As discussed in § 2.2, we use the training sched-
uler proposed by Platanios et al. (2019) which has
three hyperparameters (see Equation 3): the ini-
tial competence (c0), the total number of training
steps (T ) and the root value (p). Following Pla-
tanios et al. (2019), we set the value of c0 to 0.01.
We set the value of T to be 150001 because our
random baseline (described in § 4.3) achieved the
highest validation perplexity after 144685 training
steps (i.e., after 5 epochs).3 We set the value of p
to be 10 after some experimentation because for
values of p lower than that, the complex domains in
our training dataset (such as Wikipedia) were very
underrepresented (see Figure 5 in the Appendix).
Then, for every batch, we sampled 32 sentences

3It was 150001 instead of 150000 because of an error.
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from the subset of sentences that the model can be
exposed to at the current time step as determined
by Equation 3.

4 Training

4.1 Model architecture

For our target models we use the OPT 125M ar-
chitecture (Zhang et al., 2022). This decoder-only
transformer architecture consists of 12 layers with
12 attention heads each, an embedding size of 768
and a context length of 2048 tokens. We addition-
ally use a final 0.2M layer with a causal language
modeling head.

4.2 Tokenization and batching

Since the BabyLM challenge does not permit the
use of pretrained tokenizer, we trained a BPE tok-
enizer on the training dataset with a vocabulary size
of 50272 (the same as was used in the original OPT
models). Like in the GPT-2 (Radford et al., 2019)
tokenizer implementation, we do not significantly
normalize or pre-tokenize the tokenizer training
data. For the batching process, the tokenizer trun-
cates sequences longer than 128 tokens, and returns
the overflowing tokens as a separate sequence; only
about 2% of our training examples were truncated.
We used batch size of 32 with dynamic padding.
The entire training dataset was divided into 28937
batches or training steps per epoch.

4.3 Model types

Random baseline: A randomly initialized OPT
125M model trained on our training dataset without
any curriculum for up to 8 epochs. We present
results from two baselines: the checkpoint after the
5th epoch (RandOPT 5ep; 144685 training steps)
which had the best validation loss, and the last
checkpoint (RandOPT 8 ep; 231496 training steps).

Curriculum only model: A randomly initialized
OPT 125M model trained on our entire curriculum
(CurrOPT; 150001 training steps).

Curriculum + Finetuning: The checkpoint of
the CurrOPT model after it was trained on 144685
steps (i.e., same number of steps as the RandOPT
5ep model) further “finetuned” on the entire ran-
domly ordered training dataset for upto 5 additional
epochs. We present results from the checkpoint af-
ter 3 finetuning epochs (CurrOPT_ft 3ep; 231496
training steps, same as RandOPT 8ep) and the

checkpoint after 5 finetuning epochs (CurrOPT_ft
5ep; 289370 training steps).

4.4 Training procedure

We use an AdamW optimizer (Loshchilov and Hut-
ter, 2017) with β1 and β2 set to 0.9 and 0.95 re-
spectively. We use a weight decay and dropout of
0.1, and clip gradient norms at 1.0. For our random
baseline we use a linear learning rate schedule and
use a warmup of ∼5% of our maximum training
steps. As discussed in § 2.2 we do not use warmup
for our curriculum models. Due to our considerably
smaller pre-training corpus we do not implement
the several mid-flight changes to learning rate and
gradient clipping employed by Zhang et al. (as
an adhoc response to training instability) over the
course of their significantly longer training run.

5 Evaluation

We evaluate our models on the three challenge
sets included in the BabyLM challenge – BLiMP
(Warstadt et al., 2020a), (Super)GLUE (Wang et al.,
2018, 2019) and MSGS (Warstadt et al., 2020b) —
as well as on the SAP Benchmark (Huang et al.,
2023).

BLiMP and BLiMP supplement The Bench-
mark of Linguistic Minimal Pairs (BLiMP) probes
the linguistic knowledge that a language model
encodes by measuring how often the model accu-
rately assigns higher probabilities to words in min-
imally different grammatical and ungrammatical
sentences. The original dataset contains minimal
pairs for 12 different linguistic phenomena probing
English morphology, syntax and semantics. The
BabyLM challenge supplements this dataset with
five additional linguistic phenomena targeting dis-
course level acceptability as well as other syntactic
phenomena (such as question formation).

SuperGLUE The General language Understand-
ing Evaluation (GLUE) benchmark and its succes-
sor SuperGLUE are challenge sets that are designed
to evaluate models’ general purpose natural lan-
guage understanding. The BabyLM challenge in-
cludes tasks from GLUE (COLA, SST2, MRPC,
QQP, MNLI, QNLI, RTE), three tasks from Su-
perGLUE (BoolQ, RTE and WSC), as well as an
additional task (Multimodal NLI). Unlike BLiMP
which largely evaluates grammatical knowledge,
the SuperGLUE tasks are designed to evaluate
higher level linguistic abilities such as sentiment
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analysis, inference, causal reasoning, coreference
resolution, question answering, paraphrasing, etc.

MSGS The Mixed Signals Generalization Set is
a diagnostic set used to evaluate how models solve
an ambiguous classification task that can be solved
using either linguistic features or surface features.
The MSGS set contains five surface features and
four linguistic features, resulting in 20 ambiguous
classification tasks. There are also 9 control tasks to
evaluate how well models can classify each of the
features in an unambiguous context. The BabyLM
challenge uses three linguistic features (syntactic
position, syntactic construction, and syntactic cate-
gory) and two surface features (lexical content and
relative position), thus resulting in six ambiguous
classification tasks.

SAP Benchmark The Syntactic Ambiguity Pro-
cessing (SAP) benchmark is a large scaled reading
time dataset for seven different types of syntacti-
cally complex sentences. Unlike the other datasets
which measure models’ linguistic knowledge and
ability, this dataset measures whether the models
process information as humans do; specifically,
whether models and humans are equally surprised
by sentences that are grammatical but have com-
plex and infrequent syntactic structures. The data
processing pipeline of the SAP benchmark involves
three steps: first, estimating empirical effects of
interest using Bayesian mixed effects models; sec-
ond, generating predicted reading times from lan-
guage model surprisal (i.e. negative log probabil-
ity) values and fitting mixed effects models to esti-
mate predicted effects of interest;4and third, com-
paring empirical and predicted effects of interest.
The surprisal estimates and reading times are mea-
sured at specific target words and the following two
spillover words. Further details about the different
constructions are included in the Supplementary
materials.

6 Results

6.1 What curriculum was learned?

The datasets with transcribed speech had the low-
est average sentence difficulty scores. Even within
transcribed speech, datasets with informal speech
(such as child directed speech and subtitles) had
lower average difficulty scores than datasets with

4SAP Benchmark uses Bayesian mixed effects models. We
use linear mixed effects models because they are less resource
intensive to fit and yield nearly identical model estimates.

more formal speech (such as BNC). Additionally,
as expected the proportion of transcribed speech
steadily decreased over time, as the proportion of
written text increased. By the last “epoch”, the dis-
tribution of datasets was very similar to the true dis-
tribution (see Figure 2), suggesting that the cross-
review method we used as our difficulty-measurer
was effective, as was the root-10 training scheduler.

Agreement between LSTM teachers For any
given sentence, there was a lot of variance in the
surprisal estimates across the teachers: the average
standard deviation was 113 bits of surprisal; the
mean Spearman rank correlation between any two
pairs of teachers was only 0.0009. This highlights
the importance of averaging the surprisal estimates
across different teachers to avoid over-fitting to
idiosyncrasies of any particular teacher model.

Other difficulty measures Figure 7 plots the
correlation between our difficulty measure com-
puted using the cross-review method and two other
simpler difficulty measures: average unigram fre-
quency of the words in a sentence and sentence
length. Our difficulty measure is moderately cor-
related with unigram frequency (R = 0.27, p <
0.0001) and highly correlated with sentence length
(R = 0.89, p < 0.0001). We also predicted our
difficulty measure as a function of unigram fre-
quency and sentence length in a linear regression
model and found that unigram frequency explains
variance in our difficulty measure over and above
sentence length, and together they explain most
of the variance in the difficulty measure (adjusted
R-squared = 0.93). This suggests that for the spe-
cific BabyLM datasets, using cross-review, while
effective, might not be necessary: using faster-to-
compute measures such as sentence length would
have likely resulted in a comparable curriculum.

6.2 Training time
Since our difficulty measure was highly correlated
with sentence length, in early stages of training
the average sentence length in our curriculum was
lower than the average sentence length in early
epochs of model training without a curriculum.
Since we dynamically padded our sequences, the
model trained on our curriculum (CurrOPT) was
initially trained on batches consisting of fewer total
tokens than the model trained on the unordered data
(RandOPT). As a result, in early stages of training,
the time taken to train CurrOPT was less than half
the amount of time taken to train RandOPT. As
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Dataset Task RandOPT
5 ep

RandOPT
8 ep

CurrOPT CurrOPT_ft
3 ep

CurrOPT_ft
5 ep

114685
steps

231496
steps

150001
steps

231496
steps

289370
steps

BLiMP Anaphor Agr. 75.72 86.71 70.35 72.59 75.05
Agr. structure 66.09 67.85 67.8 70.44 70.04
Binding 69.19 66.83 69.23 69.29 72.72
Control/Raising 63.65 65.89 63.57 66.81 68.58
D-N Agr. 72.33 74.64 72.05 76.58 78.6
Ellipsis 52.71 52.89 53 61.66 55.43
Filler-gap 72.84 73.5 72.74 74.4 75.18
Irregular forms 82.39 71.04 82.34 80.97 81.27
Island effects 52.06 57.21 57.1 64.13 62.48
NPI licensing 47.46 41.59 38.76 45.52 48.25
Quantifiers 55.69 64.4 52.81 67.03 67.34
Subj-Verb Agr 63.92 64.43 58.84 64.73 65.55

BLIMP Hypernym 50.58 49.19 48.95 47.91 47.21
Supplement Congr. (easy) 48.44 51.56 50 53.12 53.12

Congr. (tricky) 36.97 36.97 36.36 36.36 36.36
Subj-Aux Inv. 84.92 86.53 72.55 84.58 85.02
Turn taking 55 60.71 51.43 55.71 57.5

SuperGlue COLA 3.2 9.35 3.2 9.77 8.91
SST2 83.07 83.86 83.27 85.43 83.86
MRPC 73.64 75.59 65.50 72.07 80.14
QQP 76.86 77.27 74.78 77.33 76.83
MNLI 65.75 67.07 64.63 65.18 65.3
MNLI-MM 65.88 66.31 65.58 66.2 66.22
QNLI 60.63 59.84 59.54 61.33 60.98
RTE 51.51 45.46 47.48 53.54 48.49
BoolQ 65.15 67.50 66.53 60.30 66.81
MultiRC 55.53 48.85 56.74 46.55 47.54
WSC 56.63 61.45 61.45 61.45 61.45

MSGS MV lexical -100 -100 -100 -100 -100
MV position -99.95 -98.39 -99.75 -88.76 -97.62
SC lexical 0.18 -57.66 -58.62 -62.46 -69.88
SC position -62.68 -66.39 -62.82 -76.28 -62.88
CR lexical 0 -4.17 -1.7 -2.4 -1.2
CR position -69.49 -95.59 -87.47 -70.38 -98.53

Table 2: Results for the tasks included in the BabyLM challenge set. Most of the numbers in the table indicate
accuracy except for the following cases: MSGS tasks and COLA numbers are Matthew’s Correlation Coefficient;
MRPC and QQP numbers are F1 scores. Light green cells indicate cases in which CurrOPT and CurrOPT_ft 3ep
performed better than their random counterpart trained on the same number of steps: RandOPT 5ep and RandOPT
8ep respectively. Similarly, red cells indicate cases in which CurrOPT and CurrOPT_ft 3ep perform worse. Orange
cells indicate tasks in which one of the random models ultimately had the best performance. Teal cells indicate
tasks in which training the random model on more epochs led to worse performance. Bolded numbers indicate the
best performance in a task across all five models. For MSGS we interpret “best performance” as having the weakest
surface bias (i.e., the least negative numbers).
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Figure 3: Difference between empirical and model-predicted reading times for the different constructions in the
SAP Benchmark. Wiki-LSTM and GPT-2 estimates were from the original paper.

the curriculum progressed, the number of tokens in
each batch of CurrOPT approached those in Ran-
dOPT causing the training time for CurrOPT to be
similar to that of RandOPT.

6.3 BabyLM challenge tasks

On almost all of the tasks, the performance of the
model trained on our curriculum (CurrOPT) was
worse than the random baseline trained on fewer
training examples (RandOPT 5ep). However, when
we continued to train CurrOPT on more epochs of
the entire training data, the resulting model (Cur-
rOPT_ft 3ep) performed better than the random
baseline trained on the same number of training ex-
amples (RandOPT 8ep) on some tasks (see Table 2).
Specifically, CurrOPT_ft 3ep performed better than
RandOPT 8ep on most tasks that evaluated mod-
els’ knowledge of English grammar (e.g., BLiMP,
COLA). However, additional training did not seem
to help the curriculum models’ performance on
tasks that required specific lexical knowledge (e.g.,
irregular forms and hypernyms) or on tasks that
required the model to learn more factual informa-
tion (e.g., MNLI, MNLI-MM and BoolQ). Taken
together these results suggest that while training
on our curriculum by itself is insufficient to impart
the necessary grammatical knowledge, it might in-
duce biases in the model that make it easier for the
model to acquire this knowledge from training data.
However, there may be limits to the usefulness of
these induced biases: training on our curriculum
seemed to have some negative impact on the mod-
els’ ability to acquire nuanced lexical or factual
information required to solve more complex tasks

like inference or question answering.

6.4 SAP Benchmark

We compared reading times predicted from the sur-
prisal estimates of each of our models, as well as
two baselines that were used in the original pa-
per (GPT-2 (Radford et al., 2019) and an LSTM
model trained on Wikipedia) to the empirical read-
ing times. The difference between predicted and
empirical reading times is nearly identical across
all models, and very high (greater than 25 ms) for
five out of the seven constructions (see Figure 3).
This difference is not just a result of an incorrect
conversion from surprisal to RTs — we observe
qualitatively similar patterns when we look at raw
surprisal values (see Figure 8 in the Appendix).
Thus training on developmentally plausible data
(with or without a curriculum) does not result in
more human-like processing compared to models
trained on less curated written text from the inter-
net. This result aligns with the finding that training
on child directed speech does not result in human-
like generalization (Yedetore et al., 2023). Taken
together these results suggest that merely modify-
ing the training data of language models is unlikely
to result in better cognitive models of human lan-
guage acquisition and processing.

7 Discussion

In this paper we explored whether training on a de-
velopmentally plausible dataset can improve align-
ment with human behavior, and whether the im-
proved alignment (if any) comes at the cost of per-
formance on other NLP tasks evaluating different
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aspects of linguistic competence. We trained mod-
els with and without a curriculum on the BabyLM
“strict-small” dataset and evaluated them on the
BabyLM suite of evaluation tasks as well as on
a large scale benchmark of reading behavior for
syntactically complex sentences (SAP benchmark).

Drawing on prior work on curriculum learning,
we created an easy-to-difficult ordering of the sen-
tences in the training dataset using surprisal values
from LSTM teacher language models in a Cross-
Review paradigm (Xu et al., 2020), and then used
this ordering with a root-10 scheduler (Platanios
et al., 2019) to design the training curriculum. This
learned curriculum aligned with intuitive expecta-
tions for our curriculum — for example, the pro-
portion of transcribed speech decreased over time,
whereas the proportion of written text increased.

An OPT125M causal language model trained
on our curriculum (CurrOPT) performed worse on
most of the tasks in the BabyLM challenge set
compared to baselines trained without a curricu-
lum, suggesting that the models were unable to
acquire relevant linguistic knowledge from the cur-
riculum alone. Continuing to train CurrOPT on
epochs of randomly ordered training data improved
performance on most tasks targeting grammatical
knowledge, but not on tasks that required more fine-
grained knowledge about lexical or factual content.

Why did training on the curriculum lead to
worse performance on some tasks? Domains
with complex sentences (e.g., Wikipedia) were un-
derrepresented in our curriculum because of our
sentence level curriculum: domains like Wikipedia
had fewer but longer sentences, and were there-
fore were less likely to be sampled than sentences
from domains with many short sentences (e.g.,
Open Subtitles). As a consequence there might
not have been enough signal in the training data for
the models to acquire factual information (which
might explain their poor performance on tasks like
MNLI and BoolQ) or nuanced lexical representa-
tions (which might explain their poor performance
on tasks like irregular forms and hypernyms).

Can training on developmentally plausible data
improve alignment with human behavior? Cru-
cial to our question, we found that our models
which were trained on developmentally plausible
data (with or without a curriculum) had nearly iden-
tical performance to models trained on less curated
larger datasets — all of the models severely under-

predicted the magnitude of processing difficulty in
syntactically complex sentences. This suggests that
training on developmentally plausible data alone is
likely insufficient to bridge the gap between human
and model-predicted behavior.

Limitations and future work All of the perfor-
mance increases that we’ve discussed were very
modest and based on just one model architecture.
Therefore further work with additional random runs
of the model is required to ensure that the improve-
ments in performance were not just random noise.
Similarly repeating the experiments with different
architectures for the target and teacher models can
shed light on the generalizability of our conclu-
sions. In a similar vein, the conclusions about SAP
benchmark results also need to be validated in fu-
ture work. Specifically, it is necessary to more
carefully define what “developmentally plausible”
means, develop concrete hypotheses about why
training on specific datasets might result in better
alignment with reading behavior, and test these
hypotheses with controlled experiments.

8 Conclusion

We designed a surprisal-based curriculum using
the developmentally plausible data in the BabyLM
strict-small dataset. We found that a model which
was first trained on this curriculum and then trained
on several additional epochs of the unordered train-
ing dataset performed slightly better than a random
baseline trained on the same number of examples
across a range of NLP tasks. When these models
were evaluated on the SAP benchmark, their per-
formance was nearly identical to each other and to
that of models trained on larger and less curated
datasets. This suggests that merely altering the
training data to be more developmentally plausi-
ble is unlikely to improve alignment with human
behavior.
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Figure 4: Figure and caption adapted from (Huang et al., 2023). Each sentence pair illustrates a construction
tested in SAP Benchmark. An effect of interest is defined as the difference in reading times associated with a
disambiguating or ungrammatical word, marked in green, minus the reading time associated with that same word in
a context where it is grammatical and does not disambiguate the structure of the sentence, marked in turquoise.
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Figure 7: Relationship between the order average LSTM teacher surprisal and other difficulty measures. R values
indicate the Spearman rank correlation coefficients.
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Figure 8: Difference in surprisal value at the target word in ambiguous and unambiguous sentences averaged across
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Abstract

We describe our team’s contribution to the
STRICT-SMALL track of the BabyLM Chal-
lenge (Warstadt et al., 2023). The challenge
requires training a language model from scratch
using only a relatively small training dataset of
ten million words. We experiment with three
variants of cognitively-motivated curriculum
learning and analyze their effect on the per-
formance of the model on linguistic evalua-
tion tasks. In the vocabulary curriculum, we
analyze methods for constraining the vocab-
ulary in the early stages of training to simu-
late cognitively more plausible learning curves.
In the data curriculum experiments, we vary
the order of the training instances based on i)
infant-inspired expectations and ii) the learn-
ing behaviour of the model. In the objec-
tive curriculum, we explore different varia-
tions of combining the conventional masked
language modelling task with a more coarse-
grained word class prediction task to reinforce
linguistic generalization capabilities. Our re-
sults did not yield consistent improvements
over our own non-curriculum learning base-
line across a range of linguistic benchmarks;
however, we do find marginal gains on se-
lect tasks. Our analysis highlights key take-
aways for specific combinations of tasks and
settings which benefit from our proposed cur-
ricula. We moreover determine that careful
selection of model architecture, and training
hyper-parameters yield substantial improve-
ments over the default baselines provided by
the BabyLM challenge. Our code is pub-
licly available at https://github.com/
codebyzeb/CLIMB.

1 Introduction

Children acquire language skills from being ex-
posed to an estimated two to seven million words

∗Equal contribution

per year (Gilkerson et al., 2017). The current learn-
ing regimes of large language models require dis-
proportionately larger sizes of training data to ac-
quire linguistic generalization capabilities (Zhang
et al., 2021). State-of-the-art LMs are typically
trained on gigabytes of data gleaned from the World
Wide Web, on multiple GPUs continuously for days
at a time (Zhao et al., 2023). For example, the Chin-
chilla language model was trained on a dataset of
1.4 trillion words (Hoffmann et al., 2022). Such
large-scale training regimes are economically and
ecologically unsustainable, and access to the re-
quired computing resources remains out of reach
for most academic groups and industry start-ups
(Izsak et al., 2021).

To enable language models to still perform
well with limited data, recent work has looked
at utilizing smaller, well-curated, and represen-
tative corpora (Samuel et al., 2023; Gao et al.,
2020) and careful selection of training and model
hyper-parameters (Geiping and Goldstein, 2023).
‘Zero-shot’ and ‘few-shot’ learning are other data-
efficient approaches which can perform well in
certain settings but rely on large pre-trained lan-
guage models (Brown et al., 2020; Wei et al., 2021).
These approaches, however, provide engineering
solutions to the problem rather than a cognitively-
inspired, compute-efficient framework for training
language models from scratch.

Conventional pre-training of large language mod-
els remains far removed from human language
learning: models operate on a predetermined static
vocabulary and optimize a monotonous training
objective on a randomly shuffled dataset. We
conducted experiments to explore more dynamic
learning processes that are motivated by the psy-
cholinguistic and language acquisition literature
and are set within the machine learning paradigm
of curriculum learning (Bengio et al., 2009). Our
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models are implemented and evaluated within the
‘BabyLM Challenge’ framework, a shared task in
which the stated goal is “to incentivize researchers
with an interest in pretraining and/or cognitive mod-
eling to focus their efforts on optimizing pretrain-
ing given data limitations inspired by human de-
velopment” (Warstadt et al., 2023). Our goal in
participating in the BabyLM Challenge is two fold:
First, we aim to contribute toward democratizing
language modelling research and move towards
this goal by training smaller language models that
are still well-performing on NLP tasks. Second,
we establish a computational framework based on
curriculum learning for simulating aspects of hu-
man language acquisition. We participate in the
strictest track of the challenge, limiting the training
data to only 10 million words of text extracted from
various pre-existing corpora.

Initially, we train our own BabyBERTa-style
vanilla model 1 (Huebner et al., 2021) and find
that simply tuning model size and vocabulary size
in itself leads to substantial performance gains on
some of the BabyLM test sets compared to the
shared task baselines. We furthermore carried out
a number of pre-processing steps on the training
data to further improve performance, including con-
catenating input sequences to make the most of the
available input length.

In our own approach, which we term CLIMB
– Curriculum Learning for Infant-inspired Model
Building – we explore three different curriculum
strategies for language modelling: gradually in-
creasing the size of the vocabulary (vocabulary
curriculum), the difficulty of the training instances
(data curriculum), or the specificity of the ob-
jective function (objective curriculum) over the
course of training. Within the context of the
BabyLM Challenge, Curriculum Learning estab-
lishes a framework through which we attempt
to replicate key facets of child language acqui-
sition. Counter-intuitively, we find that all of
our curriculum learning approaches under-perform
our BabyBERTa-style (non curriculum learning)
vanilla models. Our contribution to the Baby LM
Challenge builds upon this negative finding in three
main ways:

1. Our paper establishes a novel framework
through which to categorize and implement

1We refer to our non-curriculum learning baselines as
‘vanilla’ models in order to differentiate these models from the
baselines that were provided by the workshop organizers.

curriculum learning methods that simulate hu-
man language acquisition. We open-source
our accompanying code-base for future re-
search to study how curriculum learning repli-
cates the language learning dynamics in hu-
mans.

2. We conduct a comprehensive evaluation of
our three main curriculum approaches; our
results show that the curriculum learning set-
tings we tested did not provide consistent
improvements over a baseline on linguistic
benchmarks. Instead, we provide a set of rec-
ommendations for specific combinations of
tasks and settings which may benefit from our
proposed curricula.

3. We highlight the importance of careful data,
model and hyper-parameter selection to estab-
lish a well performing fully supervised base-
line for the BabyLM shared task. Our vanilla
models outperform the shared task baseline
models on tasks involving grammatical knowl-
edge (BLiMP: The Benchmark of Linguistic
Minimal Pairs (Warstadt et al., 2020a)) and
all the shared-task baselines except RoBERTa
(Liu et al., 2019) on tasks involving natural
language understanding (SuperGLUE (Wang
et al., 2019)).

2 Curriculum Learning

Curriculum learning (Bengio et al., 2009) is a
machine-learning paradigm which optimizes a
model’s performance by gradually increasing the
difficulty of training over time according to a set
schedule (a ‘curriculum’) – based on the idea that
learning should proceed from easy to hard, in-
spired by the way that humans learn (Elman, 1993).
Within the context of curriculum learning, one of
the central questions is how to define and manipu-
late the difficulty of the learning process over the
course of training. In a recent survey, Soviany et al.
(2022) decompose this challenge into two main
sub-problems: determining a sorting mechanism to
assess the difficulty of instances and developing a
pacing function for increasing difficulty over time.

2.1 Determining Difficulty

Previous work in curriculum learning typically fo-
cuses on difficulty from a data-centric perspective,
however, we note that difficulty can arise from (at
least) three major elements of training a neural
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model: the input representation, the data sampling,
and the training process. We explore curriculum
learning strategies across three distinct dimensions:
the vocabulary, the order of training data, and the
objective function.

For machine learning models, instance difficulty
is in part influenced by the choice of instance rep-
resentation. For language models, the representa-
tional space is constrained by the vocabulary. We
propose a new vocabulary curriculum inspired by
Soviany et al. (2022), who discuss linking the cur-
riculum criteria to the observed vocabulary sizes
in child development. To the best of our knowl-
edge, this is the first attempt at manipulating the
vocabulary available to a language model through
curriculum learning.

In natural language processing models, the order
of the training instances can have a strong effect on
performance (Schluter and Varab, 2018). Existing
approaches to instance-level curriculum learning
determine the difficulty of each instance according
to a pre-defined static difficulty assessment accord-
ing to linguistic criteria (Campos, 2021; Kocmi and
Bojar, 2017; Liu et al., 2018; Platanios et al., 2019).
It has been shown that humans pay more attention
to stimuli that are in just the right zone of difficulty
for them: neither too easy nor too hard (Kidd et al.,
2012). This so-called ‘Goldilocks effect’ can be
modelled by assessing the difficulty of an instance
dynamically based on model behaviour (Sachan
and Xing, 2016; Lalor and Yu, 2020). Static and
dynamic difficulty assessment can be mapped to
teacher-centric and learner-centric educational ap-
proaches and we compare both variants in our data
curriculum experiments.

Human language learning is guided and enabled
to some extent by other agents in the learner’s en-
vironment (e.g., adult caregivers, siblings) who in-
teract with the learner. In machine learning, such
interactions are modelled by the objective function
that guides the weight optimization process. The
typical ‘masked language modelling’ (MLM) ob-
jective function requires that a model predicts a
target token from a pre-defined vocabulary of size
N given the surrounding context. Thus standard
MLM defines an N -way token classification task.

Curriculum learning can be leveraged within this
context to attenuate the difficulty of the classifi-
cation task during training. One natural starting
point for doing so is to redefine the classification
task to be over a smaller set of items, K, such that

K << N . Bai et al. (2022) map rare words with hy-
pernyms of that word to simplify the classification
task in training. A related line of research suggests
replacing certain words with either part-of-speech
tags (Wang et al., 2022) or syntactic dependency
relations (Cui et al., 2022). Since the number of
syntactic tags is substantially smaller than the num-
ber of vocabulary items, these approaches greatly
reduce the difficulty of the objective. Moreover, by
varying the amount of syntactic tags that the model
should classify over, the difficulty of the task can be
dynamically adapted (Wang et al., 2022). We take
inspiration from this latter line of work in defining
our own objective curriculum.

2.2 Pacing Functions

Once a notion of difficulty is set, a pacing func-
tion is needed to govern how quickly the model
will progress from training on easier examples to
training on harder ones (Wu et al., 2021). We exper-
iment with two different pacing functions: linear
and logarithmic. Linear pacing functions involve a
steady and consistent advancement through the cur-
riculum. This approach ensures a gradual increase
in difficulty over time. Logarithmic pacing func-
tions, on the other hand, emphasize early exposure
to “easier” concepts, with diminishing increments
as the model’s capabilities are assumed to increase.
Both pacing functions have been proposed in the
broader curriculum learning literature (Bai et al.,
2022; Li et al., 2021; Wu et al., 2021).

3 Methodology

All of our models are based on an 8-layer Trans-
former language model (Section 3.2) comparable to
the BabyBERTa model (Huebner et al., 2021). For
all experiments, we use the Hugging Face Trans-
formers library (Wolf et al., 2020), Weights & Bi-
ases for performance tracking (Biewald, 2020), Hy-
dra to define experiment configurations (Yadan,
2019), and a high performance computing cluster.
We introduce curriculum learning to three of the pri-
mary components of language model pre-training:
the vocabulary (Section 3.3), the data sampling
approach (Section 3.4), and the selection of the
objective function (Section 3.5). For each of these
aspects, we attempt to simulate facets of human
language learning by dynamically increasing the
difficulty of the language modelling task over the
course of training. Table 1 provides an overview of
our experiment variables.

114



Curriculum Type Parameter Variants

Vocabulary Selection frequency, word class, mixed
Pacing linear, logarithmic

Data
Difficulty source, unigram perplexity, self-perplexity
Pacing linear, logarithmic
Initial Perplexity unigram, random

Objective Tasks noun-verb prediction, POS prediction, MLM
Learning Setup sequential, multitask

Table 1: Curriculum learning experiments overview

3.1 Training Data

We use only the training data provided in the
STRICT-SMALL track of the BabyLM challenge,
which is limited to 10 million words and combined
from 10 individual corpora. Given the variety of
data sources (including books, subtitles, transcripts
and articles) we carefully curated the data to ensure
consistency across corpora. These steps include
lowercasing, normalizing punctuation, standardiz-
ing typographical conventions using regular expres-
sions, and removing extraneous lines (such as page
numbers, bibliography entries, plain text tables ,
and one-word on-screen actions). We also concate-
nated contiguous sections of five lines into a single
data instance in the transcribed speech corpora (ex-
cept the BNC) due to the relatively short sequence
lengths. In addition, we join data at the point of
passing input to the models, in order to make full
use of the available input sequence length (128
subtokens).

According to the rules of the STRICT-SMALL

track, we were not permitted to make use of exter-
nal resources, including supervised part-of-speech
(POS) taggers. Therefore, we attempted to cluster
the words in the training data into word classes
by applying the anchor-features algorithm
of the unsupervised POS-tagger by Stratos et al.
(2016) on our cleaned data. The algorithm yields
30 clusters which we manually mapped to the 12
universal speech tags (Petrov et al., 2012) by choos-
ing the POS-tag that best represents the anchor
word of each cluster. We were only able to identify
10 of the 12 universal POS tags in the 30 clus-
ters: no cluster neatly coincided with ’ADV’ or
’X’ tags. We provide further detail on our data pre-
processing and unsupervised POS-tagging in the
Appendix.

We provide our cleaned and tagged versions of
the 10M word dataset on Hugging Face, along with
the scripts used.2 Our pre-processing procedure

2https://huggingface.co/
cambridge-climb

reduces the data down to 335,858 instances (corre-
sponding to roughly 9.4 million words) from the
initial 1,058,740 newline-delineated samples.3 Our
models, tokenizers and part-of-speech taggers were
trained on this pre-processed data; however, we ac-
tually noticed an increase in performance when
training on the raw data, as discussed in Section 5.

3.2 Vanilla Models
We investigate three different sizes of a vanilla Pre-
Layer Norm RoBERTa model (Liu et al., 2019;
Ott et al., 2019) based on the BabyBERTa model
(Huebner et al., 2021): ‘small’, ‘medium’, and
‘large’ – Table 2 lists the model configurations and
presents the results for the different model sizes
evaluated by perplexity, on BLiMP (Warstadt et al.,
2020a) and on the supplementary BLiMP-like tasks
issued by the BabyLM organizers (‘Blimp.Supp’).
We found the medium model with a small vocabu-
lary size performed the best overall; however, the
small model achieved similar results, and so to save
on compute and keep to the restrained intentions
of the STRICT-SMALL track, we used the small
model in our curriculum learning experiments. We
use Byte Pair Encoding (BPE) tokenization (Gage,
1994) with a vocabulary of 8,192 because it yields
better overall performance compared to a larger
vocabulary of 16,384. The tokenizers we use in our
experiments were trained on the cleaned data that
we processed using the steps outlined in 3.1. In
pilot experiments, we did not observe the benefits
reported by Huebner et al. (2021) from removing
the unmasking procedure that is a standard compo-
nent of the MLM objective (Devlin et al., 2019),
and therefore did not investigate this option further.

All of the curriculum learning methods in the
following sections were applied on top of our small
vanilla BabyBERTa-style baseline – to isolate the
effect of the curriculum-learning training process,

3The word count is estimated by whitespace splitting; the
same metric used by the organizers of the task to derive the
estimate of 10 million words. When applying a tokenizer, the
pre-processed dataset is more accurately split into 11.7 million
words (including punctuation) or 13.6 million subwords
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Model Layers Heads Hidden Intermediate Vocab Train.steps BLiMP BLiMP.Supp Perplexity

Small 8 8 256 2,048 8,192 250K 75.43 61.14 9.46
Medium 10 10 500 2,000 8,192 156K 76.45 63.28 9.05
Large 12 12 768 3,072 8,192 94K 75.80 60.83 9.34

Small 8 8 256 2,048 16,384 250K 76.16 60.85 13.80
Medium 10 10 500 2,000 16,384 94K 76.09 60.03 13.80
Large 12 12 768 3,072 16,384 62K 75.08 63.45 14.22

Table 2: Our vanilla BabyBERTa-style models evaluated on original BLiMP and the BLiMP-like tasks prepared for
BabyLM (BLiMP.Supp). Models are grouped by their vocabulary sizes.

we fixed the architecture of the model and the
model hyper-parameters. We use an AdamW opti-
mizer with linear scheduling (Loshchilov and Hut-
ter, 2019).

3.3 Vocabulary Curriculum

During the early stages of language acquisition,
children start with a small vocabulary that rapidly
expands at a rate of eight to ten words per day
(Weizman and Snow, 2001). In this process, chil-
dren prioritize learning verbs and nouns before pro-
gressing to other parts of speech (Bergelson and
Swingley, 2015). Large language models, on the
other hand, tend to begin training with a full, fixed
vocabulary available to them.

To represent a child’s growing vocabulary, we
select a limited vocabulary in the initial stages of
learning and map all other input tokens into the
representation for the unknown token (UNK). We
consider three strategies for selecting tokens. In
the first strategy, tokens are selected according to
frequency. We approximate the frequency of a
token by the identifier the BPE tokenizer assigns
to it as lower IDs are assigned to tokens that are
merged first (i.e., sequences of characters that oc-
cur more frequently in the corpus). In the second
strategy, tokens are selected by their word class.
We approximate the word class of a token by the
cluster that the unsupervised POS-tagger assigns to
it. We order the word classes as follows, progress-
ing from lexical to functional classes per Bergelson
and Swingley (2015): NOUN, VERB, ADJ, PRON,
DET, ADP, NUM, CONJ, PRT, PNCT. In this strat-
egy, all words with the respective part-of-speech
tag are included in the vocabulary at the same step
during learning. To smooth this process, we com-
bine the frequency and the word class constraint in
the third strategy. We sort words by their frequency
(approximated by the token ID) within each part-
of-speech category. Note that the same word may

be available in some instances and not others if it
is assigned a more difficult POS tag.

During the initial steps of training, only 10% of
the tokens are available while the rest are replaced
with UNK. The vocabulary curriculum regime be-
gins after 25,000 training steps and ends at 350,000
steps, during which time, the vocabulary gradu-
ally increases according to a pacing function. We
experiment with linear and logarithmic pacing func-
tions. After the end of the curriculum regime, there
remain 50,000 training steps before the end of train-
ing during which all of the vocabulary tokens are
available to the model. Figure 5 in the Appendix
shows a plot of the percentage of unmasked vocab-
ulary over the course of training according to our
pacing functions.

3.4 Data Curriculum

Conventional masked language modelling ap-
proaches train a given neural network on a large
amount of crawled internet data. The resulting text
sequences are usually not curated beyond basic
cleaning and are presented to the model in random
order, in contrast to the way that human children
learn a language.

We attempt to carefully optimize the way data is
sampled and presented to the language model over
the course of training. We experiment with theory-
driven and model-driven approaches to determine
the ‘relative difficulty’ of a certain example and
train the model on instances with progressively
increasing difficulty.

Source Difficulty We order the available datasets
based on their sources so that spoken samples
are considered ‘easier’ and purely written texts
‘harder’, following the findings of Huebner et al.
(2021). Within this ordering, we place the mostly
child-directed speech from CHILDES before adult-
to-adult dialogues in the Switchboard Corpus, and
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Difficulty Level Corpora

1 AO-CHILDES
2 BNC Spoken, Switchboard
3 Open Subtitles, QED
4 CBT, Children’s Stories
5 Simple Wikipedia
6 Wikipedia, Gutenberg

Table 3: Difficulty level assigned to each dataset.

Simple Wikipedia before Wikipedia, see Table 3.4

Model Difficulty Determining the difficulty of
an instance based on its data source is a relatively
naive heuristic that ignores the variation of in-
stance difficulty within one corpus. As a more
fine-grained alternative, we determine the diffi-
culty of each instance individually using the model-
intrinsic metric of perplexity which determines the
likelihood of a sentence. We experiment with two
variants: a static unigram language model and a
more dynamic self-evaluation. With the unigram
model, perplexity for each instance is only deter-
mined once at the beginning of training. Alterna-
tively, we evaluate the perplexity of the remaining
training data using the model that has been trained
so far – from model checkpoints saved at regular
intervals in training (every 25K steps).

One challenge with the latter approach is the lack
of exposure to training data at the beginning, lead-
ing to random perplexity scores for each sample. To
address this, we propose two ideas: 1) using a sep-
arately trained unigram model to initially evaluate
perplexity, or 2) initially sample training instances
randomly. After 25,000 training steps, we switch to
using the current model for perplexity evaluation.
Every 25,000 steps thereafter, we re-evaluate per-
plexity to identify samples categorized as relatively
difficult or relatively easy by the model.

3.5 Objective Curriculum
The MLM objective has proven tremendously suc-
cessful in training Transformer networks as lan-
guage models (Devlin et al., 2019). Psycholinguis-
tic research, however, suggests that MLM is not a
cognitively plausible approximation of language ac-
quisition processes in children (Caucheteux et al.,
2023). Curriculum learning establishes a frame-
work for varying the difficulty of the learning pro-
cess over the course of training. The MLM objec-
tive is a very challenging discriminative classifica-

4There is likely some adult-to-adult dialogue included in
CHILDES as well.

tion task because the identity of the masked token
needs to be determined over the entire vocabulary.
We experiment with using more coarse-grained
tasks at the initial stages of training to facilitate
generalization and leverage syntactic information.
Research in cognitive linguistics has shown that
one-year-old infants are sensitive to distributional
aspects of language and from two years of age be-
gin to recognize lexical categories such as nouns
and verbs Alishahi (2010); Gleitman (1990). We
therefore experiment with predicting only the word
class of a masked token at the start of training rather
than predicting its exact target token ID.

The psycholinguistic literature remains divided
on the question of how exactly word learning pro-
ceeds from memorizing a small set of fixed lexical
items to a more generalized representation of word
classes (Clark and Casillas, 2015). Our framework
provides a flexible approach to vary the difficulty
of objective functions during the course of training,
and to enable systematic studies of the effect of
objective functions on the acquisition of linguistic
knowledge by a model. Here we propose estimat-
ing the word class using the unsupervised POS
tagger and we vary the number of POS tags which
are being classified over. The masked word is clas-
sified into 1) one of VERB, NOUN, or OTHER, or
2) one of 10 universal POS tags.

We examine activating the tasks in sequential
order (first word class prediction then MLM) or
optimizing them in parallel, comparable to a multi-
task learning setting. For each objective function,
we learn a separate task head with its own linear
task classifier and separate optimizer.

4 Results

Multiple evaluation metrics are employed in
BabyLM. In this paper we focus on BLiMP
(Warstadt et al., 2020a) and the supplementary
BLiMP-style tests provided by the shared task or-
ganizers. We also report our results on the nat-
ural language understanding benchmark, Super-
GLUE (Wang et al., 2019), and the ambiguous
subset of MSGS (the Mixed Signals Generaliza-
tion Set) (Warstadt et al., 2020b). In brief, BLiMP
evaluates specific linguistic abilities, MSGS evalu-
ates linguistic preference over surface generalisa-
tion and SuperGLUE evaluates downstream task
performance. For all scores, we report the aver-
age score across all categories, rather than test in-
stances, as provided by the BabyLM evaluation
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Figure 1: Comparison of the BabyLM baselines with our BabyBERTa-style vanilla models (left), and our vanilla
models against our curriculum learning models (right) – using BabyBERTa-small trained on clean data as a reference
point (asterisked) to show the difference in scores on BLiMP and BLiMP-supplement tasks. For combination
models, all pacing is logarithmic, and ‘multitask’ refers to the 2-task objective curriculum, 10 POS-tags and MLM
from the outset. Absolute values may be found in Appendix Tables 5–9.

pipeline.5 All of our curriculum learning models
are small BabyBERTa-style ones using the param-
eters shown in Table 2 and the cleaned training
dataset of 9.4M words (reduced from the 10M word
dataset for the STRICT-SMALL track) and their re-
sults can be found in Tables 5, 6 and 7.

In the tables we compare to our small
BabyBERTa-style vanilla model also trained on
the clean data (Section 3.2). Figure 1 visualizes
these comparisons for the BLiMP tasks; there are
similar plots for SuperGLUE in the Appendix (Fig-
ure 4). Furthermore, we experimented with some
combinations of different curricula to see how they
would interact (Table 8), and compare the official
BabyLM shared-task baselines with our shared task
entries – a number of our own BabyBERTa-style
vanilla models and curriculum learning models (Ta-
ble 9). For all of our runs, we use the same set of
hyper-parameters that we report in Table 10. We
also report the average amount of compute used for
each type of curriculum learning setting (Table 11).

We find notable gains for our own vanilla models

5For instance, there are 12 categories in BLiMP but 50+
individual tests. We average over the scores given for each
category, rather than the scores given for each test.

over the shared-task baselines, and, while we do not
identify further large improvements in our curricu-
lum learning models, we do notice some modest
gains which suggest possibilities for future research
and experimentation over variables. While the dif-
ferences in performance between most of our ex-
perimental conditions are small, the large number
of ablations we run enables us to provide a compre-
hensive set of recommendations for how and when
different curriculum learning strategies may offer
improved performance on linguistic tasks. Below
we summarize our observations over the full results
tables.

In general, log pacing works at least as well as
linear pacing across different curricula learning
strategies. In our data curriculum experiments,
models using the log pacing function outperform
their linear counterparts in 4/4 settings on BLiMP,
and 3/4 settings for BLiMP-supplement and Su-
perGLUE (Table 6). This indicates that rapidly
increasing the difficulty of training instances in the
early stages brings downstream benefits on gram-
maticality and NLU tasks.

In our vocabulary curriculum experiments on
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the other hand, there is not such a clear picture.
Log pacing outperforms linear in 2/3 settings on
BLiMP and 3/3 on SuperGLUE, but 0/3 for BLiMP-
supplement (Table 5). Presumably this is a reflec-
tion of the different vocabulary required by each
set of evaluation tasks, which could be a matter for
future investigation but also indicates that we do
not yet have a clear generalizable pacing function
for the vocabulary curriculum. There are of course
other pacing functions to be tried.

Different representations of vocabulary diffi-
culty work better for different tasks. When rep-
resenting difficulty in the vocabulary curriculum
experiments, token ID – our proxy for frequency
– appears to work better than word classes (POS
tags) or a combination of token ID and POS tags on
the BLiMP evaluation tasks, but worse than POS
tags on SuperGLUE and MSGS (Table 5).

In multi-corpora datasets, ordering by difficulty
is a good first step. Training data requirements
have grown so much in modern NLP that usually
training a language model from scratch will involve
multiple datasets, or multiple domains. The results
of our data curriculum experiments indicate that a
good first step is to put these sub-corpora into some
order of intuitive difficulty, as we did (Table 6). In
the case of BLiMP this approach outperforms our
perplexity-based data curricula, and with log pac-
ing our vanilla model. The same is true of MSGS
(with log pacing), as well as BLiMP-supplement
and SuperGLUE (though the last two do not beat
our vanilla model). Amongst the perplexity-driven
models, the picture is less positive: out of 24 tests,
only one model outperforms our vanilla model (log
pacing, random initialisation + model perplexity in
Table 6).

Multitask learning holds sway over sequentially
swapping objective functions for now. In our
experiments with curricula for the objective func-
tion, we compare training on simultaneous tasks
– known as multitask learning (Caruana, 1997) –
with predefined sequences of objective functions
which swap from one to another at set thresholds
in the training process. We set up two sequential
curricula: one with 2 tasks (predicting the 10 uni-
versal POS tags found in our dataset, and MLM)
and the other with 3 (like the 2 task curriculum,
additionally with noun/verb/other prediction). We
compare these against multitasking alternatives. In
general the sequential curricula are outperformed

by the multitasking ones, though the 3-task sequen-
tial curriculum outperforms our BabyBERTa-style
vanilla model on SuperGLUE and is second only
marginally to our best-performing multitask model
(Table 7). The multitask learning model with 10-
class universal POS-tag prediction and MLM in
place from the outset performs best on BLiMP and
SuperGLUE. However, our best model on BLiMP-
supplement – a multitask one – has an element of
sequential task scheduling in that the two POS-tag
prediction tasks are lined up one after the other,
with a switch from 3-class to 10-class after 6.25%
of training steps. In Figure 2, we visualize this
result for each task in BLiMP-supplement, illustrat-
ing that our curriculum learning model improves
over our vanilla model in 5/6 tasks. Altogether,
these results suggest that sequential objective func-
tion curricula do hold some potential for perfor-
mance gains if further tuning of the tasks and
scheduling can be carried out.

Combining all three curricula shows potential
on BLiMP. While each individual curriculum
learning experiment did not result in consistent im-
provements across tasks, we investigated whether
combining aspects from the different curricula
would, together, improve the model. We do find
that a combination of all three curricula outper-
forms any single curriculum model on BLiMP, but
the same is not true for BLiMP-supplement and
SuperGLUE (Table 8). This is another matter for
future investigation, as it seems that improving
each of the three curricula we investigate may lead
to further gains if they are all combined.

In small data settings, filtering data which we
intuitively think is noisy is in fact counter-
productive. Perhaps surprisingly, we find that
the vanilla models trained on the raw data outper-
form those trained on the pre-processed data on
BLiMP and MSGS. We surmise that models can
learn even from linguistically non-standard data-
points.

4.1 Submitted models
Table 9 in the Appendix compares our submissions
to the shared task baselines. We submitted our
best curriculum learning models from each individ-
ual curriculum learning setting, and four different
vanilla models: two small and two medium models,
where each pair additionally varies by whether it
was trained on the pre-processed dataset or the raw
dataset. We find our curriculum learning models
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are comparable to our BabyBERTa-style vanilla
models, and we think that in most cases some con-
tinued experimentation with configurations may
yield larger gains for CL approaches.

For interest, we also trained a BabyBERTa-
style large vanilla model on the 100M training
set made available in the BabyLM STRICT track
(‘large-100M’ in the table). The improvements
over smaller models trained on less data are ev-
ident and finally provide an advantage over the
RoBERTa baseline on SuperGLUE. It remains to
be seen how well curriculum learning methods, and
our preprocessing methods, would work with this
larger dataset.

5 Discussion

We set out to investigate a number of curriculum
learning approaches to language model training,
motivated by findings from the human language
acquisition process and by the wish to success-
fully train smaller models for smaller budgets. We
first of all implemented a stronger model of our
own, based on BabyBERTa (Huebner et al., 2021)
and found that a small 8-layer vanilla model could
outperform the provided BabyLM baselines on
the BLiMP grammaticality tests and get close to
the best RoBERTa shared-task baseline on Super-
GLUE. This underlines the findings reported in the
BabyBERTa paper: that with smaller datasets, it
makes sense to use smaller models and a smaller
vocabulary size.

The results of our curriculum learning exper-
iments, trained with a small BabyBERTa-style
vanilla model, suggest that we can further improve
performance in certain linguistic tasks by careful
application of a pacing function, how we represent
and grow the model’s vocabulary during training,
select the next training instances according to their
difficulty, and vary the objective function. Specif-
ically, we find that a logarithmic pacing function
works better for the data curriculum than a linear
one, but the findings for the vocabulary curriculum
are less clear. Other pacing functions might be tried
in the future, including those that reflect acquisi-
tion theory around non-monotonic or ‘U-shaped’
development trajectories.

It is apparent that ordering the subcorpora
within a training set may be worthwhile, and that
perplexity-based approaches to data selection hold
potential even though we have not found a clear-
cut best method for perplexity calculation as yet.

As shown in other NLP work, multitask learn-
ing can be a beneficial approach, though MLM
or next-word prediction remain preeminent as sin-
gular tasks used in language modelling. We find
multitask learning models hard to beat in the objec-
tive curriculum, but do find good performance in
our sequential settings. We believe that future work
varying the timing of task switches and introducing
more tasks could be worthwhile.

On a more general note, the Baby LM challenge
evaluates a language model only on its final down-
stream performance on a set of tasks – i.e. at a
finite point in time. The challenge does not di-
rectly measure whether a given model is learning
in a ‘human-like’ fashion. Our contribution to the
BabyLM challenge is to provide a set of curricu-
lum learning strategies which are motivated by the
language learning dynamics of infants and children.
We encourage future research to study how to quan-
titatively evaluate whether the learning trajectory of
a model parallels that of a human language learner
and how similarities to human language learning
results in downstream NLU performance.

6 Conclusions

We use child-like language learning as inspiration
to investigate and implement three types of curricu-
lum learning for language modelling: gradually
increasing the size of the vocabulary (vocabulary
curriculum), the difficulty of the training instances
(data curriculum), or the specificity of the objec-
tive function (objective curriculum).

We find that our BabyBERTa-style vanilla mod-
els outperform the BabyLM baselines on BLiMP
and MSGS, and get close on SuperGLUE. Our
various curriculum learning models at times offer
further gains over our vanilla models, and indicate
the potential for curriculum learning methods given
further exploration. We list out a set of recommen-
dations for when and how to optimally apply our
proposed curriculum learning strategies.

Additionally, training our vanilla model trained
on unprocessed data outperforms a ‘cleaned’ ver-
sion – suggesting that retaining as much data as
possible, in low-resource settings, is more impor-
tant than standardizing it according to linguistic
norms.

Finally, our work establishes a computational
framework for how to categorise and implement
curricula learning strategies that simulate human
language learning dynamics.
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Appendix

Unsupervised POS-tagging. The strict-small
track we enter does not allow using any external
dataset. This restriction disallows usage of any
third-party POS taggers, as these tend to be trained
with a supervised corpus. To still be able to use
POS information we train our own POS tagger us-
ing the unsupervised anchor-features part-
of-speech algorithm by Stratos et al. (2016). This
algorithm learns a hidden Markov model (HMM)
under the assumption that certain tags are associ-
ated with words that have no other tags (the anchor
words) and uses additional features to improve the
estimation process.

We used the default parameters for this algorithm
but learn 30 clusters instead of 12. These clusters
are lexicalized, labelled only by the anchor word
found for each by the algorithm so must be mapped
to POS tags for our usage. Unsupervised POS
taggers are typically evaluated by mapping each
cluster to the most frequently coinciding gold POS
tag. However, since this would be taking advantage
of supervised data, we instead map each cluster by
inspection, choosing the universal part-of-speech
tag (Petrov et al., 2012) most representative of the
anchor word for each cluster. This mapping is
many-to-one, with several clusters mapping to the
same tag, but no clusters mapped to ADV (adverb)
or X (unknown), suggesting that the unsupervised
approach failed to coherently group adverbs into a
single cluster.

POS Tag Precision Recall F1

NOUN 0.786 0.790 0.788
DET 0.820 0.772 0.795
CONJ 0.969 0.821 0.895
NUM 0.592 0.799 0.681
PRON 0.592 0.962 0.733
VERB 0.816 0.823 0.819
PRT 0.501 0.701 0.584
ADJ 0.673 0.554 0.608
ADP 0.842 0.888 0.864
PUNC 0.944 0.960 0.952

Table 4: Accuracy of our unsupervised POS tagger on
a per-tag level.

We also evaluate how well our POS tagger pre-
dicts POS tags, compared to the supervised POS
tagging system that is part of the NLTK Python
package (Bird et al., 2009). Table 4 summarizes
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these results. Interestingly, we observe a large dif-
ference in our ability to correctly predict different
types of POS tokens.

Objective curriculum models on BLiMP Sup-
plement and (Super)GLUE. Figures 2 and 3
compare our small BabyBERTa-style vanilla model
to our best objective-curriculum model – a multi-
task trained model with sequential POS-tag predic-
tion – on each task in BLiMP Supplement and (Su-
per)GLUE. We find our curriculum-learning (CL)
model outperforms our vanilla model on 5/6 tasks
in BLiMP Supplement. While on (Super)GLUE,
our CL model outperforms our baseline on 4/10
tasks and obtains comparable performance on an-
other 4/10 tasks. This results illustrate the potential
to further explore objective-curricula settings.

Figure 2: Comparison between our vanilla model and
the best objective curriculum learning setting on the
BLiMP supplementary tasks.

Figure 3: Comparison between our vanilla model and
the best objective curriculum learning setting on the
(Super)GLUE tasks.
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Figure 4: Comparison of the BabyLM baselines with our BabyBERTa-style vanilla models (left), and our vanilla
models against our curriculum learning models (right) – using BabyBERTa-small trained on clean data as a reference
point (asterisked) to show the difference in scores on SuperGLUE tasks. For combination models, all pacing is
logarithmic, and ‘multitask’ refers to the 2-task objective curriculum, 10 POS-tags and MLM from the outset.

Pacing Difficulty Perplexity BLiMP BLiMP.Supp (Super)GLUE MSGS Ambig
†Linear Token ID 9.70 75.09 66.43 68.71 68.61
Linear POS 10.17 72.06 63.44 69.50 66.91
Linear POS + Token ID 10.21 73.37 66.11 69.22 66.61
Log Token ID 9.26 74.97 64.63 69.94 66.82
Log POS 9.29 74.12 62.06 70.66 70.52
Log POS + Token ID 9.29 74.74 63.62 70.29 66.42

Vanilla Model 9.21 75.48 65.34 70.47 68.30

Table 5: Results for vocabulary curriculum models (Section 3.3). All models score above 90 in the MSGS Control
tasks. † indicates the model we submitted to BabyLM, ‘CLIMB-tokens’.

Pacing Difficulty Perplexity BLiMP BLiMP.Supp (Super)GLUE MSGS Ambig

Linear Source 10.41 73.32 61.99 69.68 66.22
Linear Unigram ppx 12.51 72.45 61.67 69.10 66.90
Linear Unigram + model ppx 11.88 72.62 62.57 69.86 66.64
Linear Random + model ppx 10.82 71.88 63.10 70.37 67.48
†Log Source 9.21 75.87 64.29 70.20 70.99
Log Unigram ppx 9.39 75.03 63.78 69.90 66.69
Log Unigram + model ppx 9.35 74.83 64.24 70.09 66.89
Log Random + model ppx 9.21 75.81 63.03 68.93 66.64

Vanilla Model 9.21 75.48 65.34 70.47 68.30

Table 6: Results for data curriculum models (Section 3.4). All models score above 92 in the MSGS Control tasks. †

indicates the model we submitted to BabyLM, ‘CLIMB-data-split’.
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Task duration (% of training steps)
Task Order 3 POS 10 POS MLM PPX BLiMP BLiMP.Supp (Super)GLUE MSGS Ambig

Sequential – 0 - 12.5 12.5 - 100 9.58 73.87 62.98 69.85 66.70
Multitask – 0 - 100 12.5 - 100 9.78 74.60 62.17 69.12 66.64
Multitask – 0 - 100 0 - 100 9.30 75.82 65.77 70.74 66.58
Sequential 0 - 6.25 6.25 - 12.5 12.5 - 100 9.49 74.03 63.02 70.71 66.93
Multitask 0 - 6.25 6.25 - 100 12.5 - 100 9.72 73.68 63.89 70.07 67.00
†Multitask 0 - 6.25 6.25 - 100 0 - 100 9.30 74.80 67.55 69.89 67.65
Multitask 0 - 100 – 0 - 100 9.25 74.48 63.98 69.77 67.72

Vanilla Model 9.21 75.48 65.34 70.47 68.30

Table 7: Results for objective curriculum models (Section 3.5). All models score above 94 in the MSGS Control
tasks. Task duration defines when an objective function was active during training, as a percentage of the total
number of training steps. † indicates the model we submitted to BabyLM, ‘CLIMB-multitask’.

Vocab Curric. Data Curric. Obj. Curric. PPX BLiMP BLiMP.Supp (Super)GLUE MSGS Ambig

– Source Multitask 9.29 74.06 64.06 70.02 66.90
– Random + model ppx Multitask 9.44 75.89 64.63 69.72 67.78
Token ID Source – 9.27 75.89 64.62 70.24 67.90
Token ID Random + model ppx – 9.30 75.88 65.79 70.42 66.63
Token ID Source Multitask 9.22 74.86 62.82 70.09 66.68
Token ID Random + model ppx Multitask 9.46 75.92 63.68 69.98 71.30

Vanilla Model 9.21 75.48 65.34 70.47 68.30

Table 8: Results for the combination curriculum models. The multitask objective curriculum refers to the 2-task
10-POS and MLM model shown in Table 7.

Type Model PPX BLiMP BLiMP.Supp (Super)GLUE MSGS Ambig

Official Baseline OPT-125m – 63.16 55.08 63.38 69.22
RoBERTa-base – 69.84 50.52 71.42 70.25
T5-base – 58.27 47.55 60.93 68.55

Vanilla Models CLIMB-base (medium) 9.01 75.66 66.13 70.75 67.62
CLIMB-base-small 9.21 75.48 65.34 70.47 68.30
CLIMB-raw (medium) 8.47 77.97 66.16 70.63 69.44
CLIMB-small-raw 8.64 76.42 64.60 69.46 70.65
large-100M 4.35 81.03 75.56 72.93 74.17

Vocab Curriculum CLIMB-tokens 9.70 75.09 66.43 68.71 68.61
Data Curriculum CLIMB-data-split 9.21 75.87 64.29 70.20 70.99
Objective Curriculum CLIMB-multitask 9.30 74.80 67.55 69.89 67.65

Table 9: Comparison between the official shared task baselines, our BabyBERTa-style vanilla models, and our
submitted curriculum learning models on the main evaluation tasks: BLiMP, (Super)GLUE, and MSGS. Our *small
and *medium models are defined in Section 3.2. All models are trained on pre-processed data except for those
labelled with *-raw, which are trained on mostly unprocessed data (except we join the input sentences). The
‘large-100M’ model was a larger BabyBERTa-style model trained on the 100M BabyLM training set (all others
have been trained on the 10M dataset available in the STRICT-SMALL track).

Parameter Value

Layer Norm EPS 1e-5
Tie Word Embeddings False
Learning Rate 0.001
Optimizer AdamW
Scheduler Type Linear
Max Steps 400,000
Warm-up Steps 100,000
Per Device Batch Size 32

Table 10: Hyperparameter settings which are constant across our vanilla models described in 3.2. Table 2 reports
variations to the architectures to create the ‘small’, ‘medium’ and ‘large’ versions of the vanilla model. Where
values are not reported, they may be assumed to be default values.
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Figure 5: Illustration of the linear and logarithmic pacing functions used in our vocabulary curriculum experiments.
The red dotted lines denote the curriculum regime, during which the percentage of unmasked words available to the
model grows according to the respective function.

Type Model Training Time

Vanilla Models CLIMB-small-raw 12h
CLIMB-raw (medium) 17h40m

Data Curriculum Log Source 12h30m
Log Random + model ppl 17h10m

Objective Curriculum Sequential All POS 11h40m
Multitask All POS 15h30m

Vocabulary Curriculum Linear POS 11h50m
Log Token ID 12h10m

Combination Log Data Split + Log Token ID 12h30m
Log Random + model ppl + Log Token ID 17h10m

Table 11: Compute required to train our models. We report the model with the shortest and longest runtime for each
experiment type. Each model is trained for 400,000 steps with 4 A100 GPUs.
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Abstract
In contrast to children, language models (LMs)
exhibit considerably inferior data efficiency
when acquiring language. In this submission to
the BabyLM Challenge (Warstadt et al., 2023),
we test the hypothesis that this data efficiency
gap is partly caused by a lack of multimodal in-
put and grounding in the learning environment
of typical language models. Although previ-
ous work looking into this question found that
multimodal training can even harm language-
only performance, we speculate that these find-
ings can be attributed to catastrophic forget-
ting of complex language due to fine-tuning
on captions data. To test our hypothesis, we
perform an ablation study on FLAVA (Singh
et al., 2022), a multimodal vision-and-language
model, independently varying the volume of
text and vision input to quantify how much
text data (if any) can be offset by vision at
different data scales. We aim to limit catas-
trophic forgetting through a multitask pretrain-
ing regime that includes unimodal text-only
tasks and data sampled from WiT, the rela-
tively diverse Wikipedia-based dataset (Srini-
vasan et al., 2021). Our results are largely neg-
ative: Multimodal pretraining does not harm
our models’ language performance but does not
consistently help either. That said, our conclu-
sions are limited by our having been able to
conduct only a small number of runs. While
we must leave open the possibility that multi-
modal input explains some of the gap in data
efficiency between LMs and humans, positive
evidence for this hypothesis will require bet-
ter architectures and techniques for multimodal
training.

1 Introduction

Children can learn language from a relatively small
amount of linguistic input: at most 100 million
words (Gilkerson et al., 2017). By contrast, the
quantity of training data a language model needs
to achieve strong grammar and language perfor-
mance is on the order of billions or tens of billions

of words (Zhang et al., 2021). This data efficiency
gap may be due, in part, to innate differences in
learning mechanisms between models and humans,
but environmental differences likely play a role as
well (Warstadt and Bowman, 2022). This work
tests the hypothesis that the lack of visual ground-
ing in language models accounts for some of the
gap in data efficiency.

The likelihood of finding evidence for this hy-
pothesis rests largely on two factors: (1) its cogni-
tive plausibility and (2) its technological viability.
If vision does help children learn language, then
there ought to be some way of incorporating vision
into text-only language models that improves their
learning ability. However, whether or not we can
find this approach depends on the present techno-
logical capabilities of multimodal models.

To address the first point, one cognitively-
motivated mechanism for how children integrate
nonlinguistic sensory data in language learning is
cross-situational learning (XSL) (Smith and Smith,
2012). This theoretical mechanism holds that the
learner accumulates statistical evidence about word
meanings by observing multiple instances of co-
occurring word-object pairs across many different
real-world situations (Smith et al., 2011; Kacher-
gis et al., 2014; Zhang et al., 2019). Encour-
agingly, Nikolaus and Fourtassi (2021) find that,
in a highly constrained visual-linguistic domain,
computational multimodal models do benefit from
cross-situational learning.

To address the second point, prior evidence that
vision will improve language models given current
technologies is, at best, mixed. Recent approaches
have successfully trained Transformer-based multi-
modal language models using self-supervised ob-
jectives resembling those developed originally for
the training of unimodal models (Tan and Bansal,
2019). Nevertheless, in comparison to the uni-
modal models, multimodal LMs often perform
relatively poorly on language-only tasks (Iki and
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Aizawa, 2021). We hypothesize that these short-
comings may be due to the common practice of
training multimodal models by fine-tuning pre-
trained language models on captions data.

Our approach addresses these limitations in two
ways that differ from most previous pretraining
recipes. First, we use the FLAVA architecture
and follow its multitask training procedure (Singh
et al., 2022). Second, we train on the Wikipedia-
based WiT dataset (Srinivasan et al., 2021), which
pairs images with a mixture of strongly aligned
(but formulaic) captions and weakly aligned (but
syntactically complex) articles. Despite these ef-
forts, our results show that the addition of image
data and multimodal training objectives leads to no
reliable improvement over text-only baselines on
benchmarks for grammar (BLiMP; Warstadt et al.,
2020a), understanding (GLUE; Wang et al., 2018),
and generalization (MSGS; Warstadt et al., 2020b).
We conclude that, to the extent that multimodal-
ity is partly responsible for the data-efficiency
gap, present multimodal (and multitask) pretrain-
ing methods do not benefit from this richer learning
signal.

To summarize, this work brings forward three
main contributions:

1. We develop a robust codebase1 for pretraining
(from scratch) large multimodal LMs under
varying text and vision input configurations.

2. We evaluate, in this controlled environment,
the effects of the visual signal on the model’s
textual encoder (hence, its linguistic ability).

3. We investigate plausible mechanisms for how
incorporating visual input into the pretraining
procedure might affect linguistic behavior.

2 Background

Prior work on multimodal language model training
can be roughly differentiated by whether the main
objectives are cognitively-oriented or engineering-
oriented. So far, neither of these directions has
produced clear evidence supporting the hypothe-
sis that multimodality aids language learning at
the scale of human language acquisition. Many
cognitively oriented contributions are limited by a
small data scale or a restricted domain. By contrast,
engineering-oriented contributions using state-of-
the-art Transformer-based architectures achieve

1https://github.com/amariucaitheodor/acquiring-
linguistic-knowledge

more developmentally plausible scale and diver-
sity but emphasize multimodal performance over
language learning.

2.1 Cognitively Oriented Approaches

Infants enter a diverse and abundant visual world
where they develop mental models to comprehend
and mimic the patterns they encounter. These men-
tal models empower them to grasp and anticipate
their surroundings and accomplish objectives by
incrementally improving their communicative abil-
ities (Roy and Pentland, 2002). Relatedly, the im-
pact of vision on specific aspects of human lan-
guage learning has been an important question in
human development for decades.

Contemporary research has tried to answer this
question through computational simulations of
cognitive processes involved in language acquisi-
tion. Multimodal models trained on visual ques-
tion answering or reference games can use cross-
situational learning to learn grounded meanings of
words (Mao et al., 2019; Wang et al., 2021; Niko-
laus and Fourtassi, 2021; Portelance et al., 2023).
Nonetheless, computational models show different
learning biases than humans in many cases, at least
in the absence of specific training or architectural
interventions (Gauthier et al., 2018; Vong and Lake,
2022). Ultimately, however, all of these studies are
limited in their cognitive plausibility and language
learning by a reliance on supervised training on
small, artificial datasets in which texts and images
correspond to arrangements of a limited set of ob-
jects in a simple, usually static scene.

Other studies aim for more naturalistic training.
Lazaridou et al. (2017) and Chrupała et al. (2015)
are notable for pioneering self-supervised training
objectives for multimodal models several years be-
fore the advent of Transformer architectures trained
on masking objectives. Wang et al. (2023) train
LMs on data from the SAYCam dataset (Sullivan
et al., 2021), pairing (written) child-directed utter-
ances with visual data from the child’s point of
view. While this data domain is nearly ideal from
a developmental plausibility perspective, the avail-
able data is too small to model anything past the
first month of development.

Finally, we note that most of the studies in this
area focus primarily on word learning. However,
the data efficiency gap applies more broadly to lan-
guage learning. Recent studies evaluating contem-
porary Transformer-based models have largely re-
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ported negative results for the effect of multimodal-
ity on semantics (Shahmohammadi et al., 2022),
commonsense reasoning (Yun et al., 2021), and
learning biases (Kuribayashi, 2023). To the best
of our knowledge, ours is the first work to perform
targeted syntactic evaluation (Marvin and Linzen,
2018; Warstadt et al., 2020a; Hu et al., 2020) on
multimodal models.

2.2 Engineering Oriented Approaches

The most effective recent approaches for training
multimodal language models generalize the self-
supervised objectives (and Transformer-based ar-
chitectures) that have become dominant for uni-
modal language models such as BERT (Devlin
et al., 2019) to the vision-and-language domain
(Li et al., 2020, 2019; Zhou et al., 2020; Tan and
Bansal, 2019; Chen et al., 2020; Yu et al., 2021;
Lu et al., 2019; Bugliarello et al., 2021; Pramanick
et al., 2022).

These studies, for the most part, share many as-
pects of a typical recipe: First, they initialize all or
some of the model parameters with the pretrained
weights of a model such as BERT. Second, they
fine-tune (using one or more self-supervised objec-
tives) on a dataset of image-caption pairs.2 Finally,
the model is evaluated on multimodal tasks such as
visual question answering or image captioning.

While the ability to perform such grounded tasks
is the key advantage of multimodal models over uni-
modal ones, it is critical for our research question
to examine whether this advantage comes at the
cost of language ability. Unfortunately, few of the
works that train new multimodal models evaluate
on language-only tasks. Some works perform this
evaluation post hoc. Iki and Aizawa (2021) study
five multimodal architectures, all initialized with
BERT and fine-tuned using identical data and train-
ing objectives by Bugliarello et al. (2021). Evaluat-
ing on the GLUE benchmark (Wang et al., 2018),
they find that, in nearly all cases, the original pre-
trained BERT outperforms the models with addi-
tional multimodal fine-tuning. Similar results are
reported by Madasu and Lal (2023) and Yun et al.
(2021).

2For example, in the masked multimodal modeling task
(MMM; Tan and Bansal, 2019), regions of an aligned image-
text pair are randomly masked before being input into the
model and then predicted. As the information from the image
presumably helps reconstruct the masked text (Frank et al.,
2021), this objective encourages learning text representations
that encode information from the visual modality (and vice-
versa).

From a human development perspective, it may
seem unintuitive that additional supervision on im-
ages harms language performance. However, from
a machine learning perspective, this finding is easy
to explain as an example of domain mismatch (Yun
et al., 2021), catastrophic forgetting (McCloskey
and Cohen, 1989), under-parameterization (Amari-
ucai, 2023), or other similar technical reasons.

BERT’s original training data (Wikipedia and
books) is diverse in terms of writing style and sub-
ject matter. By contrast, captions datasets com-
monly used to train multimodal LMs, such as MS
COCO (Chen et al., 2015) or Visual Genome (Kr-
ishna et al., 2017), consist entirely of short for-
mulaic physical descriptions of objects or scenes.
Hence, the text domain that the models were trained
on most recently bears little resemblance to the
texts in the GLUE tasks, for example. Furthermore,
the multimodal tasks incentivize using the models’
limited parameters for both text and image process-
ing, potentially sacrificing language ability.

Our experiments, which we describe in Section
3, are designed to address these issues through
two complementary approaches: First, we prevent
catastrophic forgetting by multitask-training on the
language-only masked language modeling (MLM)
objective jointly with the multimodal objectives.
Second, we lessen the impact of domain mismatch
by training on data that pairs images, not just with
captions, but also with longer and more complex
texts.

3 Methods

We conduct experiments to uncover differences in
how language models’ linguistic abilities change as
the amount of visual input varies. We pretrain and
evaluate multimodal LMs in eight conditions, de-
rived by independently varying the volume of text
data (10M or 100M words) and image data (none,
40K, 400K, or 4M images). We perform only one
training run for each of the eight conditions due
to computing constraints (see Limitations, Section
5). The text quantities are compatible with both
human-scale linguistic exposure (Gilkerson et al.,
2017) and the BabyLM strict-small and strict tracks
(Warstadt et al., 2023).

3.1 Dataset

All the data for our experiments comes from WiT,
a large, multimodal dataset entirely sourced from
Wikipedia (Srinivasan et al., 2021). Our choice
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of WiT was motivated by its size and the diversity
and complexity of its text data. English WiT in-
cludes 5.5M image–text pairs,3 making it one of
the largest public datasets of its kind. It contains
extended passages from Wikipedia articles, offer-
ing a more representative sample of sentence types
than typical multimodal datasets sourced from cap-
tions. Furthermore, WiT features multiple types
of text aligned with a given image. From most
strongly aligned to most weakly aligned, these in-
clude alt text, captions, article text from the same
section as the image, and article text from the lead
section. Together with the fact that Wikipedia cov-
ers many different concepts and real-world entities,
we hypothesize that WiT provides an adequately
rich environment for supporting cross-situational
learning while maintaining strong grammar and
language understanding performance.

We subsample from the English portion of WiT
to reach the desired data volume for each modal-
ity. For training purposes, we use either one (when
either modality is 0%) or three (when both modali-
ties are non-zero) data loaders. For example, when
training on 100M words and 40K images, we sam-
ple the first 10% of the pairs for the text unimodal
data loader, the first 1% for the vision unimodal
data loader, and the first 1% = min(10%, 1%) for
the multimodal data loader (containing paired im-
ages and text). Hence, all images in this config-
uration will be paired with some text, but not all
texts will be paired with an image. This logic also
implies that some images and texts will be seen
both in the multimodal and their corresponding
unimodal data loaders.

3.2 Model
For our experiments, we use the FLAVA model
architecture and training objectives (Singh et al.,
2022). We choose to study FLAVA for two rea-
sons: First, Singh et al. (2022) conduct a controlled
comparison between a unimodally trained FLAVA
text encoder and a fully multimodal FLAVA, and
they report improved performance on language-
only tasks from the multimodal model. As such,
FLAVA is the only example of a large multimodal
model for which prior (anecdotal) evidence sup-
ports our hypothesis that vision can help language
learning. Second, FLAVA is trained in a multi-
task setting on a combination of unimodal text,

3WiT is also multilingual, containing over 30M pairs in
over 100 languages. During preprocessing, however, we only
sample English text.

unimodal vision, and multimodal objectives. This
methodology addresses our concern (Section 2.2)
that other common multimodal training recipes can
lead to catastrophic forgetting of linguistic ability.

FLAVA’s architecture combines three modality-
specific encoders: Text and vision embeddings
are fed into unimodal text and vision encoders,
respectively, and the hidden states output by these
encoders are concatenated before being fed into
a multimodal encoder. For the unimodal objec-
tives, task-specific heads can be placed after the
corresponding unimodal encoder. All encoders are
based on the ViT-B/16 encoder (Dosovitskiy et al.,
2021).4

Following the original work, we pretrain mod-
els from scratch using multitask learning with the
following five objectives: masked image model-
ing, masked language modeling, masked multi-
modal modeling for both text and vision, image-
text matching, and cross-modal contrastive learn-
ing. More details on each objective, as well as
the encoder architecture itself, can be found in the
original paper (Singh et al., 2022).

3.3 Training Details

Hyperparameters We perform a hyperparame-
ter search and empirically settle on the following
values:

• Warmup steps: 104

• Batch size: 4096 effective = 32× 2 GPUs×
64 accumulation steps

• Learning rate (text encoder): 7.5× 10−4

• Learning rate (other encoders): 10−3

• Precision: bf16 mixed
• Seed: 5501650
• Adam optimizer:

– Epsilon: 10−8

– Weight decay: 0.1

– Betas: [0.9, 0.999]

We use two distinct learning rates because a
lower value is commonly recommended for text-
only pretraining (Liu et al., 2019; Devlin et al.,
2019), while a higher one was originally used for

4B/16 refers to a base-sized architecture with 86M total
parameters using a patch resolution of 16x16. We opt for this
version of the encoder based on the authors’ observation that
ViT-B/16 performs just as well as the larger alternatives when
pretraining on smaller datasets of under 300M images (such
as WiT).
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multimodally pretraining FLAVA. Multiple strate-
gies for correctly choosing modality-specific learn-
ing rates are treated extensively in Yao and Mihal-
cea (2022), where the "Keep" Strategy (ours) is
among the most straightforward of them. While
simple, it outperforms (in the authors’ empirical
study) the global learning rate strategy as it ensures
that each unimodal subpart still has effective gradi-
ents when training the fusion model.

Software We use Pytorch Lightning (Fal-
con and The PyTorch Lightning team, 2019) as
the main training framework and Weights and
Biases (Biewald, 2020) to track relevant metrics
in real time. We use the Huggingface datasets
library (Lhoest et al., 2021) to interleave the
modality-specific datasets, and the HuggingFace
transformers library (Wolf et al., 2020) to access
and train randomly-initialized FLAVA models.

Hardware We run each training job in Dis-
tributed Data-Parallel mode, across two NVIDIA
Tesla A100 Ampere 40 GB graphics cards, on the
same node, in ETH Zürich’s Euler datacenter. For
each of the two GPUs, there are 4 CPU workers
loading data (this number was empirically found to
be optimal), with each CPU worker having 10GB
of RAM available. The average runtime for our
jobs running on 100M words was six days, and for
10M words, it was three days. Thus, we count a to-
tal of (2 GPUs) * (8 jobs) * (108 hours / job) = 1728
GPU hours used to train the models reported in this
study, not counting our hyperparameter search.

Dataloader Sampling Weights During multi-
modal pretraining, we alternate samples from three
data loaders with independent weights, initialized
(and normalized) proportional to their sizes. For
example, for the condition with 100M words and
40K images (hence, all images and 10M words of
text are paired), we would have the following ini-
tial sampling weights: 0.833 (text), 0.083 (vision),
0.083 (multimodal). For maximal text encoder per-
formance, we perform a hyperparameter search and
determine a simple rule-based approach to further
improve the distribution of the sampling weights:
If text is not the predominant modality, we change
it to the uniform distribution; otherwise, we leave
the initial weights unchanged.

Modality-Specific Early Stopping We develop
custom logic to prevent the models from overfit-
ting on any given modality. For example, when the

Words
Images

None 40K 400K 4M

10M 4604 5346 4876 4876
100M 23818 12267 16344 16542

Table 1: Model checkpoints (training step #) chosen
for evaluation based on the masked language modeling
validation loss (Figure 4).
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Figure 1: PPPL performance for the two data volumes
of 10M and 100M words. The training steps on the
x-axis are counted across all objectives.
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Figure 2: BLiMP performance for the two data volumes
of 10M and 100M words. The training steps on the
x-axis are counted across all objectives.
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Tasks 10M Words 100M Words
None 40K 400K 40M None 40K 400K 40M

(Super)GLUE (Acc., F1, MCC) 65.49 64.68 65.17 65.76 70.42 69.24 68.9 69.07
BLiMP (Acc.) 63.96 63.98 63.31 64.53 71.32 70.45 71.9 70.93
MSGS (MCC) -12.88 -12.16 -8.84 -18.62 -8.66 -6.18 -7.41 -7.47

Table 2: Performance for each of the eight models on the BabyLM test suites (detailed version in Table 3).

sampling rate is 0.083 for the multimodal and text
data loaders yet 0.833 for the vision data loader, the
former two modalities will likely begin to overfit
well before the latter. To avoid this, we detect in-
creases in validation loss and (each time) halve the
corresponding task’s sampling weight. If the vali-
dation loss continues to steadily increase after three
validation steps, we set the task weight to 0. To
prevent catastrophic forgetting of the multimodal
input, we allow the models to restart training on
vision and multimodal data after a certain period
of inactivity (here, 10 validation phases).

Model Selection For each of the eight input con-
figurations, we select the best model checkpoints
for evaluation based on the lowest recorded masked
language modeling loss on the validation set (see
Figure 4 for validation losses for every training
objective and model). Table 1 shows the num-
ber of training steps for the selected checkpoints
from each configuration. For additional informa-
tion, we also regularly evaluate the models’ pseudo-
perplexity on a held-out test set (see Figure 1).

4 Results

We evaluate the selected checkpoints from all eight
training configurations on the BabyLM evalua-
tion pipeline (Warstadt et al., 2023), including
evaluations on benchmarks for grammar (BLiMP;
Warstadt et al., 2020a), language understanding
(GLUE and SuperGLUE; Wang et al., 2018, 2019),
and linguistic generalization (MSGS; Warstadt
et al., 2020b). For BLiMP and pseudo-perplexity
(Wang et al., 2018), we also report intermediate
results for all of the training checkpoints.

Our overall results in Table 2 largely confirm ear-
lier work finding that vision is, at best, not consis-
tently helpful to language performance. With a data
volume of 10M words, FLAVA does sometimes per-
form marginally better on grammar-oriented tasks
in the presence of visual cues. For other evaluations
and with a data volume of 100M words, we also
find no consistent advantages in our experimental

setting. Of those improvements we do observe, our
tests deem it unlikely that they are due to cross-
situational learning (see Section 4.4).

4.1 Pseudo-perplexity

For validation, Figure 1 shows the pseudo-
perplexity (PPPL; Wang and Cho, 2019) per token
on a held-out evaluation subset of WIT throughout
training. Unsurprisingly, PPPL is lower (better)
for the 100M word models compared to the 10M
word models. Additionally, the metric appears to
converge for the 10M word models, while it may
still be decreasing for 100M word models.5 The
most unexpected finding is that PPPL is consis-
tently worse as the amount of image data increases
for a given amount of text data throughout training.
This degradation may suggest that our multitask
training procedure causes the models to sacrifice
MLM performance in favor of other objectives as
the proportion of visual and multimodal samples
increases.

4.2 Grammaticality

We evaluate linguistic knowledge using BLiMP
(Warstadt et al., 2020a), which tests the ability of
models to distinguish grammatical sequences from
minimally different ungrammatical ones in a zero-
shot setting.

Table 2 shows the overall BLiMP performance
from each condition. We notice that text quantity
makes a big difference in performance. Changes in
vision, on the other hand, are associated with small
amounts of variation that are sometimes positive
or negative. Hence, due to the lack of a consistent
pattern and the small number of runs, we cannot
confidently conclude that vision causes an increase
or decrease in performance.

Figure 2 shows the BLiMP results for each val-

5Our scheduler triggered early stopping based on valida-
tion loss despite the apparent possibility that longer training
might have been beneficial. More generally, there are many
potential improvements to task scheduling and early stopping
for multitask learning that we leave to future work.
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Figure 3: Zero-shot accuracies, in percentages, obtained on the BLiMP task for each grammatical category (x12)
and FLAVA run configuration of input text volume (10M and 100M words) and input vision volume (0, 40K, 400K
and 4M images). The model checkpoints used to generate these results were selected as described in Table 1.

idation step throughout training. For most of the
duration of training, particularly for the 100M
word models, models with less image data per-
form better. This behavior mostly matches the
pattern we observe for pseudo-perplexity, except
that the differences seemingly disappear by the end
of training. This result confirms earlier findings
that (pseudo-)perplexity is not entirely predictive
of grammatical knowledge (Hu et al., 2020).

Individual BLiMP categories are more closely
compared in Figure 3. Previous work shows that
phenomena related to agreement have the steepest
learning curves at the 10M word scale (Zhang et al.,

2021). Therefore, if the hypothesis that vision ac-
celerates LM learning is correct, we might expect
to see the greatest signs of improvement for 10M
word models on this subset of test suites. Figure
3, however, shows conflicting and inconclusive re-
sults, with improvements in anaphor agreement
but a slight degradation for determiner-noun agree-
ment, and little change for subject-verb agreement.

We observe that multimodal pretraining may
have a regularizing effect at smaller data scales:
BLiMP performance improves at times although
the pseudo-perplexity (i.e., test loss) is consistently
higher (by 1-3 units) for the vision-infused mod-
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els. Moreover, the vision-infused models run for
almost twice as long before starting to overfit (8k
v.s. 4k steps), gaining accuracy in areas such as
anaphor agreement, filler gap dependencies, and
NPI licensing, although not so on test suites such
as argument structure and subject-verb agreement.

4.3 Fine-Tuning Evaluations
In addition to the above, we also use
GLUE/SuperGLUE (Wang et al., 2018, 2019)
and MSGS (Warstadt et al., 2020b) to fine-tune
and evaluate all eight models on a selection
of downstream tasks that focus on language
understanding and linguistic generalization.

As expected, the results in Table 2 show that
overall GLUE performance increases (by around
5%) at higher text data scales. Within each of
the two text volume groups, however, there is no
reliable improvement due to the addition of vision,
though vision-infused models appear to be slightly
better (relatively) at lower data scales, of up to 10M
words. Generally, the models perform similarly on
the selected downstream tasks (performance after
fine-tuning), in line with BLiMP results.

Scores on MSGS are negative for all models, for
all ambiguous subtasks (i.e., those subtasks not in
the control condition), as shown in Table 3. This
indicates that all of our models are consistently bi-
ased towards generalizing based on shallow surface
cues rather than linguistic features.

4.4 Cross-Situational Learning
To assess the symbolic grounding of our models,
for every input configuration checkpoint in Table
1, we evaluate the multimodal text retrieval zero-
shot accuracy on ImageNet-1k (Russakovsky et al.,
2015). The goal is to select, for every given query
image, the best-fitting text caption from a pool of
1000 options. To this end, we compute cosine sim-
ilarities as matching scores between the queried
image’s representation and the representations of
1000 template-averaged6 potential captions. Lastly,
we retrieve the text caption with the highest match-
ing score for each image query. We follow Radford
et al. (2021) to calculate the zero-shot accuracy.

As a baseline, we assess FLAVA pretrained on
the PMD corpus and obtain top1 and top5 accu-
racies of 32% and 60%, respectively. The mod-
els we pretrain, however, obtain average top1 and

6Since the captions for even a specific entity can vary, e.g.,
a doodle of a car, a photo of a large car, etc. we compute an
average over ∼80 such templates for each entity.

top5 accuracies of 0.1% and 0.5%, respectively.
Some of the possible factors responsible for this
random guess performance could be: 1) the multi-
task scheduler described in Appendix 3.3 was mis-
configured (this aligns with findings in Amariucai
(2023)), 2) the smaller magnitude of the training
data (WiT is a subset of PMD), 3) the weak align-
ment between some of the text (full paragraphs)
and the corresponding images (Imagenet-1k only
evaluates caption alignments), or 4) the fact that
we do not pretrain the vision encoder unimodally
on ImageNet-1k, as in Singh et al. (2022).

5 Conclusion

We perform an ablation study on a state-of-the-art,
multimodal language model under varying text and
vision configurations. Our training recipe avoids
the problem of catastrophic forgetting of complex
language, which previous approaches fell prey to,
by performing multitask training on both multi-
modal and unimodal tasks in a more diverse do-
main. Nonetheless, our results largely confirm ear-
lier work finding that vision is (at best) not consis-
tently helpful to language performance. During pre-
training at the small 10M word scale, the FLAVA
architecture (Singh et al., 2022) does sometimes
appear to perform marginally better on grammar-
oriented tasks in the presence of visual cues. How-
ever, for other evaluations and with a data volume
of 100M words, we find no consistent advantages
in our experimental setting.

At the small data scales that we pretrain our mod-
els in this study (up to 100M words and the corre-
sponding images), our tests in Section 4.4 deem it
unlikely that the models are benefiting from cross-
situational learning. Alternatively, the extra param-
eters in the multimodal encoder could simply be in-
creasing FLAVA’s modeling capacity, a hypothesis
that we leave for future work. Regardless, multi-
modal pretraining seems to exhibit a regularizing
effect: although pseudo-perplexity is consistently
worse for the vision-infused models, grammatical
performance fluctuates and is often at least as good.

We conclude that the lack of visual input alone
does little to explain the large data efficiency gap
between LMs and humans observed in grammar
learning, though we leave open the possibility that
this conclusion will change with better architec-
tures and techniques for integrating vision and lan-
guage at training time.
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Limitations

The robustness of the observations made in this
report is limited by the fact that each configura-
tion (text/vision input volume) was only run once.
Future work should provide at least 5 re-runs per
configuration (with different seeds), as there can
be considerable variance even in different models
with the same configuration (McCoy et al., 2020).
Due to the computational intensity of performing
re-runs, this was not possible in time for this sub-
mission.

Significant GPU resources are required to effec-
tively train large language models, partly because
of the large batch sizes and the scale of the datasets.
In this work, we use ≈ 1728 GPU hours on very
recent hardware (further details in Section 3.3).

Finally, there is an architectural difference be-
tween the unimodal and multimodal models in our
experiments. The unimodal models are trained en-
tirely without the visual or multimodal encoders.
Although these parameters are not used by the mul-
timodal model during evaluation on language-only
tasks, they are used during training, and so they
may have an indirect effect on what the language
encoder learns. To test whether the potential per-
formance improvements in grammaticality and lan-
guage understanding can indeed be attributed to
the visual cues or rather simply to the increased
number of parameters in the multimodal encoder,
future work should conduct additional baseline ex-
periments, e.g., where the images are replaced with
random noise pixels.
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A Pretraining Validation Losses
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Figure 4: Validation losses for every training objective on a held-out set. While the MLM – and to a certain extent,
also the MMM (Text) – losses are closely proportional to the pseudo-perplexity metric in Figure 1 (including some
occasional spikes associated with checkpoint loading), the other losses are less stable. We point out some issues
with the scheduler mechanism in Sections 4.1 and 4.4.
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B Fine-tuning Performance

Task Subtask 10M Words 100M Words
None 40K 400K 40M None 40K 400K 40M

(S
up

er
)G

L
U

E

BoolQ (accuracy) 64.32 65.70 65.98 66.8 69.43 67.08 65.70 66.25
CoLA (MCC) 4.21 -4.16 0.00 0.00 28.43 21.56 20.00 20.93
MNLI (accuracy) 73.27 72.46 70.07 71.98 74.63 71.85 74.57 74.11
MNLI-mm (accuracy) 72.5 73.71 73.98 73.74 78.06 77.83 76.78 75.84
MRPC (F1) 81.61 83.10 81.61 82.00 82.99 85.51 84.78 84.98
MultiRC (accuracy) 59.58 60.35 61.45 62.32 67.47 62.76 64.62 67.25
QNLI (accuracy) 80.88 79.40 80.31 79.97 83.90 82.76 82.55 81.98
QQP (F1) 81.76 82.28 82.49 82.57 82.99 84.30 82.91 82.43
RTE (accuracy) 57.58 53.54 53.54 55.56 53.54 57.58 58.59 56.57
SST-2 (accuracy) 83.27 83.66 84.84 87.01 91.73 88.98 87.20 87.99
WSC (accuracy) 61.45 61.45 62.65 61.45 61.45 61.45 60.24 61.45

B
L

iM
P

(A
cc

.)

Anaphor Agreement 76.84 79.55 76.99 77.04 94.89 95.35 91.10 96.27
Argument Structure 64.14 62.38 62.55 62.45 69.58 69.77 68.15 68.38
Binding 62.07 63.79 64.00 60.98 68.91 66.62 65.67 67.99
Control/Raising 61.4 62.06 64.54 63.10 67.96 69.64 67.63 67.87
Determiner Noun Agreement 82.91 80.42 82.11 83.00 90.27 91.94 88.45 89.49
Ellipsis 68.48 65.76 61.61 66.22 81.12 78.12 80.60 77.37
Filler Gap Dependencies 59.52 59.73 57.91 60.85 67.24 65.41 64.19 61.92
Irregular Forms 83.51 75.98 78.73 74.45 84.17 84.12 83.66 84.89
Island Effects 40.43 44.13 40.28 48.02 51.83 53.10 48.47 48.65
NPI Licensing 52.49 54.43 54.66 49.53 61.24 64.79 60.04 54.68
Quantifiers 58.55 57.86 64.76 57.73 60.10 58.40 57.16 58.50
Subject Verb Agreement 60.29 61.72 61.81 61.37 75.34 72.65 70.19 69.18

M
SG

S
(M

C
C

)

Control Raising (control) 21.90 27.36 31.42 22.24 46.21 45.25 46.85 55.00
Control Raising–Lexical Content -46.54 -18.71 -13.17 -72.82 -61.04 -66.26 -63.65 -88.49
Contro Raising–Relative Position -98.69 -97.82 -98.33 -100.00 -99.90 -89.06 -97.74 -99.34
Lexical Content (control) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Main Verb (control) 86.84 96.84 93.24 86.92 99.85 99.40 96.54 98.08
Main Verb–Lexical Content -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00 -100.00
Main Verb–Relative Position -86.73 -88.78 -91.56 -95.32 -98.41 -86.56 -95.64 -93.18
Relative Position (control) 96.78 81.47 90.28 89.14 99.98 99.47 100.00 99.98
Syntactic Category (control) 57.04 13.15 38.77 28.12 72.40 73.32 77.37 89.29
Syntactic Category–Lexical Content -100.00 -81.37 -77.31 -95.49 -81.08 -74.66 -79.96 -78.53
Syntactic Category–Relative Position -72.34 -65.91 -70.53 -67.61 -73.29 -68.86 -65.26 -64.96

Table 3: Detailed fine-tuning performance for each of the eight models. F1 denotes macro-F1, MCC denotes
Matthew’s correlation coefficient, and random chance accuracy on all BLiMP tasks (i.e., the second group) is 50.
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Abstract
Research on the cognitive plausibility of lan-
guage models (LMs) has so far mostly concen-
trated on modelling psycholinguistic response
variables such as reading times, gaze durations
and N400/P600 EEG signals, while mostly
leaving out the dimension of what Mahowald
et al. (2023) described as formal and functional
linguistic competence, and developmental plau-
sibility. We address this gap by training a series
of GPT-like language models of different sizes
on the strict version of the BabyLM pretrain-
ing corpus, evaluating on the challenge tasks
(BLiMP, GLUE, MSGS) and an additional read-
ing time prediction task. We find a positive cor-
relation between LM size and performance on
all three challenge tasks, with different prefer-
ences for model width and depth in each of the
tasks. In contrast, a negative correlation was
found between LM size and reading time fit
of linear mixed-effects models using LM sur-
prisal as a predictor, with the second-smallest
LM achieving the largest log-likelihood reduc-
tion over a baseline model without surprisal.
This suggests that modelling processing effort
and linguistic competence may require an ap-
proach different from training GPT-like LMs
on a developmentally plausible corpus.

1 Introduction

In recent years several approaches have been taken
to test LMs for cognitive plausibility. This is usu-
ally done by using output probabilities of the LM
as a predictor for a model’s preference towards
certain linguistic structures (Roark et al., 2009;
Wilcox et al., 2020). Another strain of research
uses the output probabilities as a correlate of psy-
cholinguistic measures, e.g., N400 and P600 EEG
signals (Heilbron et al., 2019 and recently Li and
Futrell, 2023) and (self-paced) reading times (Fer-
nandez Monsalve et al., 2012). A natural question
that arises is whether cognitive plausibility should
be attributed to the model architecture itself, or to
the training regime in combination with the training

Figure 1: Our results show that LM performance on the
BabyLM challenge tasks is negatively correlated with
perplexity on the development set of the BabyLM cor-
pus (lower perplexity leads to higher performance). In
contrast, a positive correlation (Spearman’s ρ = 0.4784,
p < 0.05) was found between LM perplexity and the
fit of LM surprisal to self-paced reading times from the
Natural Stories corpus (Futrell et al., 2021) in terms of
the difference in log-likelihood between a basline linear
mixed-effects model and a model using LM surprisal as
a predictor. Lines were fitted with 3 (challenge tasks) or
6 (reading times) degrees of freedom to the LMs’ aver-
age performance on the task. See Section 6 for detailed
results.

dataset. Little research has been done on the actual
neurological plausibility of large LMs (LLMs), but
Schrimpf et al. (2021) showed that the architecture
of BERT-like models is already plausible for the
next word prediction task before training: model
predictions with only the language modelling head
trained are already predictive of human brain ac-
tivity during reading and correlate well with the
predictions of the fully trained model. In contrast,
no correlation between brain activity and model
predictions was found for models trained on GLUE
(Wang et al., 2019), a natural language understand-
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ing (NLU) benchmark. This finding may mirror an
underlying difference in language processing be-
tween formal and functional linguistic competence
as introduced by Mahowald et al. (2023):

Formal linguistic competence is defined as the
"capacity required to produce and comprehend a
given language, i.e., the ability to distinguish gram-
matically correct from incorrect formations, based
either on "knowledge of and flexible use of linguis-
tic rules" or "non-rule-like statistical regularities"
(Mahowald et al., 2023). An example for the for-
mer mechanism would be the regular formation of
past tense verbs in English (look:looked), and for
the latter the formation of irregular or ablauting
past tense verbs (go:went,tread:trod).

Functional linguistic competence is defined as
"non-language-specific cognitive functions that
are required when we use language in real-world
circumstances" (Mahowald et al., 2023) , i.e., the
ability to perform cognitive tasks with language.
GLUE is an example for a benchmark that test this
dimension of linguistic competence, with some
if its tasks (CoLA (Warstadt et al., 2019)) also
testing for aspects of formal linguistic competence.

The dichotomy between formal and func-
tional linguistic competence can be understood in
terms of Wittgenstein’s definition of the meaning
of a word as its use in a language (Wittgenstein
(1953), §43). The debate on whether statistical
learners (i.e. LMs) can learn the meaning of
a linguistic unit (word, phrase, text, etc.) in
Wittgenstein’s sense is still ongoing, with much
division between positions that strongly deny that
LMs can have such a property (Bender and Koller,
2020) and positions that advocate that they might
have it, e.g., under the condition that the LM’s
predictions are grounded in extralinguistic reality
(Bisk et al., 2020). Our study does not attempt to
find arguments in favour of either position, but to
study the implications of this dichotomy for the
paradigm of cognitive modelling.

As stated earlier, the output probabilities of LMs
lie at the basis of the application of LMs to cogni-
tive language modelling, usually in the form of a
probability distribution over a vocabulary of word
forms given either surrounding words (masked lan-
guage modelling) or preceding words (causal lan-
guage modelling). Evidence for the use of surprisal
(a word’s negative logarithmic probability in con-

text) instead of the actual probablity comes from
logarithmic effects of contextual probabilities on
processing difficulty (Shain et al., 2022). Another
approach is to evaluate the output probabilities of
a LM over a number of classes that may or may
not apply to the input sequence, usually after fine-
tuning the LM. The reliance of research in this
direction on the output probabilities of LMs has
already been criticized from multiple sides. There
is a growing body of evidence that the performance
of a LM in the typical language modelling task,
next word prediction, and measures of formal lin-
guistic competence are not correlated. Hu et al.
(2020) found no correlation between LM perplex-
ity and measures of formal linguistic competence,
while Huang et al. (2023) argue that LM surprisal
should not be assumed to be a good predictor of
psycholinguistic measures of processing difficulty
that require more than just lexical information. This
lack of correlation with psycholinguistic measures
becomes more prominent with the increasing size
of LMs (Oh and Schuler, 2022), and especially so
in extreme cases of human processing difficulty:
Arehalli et al. (2022) showed that surprisal from
LSTM-based LMs underestimates garden-path ef-
fects on reading times, while successfully predict-
ing reading times for most non-garden-path sen-
tences. This finding has been corroborated for
transformer-based LMs such as GPT-2 (Jurayj et al.,
2022) and BERT (Irwin et al., 2023).

2 BabyLM

The BabyLM challenge (Warstadt et al., 2023) in-
troduces a novel constraint to cognitively plausible
language modelling by limiting the token budget
for LM pretraining to 100 million (100M) tokens,
roughly the same amount of tokens a 13-year old
child has seen during language acquisition (Gilk-
erson et al., 2017). While the focus of the chal-
lenge is on the pretraining procedure, the evalua-
tion pipeline consists of the BLiMP (Warstadt et al.,
2020a), MSGS (Warstadt et al., 2020b) and GLUE
benchmarks, each of which aims to test for a spe-
cific dimension of linguistic competence.

BLiMP BLiMP tests for formal linguistic compe-
tence by comparing model predictions at a critical
word in pairs of grammatically acceptable and unac-
ceptable sentences, with the sentence pair only dif-
fering with respect to a single feature, e.g., whether
a determiner agrees with its antecedent in gender
or not. A model succeeds at the task if it assigns a
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higher probability to the critical word in the accept-
able sentence.

GLUE GLUE is a benchmark that requires fine-
tuning1 of the LM. It tests for a wide range of NLU
problems, e.g., question answering, natural lan-
guage inference and linguistic acceptability judge-
ments, and hence can be regarded as a proxy for
the functional linguistic competence of a LM.

MSGS MSGS is a benchmark of binary classifi-
cation tasks that tests whether a LM prefers surface
generalizations over syntactic generalization by
first fine-tuning on data consistent with both types
of generalization. At inference time, items are
consistent with only one type, potentially revealing
a bias towards either generalization type.

Previous studies mainly provided insights
into the relationship of pretraining token budget
and measures of formal and functional linguistic
competence. Zhang et al. (2021) showed that
encoder-only LMs already perform well on formal
tasks such as BLiMP at a budget of 10-100M
tokens, while requiring substantially larger token
budgets to perform well on functional tasks such as
GLUE. While this research established correlations
for pretraining token budgets, similar relationships
for model size at a fixed token budget have not
yet been investigated. This study is dedicated to
finding a relationship between model size and
performance on these tasks, while simultaneously
addressing the dimension of processing effort,
which is not covered by the challenge tasks. This
is done using the strict version of the BabyLM
corpus, mainly because there is evidence that the
fit with psycholinguistic measures profits from
token budgets far larger than the 100M tokens in
the corpus (Oh and Schuler, 2023).However, we
also implicity evaluate on models that are trained
on token budgets of 10M tokens, corresponding
rather to the strict-small track in Section 7.

3 Research questions

The starting point of our work is Zhang et al.
(2021)’s finding of an earlier saturation effect (in
terms of pretraining tokens) for BLiMP as opposed
to (Super)GLUE. If performance on BLiMP is al-
ready close to the optimum after pretraining for

1During fine-tuning, we train all parameters of the pre-
trained LM as well as a randomly initialized classifier on top
of the LM.

100M tokens, we suspect that a model with rela-
tively small capacity is sufficient to reliably learn
the required syntactic and semantic features. In
contrast, the larger pretraining token budget and
model size needed for GLUE should also require a
model with higher capacity.

Studies on reading time prediction generally use
causal LMs trained on a next-word prediction task
instead of masked LMs (Oh and Schuler, 2022;
Arehalli et al., 2022; Jurayj et al., 2022) because
of their closer similarity to human language
processing. Although masked LMs such as BERT
show some word order effects (Papadimitriou
et al., 2022) and even garden-path effects (Irwin
et al., 2023), they are cognitively implausible in
the sense that they process all words in a sequence
simultaneously when predicting a word at a
masked position, rather than processing language
sequentially. This autoregressive property mirrors
human language processing, and is therefore
desirable in studies with the primary goal of
modelling human reading behaviour. We therefore
employ decoder-only, GPT-like LMs (Radford
et al., 2019) in our study, i.e., we want to answer
the following research questions:

Research question A

Are GPT-like models cognitively plausible
in the sense that they are able to acquire (a
degree of) formal and functional linguistic
competence, while being also predictive of
human processing effort?

Research question B

Can such LMs be trained on the same data
as a child has available during language ac-
quisition (100M tokens)?

4 Previous work

Do we need transformers for cognitive plausi-
bility? Despite promising findings by Hosseini
et al. (2021), it has yet to be determined whether
transformers, and decoder-only transformer LMs in
particular, are cognitively plausible in the sense that
they are data-efficient enough to acquire human-
like2 linguistic competence. Indeed, there are re-
sults that seem to partially contradict the necessity

2Here, we do not use "human-like" to imply human-level
performance, but rather that the model is subject to similar
processing constraints as a human.

144



of LLMs with wide context windows in order for a
model to exhibit human-like processing behaviour.
Kuribayashi et al. (2022) showed that reducing
context length of LLMs improves the fit of a lin-
ear mixed-effects model (LME) on gaze durations,
with surprisal from a bigram GPT-2 model as a pre-
dictor yielding the largest log-likelihood reduction
over the baseline model. Wilcox et al. (2020) failed
to identify a relationship between psychometric
predictive power (∆ log-likelihood) and syntactic
generalization, concluding that different models
are needed for modelling human processing effort
versus syntactic generalization.

Linguistic competence vs. psycholinguistic
measures It has long been clear that LM capacity,
and subsequently LM perplexity, does not neces-
sarily correlate with human-likeness (Kuribayashi
et al., 2021). LLMs such as GPT-3 in particular
were found to have considerable disadvantages
when it comes to predicting psycholinguistic
measures from their next-word predictions: Oh
and Schuler (2022) found an inverse relationship
between both perplexity and LLM capacity, versus
fit to human reading times. The authors of this
study hypothesize that this is because transformers
have access to the full sequence context, and are
trained on large enough corpora to make use of
the information that they contain. This relationship
between model perplexity and reading times is
however not intrinsic to transformer-based LMs:
Hu et al. (2020) found a similar relationship for
LSTM LMs, though small GPT-like models have
an advantage over recurrent models.

The impact of LM size on linguistic competence
was investigated by Eldan and Li (2023), who
found that relatively small GPT2-like models
(<10M parameters) manage to produce fluent
English and can be trained on relatively small
corpora with a reduced vocabulary. Their study
also shows that the relationship still holds for small
models, while also identifying trade-offs between
model width (hidden size) and depth (number of
decoder layers).

As for training dataset size, Oh and Schuler
(2023) found that surprisal from transformer-based
LLMs gives the best fit to reading times at about
2B train tokens, across a wide range of model sizes.
The corpus used in their study is very large (300B
tokens), allowing for extensive training of a model
without repeating any data. Reaching the same
number of update steps with the much smaller

BabyLM corpus would require training for mul-
tiple epochs.

Single- vs. multi-epoch training Since the
BabyLM training data is substantially smaller than
the 2B tokens suggested by Oh and Schuler (2023),
training our models in a multi-epoch setting cannot
be avoided. Previous research has shown that re-
peating the training data can have adverse effects:
Xue et al. (2023) compared single-epoch vs. multi-
epoch training in a limited data setting and show
that multi-epoch training leads to overfitting, with
little performance being gained after the first epoch.
They also find that regularization can only partially
alleviate the overfitting problem, with dropout hav-
ing the largest effect. Not having to repeat the
training data is advantageous for downstream tasks
and psycholinguistic modelling, if a certain amount
of training data is available: Oh and Schuler (2023)
found that reading time fit deteriorates after 2B to-
kens over a wide range of model sizes. However,
it is not clear if repeating the training data would
lead to an even stronger deterioration. If the corpus
is substantially smaller than 2B tokens, repeating
the training data could have a different effect, espe-
cially if the optimum of the reading time fit depends
on the availability of the 2B tokens.

5 Methodology

Modelling We use the OPT architecture by
Zhang et al. (2022) with a language modelling
head for pretraining. Following our intuition that
BLiMP should require much smaller model sizes
than MSGS and GLUE, we train a series of OPT
models of different sizes, varying only model width
(hidden size) and model depth (number of decoder
layers). In total we train 24 models varying over
4 hidden sizes lhidden ∈ {192, 384, 768, 1536}
and 6 numbers of decoder layers (ldecoder ∈
{1, 2, 4, 8, 16, 24}). We also adjust the dimension
of the feedforward layers such that the size of the
output vector lforward = 3 × lhidden. Table 1
in Appendix A shows the resulting model sizes.
The models and all code for pretraining are im-
plemented with PyTorch (Paszke et al., 2019) and
HuggingFace transformers (Wolf et al., 2020), start-
ing from their implementation of OPT. We also
trained a new tokenizer on the training set of the
BabyLM corpus, using the same vocabulary size
|V | = 50272 as the original OPT tokenizer. We
report all results as averages over 3 random seeds
(see Appendix D for full results and standard error).
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Figure 2: Task performance by model size (higher numbers are better). Baselines can be found in Appendix D.

Training Following the Shortformer pipeline
(Press et al., 2021), each model is trained for one
epoch with an initial sequence length of 64, fol-
lowed by 4 epochs with the full sequence length of
256. The full sequence length of 256 was chosen
as a compromise between the relatively short test
items in the challenge tasks (up to 128 tokens) In
order to ensure that the model generalizes to longer
sequences we use ALiBI (Press et al., 2022) in-
stead of learned positional embeddings. This also
ensures that our models generalize to the longer se-
quences in the Natural Stories corpus. We trained
each model on a A100 GPU with 40 GB VRAM
and an effective batch size of 128, using gradient
accumulation for models that could not fit the full
batch size. We used AdamW (Loshchilov and Hut-
ter, 2019) as our optimizer with an initial learning
rate of 0.001 and weight decay of 0.001 with 2000
linear warm-up steps. We use a dropout of 0.1
following the default HuggingFace transformers
parameters for OPT.

Pretraining experiments We also experimented
with changes to the pretraining regime. We trained
models on multiple permutations of the training
dataset: ordering sequences according to length
(number of words), word length (number of charac-
ters), sequence-level perplexity from a 3-gram LM
trained on the same data, and different orderings
of the subcorpora as in Mueller and Linzen (2023).
None of these approaches resulted in significant
performance gains in terms of perplexity and per-
formance on the challenge tasks over a baseline
model trained on the concatenated BabyLM corpus
with subsequent shuffling of the sequences.

Evaluation We evaluated all models on the
downstream tasks of the BabyLM challenge.
While these three tasks test for the linguistic
competence of a model, they do not quantify
the cognitive effort associated with language

processing. We therefore also evaluate all models
on a reading time prediction task. For each
model, we calculated surprisal on the items of
the Natural Stories Corpus (Futrell et al., 2021).
This corpus was chosen because its domain is
close to at least one of the BabyLM subcorpora
(Children’s Stories). We fitted linear mixed-effects
(LME) models with random intercepts for subject,
word and item (the id of the story); surprisal,
word frequency, word length and sentence
position as predictors and log-normalized reading
times as the response variable. The exact formula is

l o g ( r e a d i n g _ t i m e ) ~
w o r d _ s u r p r i s a l + l e n ( word )
+ l o g ( word_ f r equency ) + p o s i t i o n
+ ( 1 | word ) + ( 1 | s u b j e c t ) + ( 1 | i t em )

For the reading time analysis we report the differ-
ence in log-likelihood between the models with
surprisal as a predictor over a baseline model with
only the control predictors. For all other tasks we
report accuracy.

Code We used the evaluation code provided by
the organizers of the BabyLM challenge3, with
some modifications to load custom models. The
evaluation pipeline is based on the LM-Eval frame-
work by Gao et al. (2021). Fine-tuning on GLUE
and MSGS was done with the default hyperparam-
eter settings, but we reduced the number of fine-
tuning epochs to 3 as we did not observe any im-
provements after 3 epochs. The LME models were
fitted using the lmerTest R library (Kuznetsova
et al., 2017) via the pymer4 Python package (Jolly,
2018). The code to pretrain and evaluate all models
is publicly available on GitHub4. The model with
the highest BLiMP accuracy and detailed results
for the LME models are made available at the same

3https://github.com/BabyLM/
evaluation-pipeline

4https://github.com/uds-lsv/babylm
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location, alongside instructions on how to run the
training and evaluation pipelines.

6 Results

Fine-tuning GLUE Fine-tuning on GLUE was
overall very unstable and often failed to outperform
the baseline. This was mainly due to the one-size-
fits-all approach to the fine-tuning hyperparame-
ters; we repeated several more fine-tuning runs
with different hyperparameter settings on some of
the GLUE tasks, and found that, e.g., RTE prof-
ited from a longer warm-up period (which is in
line with the findings of Mosbach et al. (2021) for
BERT-like models), but most other sub-tasks fine-
tuned with the same hyperparameters showed a
drop in performance. While we could have opti-
mized hyperparameters for all sub-tasks, the main
objective of the BabyLM challenge is to improve
the pretraining part of the NLP pipeline. Thus, we
decided to fine-tune with the default hyperparam-
eters, only adjusting the number of epochs as we
found that the fine-tuning runs already converged
after a few epochs.

Model size Figure 2 shows the relationship be-
tween model size and task performance: While
GLUE (Spearman’s ρ = 0.7739, p < 1−4) and
MSGS (ρ = 0.7148, p < 1−4) performance scales
with model size, BLiMP performance plateaus af-
ter reaching a model size of about 50M parame-
ters (ρ = 0.8835, p < 1−4). In contrast, reading
time fit was negatively correlated with model size
(ρ = −51.39, p < 0.05). All correlations are
statistically significant with p < 1−4. No single
model performed best on all three challenge tasks,
with large differences in the size of the best model.
Figure 1 shows that similar correlations hold for
model perplexity and task performance (BLiMP:
ρ = −0.9765, p < 1−4, GLUE: ρ = −0.8287,
p < 1−4, MSGS: ρ = −0.8661, p < 1−4); nega-
tive correlations mean that lower perplexity leads to
higher performance. We found strong positive cor-
relations (pictured in Figure 7 in Appendix D) be-
tween performance on the challenge tasks (BLiMP
and GLUE (ρ = 0.8784), BLiMP and MSGS
(ρ = 0.9182) and GLUE and MSGS (ρ = 0.815)
generally with p < 1−4).

Model width vs. depth While BLiMP perfor-
mance was not found to be strongly correlated with
either the number of decoder layers or hidden size,
GLUE and MSGS showed some variability based

on the number of layers. For GLUE the only con-
figuration that showed a monotonic improvement
in performance was a hidden size of 1536, with
models with more decoder layers achieving higher
accuracy in this setting. For MSGS we observed
a drop in performance for the models with 24 de-
coder layers at the largest hidden sizes (384, 768).
Overall, the effect of hidden size and number of
layers was minor when compared to overall model
size. In contrast, the best fit on the reading time
data was achieved with the second smallest model
with only 2 decoder layers and a hidden size of 192.
Figure 3 illustrates this trend: for the challenge
tasks, performance increases with the number of
layers (though not monotonically), whereas ∆ log-
likelihood of the LME models decreases with the
number of layers at lhidden = 192 and, to a lesser
extent, at lhidden = 384, while deeper models with
more decoder layers and larger hidden sizes per-
form considerably worse.

Possible confounds The reading time analysis
suffers from several potential confounding fac-
tors: Firstly, the domain of the training data dif-
fers considerably from the data in the Natural Sto-
ries corpus. While the training data also contains
some longer texts (Wikipedia, Children’s Stories),
most of the corpora are more representative of
spoken language (Open Subtitles, BNC Spoken,
CHILDES). In addition, most sequences are rela-
tively short, with a median sequence length of 8
in the Open Subtitles corpus, which accounts for
>50% of the training data. This is considerably
less than the median sequence length of 22 in the
Natural Stories corpus. Another confounding fac-
tor might be the difference in exposure to language
data of the model and that of the participants of the
original reading time study. Futrell et al. (2021) do
not provide demographic data of their participants,
but since data collection was done via Amazon
Mechanical Turk we can safely assume that the
mean age of the participants was higher than 13,
meaning that they were exposed to considerably
more language data than the 100M tokens in the
BabyLM corpus. Although a recent study by Oh
and Schuler (2023) showed that reading time fit
(in terms of ∆ log-likelihood) from transformer
models still profits from pretraining data multiple
orders of magnitude larger than our corpus, with an
optimum at 2B tokens, this is partially alleviated
in this study by the multiple-epoch training regime,
totalling about 500M tokens seen by each of our
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Figure 3: Task performance by hidden size, number of layers and task.

Figure 4: Reading time fit in terms of ∆ log-likelihood
over a base model without surprisal as a predictor, on
the BabyLM and Wikitext-103 data after 500, 1000,
2000 and 3000 training steps (1/8, 1/4, 1/2 and 3/4 of
an epoch) and 1 and 5 epochs.

models. Since Oh and Schuler (2023) found that
training on more unseen tokens after reaching the
optimum leads to a quick deterioration of reading
time fit proportional to model size, it is unclear
what impact repeating the training data would have
on the reading time fit.

7 Reading time prediction in a
multi-epoch setting

Experimental setup In order to evaluate whether
the negative correlation is an artifact of the domain
mismatch between the BabyLM corpus and the
items in the Natural Stories corpus or the repetition
of the training data before reaching the optimal to-
ken budget, we conduct two additional experiments:
First, we retrain all models on the BabyLM corpus
for a single epoch, saving intermediate checkpoints
at 100, 500, 1000, 2000 and 3000 training steps.
Then, we use the intermediate models to fit LME
models to the reading time data, using the same
formula as given in Section 5. Second, we replicate
these experiments on Wikitext-103, a corpus of
similar size that does not have the same limitations
of the BabyLM corpus (i.e. an average sequence
length and a domain closer to the Natural Stories

corpus). The models trained on Wikitext-103 serve
as a control for the experiments on the BabyLM cor-
pus and were not included in the final submission.
Since the results indicate that larger models yield a
worse reading time fit, we restrict the experiment
to small models (1-4 layers, all hidden sizes) and
larger models with the smallest and largest hidden
size (192 and 1536). The models are trained with
the same hyperparameter settings as the original
models, but sequence length is not reduced in the
first epoch.

Results Figure 4 shows a somewhat different pic-
ture for the models trained on Wikitext-103, with
reading time fit of smaller models increasing over
the whole pretraining procedure, while models with
lhidden > 192 almost never improve over the base-
line model. In contrast, the reading time fit of the
LMs trained on the BabyLM data improves signif-
icantly over the baseline for shallower models (<
2 decoder layers), while staying roughly constant
for deeper and wider models (16, 24 decoder lay-
ers). However, the relationship between the number
of training steps and reading time fit is not mono-
tonic, with a slight decrease after training for 4
more epochs for the best model. While the models
trained on the Wikitext-103 dataset yield a better
fit to reading times in terms of ∆ log-likelihood,
the basic finding on the BabyLM data is corrobo-
rated: exposing a transformer model to multiple
repetitions of the training data before reaching the
optimal token budget does not lead to a decrease
in reading time fit, but also does not improve over
the single epoch setting in a meaningful way. The
results also show that the improved reading time fit
for lhidden = 192 cannot be attributed to smaller
model size alone, as the deepest model with that
hidden size, 24*192 shows an improved fit over
the baseline, while 1*384, a model with a compara-
ble number of parameters, but a larger hidden size,
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does not. In conclusion, we did not find a degrada-
tion of reading time fit when repeating the training
data, with similar effects of LM size on reading
time fit for Wikitext-103 and the BabyLM corpus
(see Table 2 in Appendix C for Spearman’s ρ’s and
p-values). We also found The BabyLM corpus to
be advantageous for this task in the sense that – in
contrast to Wikitext-103 – reading time fit from all
models improved over the baseline LME model.

8 Discussion

Correlation between BLiMP, GLUE & MSGS
The experiments presented in Section 6 provide ev-
idence for a correlation between LM performance
on BLiMP, GLUE and MSGS tasks when pretrain-
ing on the BabyLM corpus. This correlation is
in accordance with established effects of training
dataset size (Zhang et al., 2021), and interactions
of train corpus size and model capacity (Eldan and
Li, 2023, Kaplan et al., 2020). However, no single
model achieves the highest score on all three tasks:
BLiMP shows diminishing returns for model sizes
larger than 50M tokens, while the best model on
MSGS (16*1536) is substantially smaller than the
best model on GLUE (24*1536). This discrepancy
between the best model on the BabyLM challenge
tasks and on the reading times prediction task is
illustrated by Figure 5. The correlation between
BLiMP/MSGS and GLUE may be an artifact of
the sub-optimal fine-tuning on GLUE, failing to
outperform the baseline model. It cannot be ruled
out that the results would change when determining
the optimal hyperparameters for each sub-task indi-
vidually. However, even if the correlation were an
artifact of the pretraining data, the findings of a neg-
ative correlation between model size and reading
time fit would still hold.

Cognitive plausibility of GPT-like models The
best fit on self-paced reading times from the Nat-
ural Stories corpus was obtained with the second-
smallest model, with models with lhidden > 192
only slightly improving over the baseline. The sec-
ond suite of experiments in Section 7 confirms that
this is not solely caused by the multi-epoch train-
ing regime necessitated by the small token budget.
The reason for the mismatch between measures of
cognitive plausibility (reading times) and measures
of formal (BLiMP, MSGS) and functional linguis-
tic competence (GLUE) is rooted in the interac-
tion of pretraining regime and model size: While
it is feasible to train a model that performs com-

Figure 5: Performance of the best models by task. Read-
ing times ∆ log-likelihoods are normalized in the inter-
val [0, 1].

paratively well on all four tasks on a budget of
100M tokens, the sweet spot for model size and
dataset size is reached much earlier for the reading
time prediction task than for the BabyLM challenge
tasks. This problem could easily be resolved by
using one model when modelling reading times
(or any other psycholinguistic measure), and an-
other model when either of the forms of linguistic
competence is the aim. This might be a valid and
promising approach in a situation where the under-
standing of the research object does not depend on
the connectedness of its experimental analoga. In
the case of our research object – the human lan-
guage faculty – it may not be necessary to find
a single analogon that accounts for all its compo-
nents, but since we know that the human language
faculty is part of a unified cognitive system (with
specialized sub-units) performing the tasks which
the modern language modelling pipeline of pre-
training and fine-tuning splits up into individual
modules, it would be worthwile to move in the
direction of a unified approach that accounts for
both forms of linguistic competence and empiri-
cal evidence of processing effort. This could be
achieved through adjustments to the pretraining
regime (in terms of data, modelling objective etc.),
as suggested by the BabyLM challenge, or through
adjustments to the model architecture.

Size of transformer models The results of the
reading time prediction study on the BabyLM cor-
pus indicate that it in fact has an advantage over
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Wikitext-103, although the LMs trained on the lat-
ter achieve larger ∆ log-likelihoods on average:
Since the largest models fail to improve over the
baseline model if trained on Wikitext-103, it is
possible that some properties of the language in
the BabyLM corpus facilitate the learning mecha-
nism that actuates the correlation of LM surprisal
and reading times. The reason for the worse fit
of surprisal from the larger models may be that
both Wikitext-103 and the BabyLM corpus are not
large enough to induce the learning bias needed
to give good predictions of reading times in larger
models, with Figure 4 showing that the results on
the BabyLM corpus are much less stable than on
Wikitext-103 and the improvements over the base-
line much less sharply linear. In summary, our re-
sults lead to the following answers to our research
questions:

Result: Research question A

GPT-like LMs can be cognitively plausible
and display formal and functional linguistic
competence, although not both at the same
time...

Result: Research question B

...under the constraint of a developmentally
plausible training dataset.

9 Conclusion

Our study highlights the challenges of training a
LM that performs well on tasks requiring some de-
gree of formal and functional linguistic competence
as defined by Mahowald et al. (2023), while also
being predictive of the psycholinguistic measure
of reading times. We find that small, shallow mod-
els of less than 5M parameters yield the best fit to
the psycholinguistic measure, while performance
on BLiMP, GLUE and MSGS improves with in-
creasing model size, although to a different degree
for each of the tasks. This has implications for re-
search on cognitively or developmentally plausible
models of human language processing: in the case
of a small, domain-specific training corpus it is not
feasible to pretrain an LLM that displays formal
linguistic competence and performs well on a read-
ing time prediction tasks, a conclusion also drawn
by Wingfield and Connell (2022). Consequently,
research in this direction has concentrated on fine-

tuning pretrained LLMs on domain-specific data,
e.g., Škrjanec et al. (2023). A promising approach
to a unified architecture could be relegating special
tasks (such as classifying a sequence as in GLUE)
to adapters (Houlsby et al., 2019), sub-networks
within a pretrained LM. This approach is common
in multilingual language modelling (Pfeiffer et al.,
2022; Alabi et al., 2022), where its success is par-
tially attributed to its ability to separate general
linguistic knowledge from language-specific infor-
mation. A similar modelling decision may be nec-
essary for cognitively plausible language models.
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Limitations

The results of the paper mainly hold for decoder-
only transformer LMs. While these LMs are closer
to human language processing in the sense that
they process language incrementally, this has some
disadvantages for reading time predictions, since
humans do not attribute equal importance to each
word, skipping some words in the process, and
typically integrate words from the left- and right-
hand context of a fixated word. While the first point
can be addressed by explicitly modelling skipping
behaviour (Hahn and Keller, 2016), the second
could require a solution closer to masked language
models.

A second limitation is the focus on self-paced
reading time as the psycholinguistic response vari-
able. Since the setup of self-paced reading studies,
with the participants observing a single word at a
time, distorts the natural reading process, the mea-
sure itself may be not that cognitively plausible.
This could be addressed by repeating the experi-
ments on corpora from eye-tracking studies such
as the Dundee corpus (Kennedy and Pynte, 2005).
There is evidence that much larger models than
those tested in the current study still improve the
fit to total reading times in less restricted experi-
mental settings (de Varda and Marelli, 2023). The
latter study also shows that the fit to psycholin-
guistic measures varies over languages and writing
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systems.
Another option is modelling brain activity pat-

terns directly by predicting N400 and P600 EEG
signals, which have the additional advantage of
providing a means of decomposing LM surprisal
without the proxy of linguistic structure, as shown
by Li and Futrell (2023).

Ethics Statement

The authors foresee no ethical concerns about the
work presented in the paper.

References
Jesujoba O. Alabi, David Ifeoluwa Adelani, Marius

Mosbach, and Dietrich Klakow. 2022. Adapting pre-
trained language models to African languages via
multilingual adaptive fine-tuning. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 4336–4349, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Suhas Arehalli, Brian Dillon, and Tal Linzen. 2022.
Syntactic Surprisal From Neural Models Predicts,
But Underestimates, Human Processing Difficulty
From Syntactic Ambiguities. In Proceedings of
the 26th Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 301–313, Abu
Dhabi, United Arab Emirates (Hybrid). Association
for Computational Linguistics.

Emily M. Bender and Alexander Koller. 2020. Climbing
towards NLU: On meaning, form, and understanding
in the age of data. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5185–5198, Online. Association for
Computational Linguistics.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob
Andreas, Yoshua Bengio, Joyce Chai, Mirella Lap-
ata, Angeliki Lazaridou, Jonathan May, Aleksandr
Nisnevich, Nicolas Pinto, and Joseph Turian. 2020.
Experience grounds language. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8718–8735,
Online. Association for Computational Linguistics.

Andrea de Varda and Marco Marelli. 2023. Scaling
in cognitive modelling: a multilingual approach to
human reading times. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 139–
149, Toronto, Canada. Association for Computational
Linguistics.

Ronen Eldan and Yuanzhi Li. 2023. TinyStories: How
Small Can Language Models Be and Still Speak Co-
herent English?

Irene Fernandez Monsalve, Stefan L. Frank, and
Gabriella Vigliocco. 2012. Lexical surprisal as a
general predictor of reading time. In Proceedings
of the 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages
398–408, Avignon, France. Association for Compu-
tational Linguistics.

Richard Futrell, Edward Gibson, Harry J. Tily, Idan
Blank, Anastasia Vishnevetsky, Steven T. Piantadosi,
and Evelina Fedorenko. 2021. The Natural Stories
corpus: A reading-time corpus of English texts con-
taining rare yyntactic constructions. Language Re-
sources and Evaluation, 55(1):63–77.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.

Jill Gilkerson, Jeffrey A. Richards, Steven F. Warren, Ju-
dith K. Montgomery, Charles R. Greenwood, D. Kim-
brough Oller, John H. L. Hansen, and Terrance D.
Paul. 2017. Mapping the Early Language Envi-
ronment Using All-Day Recordings and Automated
Analysis. American Journal of Speech-Language
Pathology, 26(2):248–265.

Michael Hahn and Frank Keller. 2016. Modeling human
reading with neural attention. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 85–95, Austin, Texas.
Association for Computational Linguistics.

Micha Heilbron, Benedikt Ehinger, Peter Hagoort, and
Floris de Lange. 2019. Tracking Naturalistic Lin-
guistic Predictions with Deep Neural Language Mod-
els. In 2019 Conference on Cognitive Computational
Neuroscience, Berlin, Germany. Cognitive Computa-
tional Neuroscience.

Kasra Hosseini, Kaspar Beelen, Giovanni Colav-
izza, and Mariona Coll Ardanuy. 2021. Neural
Language Models for Nineteenth-Century English.
ArXiv:2105.11321 [cs].

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger P. Levy. 2020. A Systematic Assessment
of Syntactic Generalization in Neural Language Mod-
els. Publisher: arXiv Version Number: 2.

Kuan-Jung Huang, Suhas Arehalli, Mari Kugemoto,
Christian Muxica, Grusha Prasad, Brian Dillon, and
Tal Linzen. 2023. Surprisal does not explain syntac-
tic disambiguation difficulty: evidence from a large-
scale benchmark. preprint, PsyArXiv.

151

https://aclanthology.org/2022.coling-1.382
https://aclanthology.org/2022.coling-1.382
https://aclanthology.org/2022.coling-1.382
https://aclanthology.org/2022.conll-1.20
https://aclanthology.org/2022.conll-1.20
https://aclanthology.org/2022.conll-1.20
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.emnlp-main.703
https://doi.org/10.18653/v1/2023.acl-short.14
https://doi.org/10.18653/v1/2023.acl-short.14
https://doi.org/10.18653/v1/2023.acl-short.14
https://doi.org/10.48550/ARXIV.2305.07759
https://doi.org/10.48550/ARXIV.2305.07759
https://doi.org/10.48550/ARXIV.2305.07759
https://aclanthology.org/E12-1041
https://aclanthology.org/E12-1041
https://aclanthology.org/L18-1012/
https://aclanthology.org/L18-1012/
https://aclanthology.org/L18-1012/
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.1044/2016_AJSLP-15-0169
https://doi.org/10.1044/2016_AJSLP-15-0169
https://doi.org/10.1044/2016_AJSLP-15-0169
https://doi.org/10.18653/v1/D16-1009
https://doi.org/10.18653/v1/D16-1009
https://doi.org/10.32470/CCN.2019.1096-0
https://doi.org/10.32470/CCN.2019.1096-0
https://doi.org/10.32470/CCN.2019.1096-0
http://arxiv.org/abs/2105.11321
http://arxiv.org/abs/2105.11321
http://arxiv.org/abs/1902.00751
https://doi.org/10.48550/ARXIV.2005.03692
https://doi.org/10.48550/ARXIV.2005.03692
https://doi.org/10.48550/ARXIV.2005.03692
https://doi.org/10.31234/osf.io/z38u6
https://doi.org/10.31234/osf.io/z38u6
https://doi.org/10.31234/osf.io/z38u6


Tovah Irwin, Kyra Wilson, and Alec Marantz. 2023.
BERT Shows Garden Path Effects. In Proceedings
of the 17th Conference of the European Chapter
of the Association for Computational Linguistics,
pages 3220–3232, Dubrovnik, Croatia. Association
for Computational Linguistics.

Eshin Jolly. 2018. Pymer4: Connecting R and Python
for Linear Mixed Modeling. Journal of Open Source
Software, 3(31):862.

William Jurayj, William Rudman, and Carsten Eick-
hoff. 2022. Garden-Path Traversal in GPT-2.
ArXiv:2205.12302 [cs].

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei.
2020. Scaling Laws for Neural Language Models.
ArXiv:2001.08361 [cs, stat].

Alan Kennedy and Joël Pynte. 2005. Parafoveal-on-
foveal effects in normal reading. Vision Research,
45(2):153–168.

Tatsuki Kuribayashi, Yohei Oseki, Ana Brassard, and
Kentaro Inui. 2022. Context Limitations Make Neu-
ral Language Models More Human-Like. In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 10421–10436,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Tatsuki Kuribayashi, Yohei Oseki, Takumi Ito, Ryo
Yoshida, Masayuki Asahara, and Kentaro Inui. 2021.
Lower Perplexity is Not Always Human-Like. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 5203–
5217, Online. Association for Computational Lin-
guistics.

Alexandra Kuznetsova, Per B. Brockhoff, and Rune
H. B. Christensen. 2017. lmerTest package: Tests in
linear mixed effects models. Journal of Statistical
Software, 82(13):1–26.

Jiaxuan Li and Richard Futrell. 2023. A decomposition
of surprisal tracks the N400 and P600 brain potentials.
Proceedings of the Annual Meeting of the Cognitive
Science Society, 45(45).

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization.

Kyle Mahowald, Anna A. Ivanova, Idan A. Blank,
Nancy Kanwisher, Joshua B. Tenenbaum, and
Evelina Fedorenko. 2023. Dissociating language
and thought in large language models: a cognitive
perspective.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2021. On the stability of fine-tuning
bert: Misconceptions, explanations, and strong base-
lines.

Aaron Mueller and Tal Linzen. 2023. How to Plant
Trees in Language Models: Data and Architectural
Effects on the Emergence of Syntactic Inductive Bi-
ases. Publisher: arXiv Version Number: 1.

Byung-Doh Oh and William Schuler. 2022. Why Does
Surprisal From Larger Transformer-Based Language
Models Provide a Poorer Fit to Human Reading
Times? Publisher: arXiv Version Number: 1.

Byung-Doh Oh and William Schuler. 2023.
Transformer-Based LM Surprisal Predicts Hu-
man Reading Times Best with About Two Billion
Training Tokens. ArXiv:2304.11389 [cs].

Isabel Papadimitriou, Richard Futrell, and Kyle Ma-
howald. 2022. When classifying grammatical role,
BERT doesn’t care about word order... except when
it matters. ArXiv:2203.06204 [cs].

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc.

Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James
Cross, Sebastian Riedel, and Mikel Artetxe. 2022.
Lifting the Curse of Multilinguality by Pre-training
Modular Transformers. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3479–3495, Seattle,
United States. Association for Computational Lin-
guistics.

Ofir Press, Noah A. Smith, and Mike Lewis. 2021.
Shortformer: Better Language Modeling using
Shorter Inputs. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5493–5505, Online. Association for
Computational Linguistics.

Ofir Press, Noah A. Smith, and Mike Lewis. 2022. Train
Short, Test Long: Attention with Linear Biases En-
ables Input Length Extrapolation. ArXiv:2108.12409
[cs].

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners.

Brian Roark, Asaf Bachrach, Carlos Cardenas, and
Christophe Pallier. 2009. Deriving lexical and syntac-
tic expectation-based measures for psycholinguistic

152

https://aclanthology.org/2023.eacl-main.235
https://doi.org/10.21105/joss.00862
https://doi.org/10.21105/joss.00862
http://arxiv.org/abs/2205.12302
http://arxiv.org/abs/2001.08361
https://doi.org/10.1016/j.visres.2004.07.037
https://doi.org/10.1016/j.visres.2004.07.037
https://aclanthology.org/2022.emnlp-main.712
https://aclanthology.org/2022.emnlp-main.712
https://doi.org/10.18653/v1/2021.acl-long.405
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.18637/jss.v082.i13
https://escholarship.org/uc/item/75c569dr
https://escholarship.org/uc/item/75c569dr
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/2301.06627
http://arxiv.org/abs/2301.06627
http://arxiv.org/abs/2301.06627
http://arxiv.org/abs/2006.04884
http://arxiv.org/abs/2006.04884
http://arxiv.org/abs/2006.04884
https://doi.org/10.48550/ARXIV.2305.19905
https://doi.org/10.48550/ARXIV.2305.19905
https://doi.org/10.48550/ARXIV.2305.19905
https://doi.org/10.48550/ARXIV.2305.19905
https://doi.org/10.48550/ARXIV.2212.12131
https://doi.org/10.48550/ARXIV.2212.12131
https://doi.org/10.48550/ARXIV.2212.12131
https://doi.org/10.48550/ARXIV.2212.12131
http://arxiv.org/abs/2304.11389
http://arxiv.org/abs/2304.11389
http://arxiv.org/abs/2304.11389
http://arxiv.org/abs/2203.06204
http://arxiv.org/abs/2203.06204
http://arxiv.org/abs/2203.06204
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/2022.naacl-main.255
https://doi.org/10.18653/v1/2022.naacl-main.255
https://doi.org/10.18653/v1/2021.acl-long.427
https://doi.org/10.18653/v1/2021.acl-long.427
https://doi.org/10.48550/arXiv.2108.12409
https://doi.org/10.48550/arXiv.2108.12409
https://doi.org/10.48550/arXiv.2108.12409
https://aclanthology.org/D09-1034
https://aclanthology.org/D09-1034


modeling via incremental top-down parsing. In Pro-
ceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing, pages 324–333,
Singapore. Association for Computational Linguis-
tics.

Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Ca-
rina Kauf, Eghbal A. Hosseini, Nancy Kanwisher,
Joshua B. Tenenbaum, and Evelina Fedorenko. 2021.
The neural architecture of language: Integrative
modeling converges on predictive processing. Pro-
ceedings of the National Academy of Sciences,
118(45):e2105646118.

Cory Shain, Clara Meister, Tiago Pimentel, Ryan Cot-
terell, and Roger Philip Levy. 2022. Large-Scale Evi-
dence for Logarithmic Effects of Word Predictability
on Reading Time. preprint, PsyArXiv.

Iza Škrjanec, Frederik Y. Broy, and Vera Demberg. 2023.
Expert-adapted language models improve the fit to
reading times.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman.
2019. GLUE: A Multi-Task Benchmark and Anal-
ysis Platform for Natural Language Understanding.
ArXiv:1804.07461 [cs].

Alex Warstadt, Aaron Mueller, Leshem Chohen,
Ethan Gotlieb Wilcox, Chengxu Zhuang, Juan Ciro,
Rafael Mosquera, Adina Williams, Bhargavi Paran-
jabe, Tal Linzen, and Ryan Cotterell. 2023. Findings
of the 2023 BabyLM Challenge: Sample-efficient
pretraining on developmentally plausible corpora. In
Proceedings of the 2023 BabyLM Challenge. Associ-
ation for Computational Linguistics (ACL).

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020a. BLiMP: The Benchmark of Lin-
guistic Minimal Pairs for English. Transactions of
the Association for Computational Linguistics, 8:377–
392.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.

Alex Warstadt, Yian Zhang, Xiaocheng Li, Haokun Liu,
and Samuel R. Bowman. 2020b. Learning Which
Features Matter: RoBERTa Acquires a Preference for
Linguistic Generalizations (Eventually). In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
217–235, Online. Association for Computational Lin-
guistics.

Ethan Gotlieb Wilcox, Jon Gauthier, Jennifer Hu, Peng
Qian, and Roger Levy. 2020. On the Predictive
Power of Neural Language Models for Human Real-
Time Comprehension Behavior. Publisher: arXiv
Version Number: 1.

Cai Wingfield and Louise Connell. 2022. Understand-
ing the role of linguistic distributional knowledge in
cognition. volume 37, pages 1220–1270. Routledge.

Ludwig Wittgenstein. 1953. Philosophische Unter-
suchungen. Suhrkamp Verlag, Frankfurt am Main.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Fuzhao Xue, Yao Fu, Wangchunshu Zhou, Zangwei
Zheng, and Yang You. 2023. To Repeat or Not To
Repeat: Insights from Scaling LLM under Token-
Crisis.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. OPT: Open Pre-
trained Transformer Language Models. Publisher:
arXiv Version Number: 4.

Yian Zhang, Alex Warstadt, Xiaocheng Li, and
Samuel R. Bowman. 2021. When do you need bil-
lions of words of pretraining data? In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1112–1125, Online.
Association for Computational Linguistics.

153

https://aclanthology.org/D09-1034
https://doi.org/10.1073/pnas.2105646118
https://doi.org/10.1073/pnas.2105646118
https://doi.org/10.31234/osf.io/4hyna
https://doi.org/10.31234/osf.io/4hyna
https://doi.org/10.31234/osf.io/4hyna
https://doi.org/psyarxiv.com/dc8y6
https://doi.org/psyarxiv.com/dc8y6
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
http://arxiv.org/abs/1805.12471
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://doi.org/10.48550/ARXIV.2006.01912
https://doi.org/10.48550/ARXIV.2006.01912
https://doi.org/10.48550/ARXIV.2006.01912
https://doi.org/10.1080/23273798.2022.2069278
https://doi.org/10.1080/23273798.2022.2069278
https://doi.org/10.1080/23273798.2022.2069278
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.48550/ARXIV.2305.13230
https://doi.org/10.48550/ARXIV.2305.13230
https://doi.org/10.48550/ARXIV.2305.13230
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.18653/v1/2021.acl-long.90
https://doi.org/10.18653/v1/2021.acl-long.90


A OPT models

ldecoder lhidden Parameters (non-embedding)

1 192 0.74

2 192 1.19

4 192 2.07

8 192 3.85

16 192 7.41

24 192 10.9

1 384 2.37

2 384 4.14

4 384 7.69

8 384 14.79

16 384 28.99

24 384 43.18

1 768 7.09

2 768 14.18

4 768 28.35

8 768 56.70

16 768 113.41

24 768 170.11

1 1536 30.69

2 1536 59.00

4 1536 115.69

8 1536 229.01

16 1536 455.67

24 1536 682.32

Table 1: OPT models sizes in million parameters by hidden size and number of decoder layers. The number
of parameters does not include the embedding table, which is always of the size lemb × |V | = 768 × 50272 =
38.608.896, as in OPT-128m.
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B Validation perplexity

Figure 6: Validation perplexity by configuration and epoch on the development set of the BabyLM corpus.

C Detailed resutls: Reading time experiments

Corpus Step Spearman’s ρ p-value

babylm 500 -0.5913 0.0097

babylm 1000 -0.6285 0.0052

babylm 2000 -0.7833 0.0001

babylm 3000 -0.7874 0.0001

babylm 1 -0.7915 0.0001

babylm 5 -0.614 0.0067

wikitext-103 500 0.0815 0.7478

wikitext-103 1000 -0.4241 0.0794

wikitext-103 2000 -0.7482 0.0004

wikitext-103 3000 -0.7441 0.0004

wikitext-103 1 -0.7172 0.0008

wikitext-103 5 -0.7523 0.0003

Table 2: Spearman’s ρ of model size (in terms of number of parameters) and ∆ log-likelihood over the baseline
LME model. Steps 1 and 5 refer to the first and fifth epoch.
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D Detailed results: BabyLM challenge tasks

Figure 7: Correlation of LM performance on BLiMP vs. GLUE, BLiMP vs. MSGS, GLUE vs. MSGS.
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Abstract

Large Language Models (LLMs) demonstrate
remarkable performance on a variety of natu-
ral language understanding (NLU) tasks, pri-
marily due to their in-context learning ability.
This ability could be applied to building baby-
like models, i.e. models at small scales, im-
proving training efficiency. In this paper, we
propose a “CoThought” pipeline, which effi-
ciently trains smaller “baby” language mod-
els (BabyLMs) by leveraging the Chain of
Thought prompting of LLMs. Our pipeline
restructures a dataset of less than 100M in size
using GPT-3.5-turbo, transforming it into task-
oriented, human-readable texts that are com-
parable to the school texts for language learn-
ers. The BabyLM is then pretrained on this
restructured dataset in a RoBERTa fashion. In
evaluations across 4 benchmarks, our BabyLM
outperforms the vanilla RoBERTa in 10 lin-
guistic, NLU, and question-answering tasks by
more than 3 points, showing a superior ability
to extract contextual information. These results
suggest that compact LMs pretrained on small,
LLM-restructured data can better understand
tasks and achieve improved performance.1

1 Introduction

Recent advances in language modeling of Large
Language Models (LLMs) have shown great per-
formance potential on diverse NLP tasks. A large
number of work has been proposed towards en-
hancing LLMs pretraining at massive scales (De-
vlin et al., 2019; Radford and Narasimhan, 2018;
Brown et al., 2020). However, less attention has
been paid to language model (LM) pretraining at
smaller human-like data scales, i.e. smaller data

∗ Equal contribution.
† Corresponding author.

1The code for data processing and model training is avail-
able at: https://github.com/oooranz/Baby-CoThought.

scales, which are similar to the amount of language
data for human language acquisition.

Studies in language acquisition demonstrate that
humans predominantly acquire language in early
life stages by observing their environment. Sig-
nificant progress in language communication and
usage is typically achieved by early childhood
(Tomasello, 2003; Saxton, 2010). Previous studies
show that language modeling is to some extent sim-
ilar to children’s language acquisition, as they both
require input data from the outside world and learn
the data by updating knowledge about the outside
world repeatedly (Nikolaus and Fourtassi, 2021;
Chang and Bergen, 2022; Evanson et al., 2023). It
is reasonable to apply this human cognitive process
to LM pretraining by using relatively small sets of
pretraining data that are comparable to the text data
for human language acquisition.

While a child learns a piece of knowledge by
continuously obtaining relevant examples from the
outside world and updating its knowledge base, pre-
trained LLMs have the capacity to learn and com-
plete previously unknown tasks when given several
task samples or instructions already from the inside
of their context, the process of which is known as
“In-Context Learning” (ICL) (Brown et al., 2020).
A more recent advance of ICL called “Chain of
Thought” (CoT) (Wei et al., 2022) significantly
enhances the reasoning abilities of LLMs. CoT
enables LLMs to perform a series of intermediate
reasoning steps by providing a few CoT demon-
strations as examples during the training process.
This method has been found to be very effective,
especially in complex reasoning tasks.

The LLM is like a teacher who is able to trans-
fer knowledge by reformulating raw data from the
outside world into a task-like text format by CoT
prompting, making the data more suitable for teach-
ing. The BabyLM is like a student who is trained
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Figure 1: Overview of the “CoThought” pipeline. We propose to generate NLU examples from discrete short
sentences using CoT prompting and an automatic scoring mechanism. This constructs a pretraining dataset in a
[Reason] + [Example] format, which is then used to pretrain smaller models.

based on this generated text. In this work, we pro-
pose “CoThought” pipeline to pretrain a BabyLM
with human-like smaller corpus data, by leverag-
ing the LLM’s Chain of Thought feature and the
child’s cognitive learning ability. In this way, the
LLM and the child are “co-thinking” during the
training process. We use the “CoThought” ap-
proach to train our BabyLM, combining the produc-
tivity of the LLM with the effectiveness of human
language acquisition for LM pretraining.

Our overall framework is illustrated in Fig-
ure 1. The raw pretraining data is provided by
Warstadt et al. (2023) in the BabyLM Challenge,
which has the goal of sample-efficient pretraining
on a developmentally plausible corpus at a small
human-like data scale. We choose the loose track
of the BabyLM Challenge, where we apply our
“CoThought” pipeline and use the LLM GPT-3.5-
turbo2 to preprocess the raw data. For every 5
sentences of the raw data, the GPT-3.5-turbo uses
CoT prompting to propose different NLU tasks and
selects the best task. Then, it combines these 5

2https://platform.openai.com/docs/models/
gpt-3-5

sentences into a task-like text based on the best
task for our BabyLM to learn. The BabyLM is
pretrained on the augmented data in a RoBERTa
(Liu et al., 2019) fashion. Our BabyLM pretrained
in the CoThought pipeline notably outperforms the
original RoBERTa model on common benchmarks.

Our work makes contributions in

1) proposing the CoThought pretraining pipeline
fitting the human-like data scenarios,

2) pretraining a BabyLM model of the RoBERTa-
base architect in the CoThought pipeline sur-
passing the original RoBERTa model on sev-
eral tasks, and

3) providing insights of the CoThought pipeline
by conducting linguistic case analysis on rep-
resentative tasks.

2 Related Work

Language Acquisition and Modelling The lan-
guage acquisition of children is a widely studied
topic in linguistics. The empiricism of language ac-
quisition contends that language ability is a compo-
nent of social cognitive ability and children acquire
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language through language communication and lan-
guage use (Bybee, 2001; Pullum and Scholz, 2002;
Tomasello, 2003; Saxton, 2010). According to the
Universal Grammar (Chomsky, 1957), language
norms and parameters are hard-wired within ev-
ery single person, and learning a language is just a
matter of adjusting those parameters (Gegov et al.,
2014). In this way, child language acquisition and
language modeling are similar, as the neural lan-
guage models such as BERT (Devlin et al., 2019)
and GPT (Radford and Narasimhan, 2018) are pre-
trained based on big corpora with their model pa-
rameters tuned during pretaining. Recent studies
show the applicability of language models to child
language development tracking. Nikolaus and Four-
tassi (2021) propose an integrated perception- and
production-based learning and highlight that chil-
dren are not only understood as passively absorbing
the input but also as actively participating in the
construction of their linguistic knowledge in lan-
guage learning. Chang and Bergen (2022) study
the factors that predict words’ ages of acquisition in
contemporary language models compared to word
acquisition in children. Evanson et al. (2023) com-
pare the sequence of learning stages of language
models with child language acquisition.

In-Context Learning (ICL) LLMs like GPT-3
(Brown et al., 2020) make “In-Context Learning”
possible, which means the model makes predic-
tions by learning from a natural language prompt
describing the language task or learning from (only
a few) examples. Based on the concept of ICL,
recent research has demonstrated that LLMs can be
used to extract relevant knowledge from the content.
Liu et al. (2022) propose to use GPT-3 to generate
pertinent contexts and then supply those contexts
as extra input in order to answer a commonsense
question. Yu et al. (2023) employ a generate-then-
read pipeline which first prompts a large language
model to generate contextual documents based on
a given question, and then reads the generated doc-
uments to produce the final answer.

Chain of Thought (CoT) Wei et al. (2022) in-
troduced “Chain of Thought”, which is a series
of intermediate reasoning steps a few chain of
thought demonstrations are provided as exemplars
in prompting, in order to improve the ICL ability
of LLMs to perform complex reasoning. Kojima
et al. (2023) demonstrate the zero-shot performance
of CoT. Paranjape et al. (2023) introduces a frame-

work that uses frozen LLMs to automatically gener-
ate intermediate reasoning steps as a program. Yao
et al. (2023) put forward a “Tree of Thoughts” (ToT)
framework, which generalizes over CoT to prompt-
ing language models and enables exploration over
coherent units of text (“thoughts”) that serve as in-
termediate steps toward problem solving. A more
recent study (Gu et al., 2023) proposes a pretrain-
ing for ICL framework which pretrains the model
on a set of “intrinsic tasks” in the general plain-text
corpus using the simple language modeling objec-
tive to enhance the language models’ ICL ability.

3 Method

In the realm of cognitive learning, the teacher’s
thought process greatly influences the way instruc-
tional content is delivered, which in turn impacts
the students’ understanding (Chew and Cerbin,
2021). Our method attempts to mimic this pro-
cess. The LLMs, in the role of the teacher, use CoT
prompting to reinterpret the raw data, generating
task-like text that incorporates the context of the
sentences and enriches the learning materials.

We first introduce an overview of our CoThought
pipeline (see Figure 1 for an illustration) and then
describe the details in the following sections.

3.1 Problem Statement
The genesis of our research lies in addressing a sig-
nificant problem within the context of the BabyLM
Challenge as proposed by Warstadt et al. (2023).
The goal of this challenge is to conduct sample-
efficient pretraining on a developmentally plausible
corpus at a small human-like data scale, which we
previously introduced. Nevertheless, the majority
of the training data provided consists of discrete
short sentences. As an illustration, below are some
of the provided sentences:

- You want your book back, don’t you?

- Let’s see, do you want to see who this is?

- This is Big Bird.

- Enough with that.

- Can you read your book again? You like the
book?

These sentences, albeit contextually rich, are
sampled from a wide range of sources including
dialogues, scripted content, fiction, nonfiction, and
child-directed materials. Due to the diverse and
fragmented nature of this dataset, the sentences
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often lack strong semantic ties with each other,
making it difficult for models to learn contextual
and coherent representations.

In response, we propose a method that trans-
forms these fragmented sentences into cohesive
units using LLMs, subsequently enabling more ef-
fective learning for the smaller models. The suc-
ceeding sections will provide a succinct outline of
our pipeline and process.

3.2 Creative NLU-Example Generation

Inspired by recent studies that demonstrate the ca-
pability of LLMs to generate rationales support-
ing their predictions, we invent a novel task called
Creative NLU-Example Generation (CNLU-EG),
inspired by the Creative Writing task proposed by
the “Tree of Thought” (Yao et al., 2023). Instead
of creating coherent paragraphs from random sen-
tences, CNLU-EG employs the provided sentences
to generate coherent paragraphs, which define a
plausible intrinsic NLU task and its corresponding
labels. In this task, we employ the reasoning capa-
bility of LLMs to generate rationales for training
smaller baby models.

We first remove any duplicate sentences from
the BabyLM_100M (Warstadt et al., 2023) D. Af-
ter the cleaning process, we randomly sample five
unique sentences {xi}i∈D from the cleaned dataset
D. We initiate the task by providing a specific
CoT prompt p to the LLM. This prompt instructs
the LLM to first create a plan, then use the pro-
vided sentences to compose an example paragraph
that illustrates a possible intrinsic NLU task, and fi-
nally generate the corresponding labels for this task.
Given the creative nature of the task, we use a zero-
shot prompt here. The prompt is structured such
that it encourages the LLM to present the output in
four distinct sections: the plan, the paragraph, the
task, and the labels.

Once the LLM receives the prompt p, for each
sentence xi, i ∈ D, the LLM generates an execu-
tion plan r̂i, a paragraph êi embodying an example
of a possible NLU task, the task name t̂i, and the
corresponding labels ŷi.

CNLU-EG essentially transforms the original,
discrete sentences into a structured task, anchoring
the sentences to a common theme or question. This
‘taskification’ process helps to create a more cohe-
sive narrative, enabling the baby model to gain a
more contextual and comprehensive understanding
of the sentences.

We also incorporate a scoring mechanism, to as-
sess the coherence of the generated content. We
use a separate simple zero-shot prompt, ps, to in-
struct the LLM to analyze the composed paragraph
and assign a coherence score ranging from 1 to 10.
For each task output, the LLM generates five such
coherence scores from the same scoring prompt ps,
and these scores are then averaged to produce a fi-
nal coherence score. According to our settings, we
explicitly direct the LLM to generate two distinct
plans for each task. Each plan is independently
scored, and the one that achieves a higher coher-
ence score is selected for subsequent steps.

In this way, the LLM functions as a teacher, gen-
erating examples of possible NLU tasks, providing
insights into how these examples were created, and
supplying the corresponding labels. This collec-
tion of generated plans and example paragraphs
forms the training data for the smaller model to
learn from.

3.3 Training Data Construction

Our objective is to construct a high-quality dataset
for pretraining our small model, ensuring the in-
stances included in the training set are coherent
and task-relevant. As previously discussed, each in-
stance in our data comprises a tuple: an example e
and a corresponding plan r, denoted as [e, r]. How-
ever, not all generated instances meet the quality
criteria necessary for effective learning.

To filter out lower-quality instances, we em-
ploy the coherency score obtained through the ps
prompt. We set a threshold, stipulating that only
instances with a coherency score of s ≥ 7.0 are
included in the training data. This threshold was
empirically established based on extensive manual
analysis to ensure a satisfactory level of coherence
and quality in the dataset. Mathematically, this can
be represented as:

Dselect = [ei, ri] : i ∈ D, si ≥ 7.0 (1)

Here, D denotes the initial set of generated in-
stances and Dselect represents the selected high-
quality instances that are used for training.

Another important aspect of our methodology is
leveraging the correlation between segments with
similar intrinsic tasks. Studies indicate that such
segments when grouped together, provide valuable
information for ICL (Gu et al., 2023). Therefore,
we aim to collate instances with similar tasks, de-
noted as T , into grouped sets, which we denote as
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GT .

GT = [ei, ri] : i ∈ Dselect, ti = T (2)

In the equation above, ti represents the task type
of the i-th instance, and GT denotes the set of
instances from Dselect that are associated with task
type T .

In the end, we amalgamate these grouped sets to
create a comprehensive pretraining dataset contain-
ing N instances.

Dpretrain =
⋃

T∈T
GT (3)

Here, T represents the set of all task types and GT

denotes the set of instances corresponding to each
task type T in Dselect.

Through these rigorous steps, we ensure that the
final training data is both high-quality and task-
relevant, optimally structured to facilitate effective
learning in our small model.

4 Experimental Setups

We conducted our experiments in three parts, the
generation of the additional data used for training,
the pretraining of the language model, and the eval-
uation.

4.1 Data Generation via CoT Prompting
We generated first our extended data based on
the dataset babylm_100M (Warstadt et al., 2023),
which contains subsets including AOCHILDES,
BNC spoken, cbt, children stories, Gutenberg, pen
subtitles, qed, simple Wikipedia, switchboard, and
Wikipedia.3

We leveraged the API of GPT-3.5-turbo from
OpenAI and provided CoT prompt with the format:

- Use the given sentences to create an example
paragraph of an NLU task and its corresponding
labels. The 5 sentences are: input.

- Make a plan then write and determine. Your
output should be of the following format:

- Plan:

- Your plan here.

- Paragraph:

- Your paragraph here.

- Task:

3The full datasets could be downloaded here:
https://github.com/babylm/babylm.github.io/raw/
main/babylm_data.zip

- [Only the task name here, without additional
information.]

- Labels:

- [Only the labels here, without additional
information.]

The GPT will generate the corresponding an-
swers in the defined format. To evaluate the gener-
ated task plans, we prompt the GPT again with the
score prompt in the format:

- Analyze the following paragraph, then at the
last line conclude “Thus the coherency score
is s”, where s is an integer from 1 to 10.

We filter out the generated texts with a score
lower than 7. The additional data will be generated
by the GPT with the selected proposals as prompts.

4.2 Pretraining

We then trained a RoBERTa model with the ex-
tended dataset using RobertaForMaskedLM pro-
vided by the huggingface library 4, which uses
the default settings of RobertaConfig library and
is also the same settings as the hyperparameter of
the baseline provided by the organizers. In the train-
ing phase, we trained 5 epochs using the Trainer
provided by the huggingface. We refer §C for
detailed hyperparameters in Appendix.

4.3 Benchmarks and Evaluation

We evaluated the model using the evaluation
pipeline tools5 also provided by the organizer
(Warstadt et al., 2023; Gao et al., 2021). This tool
automatically performs experiments on 4 bench-
marks:

1) Benchmark of Linguistic Minimal Pairs
(BLiMP) (Warstadt et al., 2020a);

2) BLiMP Supplement6, including Hypernym,
QA Congruence Easy, QA Congruence Tricky,
Subject Aux Inversion, and Turn Taking
datasets;

3) General Language Understanding Evaluation
(GLUE) (Wang et al., 2019), and

4https://huggingface.co/docs/transformers/
model_doc/roberta

5https://github.com/babylm/
evaluation-pipeline

6The relevant paper for this benchmark had not been
published at the time of this project, and the relevant
data can be found here https://github.com/babylm/
evaluation-pipeline/blob/main/filter_data.zip

162

https://github.com/babylm/babylm.github.io/raw/main/babylm_data.zip
https://github.com/babylm/babylm.github.io/raw/main/babylm_data.zip
https://huggingface.co/docs/transformers/model_doc/roberta
https://huggingface.co/docs/transformers/model_doc/roberta
https://github.com/babylm/evaluation-pipeline
https://github.com/babylm/evaluation-pipeline
https://github.com/babylm/evaluation-pipeline/blob/main/filter_data.zip
https://github.com/babylm/evaluation-pipeline/blob/main/filter_data.zip


4) Mixed Signals Generalization Set (MSGS)
(Warstadt et al., 2020b).

The detailed documentation of each benchmark
can be found in §D. The organizer (Warstadt et al.,
2023) also provided 3 models as baselines, in-
cluding OPT-125M, RoBERTa-base, and T5-base,
trained on the babylm_100M data.

5 Results

We compare the performance of our BabyLM
(trained in the RoBERTa way) to the original
RoBERTa-base (baseline). Table 1 shows our se-
lected experimental results with: i) performance
improvement by at least 3 points (+3), and ii) per-
formance reduction over 3 points (-3). We report
the performance with absolute performance differ-
ence of our BabyLM over baseline on the selected
tasks, as well as the overall performance of the
whole tasks. The full results are available in §D.

Tasks
Models

Diff.
Ours Baseline

BLiMP
Filler Gap 78.52 68 10.52
Sub.-Verb Agr. 85.17 76.2 8.97
Arg. Structure 78.06 71.3 6.76
Det.-Noun Agr. 97.75 93.1 4.65
Anaphor Agr. 93.61 89.5 4.11
Ellipsis 77.02 83.8 -6.78

Island Effects 45.85 54.5 -8.65

BLiMP Supplement
Sub. Aux Inversion 77.73 45.6 32.13
QA Cong. Easy 62.5 34.4 28.1
Turn Taking 62.5 46.8 15.7

GLUE
BoolQ 65.84 59.9 5.94
MNLI 73.73 68.7 5.03
MNLI-mm 74.76 78 -3.24

QNLI 76.86 82.3 -5.44

RTE 45.45 51.5 -6.05

AVG. (overall) 73.95 71.75 2.2

Table 1: Selected results of our BabyLM and
the RoBERTa (baseline), where the performance of
BabyLM improved by at least 3 points (in bold), or
reduced (-) over 3. The metric in this table is all accu-
racy score.

We noticed that on the BLiMP benchmark,
5 indicators increased by more than 3 points,

namely Filler Gap (+10.52), Subject-Verb Agree-
ment (+8.97), Argument Structure (+6.76), De-
terminer Noun Agreement (+4.65) and Anaphor
Agreement (+4.11), while two tasks dropped by
more than 3 points, namely Ellipsis (-6.78) and Is-
land Effects (-8.65). The average performance on
this benchmark has also increased by 2.24.

On the GLUE benchmark, BoolQ and MNLI
showed an improvement of 5.94 and 5.03, respec-
tively, while MNLI-mm, QNLI, and RTE showed
a decrease of -3.24, -5.44, and -6.05 respectively.

On top of that, we surprisingly find significant
improvements in 3 tasks of the BLiMP Supple-
ment benchmark: Subject Aux Inversion (+32.13),
QA Congruence Easy (+28.10), and Turn Taking
(+15.70). The average performance on this bench-
mark improved by 14.85 points.

The overall average performance is increased by
2.2, which shows that our model, pretrained with
our reinterpreted small data, already demonstrates
a great improvement.

6 Discussion

6.1 Augmented Dataset via CoT Prompting
We generated our data via the above-mentioned
CoT prompting and the GPT-3.5-turbo for nearly
700, 000 lines, we show a case study of a part of
the generated data here.

- Paragraph:

- We have a few topics to cover in this
paragraph. Firstly, a possible I.D. has
been found in one of Gina’s snapshots.
Secondly, there is a new technology
in development called autostereoscopic
3D that will allow people to watch
3D movies without glasses. This is
great news for those who find wearing
3D glasses uncomfortable and causes eye
strain. Unfortunately, the narrator
regrets not asking Jean for the details
about something. Lastly, the police
are seen moving down the main street
of Atenco, and we are tracking their
movements.

- Plan:

- 1. Introduce the topic of the paragraph

2. Mention the possible I.D. from Gina’s
snapshots

3. Talk about the new technology called
autostereoscopic 3D

4. Mention the difficulty of wearing 3D
glasses

5. Mention the regret of not asking Jean
for details

6. Talk about the police and their movement
down the main street of Atenco
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- Task:

- Text Classification

- Labels:

- 1. I.D. Mentioned

2. Technology Mentioned

3. Regret Expressed

4. Police Mentioned

As we can see from the script, the paragraph is
an extension of the input sentences sampled from
the original dataset, while the plan and labels gener-
ated by the language model are the outlines, where
the scenes also are the critical information from the
generated paragraph. It means that our approach
augmented the original data with interpretation, em-
phasis, and simplification, with which the model
is possible to learn about a story with different
versions and sizes and finally get a clearer under-
standing.

6.2 Performance in QA Congruence Easy

We analyzed the most noticeable improvement of
the QA Congruence Easy dataset from the BLiMP
Supplement benchmark, and dived deep into each
case. This dataset consists of 64 single-choice ques-
tions with 20 what-questions, 25 who-questions,
and 19 where-questions. Each question contains
a question mark, and each answer ends with a pe-
riod. Each question corresponds to 2 candidate an-
swers, and the boundary of the candidate answers
is clear, i.e., for the what- and who-questions, the
answers contain an inanimate or an animate, and
for the where-questions the answer is a location
or a noun phrase. Obviously, the answer to the
what-questions should be inanimate, like a car, the
answer to the who-question should be animate, like
a doctor or person’s name Sarah, and the answer
to the where-question should be location, like at
home. The model is expected to select the answer
that matches the question. For example, a question
is “Who did you see?” and the candidate answers
are 1. “A doctor”, 2. “A car”, and it is clear that
the answer should be “A doctor”. The final metric
for the evaluation is accuracy.

6.2.1 Influence of the 3 Types of Questions
In these three kinds of questions, our model is bet-
ter at answering the what-questions, where the ac-
curacy is 75. Besides, it obtains an accuracy of
64 for the who-questions, and 47 for the where-
questions.

6.2.2 Influence of the 2 Types of Answers
We also note that there are two forms of the an-
swers:

1) sentence, where the answer is a complete sen-
tence that includes at least the verb, e.g. “I
sent the package to europe”;

2) fragment, where the answer is a single word
or a simple phrase, and does not include the
verb, e.g. “a car”.

The form of the two candidates’ answers to
each question is consistent, i.e., both candidates’
answers are either sentences or fragments. The
dataset contains 27 question-answer pairs in the
form of sentences (42%) and 37 cases in fragments
(57%). We also counted the accuracy on the above
two forms, where the accuracy is 77.78 for sen-
tences and 51.35 for fragments. Additionally, we
also counted the accuracy with the different forms
of the three questions i.e. what-, who-, and where-
questions. The accuracy of the sentence labels on
the what-questions is 80, while the fragment is 70.
The accuracy on the who-question with sentence
answers was 71 and 61 with fragment answers. On
where-questions, the tasks with sentence answers
obtained an accuracy of 80, however, it was only 11
with the fragment answers. Thus we can observe
that our model is better at deciding with complete
answers rather than fragments.

6.2.3 Influence of the 3 Types of Dialogues
Besides, we also notice that there are three types of
dialogues for each question,

1) direct dialogues, where the question is started
by a question word directly and the answer is
direct with the answer, e.g., question: “What
did you get?”, candidate answers: “I got a
chair”, “I got a doctor”;

2) A-B dialogues, where the letters A and B are
used as names for both sides of the conver-
sation before proposing the question and the
candidate answers respectively, e.g. question
“A: What did you sell?”, candidate answers:
“B: A chair.”, “B: A doctor.”;

3) David-Sarah dialogues, the person’s name
David is used as the questioner’s name be-
fore the question, and Sarah is used as the
answerer’s name before the answer.
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The dataset comprises 21 direct dialogues (32%),
22 A-B dialogues (34%), and 21 David-Sarah di-
alogues (32%), with the model’s accuracy consis-
tently ranging between 61-63% across these types.

We then explored the proportionality between
these three forms of dialogue and the three kinds of
questions. Of the 20 what-questions, 7 are written
in direct dialogues, 6 are in A-B dialogues, and 7
are David-Sarah dialogues. we notice a difference
in the accuracy, where the accuracy with direct dia-
logues is 100, the A-B dialogues have an accuracy
of 83, and the David-Sarah dialogues reached only
45.

Of the 25 who-questions, 8 direct dialogues ob-
tained an accuracy only of 25, while 7 A-B dia-
logues gained 85 accuracy and the accuracy of the
10 David-Sarah dialogues is 80. Out of the 19
where-questions, the accuracy of the 6 direct dia-
logues is 66%, 33% of A-B dialogues are correct,
and the accuracy of the 4 David-Sarah dialogues is
50%.

From the above results, we can see that our
model is good at selecting answers from direct
and A-B dialogues on the what-questions. In con-
trast, for the who-questions, our model is good at
selecting animates from the David-Sarah dialogues
and the A-B dialogues, but not good at selecting the
animate from the direct dialogues. It might be posi-
tively affected by the presence of the person’s name.
In the where-questions, the form of dialogues has a
more limited effect on the performance.

6.3 Performance in QA Congruence Tricky

We compared the performance on the QA Congru-
ence Tricky dataset, on which we have a very simi-
lar performance (35) to the baseline model. It con-
tains 165 tricky questions including who-, where-,
when-, why-, and how many-questions, where the
proportions of the who- and the where-questions
are 15% and 16% respectively. The accuracy of
the who- and where-questions are only 37 and 30
respectively, differ from the accuracies in the QA
Congruence Easy dataset.

We also notice that, in this dataset, our model
is better at selecting fragment answers rather than
answers in the form of sentences, where the ac-
curacy with fragments is 62, while the accuracy
of the sentences is only 10. On both who- and
where-questions, our model is better at finding the
answer in the David-Sarah dialogues (55 and 45
respectively in accuracy), and the accuracies of

both questions in the other two dialogue forms are
under 30. Similar to the fact shown in the easy
dataset, the presence of people’s names probably
provides a sign to the animate and thus influences
the performance, especially on the who-questions.

We analyzed the questions-candidate answers
pairs from the tricky dataset, where both the ques-
tions and the candidate answers are generally
shorter, e.g., the question is “Who ate?”, and the
candidate answers are “A teacher ate.”, and “Pasta
ate.”, where the question only contains the wh-
word, a verb, and a question mark, and the candi-
date answers contain only a subjective and a verb.
The answers in the form of fragments are even
shorter, e.g. to a question “Who cooked?”, the can-
didate answers are “Sarah”, and “A sandwich”.

Besides the questions being more varied and
complex, this dataset is more tricky, because the
context is short. The candidate answers written
in sentences are generally very similar to the frag-
ments with only an additional verb, where the verb
has been mentioned in the questions, which means
the form of sentence possibly doesn’t provide addi-
tional information, but may confuse the model to
understand the answers.

7 Conclusion

In this work, we proposed the CoThought pipeline
for training a BabyLM at a small scale, combin-
ing the LLMs’ productivity with the concept of a
child’s cognitive learning ability. We let the raw
training data for the BabyLM be reformulated by
the LLM’s CoT prompting (i.e. let the teacher
think) and then train a BabyLM in a pretraining
fashion based on the newly structured data (i.e. let
the child co-think and learn). We compare the per-
formance results of our BabyLM to another vanilla
pretrained LM RoBERTa and demonstrate that our
model achieves higher performance in many tasks
including linguistic, question and answer, espe-
cially congruence tasks. This suggests that data
processed by LLMs based on their contextual rea-
soning is more natural and efficient in the learning
process, just as text revised by experienced teach-
ers in the school is more suitable for students to
learn and understand. And when we use data re-
structured by LLMs, even in the case of small data
volume, the model is able to achieve the effect of a
model trained from a large amount of data, or to be
even better.

165



Limitations

One limitation of our work is the exclusive use of
a specific LLM for data generation. It would be
insightful to explore how performance varies when
using different LLMs to generate the pre-training
data. Different LLMs may introduce variability
and diversity in the generated data, which could in-
fluence the effectiveness of the pre-training process.
This aspect, while not explored in our current work,
presents a promising avenue for future research to
understand the impact of various LLMs on data
generation and subsequent model performance.

Another limitation of our work is that our pri-
mary focus is on data generation, leaving potential
improvements or optimizations in this domain un-
explored.

Additionally, our model training exclusively uti-
lized the RoBERTa architecture. Other architec-
tures, including causal language models and var-
ious transformer variants, also showed potential
research value. Therefore, exploring our approach
across a broader range of architectures and iden-
tifying pretraining methods most compatible with
our generated data remains an important area for
future research.

By acknowledging these limitations, we hope to
spur further research in this area, encouraging the
exploration of data generation techniques, model
architectures, and extended data methods in the
context of small-scale language modeling.
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A Code and Model

The code for data processing and model training
is available at: https://github.com/oooranz/
Baby-CoThought.

Our BabyLM is available at: https://
huggingface.co/yaanhaan/Baby-CoThought.

B Pretraining Data Statistics

The generated dataset for LM pretraining is avail-
able at: https://huggingface.co/datasets/
yaanhaan/Baby-CoThought-Data.

We present a statistical analysis of the gener-
ated dataset. Given that our task revolves around
creative NLU example generation, the dataset in-
herently encompasses a wide variety of tasks. This
diversity is reflective of the creative nature of the
task, allowing for a richer and more comprehensive
pretraining process. Each example in the dataset
includes an NLU example and its corresponding
reason.

We plot the task distribution of the pretraining
dataset in Figure 2. Tasks that appeared only once
in the dataset are categorized as others.

The average number of words in the paragraphs
across all examples in the dataset is approximately
115.25 words.

Figure 2: The distribution of the different NLU task
examples in the pretraining dataset.

C Hyperparameter

We followed the instruction7 and trained
the tokenizers separately for the original
dataset and our enhanced dataset via the
ByteLevelBPETokenizer library with the
hyperparameters shown in Table 2. Other hyperpa-
rameters were set to default and can be found in
the document 8.

Hyperparameter Value
vocab_size 52000
min_frequency 2
special_tokens <s>, <pad>, </s>, <unk>,<mask>

Table 2: Hyperparameters used for tokenizers

Besides, we report our hyperparameters dur-
ing the pretraining of our RoBERTa models in
Table 3. We used the default settings from the
RobertaConfig library. More default values and
technical details can be found in the documents
31119.

Additionally, the evaluation process was done
automatically via the evaluation tool provided by
the organizer, without changing the hyperparame-
ters, which can be found on the webpage 10.

7https://huggingface.co/blog/how-to-train
8https://github.com/huggingface/tokenizers/

blob/main/bindings/python/py_src/tokenizers/
implementations/byte_level_bpe.py

9https://huggingface.co/docs/transformers/
model_doc/roberta#transformers.RobertaConfig

10https://github.com/babylm/
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Hyperparameter Value
attention_probs_dropout_prob 0.1
bos_token_id 0
classifier_dropout null
eos_token_id 2
hidden_act gelu
hidden_dropout_prob 0.1
hidden_size 768
initializer_range 0.02
intermediate_size 3072
layer_norm_eps 1.00E-12
max_position_embeddings 512
model_type roberta
num_attention_heads 12
num_hidden_layers 12
pad_token_id 1
position_embedding_type absolute
torch_dtype float32
transformers_version 4.17.0
type_vocab_size 1
use_cache TRUE
vocab_size 52000

Table 3: Hyperparameters used for pretraining

D Full Results

We used 4 benchmarks:

1) Benchmark of Linguistic Minimal Pairs
(BLiMP) (Warstadt et al., 2020a), includ-
ing Anaphor Agreement, Argument Struc-
ture, Binding, Control Raising, Determiner
Noun Agreement, Ellipsis, Filler Gap, Irreg-
ular Forms, Island Effects, NPI Licensing,
Quantifiers, and Subject Verb Agreement;

2) BLiMP Supplement11, including Hypernym,
QA Congruence Easy, QA Congruence Tricky,
Subject Aux Inversion, and Turn Taking;

3) General Language Understanding Evaluation
(GLUE) (Wang et al., 2019), including CoLA
(Warstadt et al., 2018), SST-2 (Socher et al.,
2013), MRPC (F1) (Dolan and Brockett,
2005), QQP12 (F1), MNLI (Williams et al.,
2018), MNLI-mm, QNLI (Levesque, 2011),
RTE (Dagan et al., 2005; Haim et al., 2006;

evaluation-pipeline#hyperparameters
11https://github.com/babylm/

evaluation-pipeline/blob/main/filter_data.zip
12https://quoradata.quora.com/

First-Quora-Dataset-Release-Question-Pairs

Giampiccolo et al., 2007; Bentivogli et al.,
2009), BoolQ (Clark et al., 2019), MultiRC
(Khashabi et al., 2018) and WSC (Kocijan
et al., 2020);

4) Mixed Signals Generalization Set (MSGS)
(Warstadt et al., 2020b), including Control
Raising Control (CR Control), Lexical Con-
tent The Control (LC Control), Main Verb
Control (MV Control), Relative Position Con-
trol (RP Control), Syntactic Category Control
(SC Control), Control Raising Lexical Con-
tent The (CR LC), Control Raising Relative
Token Position (CR RTP), Main Verb Lexical
Content The (MV LC), Main Verb Relative
Token Position (MV RTP), Syntactic Cate-
gory Lexical Content The (SC LC), Syntactic
Category Relative Position (SC RP).

to process our evaluation.
The organizer provided three baseline models,

including OPT-125M13 , RoBERTa-base14 , and
T5-base15. We show our full results in Table 4.

13https://huggingface.co/facebook/opt-125m
14https://huggingface.co/roberta-base
15https://huggingface.co/t5-base
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Tasks Models Difference
Ours OPT-125m RoBERTa-base T5-base in abs in rel.

BLiMP
Anaphor Agreement 93.61 94.90 89.50 66.70 4.11 4.59%
Argument Structure 78.06 73.80 71.30 61.20 6.76 9.48%
Binding 72.84 73.80 71.00 59.40 1.84 2.59%
Control Raising 69.55 72.20 67.10 59.80 2.45 3.65%
Determiner Noun Agreement 97.75 93.10 93.10 53.80 4.65 4.99%
Ellipsis 77.02 80.50 83.80 49.10 -6.78 -8.09%
Filler Gap 78.52 73.60 68.00 70.00 10.52 15.47%
Irregular Forms 91.25 80.80 89.60 75.50 1.65 1.84%
Island Effects 45.85 57.80 54.50 43.60 -8.65 -15.87%
NPI Licensing 67.35 51.60 66.30 45.60 1.05 1.58%
Quantifiers 70.58 74.50 70.30 34.20 0.28 0.40%
Subject Verb Agreement 85.17 77.30 76.20 53.20 8.97 11.77%

BLiMP Supplement
Hypernym 49.07 46.30 50.80 51.10 -1.73 -3.41%
QA Congruence Easy 62.50 76.50 34.40 45.30 28.10 81.69%
QA Congruence Tricky 34.55 47.90 34.50 25.50 0.05 0.14%
Subject Aux Inversion 77.73 85.30 45.60 69.20 32.13 70.46%
Turn Taking 62.50 82.90 46.80 48.90 15.70 33.55%

GLUE
CoLA 74.09 73.70 75.90 76.30 -1.81 -2.38%
SST-2 88.78 86.60 88.60 88.00 0.18 0.20%
MRPC (F1) 80.45 82.10 80.50 85.90 -0.05 -0.06%
QQP (F1) 81.20 77.80 78.50 79.70 2.70 3.44%
MNLI 73.73 70.10 68.70 71.50 5.03 7.32%
MNLI-mm 74.76 71.90 78.00 74.00 -3.24 -4.15%
QNLI 76.86 80.10 82.30 83.10 -5.44 -6.61%
RTE 45.45 67.70 51.50 60.60 -6.05 -11.74%
BoolQ 65.84 66.00 59.90 69.00 5.94 9.91%
MultiRC 62.21 61.10 61.30 62.40 0.91 1.49%
WSC 61.45 59.00 61.40 60.20 0.05 0.07%

MSGS
CR (Control) 83.96 97.20 93.00 95.10 -9.04 -9.72%
LC (Control) 94.49 82.60 100.00 100.00 -5.51 -5.51%
MV (Control) 99.98 100.00 100.00 100.00 -0.02 -0.02%
RP (Control) 100.00 99.80 100.00 99.80 0.00 0.00%
SC (Control) 88.44 88.10 89.00 88.70 -0.56 -0.62%
CR LC 67.07 75.30 68.30 76.70 -1.23 -1.80%
CR RTP 70.71 67.10 66.80 69.40 3.91 5.86%
MV LC 66.61 66.30 66.60 67.00 0.01 0.01%
MV RTP 67.59 66.80 80.20 67.70 -12.61 -15.72%
SC LC 75.47 84.80 67.40 72.70 8.07 11.98%
SC RP 70.90 62.00 67.40 68.00 3.50 5.19%

Table 4: Full results, with difference of our BabyLM over RoBERTa-base (baseline). Metric of MRPC and QQP
from GLUE is F1, in other tasks the metric is accuracy. The best results of the four models are marked in bold.
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Abstract
We present ToddlerBERTa, a scaled Baby-
BERTa language model, exploring its capabili-
ties through five different models with varied
hyperparameters. We obtain our best model
named ToddlerBERTa by meticulously opti-
mizing our models on the BLiMP benchmark.
Despite training on a smaller dataset, Tod-
dlerBERTa demonstrates commendable perfor-
mance, outperforming the baselines provided
by a significant margin in the overall evalua-
tion that include BLiMP, SuperGLUE, MSGS
and BLiMP supplement. ToddlerBERTa show-
cases robust language understanding, even with
single-sentence pretraining, and competes with
baselines that leverage broader contextual in-
formation. Our work provides insights into hy-
perparameter choices, and data utilization, con-
tributing to the advancement of low-resource
language models.

1 Introduction

Over the past few years, there has been a lot of
effort put into improving the pretraining of large
language models (LLMs) on a large scale (Brown
et al., 2020; Raffel et al., 2019; Chowdhery et al.,
2022; Hoffmann et al., 2022). While there is often
a focus on increasing the number of parameters,
there has also been significant growth in dataset
size. However, there has been minimal progress in
pretraining on smaller data scales that are compa-
rable to how humans learn language.

Exploring pretraining on a smaller scale can
serve as a trial area for developing original tech-
niques that boost data effectiveness. These tech-
niques can be scaled up to larger datasets utilized
and employed to enhance current methods for mod-
elling low-resource languages.

The BabyLM challenge (Warstadt et al., 2023)
has been created to address the gap in research on
pretraining for small-scale language models. Our
focus will be on a limited corpus of approximately
10 million words, which includes child-directed

speech, transcribed speech from various sources,
children’s books, and Wikipedia data.

We trained more than 180 BabyBERTa (Huebner
et al., 2021) models in different sizes and hyper-
parameters to determine how well language mod-
els learn grammar and understand language. Our
findings showed that scaling the model and data re-
sulted in significantly better outcomes compared to
baseline models which underscores the low utilisa-
tion of both the data and architecture we currently
have. All in all, our work demonstrates that well-
known and widely used (Liu et al., 2019; Devlin
et al., 2019; Vaswani et al., 2017) architectures can
be enhanced with moderate modifications to their
training recipes.

2 Related Work

There has been a significant amount of research on
data-efficient language models. These models aim
to achieve high accuracy in language tasks while us-
ing less training data than their larger counterparts.
One way to create data-efficient language models
is to reduce the number of model parameters while
maintaining high performance. For instance, Dis-
tilBERT (Sanh et al., 2019) is a smaller and faster
version of the popular BERT model. It was trained
by distilling knowledge from the larger model into
a smaller version. TinyBERT (Jiao et al., 2019), on
the other hand, was designed for low-resource en-
vironments, such as mobile devices. It was trained
using a combination of teacher-student learning
and knowledge distillation techniques.

Another example of a data-efficient language
model is ALBERT (Lan et al., 2019) which reduces
the number of parameters of the BERT model by
using factorization techniques and sharing parame-
ters across different layers. This results in a more
data-efficient model that can achieve similar or bet-
ter performance than the larger BERT model.

GPT-Neo (Black et al., 2021) is another data-
efficient language model that was trained on a large
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dataset of text, but it can be fine-tuned on smaller
datasets with good results. It has demonstrated
competitive performance on various natural lan-
guage processing tasks, including language genera-
tion, summarization, and question-answering.

ELECTRA (Clark et al., 2020) is a novel pre-
training approach for language models that is de-
signed to be more data-efficient than traditional
models like BERT. Instead of using a traditional
masked language modelling task, ELECTRA uses
a discriminator network to predict whether a given
input is real or generated by another model. This
approach allows for more efficient training and can
achieve similar or better performance than tradi-
tional models.

TinyStories (Eldan and Li, 2023) is an artificial
collection of short stories, specifically designed
with words understandable to 3 to 4-year-olds.
These stories are generated using GPT-3.5 and GPT-
4 (OpenAI, 2023).TinyStories can effectively serve
as a training and evaluation dataset for language
models (LMs) that are considerably smaller than
the current state-of-the-art models (less than 10
million parameters) or have simpler architectures
(with just one transformer block). Despite their
reduced size and simplicity, these LMs are capable
of producing coherent and consistent stories span-
ning multiple paragraphs. The stories are diverse,
exhibit nearly flawless grammar, and showcase im-
pressive reasoning abilities.

BabyBERTa is a lightweight model for language
acquisition (Huebner et al., 2021). BabyBERTa
is similar to RoBERTa (Liu et al., 2019), but it is
much smaller and simpler. BabyBERTa was trained
on a dataset of 5M words of American-English
child-directed input, and it can be run on a single
desktop with a single GPU.BabyBERTa was able to
achieve comparable performance to RoBERTa on
a number of language acquisition tasks, including
grammatical knowledge acquisition, generalization
to novel grammatical contexts, syntactic structure
learning, and semantic word and phrase learning.
These results suggest that BabyBERTa could be a
valuable tool for language acquisition research.

Small size: BabyBERTa is much smaller than
RoBERTa, with only 8 layers, 8 attention heads,
256 hidden units, and an intermediate size of 1024.
This makes it much faster and easier to train and
use than RoBERTa.

Comparable performance: Despite its smaller
size and simpler training regime, BabyBERTa

was able to achieve comparable performance to
RoBERTa on a number of language acquisition
tasks. This suggests that BabyBERTa could be a
valuable tool for language acquisition research.

BabyBERTa makes a number of contributions
to the field. First, it demonstrates that a small,
lightweight model can be used to acquire grammat-
ical knowledge from child-directed input. Second,
it shows that BabyBERTa can generalize to novel
grammatical contexts. Third, it shows that Baby-
BERTa is able to learn the syntactic structure of
sentences. Fourth, it shows that BabyBERTa is able
to learn the semantics of words and phrases

3 Experiment Settings

We embrace BabyBERTa (Huebner et al., 2021) as
the foundational model for our research endeavour.
Building upon this foundation, our investigation
sets forth to explore an array of model sizes and di-
verse hyperparameters in a systematic and rigorous
manner.

We construct five different models to validate
and then further exploit the performance of Baby-
BERTa. All hyperparameters are kept the same
except, hidden size, intermediate size, number of
attention heads and number of layers. Models con-
figurations can be found in Table 1.

Our study closely follows the established hyper-
parameters of BabyBERTa but with three key vari-
ations: number of mask patterns{1, 5, 10, 20, 50},
epochs{1,5,10}, and batch size {16,32,64,128}.
Due to computational limitations, we are limited to
having 36 different configurations per model.

4 Evaluation Setup

We adopt the official evaluation pipeline of the
BabyLM Challenge (Warstadt et al., 2023; Gao
et al., 2021), which combines BLiMP (Warstadt
et al., 2019), SuperGLUE (Wang et al., 2019),
MSGS (Warstadt et al., 2020), and a Supplement
benchmark. Our best model is evaluated on all
benchmarks, while other models are evaluated on
BLiMP due to limited computing resources. This
approach ensures a rigorous assessment of our
model’s performance across diverse tasks while
optimizing resource allocation.

4.1 Baselines

The competition organizers supply baseline models
extracted from well-known language models, in-
cluding OPT (Zhang et al., 2022), RoBERTa (Liu
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Table 1: Model Configurations of ToddlerBERTa.

Hidden Size Inter. Size # Heads # Layers # Parameters

ToddlerBERTa-xs 64 256 4 4 0.75 M
ToddlerBERTa-s 128 512 4 4 1.8 M
ToddlerBERTa-base 256 1024 8 8 8.5 M
ToddlerBERTa-l 512 2048 8 8 29.7 M
ToddlerBERTa-xl 768 3072 12 12 92.0 M

et al., 2019), and T5 (Raffel et al., 2019). These
baselines are trained from scratch on the competi-
tion’s exclusive dataset. Since no external models
are available, we use these baseline models as ref-
erences to assess our models’ performance within
the competition’s context.

5 Results and Analysis

As stipulated earlier, a substantial portion
of our model evaluations is conducted under
BLiMP (Warstadt et al., 2019), encompassing com-
parisons across various linguistic tasks. Addition-
ally, we undertake a comprehensive evaluation of
our best-performing model using the entire pre-
scribed evaluation pipeline. As a result, we present
our findings as two distinct sets of results: BLiMP
results and main results.
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Figure 1: Average scores of the ToddlerBERTa-xs mod-
els on BLiMP are reported. We shorten the different
configuration names as number of epochs: e, number of
dynamic patterns: p and batch size: b.

5.1 BliMP Results

5.1.1 ToddlerBERTa-xs
Our ToddlerBERTa-xs model, with approximately
750 thousand parameters, achieves competitive per-
formance compared to the larger T5 baseline on
the BLiMP benchmark, in Figure 1. This data

scaling behaviour highlights the potential bene-
fits of optimizing smaller architectures for specific
tasks, showcasing efficient language modelling ap-
proaches.

5.1.2 ToddlerBERTa-s

ToddlerBERTa-s model, consisting of 1.8 million
parameters, exhibits superior performance com-
pared to the OPT baseline across various configu-
rations. Remarkably, experimental results demon-
strate that even with smaller parameter sizes, these
models can outperform larger counterparts in the
low data regime when leveraging the BabyBERTa
training and preprocessing recipes.

e1
-p

1-
b1

28
e1

-p
1-

b1
6

e1
-p

1-
b3

2
e1

-p
1-

b6
4

e1
-p

5-
b1

28
e5

-p
1-

b1
28

e5
-p

1-
b6

4
e1

-p
10

-b
12

8
e1

-p
5-

b6
4

e1
-p

5-
b3

2
e1

0-
p1

-b
12

8
e1

-p
5-

b1
6

e1
-p

20
-b

12
8

e1
0-

p1
-b

64
e1

-p
10

-b
64

e1
-p

50
-b

12
8

e1
-p

10
-b

32
e5

-p
1-

b1
6

e1
-p

20
-b

64
e5

-p
1-

b3
2

e1
0-

p1
-b

16
e1

-p
50

-b
64

e1
0-

p1
-b

32
e1

-p
10

-b
16

e5
-p

5-
b1

28
e1

-p
20

-b
32

e5
-p

5-
b6

4
e5

-p
5-

b3
2

e5
-p

10
-b

12
8

e1
0-

p5
-b

12
8

e5
-p

10
-b

64
e5

-p
10

-b
32

e5
-p

20
-b

12
8

e1
0-

p1
0-

b1
28

e1
0-

p2
0-

b1
28

e5
-p

20
-b

64

Model Configurations

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Av
er

ag
e

ToddlerBERTa-s Variants on BLiMP
RoBERTa Baseline
OPT(125M) Baseline
T5 Baseline

Figure 2: Average scores of the ToddlerBERTa-s mod-
els on BLiMP are reported. We shorten the different
configuration names as number of epochs: e, number of
dynamic patterns: p and batch size: b.

5.1.3 ToddlerBERTa-base

The ToddlerBERTa-base and BabyBERTa (Hueb-
ner et al., 2021) have the same number of param-
eters, which is 8.5 million. However, the best-
performing model of ToddlerBERTa-base scores
0.7407 with more epochs and mask patterns than
the original, as shown in Figure 3. On the other
hand, the original BabyBERTa (Huebner et al.,
2021) configuration achieves 0.6660.
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Figure 3: Average scores of the ToddlerBERTa-base
models on BLiMP are reported. We shorten the different
configuration names as number of epochs: e, number of
dynamic patterns: p and batch size: b.

5.1.4 ToddlerBERTa-l
The utilization of data scaling techniques is evi-
dently advantageous in enhancing model perfor-
mance for grammar learning tasks. However, our
research findings demonstrate that surpassing the
RoBERTa baseline is achievable through the in-
crease of model parameters. This observation
prompts an inquiry into the sustainability of this
trend. In order to address this question, we de-
veloped ToddlerBERTa-l, featuring a substantial
parameter count of approximately 30 million. Our
experimental results emphasize the indispensabil-
ity of model size, despite the relatively modest
increase in the top score, Figure 4. Notably, a
significant performance boost is observed in the
majority of models when larger architectures are
employed. These findings underscore the critical
role of model size in optimizing grammar learning
capabilities.

5.1.5 ToddlerBERTa-xl
To further explore the capabilities of BabyBERTa
within the strict-small portion of BabyLM, we
introduce ToddlerBERTa-xl, a language model
equipped with 92 million parameters similar to
RoBERTa (Liu et al., 2019). Our prior experi-
ments have highlighted the significance of both
data and model size; however, these studies have
predominantly employed relatively smaller model
sizes compared to baseline models, which exhibit
exceptional results when trained on extended cor-
pora over extended periods. Such large models
excel under substantial data volumes but tend to
perform inadequately in low-data scenarios. Con-
sequently, previous investigations (Eldan and Li,
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Figure 4: Average scores of the ToddlerBERTa-l mod-
els on BLiMP are reported. We shorten the different
configuration names as number of epochs: e, number of
dynamic patterns: p and batch size: b.

2023; Huebner et al., 2021) have often opted for
smaller model sizes. Nonetheless, to thoroughly
evaluate the boundaries of this approach, we un-
dertake the training of larger models in order to
affirm our hypothesis which is that performance
will improve with the model scaling. Figure 5 veri-
fies our hypothesis by achieving remarkable results
on BLiMP with a significant margin to baselines
which share a similar number of parameters.
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Figure 5: Average scores of the ToddlerBERTa-xl mod-
els on BLiMP are reported. We shorten the different
configuration names as number of epochs: e, number of
dynamic patterns: p and batch size: b.

5.1.6 BLiMP Summary
Our extensive experiments show that improving the
BabyBERTa methodology involves using numer-
ous different mask patterns to augment the data,
processing single sentences, and using smaller con-
text and vocabulary sizes with limited batch sizes
and epochs. However, to achieve superior perfor-
mance with larger models, we increase batch sizes
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Models Overall
ANA. AGR

ARG. STR

BINDING

CTRL. RAIS.

D-N AGR

ELLIPSIS

FILLER GAP

IRREGULAR

ISLAND

NPI
QUANTIFIERS

S-V AGR

OPT-125m(baseline) 62.63 63.75 70.56 67.10 66.48 78.47 62.01 63.83 67.53 48.58 46.71 59.61 56.87
RoBERTa-base(baseline) 69.47 81.54 67.12 67.26 67.85 90.75 76.44 63.48 87.43 39.87 55.92 70.53 65.42
T5(baseline) 57.70 68.92 63.82 60.40 60.87 72.21 34.41 48.24 77.56 45.59 47.80 56.72 55.81
ToddlerBERTa 76.68 87.68 70.62 71.82 69.07 93.44 76.27 81.68 82.80 58.07 63.59 82.64 82.51

Roberta-base 85.4 97.30 83.50 77.80 81.9 97.00 91.40 90.10 96.20 80.70 81.00 69.80 91.90

Table 2: BLiMP(Warstadt et al., 2019) benchmark results, baseline scores are taken from the leaderboard page of
the competition , RoBERTa-base results from (Huebner et al., 2021).

Models Overall
HYPERNYM

QA CONGR.(EASY)

QA CONGR.(TRICKY)

SUBJ.-A
UX. INVER.

TURN TAKING

OPT-125m(baseline) 52.72 50.00 54.69 31.52 70.26 57.14
RoBERTa-base(baseline) 42.42 50.80 34.40 34.50 45.60 46.80

T5(baseline) 43.96 48.02 40.63 21.21 64.92 45.00
ToddlerBERTa 57.12 48.02 62.50 35.76 79.65 59.64

Table 3: BLiMP Supplement benchmark results, baseline scores are taken from the GitHub page of evaluation
pipeline.

and the number of epochs. Larger batch sizes en-
hance training stability, while more epochs help
models learn better. Consequently, our best model
outperforms the original BabyBERTa model by a
substantial 10 point in BLiMP, highlighting the
effectiveness of these changes.
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Figure 6: Spearman correlation matrix on the scores of
BLiMP tasks.

To refine our models based on BLiMP evalua-
tion, we carefully consider the average results while
remaining aware of potential outliers that could
have an implicit impact on the reliability of the
approach that we take while optimizing the mod-
els. To thoroughly explore relationships among the
nearly 180 results of our models, we use a Spear-

man correlation matrix as a robust analytical tool,
providing insights into potential patterns and de-
pendencies. See Figure 6 for the correlation matrix
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Figure 7: Models are ranked by the average BLiMP
score in ascending order, in the Blue time series plot.
Other time series plots represent how task scores vary
while the average score consistently improves.

The majority of the tasks exhibit a strong posi-
tive correlation with the average, with the exception
of Island Effects, Filler Gap, and Control/Raising.
In order to gain insights into the underlying reasons
behind this anomaly, we present a visual analysis
by plotting the scores of these specific tasks in as-
cending order based on their respective average
scores, as illustrated in Figure 7. The plot reveals
that all task scores either improve slightly or stay
around a fixed interval. This observation leads us
to postulate that these particular tasks may be inher-
ently more challenging, demanding a larger volume
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Models Overall
CR LC MV RP SC CR_LC

CR_RTP

MV_LC
MV_RTP

SC_LC
SC_RP

OPT-125m(baseline) 9.63 50.77 53.55 99.47 99.91 77.15 0.37 -70.33 -72.14 -77.60 13.76 -68.92
RoBERTa-base(baseline) 8.22 43.08 100.00 97.67 76.73 86.24 -28.28 -77.69 -99.30 -79.36 16.28 -45.02
T5(baseline) -6.38 21.11 100.00 33.36 82.54 77.58 -78.33 -62.04 -100.00 -79.70 -25.28 -39.43
ToddlerBERTa 2.51 51.61 80.00 99.95 71.23 45.90 2.32 -72.15 -85.73 -82.68 -34.41 -49.60

Table 4: MSGS (Warstadt et al., 2020) benchmark results, baseline scores are taken from the GitHub page of
evaluation pipeline

Models Overall
COLA(M

CC)

SST-2
MRPC(F1)

QQP(F1)

MNLI
MNLI-MM

QNLI
RTE

BOOLQ
MULTIRC

WSC

OPT-125m(baseline) 62.38 15.22 84.25 74.13 78.89 67.66 69.43 65.40 55.26 65.28 51.37 59.04
RoBERTa-base(baseline) 67.38 25.75 87.60 77.27 82.76 73.15 77.27 81.54 53.54 65.70 61.23 57.83
T5(baseline) 58.34 11.26 80.91 78.49 72.19 52.80 56.70 63.91 50.51 63.49 48.85 62.65
ToddlerBERTa 64.94 37.37 86.02 79.29 74.53 70.28 70.34 64.83 54.55 67.77 47.97 61.45

Table 5: SuperGLUE (Wang et al., 2019) benchmark results, baseline scores are taken from the GitHub page of
evaluation pipeline

of data and more complex model architectures for
optimal performance.

5.2 Main Results

After evaluating various models on
BLiMP (Warstadt et al., 2019), we select
the best one as our final model which is a
ToddlerBERTa-xl that is trained for 5 epochs
with 20 different mask patterns and 64 as the
batch size. We then assess its performance on
Blimp Supplement and fine-tune it on (Wang et al.,
2019) and MSGS (Warstadt et al., 2020) using the
evaluation pipeline (Warstadt et al., 2023).

BLiMP: In our investigation, we focus on evalu-
ating our models compared to baselines during iter-
ative training. We also include results of RoBERTa-
base (Liu et al., 2019) from Huebner et al. (2021)
for a more comprehensive analysis in Table 2.
RoBERTa-base outperforms our ToddlerBERTa
model, largely due to its extensive 3-billion-word
training data, while ToddlerBERTa is trained on a
smaller 10-million-word dataset.

To narrow the performance gap, we increase
mask patterns in ToddlerBERTa’s training, im-
proving data utilization despite the 1-billion-word
exposure constraint. Our results show that Tod-
dlerBERTa, with limited data, can perform rela-
tively well compared to RoBERTa-base, highlight-
ing the effectiveness of data augmentation by em-
ploying different masks for enhancing language
model training.

SuperGLUE: In the SuperGLUE benchmark,

our models face a challenge due to their exclusive
focus on single sentences while the dataset often
includes inputs with multiple sentences. However,
even with this constraint, our model competes re-
markably well with baselines trained on multiple
sentences. Our results in Table 5, highlight our
model’s ability to grasp complex linguistic rela-
tionships and reasoning, aligning its performance
with state-of-the-art baselines that use broader con-
textual information. This showcases our model’s
potential for robust language understanding, even
in scenarios with multi-sentence inputs.

MSGS: The Mixed Signals Generalization Set
(MSGS) evaluates language models’ generalization
capabilities for both linguistic and surface features.
Our analysis in Table 4 suggests that the poor per-
formance may be due in part to overexposure. To
enhance training, we add more mask patterns and
use them for numerous epochs, which can lead
to repeated patterns and examples in the training
data. This overexposure may affect the model’s
learning process, causing a preference for specific
features. As a result, the model might struggle to
adapt to novel patterns in the MSGS. On the other
hand, baseline models also suffer from poor perfor-
mance. Considering the worst score is -100 and the
best is 100, their performances are no better than
ours which points out that undertraining is another
drawback for generalization.

BLiMP Supplement: The challenge has been
enriched with an extra benchmark, the details of
which have not been published yet, but it is pre-
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sumed to be connected to the BLiMP evaluation
framework. Analysis of the results presented in
Table 3 leads us to speculate that the performance
gains in BLiMP are still relevant whereas insuf-
ficient to truly accomplish a major performance.
ToddlerBERTa achieves better scores than the base-
lines however performance of OPT-125m (Zhang
et al., 2022) and T5 (Raffel et al., 2019) compared
to RoBERTa (Liu et al., 2019) can be explained by
the presence of the decoder in T5 and OPT archi-
tectures. Further analysis will be ineffective given
that details of benchmark are non-disclosed yet.

6 Conclusion

We undertake a systematic and rigorous exploration
of language models, building upon the foundational
work of BabyBERTa. Through the development
and evaluation of five distinct ToddlerBERTa mod-
els, we have demonstrated the significance of hyper-
parameter choices and model sizes in the context
of natural language processing.

Our experiments have revealed the potential ben-
efits of optimizing smaller architectures for spe-
cific linguistic tasks, showcasing the efficiency of
language modelling techniques in tackling various
challenges. Additionally, our best-performing Tod-
dlerBERTa models have exhibited competitive per-
formance compared to established baselines, show-
casing their adaptability and capacity to excel in
diverse language understanding tasks.

The comprehensive evaluations conducted on
BLiMP, SuperGLUE, MSGS, and the new BLiMP
Supplement benchmark have provided valuable in-
sights into the strengths and limitations of our ap-
proach. While our research has shed light on the
impact of different hyperparameters, we acknowl-
edge that further exploration of model architectures
and training methodologies may yield additional
advancements in language modelling.

By contributing to the collective understanding
of transformer-based models and their potential for
natural language processing, our research aims to
inspire future investigations and innovations in the
field. As the quest for advancements in language
modelling continues, we emphasize the importance
of replicability and reproducibility in research to
facilitate the development of robust and reliable
language models.

7 Limitations

Despite the contributions of our research, it is es-
sential to acknowledge its limitations. Firstly, the
exploration of hyperparameters and model sizes
may not have encompassed all possible configura-
tions due to computational constraints. This leaves
room for potential superior settings to be uncov-
ered. Secondly, the evaluation framework’s focus
on transformer-based models may limit the com-
parability with other non-transformer architectures.
Additionally, the fixed dataset used for training and
evaluation may restrict the model’s exposure to di-
verse linguistic patterns and contexts. Furthermore,
the reliance on single-sentence processing during
pretraining could impact the model’s performance
on tasks requiring broader contextual understand-
ing. Lastly, our study did not extensively explore
architectural innovations or novel training method-
ologies. Despite these limitations, our research
provides valuable insights into language modeling,
calling for further investigations to address these
constraints and advance the field.
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1 Introduction

Current large language models (LLMs) demon-
strate impressive NLP performance, but they re-
quire massive amounts of training data. RoBERTa
(Liu et al., 2019), for instance, sees 30 billion words
during pre-training, which amounts to roughly
300x as many words as a human child hears until
the age of 12 (Warstadt and Bowman, 2022). It
is one of the explicit aims of the BabyLM chal-
lenge (Warstadt et al., 2023) to address this issue
by training models on developmentally-plausible
quantities and types of data (for similar approaches,
see Hosseini et al., 2022; Huebner et al., 2021), in
order to ultimately develop more cognitively plau-
sible models that can inform research into human
language acquisition (Keller, 2010; Dupoux, 2018).

In the present contribution to the BabyLM
STRICT track, we take a threefold approach: firstly,
we implement a simple curriculum learning ap-
proach and split the provided BabyLM dataset
into four sub-datasets by increasing complexity, to
broadly structure the data such that it better reflects
what kind of input is available to infants and chil-
dren throughout development (see 2.1). Secondly,
we simulate a memory-based vocabulary learning
inspired by psycholinguistic work (Perruchet and
Vinter, 1998). Starting with a set of single charac-
ters, larger linguistics units (sub-words, words, and
multi-words) are created based on the core mem-
ory mechanisms activation and forgetting. Possible
units are limited in size, imitating working-memory
constraints, but become larger across development
(see 2.2). Thirdly, we implement redundant text
representations to make the compositional aspect
of language more salient: The lexicons that emerge
from our curriculum learning steps, respectively,
shape the (token) encoding of the given input text
(see 2.3).

We pre-trained a RoBERTa-base architec-
ture with masked language modeling and our

CogMemLM-s model achieves improved results
compared to the BabyLM RoBERTa baseline
model in 27 out of 39 evaluation tasks. Although
the so far integrated mechanisms have been imple-
mented in a simplified form with regard to cogni-
tive plausibility, it is intriguing that our pre-training
method already improved performance consider-
ably.

2 Methodology

2.1 Curriculum Learning

Child-directed speech typically consists of shorter
and less syntactically complex sentences, more rep-
etitions and limited vocabulary compared to adult-
directed speech (Foushee et al., 2016; Kirchhoff
and Schimmel, 2005). As the child’s language
competence increases, the linguistic input received
from the environment becomes both more complex
and diverse (Kunert et al., 2011). In an attempt
to reflect this trajectory, we subdivided the pro-
vided 98M word corpus into four approximately
equally-sized datasets of increasing linguistic com-
plexity and lexical diversity (for details see Ap-
pendix A Table 1). The division was based mainly
on the domains which the original corpora stem
from and a subjective rating of their linguistic com-
plexity and diversity; i.e. Dataset 1 (least complex)
included materials mainly from child-speech con-
texts, whereas Dataset 4 (most complex) comprised
the Wikipedia and Written English corpora. Al-
though this split is rather coarse, it is only a first
attempt at a curriculum learning approach, which
may be followed-up by more fine-grained analyses
and sub-divisions of the available materials.

2.2 Lexicon Creation

Because of computational and memory limitations
in humans, any type of input, including language
input, has to be “chunked” into units that can be
stored and further manipulated (Archibald, 2017;
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Baddeley, 2003). For infants, the additional chal-
lenge consists in learning to chunk the perceived
language input such that the resulting memorized
chunks align with word boundaries, which allows
for words to be stored in and retrieved from the lex-
icon. Inspired by the PARSER model for word seg-
mentation (Perruchet and Vinter, 1998), we used a
memory-based, variable parsing algorithm for lexi-
con creation. We start with a set of single characters
and from these, larger linguistics units (sub-words,
words, and multi-words) are created based on the
core memory mechanisms activation and forget-
ting. The text data is processed sentence by sen-
tence. Sentences are split into linguistic sub-units
(percepts), which vary in size (see Appendix A).
If a percept already exists, its activation value is
increased by 1, strengthening its representation, if
not, an entry is created and receives an activation
of 1. After each processed sentence, forgetting is
applied by subtracting 1/1000 from all activations.
Any percept that is not re-activated within 1000 sen-
tences (activation = 0) is removed from the lexicon.
In curriculum 1 (C 1), lexicon creation starts with
an empty lexicon, C 2 builds upon the lexicon of
C 1 and so on. A 10 % sample of each data set was
processed to create the lexicons which resulted in
the following number of percepts: 13,444 after C 1,
22,740 after C 2, 25,887 after C 3 and 39,126 after
C 4. We used the lexicon information to roughly
dimension the vocabulary size of the respective cur-
riculum tokenizers (see A.3) and to re-represent the
training data for the perception shaping (see 2.3).

2.3 Perception Shaping

The BabyLM dataset was given in three different
representations during pre-training: original text,
coarse re-representation, and fine re-representation.
For the coarse re-representation, text was processed
left-to-right and the lexicon was searched for the
longest fitting percept. Following this percept, an
additional whitespace was added. For the fine re-
representation, the identified percepts were split
up further based on smaller units in the lexicon.
The representation with the highest activation on
average was used to split the coarse percept. Again,
whitespaces were added after identified percepts.
In the final step, whitespaces were normalized (mul-
tiple spaces to one). Usually, an existing token for
e.g., the word “ended” would always be encoded
with the corresponding token ID. In our training,
however, linguistic units would also be encoded in

two alternative representations, which increases the
likelihood of “ended” also being encoded as “end”
and “ed”.

3 Results and Conclusion

Building on psycholinguistic work on memory-
based word learning, we simulated lexicon cre-
ation given the BabyLM dataset as input. We used
this information in a four step curriculum learning
approach to guide the encoding of text, thereby
increasing the cognitive plausibility in the follow-
ing aspects: the language acquisition trajectory is
reflected in the (increasing) number and quality
of available linguistic units (percepts), which are
not static, as usual in modern NLP, but change
over time in our pre-training method. These per-
cepts are further used to create redundant repre-
sentations of text, based on the assumption that
elements in memory shape perception in humans.
Our CogMemLM-s model shows increased per-
formance in 27 out of 39 tasks compared to the
BabyLM RoBERTa baseline model, which is a sig-
nificant result (p = 0.0071, for details see Ap-
pendix A, all results are based on the BabyLM
Evaluation Pipeline Warstadt et al. (2023); Gao
et al. (2021)). The most striking improvement was
archived in the BLiMP and BLiMP Supplement
task sets, for which the relative change is 54 % and
46 %, respectively (better performance in 16/17
tasks).

Although these results suggest that implement-
ing human-like cognitive mechanisms in LLMs is
a promising avenue for future research and can re-
sult in substantial gains in performance also for
small training datasets, a few limitations should
be addressed. The memory processes as imple-
mented here are relatively simplistic and do not
yet consider that forgetting, as observed in humans,
is non-linear (Ebbinghaus, 1885; Vlach and Sand-
hofer, 2012). Nor have we considered interference,
which may have a substantial impact in lexicon cre-
ation (James et al., 2023). Furthermore, the chunk
size of units that infants segment from language
input and that subsequently enter the lexicon re-
mains a topic of considerable debate (Grimm et al.,
2017). Finally, many aspects of our approach are
so far only integrated at text level, however, the
lexical information could also be directly imple-
mented in the tokenizer. Planned ablation studies
will allow a more detailed evaluation of these first
results and provide direction for future extensions

181



of the present implementations.
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A Appendix

A.1 Schematic Overview of CogMemLM-s

Figure 1 shows the basic concept of our approach:
Based on the RoBERTa architecture, CogMemLM-
s is first trained on the Curriculum 1 Data Set.
In the Tokenizer C 1 only 10 000 elements of
the (final) Tokenizer are available, a number
that is influenced by the size of the Lexicon
C 1. Also based on Lexicon C 1 two alternative
representations are created for every original
sample in the Curriculum 1 Data Set: a coarse
and a fine re-representation, as for the following
example sentence:
Original: She was a beautiful girl.
Coarse: She was a be aut if ul girl .
Fine: She was a be au t if ul gi rl .

For curriculum 2, the RoBERTa architecture is
initialized based on the resulting ComMemLM-
s_c1, and the process descried for C 1 is repeated.
The same applies to C 3 and C 4. The number
of available elements in the respective tokenizers
grows for each curriculum and in C 4 the full model
vocabulary is available (see A.3 for further details).

A.2 Percept Lengths in Lexicon Creation

We assume that the mean length of sub-units is
three and that initially, there are four working mem-
ory slots available for these sub-units. In order to
account for cognitive growth throughout infancy
and childhood (Cowan, 2016), we increase the num-
ber of available working memory slots and thereby
the possible length of percepts across curriculum
training steps: curriculum 1 (C 1): 4 slots, percepts
of length 2-12 characters; C 2: 5, 2-15; C 3: 6,
2-18; C 4: 7, 2-21.

A.3 Tokenizer

We trained byte-level BPE tokenizers on the cur-
riculum datasets as follows: Tokenizer C1 (model
vocabulary 10 000) on C 1 dataset, tokenizer C 2
(model vocabulary 20 000) on datasets C 1 and
C 2, tokenizer C 3 (model vocabulary 30 000) on
datasets C 1, C 2, and C 3, and tokenizer C 4 (model
vocabulary 40 000) on the full BabyLM dataset.
The intersection of all model vocabularies was used
as the final tokenizer (vocabulary size 41 130). In
the curriculum training, however, only the tokens of
the respective curriculum tokenizer were available
(using the IDs of the final tokenizer).

A.4 Model Training
We used the same RoBERTa base model provided
by the BabyML organizers for all model instances
that we trained. The detailed model parameters
are specified at Liu et al. (2019). The training data
were organized in four sets of growing complexity,
as illustrated in Table 1. The vocabulary size of the
full training data is 41130. For each curriculum,
the models were trained for 100 epochs, with max-
imal sequence length 512, learning rate 0.0001 and
batch size 256.

A.5 BabyLM Leaderboard Results
Table 2-5 show the results of the official BabyLM
model leader board https://dynabench.org/
tasks/baby_strict for our model and the com-
parable BabyLM RoBERTa baseline model.
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Figure 1: Schematic overview of CogMemLM-s.

Corpus Domain # Words

C
1

CHILDES (MacWhinney, 2000) Child-directed speech 4.21 M

Children’s Book Test (Hill et al., 2016) Children’s books 5.55 M

Children’s Stories Text Corpus Children’s books 3.22 M

OpenSubtitles (Lison and Tiedemann, 2016) Movie subtitles 31.28 M/4

C
2

Switchboard Dialog Act Corpus (Stolcke et al., 2000) Dialogue 1.18 M

British National Corpus (BNC), dialogue portion Dialogue 8.16 M

Simple Wikipedia Wikipedia (Simple EN) 14.66 M/2

OpenSubtitles (Lison and Tiedemann, 2016) Movie subtitles 31.28 M/4

C
3

QCRI Educational Domain Corpus (QED; Abdelali et al., 2014) Educational video subtitles 10.24 M

Simple Wikipedia Wikipedia (Simple EN) 14.66 M/2

OpenSubtitles (Lison and Tiedemann, 2016) Movie subtitles 31.28 M/4

C
4

Wikipedia Wikipedia (English) 10.08 M

Standardized Project Gutenberg Corpus (Gerlach and Font-Clos, 2018) Written English 9.46 M

OpenSubtitles (Lison and Tiedemann, 2016) Movie subtitles 31.28 M/4

Table 1: Split of the BabyLM-STRICT dataset into curriculum subsets (C 1–C 4). The open subtitles corpus is
represented in all curricula, as this type of language input is assumed to be constant across all developmental stages.
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Table 2: Results of our model compared with BabyLM RoBERTa-base on the BLiMP benchmark. The accuracy of
the two models and the relative change between them are reported in percent.
Avg. BLiMP: baseline 50.22, ours 77.27.
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CogMemLM-s 50.12 67.19 46.06 80.63 65.71
change -1.36 95.43 33.31 76.82 40.44

Table 3: Results of our model compared with BabyLM RoBERTa-base on the BLiMP Supplement benchmark. The
accuracy of the two models and the relative change between them are reported in percent.
Avg. BLiMP Suppl.: baseline 42.43, ours 61.94.
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change -0.82 2.02 0.63 1.54 1.37 1.80 1.56 -1.85 14.09 -1.46 -1.97

Table 4: Results of our model compared with BabyLM RoBERTa-base on the SuperGLUE benchmark. The
accuracy and F1 score of the two models and the relative change between them are reported in percent.
Avg. (Super)GLUE: baseline 71.11, ours 72.22.

Model C
R

(C
O

N
TR

O
L)

LC
(C

O
N

TR
O

L)
M

V
(C

O
N

TR
O

L)
R

P
(C

O
N

TR
O

L)
SC

(C
O

N
TR

O
L)

C
R

_L
C

C
R

_R
TP

M
V

_L
C

M
V

_R
TP

SC
_L

C

SC
_R

P

BabyLM RoBERTa 74.68 100.00 99.93 99.98 59.23 -89.04 -91.24 -99.84 -15.30 -57.74 -39.17
CogMemLM-s 91.30 100.00 99.88 86.84 65.81 -68.19 -75.12 -99.97 -86.83 -65.29 -49.54
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Table 5: Results of our model compared with BabyLM RoBERTa-base on the MSGS benchmark. The Matthew
correlation coefficients of the two models and the relative change between them are reported in percent (negative
correlation scores indicate surface generalisations, positive correlation scores linguistic generalizations).
Avg. MSGS: baseline 3.77, ours -0.10.
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Abstract

Language models have seen significant growth
in the size of their corpus, leading to notable
performance improvements. Yet, there has
been limited progress in developing models
that handle smaller, more human-like datasets.
As part of the BabyLM shared task, this study
explores the impact of reinforcement learning
from human feedback (RLHF) on language
models pretrained from scratch with a limited
training corpus. Comparing two GPT-2 vari-
ants, the larger model performs better in sto-
rytelling tasks after RLHF fine-tuning. These
findings suggest that RLHF techniques may be
more advantageous for larger models due to
their higher learning and adaptation capacity,
though more experiments are needed to con-
firm this finding. These insights highlight the
potential benefits of RLHF fine-tuning for lan-
guage models within limited data, enhancing
their ability to maintain narrative focus and
coherence while adhering better to initial in-
structions in storytelling tasks. The code for
this work is publicly at https://github.com/
Zephyr1022/BabyStories-UTSA.

1 Introduction

The recent growth in the size of large language
models (LLMs) has enhanced natural language
processing capabilities, from information extrac-
tion (Agrawal et al., 2022) to language genera-
tion (Stiennon et al., 2020). However, the majority
of research has been concentrated on environments
with high computational power and a large num-
ber of parameters, leaving the emergence of these
capabilities largely uninvestigated in low data and
low resource settings (Brown et al., 2020; Fedus
et al., 2022). Although some studies have looked
into the relationship between model size, training
volume, and performance for LLMs, they have pri-
marily focused on scaling laws in high-compute
settings (Hoffmann et al., 2022). Investigations
into the effects of pretraining at a smaller scale

have been limited (Huebner et al., 2021; Deshpande
et al., 2023). Therefore, it would be interesting to
explore strategies that maximize the efficiency of
pretraining, especially considering the constraints
of limited data availability.

Storytelling is a fundamental human activity
used to share information, impart lessons, and keep
loved ones informed about our daily lives (Bietti
et al., 2019). Teachers leverage children’s love
for stories and their desire to tell them, using sto-
rytelling to promote cognitive and literacy devel-
opment. Storytelling is a critical bridge between
the oral language skills of early childhood and the
more mature language skills associated with read-
ing and writing. The recent BabyLM shared task
aims to address these challenges (Warstadt et al.,
2023). Hence, we report our submission to the
shared task in this paper. Specifically, our study
aims to understand whether we can pretrain a lan-
guage model from scratch on the same amount
of linguistic data available to a child, modeling a
smaller, reduced-vocabulary language. We are in-
terested in assessing a particular model’s effective-
ness and potential for enhancement. Specifically,
we investigate whether the model can demonstrate
high performance and if its performance can be fur-
ther improved using reinforcement learning tech-
niques from human feedback (RLHF) (Fernandes
et al., 2023). This process is analogous to how
teachers instruct children in storytelling, providing
feedback to encourage them to develop more coher-
ent and reasonable narratives. Implementing RLHF
has shown promising results in aligning foundation
models with human preferences. By using RLHF,
models can undergo subtle yet significant improve-
ments, such as refining tone (Liu, 2023), reducing
biases and toxic elements (Bai et al., 2022), and
enabling domain-specific content generation (Bang
et al., 2023). The primary goal of this research is to
explore whether the small pretrained model, with
its limited data size, can also benefit from RLHF,
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thus potentially improving its overall performance.

The performance of small language models
(SLMs) trained on large datasets has been observed
to be poor, generating incoherent and repetitive
text. Training large language models on limited
data can lead to overfitting, making smaller models
a potential solution to prevent overfitting (Warstadt
et al., 2020c). Inspired by how humans acquire
language and the BabyLM shared task, we explore
downsizing the language used in models to observe
the effects of pretraining. The main questions are
whether small language models can generate co-
herent English text and if this ability is limited to
larger, more complex models. It is also questioned
whether the limited capacity of small models to
memorize linguistic features—such as syntax, se-
mantics, morphology, and phonology—leads to
less creative outputs compared to larger models.
For example, linguistic features are crucial for un-
derstanding and generating text, with a broader
grasp potentially enabling more creative language
use. Larger models, with their increased capacity,
might capture a wider range of these features, possi-
bly leading to more creative and nuanced language
outputs. Conversely, small models might only learn
basic or frequent linguistic patterns, potentially lim-
iting their creative language generation capabilities.
Previous research indicates that models can learn
linguistic features with limited pretraining data but
need more data to prioritize linguistic generaliza-
tions over superficial ones (Warstadt et al., 2020c).
Some models fail to effectively use the linguistic
features they learn during fine-tuning for natural
language understanding tasks. The study aims to
investigate whether GPT-2 models of varying sizes
can acquire specific language patterns when fine-
tuned with reinforcement learning and human feed-
back, aiming to enhance the model’s storytelling
abilities.

In summary, in this paper, we pretrain GPT-2-
base model with a parameter of 125M from scratch
and compare it with the larger GPT2-Large model,
which has a parameter of 774M, making it approx-
imately six times larger. Both models are trained
using a limited dataset provided from the BabyLM
Challenge, which consists of approximately 100M
words (Warstadt et al., 2023). The dataset encom-
passes various sources, including child-directed
speech, transcribed speech from multiple sources,
children’s books, and Wikipedia. Subsequently, we
use the RLHF technique to fine-tune both models

and evaluate their ability to acquire new linguistic
features through human feedback and also perform
human evaluation on generated stories.

2 Related Work

Research has shown that smaller models tend to un-
derperform when trained on large datasets, making
the study of model downscaling a non-trivial (Turc
et al., 2019). Previous investigations into smaller
models have primarily centered around distillation
processes (Sanh et al., 2019), with the aim of max-
imizing performance while reducing the number
of parameters involved. Huebner et al. (2021) is
one of the most relevant papers to our work, where
they found that a small language model trained on
child-directed speech can yield results comparable
to larger language models when used in specific
probing tasks. And another study, Deshpande et al.
(2023) trained several models to explore scaling in
low-compute environments, assessing their perfor-
mance on a modified version of GLUE.

Our research, however, is driven by a desire to
understand if small pretrained models can benefit
from Reinforcement Learning from Human Feed-
back (RLHF), potentially improving their overall
performance despite their limited data size. Two
previous studies have a direct relation to this work:
the first employed human ranking feedback to train
summarization models using reinforcement learn-
ing (RL) (Stiennon et al., 2020), and the second
used stories to generate a value-aligned reward sig-
nal for RL agents, aimed at mitigating hallucination
behavior (Riedl and Harrison, 2016).

3 Data

In this section, we describe the pertaining data used
for the language models and the data used for the
reinforcement model.

3.1 Pretraining Data

We pretrain GPT-2 models using the dataset
from the STRICT track in the BabyLM Chal-
lenge (Warstadt et al., 2023), which includes var-
ious types of corpora, both spoken-based and
written-based. Examples of the spoken-based cor-
pus include CHILDES (MacWhinney, 2000), the
British National Corpus (BNC) dialogue section,
OpenSubtitles (Lison and Tiedemann, 2016), the
QCRI Educational Domain Corpus (Abdelali et al.,
2014), and the Switchboard Dialog Act Corpus
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(Stolcke et al., 2000). The written-based corpus in-
cludes the Children’s Book Test (Hill et al., 2016),
the Children’s Stories Text Corpus, the Standard-
ized Project Gutenberg Corpus (Gerlach and Font-
Clos, 2020), Wikipedia, and Simple Wikipedia. For
example, the Children’s Book Story and Wikipedia
corpora stand in contrast to dialogue or subtitle-
based corpora, which mostly consist of transcribed
speech, the primary language input for children.
Wikipedia, in particular, is a compilation of writ-
ten language rather than spoken dialogues. Most
of its articles are composed by professionals who
possess subject-matter expertise and adhere to rig-
orous standards of grammatical correctness. These
corpora contain a variety of sources with approx-
imately 100 million words, corresponding to the
linguistic competence expected at the onset of ado-
lescence (around 13 years old).

3.2 Reward Model Data

In this paper, we construct a reward model dataset
for reinforcement learning by selecting 100 sen-
tences from the STRICT track of the Babylm Chal-
lenge dataset. These sentences, serving as prompts,
are derived from two subsets in the Babylm dataset:
the Standardized Project Gutenberg and the Simple
Wikipedia corpus development sets, with a prereq-
uisite that each sentence includes characters and
plots. These prompts are then used to generate two
short stories each from the GPT-2 Base and GPT-2
Large models, beginning with the prefix “write me
a story starting with”. To enhance story diversity,
we set a maximum length of 128 tokens and en-
force a minimum of 10 new tokens in the generated
stories. The generation code incorporates a beam
size of 7 to optimize the story quality by exploring
various potential continuations.

The purpose of collecting feedback is to align
the model’s behavior with some goal behavior. For
example, we aim for the model to generate stories
consistent with the background plot, coherent, non-
repetitive, devoid of nonsensical sentences, and
maintain a clear topic or logical structure. Rating
the quality of a story accurately presents challenges
due to its potentially subjective nature and the vary-
ing expectations of readers regarding emotional
connection and engagement. Rather than directly
estimating a generated story quality through scale-
based annotation, we treat it as a latent variable to
be inferred from relative comparisons. Following
prior work in NLP on annotating social aspects

of language (Pei and Jurgens, 2020), we adopt a
method similar to Best-Worst Scaling (BWS) (Lou-
viere et al., 2015; Kiritchenko and Mohammad,
2016) to generate comparison data on people’s pref-
erences. Intuitively, it is easier for annotators to
identify the best and worst stories from a set of sto-
ries than it is for them to provide numerical assess-
ments. The process involves asking two student
annotators to choose from sets of stories, identi-
fying the best (most preferred) and worst (least
preferred) stories in each choice set. We provide
four stories for the annotators to choose from. This
method provides more information per choice set
than traditional preference methods and enables a
more precise ranking of items in terms of prefer-
ence. For instance, if we have stories A, B, C, and
D, and A is ranked as the best while D is ranked
as the worst, then we create the following pairs:
A > B, A > C, A > D, B > D, and C > D, re-
sulting in a total of 500 additional pairs for reward
model training from 100 best-worst annotations. A
> B means that the model should learn to provide
a higher score to A because it was ranked higher
than B. This is inferred because A was marked as
the best story.

3.2.1 Agreement for Reward Model Data
Annotation

Krippendorff’s alpha, introduced by Krippendorff
(1970), is a statistical measure commonly used for
assessing the level of agreement between two or
more annotators across various categories. Its ad-
vantage lies in its versatility, as it can be applied to
not only nominal data but any measurement scale,
such as Best-Worst Scaling.

In our case, two graduate student annotators
were designated to annotate human feedback data.,
which yielded a Krippendorff’s alpha agreement
score of .4657. To address disagreements, the two
annotators discuss each story example together.
They reconcile differences through discussion and
unanimously select the best and worst stories based
on the given story prompt.

4 Method

This section discusses pretraining data, the devel-
opment of the data tokenizer, language model con-
figuration, the objective of pretraining from scratch,
and the process of fine-tuning using reinforcement
learning with human feedback.
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4.1 Tokenizer

Our model uses a sub-word vocabulary built with
Byte-Pair Encoding (BPE) (Sennrich et al., 2016),
an approach initially developed for text compres-
sion. Later, this technique was applied by Ope-
nAI for tokenization during the pretraining stage
of the GPT model (Radford et al., 2019). Rather
than maintaining the original vocabulary size of
50,257 used in the GPT-2 model, we developed
a custom tokenizer based on a vocabulary size of
32,001. This custom tokenizer is trained on the col-
lective set of all training corpora from STRICT
track in the BabyLM Challenge, applying the
ByteLevelBPETokenizer from the Hugging Face
Tokenizers library1.

Prior research informed our decision to signifi-
cantly reduce the vocabulary size. Studies suggest
a vocabulary size of about 32,000 tokens is a good
balance for a single-language model (Kudo, 2018).
This size carefully balances the model’s proficiency
in handling less common words while preserving
its computational efficiency.

4.2 Model Architecture and Configuration

Models we pretrained in our experiments using the
default configuration setting of GPT-2 (Radford
et al., 2019). In these settings, we employed a con-
text length of 1042 tokens and set the maximum
training epoch limit to 15. The restriction to 15
epochs was primarily due to constraints on train-
ing time and GPU resources. We conducted the
training of the GPT-2 Base model on an NVIDIA
GeForce GTX 1080 Ti, while the GPT-2 Large
model was trained on an NVIDIA RTX A6000
GPU. The training time for the base model was ap-
proximately 72 hours, while it extended to around
216 hours for the large model. To train, we used the
Lion optimizer (Chen et al., 2023), configured with
a learning rate of 1e-5 and a weight decay of 1e-2.
We also integrated Triton, a GPU programming
language detailed by (Tillet and Cox, 2019), to
optimize hardware performance and implemented
mixed-precision computations using the ’bfloat16’
format for efficient resource utilization (Wang and
Kanwar, 2019).

For model selection, we chose the best model
across all epochs based on the average score
on two datasets: the Question-answering Natu-
ral Language Inference (QNLI) (Demszky et al.,
2018) and the SST-2 Binary Classification Bench-

1https://github.com/huggingface/tokenizers

mark (Socher et al., 2013). We evaluated the mod-
els’ performances on these benchmarks using the
F1 score. Additionally, the perplexity scores on the
validation dataset for our models were recorded as
24.10 for the GPT-2 Base model and 22.73 for the
GPT-2 Large model.

4.3 Reward Model
The reward model (RM) is designed to capture hu-
man preferences, and ideally, we could fine-tune
it using Reinforcement Learning and human anno-
tations for every output returned by the language
model. However, due to practical constraints like
workload and time limitations, it is not feasible
for humans to provide enough feedback for each
optimization iteration. As an alternative, a more
effective approach is to train a reward model that
simulates the evaluation process carried out by hu-
mans. This RM will evaluate any text and assign a
scalar reward value to the sentences, where higher
values indicate high-quality samples. Following
Stiennon et al. (2020), training reward models often
involve using a paired comparison dataset between
two responses generated for the same input.

To train our reward models, We initialize the
weights of the reward model by leveraging a pre-
trained GPT-2 Large model as described above,
then we add a randomly initialized linear head that
outputs a scalar value to form the reward model
rθ(x, y). We train this model to predict which gen-
erated story y ∈ {y0, y1}, where y0 is the chosen
(good) response to the prompt as labeled by our
annotators and y1 is the rejected (bad) response.
In practice, this is where our annotators ranked
y0 > y1. The model is trained using the loss func-
tion

loss(rθ) = −E(x,y0,y1,i)∼D

[
log(σ(rθ(x

i, yi0)

− rθ(x
i, yi1))

]

where σ is the sigmoid function and D is the set
of all training triplets in our dataset, i denotes the
index of a specific data point in the dataset D. In-
tuitively, the model learns to give a larger score to
the prompts with a higher rank. We have config-
ured the reward model to run for a maximum of 10
epochs, with a set learning rate of 1e-5.

4.3.1 Proximal Policy Optimization
After we train the reward model, we treat the logit
output of the reward model as a reward that we
optimize policy model outputs using reinforcement
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learning, specifically with the Proximal Policy Op-
timization (PPO) algorithm (Schulman et al., 2017).
During the RL fine-tuning with PPO phase, we use
the learned reward function to provide feedback to
the language model. In particular, we formulate the
following optimization problem

max
πRL(y|x)

Ex∼D,y∼πRL(y|x)
[
r(x, y)

]

−βDKL log

[
πRL(y|x)

πSFT (y|x)

]

where r(x, y) is the reward model’s output, β is a
hyper-parameter controlling the deviation from the
initial policy. Our optimization focuses on the pol-
icy πRL(y|x) using Proximal Policy Optimization
(PPO), with initialization based on the pretrained
language model policy πSFT (y|x) (Stiennon et al.,
2020; Rafailov et al., 2023).

To encourage exploration and prevent the policy
from getting stuck in a single mode, the optimiza-
tion uses the Kullback-Leibler (KL) divergence
term. This term also discourages the policy from
generating outputs that differ significantly from
those seen by the reward model during training,
thereby maintaining coherence in the generated
text. Without this penalty, the optimization might
generate gibberish text that tricks the reward model
into providing a high reward. In our implemen-
tation, we used the trlX library with its default
settings2. The algorithm was executed with a maxi-
mum of 5 epochs and a sequence length of 512, and
the run spanned around 208 hours. In our approach,
we used the default hyperparameter provided by
the trlX library, which employs Ray Tune for hy-
perparameter tuning. This choice was primarily
driven by the significant time and GPU resource
constraints associated with training the PPO model,
making it a pragmatic decision to leverage the pre-
configured settings of trlX. Although we experi-
mented with random modifications to some hyper-
parameters, the outcomes were less satisfactory as
compared to the default settings of trlX. Hence, the
decision to restrict the training to 5 epochs was
in alignment with these considerations, ensuring a
balance between computational feasibility and the
pursuit of meaningful reward training.

4.4 Evaluation Metrics and Datasets
To assess the performance of our models, we em-
ployed various automated evaluation metrics used

2https://github.com/CarperAI/trlx

in the BabyLM shared task and our own human
evaluation. The BabyLM shared task had two ma-
jor sets of evaluations: zero-shot evaluation and
fine-tuned evaluation. We describe each evaluation
task below.

Zero-shot Evaluation. BLiMP, introduced by
Warstadt et al. (2020a), is a series of zero-shot
tasks included in the evaluation. BLiMP assesses
the ability of language models to handle category
membership, provide congruent answers to spe-
cific types of questions, and recognize grammatical
questions. It serves as a behavioral probe, contain-
ing pairs of test sentences that isolate particular
phenomena in syntax and morphology, such as is-
land effects and determiner-noun agreement. Es-
sentially, BLiMP is a challenge set designed to eval-
uate the linguistic knowledge of language models,
focusing on major grammatical phenomena in En-
glish. The BLiMP Supplement benchmark consists
of BLiMP-style minimal pairs that specifically fo-
cus on aspects not covered by BLiMP. These addi-
tional aspects include discourse-level acceptability
across multiple speakers and question formation.

Fine-tuned Evaluation. Two datasets are used
for the fine-tuned evaluation: SuperGLUE and the
Mixed Signals Generalization Set (MSGS). Su-
perGLUE (Wang et al., 2019), an advanced ver-
sion of GLUE (Wang et al., 2018), is a bench-
mark for assessing progress in general-purpose lan-
guage understanding technologies. It comprises
a public leaderboard and a single-number perfor-
mance metric for various tasks. These include
CoLA, which evaluates the grammatical accept-
ability of English sentences; SST-2, which predicts
the sentiment of movie review sentences; MRPC,
which determines semantic equivalence between
sentence pairs; QQP, another task focused on se-
mantic equivalence; MNLI and MNLI-mm, which
predict the relationship between a premise and a
hypothesis sentence; QNLI, which matches a ques-
tion to a paragraph containing the answer; RTE,
which determines if a sentence entails a given hy-
pothesis; BoolQ, which answers yes/no questions
about a text passage; MultiRC, which identifies
true and false answers given a context paragraph
and a question; and WSC, a coreference resolution
task. These tasks, designed to be challenging, rep-
resent a broad spectrum of language understanding
capabilities, making SuperGLUE a robust tool for
evaluating language models.
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Model AA AS BD CR DNA E FG IF IE NL Q SV H QACe QACt SAI TT AVG

Baselines

OPT-125m 94.9 73.8 73.8 72.2 93.1 80.5 73.6 80.8 57.8 51.6 74.5 77.3 46.3 76.5 47.9 85.3 82.9 73.1
RoBERTa-base 89.5 71.3 71.0 67.1 93.1 83.8 68.0 89.6 54.5 66.3 70.3 76.2 50.8 34.4 34.5 45.6 46.8 65.5
T5-base 66.7 61.2 59.4 59.8 53.8 49.1 70.0 75.5 43.6 45.6 34.2 53.2 51.1 45.3 25.5 69.2 48.9 53.7

Ours

GPT2-Base 95.4 75.5 74.0 67.0 90.8 77.7 70.0 87.7 53.6 57.6 79.0 75.8 50.2 60.9 41.8 85.0 67.9 71.2
GPT2-Base-PPO 95.5 75.4 73.6 67.0 90.8 78.3 70.2 86.7 54.4 58.0 77.7 75.2 49.9 59.4 40.0 85.7 68.2 70.9

GPT2-Large 96.9 78.7 74.1 71.0 92.0 79.0 73.8 87.2 60.8 60.9 75.9 81.1 49.2 71.9 49.7 79.8 73.6 73.9
GPT2-Large-PPO 97.0 78.8 74.1 71.0 92.1 79.3 73.7 87.1 60.7 60.8 75.9 81.1 49.4 71.9 50.3 79.6 73.2 73.9

Table 1: Performance on BLiMP benchmarks. Evaluation tasks map accordingly: Anaphor Agr.:AA, Agr. Structure:
AS, Binding: BD, Control/Raising: CR, D-N Agr.: DNA, Ellipsis: E, Filler-Gap: FG, Irregular Forms: IF, Island
Effects: IE, NPI Licensing: NL, Quantifiers: Q, S-V Agr.: SV, Hypernym: H, QA Congruence (easy): QAC(e), QA
Congruence (tricky): QAC(t), Subj.-Aux. Inversion: SAI, Turn Taking: TT. The overall largest scores are in bold.

The MSGS dataset, introduced by Warstadt et al.
(2020b), is a diagnostic tool designed to evaluate
the preferences of language models for either lin-
guistic features, such as specific syntactic construc-
tions, or surface features, like the presence of a
word in a certain position. The primary objec-
tive of the MSGS tasks is to determine whether
a pretrained model leans more toward linguistic
or surface generalizations during the fine-tuning
process. Fine-tuning on self-supervised linguis-
tic tasks proves effective because it equips models
with features beneficial for language understanding.
Furthermore, pretrained models are not only capa-
ble of representing these linguistic features but also
tend to use them preferentially during fine-tuning.

To maintain consistency and ensure fair com-
parisons, we adopted the default hyperparameter
settings recommended by Gao et al. (2021). Our
only modification was adjusting the batch size to
32 due to GPU limitations. These evaluation proce-
dures allowed us to thoroughly assess the models’
capabilities and compare their performance across
different tasks. Our experiments report the average
scores of all performance metrics across tasks.

Human Evaluation. Inspired by the TinySto-
ries (Eldan and Li, 2023), we assess the four key
story generation outcome metrics of grammar (how
grammatically correct the story is), creativity (how
original and inventive the story is), consistency
with the story’s beginning (how well the story ad-
heres to the given prompts), and plot coherence
(whether the plot of the story makes sense). We ran-
domly selected 100 prompts from the ROCStories
dataset (Mostafazadeh et al., 2016). Each prompt
was composed of a story title and the first sentence.
We fed these prompts to the model, and it generated
short stories based on the given prompts. To assess

the quality of the generated stories, we enlisted the
help of a graduate student evaluator. The evaluator
was presented with the story’s beginning (title +
first sentence) and the completed story generated
by the model. They were then asked to rate the com-
pleted story on a scale of 1 to 10, considering as-
pects such as grammar, creativity, consistency with
the story’s beginning, and plot coherence. This hu-
man evaluation process provided valuable insights
into the model’s performance across these critical
dimensions.

5 Results

In this section, we report the results of the auto-
mated BabyLM metrics and our human evaluation
for story generation.

Performance on BLiMP benchmarks. Shown
in Table 1, the GPT2-Large and GPT2-Large-PPO
models outperform the GPT-base variants on the
BLiMP task with an average score of 73.9, ex-
celling in many specific tasks. For example, GPT2-
Large does well in tasks like Island Effects, NPI
Licensing, and Subject-Verb Agreement, whereas
GPT2-Large-PPO stands out in the QA Congru-
ence (tricky) task. The GPT2-Base and GPT2-
Base-PPO models score lower with averages of
71.2 and 70.9, respectively, suggesting that model
size (base versus large) plays a crucial role in de-
termining performance. However, for the BLiMP
benchmark, PPO training has little impact on model
performance. However, more experiments on dif-
ferent architecture could potentially point in a dif-
ferent direction.

Performance on SuperGLUE benchmarks. In
Table 2, we report the performance of the mod-
els on the SuperGLUE benchmarks, which assess
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Model CoLA SST-2 MRPC (F1) QQP (F1) MNLI MNLI-mm QNLI RTE BoolQ MultiRC WSC AVG

Baselines

Majority label 69.5 50.2 82.0 53.1 35.7 35.7 35.4 53.1 50.5 59.9 53.2 52.6
OPT-125m 73.7 86.6 82.1 77.8 70.1 71.9 80.1 67.7 66.0 61.1 59.0 72.4
RoBERTa-base 75.9 88.6 80.5 78.5 68.7 78.0 82.3 51.5 59.9 61.3 61.4 71.5
T5-base 76.3 88.0 85.9 79.7 71.5 74.0 83.1 60.6 69.0 62.4 60.2 73.7

Ours

GPT2-Base 69.5 83.3 78.1 72.2 60.0 61.3 57.0 49.5 59.9 46.8 42.2 61.8
GPT2-Base-PPO 69.5 81.3 82.0 67.3 60.9 61.7 61.4 45.5 59.9 46.8 39.8 61.5

GPT2-Large 69.5 82.7 83.0 32.4 61.4 62.2 54.4 58.6 66.8 46.8 61.5 61.7
GPT2-Large-PPO 69.5 84.3 82.3 66.7 59.5 64.0 79.6 53.5 67.4 46.8 61.5 66.8

Table 2: Performance on (Super)GLUE benchmarks. The task shortcuts correspond to the following datasets:
Corpus of Linguistic Acceptability (CoLA), the Stanford Sentiment Treebank (SST-2), the Microsoft Research
Paraphrase Corpus (MRPC), the Quora Question Pairs (QQP), the Multi-Genre Natural Language Inference (MNLI),
the mismatched version of MNLI (MNLI-mm), the Question Natural Language Inference (QNLI), the Recognizing
Textual Entailment (RTE), the BoolQ, the Multi-Sentence Reading Comprehension (MultiRC), and the Winograd
Schema Challenge (WSC). The overall largest scores are in bold.

Model CR_C LC_C MV_C RP_C SC_C CR_LC CR_RTP MV_LC MV_RTP SC_LC SC_RP AVG

Baselines

OPT-125m 97.2 82.6 100.0 99.8 88.1 75.3 67.1 66.3 66.8 84.8 62.0 80.9
RoBERTa-base 93.0 100.0 100.0 100.0 89.0 68.3 66.8 66.6 80.2 67.4 67.4 81.7
T5-base 95.1 100.0 100.0 99.8 88.7 76.7 69.4 67.0 67.7 72.7 68.0 82.3

Ours

GPT2-Base 96.7 99.8 99.7 100.0 95.5 68.2 68.3 66.6 67.0 74.6 76.5 83.0
GPT2-Base-PPO 85.9 99.8 99.9 99.9 93.3 71.7 67.9 66.6 67.0 68.4 70.5 81.0

GPT2-Large 91.2 98.5 99.9 100.0 94.0 67.3 68.5 66.6 66.8 71.9 69.4 81.3
GPT2-Large-PPO 93.6 99.8 99.4 100.0 96.2 70.0 66.7 66.6 66.9 73.1 68.1 81.9

Table 3: Performance on MSGS benchmarks. The MSGS shortcuts correspond to the respective tasks as follows:
CR_RTP maps to control_raising_relative_token_position, CR_LC maps to control_raising_lexical_content_the,
SC_RP maps to syntactic_category_relative_position, SC_LC maps to syntactic_category_lexical_content_the,
MV_RTP maps to main_verb_relative_token_position, MV_LC maps to main_verb_lexical_content_the. The
shortcuts RP_C, LC_C, SC_C, CR_C, and MV_C correspond to the tasks relative_position_control, lexi-
cal_content_the_control, syntactic_category_control, control_raising_control, and main_verb_control, respectively.
The overall largest scores are in bold.

a range of language understanding abilities. The
GPT2-Large-PPO model stands out with the high-
est average score of 66.8, underlining the poten-
tial for enhanced performance using larger mod-
els fine-tuned with PPO. Other models present
comparable average scores across the SuperGLUE
tasks. Compared to the Majority Label base-
line, the GPT-2 models exhibit varied levels of
performance enhancement across different tasks.
Specifically, the GPT2-Base model outperforms
the baseline in SST-2, QQP (F1), MNLI, MNLI-
mm, QNLI, and BoolQ. Similarly, the GPT2-Base-
PPO model surpasses the baseline in the same tasks:
SST-2, QQP (F1), MNLI, MNLI-mm, QNLI, and
BoolQ. The GPT2-Large model demonstrates supe-
rior performance over the baseline in SST-2, MRPC
(F1), MNLI, MNLI-mm, QNLI, BoolQ, and WSC.

While, the GPT2-Large-PPO model outperforms
the majority baseline in all tasks except for CoLA
and MultiRC, marking significant performance im-
provement in SST-2, MNLI-mm, and QNLI, with
an increase of 34.1, 28.3, and 44.2 respectively.

The performance across various models and
tasks exhibits considerable variability, showing that
different models may excel in distinct language un-
derstanding domains. The superior scores of the
GPT2-Large-PPO model suggest that larger models
fine-tuned with PPO could enhance performance,
yet further examination reveals inconsistencies. Fi-
nally, we note that the PPO training only improves
the performance of the GPT2-Large model, sug-
gesting that PPO training may require a model with
a minimum number of parameters to work in the
limited data setting. However, more experiments
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Model Overall Nouns Predicates Function words

GPT2-Base 2.05 1.98 1.84 2.62
GPT2-Base-PPO 2.06 1.99 1.83 2.66

GPT2-Large 2.05 1.98 1.83 2.63
GPT2-Large-PPO 2.05 1.98 1.82 2.63

Table 4: Performance on the Age-of-acquisition bench-
marks. This table presents Mean Absolute Deviation
(MAD) scores in months, comparing the actual average
age-of-acquisition (AoA) of words by American English
speaking children with the predicted AoA based on the
model’s average surprisal scores. A lower MAD score
indicates a better fit between the actual and predicted
AoA.

are needed to confirm this finding.

Performance on MSGS benchmarks Table 3
shows the results of testing GPT2 models of differ-
ent sizes on the MSGS benchmark. These results
help us understand how well the models use and
generalize different language and surface features.
Among the models, the GPT2-Base model outper-
forms other models with the highest average score
of 83.0. This suggests that GPT2-Base, despite
being a smaller model, has effectively learned to
generalize across a range of linguistic and surface
features. This might be due to the model’s efficient
use of its limited parameters. Instead of overfitting
to less important details in the training data.

Performance on Age-of-acquisition benchmarks
According to Portelance et al. (To Appear), a
smaller mean absolute deviation (MAD) score in-
dicates a better alignment between the model’s pre-
dictions and the actual average age-of-acquisition
(AoA) of words in children. Table 4 shows sim-
ilar MAD scores across all models for all word
categories (Overall, Nouns, Predicates, and Func-
tion words). This suggests that all models exhibit
similar levels of accuracy in predicting the AoA
of words, and their word-learning sequences align
closely with the natural language acquisition pat-
terns observed in children.

Performance on Human Evaluation. In Table 5,
we report the results of our human evaluation. The
findings indicate that the GPT2-Base and GPT2-
Large models exhibit comparable average grammar
scores. However, the GPT2-Base-PPO model per-
forms significantly worse (p-value < 0.001) than
the GPT2-Base in grammar and creativity evalua-
tions. The result is consistent with the BablyLM
automated evaluation metrics, where the GPT-Base-

Model Gram. Creat. Consist. PCoh

GPT2-Base 7.84 6.11 3.49 1.94
GPT2-Base-PPO 6.82*** 5.66** 3.37 1.89

GPT2-Large 7.65 6.23 3.94 2.35
GPT2-Large-PPO 7.62 6.21 4.48** 2.87*

Table 5: Performance on Human Evaluation. Gram.
(Grammar), Creativity (Creat.), Consistency (Consist.),
and Plot Coherence (PCoh). Significant differences
based on a paired t-test are marked with * (p-value < .1),
** (p-value < .05), and *** (p-value <.001).

PPO generally underperforms GPT-Base. Table 6
shows several examples from our TinyStory analy-
sis. Specifically, the GPT2-Base-PPO tends to gen-
erate repetitive and lengthy stories, likely contribut-
ing to its poorer grammar and creativity perfor-
mance. Furthermore, when comparing the GPT2-
Large and GPT2-Large-Base models in Table 5,
their performance levels for Grammar and Creativ-
ity are similar, showing that PPO had minimal im-
pact on the Large model for both metrics.

We also find significant differences in Con-
sistency (Const.) and Plot Coherence (PCoh)
between GPT-Large and GPT2-Large-PPO. In-
tuitively, these metrics evaluate generative mod-
els’ capability in following the beginning of the
story background rather than just content creation.
Our findings indicate that the performance scores
for GPT2-Base and GPT2-Base-PPO models are
fairly similar, but both are lower than those of the
GPT2-Large model variants. Again, this indicates
that the large models outperform the smaller mod-
els, even though we trained on a relatively small
dataset. Moreover, the GPT2-Large-PPO model
significantly improves consistency and plot coher-
ence scores compared to the standard GPT2-Large
model. This suggests that large models (at least
GPT2-Large in our case) can integrate the reward
model to generate better outputs than the GPT2-
base (smaller model).

We analyze the large model outputs in Table 6.
Specifically, in the second story from Table 6, the
beginning of the story is set as “Awkward I was
driving into the McDonald’s beside school.” Dis-
tinct differences can be seen when comparing the
narrative continuations generated by the GPT2-
Large and GPT2-Large-PPO models. For example,
the GPT2-Large model diverges from the initial
context, transitioning abruptly from the act of driv-
ing into McDonald’s to a sudden need to return to
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Prompt gpt2-base gpt2-base-ppo gpt2-Large gpt2-large-ppo

Aquarium closed Yester-
day I went to the aquar-
ium.

It was on the way to the
museum and there was a
lot of fish in it. (10/7/7/7)

It was one of the most important
things I’ve ever seen in my life.
The first thing I want to tell you
is that we are not going to be able
to help each other. The first thing
I want to tell you is that we are
not going to be able to help each
other. We are going to be able to
help each other. (6/6/1/1)

" It was full of fish, and
there were so many differ-
ent kinds of things to eat.
" (10/8/8/7)

" It was full of fish. He
looked at it and he said,
""I’m going to tell you a
story."" (10/9/8/7)

Awkward I was driving
into the McDonald’s be-
side school.

I’m going to tell you some-
thing,"" he said. ""You’re
going to have to do it,
don’t you? " (9/7/4/1)

"I don’t know what to do,"" he
said. ""I’m not going to tell any-
one about it."" " (9/7/4/1)

It was about two-and-a-
half hours ahead of my
time. It was then that I
realized that I had to get
back to work. (9/7/4/1)

"I didn’t know how to
drive, but I thought it was
great fun. " (10/7/7/7)

Tie Game The teams were
tied and this was the last
inning.

It was also the first time
that Tie Game would be
able to play the part of the
game. (6/2/9/8)

" ""Tie Game"" was released on
August 26, 2010. It is the second
single from Tie Game." (8/7/8/1)

It’s hard to imagine how
easy it would have been
for them to come up with
us. (9/6/2/1)

" That’s what I’m trying
to figure out, so let’s try it
again. " (9/6/2/1)

Table 6: Performance comparison of various models on grammar, creativity, consistency with the beginning of
the story, and plot coherence. The scores in the parentheses represent the evaluations for Grammar, Creativity,
Consistency, and Plot, respectively.

work. This abrupt shift disrupts the narrative flow
and doesn’t seamlessly connect with the story’s be-
ginning. On the other hand, the GPT2-Large-PPO
model manages to retain focus on the primary ac-
tivity of driving in its generated story. Although it
introduces an inconsistency by stating the character
doesn’t know how to drive, it maintains the plot
around the theme of a character recklessly driving
without knowing how to do so. This suggests that
the GPT2-Large-PPO model has a stronger adher-
ence to the initial instructions and makes a better
attempt at following them.

Summary of Findings and Limitations. Over-
all, we found that the GPT-2-Large generally
works better than GPT-2-base with and without
PPO. Also, PPO made significant improvements
to the model’s consistency and plot coherence
on the storytelling task when used with the large
model. However, PPO generally hurts performance
with the smaller GPT-2-Base model.

There were several limitations to our study. First,
a major limitation of this work is the lack of com-
parison with architectures beyond GPT-2. More-
over, comparisons to even larger models should
be made in the future. We were limited by the
computational resources required for large-scale
testing during the BabyLM shared task timeline.
Next, we had a limited-size reward model dataset.
Future work should explore the impact of reward
model dataset size and variety. Future work should
explore the impact of reward model dataset size
and variety. Additionally, the study did not explore

the hyperparameter tuning for the reward model
and the loss function in depth. Exploring different
settings for hyperparameters and examining alter-
native methods for reward training, such as varying
the weighting of the loss terms, could yield differ-
ent results and improve the model’s performance
in the storytelling task. Finally, we only had one
annotator for the human evaluation and were lim-
ited in size. A more extensive human study could
find more intricate differences between the models.

6 Conclusion

In this study, we investigated whether the small
pretrained model, with its limited data size, can
also benefit from RLHF, thus potentially improv-
ing its overall performance. We evaluate the two
variants of the GPT-2 model: the GPT-2 Base
model with 125M parameters and the larger GPT-2
Large model with 774M parameters. Both variants
are pretrained on the 100M words BabyLM Chal-
lenge dataset. We then fine-tune both models using
RLHF and evaluate their ability to acquire new lin-
guistic patterns and storytelling ability, including
generating coherent and creative English text while
adhering to the story background. We observe that
RLHF has a little or negative effect on the smaller
model. However, a substantial increase in model
parameters noticeably enhances the larger model’s
performance in storytelling tasks. In summary, our
experiments shed light on the behavior of small lan-
guage models fine-tuned using RLHF to perform
storytelling tasks in a limited dataset setting.
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Abstract

The size of neural language models has
increased rapidly over the past several
years. This increase in model size has been
accompanied by using larger and larger
amounts of language data to train them.
As these models and training data sizes
have grown, the computational resources
required to train them has surpassed what
is available to many researchers. This work
is part of a shared task called the BabyLM
Challenge which requires language models
to be trained using a restricted amount of
training data a small fraction of the size
of what large models use. In addition, no
pretrained tools can be used. This work
presents a curriculum learning approach
to this data restricted setting by apply-
ing a bytes per line ordering to provided
datasets. Throughout training, the aver-
age bytes per line is gradually increased by
including more datasets as training data.
Overall, there is an increase in perfor-
mance on downstream tasks when using
this curriculum learning approach, which
provides a basis for potential further ex-
ploration of byte-based curriculum learn-
ing approaches.

1 Introduction

Large language models (LLMs) have received much
attention from researchers and the general public
in recent years (Devlin et al., 2018; Liu et al., 2019;
Brown et al., 2020; Chowdhery et al., 2022; Hoff-
mann et al., 2022). One distinguishing aspect of
these recent models is an explosion in the size of
the models and a corresponding massive increase
in training data to train these large models. In
particular, the Chinchilla (Hoffmann et al., 2022)
work suggests that model size and training tokens
should be scaled at the same rate. To demonstrate
the importance of the amount of training data used
to train a model, Chinchilla was trained with 1.4
trillion training tokens, nearly five times the size
of the training data for other LLMs at the time.

The result was an improvement on a number of
downstream tasks.

While large models perform very well on a large
variety of tasks, they also come with many draw-
backs. These models require large amounts of com-
puting resources beyond what is available to many
researchers. Additionally, the amount of data used
to train these models is not currently available in
the majority of the world’s languages. In an ef-
fort to investigate language modeling abilities and
training strategies in data-limited situations, the
BabyLM challenge restricts the amount of data
available to models (Warstadt et al., 2023).

One approach to improve training speed and
improve downstream performance is by providing
training data in a specific order. In particular,
gradually increasing the difficulty of the training
samples provided to the model is known as cur-
riculum learning (Elman, 1993). Human children
learning language follow a similar exposure to lan-
guage. Speech directed at babies is far simpler
than speech directed at adults and written lan-
guage data follows the same trend. The motivation
behind curriculum learning is to treat a neural net-
work in a similar manner and allow it to learn from
easier training samples before being presented with
more difficult training samples.

The approach taken in this current work is to
apply curriculum learning in a data restricted set-
ting, without incorporating outside knowledge or
data, to see its impact on training. The prepro-
cessing steps are kept the same across models pre-
sented to reduce their effect on the ability to com-
pare across training runs. A byte-level byte-pair-
encoding tokenization is used across all models pre-
sented. Inspired by the byte-level approach to en-
coding, bytes per line is used as the measure of
“difficulty” for a given portion of the dataset. The
data used to train the model came from several
different datasets. The bytes per line “difficulty”
is used to determine the order in which training
datasets are provided to the models as part of a
curriculum learning approach. While no additional
or outside information is required to apply this ap-
proach to data, the result for this challenge was
that transcribed speech was used as training data
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before any of the written text data. This provides
another parallel to human language acquisition as
speech comes before literacy in children.

Given that the limitations motivating this work
and this challenge include data limitations as well
as computational resources, we train each model
for a set number of epochs. Models trained using
the curriculum learning approach outperformed a
traditional training approach baseline across sev-
eral benchmark downstream tasks. When com-
putational resources are less limited, the models
also continue to improve when the model size is
increased and when trained longer.

2 Related Work

There is much existing work on language models,
including methods to work with them in computa-
tional or data constrained settings. One approach
that has been used is model distillation. A well-
known example of this is DistilBERT (Sanh et al.,
2019). DistilBERT, and other distillation trained
models, require a larger pretrained model to act as
a teacher when a smaller model is trained. While
the end result is a smaller model which can per-
form quite well. This approach can be applied to
systems which require a small final model, but does
not work for data or computationally constrained
settings for training such as ours.

A similar approach is to use a large language
model and simply finetune on the data-restricted
task. Since this requires a pretrained large lan-
guage model, this approach also does not work
for constrained training settings with no such pre-
trained model available. While finetuning is used
as part of the evaluation process for this challenge,
this approach violates the restrictions of this chal-
lenge. As such, this solution to data-restricted set-
tings is not used here. When there is a domain
mismatch between the data used to pretrain an
existing language model and the training data for
a desired domain, some work suggests that train-
ing a new language model may be beneficial. For
example, Gu et al. (2021) find that training a new
language model specifically on in-domain biomed-
ical data produced a better result for in-domain
downstream tasks. This is more similar to the set-
ting of this work as a language model is trained
from scratch.

Another area of research within Natural Lan-
guage Processing that is similar to this strict-small
track is work with low-resource languages. While
many of the largest language models are built for
English with large quantities of data, there have
been efforts to improve language modeling in lower
resource language as well. Some of these, such as
multilingual BERT (Devlin et al., 2018), are them-
selves large language models which combine many
languages into one model. These models still re-

quire a large amount of resources (data and com-
putational) and are larger than what is presented
in the challenge.

Since curriculum learning relies upon increasing
the difficulty of training samples as training con-
tinues, determining what makes a training sam-
ple more difficult than another is centrally impor-
tant. For language input, some proposed measures
of difficulty include presence of rare words (Bengio
et al., 2009), block size (Nagatsuka et al., 2021),
and length (Nagatsuka et al., 2023). When viewed
in relation to these approaches, this work repre-
sents an exploration of a new, related measure of
difficulty of training samples.

The learning schedule used in this work which
determines at what rate new samples are added
to the training set shares a similar motivation to
work by Amiri et al. (2017). Their work applies
findings from psychology that human learners learn
effectively when the same information is reviewed
with increasing lengths of time between reviews.
These findings suggest that human learners abil-
ity to learn information is impacted not only by
repetition of material, but also by the interval of
time between those repetitions. The work by Amiri
et al. (2017) uses this as a basis for a curriculum
learning schedule. That work created a scheduler
which spends more time on difficulty training in-
stances and less time on easy instances. This work,
by contrast, by gradually increasing the size of the
training set, also gradually increases the time be-
tween repetitions of the easiest training samples
while saving the more difficulty samples for later
in training.

As this work was part of a shared task BabyLM
challenge, there will be other related works pub-
lished at the same time as this work. While those
works cannot be discussed here, they will also
provide good comparisons of other possible ap-
proaches.

3 Data

The dataset provided for this challenge came from
ten sources. These sources were chosen to repre-
sent the type of language that a human child may
be exposed to when learning English and includes
both written text and transcribed speech. For the
strict-small track, the total training data available
was just under 10 million words.

Given the variety of sources, the text format
was not consistent across the provided data and
required some preprocessing.

3.1 Preprocessing

Due to the strict nature of the challenge, no prepro-
cessing steps which were pretrained on outside data
were allowed. This restriction ruled out the use of
many off-the-shelf preprocessing tools. In many
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Dataset Domain Words
Size
(MB)

Lines Bytes/line

CHILDES Child-directed speech 0.44M 1.9 80K 24
OpenSubtitles Movie subtitles 3.09M 16.0 527K 30
Switchboard Dialog
Act Corpus

Dialogue 0.12M 0.6 16K 37

British National Corpus,
dialogue portion

Dialogue 0.86M 4.3 89K 48

QCRI Educational
Domain Corpus (QED)

Educational video
subtitles

1.04M 5.6 100K 56

Simple Wikipedia
Wikipedia
(Simple English)

1.52M 8.7 120K 72

Children’s Book Test Children’s books 0.57M 2.6 26K 100
Standardized Project
Gutenberg Corpus

Written English 0.99M 5.5 54K 102

Children’s Stories
Text Corpus

Children’s books 0.34M 1.8 16K 112

Wikipedia
Wikipedia
(English)

0.99M 5.8 50K 117

Total 9.96M 52.8 1078K 49

Table 1: Dataset provided for the strict-small track of the BabyLM challenge. Dataset names, domain
descriptions, and word counts provided in Warstadt et al. (2023). Bytes, line counts, and bytes per line
all measured after preprocessing was completed. See section 3.1 for details.

low-resource settings there may be no or limited
existing pretrained tools to use for preprocessing.
While such tools are useful when available, in this
challenge those tools are off-limits.

We used a rule-based sentence splitter. Sen-
tences are automatically split by punctuation un-
less they are preceded by one of the listed prefixes
(for example, “Dr” followed by punctuation does
not signify a sentence split).1 This approach was
selected since it was not trained on any outside
data and provides decent sentence breaks.

Additional preprocessing included removal of
blank lines, and lower casing the entire “QED”
dataset, which came in all capital letters.

3.2 Tokenizer

In order for the model to train on the data, a to-
kenizer must convert the input sentences into to-
kens. Word-level tokenizers replace any words not
seen in the training data with an unknown token.
Given the small amount of training data avail-
able in this challenge, this would result in many
words marked as unknown. At the other extreme,
character-level tokenization breaks every input into
characters in order to eliminate any unknown to-
kens from occurring. This also has the advantage
of having a small vocabulary size, since it consists
only of characters. A major drawback of this ap-
proach is that, unlike words, characters may not
have meaning by themselves. A popular and suc-
cessful approach sits between these two by merg-

1https://github.com/mediacloud/sentence-splitter

ing frequent pairs of characters together iteratively
to create a vocabulary of characters and merged
tokens. This approach is known as byte-pair en-
coding (BPE) (Sennrich et al., 2015). Despite its
name, byte-pair encoding applied to natural lan-
guage models typically does not operate at the
byte level. A more recent approach used in lan-
guage models such as GPT-2 (Radford et al., 2019)
is byte-level byte-pair encoding. This is similar
to earlier BPE, but operates directly on the byte
representations and has been effective in language
models.

After preprocessing, a byte-level byte-pair-
encoding tokenizer was trained on the data. The
vocabulary size was set to 52,000 with special
tokens added for sentence beginning and end,
padding, masking, and an unknown token in case
any bytes were never seen in the training data. The
maximum length was set to 128 (126+beginning
and end tokens). Once trained, this tokenizer was
used across models for consistency.

4 Model and Training

Our model is a RoBERTa (Liu et al., 2019)
model. RoBERTa improves upon the BERT (De-
vlin et al., 2018) model, increasing performance
across a range of benchmarks. While the architec-
ture of both models is nearly identical, there are
a number of smaller changes made in RoBERTa.
Among the most relevant for his work is the re-
moval of next sentence prediction task during pre-
training and modifying the masked language mod-
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eling pretraining task by re-selecting the masks
each training epoch. The architecture underlying
these models is the Transformer model (Vaswani
et al., 2017). The “base” model and the “CL-sm”
model are the same size and number of parameters,
differing only in how they were trained. The “CL-
lrg” model is trained in the same way as “CL-sm”
but is a slightly larger model. More details of the
models are discussed in section 5.1. The “CL-sm”
model trained for 5 epochs was submitted to the
BabyLM Challenge2. The “CL-lrg” model trained
for 10 epochs is also available for download3. Since
we do not significantly modify this underlying ar-
chitecture, we leave the details of these models to
their respective papers. Code to train our model
can be found on GitHub 4.

4.1 Masked Language Modeling

The pretraining objective used to train our mod-
els was masked language modeling. In masked
language modeling (MLM), tokens are randomly
replaced with a special ¡mask¿ token. Given
the surrounding context, the model predicts the
masked token and the loss is used to train the
model. As mentioned above, MLM as a pretraining
task for language modeling has been used success-
fully in many existing models such as BERT and
RoBERTa. Following RoBERTa, masks were com-
puted dynamically for each training instance and
were not retained across epochs.

4.2 Curriculum Learning

Our models used curriculum learning to gradually
increase the difficulty of the training set. As dis-
cussed earlier, there are ten datasets that were
combined to create the training data. Each of these
datasets were added one at a time to increase the
training data. The way “difficulty” was measured,
avoiding applying outside knowledge to the data,
was by dividing each of the ten data files’ size by
the number of lines in that file. This gave an ap-
proximate bytes per line ranking of the ten train-
ing files. This was computed after all preprocessing
was done, including the additional line splits and
blank line removals.

A number of epochs is chosen prior to pretrain-
ing. After that number of epochs of training, an-
other dataset was added to the training data. The
model weights from the end of the previous epochs
were used, but the learning rate and other hyper-
parameters were reset. As there was more data in
the training set as training continued, the epochs
contained more updates the further the training

2https://huggingface.co/jdebene/BabyLM-jde-
5/tree/main

3https://huggingface.co/jdebene/BabyLM-jde-
larger-10/tree/main

4https://github.com/jdebened/BabyLM2023

went. The final set of epochs included all of the
training data.

The order in which datasets were added by fol-
lowing this approach was:

1. CHILDES (MacWhinney, 2000)

2. OpenSubtitles (Lison and Tiedemann, 2016)

3. Switchboard Dialog Act Corpus (Stolcke
et al., 2000)

4. British National Corpus, dialogue portion5

5. QCRI Educational Domain Corpus (QED)
(Abdelali et al., 2014)

6. Simple Wikipedia6

7. Children’s Book Test (Hill et al., 2016)

8. Standardized Project Gutenberg Corpus (Ger-
lach and Font-Clos, 2020)

9. Children’s Stories Text Corpus7

10. Wikipedia8

This ordering also orders spoken, transcribed
datasets before written datasets. This follows the
language acquisition and exposure ordering that
human children encounter. The exact ordering dif-
fers from an ordering based on when children would
be exposed to these particular datasets, in partic-
ular Children’s Stories Test Corpus would come
much earlier in the order. One benefit of our ap-
proach is that it can be applied to any datasets
without prior knowledge of what the datasets con-
tain.

Unlike many other works which combine data
from all sources into one pool before assigning an
order to samples, this work places the ordering on
the data sources themselves. This approach is fit-
ting for settings such as this one in which the data
from different sources can differ widely in their
complexity. Datasets which contain more similar
sources may not benefit from this approach, but
that is outside the scope of this current work.

Since our tokenizer uses byte level byte pair en-
coding, we chose to explore a byte-based ranking
for the dataset complexities.

5 Results

Here we examine the results of models on the pro-
vided evaluation benchmarks (Gao et al., 2021).
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Model
Ana.
Agr.

Agr.
Str.

Bind.
Ctrl.
Rais.

D-N
Agr.

Ellip.
Fill.
Gap

Irreg. Isl. NPI Quan.
S-V
Agr.

Avg.

Base
5 ep 72.65 66.59 64.84 60.96 85.12 51.39 63.60 90.69 34.19 57.52 78.77 57.85 65.35
10 ep 79.35 70.42 68.06 64.85 94.76 65.65 65.66 92.32 34.68 59.57 79.01 62.48 69.73
20 ep 84.25 72.65 68.60 65.11 96.55 70.44 68.04 91.09 32.21 55.86 72.23 67.37 70.37
CL-sm
5 ep 81.65 72.77 71.40 67.34 96.38 71.94 68.32 81.63 33.48 65.87 69.22 71.29 70.94
10 ep 86.50 72.81 69.46 68.91 94.79 75.87 71.68 80.46 39.05 62.22 67.95 72.68 71.87
CL-lrg
5 ep 84.92 73.44 70.36 69.07 97.14 74.31 74.07 85.70 34.87 64.14 74.91 72.86 72.98
10 ep 87.88 71.40 70.04 68.94 94.75 75.75 74.56 84.17 44.25 67.86 66.18 77.76 73.63

Table 2: Comparison of models on BLiMP tasks. Average shown is macro-average across all tasks. Mod-
els trained using curriculum learning surpassed baseline (all data, no curriculum learning) and improved
further when more epochs were used for training. Bolded values show best in column.

5.1 BLiMP

Distributed as part of the BabyLM challenge was
an evaluation pipeline. This pipeline included zero-
shot evaluation on tasks from the BLiMP bench-
mark (Warstadt et al., 2020a). The BLiMP data
was filtered to only include words which appeared
at least twice in our training dataset (strict-small
track) 9. BLiMP (The Benchmark of Linguis-
tic Minimal Pairs) provides a pretrained language
model with a pair of sentences to score. The sen-
tence pairs have small differences designed to as-
sess whether a language model can select the cor-
rect sentence. If the language model assigns a
higher score to the correct sentence in the pair,
it is marked as correct. The tasks within BLiMP
test different phenomena spanning syntax, seman-
tics, and morphology. Since the sentences come
in pairs, a random guessing baseline would achieve
around 50% accuracy across all tasks.

Table 2 shows the results on BLiMP tasks. All
models shown used the same preprocessing, tok-
enization, and are RoBERTa models. The base
model had six attention heads and four hidden lay-
ers. All data was used for every epoch of training
the base model. The “CL-sm” model also had six
attention heads and four hidden layers, thus main-
taining the same architecture. The curriculum
learning technique described above was applied at
training time, gradually increasing the amount of
available training data. The “CL-lrg” model is a
larger version with twelve attention heads and six
hidden layers. The curriculum learning technique
is the same as was used for the smaller model.

As can be seen in Table 2, even with the lim-

5http://www.natcorp.ox.ac.uk
6https://dumps.wikimedia.org/simplewiki/20221201/
7https://www.kaggle.com/datasets/edenbd/children-

stories-text-corpus
8https://dumps.wikimedia.org/enwiki/20221220/
9See https://github.com/babylm/evaluation-

pipeline for more details

ited amount of training data available in this chal-
lenge, the language models were able to improve
on most BLiMP tasks. The models trained using a
curriculum learning approach all had higher aver-
age scores across the BLiMP tasks. The only two
tasks in which the base model outperformed the
curriculum learning models were irregular forms
and quantifiers. The irregular forms task focuses
on irregular forms of words in English for past par-
ticles. The example given in the BLiMP paper for
the irregular forms task is: “Aaron broke the uni-
cycle” compared to “Aaron broken the unicycle”.
For the quantifiers task, grammatical use of quan-
tifiers is tested as shown in the example from the
BLiMP paper: “No boy knew fewer than six guys”
compared to “No boy knew at most six guys”.

Upon further inspection of the training data,
this drop in performance on the irregular forms
makes sense given the order in which the curricu-
lum learning datasets were used. Initially, the
model trains exclusively on the CHILDES dataset.
After the specified number of epochs, the Open-
Subtitles data is added and additional training is
done. As this process continues, the model appears
to be heavily influenced by the improper use of ir-
regular forms within the CHILDES dataset. For
example, “you broken the trains ?” is a sentence
in the dataset in which the speaker is likely repeat-
ing a statement made by the child. By contrast,
the model is exposed to every dataset during every
epoch in the base model. The training data coming
from sources such as Wikipedia, simple Wikipedia,
Project Gutenberg, and others is much less likely
to feature many improper uses of irregular forms.

The performance drop on the quantifiers task
is not as obvious in the data, nor is the drop in
performance as dramatic. Even within the base
model itself, performance on the quantifier task
dropped when moving from 10 epochs of training
to 20 epochs of training. Training models on larger
portions of the datasets included in this challenge

202



may provide more insight into which datasets con-
tribute positively or negatively toward each task in
the benchmark. This is left to future work outside
of this challenge.

Another task of note is the island effects task.
This task assesses how well the language model
learns that certain syntactic structures prevent
syntactic dependencies across them. This phe-
nomenon is investigated in works such as by Kush
et al. (2018). An example of this, given in
the BLiMP paper, is: “Whose hat should Tonya
wear?” compared to “Whose should Tonya wear
hat?”. It is noted in the BLiMP paper that this
is the hardest task in the benchmark for models
they tested. Our models not only did not do bet-
ter than random chance (50%), they actually con-
sistently preferred the wrong option. Similar to
quantifiers, there may be interesting results from
uncovering why these models prefer the sentences
which violate the island effects, but that is left to
future work outside the scope of this challenge.

5.2 SuperGLUE

The GLUE benchmark (Wang et al., 2018) was de-
signed to assess natural language systems on lan-
guage understanding tasks. There were nine tasks
aimed at testing different aspects of the language
understanding problem. About a year after its re-
lease, in response to rapid improvements on the
benchmark by natural language systems, Super-
GLUE was published as a more challenging sup-
plement or replacement (Wang et al., 2019).

Since these tasks require more than just a lan-
guage model score to make predictions, the pro-
vided evaluation scripts finetuned a model for each
task. The finetuning process involves a small
amount of additional, task-specific training of a
pretrained model in order to boost performance or
add a suitable encoder or decoder layer for the spe-
cific task. The initial learning rate was set to 5e-5,
the batch size set to 64, and the model trained for
up to 10 epochs.

The results for tasks from GLUE and Super-
GLUE can be seen in Table 3. The models trained
with curriculum learning had higher average scores
than those trained conventionally. While the cur-
riculum learning models improved on most tasks,
there were three tasks worth examining further:
QNLI, BoolQ, and WSC.

The task labeled QNLI (Question-answering
NLI) comes from the Stanford Question Answer-
ing Dataset (SQuAD) (Rajpurkar et al., 2016). In
SQuAD, systems were provided with a question
and a paragraph which contained a sentence an-
swering the question. The task was to pick out
which sentence answered the given question. This
was converted into the QNLI task by pairing the
question with each sentence in the given paragraph

and asking a natural language system to classify
whether the answer to the question is contained in
the given sentence.

In our results, we can see that the curriculum
learning approach has the highest score of any
of our models after its shortest training set of
5 epochs. However, performance dropped when
the pretraining within the curriculum learning
framework was increased to 10 epochs per set of
data. Performance degraded even further when
the model size was increased and the curriculum
remained the same.

For the task labeled BoolQ (Boolean Questions)
(Clark et al., 2019), the task is to provide a boolean
response (yes/no) to a question. The system is
provided with the question and a paragraph from
a Wikipedia article which contains the answer to
the question. Here we see a similar phenomenon
to the trend with QNLI. The curriculum learning
models’ performance decreases when allowed more
epochs for pretraining. Increasing model size had
a less noticeable drop in performance.

The WSC (Winograd Schema Challenge) task
(Levesque et al., 2012) requires a system to pick
to which noun phrase in a sentence a pronoun is
referring. The system is provided with a sentence
which includes a pronoun and noun phrases. The
pronoun refers to one of the noun phrases. The
drop in performance for models which trained for
more epochs is fairly consistent across models, re-
gardless of whether curriculum learning was ap-
plied for pretraining or not.

Despite these three tasks, average performance
across the benchmark does improve when using
curriculum learning, when increasing the number
of pretraining epochs, and when increasing the
model size.

5.3 MSGS

The MSGS (Mixed Signals Generalization Set)
(Warstadt et al., 2020b) was designed to test for in-
ductive biases in pretrained language models. The
aim of these tests are to not only find whether a
language model represents certain phenomena, but
more importantly whether it has learned to prefer
them when generalizing. As was done for the Su-
perGLUE tasks, finetuning is done for each model
to find its performance on each task. Our finetun-
ing hyperparameter setup is unchanged for MSGS.

The results shown in Table 4 show that the per-
formance across our models was relatively similar.
The conventional training method used for the base
model had nearly identical average performance
across all three different training lengths with the
exception of poor performance on the SC-LC task
for the model trained for 20 epochs. Given the
consistency across other tasks, it is possible that
retraining would not replicate this drop, though
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Model CoLA SST-2
MRPC
(F1)

QQP
(F1)

MNLI
MNLI-
mm

QNLI RTE BoolQ
Multi
RC

WSC Avg

Base
5 ep

70.76 84.84 76.92 77.07 67.02 67.84 62.20 48.48 63.35 57.94 61.45 67.08

10 ep 71.05 85.63 74.05 77.30 67.65 69.67 62.64 44.44 63.07 50.82 59.04 65.94
20 ep 70.36 86.61 78.63 77.77 68.07 69.37 65.27 44.44 65.70 58.38 59.04 67.60
CL-sm
5 ep

71.34 84.84 73.90 77.69 65.79 66.52 66.54 46.46 67.36 59.04 61.45 67.36

10 ep 72.33 87.99 76.45 78.47 70.05 71.23 64.22 45.45 64.73 59.58 56.63 67.92
CL-lrg
5 ep

72.33 87.01 79.38 78.60 70.71 72.15 63.87 47.47 65.42 57.28 61.45 68.70

10 ep 74.39 88.19 79.41 78.57 70.05 70.56 63.17 51.52 64.87 59.58 59.04 69.03

Table 3: Comparison of models on (super) GLUE tasks. Average shown is macro-average across all
tasks. Models trained using curriculum learning surpassed baseline in average performance.

Model
CR-
ctrl

LC-
ctrl

MV-
ctrl

RP-
ctrl

SC-
ctrl

CR-
LC

CR-
RTP

MV-
LC

MV-
RTP

SC-
LC

SC-
RP

Avg

Base
5 ep

82.13 100 97.76 99.29 95.25 66.46 66.64 66.61 66.38 88.69 69.75 81.72

10 ep 84.36 100 97.77 98.64 93.46 69.11 66.81 66.61 66.72 89.53 65.07 81.64
20 ep 89.94 100 97.98 99.98 89.92 66.60 66.92 66.61 66.79 67.39 64.56 79.70
CL-sm
5 ep

91.14 100 97.45 99.74 86.71 66.49 67.15 66.61 66.87 63.84 62.34 78.94

10 ep 88.37 100 97.93 100 89.96 66.38 67.29 66.61 66.78 70.10 65.72 79.92
CL-lrg
5 ep

84.57 100 99.36 98.94 94.39 66.35 67.01 66.61 66.62 72.69 70.33 80.62

10 ep 89.56 100 99.87 100 92.21 67.00 66.76 66.61 66.65 75.54 69.30 81.22

Table 4: Comparison of models on MSGS benchmark tasks. Average shown is macro-average across
all tasks. Models trained using curriculum learning performed slightly worse than baseline model, but
improved with more epochs. The base model, by contrast, had worse performance with more training
epochs.
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that would need to be tested to be confirmed. The
models trained with curriculum learning had slight
improvements when pretrained for more epochs as
well as when the model size was larger. Overall,
the techniques used in this work showed little im-
pact on the MSGS tasks.

6 Conclusion

Large language models have been highly success-
ful across a wide variety of tasks in Natural Lan-
guage Processing. Due to the rapidly increasing
model size and training data size, however, the
cost to train new models is prohibitively expen-
sive for many researchers. The BabyLM Challenge
is a shared task designed to highlight methods for
training language models at a smaller scale. These
methods may lead to improvements in scaling up
training more efficiently, training language models
in low-resource settings, and drawing upon the way
human children acquire language.

In this work, the strict-small track allowed our
models to use a given dataset containing around
ten million words from data sources that a child
may encounter when learning language. No tools
which used outside data for pretraining were al-
lowed, reducing the ability to use many existing
pipelines. This restriction is realistic for many low-
resource scenarios in which these tools are lacking.

This work explores ordering training data by
bytes per line for a curriculum learning approach.
This measure of difficulty is inspired by the use of
byte-based byte-pair-encoding tokenization and is
easy to apply without needing any domain knowl-
edge of the dataset. The results show that cur-
riculum learning with this setup obtains improved
results on benchmark evaluations when training for
a set number of epochs. In settings in which addi-
tional tools, data, or computational resources are
available, this curriculum setup is easy to apply
and further evaluation in those settings is a poten-
tial area for future work.

This work used the Augie High-Performance
Computing cluster, funded by award NSF 2018933,
at Villanova University.

Limtations

This work was completed as part of the BabyLM
Challenge. As such, additional testing would be
required to determine how well the results gen-
eralize outside of this data setting. In a simi-
lar way, pretraining settings in which some pre-
existing tools which are trained on outside data
are available may produce different results. Addi-
tionally, if more computational resources are avail-
able, the benefit to the models when trained for
more epochs remains to be seen. Other work on
curriculum learning found faster convergence, but
models in this work were trained for a set number

of epochs and not to convergence. The results out-
perform the baseline model at the set number of
epochs used, but training to convergence may lead
to better or worse results.
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Abstract

In this study, we describe our submission to
the 2023 BabyLM shared-task’s strict-small
track. Our findings demonstrate the feasibility
of training high-performing models within the
constraints of limited data, computational re-
sources, and time. We provide evidence that
the formatting of input can significantly im-
pact downstream performance. Furthermore,
the induction of structural biases into the mod-
els through the use of part-of-speech trees
yields modest benefits. Our most successful
model achieves 79% on the BLiMP evalua-
tions and 72% on the SuperGLUE evaluations.
All models trained during this study can be
found at https://huggingface.co/mcgill-
babylm.12

1 Introduction

The pretraining of large language models (LLMs)
is a resource-intensive process, requiring substan-
tial computational power, time, and particularly,
data. Contemporary LLMs are trained on billions,
if not trillions, of tokens to achieve satisfactory
performance (Kaplan et al., 2020; Hoffmann et al.,
2022). This approach is not ideal, given that hu-
mans can learn to perform more complex tasks
with data that are smaller by orders of magnitude
(Linzen, 2020). Consequently, there is a burgeon-
ing interest within the NLP community to iden-
tify and implement more data-efficient pretraining
regimes.

The 2023 BabyLM challenge (Warstadt et al.,
2023) seeks to unify research in this domain by
formalizing the constraints and providing common
pretraining and evaluation corpora. This shared
task involves pretraining LLMs from scratch us-
ing data at a scale comparable to what a thirteen-

1 Corresponding author: Ziling Cheng (zil-
ing.cheng@mail.mcgill.ca).

2 The code is available at https://github.com/ziling-
cheng/babylm.

year-old human child would have been exposed
to. This approach enables researchers to con-
centrate their efforts on developing data-efficient
pretraining techniques, potentially drawing inspi-
ration from human cognitive development. The
"strict-small" track, which limits the amount of
pretraining data to 10M words, is of particular in-
terest, and will be the focus of this study. An
additional constraint of not being able to use any
tools trained on external data further increases the
difficulty. The pretraining corpus comprises mul-
tiple datasets, primarily consisting of transcribed
conversations and other forms of simple language
text. The evaluation of pretrained models includes
zero-shot linguistic benchmark (Warstadt et al.,
2020a, BLiMP) as well as finetuning the mod-
els for both standard Natural Language Under-
standing (NLU) tasks (Wang et al., 2019a, Super-
GLUE) and evaluations of linguistic generaliza-
tion (Warstadt et al., 2020c, MSGS). Brief descrip-
tions of these datasets are provided in Section 3.

In this study, we limit our experiments to a mod-
est computational and time budget of one GPU
and 24 hours, respectively. This constraint com-
pels us to focus on incorporating better inductive
biases into model pretraining, rather than resorting
to the more straightforward, but costlier, approach
of extensive hyperparameter tuning. We adhere to
standard transformer architectures (Vaswani et al.,
2017) and pretraining strategies: masked language
modeling (Devlin et al., 2019, MLM) and left-to-
right, causal language modeling (Radford et al.,
2018, CLM). We first explore the formatting of
the data. We also attempt to induce structural bi-
ases using part-of-speech (POS) tags. While we
did not include our models that incorporate POS
tags in our official submission, as this contravenes
the rules of the two tracks we are interested in, we
believe it represents a promising research direc-
tion.
Findings Our findings indicate that within our
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(a) (b)

Figure 1: Visualization of sentence-level training examples employing different grouping strategies, with a maxi-
mum sequence length of 32 words. The numbers on the left denote the i-th training example. (a) sentence-level
ungrouped: any portion exceeding 32 words will be truncated. (b) sentence-level grouped: different docu-
ments/sentences could be grouped into a single training example, each totaling 32 words.

constrained setting, data formatting has the most
significant impact on downstream performance.
By data formatting, we specifically mean the for-
mats of individual examples (e.g. sentence, docu-
ment) and the methods of configuring multiple ex-
amples into a training minibatch (e.g. data group-
ing, or truncation). We observe that models pre-
trained with grouped data perform considerably
worse than models pretrained with ungrouped data
(62% vs. 79% on BLiMP). We also discover that
inducing structural biases using POS trees mod-
estly improves the downstream performance of the
models (∼1% on BLiMP).

2 Related Work

Existing research, particularly that conducted be-
fore the advent of LLMs, has explored the training
of language models on relatively small datasets.
For instance, Bengio et al. (2003) trained a neural
language model on a corpus of approximately 1
million words. Additionally, Penn Treebank (Mar-
cus et al., 1993) and WikiText (Merity et al., 2017)
have been commonly used datasets for training
language models.

In recent work, Samuel et al. (2023) have ex-
amined architectural enhancements to BERT when
training on 100 million words, focusing on aspects
such as position embeddings or layer normaliza-
tion. Other studies have trained standard model ar-
chitectures on limited data and evaluated syntactic
or linguistic competency (Warstadt et al., 2020c;
Yedetore et al., 2023; Pérez-Mayos et al., 2021).
However, these studies have not thoroughly exam-

ined the data formatting and syntactic biases that
we consider in our experiments.

Previous research has proposed syntactically-
motivated inductive biases in the training of lan-
guage models to enhance performance. These
include the ON-LSTM (Shen et al., 2019), Tree
Transformer (Wang et al., 2019b), and Struct-
Former (Shen et al., 2021). These studies have
aimed to induce syntactic dependency and con-
stituency parses.

3 Data

In this section, we first introduce the pretraining
and evaluation data used, we then explain how we
preprocess them (Section 3.1), along with some
analysis (Section 3.2).

Pretraining Corpus The pretraining corpus re-
leased by the organizers contains ten different
carefully selected sub-datasets from different do-
mains, inspired by the typical input children would
receive (Warstadt et al., 2023). About 55% and
45% of the pretraining corpus is transcribed-
spoken English and written English, respectively.

Evaluation Corpora The shared evaluation
pipeline scores models on both syntactic eval-
uations and semantic (NLU) benchmarks. The
benchmarks have been filtered according to the vo-
cabulary of the STRICT-SMALL dataset such that
each word in each example should appear in the
training set at least twice.

Zero-shot linguistic abilities of the model is as-
sessed mainly using the BLiMP dataset (Warstadt
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(a) (b)

Figure 2: Visualization of document-level training examples employing different grouping strategies, with a max-
imum sequence length of 32 words. The numbers on the left denote the i-th training example. (a) document-level
ungrouped: truncated text is shown in blue. (b) document-level ungrouped without truncation: document
boundary is preserved. The document-level grouping strategy is omitted due to its similarity to sentence-level
grouping strategy.

et al., 2020a). BLiMP consists of minimally dif-
ferent sentence pairs based on grammatical phe-
nomenon where a model is expected to assign
higher probability to the grammatically correct
sentence. The sentence pairs were generated from
expert-crafted grammars. This evaluation includes
12 phenomena from BLiMP, and also five sup-
plemental phenomena not included in the original
BLiMP dataset.

Fine-tuning evaluation is based on 11 canon-
ical NLP tasks from the (Super)GLUE(Wang
et al., 2018, 2019a) collections as well as MSGS
(Warstadt et al., 2020c) which evaluates the extent
to which a fine-tuned model favors linguistic gen-
eralizations as compared to spurious surface pat-
terns.

3.1 Data Preprocessing

The pretraining corpus is a collection of sub-
corpora and was released as one file for each sub-
corpus. Each file consists of multiple documents
from the sub-corpus which have been concate-
nated and then delimited by new line characters.
We refer to each file as a sub-dataset, and we refer
to each line in a given sub-dataset as a sentence.
For each sub-dataset, in addition to training with
these sentence-level examples, we also experiment
with transforming the sub-dataset into “document-
level” examples motivated by Liu et al. (2019)
who have shown that formatting inputs as individ-
ual sentences negatively affects downstream task
performance.

We thus consider two dataset formats in our

experiments: sentence-level and document-level.
More specifically, sentence-level refers to the case
where each line in a corpus file is considered an
independent training example. Document-level
refers to the case where we approximately recover
the original document boundaries (e.g. a chapter
in the book corpus, a wikipedia article, a conversa-
tion) using heuristics and take each reconstructed
document to be an independent training example.
The heuristics we use to approximate document
boundaries are based on corpus-specific, keyword-
based rules (e.g. the keyword "Chapter" is a sign
of a change of document for book corpora). In the
case of speech corpora, it is impossible to recon-
struct the conversation boundary because of the
formatting of the released sub-dataset; therefore,
for speech corpora we still consider each line (ut-
terance) to be an independent training example,
even for document-level experiments.

Both dataset variants are divided into train, val-
idation, and test splits. We only use the train split
to pretrain the models (80% of the original data).

3.2 Data Analysis

In this section, we provide some statistics of the
pretraining data and BLiMP evaluation datasets,
as well as some analysis of lexical overlap be-
tween the two.3 We first compute the number of
unique and total unigrams and bigrams in the data.
To understand the extent of syntactic commonality
between the datasets, we also examine the ratio of

3 In this work, we mainly use BLiMP for all analyses, ex-
perimentations, and ablations, unless noted otherwise.
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10M Avg. Words Avg. Tokens

train test dev train test dev

sent. 9.41 9.74 9.16 14.41 14.99 14.28
doc. 47.22 48.10 46.76 64.33 66.13 64.66

Table 1: Average number of words (split on white
space) and tokens (split using WordPiece tokenizer)
in the sentences and documents of the BabyLM strict-
small data.

the overlap of unigrams, bigrams, and linearized
dependency graphs between the pretraining corpus
and BLiMP data.4 This allows us to reason about
the diversity of the data and what fraction of lin-
guistic structures present in the evaluation is seen
by the model during pretraining.

Pretraining Data Table 1 shows that, on av-
erage, there are approximately 9 words per sen-
tence and 48 words per document, in the STRICT-
SMALL corpus. When measured with a Word-
Piece tokenizer (pretrained on the 10M data with a
vocabulary size of 32,768), each sentence and doc-
ument contain around 14 and 65 tokens, respec-
tively. The training set of the pretraining corpus
contains approximately 181.3K unique unigrams
(words) and 2.07M unique bigrams.

BLiMP As we primarily use zero-shot BLiMP
task performance to evaluate the model quality, we
report the counts of unique unigrams and bigrams
in the BLiMP task datasets in Table 2. The to-
tal unique vocabulary size is small: 2334 is only
around 15% of the simple sum of unigrams of each
task dataset, which suggests a considerable vocab-
ulary overlap across different task datasets. Con-
versely, sentence structures, as characterized by
dependency graphs, are remarkably diverse, with
97.6% of the BLiMP data points across tasks fea-
turing unique linearized dependency graphs.

Lexical Overlap 98.67% of the unigrams in
BLiMP are seen by models during pretraining.
This is expected as the organizers filter the eval-
uation data based on the vocabulary in the training
set. However, only 19% of the bigrams are found
in the pretraining data, and more importantly, there
is just 2% overlap of linearized dependency trees,
suggesting that BLiMP tasks are really ‘zero-shot’
for BabyLM-trained models.

4 We use SpaCy for dependency parsing and NLTK to lin-
earize the trees.

BLiMP Phenomenon Unigram Bigram Dep. G.

Anaphor Agreement 0.64K 3.52K 0.06K
Argument Structure 1.80K 19.50K 1.67K
Binding 1.07K 20.16K 2.01K
Control Raising 1.79K 14.10K 4.20K
D-N Agreement 1.17K 13.74K 0.70K
Ellipsis 1.16K 11.51K 3.28K
Filler Gap 1.44K 20.83K 8.36K
Irregular Forms 0.70K 4.29K 0.20K
Island Effects 1.01k 14.52K 3.52K
Npi Licensing 1.82K 19.20K 4.34K
Quantifiers 1.28K 10.08K 1.33K
Subject Verb Agreement 1.82K 17.60K 1.84K

Sum 15.68K 169.06K 31.52K
Total (unique) 2.33K 106.38K 30.78K

Table 2: BLiMP task statistics: number of unique and
total unigrams, bigrams, and linearized dependency
graphs are reported with respect to the dataset of each
task. (Dep. G. stands for Dependency Graphs)

4 Methods

We experiment with two kinds of pretraining: (i)
Vanilla pretraining: where we use standard pro-
cesses as described in the original works that in-
troduced the models (Liu et al., 2019; Radford
et al., 2019), and where we only ablate on the
way we format the input data. (ii) Structurally bi-
ased pretraining: where we induce some syntactic
structure into the model either by explicitly aug-
menting the inputs with POS tags, or by allowing
the models to implicitly induce dependency and
constituency structures in an unsupervised manner
(Shen et al., 2021).

4.1 Input Formatting

To efficiently utilize available compute resources
during pretraining, multiple input examples can
be ‘grouped’ together to form a bigger single ex-
ample. By grouping, we mean that multiple sen-
tences/documents are first concatenated, and then
divided into training examples of maximum se-
quence length supported by the model. If the
grouped input examples are not related to each
other, the learning might be sub-optimal since the
model attends to unrelated tokens. There are two
ways to solve this problem: (i) do not group ex-
amples – this will require us to generally pad the
examples, which brings the compute efficiency
down, or (ii) build a dynamic mask such that each
token only attends to other relevant tokens – this is
harder to implement. We choose to continue with
method (i) since the size of the pretraining data is
small and the loss of efficiency is manageable, and
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Figure 3: Part-of-Speech augmentation: the input embeddings are the sum of the token embeddings, the sentence
type embeddings, the positional embeddings, and the POS embeddings. In Sentence Embeddings, EA denotes the
embedding for the token type A. When a sentence B follows sentence A, the tokens in sentence B will have token
type B. In Positional Embeddings, Ei refers to the absolute positional embeddings for a token at position i.

refer to this strategy as ‘ungrouping’.

We ablate vanilla pretraining methods in
both grouped and ungrouped setups and as-
sess how they impact BabyLM pretraining on
both sentence-level and document-level formats.
Examples of different grouping strategies with
sentence-level and document-level data are shown
in Fig. 1 and Fig. 2, respectively. There is a gen-
eral consensus that the benefits of grouping out-
weighs its disadvantages, but since the lengths of
our pretraining data is small (because a large frac-
tion of them are conversation data), the general
consensus might not hold. Note that as the doc-
ument distribution’s extreme tail significantly ex-
ceeds the model’s context size, we also explore an
‘ungrouping without truncation’ approach specifi-
cally for document-level data. This allows a single
lengthy document to be divided into multiple ex-
amples without discarding extensive data, ensur-
ing a fair comparison between different strategies.
We test these strategies with three maximum se-
quence lengths: 32, 128, and 512.

4.2 Structurally Biased Pretraining

Part-of-Speech Augmentation We first study
the effect of introducing POS tags as additional in-
puts during pretraining. We embed POS tags of
each token in the input and combine them with
the token and positional embeddings to form the
initial token representation, as illustrated in Fig.3.

We first use NLTK’s POS tagger5 to automatically
label the inputs using the universal tagset6. Since
this tagging is done at the word-level, if a word
is split into multiple subtokens by WordPiece to-
kenizers, we further process the label and decom-
pose them into BIO style token-level tags.

This introduction of POS tags results in a slight
change in the model architecture: a new embed-
ding matrix for BIO style POS tags is added, and
therefore the number of learnable parameters in-
creases. During pretraining, when an input token
is masked, we also mask its corresponding POS
token to avoid any signal leakage.

StructFormer In contrast with the previous
method, Structformer (Shen et al., 2021) allows
us to induce structure implicitly. This encoder-
only transformer uses dependency-constrained
self-attention. This type of self-attention derives
from unsupervised induction of constituency and
dependency structures, allowing tokens to only at-
tend to other tokens which are part of these struc-
tures. More concretely, it utilizes a parser network
which learns to predict the syntactic distance be-
tween two tokens and the syntatic height of a to-
ken in an unsupervised manner, to generate depen-
dency distributions. For more details, please see

5 https://www.nltk.org/api/nltk.tag.html#nltk.tag.pos_tag
6 NOUN (nouns), VERB (verbs), ADJ (adjectives), ADV

(adverbs), PRON (pronouns), DET (determiners and arti-
cles), ADP (prepositions and postpositions), NUM (numer-
als), CONJ (conjunctions), PRT (particles), . (punctuation
marks), X (other)
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BLiMP

Model AVG. ANA. ARG. BIND. CTRL. D-N ELLIP. FILLER IRREG. ISLAND NPI QUANT. S-V
AGR STR RAIS. AGR GAP FORM EFFECT AGR

GPT-2 84.59 99.70 84.00 79.00 80.00 95.90 85.10 80.90 95.80 78.30 76.50 71.90 88.00
RoBERTa 86.03 97.70 83.05 79.22 81.93 97.28 92.15 89.39 95.67 79.71 82.60 70.84 91.47
Human (Warstadt et al., 2020b) 88.60 97.00 90.00 87.30 83.90 92.20 85.00 86.90 97.00 84.90 88.10 86.60 90.90

OPT-125m (Warstadt et al., 2023) 62.60 63.80 70.60 67.10 66.50 78.50 62.00 63.80 67.50 48.60 46.70 59.60 56.90
RoBERTa-base (Warstadt et al., 2023) 69.50 81.50 67.10 67.30 67.90 90.80 76.40 63.50 87.40 39.90 55.90 70.50 65.40
T5-base (Warstadt et al., 2023) 58.80 68.90 63.80 60.40 60.90 72.20 34.40 48.20 77.60 45.60 47.80 61.20 65.00

Table 3: Ceiling and pre-released baseline model performance on BLiMP: the first three rows compare strong
models with human performance, while the last three rows are pre-released BabyLM baselines.

BERT Base BLiMP

L Format Strategy AVG. ANA. ARG. BIND. CTRL. D-N ELLIP. FILLER IRREG. ISLAND NPI QUANT. S-V
AGR STR RAIS. AGR GAP FORM EFFECT AGR

128 sent. group 62.57 80.06 60.35 61.09 62.31 74.49 62.64 62.11 78.17 40.84 45.08 66.23 57.43
128 sent. ungroup 79.08 94.68 74.03 72.10 73.66 94.27 77.77 78.63 89.72 59.90 74.05 74.65 85.47

128 doc. group 62.04 84.00 57.52 66.84 60.30 58.68 56.76 64.61 71.96 53.21 46.25 71.02 53.37
128 doc. ungroup 69.38 85.48 64.86 67.38 63.50 88.49 74.48 67.96 85.95 47.50 47.78 71.23 67.97
128 doc. ungr. w/o trun. 75.39 92.28 71.02 68.83 69.02 95.01 83.89 75.16 84.78 49.66 63.36 70.09 81.52

32 sent. group 77.18 92.23 72.41 70.21 70.97 94.05 84.76 74.68 91.50 53.18 72.12 67.80 82.26
32 sent. ungroup 78.38 93.61 74.26 70.24 73.64 95.00 73.67 77.68 84.38 61.66 76.18 74.78 85.40

32 doc. group 74.90 92.38 71.42 71.15 69.73 93.54 81.47 72.02 86.92 45.40 68.22 65.12 81.48
32 doc. ungroup 67.92 76.28 63.62 64.37 64.47 88.66 71.02 68.60 83.16 44.73 55.44 64.99 69.68
32 doc. ungr. w/o trun. 76.75 91.67 72.10 68.74 70.06 94.86 80.72 76.28 80.10 53.33 72.61 76.97 83.54

512 sent. ungroup 78.00 94.02 73.90 72.35 72.80 94.97 76.50 77.76 87.48 57.25 71.00 73.03 84.99
512 doc. ungr. w/o trun. 73.04 88.70 70.00 70.26 66.86 94.31 81.18 70.65 84.12 45.59 58.82 69.89 76.04

Table 4: Vanilla pretraining: effects of grouping strategies (Strategy), input formats (Format) and maximum se-
quence length (L) on BLiMP tasks using the BERT-base model. Ungr. w/o trun., sent. and doc. denote ungrouped
without truncation, sentence-level data, and document-level data, respectively. The metric for all tasks is accuracy.

the original paper.

5 Experimental Setup

Model Architecture Language models usually
come in three flavours: encoder-only, decoder-
only, and encoder-decoder architectures. Since all
the BabyLM downstream tasks are classification-
based, we mainly focus our experiments on
encoder-only models (BERT (Devlin et al., 2018)
and Structformer), whose bidirectionality is more
suitable for such tasks (Devlin et al., 2018; Tay
et al., 2022). We train decoder-only models (GPT-
2) (Radford et al., 2018) only for data grouping
experiments, and do not consider encoder-decoder
models in this work. Unless otherwise stated, all
experiments will use BERT-base as the standard
encoder-only model, and GPT-2 as the standard
decoder-only model.

Tokenizer We use the same tokenizer for both
encoder-only and decoder-only models: an un-
cased WordPiece tokenizer (Wu et al., 2016) with
a vocabulary size of 32,768 (i.e., 215), trained
on strict-small pretraining data. For the Struct-
Former, we follow the original work and train

a word-level tokenizer with a vocabulary size of
184,192.

Training Objective We do not make changes
to the training objective of any models. We use
MLM for encoder-only (including StructFormer)
models with a masking rate of 15%, and next to-
ken prediction for decoder-only models.

Implementation All models are optimized with
AdamW (Loshchilov and Hutter, 2017), with a
peak learning rate of 1e-4, a warmup of 2000
steps, and linear decay. All models are trained
with a dropout rate of 0.1, and with GELU ac-
tivations (Hendrycks and Gimpel, 2016). GPT-2
and BERT models are trained with bfloat167 on
a single NVIDIA A100-SXM4-80GB GPU, and
StructFormer is trained in half precision on a sin-
gle RTX 8000 GPU. All models are pretrained
for 30 epochs with a maximum sequence length
L ∈ {32, 128, 512}. Unless otherwise mentioned,
the effective batch size is 128 examples for all ex-
periments.

7 https://cloud.google.com/tpu/docs/bfloat16
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GPT-2 Base BLiMP

L Strategy AVG. ANA. ARG. BIND. CTRL. D-N ELLIP. FILLER IRREG. ISLAND NPI QUANT. S-V
AGR STR RAIS. AGR GAP FORM EFFECT AGR

128 group 71.30 92.38 72.49 70.85 65.69 86.99 65.99 67.99 84.68 43.95 57.96 79.52 67.06
128 ungroup 72.71 94.33 74.09 69.15 67.06 91.98 60.85 70.53 89.57 46.97 63.68 68.11 76.24
512 group 67.37 88.80 70.64 66.90 64.60 83.02 60.85 63.34 88.70 45.48 43.74 68.57 63.83
512 ungroup 73.18 92.94 73.33 69.95 68.36 90.92 64.55 69.39 91.09 44.77 63.06 71.92 77.89

Table 5: Vanilla pretraining: effects of grouping strategies (Strategy) and maximum sequence length (L) on BLiMP
tasks using the GPT-2 base model with sentence-level data. The metric for all tasks is accuracy.

BLiMP

Model #H AVG. ANA. ARG. BIND. CTRL. D-N ELLIP. FILLER IRREG. ISLAND NPI QUANT. S-V
AGR STR RAIS. AGR GAP FORM EFFECT AGR

VANILLA 768 77.29 91.56 73.91 69.72 70.92 94.63 79.62 76.74 89.41 52.43 72.75 72.44 83.29
POS 768 78.07 93.76 73.33 71.36 70.97 94.11 83.08 77.23 89.82 53.44 70.97 73.57 85.19
RANDPOS 768 73.92 91.00 71.46 69.65 69.77 93.24 82.16 66.54 86.51 41.89 67.99 62.52 84.34

VANILLA 1152 77.40 93.10 74.64 70.24 71.39 95.60 78.00 78.14 88.35 52.20 70.06 72.41 84.72
POS 1152 78.87 93.66 74.90 68.76 71.96 95.00 84.93 77.90 89.77 55.53 73.69 74.37 86.00
RANDPOS 1152 74.34 91.46 71.59 70.39 70.00 94.39 80.37 66.15 86.87 41.70 69.91 64.27 84.97

Table 6: Part-of-Speech augmented pre-training: effect of POS augmentation on BLiMP tasks using BERT models.
VANILLA, POS and RANDPOS denote vanilla BERT model, BERT model augmented with POS tags, and BERT
model augmented with random POS tags. #H denotes the hidden size of the model. Metric for all tasks is accuracy.

6 Experiments & Results

In this section, we describe the various experi-
ments we conducted, and their results obtained
from the BabyLM evaluation pipeline (Warstadt
et al., 2023; Gao et al., 2021). All models are eval-
uated on BLiMP and the best models from each
category are further evaluated on SuperGLUE and
MSGS tasks.

6.1 BLiMP

To get the ceiling performance of the models,
we use the publicly available checkpoints (GPT-
2, RoBERTa) which are pretrained on much larger
datasets. These results along with the human-level
performance is shown in Table 3. We see that
the performance of these two models is only 2-
3 points below human performance. In addition,
we include the pre-released OPT, RoBERTa and
T5 baselines, which were trained on the BabyLM
data in Table 3. Unlike the publicly available GPT-
2 and RoBERTa models, these baselines display a
substantial gap with human performance.

6.1.1 Input Formatting

To investigate the impact of grouping strategies,
we pretrain the standard BERT model on a variety
of combinations.

Grouping Strategy From Table 4, we see that
ungrouped 8models consistently outperform the
grouped models, across all sequence lengths. We
postulate that this happens due to the nature of
pretraining data. Since a large fraction of the
data is conversation-based, the sentence lengths
are generally short, and each utterance need not
always be a logical continuation of the previous
ones. This might cause confusion while learning
grouped data since we do not impose any atten-
tion masking to stop the model from attending to
unrelated tokens. This finding is not limited to
encoder-only models. We see a similar pattern in
decoder-only models as well, in Table 5. Also,
encoder-only models demonstrate superior zero-
shot generalization on BLiMP tasks in comparison
to decoder-only models. This strengthens our hy-
pothesis in Section 5 that bidirectionality is helpful
for classification tasks. Therefore, all other exper-
iments are conducted on encoder-only models.

Truncation on Documents As expected, the
performance of ungrouped model lags behind the
grouped model when using document-level data.
This discrepancy is primarily due to the truncation,
which discards extreme tails of the document dis-
tribution. However, when truncation is disabled,
the performance of the model improves by 6-13

8 Here, on document-level data, ‘ungrouped’ refers to ‘un-
grouped without truncation’ for fair comparison.
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points on average. It even surpasses the grouped
model by approximately 2 points, confirming our
conclusion drawn in the preceding paragraph.

Maximum Sequence Length Despite the
additional parameters introduced, extending
the maximum sequence length does not yield
additional performance boost. Interestingly, there
seems to be a negative correlation between the
two. To make this point clear, we reduce the
maximum sequence length to an extremely low
value of 32. We see that there is no significant
drop in performance among the models. In fact,
even the document-level models perform well in
this setting. This is because the smaller inputs are
now similar to the sentence-level inputs. We also
see that the difference between the grouped and
ungrouped models also reduce from 13 points to
1 point, which further shows that sentence-level
inputs provide better performance for BabyLM
pretraining.

In summary, we see that the sentence-level un-
grouped model with a sequence length of 128
performs the best with an average BLiMP score
of 79.08. This is around 10 points higher than
the pre-released Roberta-base baseline. Further-
more, this is only 5-6 points behind the ceiling
performance of GPT-2 and RoBERTa-base mod-
els trained on much larger datasets. However it is
difficult to conclude that these models learn effi-
ciently since we have not yet evaluated them on se-
mantic downstream tasks which require the mod-
els to capture long-range dependencies. But we
can safely say that 10M words and sentence-level
training is enough for models to learn simple lin-
guistic phenomena as tested by BLiMP. Hence-
forth, we will perform subsequent experiments us-
ing only the most effective configurations identi-
fied, i.e., sentence-level ungrouped models.

6.1.2 POS Augmentation
To test whether explicitly inducing POS tree struc-
tures during pretraining improves downstream
performance, we embed POS tags and add them
to the input representations. To make sure that any
improvement is not only due to the increase in the
number of parameters,9 we run two ablations with
an effective batch size of 512:10 (i) randomly shuf-

9 This model has an additional embedding matrix for POS
tags.

10 We increase the batch size to improve the runtime of the
experiments. But this causes slight discrepancies in the result

fle the POS tags of a sentence before adding them
to the input – this will make sure that the model
gets no signal from the POS tags, and (ii) increase
the hidden size of the models – this will contain
signals from POS and further increase the number
of learnable parameters.

Table 6 illustrates that the encoder-only mod-
els, when augmented with POS tags, exhibit a
marginal performance improvement of approxi-
mately one point compared to the vanilla mod-
els, regardless of the hidden size. However, mod-
els with shuffled POS tags lag behind by ap-
proximately 4-5 points, suggesting that it is in-
deed beneficial to induce structures during pre-
training. Next, we see that boosting the hidden
size enhances model performance across all set-
tings. However, on closer inspection we see that
the benefit to the standard model is minor, ∼0.1
points. This is surprising since the number of
learnable parameters in the model with the ex-
panded hidden size is almost an order of magni-
tude larger than the model with just the additional
POS embedding matrix. This result further under-
scores the benefits of inducing POS tree structures
into the pretraining process.

6.1.3 StructFormer
All StructFormer experiments are all conducted
using sentence-level ungrouped data, with a max-
imum sequence length of 512.

Though StructFormer outperforms vanilla
BERT when the models are scaled down (Tiny),
it fails to do so on larger model sizes. In fact,
we see in Table 7 that BERT-Mini outperforms a
StructFormer-Base model. We hypothesize: (i)
that 10M words are not enough to learn good
representations of 180K words present in the
StructFormer vocabulary, and (ii) that 10M words
are not big enough to fully train the unsupervised
parsing network which in-turn affects the down-
stream performance. This model undertraining
is evident from the fact that BERT performance
jumps up by 14 points when its size is increased
from Tiny to Base, whereas StructFormer’s
performance only increases by 5 points.

6.2 Other Evaluations

We select the best performing models of each set-
ting mentioned in the previous section and per-
form a full evaluation on SuperGLUE, BLiMP

of our vanilla models between Tables 4 and 6
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BLiMP

Model Size AVG. ANA. ARG. BIND. CTRL. D-N ELLIP. FILLER IRREG. ISLAND NPI QUANT. S-V
AGR STR RAIS. AGR GAP FORM EFFECT AGR

BERT tiny 63.92 73.52 64.05 64.16 62.84 80.35 53.29 62.18 91.96 42.53 49.42 63.14 59.62
STRUCTFORMER tiny 64.89 68.51 63.07 61.61 63.52 81.42 48.38 63.26 88.80 51.64 53.31 72.62 62.53

BERT base 78.00 94.02 73.90 72.35 72.80 94.97 76.50 77.76 87.48 57.25 71.00 73.03 84.99
STRUCTFORMER base 69.79 79.09 67.01 67.81 67.26 92.50 62.64 64.47 89.72 46.11 57.41 78.80 64.66

BERT mini 70.27 88.09 69.63 68.76 65.20 91.49 74.65 68.07 92.67 34.87 56.18 67.31 66.29

Table 7: StructFormer: comparison between BERT and StructFormer architectures on tiny and base sizes. Metric
for all tasks is accuracy.

Model L Format Strategy DYNABENCH BLIMP BLIMP SUPPL. SUPERGLUE MSGS

BERT 128 sent. ungroup 69 79.08 58.19 72.37 81.51
BERT 128 doc. ungr. w/o trun. 68 75.39 61.33 72.28 81.00
BERT-POS 512 sent. ungroup 68 79.67 56.81 71.85 79.64
GPT-2 512 sent. ungroup 67 73.18 55.47 69.23 82.14

Table 8: Results of other benchmarks for the top-performing models evaluated by BLiMP tasks: the score for each
benchmark is reported as an average, detailed scores are in Appendix. Dynabench score aggregates all benchmarks
and is provided by the model submission platform. Ungr. w/o trun., sent. and doc. denote ungrouped without
truncation, sentence-level data and doc. denotes document-level data, respectively. Metric for all tasks is accuracy.

supplement, and MSGS benchmarks11. In Table 8,
we report average scores for each benchmark, and
the final score computed by the model submission
platform (Kiela et al., 2021, Dynabench), for each
model. Detailed performance of each task for all
benchmarks, as well as the pre-released baselines
is given in Table 9, 10, 11, 12, 13, 14, and 15 in
Appendix A.

We see in Table 8, which summarizes the re-
sults and provides the aggregated scores, that
only slight differences exist among the models.
The BERT-Base model, trained on sentence-level
data, demonstrates superior performance overall,
surpassing other models by 1-2 points, consis-
tent with our BLiMP evaluations. Remarkably,
the model trained with document-level inputs dis-
plays a substantial superiority in BLiMP supple-
ment tasks, achieving a lead of nearly 3 points
over models trained on sentences. Surprisingly,
the GPT-2 model, despite underperforming in all
other tasks, exhibits a robust performance on the
MSGS tasks. The BERT model augmented with
POS trees, despite its best performance on BLiMP
tasks, fails to replicate the success across other
benchmarks which suggests that it might have
learned some specific structural patterns helpful
only in certain cases as pointed out in Warstadt
et al. (2020c).

11 The last two benchmarks were released towards the end
of the shared task.

7 Conclusion

In this work, we investigate the effects of data
formatting and the induction of structural biases
in data-efficient pretraining settings. These ex-
periments were performed under the constrains of
limited data, computational resources, and train-
ing time. Our findings indicate data grouping is
the most significant factor affecting downstream
performance due to the nature of the pretraining
data. We also see that when the best data format
considered is employed, inducing structural biases
into the models enhances their downstream perfor-
mance on BLiMP performance by approximately
1%.
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A Appendix

In this section, we provide detailed performance
of the top-performing models mentioned in Sec-
tion 6.2 on each evaluation benchmarks. BLiMP,
BLiMP supplement, SuperGLUE, and MSGS
results are in Table 9, 11, 13 , and 15, respectively.
Pre-released baseline performance for BLiMP
supplement, SuperGLUE, and MSGS tasks are in
Table 10, 12 , and 14, respectively.
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BLiMP

Model L Format Strategy AVG. ANA. ARG. BIND. CTRL. D-N ELLIP. FILLER IRREG. ISLAND NPI QUANT. S-V
AGR STR RAIS. AGR GAP FORM EFFECT AGR

BERT 128 sent. ungroup 79.08 94.68 74.03 72.1 73.66 94.27 77.77 78.63 89.72 59.9 74.05 74.65 85.47
BERT 128 doc. ungr. w/o trun. 75.39 92.28 71.02 68.83 69.02 95.01 83.89 75.16 84.78 49.66 63.36 70.09 81.52
BERT-POS 512 ungroup sent. 79.67 94.73 75.36 72.32 73.95 96.15 82.04 78.51 89.21 59.57 71.50 74.57 88.06
GPT 512 sent. ungroup 73.18 92.94 73.33 69.95 68.36 90.92 64.55 69.39 91.09 44.77 63.06 71.92 77.89

Table 9: BLiMP results: Ungr. w/o trun., sent. and doc. denote ungrouped without truncation, sentence-level data
and doc. denotes document-level data, respectively. Metric for all tasks is accuracy.

BLiMP Supplement

MODEL AVG. HYPERNYM
QA CONGR. QA CONGR. SUBJ.-AUX. TURN
(EASY) (TRICKY) INVERSION TAKING

OPT-125M (Warstadt et al., 2023) 54.72 50.00 54.70 31.50 80.30 57.10
ROBERTA-BASE (Warstadt et al., 2023) 47.54 49.40 31.30 32.10 71.70 53.20
T5-BASE (Warstadt et al., 2023) 43.94 48.00 40.60 21.20 64.90 45.00

Table 10: BLiMP supplement pre-released baseline results: Metric for all tasks is accuracy.

BLiMP Supplement

Model L Format Strategy AVG. HYPERNYM
QA CONGR. QA CONGR. SUBJ.-AUX. TURN
(EASY) (TRICKY) INVERSION TAKING

BERT 128 sent. ungroup 58.19 49.07 70.31 29.70 79.39 62.50
BERT 128 doc. ungr. w/o trun. 61.33 50.23 73.44 36.36 77.70 68.93
BERT-POS 512 ungroup sent. 56.81 49.42 64.06 29.09 80.41 61.07
GPT 512 sent. ungroup 55.47 50 53.12 29.7 85.95 58.57

Table 11: BLiMP supplement results: Ungr. w/o trun., sent. and doc. denote ungrouped without truncation,
sentence-level data and doc. denotes document-level data, respectively. Metric for all tasks is accuracy.

SuperGLUE

Model AVG. COLA SST-2 MRPC QQP MNLI MNLI-MM QNLI RTE BOOLQ MULTIRC WSC(MCC) (F1) (F1)

Majority label (Warstadt et al., 2023) 46.3 0.0 50.2 82.0 53.1 35.7 35.7 35.4 53.1 50.5 59.9 53.2
OPT-125m (Warstadt et al., 2023) 58.9 15.2 81.9 72.5 60.4 57.6 60.0 61.5 60.0 63.3 55.2 60.2
RoBERTa-base (Warstadt et al., 2023) 67.3 25.8 87.0 79.2 73.7 73.2 74.0 77.0 61.6 66.3 61.4 61.4
T5-base (Warstadt et al., 2023) 56.4 11.3 78.1 80.5 66.2 48.0 50.3 62.0 49.4 66.0 47.1 61.4

Table 12: GLUE pre-released baseline results: Metric for all tasks unless otherwise stated.

SuperGLUE

Model L Format Strategy AVG. BOOLQ COLA MNLI MNLI-MM
MRPC MULTIRC QNLI QQP RTE SST-2 WSC(F1) (F1)

BERT 128 sent. ungroup 72.37 66.39 74.78 74.15 74.79 80.29 63.20 78.74 81.79 51.52 88.98 61.45
BERT 128 doc. ungr. w/o trun. 72.28 66.11 72.33 75.36 76.29 77.78 59.58 82.50 84.13 51.52 87.99 61.45
BERT-POS 512 sent. ungroup 71.85 67.22 75.76 73.80 75.03 77.22 60.24 78.70 83.10 49.49 88.39 61.45
GPT 512 sent. ungroup 69.23 64.87 71.44 72.14 72.69 71.84 62.43 64.22 81.71 50.51 88.19 61.45

Table 13: GLUE results: Ungr. w/o trun., sent. and doc. denote ungrouped without truncation, sentence-level data
and doc. denotes document-level data, respectively. Metric for all tasks except MRPC and QQP is accuracy.

MSGS

Model AVG. CR LC MV RP SC CR CR MV MV SC SC
CTRL. CTRL. CTRL. CTRL. CTRL. LC RTP LC RTP LC RP

OPT-125m (Warstadt et al., 2023) 80.9 97.2 82.6 100.0 99.8 88.1 75.3 67.1 66.3 66.8 84.8 62.0
RoBERTa-base (Warstadt et al., 2023) 81.7 93.0 100.0 100.0 100.0 89.0 68.3 66.8 66.6 80.2 67.4 67.4
T5-base (Warstadt et al., 2023) 82.3 95.1 100.0 100.0 99.8 88.7 76.7 69.4 67.0 67.7 72.7 68.0

Table 14: MSGS pre-released baseline results: Metric for all tasks is accuracy.
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MSGS

Model L Format Strategy AVG. CR LC MV RP SC CR CR MV MV SC SC
CTRL. CTRL. CTRL. CTRL. CTRL. LC RTP LC RTP LC RP

BERT 128 sent. ungroup 81.51 96.30 100.00 99.94 100.00 83.47 72.67 72.52 66.61 68.65 68.32 68.08
BERT 128 doc. ungr. w/o trun. 81.00 92.32 100.00 99.89 98.26 95.59 67.17 67.14 66.61 68.04 69.73 66.22
BERT-POS 512 sent. ungroup 79.64 91.08 100.00 99.87 99.99 89.70 71.79 67.05 66.77 68.80 63.30 57.64
GPT 512 sent. ungroup 82.14 92.11 100.00 99.94 100.00 95.51 70.23 69.86 66.61 67.78 75.62 65.91

Table 15: MSGS results: Ungr. w/o trun., sent. and doc. denote ungrouped without truncation, sentence-level data
and doc. denotes document-level data, respectively. Metric for all tasks is accuracy.
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Mean BERTs make erratic language teachers:
the effectiveness of latent bootstrapping in low-resource settings

David Samuel
University of Oslo, Language Technology Group

Abstract

This paper explores the use of latent bootstrap-
ping, an alternative self-supervision technique,
for pretraining language models. Unlike the
typical practice of using self-supervision on dis-
crete subwords, latent bootstrapping leverages
contextualized embeddings for a richer supervi-
sion signal. We conduct experiments to assess
how effective this approach is for acquiring
linguistic knowledge from limited resources.
Specifically, our experiments are based on the
BabyLM shared task, which includes pretrain-
ing on two small curated corpora and an evalu-
ation on four linguistic benchmarks.

1 Introduction

All modern language models are trained with a
general self-supervised learning (SSL) paradigm
(Radford et al., 2018; Devlin et al., 2019; Raffel
et al., 2020). Recently, the field of visual represen-
tation learning has seen a growing usage of self-
supervision on latent embeddings (Grill et al., 2020;
Chen et al., 2020; Chen and He, 2020; Assran et al.,
2023). While this type of self-supervision has been
recently proposed as an integral part of a human-
like machine intelligence system (LeCun, 2022),
language models are still mostly self-supervised on
hard targets, typically on subword tokens.

The concept of latent bootstrapping (Grill et al.,
2020) offers a promising alternative, as the latent
vectors provide a deep and semantically rich rep-
resentation of the input. This, in turn, delivers
a more valuable supervision signal compared to
the conventional method of supervision on discrete
subword indices. Data2vec (Baevski et al., 2022)
showed that latent bootstrapping performs on par
with traditional self-supervised language model-
ing when pretrained on a large text corpus. We
argue that, intuitively, the rich training signal from
contextualized embeddings should be particularly
effective in low-resource data settings.

masked
autoencoder

unmasked
encoder

rich semantic feedback

exponential moving average

Student language model Mean teacher

Figure 1: The self-supervision feedback loop of latent
bootstrapping: a student model improves by aligning
with its teacher’s latent outputs and the teacher improves
by maintaining the exponential moving average of the
student.

In this paper, our aim is to test this hypothe-
sis and identify possible drawbacks of the boot-
strapping method. We base our experiments on
the BabyLM challenge (Warstadt et al., 2023b), a
shared task that uses two carefully curated, sample-
efficient pretraining corpora, mimicking the En-
glish language exposure to young children. In ad-
dition, this challenge employs four benchmarks to
evaluate different aspects of linguistic knowledge
and understanding learned by language models.

We introduce BootBERT, a novel masked au-
toencoder language model (Meng et al., 2023) that
harnesses latent bootstrapping (Grill et al., 2020)
between a mean teacher (Tarvainen and Valpola,
2017) and its student. Through a positive feedback
loop, the student and the teacher iteratively learn
from each other, as illustrated in Figure 1. The stu-
dent is trained to match the teacher’s outputs while
the mean teacher is defined as the exponential mov-
ing average of the student. Once pretraining is com-
plete, only the student language model is used for
evaluation and the teacher is discarded. We assess
its performance on the BabyLM challenge, con-
trasting it with conventional language models. The
source code and pretrained models are available
online at https://github.com/ltgoslo/boot-bert.
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Figure 2: A detailed overview of the self-supervised feedback loop. The left side illustrates the student language
model, a masked autoencoder network, that targets two training objectives: 1) conventional masked language
modeling, aiming to predict the masked token (e.g., the word ‘world’), and 2) aligning the contextualized embedding
of the masked tokens to their unmasked counterparts. The embeddings for the unmasked tokens are produced by a
mean teacher network (on the right), computed as an exponential moving average of the student parameters.

2 Method

In this section, we outline our proposed model,
BootBERT, delving into its neural architecture and
the latent bootstrapping training objective. In order
to allow for language-modeling-based evaluation,
the bootstrapping objective operates alongside con-
ventional masked language modeling. The diagram
in Figure 2 illustrates the general idea of this ap-
proach.

Masked autoencoder architecture. BootBERT
diverges slightly from the standard ‘encoder-only’
architecture often found in masked language mod-
els (Devlin et al., 2019). Instead, following the
method of Meng et al. (2023), we employ a masked
autoencoder (MAE; He et al., 2022) framework for
the text domain. This approach distinguishes the
encoding of contextualized embeddings from the
decoding of masked subwords. These two func-
tionalities are separated by dividing the model into
an encoder and a decoder module, as illustrated in
Figure 2 on the left.

The encoder’s role is to create a bidirectional
contextualized embedding of input tokens. Unlike
traditional masked language models, the encoder
does not process any [MASK] tokens, thus eliminat-
ing the need to allocate parameters for representing
them (Meng et al., 2023).

The [MASK] tokens are processed and denoised

by the decoder module. The decoder is supplied
with the full input – the unmasked tokens are rep-
resented by their contextualized embeddings (pro-
vided by the encoder) and the masked tokens are
represented by a static [MASK] embedding. Note
that the decoder in this type of model is bidirec-
tional and purely self-attentive, differing from the
original definition of a transformer decoder by
Vaswani et al. (2017).

Teacher-student feedback loop. Conceptually,
the training process can be divided into optimiza-
tion of a student model and optimization of a
teacher model. Here, the masked student autoen-
coder model is trained to match the contextualized
embeddings of the unmasked tokens, produced
by the mean teacher network. In line with Tar-
vainen and Valpola (2017), the teacher parameters
ϕ are not optimized via gradient descent, but rather
through a slow exponential moving average (EMA)
of the student parameters θ:

ϕ = τϕ + (1− τ)θ.

This moving average not only stabilizes the latent
targets but also prevents representation collapse
(Grill et al., 2020).

Loss. We optimize two objectives during training
the student model: a traditional masked language
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modeling objective with hard targets, symbolized
by LLM, and a latent bootstrapping objective using
teacher’s latent targets LLB. The final loss function
combines these objectives with a weighted sum:

L = LLB + βLLM.

Here, LLM is calculated simply as negative log-
likelihood of the true targets. Its purpose is two-
fold: allowing for a MLM-based evaluation (for ex-
ample BLiMP), and preventing representation col-
lapse of unconstrained latent bootstrapping (Grill
et al., 2020).

The second objective is computed as a smooth L1
loss between student predictions ys and teacher’s
contextualized embeddings yt, This works mostly
like a standard mean-squared error but prevents
exploding gradients from outliers (Girshick, 2015):

LLB(yt, ys) =

{
0.5(yt − ys)

2 |yt − ys| ≤ 1

|yt − ys| − 0.5 otherwise.

LTG-BERT transformer backbone. As for
more low-level architectural and training choices,
we adopt the approach of LTG-BERT by Samuel
et al. (2023a). This method was optimized for low-
resource masked language modeling on a similar
corpus to the corpora provided in BabyLM. The
key improvements of the LTG-BERT transformer
architecture include the use of the NormFormer
layer normalization (Shleifer and Ott, 2022), an
alternative disentangled attention mechanism with
relative positions (He et al., 2021) and gated-linear
activation function (GEGLU; Shazeer, 2020); as
illustrated in Figure 3. On top of these architec-
tural changes, the authors also employ masking of
random subword spans (Joshi et al., 2020). More
details about these choices can be found in Samuel
et al. (2023a).

3 Experiments

The main goal of this paper is to evaluate how well
language models trained with latent bootstrapping
acquire language and if it makes a viable training
objective for language representation learning. We
base the experiments on the BabyLM challenge
(Warstadt et al., 2023b). First, we describe the
pretraining process of two BabyLM tracks and sec-
ond, the evaluation of pretrained models using the
BabyLM evaluation pipeline.

layer norm

+

disentangled attention

layer norm

layer norm

linear linear

GEGLU

layer norm

linear

+

Figure 3: We base our model on LTG-BERT. This sim-
plified diagram shows one layer from that transformer
architecture, it illustrates the self-attention module (bot-
tom) and the feed-forward module (top). Both modules
utilize a modified NormFormer-like layer normaliza-
tion placement and the feed-forward module contains a
gated-linear activation function.

BabyLM challenge. This challenge provides
a share ground for experiments on small-scale
language modeling. It consists of three tracks:
STRICT, STRICT-SMALL and LOOSE. For the first
two tracks, the submissions have to be pretrained
solely on a fixed corpus provided by the organiz-
ers. This corpus contains about 100M words in the
STRICT track and about 10M words in the STRICT-
SMALL track. As for the LOOSE track, the sub-
missions are still limited to pretrained on 100M
words, but this data can come from any source
and the models can utilize an unlimited amount of
non-linguistic data in addition. As detailed in Sec-
tion 3.2, the submissions are compared on a shared
evaluation set consisting of syntactic and natural
language understanding tasks.

3.1 Pretraining

The pretraining is done on corpora provided by
the BabyLM challenge. These texts are curated
specifically to be of the same type and quantity that
children learn from. Thus, it allows us to assess
(to some degree) whether latent bootstrapping is a
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more plausible cognitive model of human language
acquisition (Warstadt et al., 2023b).

Training corpus. Specifically, we consider the
STRICT and STRICT-SMALL tracks and pretrain
the models on their respective 100-million-word
and 10-million-word corpora. Both datasets con-
tain child-directed speech, transcribed speech, chil-
dren’s books and Wikipedia, among other sources.
The content of these datasets is detailed in Ap-
pendix B, together with our simple preprocessing
pipeline, which unifies the typographical features
of the BabyLM subcorpora.

Pretraining process. Generally speaking, we
adopt the training recipe of LTG-BERT (Samuel
et al., 2023a), which was optimized for pretraining
on another low-resource 100 million English cor-
pus. The pretraining process is the same for both
tracks, except for using a smaller vocabulary and a
smaller model for the STRICT-SMALL track.

As for the STRICT track, we use a BASE-size
language model – 12 encoder layers and 4 decoder
layers with hidden size of 768 and with 12 attention
heads. We train a case-sensitive WordPiece tok-
enizer (Wu et al., 2016) with a vocabulary size of
214 = 16 384, using solely texts from the STRICT

corpus. As per Samuel et al. (2023a), we pretrain
the models with 1/2 of the BERT training budget,
as it has been shown to be sufficient for a rela-
tively small 100-million-word corpus. The tokens
are masked with continuous span masking (Joshi
et al., 2020; Raffel et al., 2020). In particular, the
masks are iteratively sampled until 15% of tokens
are masked and the length of each span is sam-
pled from the geometric distribution Geo(p), with
p = 1/3.

The STRICT-SMALL track is tackled by a SMALL-
size language model – 12 encoder layers and 4
decoder layers with hidden size of 384 and with
6 attention heads. The subword vocabulary is re-
duced to 212 = 4 096 items.1

The full list of hyperparameters and implementa-
tion details are provided in Appendix C and in the
released source code.2

1This choice is selected according to Gowda and May
(2020) who recommend to ‘. . . use the largest possible vo-
cabulary such that at least 95% of classes have 100 or more
examples in training.’

2https://github.com/ltgoslo/boot-bert

3.2 Evaluation
We utilize the language modeling benchmark suite
from the BabyLM challenge (Gao et al., 2021;
Warstadt et al., 2023b),3 which relies on three con-
ceptually different evaluation tasks:

1. The GLUE and SuperGLUE datasets test the
ability of a pretrained model to adapt to vari-
ous language understanding tasks.

2. BLiMP and BLiMP supplement tasks test the
affinity of a model towards grammatical sen-
tences in a completely zero-shot manner.

3. MSGS measures how much does a pretrained
model prefer linguistic generalizations (over
surface ones) during finetuning.

We further elaborate on each of these evaluation
suites below.

(Super)GLUE benchmark. General Language
Understanding Evaluation benchmarks (GLUE and
SuperGLUE; Wang et al., 2018, 2019) are arguably
the most common ways of evaluating the language-
understanding and transfer-learning capabilities of
language models. The BabyLM challenge uses a
subset of 10 (Super)GLUE tasks, detailed in Ap-
pendix F. We employ the standard way of finetun-
ing masked language models on these datasets, as
introduced in BERT (Devlin et al., 2019). More
details about the finetuning processes are given in
Appendix C.

As we use the BabyLM version of GLUE, our
results cannot be directly compared with previous
literature – the dataset samples are filtered to not
contain out-of-vocabulary words and some of the
employed metrics differ from the original recom-
mendations (Wang et al., 2018, 2019). We opted
to adhere to the BabyLM version to be compatible
with other works in this challenge. However, in
order to reliably compare our models, we decided
to depart from BabyLM and to divide the training
set in 90:10 ratio into a new training and develop-
ment split; the former validation set is then used as
a held-out split.4

BLiMP. When using any finetuning approach, it
is unclear how to disentangle the innate language

3https://github.com/babylm/
evaluation-pipeline

4The BabyLM pipeline unfortunately uses identical valida-
tion and test sets, which might yield overly optimistic results
due to overfitting during hyperparameter optimization.
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understanding from the knowledge learned during
the second-stage supervised finetuning (Belinkov,
2022). In contrast, the Benchmark of Linguistic
Minimal Pairs (BLiMP; Warstadt et al., 2020a) at-
tempts to measure the linguistic knowledge of a
language model in a zero-shot manner – without
any additional training. Each pair of sentences in
BLiMP differs minimally on the surface level, but
only one of the sentences is grammatically valid.
We can use the intrinsic ability of language mod-
els to assign a probability to every sentence and
test how often a language model assigns a higher
probability to the correct sentence (Wang and Cho,
2019; Salazar et al., 2020).

As detailed in Appendix A, the results on BLiMP
greatly depend on temperature scaling (Guo et al.,
2017a). Thus, to fairly compare different types
of language models, we employ an alternative ap-
proach to evaluating BLiMP: we report the accu-
racies that are achieved with the optimal temper-
ature for every language model; the reasoning is
explained in Appendix A.

The BabyLM challenge also comes with an ad-
ditional ‘BLiMP supplement’ held-out set with five
additional diagnostic tasks. To comply with the
held-out spirit of these tasks, we keep the tempera-
ture values calibrated for BLiMP, even though this
results in suboptimal performance (Appendix A).

MSGS. The diagnostic dataset called Mixed Sig-
nals Generalization Set (MSGS; Warstadt et al.,
2020b) measures whether a pretrained model
prefers linguistic or surface generalizations. The
experiments follow the poverty of the stimulus de-
sign (Wilson, 2006) – to first finetune a model on
ambiguous data (consistent with both linguistic
and surface explanations) and then test it on non-
ambiguous data to see if it prefers the linguistic
generalization.

We use the filtered MSGS datasets with no in-
oculation in the training set, as provided by the
BabyLM challenge. Similarly to (Super)GLUE,
we avoid the BabyLM approach that validates and
tests on the same split – instead, to obtain a re-
liable comparison, we roughly follow the origi-
nal work (Warstadt et al., 2020b) and use three
learning rates: (1 · 10−5, 2 · 10−5, and 3 · 10−5),
five random seeds, batch size of 16 and finetune
for 5 epochs without early-stopping; then we re-
port the mean and standard deviation statistics on
the 6 non-ambiguous and non-control test datasets,
measuring the Matthew’s correlation coefficient

Model GLUE MSGS BLiMP Supplement

STRICT (100M words)

OPT125m 73.0±3.9 -44.4±8.5 77.8 67.5

RoBERTabase 74.3±0.6 -66.4±26.6 76.2 63.8

T5base 75.3±1.1 -56.5±6.7 83.6 71.8

LTG-BERTbase 77.8±1.4 -43.2±11.0 87.2 77.6

BootBERTbase 79.2±1.5 -67.9±12.6 86.3 72.2

STRICT-SMALL (10M words)

OPT125m 68.3±3.3 -63.8±9.6 69.2 60.2

RoBERTabase 72.2±1.9 -66.7±11.9 68.1 60.5

T5-base 64.7±1.3 -68.4±7.1 59.9 48.6

LTG-BERTsmall 74.5±1.5 -42.6±34.8 80.9 70.3

BootBERTsmall 74.9±3.4 -76.6±10.2 82.2 65.6

Table 1: The overall average scores for the four evalua-
tion suites: (Super)GLUE, MSGS, BLiMP and BLiMP
supplement. The (Super)GLUE and MSGS columns
show the mean and standard deviation statistics across
multiple runs. The best results for each track are typeset
in bold. For a more complete view, the full distribution
of the MSGS results is plotted in Figure 4.

(Matthews, 1975, which is renamed to the Linguis-
tic Bias Score (LBS) in MSGS).

3.3 Results

The overall averaged results for all four evaluation
suits are given in Table 1. Apart from evaluat-
ing masked autoencoders trained with latent boot-
strapping (BootBERTs), as described in Section 2,
we evaluate the three baseline language models
provided by the organizers of BabyLM challenge:
decoder-only OPT (Zhang et al., 2022), encoder-
decoder T5 (Raffel et al., 2020) and encoder-only
RoBERTa language models (Liu et al., 2019). As
we base our models on the LTG-BERT architecture
(Samuel et al., 2023a), we follow recommendations
of the authors and also pretrain LTG-BERTs to get
a strong and comparable baseline.

In addition to the averaged results, we also pro-
vide fine-grained (Super)GLUE scores in Table 2
and a visualization of the full distribution of MSGS
scores in Figure 4 and in Appendix D (given the
high variation of the aggregated MSGS results).
The tables contain the mean and standard devia-
tion statistics over 5 (respectively 15) runs. More
details about the BLiMP and BLiMP supplement
scores are given in Appendix A.
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Model BoolQ CoLA MNLIm MNLImm MRPC MultiRC QNLI QQP RTE SST-2 WSC All

STRICT (100M words)

OPT125m 66.4±0.7 74.9±0.6 75.7±0.3 77.0±0.3 81.9±0.7 61.5±0.8 82.8±0.8 84.3±0.1 58.6±2.9 87.7±0.7 52.3±12.5 73.0±3.9

RoBERTabase 67.7±0.7 75.6±0.3 77.4±0.4 78.3±0.3 84.0±0.5 64.3±0.5 83.6±0.2 85.5±0.2 50.7±1.5 88.3±0.6 61.4±0.0 74.3±0.6

T5base 67.7±1.5 76.7±0.9 77.9±0.3 78.7±0.3 85.2±1.1 65.7±0.8 84.7±0.9 86.2±0.1 55.4±2.2 89.0±0.8 61.0±1.1 75.3±1.1

LTG-BERTbase 68.1±0.4 82.8±0.4 83.4±0.3 83.1±0.2 84.3±0.7 71.2±0.9 89.3±0.3 87.9±0.2 55.2±2.7 91.9±0.6 58.6±3.5 77.8±1.4

BootBERTbase 72.4±1.2 81.6±0.6 84.7±0.3 84.7±0.3 89.1±0.3 70.7±1.2 91.2±0.4 88.1±0.1 57.2±3.5 91.8±0.8 60.2±2.7 79.2±1.5

STRICT-SMALL (10M words)

OPT125m 66.2±1.5 69.0±0.5 69.5±0.2 71.0±0.5 80.0±1.8 56.5±2.0 71.5±0.7 80.3±0.3 51.3±2.1 85.4±0.9 50.8±10.3 68.3±3.3

RoBERTabase 65.8±2.9 70.4±0.4 72.5±0.4 74.4±0.3 82.2±0.4 61.2±1.5 80.3±0.7 83.5±0.2 56.8±5.5 85.6±0.3 61.7±0.5 72.2±1.9

T5base 63.4±1.6 69.4±0.1 57.3±0.8 58.6±1.1 81.4±0.6 48.4±1.4 64.3±0.9 76.8±0.3 52.7±2.4 79.4±1.0 60.0±2.2 64.7±1.3

LTG-BERTsmall 64.8±2.1 77.6±0.8 78.0±0.2 78.8±0.4 82.3±0.4 64.1±0.3 85.0±0.2 85.8±0.2 53.7±4.1 88.8±0.8 60.5±1.0 74.5±1.5

BootBERTsmall 67.6±2.7 75.3±1.4 79.2±0.3 80.0±0.2 83.2±1.5 65.2±0.9 86.2±0.4 86.6±0.1 54.7±5.3 88.2±0.8 57.3±9.2 74.9±3.4

Table 2: The BabyLM-flavored (Super)GLUE results of language models in the STRICT track and STRICT-SMALL
track. We present the mean and standard deviation statistics over 5 finetuning runs (initialized with different random
seeds) and boldface the best mean-result.

4 Discussion

LTG-BERT performance. Our results confirm
the findings by Samuel et al. (2023a) who intro-
duced the improved language modeling architec-
ture called LTG-BERT. These models perform dras-
tically better than the OPT, RoBERTa and T5 base-
lines pretrained on the same low-resource BabyLM
corpus; the performance is improved across all eval-
uation suites – GLUE, MSGS, BLiMP as well as
the BLiMP supplemental data – and across both
STRICT and STRICT-SMALL tracks. LTG-BERT
has also been used as the backbone of recent Nor-
wegian language models trained on large amounts
of data (Samuel et al., 2023b), which demonstrates
that LM methods developed for efficient training
are also beneficial for large-scale training.

Self-supervised learning. When we compare
BootBERT to the LTG-BERT baseline, we can see
that the latent bootstrapping approach leads to a
substantially better performance when finetuned on
(Super)GLUE in the STRICT track and to a slightly
better performance in the STRICT-SMALL track.
Specifically on the biggest and arguably most ro-
bust GLUE task, MNLI, the accuracy is better by
1.3/1.6 percentage points in the STRICT track and
by 1.2/1.2pp in the STRICT-SMALL track. The over-
all average (Super)GLUE score is better by 1.4pp
and by 0.4pp, respectively. This shows that lan-
guage models pretrained with this approach are a
good option for downstream tasks.

The ability of linguistic generalization, as mea-
sured by the linguistic bias scores in MSGS, is

substantially worse in BootBERT than in the LTG-
BERT baseline, as evident from Figure 4. A more
detailed analysis in Appendix D reveals that this
holds for both BabyLM tracks – but the difference
is mainly due to the fact that LTG-BERT reliably
prefers the linguistic feature ‘is the main verb in
“ing” form?’, other tests are relatively similar for
both types of models. It is unclear what part of
latent bootstrapping causes this difference.

The results on the BLiMP-based benchmarks
are mixed but overall worse when comparing Boot-
BERT with the LTG-BERT baseline. This is pos-
sibly because of the utilization of two conflicting
training objectives in BootBERT – intuitively, pure
language-modeling-based training should have an
advantage on benchmarks that rely on sentence
likelihood.

In conclusion, these low-resource experiments
suggest that the advantage of latent bootstrap-
ping for natural language is not as great as
the advantage that has been previously demon-
strated for computer vision. We believe that this
is because the atomic units of text, subword tokens,
can provide much more semantically rich signal
when compared to the atomic units of images, pix-
els. Thus there is not a large need for bootstrapping
a rich signal from a teacher; instead, the standard
language modeling comes with a training objective
that is simple and provides enough signal, while
suffering from issues like representation collapse.

The shared task results. The official Dyn-
aBench results for BabyLM can be found in Ap-

226



pendix E. Our system ranks high when evaluated
on GLUE (first and second place) and on BLiMP
(second and first place) in the STRICT and STRICT-
SMALL tracks, respectively. As discussed earlier,
BootBERT strongly prefers the surface features
over the linguistic features and thus places low on
the MSGS benchmark (third and last place), which
also hurts the overall ranking of our system (third
an seventh). Note however that this evaluation is
not using a proper train/development/test split and
it does not account for high variation of some met-
rics (MSGS in particular), which is why we have
used an alternative evaluation in the rest of this
paper.

Computational cost of latent bootstrapping. It
is important to note that latent bootstrapping comes
with an increased computational cost because of an
additional forward pass through the mean teacher;
which roughly equates to a 50% increase in pre-
training time. Thus, it should be carefully consid-
ered whether the potential benefits of bootstrapping
are worth this cost. That being said, this method
does not bear any additional cost during finetuning
nor inference, which might justify it in some cases.

5 Related work

Self-supervised learning. Our work is greatly in-
spired by the ‘bootstrap your own latent’ approach
(BYOL; Grill et al., 2020), which introduced the
bootstrapping feedback loop between a student
and a mean teacher network. BYOL by itself can
be considered an example of contrastive learning
(Hjelm et al., 2019; van den Oord et al., 2019; Chen
et al., 2020; He et al., 2020) without negative in-
stances. Another important aspect of BYOL is the
usage of a ‘mean teacher’, a slow-moving average
of a student network, which is a term coined by
Tarvainen and Valpola (2017).

Many methods of visual representation learning
adopted the bootstrapping approach and further im-
proved its parts (Chen and He, 2021; Zbontar et al.,
2021; Bardes et al., 2022; He et al., 2022). In par-
ticular, our work bears similarities with the recently
introduces ‘image-based joint-embedding predic-
tive architecture’ (I-JEPA; Assran et al., 2023),
which also trains a masked autoencoder student
network to predict the contextualized embeddings
of an unmasked mean teacher. While mostly used
for the image domain, data2vec method showed
that latent bootstrapping can also be successfully
applied to text (Baevski et al., 2022).

OPT RoBERTa T5 LTG-BERT BootBERT
1.00
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MSGS: Linguistic Bias Scores (LBS)

Figure 4: The Linguistic Bias Scores (LBS) of language
models pretrained on the STRICT dataset. These plots
show the distribution of the LBS scores across 15 evalu-
ation runs (3 learning rates × 5 random seeds) for each
of the 6 non-ambiguous test datasets (90 values in total
for each model). The red horizontal lines highlight the
first, second (median) and third quartile. The overall
negative scores show that none of the tested models
prefers linguistic features over the surface ones.

Efficient language modeling. The necessity of
pretraining modern language models on large cor-
pora were questioned in CamemBERT (Martin
et al., 2020) and the effect of corpus size has been
then thoroughly studied in Micheli et al. (2020),
Zhang et al. (2021) as well as in Hoffmann et al.
(2022). Samuel et al. (2023a) introduced the LTG-
BERT – an improved language model optimized for
pretraining on a low-resource corpus. They showed
that a well-tuned language model can match the per-
formance of BERT even when it is pretrained only
on a small 100-million-word British National Cor-
pus (BNC). We base our approach on this model
due to the apparent similarity of the BabyLM train-
ing corpus to BNC.

6 Conclusion

In this paper, we presented a masked autoencoder
language model trained with latent bootstrapping,
an alternative self-supervised learning method. We
showed that when pretrained on a low-resource
corpus, the results of this method are varied – com-
pared to a masked language modeling baseline, the
performance is clearly better on (Super)GLUE, but
worse on MSGS and mixed on BLiMP. We believe
that it makes a promising alternative to traditional
language modeling methods, but its reliable and
effective utilization requires future work.
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Figure 5: These plots show the BLiMP ‘confidence profiles’ of several language models – the influence of
temperature scaling on the average BLiMP accuracy. (a) Models trained by different training objectives show
different confidence profiles, judging their linguistic knowledge from BLiMP accuracy can be misleading. Here, we
compare the three baseline from the BabyLM challenge trained on the STRICT track. (b) The linguistic knowledge
of BERTbase and BERTlarge appears comparable when judging from performance at temperature 1, but the potential
of the larger model is much greater. (c) We train four sizes of LTG-BERT on the STRICT track and plot their
confidence profiles. Larger models tend to be more confident and, therefore, measuring them at temperature 1 is
more misleading.

A The Effect of temperature scaling on BLiMP

Our preliminary experiments with calibrating language models via temperature scaling (Guo et al., 2017b)
revealed that the BLiMP scores are hugely dependent on the scalar temperature parameter – when these
are calculated with the standard method by (Salazar et al., 2020). This single temperature value can
increase the accuracy on some BLiMP subtasks by more than 10% (Figure 6), which challenges the usage
of BLiMP as an appropriate evaluation tool. It is especially problematic when comparing different types
of language models (Figure 5a) and different sizes of language models (Figure 5b,c).

Background. To better understand this problem, this section describes how are the BLiMP scores
traditionally computed for masked language models. These models can estimate P (st|s\t) – the likelihood
of a token st given its bidirectional context s\t = (si|i ̸= t). This probability distribution P is given by a
softmax transformation of the output logits z, where τ is temperature:

Pi =
exp(zi/τ)∑
k exp(zk/τ)

.

Large temperature yields more even distribution and low temperature gives more ‘peaky’ distribution.
Salazar et al. (2020) proposed to use these probability estimates (with τ = 1) to infer a score for each

BLiMP sentence, with a higher score corresponding to a more likely sentence. Then, the BLiMP accuracy
measures how many times is the score of a grammatically correct sentence greater than the score of an
incorrect sentence. Specifically, we use the pseudo-log-likelihood score (PPL) by Wang and Cho (2019).
The PPL score of a sentence s is defined as:

PLL(s) =
N∑

t=1

logP (st|s\t).

Proposed solution. BLiMP should measure the linguistic knowledge of language models and we believe
that this metric should be independent of the prediction confidence of these models. Formally speaking,
the BLiMP score should be invariant to temperature scaling. Therefore, we propose to use the maximal
average accuracy across all possible temperature values – instead of simply using the average accuracy at
temperature equal to 1. As apparent from Figure 5b, such formulation can better reflect the difference of
linguistic knowledge found in BERTbase and BERTlarge. There, the accuracy measured at temperature 1
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Figure 6: The confidence profile of our proposed BootBERTbase model pretrained on the STRICT track. Apart
from the average BLiMP accuracy (in red) and the average BLiMP supplement accuracy (in blue), this plot shows
fine-grained BLiMP accuracies on all subtasks.

is at odds with other measures that show substantially better linguistic knowledge of BERTlarge (Devlin
et al., 2019; Tenney et al., 2019; Ettinger, 2020).

Note that our approach bears only a negligible compute cost because the temperature modification is
done ex-post, i.e., it does not require any additional passes through the language model.

Using one temperature for all subtasks does not account for the severe difference between the accuracy
scores on these tasks (Figure 6), but it is a simple solution that also allows us to evaluate models on a
held-out set, such as the BLiMP supplement. We believe that a scoring function that is (i) unified, (ii)
invariant to temperature and (iii) fair to all subtasks, is an interesting future work.

B Data preprocessing

The pretraining datasets for the STRICT and STRICT-SMALL tracks are a mix 10 different corpora, as
shown in Table 3. We applied light preprocessing and normalization to these corpora in order to cast them
into a unified format. In particularly, we applied these modifications:

• CHILDES: We capitalize the first letter of each line, normalize punctuation with whitespaces
(essentially detokenization) and put every line between double quotes (as directed speech).

• British National Corpus: Capitalization, normalization and double quotes.

• Children’s Book Test: This corpus contains some remnants of the Penn Tree format where, for
example, -LRB- and -RRB- tokens are used instead of ‘(’ and ‘)’. We normalize all unnatural symbols
and whitespaces.

• Children’s Stories Text Corpus: We try to conserve the formatting with a special [TAB] symbol
and apply whitespace normalization.

• Standardized Project Gutenberg Corpus: The text file is aligned into blocks by inserting a newline
symbol after at most 70 characters, which ruins the sentence structure. We restore the original
paragraphs by removing these additional newline symbols and apply whitespace normalization.
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• OpenSubtitles: Some lines arbitrarily start with a dash symbol, which we remove. Then whitespace
normalization is applied and every line is cast a directed speech with double quotes.

• QED: This corpus contains some incorrectly parsed HTML symbols, which we tried to clean up with
some simple heuristics. The whitespace normalization is applied and every line is cast as directed
speech with double quotes.

• Wikipedia: This dataset also needed to be cleaned of incorrectly parsed Wikipedia tags and hyper-
links. Whitespace normalization is applied.

• Simple Wikipedia: Heuristic HTML clean-up and whitespace normalization.

• Switchboard: The same as OpenSubtitles: removed leading dashes, whitespaces normalization and
added double quotes.

Note that the preprocessed corpora and the preprocessing scripts are released alongside the training scripts.

# Words

Dataset Domain STRICT-SMALL STRICT Proportion

CHILDES (MacWhinney, 2000) Child-directed speech 0.44M 4.21M 5%

British National Corpus (BNC),1 dialogue portion Dialogue 0.86M 8.16M 8%

Children’s Book Test (Hill et al., 2016) Children’s books 0.57M 5.55M 6%

Children’s Stories Text Corpus2 Children’s books 0.34M 3.22M 3%

Standardized Project Gutenberg Corpus (Gerlach and Font-Clos, 2018) Written English 0.99M 9.46M 10%

OpenSubtitles (Lison and Tiedemann, 2016) Movie subtitles 3.09M 31.28M 31%

QCRI Educational Domain Corpus (QED; Abdelali et al., 2014) Educational video subtitles 1.04M 10.24M 11%

Wikipedia3 Wikipedia (English) 0.99M 10.08M 10%

Simple Wikipedia4 Wikipedia (Simple English) 1.52M 14.66M 15%

Switchboard Dialog Act Corpus (Stolcke et al., 2000) Dialogue 0.12M 1.18M 1%

Total – 9.96M 98.04M 100%

Table 3: The contents of datasets for the the STRICT and STRICT-SMALL tracks; the table is taken
from Warstadt et al. (2023b). 1http://www.natcorp.ox.ac.uk 2https://www.kaggle.com/datasets/edenbd/
children-stories-text-corpus 3https://dumps.wikimedia.org/enwiki/20221220/ 4https://dumps.wikimedia.
org/simplewiki/20221201/

C Implementation details

In order to reduce training time, pre-training is parallelized over multiple GPUs with the global batch size
of 4 096. The number of GPUs used depends on the size of pre-trained language models, ranging from 32
to 128 AMD Instinct MI250X GPUs, each with 64GB memory. The amount of training steps is 62 500,
reducing the training budget of the original BERT model by 50%. Unlike the BERT and LTG-BERT
training recipe, we use the same sequence length, 256, throughout the whole training. This decision is
necessary for keeping a reasonable exponential moving average of the parameters (it could be corrupted
when switching to a longer sequence length in the middle of training).

The implementation of latent bootstrapping mainly follows I-JEPA (Assran et al., 2023). We also adopt
their usage of a linearly increasing schedule of the EMA decay hyperparameter τ and a cosine schedule
of weight decay.

The hyperparameters for pretraining are given in Table 5. Table 6 shows the finetuning hyperparameters.
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D Finegrained MSGS scores

This section shows the full score distribution over all MSGS subtasks, including the control subtasks. This
gives a better view on the behavior of different language models than the aggragated scores in Figure 4
and Table 1.
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Figure 7: The MSGS linguistic bias scores of the control tasks (in blue) and non-control disambiguated tasks (in
red). Values close to 1 indicate preference of linguistic explanations (columns) while values close to -1 indicate
preference of surface explanations.
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E The official BabyLM results from DynaBench

This section shows the official results for the BabyLM challenge as published on the DynaBench website.5

We show the top 9 submissions (the official ones delivered on time) for the STRICT and STRICT-SMALL

tracks with the aggregated scores in Table 4.

STRICT track (100M words)

Model BLiMP GLUE MSGS Average

BootBERT #2 82.2 #1 78.5 #3 27.7 #3 70.2

ELC-BERT 82.8 78.3 47.2 74.3

Contextualizer 79.0 72.9 58.0 73.0

MSLM 76.2 73.5 21.4 64.4

Bad babies 77.0 67.2 23.4 63.4

CogMemLM 72.8 72.2 -0.1 58.0

Pre-training LLMs 71.6 69.8 -3.8 56.0

BabyStories 73.9 59.1 0.2 54.7

AB-RoBERTa 68.3 64.1 -11.8 51.0

STRICT-SMALL track (10M words)

Model BLiMP GLUE MSGS Average

BootBERT #1 75.9 #2 71.7 #9 -9.7 #7 57.5

ELC-BERT 75.8 73.7 29.4 65.9

MLSM 72.4 70.6 17.2 60.8

Contextualizer 74.3 69.6 12.7 60.5

Baby Llama 69.8 67.6 24.7 60.1

Too Much Information 75.7 70.9 3.9 59.9

McGill 72.4 69.3 5.2 58.0

CLIMB 71.8 65.6 9.7 57.5

William’s college GPT2 70.9 64.8 9.9 56.9

Table 4: The DynaBench scores of the BabyLM challenge (Warstadt et al., 2023a), the table shows the top 9
submissions in the STRICT and STRICT-SMALL tracks. Higher scores are better, the best results in each evaluation
suite are boldfaced.

F BabyLM subset of (Super)GLUE tasks

The BabyLM challenge involves slightly modified GLUE and SuperGLUE benchmarks. It uses only a
subset of the subtasks, the datasets are filtered so that they do not contain out-of-vocabulary words, and it
sometimes use non-standard metrics. We list all subtasks and their metrics below:

• Boolean Questions (BoolQ; Clark et al., 2019), a yes/no Q/A dataset evaluated with accuracy.

• Corpus of Linguistic Acceptability (CoLA; Warstadt et al., 2019) evaluated with accuracy (origi-
nally evaluated with the Matthews correlation coefficient (MCC; Matthews, 1975)).

• The Multi-Genre Natural Language Inference Corpus (MNLI; Williams et al., 2018). Its devel-
opment set consists of two parts: matched, sampled from the same data source as the training set,
and mismatched, which is sampled from a different domain. Both parts are evaluated with accuracy.

• The Microsoft Research Paraphrase Corpus (MRPC; Dolan and Brockett, 2005), evaluated with
both F1-score (originally also evaluated with accuracy).

• Multi-Sentence Reading Comprehension (MultiRC; Khashabi et al., 2018), a multiple choice
question answering dataset, evaluated with accuracy (originally evaluated with the exact match
accuracy (EM) and F1-score (over all answer options)).

• Question-answering Natural Language Inference (QNLI) constructed from the Stanford Question
Answering Dataset (SQuAD; Rajpurkar et al., 2016), evaluated with accuracy.

• The Quora Question Pairs (QQP),6 evaluated with F1-score (originally evaluated with accuracy).

• The Stanford Sentiment Treebank (SST-2; Socher et al., 2013), evaluated with accuracy.

• The Recognizing Textual Entailment datasets (RTE; Dagan et al., 2006; Bar-Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al., 2009), evaluated with accuracy.

• Winograd Schema Challenge (WSC; Levesque et al., 2012) evaluated with accuracy.

5https://dynabench.org/babylm (22 October, 2023)
6https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

236

https://dynabench.org/babylm
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs


Hyperparameter BootBERTsmall BootBERTbase

Number of parameters 30 395 776 127 744 768

Number of layers 12 12

Hidden size 384 768

FF intermediate size 1 024 2 048

Vocabulary size 4 096 16 384

Attention heads 6 12

β parameter 0.1 0.1

Encoder hidden dropout 0.1 0.1

Encoder attention dropout 0.1 0.1

Decoder hidden dropout 0.0 0.0

Decoder attention dropout 0.0 0.0

Training steps 62 500 62 500

Batch size 4 096 4 096

Sequence length 256 256

Warmup steps 1 000 1 000

Initial learning rate 0.007 0.005

Final learning rate 0.0007 0.0005

Learning rate scheduler cosine cosine

Initial weight decay 0.04 0.02

Final weight decay 0.4 0.2

Weight decay scheduler cosine cosine

Initial EMA decay τ 0.996 0.996

Final EMA decay τ 1.0 1.0

EMA decay scheduler linear linear

Layer norm ϵ 1e-7 1e-7

Optimizer LAMB LAMB

LAMB ϵ 1e-6 1e-6

LAMB β1 0.9 0.9

LAMB β2 0.98 0.98

Gradient clipping 2.0 2.0

Table 5: Pre-training hyperparameters for the small-sized BootBERT (trained on STRICT-SMALL and for the
base-sized BootBERT (trained on the STRICT track).

Hyperparameter
BoolQ, MNLI

CoLA, RTE, WSC MSGSMRPC, MultiRC, QNLI

QQP, SST-2

Batch size 32 16 16

Number of epochs 10 10 5

Dropout 0.1 0.1 0.1

Warmup steps 10% 10% 10%

Peak learning rate 3e-5 3e-5 {1e-5, 2e-5, 3e-5}

Learning rate decay linear linear linear

Weight decay 0.01 0.01 0.01

Optimizer AdamW AdamW AdamW

Adam ϵ 1e-6 1e-6 1e-6

Adam β1 0.9 0.9 0.9

Adam β2 0.999 0.999 0.999

Table 6: Hyperparameters for fine-tuning the GLUE, SuperGLUE task and MSGS tasks. We use the same
hyperparameters for all models, not performing any per-model hyperparameter search. These values are adopted
from LTG-BERT (Samuel et al., 2023a) and MSGS (Warstadt et al., 2020b). For all models, we measure the
statistics over 5 random seeds: 1234, 2345, 3456, 4567 an 5678.
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Not all layers are equally as important: Every Layer Counts BERT

Lucas Georges Gabriel Charpentier and David Samuel
University of Oslo, Language Technology Group

Abstract

This paper introduces a novel modification of
the transformer architecture, tailored for the
data-efficient pretraining of language models.
This aspect is evaluated by participating in the
BabyLM challenge, where our solution won
both the STRICT and STRICT-SMALL tracks.
Our approach allows each transformer layer to
select which outputs of previous layers to pro-
cess. The empirical results verify the potential
of this simple modification and show that not
all layers are equally as important.

1 Introduction

Modern language models (LLMs), with their deep
architectures and large parameter counts, have dis-
played outstanding performance on a wide range
of tasks. Their ability to understand, generate, and
manipulate human language has been groundbreak-
ing (Devlin et al., 2019; Raffel et al., 2020; Brown
et al., 2020). However, this success largely relies
on vast amounts of unsupervised data that these
models need for pretraining, requiring extensive
computational power and time. While this is fea-
sible for high-resource languages like English, it
becomes a bottleneck for languages with limited
data resources (Joshi et al., 2020). Moreover, the
environmental and economic costs of such massive
training regimens are growing concerns (Strubell
et al., 2019; Thompson et al., 2020).

The BabyLM challenge tries to address these
concerns by providing a shared experimental
ground for efficient language modelling (Warstadt
et al., 2023). All models submitted to this shared
task have to be trained on a restricted text corpus
of 10M and 100M words – in the STRICT-SMALL

and STRICT tracks, respectively. The challenge
pushes the boundaries of what is possible with data-
efficient language model pretraining.

In response to this challenge, we present a novel
modification to the well-established transformer

STRICT-SMALL track (10M words)

Model BLiMP GLUE MSGS Average

ELC-BERT (ours) 75.8 73.7 29.4 65.9
MLSM 72.4 70.6 17.2 60.8
Contextualizer 74.3 69.6 12.7 60.5
Baby Llama 69.8 67.6 24.7 60.1
Too Much Information 75.7 70.9 3.9 59.9

STRICT track (100M words)

Model BLiMP GLUE MSGS Average

ELC-BERT (ours) 82.8 78.3 47.2 74.3
Contextualizer 79.0 72.9 58.0 73.0
BootBERT 82.2 78.5 27.7 70.2
MSLM 76.2 73.5 21.4 64.4
Bad babies 77.0 67.2 23.4 63.4

Table 1: The DynaBench scores of the BabyLM chal-
lenge (Warstadt et al., 2023), the table shows the top 5
submissions in the STRICT-SMALL and STRICT tracks.
Higher scores are better, the best results in each evalua-
tion suite are boldfaced.

architecture (Vaswani et al., 2017). Instead of tradi-
tional residual connections, our model allows each
layer to selectively process outputs from the pre-
ceding layers. This flexibility leads to intriguing
findings: not every layer is of equal significance to
the following layers. Thus, we call it the ‘Every
Layer Counts’ BERT (ELC-BERT).

The BabyLM challenge provided us with a ro-
bust benchmark to evaluate the efficacy of ELC-
BERT. Our approach emerged as the winning sub-
mission in both the STRICT and STRICT-SMALL

tracks (Table 1), which highlights the potential of
layer weighting for future low-resource language
modelling.

Transparent and open-source language mod-
elling is necessary for safe future development of
this field. We release the full source code, together
with the pre-trained ELC-BERT models, online.1

1https://github.com/ltgoslo/elc-bert
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Figure 1: Every layer can select which outputs from previous layers it wants as its input, these heatmaps show
the weights given to each previous layer output. The unit weights of the BERT model (and of any standard
transformer-based model) are inferred from Equation (4). The right heatmap shows the α weights of the normalized
ELC-BERT variant; for clear visual comparison between two the models, we rescale the α weights so that the kth
row sums to k. Note that the layer 0 is the embedding layer, as in Equation (1).

2 Related work

Residual and highway networks. While the pre-
decessor of residual models, highway networks,
used a conditional gating mechanism to weigh
layers (Srivastava et al., 2015), modern residual
networks (including transformers) simply weigh
all layers equally (He et al., 2016; Vaswani et al.,
2017). Our work reintroduces layer weights into
residual models – but without the computational
cost of a gating mechanism.

Layer importance. The difference between vari-
ous layers inside pre-trained language models has
been extensively studied (Jawahar et al., 2019; Ten-
ney et al., 2019; Niu et al., 2022). Different lay-
ers process different linguistic phenomena, thus
their importance for downstream tasks varies – this
has been successfully utilized by learning layer
weights during finetuning, for example in ULMFiT
(Howard and Ruder, 2018) or UDify (Kondratyuk
and Straka, 2019). Following this direction, our
system uses layer weights in the finetuning as well
as in the pretraining phase.

ReZero transformer. A related approach to ours
was proposed by Bachlechner et al. (2021). In that
paper, the authors experimented with scaling the
output of each layer. They showed that by initial-
izing the scaling parameter to zero, their ‘ReZero
transformer’ model tends towards setting the scale
to 1/N (where N is the number of layers). Our

approach can be considered as a generalization of
this method – in ELC-BERT, every layer weights
the outputs of previous layers individually.

3 ELC-BERT layer weighting

We modify the residual connections inside the trans-
former architecture, so that every layer can select
which outputs from previous layers it wants to pro-
cess – instead of always taking a simple sum of
all preceding layers, as done in the Transformer
(Vaswani et al., 2017) and in most works that use
a variant of this architecture. This modification
allows the model to form a complex inter-layer
structure, as visible from Figure 1.

Transformer definition. To be more specific, we
first formally define a transformer encoder as a
function that maps subword indices x onto sub-
word probabilities y. First, x is embedded into
a vector representation h0

out, which is then pro-
cessed by N layers consisting of attention and
multi-layer-perceptron (MLP) modules. Finally, y
is produced by processing the final hidden represen-
tation with a language-modelling head. Formally
for n ∈ {1, . . . N}:

h0
out ← embedding(x), (1)

hn
out ← att(hn

in) + mlp(hn
in + att(hn

in)) , (2)

y ← LM_head(hN
out). (3)
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The original residual connection. The original
transformer definition by Vaswani et al. (2017) can
be recovered by simply assigning

hn
in ← hn−1

out + hn−1
in . (4)

This recurrent assignment can also be rewritten as
hn

in ←
∑n−1

i=0 hi
out, which highlights the implicit

assumption of residual models that the output from
every previous layer is equally important.

Layer weighting. In our formulation, we make
two changes to the original definition: (i) the resid-
ual connections in all MLP modules are removed,
(ii) the input to every layer is a convex combination
of outputs from previous layers. Specifically, we
replace Equation (2) and Equation (4) by:

hn
out ← att(hn

in) + mlp(att(hn
in)) , (5)

hn
in ←

n−1∑

i=0

αi,nh
i
out, (6)

where
∑n−1

i=0 αi,n = 1. This constraint is satisfied
by a softmax transformation of the raw learnable
layer weights α̂∗,n ∈ Rn into α∗,n. α̂∗,n is initial-
ized as a zero vector except for the value of α̂n−1,n

set to one, in order to bias the weight towards the
input from the previous layer.

4 Training

LTG-BERT backbone. We base our models
around LTG-BERT (Samuel et al., 2023). This
model has been specifically optimized for pretrain-
ing on small text corpora, similar to the one pro-
vided by BabyLM. We adopt all of their architec-
tural modifications, their language modelling objec-
tive as well as all other pretraining settings. We also
use the raw LTG-BERT (without our layer weight-
ing) as a strong baseline in the following evaluation.
Details on the pretraining hyperparameters can be
found in Table 4.

BabyLM pretraining corpus. We pretrain all
language models on a corpus from the BabyLM
challenge (Warstadt et al., 2023). The goal of this
challenge is to shed more light on data-efficient
language modelling and on the question of human
language acquisition. Thus, the organizers have
constructed a small-scale text corpus of the same
type and quantity that children learn from.

Specifically, the shared task consists of three
tracks: STRICT, STRICT-SMALL and LOOSE. We

STRICT-SMALL track (10M words)

Model BLiMP Supp. MSGS GLUE

OPT125m 62.6 54.7 -0.64±0.1 68.3±3.3

RoBERTabase 69.5 47.5 -0.67±0.1 72.2±1.9

T5base 58.8 43.9 -0.68±0.1 64.7±1.3

LTG-BERTsmall — — -0.43±0.4 74.5±1.5

ELC-BERTsmall 80.5 67.9 -0.45±0.2 75.3±2.1

STRICT track (100M words)

Model BLiMP Supp. MSGS GLUE

OPT125m 75.3 67.8 -0.44±0.1 73.0±3.9

RoBERTabase 75.1 42.4 -0.66±0.3 74.3±0.6

T5base 56.0 48.0 -0.57±0.1 75.3±1.1

LTG-BERTbase 85.8 76.8 -0.42±0.2 77.9±1.1

ELC-BERTbase 85.3 76.6 -0.26±0.5 78.3±3.2

Table 2: Results for the BabyLM challenge suite of
evaluation datasets – BLiMP, supplemental dataset to
BLiMP, MSGS and (Super)GLUE. We compare the
results of our submitted model (ELC-BERTbiased) to
the backbone model (LTG-BERTbase) and the baselines
given by the organizers of the challenge on the STRICT
dataset. On the STRICT-SMALL dataset, we compare a
variation (ELC-BERTzero) of small size to the backbone
model and baselines.

participate in the first two tracks, where the submis-
sions have to be pre-trained only on the BabyLM
corpus, which corpus contains about 100M words
in the STRICT track and about 10M words in the
STRICT-SMALL track. We adopt the preprocess-
ing pipeline from Samuel (2023) for unifying the
format of texts from this corpus.

5 Results

This section provides the results of the empirical
evaluation of ELC-BERT. First, we compare our
method to baselines, then we perform an ablation
study of different ELC-BERT variations, and fi-
nally, we take a deeper look into the learnt layer
weights.

5.1 BabyLM challenge evaluation

We adopt the BabyLM evaluation pipeline for all
comparisons.2 The pipeline itself is an adaptation
of Gao et al. (2021) and it aims to provide a ro-
bust evaluation of syntactic and general language
understanding.

2https://github.com/babylm/
evaluation-pipeline

240

https://github.com/babylm/evaluation-pipeline
https://github.com/babylm/evaluation-pipeline


OPT RoBERTa T5 LTG-BERT ELC-BERT

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Lin

gu
ist

ic 
Bi

as
 S

co
re

Figure 2: Violin plots of each model’s Linguistic Bias
Scores (LBS) and the base model. The white dot shows
the median LBS and the edge of the boxes are the 1st

and 3rd quartiles. The width of the violins shows the
density of results at that score.

The syntactic understanding is measured by the
Benchmark of Linguistic Minimal Pairs (BLiMP
& BLiMP supplemental; Warstadt et al., 2020a)
and the Mixed Signals Generalization Set (MSGS;
Warstadt et al., 2020b). The general natural lan-
guage understanding is measured by GLUE and
SuperGLUE (Wang et al., 2018, 2019). All of
these benchmarks use filtered subsets of the orig-
inal datasets (provided by the organizers), which
means that they are not directly comparable to pre-
vious literature. If applicable, we divide the train-
ing set into a train-development split and report the
mean/std statistics over multiple runs on the former
validation split.

BLiMP. This benchmark tests zero-shot prefer-
ence of grammatical sentences. From the STRICT

results in Table 2, we see that ELC-BERT outper-
forms the baseline models by a fair margin on this
task. However, if we look at the LTG-BERT base-
line, we see that our model slightly underperforms
it (by 0.5 percentage points). Table 7 provides a
more in-depth comparison of the models.

If we now look at the supplemental scores in, we
see a very similar trend to the BLiMP results: our
model outperforms the baseline RoBERTa model
by 24.4 p.p. while slightly underperforming against
the LTG-BERT model by 0.2 p.p. Table 8 shows a
breakdown of the aggregated scores.

GLUE. A standard LM benchmark that tests the
ability to be finetuned for general language un-
derstanding tasks. Focusing on the results in Ta-
ble 2, we see that our model outperforms both
the encoder baseline and the LTG-BERT model

in the STRICT and STRIC-SMALL tracks. The im-
provement against LTG-BERT is rather modest and
could be caused by random variation. If we look
at Table 9 we see that the variation is greatly af-
fected by the WSC task – ignoring it, we get a
score of 80.49±1.44 for our model and 79.52±1.13

for LTG-BERT.

MSGS. Finally, this benchmark evaluates the
preference towards linguistic explanations over spu-
rious surface explanations. For the aggregated
STRICT MSGS results of Table 2, the compari-
son appears unclear due to the large standard de-
viation. However, a closer inspection reveals that
ELC-BERT significantly outperforms LTG-BERT
by 0.16 LBS points.3 Figure 2 and Table 10 shows
a detailed view on the score distribution.

Shared task results. The official Dynabench re-
sults for the top-5 models for the STRICT and
STRICT-SMALL track can be found in Table 1.
Looking first at the STRICT track results, we see
that our model achieves the highest total score and
BLiMP score, while we are second for GLUE and
MSGS. On the STRICT-SMALL track our model per-
forms best on all benchmarks and by a substantial
margin for all benchmarks.

5.2 Model variations

We compare the following modifications of the
ELC-BERT architecture from Section 3:

1. Zero initialization: The layer weights are all
initialized as zeros, without any bias towards
the previous layer. This model also uses the
residual MLP input from Equation (2). This
variation is used in the STRICT-SMALL track.

2. Strict normalization: This follows the pre-
vious variant with every hi

out normalized to a
unit vector.

3. Weighted output: Follows the first vari-
ant and the input to the LM head is a
weighted sum of all layers. To be more
concrete, we replace Equation (3) by y ←
LM_head

(∑N
i=0 αi,N+1h

i
out

)
.

3Using the Almost Stochastic Order (ASO) significance
test from Dror et al. (2019) and Del Barrio et al. (2018) (cal-
culated using Ulmer et al. (2022)), we get a εmin of 0.2 at
a confidence level of 0.95 which implies that there is a high
likelihood that ELC-BERT is better than LTG-BERT.
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Model BLiMP Supp. MSGS GLUE

ELC-BERT 85.3 76.6 -0.26±0.5 78.3±3.2

+ zero initialization 84.9 78.5 -0.38±0.3 79.4±1.0

+ normalization 85.1 76.0 -0.13±0.4 78.2±3.3

+ weighted output 86.1 76.0 -0.28±0.2 78.2±0.6

Table 3: Results for the BabyLM challenge suite of
evaluation datasets. We compare the performance of
different variants of our model to the one submitted to
the BabyLM challenge as well as the backbone model
LTG-BERT on the STRICT dataset.

Evaluation. Based on Table 3, we see that differ-
ent variations have varying effects on the evaluation
scores.

When changing the α̂ initialization to zero, we
see a significant increase in performance on both
the BLiMP Supplemental and the GLUE bench-
marks.4 However, the model suffers in perfor-
mance on both the BLiMP and MSGS.5 Overall,
we see that this variation leads to better zero-shot
and fine-tuning results while biasing the model
more towards spurious surface features rather than
linguistic features, as can be seen in Figure 3.

If we then focus on the normalization variation,
we see that it underperforms in all benchmarks but
one, MSGS, where it significantly performs better
by 0.13 LBS points,6 as can be seen in more detail
in Figure 3.

Finally, when looking at our weighted output
variation, we see a substantial gain in performance
on the BLiMP benchmark while the results on
MSGS and GLUE are similar, and the results on
Supplemental BLiMP slightly decrease. More de-
tailed results on all these benchmarks can be found
in Appendix D.

5.3 Layer importance

The empirical evaluation suggests that learnable
layer weights are a simple but effective architec-
tural change – but how do these learnt weights look
like? In this section, we investigate the α values of
the normalized ELC-BERT variant.7

4The increase in performance on the GLUE benchmark is
significant when using the ASO significance test both against
the original ELC-BERT and the backbone model LTG-BERT.
Against both models, we get a εmin of 0, indicating a very
strong likelihood that the zero variation is better than ELC-
BERT and LTG-BERT on GLUE

5This is a significant decrease with an εmin of 0.28 that
ELC-BERT is better.

6Significant with an εmin of 0.31.
7The interpretation of α weights in a non-normalized vari-

ant is difficult due to different magnitudes of layer outputs.
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Figure 3: Detailed LBS for each model and each com-
bination of surface and linguistic features. The Y-axis
(Main Verb, Syntactic Category, and Control Raising)
show the linguistic features, while the X-axis (Lexi-
cal Content, Relative Token Position) represent the sur-
face features. Each dot represents a different fine-tuned
model.

Looking at the importance matrix of ELC-BERT
in Figure 1, we posit that the first 5 layers focus on
surface-level information found in the embedding
layer explaining its enhanced importance for the
embedding layer. The next 5 layers (6-10) focus
on more linguistic features by virtually ignoring
the first 4 layers (0-3) and focusing primarily on
the previous three layers as well as layers 4 and
5 to get some transformed information from the
embedding layer. Layer 11 does much the same
but focuses more on Layer 4, potentially trying to
obtain some surface knowledge found in it. Finally,
Layer 12 behaves similarly to Layer 11 but also
puts high importance (3rd most) on the embedding
layer. This is most likely to recuperate some sur-
face information lost in previous layers to pass to
the language modelling head.

6 Conclusion

In this paper, we proposed a novel and simple modi-
fication of the transformer architecture for language
modelling. We empirically tested the efficacy of
our approach by participating in the BabyLM chal-
lenge – a shared task for data-efficient language
modelling. Our submission ranked first on both
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tracks that we participated in. A more detailed
evaluation shows that, when compared to a strong
baseline, our approach reliably performs better on
(Super)GLUE tasks. The evaluation on MSGS sug-
gests that our approach is more likely to prefer
linguistic features over spurious surface features,
and the BLiMP benchmarks show comparable per-
formance to the baseline. Finally, our proposed
modification shows that the assumption that all lay-
ers are equally important is incorrect, and a more
complex layer structure helps the model.
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A Pre-training details

Hyperparameter Base Small Small (Submitted Model)

Number of parameters 98M 24M 24M
Number of layers 12 12 12
Hidden size 768 384 384
FF intermediate size 2 048 1 024 1 024
Vocabulary size 16 384 6 144 6 144
Attention heads 12 6 6
Hidden dropout 0.1 0.1 0.1
Attention dropout 0.1 0.1 0.1
Training steps 15 625 15 625 31 250
Batch size 32 768 32 768 8 096
Initial Sequence length 128 128 128
Initial Sequence length 512 512 512
Warmup ratio 1.6% 1.6% 1.6%
Initial learning rate 0.01 0.0141 0.005
Final learning rate 0.001 0.00141 0.005
Learning rate scheduler cosine cosine cosine
Weight decay 0.1 0.4 0.4
Layer norm ϵ 1e-7 1e-7 1e-7
Optimizer LAMB LAMB LAMB
LAMB ϵ 1e-6 1e-6 1e-6
LAMB β1 0.9 0.9 0.9
LAMB β2 0.98 0.98 0.98
Gradient clipping 2.0 2.0 2.0

Table 4: Pre-training hyperparameters for the small-sized models (trained on STRICT-SMALL) and for the base-sized
models (trained on the STRICT track).
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B Fine-tuning details

For the fine-tuning experiments, we will run multiple seeds and (for MSGS) multiple learning rates, to be
able to get a more robust comparison of model performance. The detailed hyperparameters for fine-tuning
can be found in Table 5.

B.0.1 GLUE
To finetune, we will use 5 different seeds: 12, 642, 369, 1267, and 2395. We will use a validation set to
find our best model with early-stopping, and then test our model on a test set (here the validation set is
10% of the training sets from https://github.com/babylm/evaluation-pipeline and the test set is
their validation set).

B.0.2 MSGS
To finetune, we use three different random seeds: 12, 369, and 2395, as well as three different learning
rates: 1e-5, 2e-5, and 3e-5. In addition, we train for 5 epochs, with a batch size of 16 with no early
stopping.

Hyperparameter QQP, MNLI CoLA, RTE, WSC MSGS
QNLI, SST-2 MRPC, MultiRC

Batch size 32 16 16
Number of epochs 10 10 5
Dropout 0.1 0.1 0.1
Warmup steps 10% 1% 6%
Peak learning rate 5e-5 7e-5 {1e-5, 2e-5, 3e-5}
Learning rate decay cosine cosine linear
Weight decay 0.1 0.1 0.1
Optimizer AdamW AdamW AdamW
Adam ϵ 1e-8 1e-8 1e-8
Adam β1 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999

Table 5: Hyperparameters for fine-tuning the GLUE, SuperGLUE task and MSGS tasks. We use the same
hyperparameters for all ELC-BERT models, not performing any per-model hyperparameter search. The values for
MSGS are adopted from (Warstadt et al., 2020b). For all models, we measure the statistics over 5 random seeds for
GLUE tasks: 12, 642, 369, 1267, and 2395; and 3 seeds for MSGS tasks: 12, 369, and 2395
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C BabyLM dataset

Table 6 is a detailed overview of the BabyLM dataset:

# Words

Dataset Domain STRICT-SMALL STRICT Proportion

CHILDES (MacWhinney, 2000) Child-directed speech 0.44M 4.21M 5%
British National Corpus (BNC),1 dialogue portion Dialogue 0.86M 8.16M 8%
Children’s Book Test (Hill et al., 2016) Children’s books 0.57M 5.55M 6%
Children’s Stories Text Corpus2 Children’s books 0.34M 3.22M 3%
Standardized Project Gutenberg Corpus (Gerlach and Font-Clos, 2018) Written English 0.99M 9.46M 10%
OpenSubtitles (Lison and Tiedemann, 2016) Movie subtitles 3.09M 31.28M 31%
QCRI Educational Domain Corpus (QED; Abdelali et al., 2014) Educational video subtitles 1.04M 10.24M 11%
Wikipedia3 Wikipedia (English) 0.99M 10.08M 10%
Simple Wikipedia4 Wikipedia (Simple English) 1.52M 14.66M 15%
Switchboard Dialog Act Corpus (Stolcke et al., 2000) Dialogue 0.12M 1.18M 1%

Total – 9.96M 98.04M 100%

Table 6: The contents of datasets for the the STRICT and STRICT-SMALL tracks; the table is taken
from Warstadt et al. (2023). 1http://www.natcorp.ox.ac.uk 2https://www.kaggle.com/datasets/edenbd/
children-stories-text-corpus 3https://dumps.wikimedia.org/enwiki/20221220/ 4https://dumps.wikimedia.
org/simplewiki/20221201/

D Detailed Results

This section breaks down the aggregate scores of the benchmarks into their composing tasks. It also
describes or name each task

D.1 BLiMP
The BabyLM challenge uses the BLiMP benchmark (Warstadt et al., 2020a) to evaluate the syntactic
understanding of the models. Our detailed results can be found in Table 7. Its composing tasks are as
follows (with descriptions taken from Warstadt et al. (2020a)):

• ANAPHOR AGREEMENT (AA): the requirement that reflexive pronouns like herself (also known as
anaphora) agree with their antecedents in person, number, gender, and animacy.

• ARGUMENT STRUCTURE (AS): the ability of different verbs to appear with different types of
arguments. For instance, different verbs can appear with a direct object, participate in the causative
alternation, or take an inanimate argument.

• BINDING (B): the structural relationship between a pronoun and its antecedent.

• CONTROL/RAISING (CR): syntactic and semantic differences between various types of predicates
that embed an infinitival VP. This includes control, raising, and tough-movement predicates.

• DETERMINER-NOUN AGREEMENT (DNA): number agreement between demonstrative determiners
(e.g., this/these) and the associated noun.

• ELLIPSIS (E): the possibility of omitting expressions from a sentence. Because this is difficult to
illustrate with sentences of equal length, our paradigms cover only special cases of noun phrase
ellipsis that meet this constraint.

• FILLER-GAP (FG): dependencies arising from phrasal movement in, for example, wh-questions.

• IRREGULAR FORMS (IF): irregular morphology on English past participles (e.g., awoken).

• ISLAND EFFECTS (IE): restrictions on syntactic environments where the gap in a filler-gap depen-
dency may occur.
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• NPI LICENSING (NL): restrictions on the distribution of negative polarity items like any and ever
limited to, for example, the scope of negation and only.

• QUANTIFIERS (Q): restrictions on the distribution of quantifiers. Two such restrictions are covered:
superlative quantifiers (e.g., at least) cannot be embedded under negation, and definite quantifiers
and determiners cannot be subjects in existential-there constructions.

• SUBJECT-VERB AGREEMENT (SVA): subjects and present tense verbs must agree in number.

Model AA AS B CR DNA E FG IF IE NL Q SVA Average

STRICT (100M words)

OPT125M 94.9 73.8 73.8 72.2 93.1 80.5 73.6 80.8 57.8 51.6 74.5 77.3 75.3
RoBERTabase 89.5 71.3 71.0 67.1 93.1 83.8 68.0 89.6 54.5 66.3 70.3 76.2 75.1
T5base 66.7 61.2 59.4 59.8 53.8 49.1 70.0 75.5 43.6 45.6 34.2 53.2 56.0
LTG-BERTbase 96.1 79.5 77.1 80.3 95.4 91.7 87.8 94.5 79.8 84.4 72.2 91.2 85.8

ELC-BERTbase 92.8 81.2 74.0 79.2 96.0 91.7 87.1 93.6 83.9 83.5 70.2 90.8 85.3
+ zero initialization 93.8 79.1 73.6 79.8 95.5 91.0 87.1 93.3 78.8 84.8 73.5 88.7 84.9
+ normalization 93.0 79.1 74.6 79.8 95.6 91.7 87.4 93.9 82.0 83.7 71.3 89.1 85.1
+ weighted output 94.7 80.7 75.7 81.3 95.7 91.6 88.9 95.9 83.2 85.7 69.2 91.1 86.1

STRICT-SMALL (10M words)

OPT125M 63.8 70.6 67.1 66.5 78.5 62.0 63.8 67.5 48.6 46.7 59.6 56.9 62.6
RoBERTabase 81.5 67.1 67.3 67.9 90.8 76.4 63.5 87.4 39.9 55.9 70.5 65.4 69.5
T5base 68.9 63.8 60.4 60.9 72.2 34.4 48.2 77.6 45.6 47.8 61.2 65.0 58.8

ELC-BERTsmall 89.5 72.5 68.1 72.6 93.4 87.4 80.6 91.0 67.9 79.4 75.2 88.7 80.5

Table 7: BLiMP results for models trained both on the 100M (above the mid-horizontal line) and the 10M (below
the mid-horizontal line) Baby LM dataset. The bold results represent the best model for the task. The metric used to
measure is accuracy. The results are in percentage.

D.2 BLiMP Supplemental

Model Hypernym QA Congruence Easy QA Congruence Tricky Subject Aux Inversion Turn Talking Average

STRICT (100M words)

OPT125M 46.3 76.5 47.9 85.3 82.9 67.8
RoBERTabase 50.8 34.4 34.5 45.6 46.8 42.4
T5base 51.1 45.3 25.5 69.2 48.9 48.0
LTG-BERTbase 47.0 90.6 60.6 90.7 92.1 76.8

ELC-BERTbase 47.3 85.9 63.0 94.5 92.1 76.6
+ zero initialization 47.1 92.2 64.2 95.9 93.2 78.5
+ normalization 46.1 85.9 59.4 96.5 92.1 76.0
+ weighted output 48.6 87.5 57.6 96.2 90.4 76.0

STRICT-SMALL (10M words)

OPT125M 50.0 54.7 31.5 80.3 57.1 54.7
RoBERTabase 49.4 31.3 32.1 71.7 53.2 47.5
T5base 48.0 40.6 21.2 64.9 45.0 43.9

ELC-BERTsmall 48.0 73.4 43.6 90.0 84.3 67.9

Table 8: BLiMP supplemental results for models trained both on the 100M (above the mid-horizontal line) and the
10M (below the mid-horizontal line) Baby LM dataset. The bold results represent the best model for the task. The
metric used to measure is accuracy. The results are in percentage.

D.3 GLUE
The BabyLM challenge involves slightly modified GLUE and SuperGLUE benchmarks. It uses only a
subset of the subtasks, the datasets are filtered so that they do not contain out-of-vocabulary words, and it
sometimes uses non-standard metrics. Our detailed results can be found in Table 9. We list all subtasks
and their metrics below:
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• Boolean Questions (BoolQ; Clark et al., 2019), a yes/no Q/A dataset evaluated with accuracy.

• Corpus of Linguistic Acceptability (CoLA; Warstadt et al., 2019) evaluated with accuracy (origi-
nally evaluated with the Matthews correlation coefficient (MCC; Matthews, 1975)).

• The Multi-Genre Natural Language Inference Corpus (MNLI; Williams et al., 2018). Its devel-
opment set consists of two parts: matched, sampled from the same data source as the training set,
and mismatched, which is sampled from a different domain. Both parts are evaluated with accuracy.

• The Microsoft Research Paraphrase Corpus (MRPC; Dolan and Brockett, 2005), evaluated with
both F1-score (originally also evaluated with accuracy).

• Multi-Sentence Reading Comprehension (MultiRC; Khashabi et al., 2018), a multiple choice
question answering dataset, evaluated with accuracy (originally evaluated with the exact match
accuracy (EM) and F1-score (over all answer options)).

• Question-answering Natural Language Inference (QNLI) constructed from the Stanford Question
Answering Dataset (SQuAD; Rajpurkar et al., 2016), evaluated with accuracy.

• The Quora Question Pairs (QQP),8 evaluated with F1-score (originally evaluated with accuracy).

• The Stanford Sentiment Treebank (SST-2; Socher et al., 2013), evaluated with accuracy.

• The Recognizing Textual Entailment datasets (RTE; Dagan et al., 2006; Bar-Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al., 2009), evaluated with accuracy.

• Winograd Schema Challenge (WSC; Levesque et al., 2012) evaluated with accuracy.

Model CoLA SST-2 MRPC QQP MNLIm MNLImm QNLI RTE BoolQ MultiRC WSC Average

STRICT (100M words)

OPT125m 74.9±0.6 87.7±0.7 81.9±0.7 84.3±0.1 75.7±0.3 77.0±0.3 82.8±0.8 58.6±2.9 66.4±0.7 61.5±0.8 52.3±12.5 73.0±3.9

RoBERTabase 75.6±0.3 88.3±0.6 84.0±0.5 85.5±0.2 77.4±0.4 78.3±0.3 83.6±0.2 50.7±1.5 67.7±0.7 64.3±0.5 61.4±0.0 74.3±0.6

T5base 76.7±0.9 89.0±0.8 85.2±1.1 86.2±0.1 77.9±0.3 78.7±0.3 84.7±0.9 55.4±2.2 67.7±1.5 65.7±0.8 61.0±1.1 75.3±1.1

LTG-BERTbase 82.7±0.8 92.0±0.4 87.4±0.7 87.9±0.1 83.0±0.4 83.4±0.5 89.1±0.5 54.7±2.4 68.4±0.5 66.0±1.4 61.4±0.0 77.9±1.1

ELC-BERTbase 82.6±0.5 91.9±1.1 89.3±0.6 88.0±0.1 83.6±0.1 83.3±0.2 89.4±0.4 60.0±2.8 70.5±1.5 66.2±2.2 56.4±9.4 78.3±3.2

+ zero initialization 82.0±0.7 92.4±0.4 88.8±1.5 88.2±0.1 84.4±0.3 84.5±0.3 90.5±0.5 63.0±1.5 72.6±1.0 65.8±1.1 61.4±0.0 79.4±1.0

+ normalization 83.1±0.4 91.9±0.4 88.6±1.3 88.0±0.1 84.1±0.2 84.3±0.2 90.5±0.4 56.2±2.4 72.0±1.5 64.9±0.6 56.9±10.2 78.2±3.3

+ weighted output 82.6±0.6 91.7±1.2 87.8±1.2 87.9±0.1 84.0±0.4 84.0±0.3 89.4±0.3 55.2±5.5 71.0±0.8 64.4±0.8 61.7±0.5 78.2±0.6

STRICT-SMALL (10M words)

OPT125m 69.0±0.5 85.4±0.9 80.0±1.8 80.3±0.3 69.5±0.2 71.0±0.5 71.5±0.7 51.3±2.1 66.2±1.5 56.5±2.0 50.8±10.3 68.3±3.3

RoBERTabase 70.4±0.4 85.6±0.3 82.2±0.4 83.5±0.2 72.5±0.4 74.4±0.3 80.3±0.7 56.8±5.5 65.8±2.9 61.2±1.5 61.7±0.5 72.2±1.9

T5base 76.7±0.9 69.4±0.1 81.4±0.6 76.8±0.3 57.3±0.8 58.6±1.1 64.3±0.9 52.7±2.4 63.4±1.6 48.4±1.4 60.0±2.2 64.7±1.3

LTG-BERTsmall 77.6±0.8 88.8±0.8 82.3±0.4 85.8±0.2 78.0±0.2 78.8±0.4 85.0±0.2 53.7±4.1 64.8±2.1 64.1±0.3 60.5±1.0 74.5±1.5

ELC-BERTsmall 76.1±1.0 89.3±0.5 85.0±1.8 86.7±0.3 79.2±0.3 79.9±0.2 85.8±0.4 55.4±2.6 69.3±2.0 62.2±1.0 59.0±5.4 75.3±2.1

Table 9: A subset of GLUE results (defined by the Baby LM challenge) for both the models trained on 100M and
10M words. All the results indicate the model accuracy for the task except for MRPC and QQP where the results
are based on the F1-score of the positive class. To obtain the standard deviation, each model is trained with 5 seeds,
and the average accuracy/F1-score is reported. The results are reported in percentage. The bold result indicates the
best model for each dataset.

D.4 MSGS

The BabyLM challenge uses a reduced set of the MSGS benchmark (Warstadt et al., 2020b) to evaluate
whether the model biases linguistic features or surface features. A score of 1 means only using the
linguistic features, while a score of -1 is surface features only. Table 10 shows the detailed results of
the reduced MSGS benchmark. The first 5 results (MVC to RTPC) are controls, checking whether the

8https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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model can recognize the feature, while the next six evaluate whether the model biases linguistic or surface
features. To evaluate the performance we use the Mathews Correlation Coefficient (MCC), also called
Linguistic Bias Score (LBS) for the last six tasks. The surface features in this dataset are (definitions
taken from Warstadt et al. (2020b)):

• LEXICAL CONTENT (LC): This feature is 1 iff the sentence contains the.

• RELATIVE TOKEN POSITION (RTP): This feature is 1 when the precedes a, and 0 when a precedes
the.

The linguistic features are (definitions taken from Warstadt et al. (2020b)):

• MAIN VERB (MV): This feature is 1 iff the sentence’s main verb is in the -ing form.

• CONTROL/RAISING (CR): This feature has value 1 iff the sentence contains the control construction.

• SYNTACTIC CATEGORY (SC): This feature is 1 iff the sentence contains an adjective.

Model MVC CRC SCC LCC RTPC MVLC MVRTP CRLC CRRTP SCLC SCRTP

STRICT (10M words)

OPT125M 1.00±0.00 0.88±0.04 0.36±0.06 0.14±0.04 0.83±0.03 -0.55±0.12 -0.88±0.06 -0.02±0.08 -0.73±0.05 0.11±0.13 -0.59±0.04

RoBERTabase 1.00±0.00 0.75±0.12 0.57±0.22 1.00±0.00 0.92±0.07 -0.87±0.41 -0.89±0.13 -0.37±0.34 -0.54±0.13 -0.70±0.27 -0.61±0.19

T5base 1.00±0.00 0.82±0.05 0.56±0.05 1.00±0.00 0.90±0.05 -1.00±0.00 -0.95±0.03 -0.13±0.10 -0.61±0.03 0.03±0.12 -0.73±0.04

LTG-BERTbase 1.00±0.00 0.83±0.07 0.65±0.08 1.00±0.00 0.50±0.06 -0.72±0.36 0.20±0.15 -0.42±0.10 -0.86±0.08 -0.20±0.18 -0.50±0.02

ELC-BERTbase 1.00±0.00 0.89±0.10 0.76±0.07 1.00±0.00 0.77±0.11 -0.01±0.88 0.44±0.57 -0.64±0.29 -0.81±0.10 0.01±0.15 -0.57±0.03

+ zero initialization 0.94±0.17 0.94±0.02 0.52±0.14 1.00±0.00 0.97±0.03 -0.74±0.49 0.23±0.27 -0.54±0.30 -0.67±0.06 -0.13±0.05 -0.45±0.04

+ normalization 1.00±0.00 0.94±0.01 0.55±0.09 1.00±0.00 0.99±0.01 -0.03±0.71 0.65±0.30 -0.32±0.58 -0.32±0.22 -0.27±0.16 -0.48±0.07

+ weighted output 1.00±0.00 0.91±0.02 0.40±0.12 1.00±0.00 0.84±0.10 -0.71±0.29 0.24±0.18 -0.14±0.19 -0.43±0.31 -0.15±0.16 -0.47±0.02

STRICT-SMALL (100M words)

OPT125M 0.97±0.01 0.58±0.06 0.76±0.06 0.55±0.12 1.00±0.00 -0.91±0.10 -0.98±0.03 -0.35±0.17 -0.73±0.05 -0.05±0.06 -0.81±0.08

RoBERTabase 0.97±0.02 0.49±0.05 0.72±0.12 0.93±0.11 0.91±0.08 -0.99±0.01 -0.94±0.04 -0.30±0.17 -0.48±0.08 -0.37±0.20 -0.93±0.10

T5base 0.28±0.04 0.25±0.06 0.72±0.03 1.00±0.00 0.87±0.03 -1.00±0.00 -0.87±0.05 -0.39±0.10 -0.44±0.07 -0.70±0.10 -0.70±0.05

LTG-BERTsmall 1.00±0.00 0.71±0.02 0.43±0.14 1.00±0.00 0.75±0.11 -0.18±0.80 0.12±0.21 -0.48±0.10 -0.58±0.04 -0.48±0.10 -0.96±0.04

ELC-BERTsmall 1.00±0.00 0.79±0.04 0.68±0.08 0.98±0.04 0.77±0.01 -0.86±0.10 0.00±0.24 -0.14±0.21 -0.57±0.02 -0.29±0.17 -0.82±0.16

Table 10: A subset of MSGS results (defined by the Baby LM challenge) for both the models trained on 100M
and 10M words. All the results indicate the model MCC or LBS for the non-control tasks. To obtain the standard
deviation, each model is trained with 3 seeds and 3 learning rates for the STRICT dataset and for ELC-BERTsmall, the
other STRICT-SMALL datasets are trained on 5 seeds with 3 learning rates, and the average MCC/LBS is reported.
The results are reported in percentage. The bold result indicates the best model for each dataset.
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E Almost Stochastic Order Significance Tests

In this section, we put all the ASO significance tests between the backbone model LTG-BERT, ELC-BERT,
and all its variations trained on the STRICT dataset for both the MSGS and GLUE benchmarks.

E.1 GLUE - STRICT dataset

Model LTG-BERTbase ELC-BERTbase zero initialization normalized weighted output

LTG-BERTbase – 1.00 1.00 1.00 1.00
ELC-BERTbase 0.69 – 1.00 1.00 1.00

+ zero initialization 0.00 0.05 – 0.00 0.00
+ normalization 0.90 1.00 1.00 – 1.00
+ weighted output 0.55 1.00 0.95 1.00 –

Table 11: The εmin from the ASO significance test between each model on the GLUE dataset. Each row compares
whether the model in the row is better than the one in the column. Results in bold indicate that the row model is
significantly better than the one in the column.

E.2 MSGS - STRICT dataset

Model LTG-BERTbase ELC-BERTbase zero initialization normalized weighted output

LTG-BERTbase – 1.00 1.00 1.00 1.00
ELC-BERTbase 0.20 – 0.28 1.00 0.83

+ zero initialization 0.62 1.00 – 1.00 1.00
+ normalization 0.01 0.31 0.02 – 0.15
+ weighted output 0.06 1.00 0.25 1.00 –

Table 12: The εmin from the ASO significance test between each model on the MSGS dataset. Each row compares
whether the model in the row is better than the one in the column. Results in bold indicate that the row model is
significantly better than the one in the column.
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Abstract

Training on multiple modalities of input can
augment the capabilities of a language model.
Here, we ask whether such a training regime
can improve the quality and efficiency of these
systems as well. We focus on text–audio and
introduce WhisBERT, which is inspired by the
text–image approach of FLAVA (Singh et al.,
2022). In accordance with BabyLM (Warstadt
et al., 2023) guidelines, we pretrain WhisBERT
on a dataset comprising only 100 million words
plus their corresponding speech from the word-
aligned version of the People’s Speech dataset
(Galvez et al., 2021). To assess the impact
of multimodality, we compare versions of the
model that are trained on text only and on both
audio and text simultaneously. We find that
while WhisBERT is able to perform well on
multimodal masked modeling and surpasses the
BabyLM baselines in most benchmark tasks, it
struggles to optimize its complex objective and
outperform its text-only WhisBERT baseline.

https://github.com/lu-wo/whisbert

1 Introduction

Recent advances in language modeling and their
downstream applications have been driven, in large
part, by bigger models, both in terms of model size
and in terms of training data. Larger and larger pre-
training datasets highlight the gap in terms of learn-
ing efficiency between humans and deep learning
models—while state-of-the-art language models
need billions of examples to approach human-level
language performance, people learn their language
from experience with about 100 million words or
less (Warstadt and Bowman, 2022; Frank, 2023).

We hypothesize that one major reason for this
data efficiency gap is the difference in input be-
tween humans and current deep learning systems.
Human language learning involves multiple modal-
ities, including both visual and auditory input. In
contrast, typical language models are trained on

representations of text alone. For this BabyLM
submission, we ask whether training on inputs of
multiple modalities can increase language models’
training efficiency, with a focus on text-audio mul-
timodal input. We conjecture that multimodal data
sources have the potential to enrich the language
learning process, enabling models to leverage com-
plementary information from different modalities
and thus augment their learning capacity (Bal-
trušaitis et al., 2017).

Multimodal language modeling has experienced
a noteworthy surge in research productivity lately,
in applications such as image retrieval, semantic
embeddings, and image generation (Driess et al.,
2023; Koh et al., 2023; Yasunaga et al., 2023)
However, text-audio multimodal language mod-
eling (e.g. (Chuang et al., 2019; Lakhotia et al.,
2021)) remains largely unexplored, especially in
low-resource settings such as the 100 million train-
ing regime we employ here. As a first step towards
a text-audio language model, we introduce Whis-
BERT, a novel masked language model (MLM)
architecture inspired by vision-text models such
as FLAVA (Singh et al., 2022). The core idea is
that WhisBERT is trained in a multitask setting on
both unimodal (i.e. text- or audio-only) and mul-
timodal objectives. In multimodal objectives, the
model receives matched text-audio segments, and
it can use information from one modality to learn
representations for the other.

To accommodate the specific requirements of
the BabyLM challenge (Warstadt et al., 2023), we
pretrain WhisBert on a dataset of matched audio
and text transcripts comprising 100 million words
sampled from the People’s Speech dataset (Galvez
et al., 2021). We use an improved version of the
audio-text-aligned training data, a subset of an up-
coming speech production dataset release (see Sec-
tion 3). This commitment to using high-quality
pretraining data is in line with the data efficiency
objectives of the BabyLM challenge.
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We carry out a rigorous evaluation of the per-
formance of the audio, text, and multimodal en-
coders within this new framework. We find that
even though the optimization problem in the mul-
timodal setting is much harder compared to a uni-
modal setting, the multimodal WhisBERT model
outperforms the text-only baseline in a majority of
the BabyLM challenge tasks even when trained for
only a single iteration over the dataset.

2 WhisBERT

WhisBERT is a multimodal audio and text model
that is inspired by OpenAI’s Whisper model (Rad-
ford et al., 2022) for speech recognition and BERT
(Devlin et al., 2019) for bidirectional language en-
coding. WhisBERT contains two separate input
streams, one of audio and of its corresponding text
(i.e., a transcription). The model is trained using a
combination of two unimodal and three multimodal
masked training objectives. In the unimodal setting,
the model must predict either a masked word or a
masked patch of audio. In the multimodal training
setting, the model must predict pairs of matched
word/audio patches. This multi-objective training
setup is inspired by the visual-audio model FLAVA
(Singh et al., 2022).

2.1 Architecture details

Audio encoder In order to create audio patches
that we can process with Whisper’s bidirectional
transformer encoder (Vaswani et al., 2017), the
audio stream is first passed through the Whisper
Feature Extractor available on Hugging Face1.

All audio data is re-sampled to a rate of 16,000
Hz, and an 80-channel log-magnitude Mel spec-
trogram representation is computed using 25-
millisecond windows with a 10-millisecond stride.
We then pass the audio spectrogram through a
patch embedding layer: a convolutional encoder
processes the extracted frequency features using
a stem of two 1-dimensional convolution layers
(along the time dimension, filters cover all input
frequencies), both with a filter width of 16 and
incorporating the GELU activation function. The
second convolution layer employs a stride of 10.
This patch embedding layer creates overlapping
1-dimensional audio patches covering 100ms of the
audio signal as input to the transformer.

After preprocessing and patch embedding, sinu-
soidal position embeddings are added to the stem’s

1Documentation for Whisper is available here.

output, which is then processed by Whisper’s trans-
former encoder blocks. A notable difference to
the standard Whisper encoder is that we prepend a
learnable classification (henceforth, CLS) token at
the beginning of the audio patch sequence. There-
fore, the audio encoder produces a list of audio
hidden states {hA} each corresponding to a contex-
tualized audio patch, as well as an additional audio
classification state hCLS,A.

Text encoder In order to encode the text input,
we choose a standard bidirectional transformer
architecture following the BERT (Devlin et al.,
2019) model. We train a WordPiece (Wu et al.,
2016) tokenizer on the 100M words in our People’s
speech (Galvez et al., 2021) subset (see Section 3).
The WordPiece tokenizer automatically prepends
a CLS token to the token sequence which is con-
textualized with the rest of the sequence. The text
encoder produces a list of text hidden states {hT }
corresponding to a text token, as well as an addi-
tional text CLS token hCLS,T .

Multimodal encoder The multimodal encoder
is a standard transformer encoder that gets as in-
put the concatenated contextualized audio and text
sequences. Additionally, we prepend a learnable
multimodal CLS token and employ sinusoidal po-
sitional embeddings. The multimodal encoder con-
textualizes the multimodal sequence and outputs
a list of multimodal hidden states {hM} each cor-
responding to an unimodal vector from {hA} or
{hT }, as well as an additional multimodal CLS
token hCLS,M .

Adapting to downstream tasks The WhisBert
model can be readily applied to both unimodal
and multimodal tasks. For audio recognition tasks
(e.g., speaker identification or speech recognition),
we apply a classifier head (e.g., a linear layer or
a multi-layer perceptron) on top of the unimodal
classification token, hCLS,A, from the audio en-
coder. Similarly, for language understanding and
multimodal reasoning tasks, we can apply a classi-
fier head on top of the classification token, hCLS,T ,
from the text encoder or hCLS,M from the multi-
modal encoder, respectively.

2.2 Pretraining objectives

Our goal is to pretrain models to have robust con-
textual representations for both text and audio on
their own as well as for aligned text-audio pairs.
We use the approach from FLAVA (Singh et al.,
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2022) of multitask training over a selection of uni-
modal and multimodal training objectives that have
been demonstrated to facilitate joint learning on
images and text. We adapt the five objectives used
by FLAVA for the audio domain.

2.2.1 Unimodal pretraining objectives
Masked Language Modeling Masked Language
Modeling (MLM) is a pretraining objective that
encourages the model to learn a deep understanding
of the language. In MLM, a portion of the input
tokens is masked and the model is trained to predict
the original identity of the masked tokens based on
their context.

Given an input sequence of tokens x =
[x1, x2, ..., xT ], for MLM, a subset M of these to-
kens is selected to be masked. The objective is to
minimize the negative log-likelihood of the masked
tokens:

LMLM(x) = − 1

|M |
∑

t∈M
log pmodel(xt|x¬t) (1)

Here, xt is a masked token, x¬t represents the
sequence with the token xt masked, and pmodel is
the model’s probability distribution over possible
tokens. |M | is the size of the subset of masked
tokens, and the sum is taken over all masked posi-
tions t. The goal is to adjust the model’s parameters
to minimize this loss. We obtain a probability dis-
tribution over the vocabulary by applying a linear
prediction head on the text hidden states {hT }.
Masked Audio Modeling We introduce the
Masked Audio Modeling (MAM) objective LMAM

which follows the principles of Contrastive Predic-
tive Coding (van den Oord et al., 2019). In MAM,
we randomly mask audio patches in the input se-
quence to the audio encoder. The encoder is ex-
pected to generate outputs that are most similar to
the unmasked input at a particular masked position
t. The self-supervised loss function, which aims
to encourage the model to align masked tokens
with their unmasked identities given the context, is
defined for a masked token localized at t as:

LMAM = − log
exp(sim(ct, bt)/κ)∑

bi∈BD
exp(sim(ct, bi)/κ)

(2)

Here, ct is the output of the transformer at po-
sition t, and bi is the audio representation vector
of the (unmasked) patch at some offset i. BD is
a set of 20 uniformly selected negative samples
from the same sequence, plus bt, and sim() is a

similarity function. For our implementation, we
use the cosine similarity function, adjusted by a
temperature function, κ, which is set to 0.1. The
loss function operates by adjusting the output of
the transformer at position t to be most similar to
the encoded representation at t, despite the fact that
this input to the transformer is masked. In this way,
the model is encouraged to predict the content of
the masked spans based on the unmasked context.

2.2.2 Multimodal Pretraining Objectives
Multimodal Contrastive Loss Contrastive loss
(Gutmann and Hyvärinen, 2010) has been success-
fully applied to image-text representation learn-
ing in approaches such as CLIP (Radford et al.,
2021). Our audio-text contrastive loss LMMC

aims to maximize the cosine similarities between
matched audio and text pairs and minimize those
for the unmatched pairs across a given batch of au-
dio clips and corresponding text. This is achieved
by linearly projecting the classification token of
each audio sequence hCLS,A and text sequence
hCLS,T into a common embedding space, followed
by L2-normalization, dot-product, and a softmax
loss scaled by temperature.

The goal of this process is to ensure that the au-
dio and text representations for the same data point
are brought closer together in the embedding space,
while representations for different data points are
pushed apart. This encourages the model to learn
meaningful representations that capture the shared
information between the audio and text modalities.

Masked Multimodal Modeling (MMM) We in-
troduce a Masked Multimodal Modeling (MMM)
pretraining objective LMMM , that uses the output
of the multimodal encoder {hM} to attempt to re-
construct the masked tokens from both the audio
and text sequences. For the multimodal contextual-
ized audio tokens, we employ the Contrastive Pre-
dictive Coding strategy introduced in Section 2.2.1.
For the multimodal text tokens, we add a multi-
modal masked language modeling head we com-
pute the MLM loss as introduced in Section 2.2.1.

The MMM pretraining objective is designed to
encourage the model to understand the interdepen-
dencies between audio and text modalities, which
in addition to the MMC loss has been found to
improve performance on multimodal downstream
tasks (Singh et al., 2022). It is computed separately
from the contrastive loss, which is applied on audio
and text tokens without any masking.
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Audio-Text Matching (ATM) Finally, we incor-
porate an Audio-Text Matching loss, LATM , in
which we feed a batch of samples that include both
matched and unmatched audio-text pairs. We apply
a classifier on top of the output from the multi-
modal encode to decide if the input audio and text
match each other.

2.3 Pretraining WhisBERT

We pretrain WhisBERT on both text and audio sam-
ples from the dataset introduced in Section 3 for
five epochs with stochastic gradient descent. Al-
though WhisBERT is able to learn both from paired
and unpaired examples, in our pretraining dataset
we only encounter text-audio pairs. This allows
us to always apply all unimodal and multimodal
objective functions. For further details and hyper-
parameters we refer to this GitHub repository.

3 People’s Speech Dataset

The People’s Speech dataset (Galvez et al., 2021) is
a free-to-download, 30k hour English speech recog-
nition dataset. The dataset is collected from appro-
priately licensed internet audio data with existing
transcriptions, consisting of a clean and a dirty sub-
set. We re-transcribed and re-aligned the People’s
Speech dataset using recently-released automatic
speech recognition toolkits (Radford et al., 2022;
Bain et al., 2023), which may provide better align-
ment than the baseline, publically available align-
ments. For this step we transcribe speech the Whis-
per large-v2 model from OpenAI (Radford et al.,
2022). Numerals and non-standard characters were
suppressed in the transcriptions, such that numbers
were represented as words and non-standard char-
acters were omitted. Otherwise, default parameters
were used. The transcriptions were force-aligned to
match the audio files using the WhisperX pipeline
(Bain et al., 2023; Bredin et al., 2019; Baevski et al.,
2020). We excluded very short transcripts (fewer
than 100 words) or transcripts that contained more
than 0.1% of words that could not be transcribed.
The remaining files were sorted according to mean
word-level transcription confidence (Whisper es-
timates a value between 0 and 1 that denotes the
transcription confidence per word). We selected the
files containing the first 100M words in this order-
ing. The average confidence of these final 100M
words was 0.78 with 47M words from the clean
audio subset and 53M words from the dirty audio
subset. The transcribed, word-aligned dataset will

Figure 1: Text-only baseline vs WhisBERT on masked
language modeling task during the first epoch. Inter-
estingly, during the first epoch WhisBERT seems to
perform better (outperforming the text-only baseline in
11 out of 17 tasks), but after five epochs does not outper-
form the text-only baseline across all benchmark tasks

be released as part of an upcoming speech produc-
tion dataset.

4 Experimental Results

The main question we are interested in is whether
pretraining on audio–text data can improve model
performance. We assess this by comparing the text-
encoder only version of WhisBERT compared to
the exact same architecture trained with the multi-
modal objectives introduced in Section 2.2. (This
is the MLM (text) vs. MM (multi-modal) compari-
son in Table 1.) Our results suggest that the answer
is mixed. The MLM (text-only) version of the
model achieves higher scores on 12 out of the 17
test suites, with the multi-modal model performing
higher for Ellipsis, Island Effects, Quantifiers, Hy-
pernym, and Question/Answer Congruence (tricky)
tests. Interestingly, the three of these that were in
the original BLiMP paper (Ellipsis, Island Effects
and Quantifiers), were three of the four lowest-
scoring tests for human accuracy, suggesting that
where multi-modality does help, it is in processing
particularly syntactically difficult material. Both
of our trained models outperform the OPT-125M,
RoBERTa and T5 baselines, averaging across tasks.

5 Discussion

Limitations We begin our discussion by noting
the limitations of the current work. First, the Peo-
ple’s Voice dataset presents a unique set of chal-
lenges, which likely resulted in limitations of the
WhisBERT model. The most significant of these is
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Task MLM MM OPT-125m RoBERTa-base T5-base
anaphor_agreement 83.74% 81.29% 63.8% 81.5% 68.9%
argument_structure 68.60% 64.88% 70.6% 67.1% 63.8%
binding 66.95% 65.38% 67.1% 67.3% 60.4%
control_raising 65.25% 64.76% 66.5% 67.9% 60.9%
determiner_noun_agreement 92.24% 87.93% 78.5% 90.8% 72.2%
ellipsis 83.14% 88.68% 62% 76.4% 34.4%
filler_gap 73.12% 72.02% 63.8% 63.5% 48.2%
irregular_forms 89.62% 85.90% 67.5% 87.4% 77.6%
island_effects 53.51% 55.87% 48.6% 39.9% 45.6%
npi_licensing 64.77% 55.12% 46.7% 55.9% 47.8%
quantifiers 69.58% 71.69% 59.6% 70.5% 61.2%
subject_verb_agreement 75.05% 70.73% 56.9% 65.4% 65.0%
hypernym 50.12% 51.98% 50.0% 49.4% 48.0%
qa_congruence_easy 71.88% 67.19% 54.7% 31.3% 40.6%
qa_congruence_tricky 52.12% 53.94% 31.5% 32.1% 21.2%
subject_aux_inversion 77.90% 74.85% 80.3% 71.7% 64.9%
turn_taking 61.79% 58.21% 57.1% 53.2% 45.0%

Table 1: Evaluation scores of text-only (MLM), multimodal WhisBERT (MM), and the BabyLM baselines on
BLiMP tasks. The BabyLM baselines were trained on the 100M words BabyLM dataset.

that it is primarily comprised of audio from movies,
and thus includes things like background noise,
music and audio effects that accompanied the dia-
log. This could have resulted in lower text–audio
alignment accuracy, and likely made the audio-
modeling challenge more difficult than for an in-
studio recorded dataset.

Second, the requirements of the BabyLM chal-
lenge presented us with additional restrictions.
Most notably, we were not allowed to use pre-
trained audio encoders, and thus had to train these
from scratch. Likely, this contributed to sub-
optimal performance and requires further explo-
ration. Furthermore, due to time limitations, we
did not fully explore the space of the model’s hy-
perparameters; it is well known that changes in
hyperparameter settings can have large impacts on
a model’s performance.

Our mixed results when comparing WhisBERT
against a text-only model suggest that small data
settings are insufficient for effectively training a
text-only masked language model. Given that the
architectural basis for WhisBERT, Flava, was de-
signed and built as a large-data foundation model,
we suggest that such larger-data settings serve as
the basis for future development and testing of the
WhisBERT model.

Future Work We plan to train versions of Whis-
BERT on more than 100M words and their cor-
responding audio. This would enable investiga-
tions of the full capacity of the WhisBERT model
and make it more comparable to similar vision-text

models such as FLAVA (Singh et al., 2022). On
the architecture level, one could replace the bidirec-
tional transformer in the WhisBERT architecture
with an autoregressive language model, allowing
the use of the standard Whisper pretraining objec-
tives in addition to the multi-modal ones.
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Abstract

We investigate the viability of surprisal in an
active curriculum learning framework to train
transformer-based language models in the con-
text of the BabyLM Challenge. In our ap-
proach, the model itself selects the data to la-
bel (active learning) and schedules data sam-
ples based on a surprisal oracle (curriculum
learning). We show that the models learn
across all the tasks and datasets evaluated, mak-
ing the technique a promising alternative ap-
proach to reducing the data requirements of lan-
guage models. Our code is available at https:
//github.com/asayeed/ActiveBaby.

1 Introduction

We describe our submission to the BabyLM Chal-
lenge (Warstadt et al., 2023), a shared-task about
language models trained from scratch on a develop-
mentally plausible corpus. Inspired by expectation-
based theories of sentence processing (Hale, 2001;
Levy, 2008) and active curriculum learning (ACL)
(Jafarpour et al., 2021), our approach relies on sur-
prisal to select informative samples and streamline
them into the model during training. We henceforth
refer to our strategy as active curriculum learning
modeling (ACLM).

There is a large volume of published studies de-
scribing how the processing difficulty of a sentence
is correlated with its incremental probability in
context (Linzen and Jaeger, 2016; Futrell and Levy,
2017; Hahn et al., 2019, among others). In other
words, as people process sentences, they generate
predictions about what is coming next and this can
be measured using surprisal (Demberg et al., 2012).
Here, we test to what extent this principle of syn-
tactic predictability can also be used to guide the
learning of a language model.

ACL, on the other hand, combines the strengths
from Active Learning (AL) and Curriculum Learn-
ing (CL). AL is a classic paradigm for small data su-
pervised scenarios, whereby an oracle labels infor-

mative examples selected by the model itself based
(most often) on a uncertainty heuristic. The un-
certainty metrics, however, tend to bias the model
towards eccentric examples (Zhang et al., 2022b).
To counteract this, Jafarpour et al. (2021) use CL,
a technique that mimics how humans learn by reg-
ulating the training according to some schedule
criterion, e.g., easy to difficult or short to long ex-
amples (Bengio et al., 2009).

In our approach, we use surprisal as sampling
heuristic. A sample is formed from the sentence
with the highest surprisal value s from an initial
pool, along with the n most similar sentences to
s from the rest of the training data. At each it-
eration, a new sample is added to the pool until
convergence.

Our results show that the technique successfully
learns steadily and incrementally in all the tasks,
although its performance remains modest in com-
parison with equivalent systems with full access to
the training data.

2 Background

AL specifically aims at reducing the amount of
examples required for training. In AL, it is the
algorithm itself that selects the most informative
examples to annotate based on a probabilistic query
heuristic. Each example is used to make the model
better at selecting the next example. Nevertheless,
AL is difficult to implement with neural networks
frameworks due to their large number of param-
eters leading to poor uncertainty estimation and
model instability (Lowell et al., 2019; Schröder
et al., 2022). An excellent survey about the latest
work on AL specifically for NLP is presented by
Zhang et al. (2022b).

There is remarkably little research on surprisal
and AL, or surprisal and CL. In the context of
sentence classification, Yuan et al. (2020) exploit
a pre-trained BERT model (Devlin et al., 2019)
to generate surprisal embeddings as input to the
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sentence labeling part of their model. In our case,
sentence surprisal is used to select the sentence
seeding the samples and the model is trained with
a language modeling objective. Similar ideas are
found in the context of machine translation.

Zhang et al. (2021) have experimented with
adding training samples from a pool based on a dif-
ficulty criterion operationalized as sentence length
(short sentences are easy, long ones are difficult)
and word rarity (common sentences are easy, rare
ones are difficult). In the second case, rare words
are estimated based on the logarithms of word prob-
abilities averaged over the sentence, which is ef-
fectively the same as surprisal. Likewise, Zhou
et al. (2021) also report sampling based on sen-
tence length and word rarity. In addition, they
experiment with the probability of the sentence
from an independent language model, source sen-
tence word embeddings from another independent
model, and the sentence score of the model under
training itself. Last, Mohiuddin et al. (2022) rank
their training sentences from easy to hard using the
prediction scores of the model under training. They
experiment with different window ranges over the
distribution of these scores.

In keeping with the goals of the shared task, we
train a language model from scratch. Elsewhere,
a considerable amount of literature has been pub-
lished on compressing state-of-the-art large lan-
guage models (LLMs) into much smaller models
without losing too much in accuracy and perfor-
mance (Sanh et al., 2020; Zhang et al., 2022a,
among others).

Cognitive studies, on their part, use LLMs to
predict estimates about different effects attested in
human language processing (Linzen et al., 2016;
Futrell and Levy, 2019; Wei et al., 2021). This
type of work also sheds light on the biases and
mechanisms of learning of the LLMs themselves.
Sinha et al. (2021), for instance, find the LLMs can
account for word order due to their capacity for
higher-order word co-occurrence statistics, while
Arehalli et al. (2022) and Oh and Schuler (2023)
have raised questions about the reliability of LLMs
predictions due to their conflation of lexical and
syntactic biases and their large capacity to memo-
rize linguistic structures.

Humans acquire language in the context of in-
teraction with a social and physical environment,
which may explain at least part of the inductive
bias humans display that allows them to learn from

quantities of data far less than LLMs typically re-
quire to produce some of the spectacular-seeming
recent results. The strict and strict-small set-
tings of the BabyLM challenge effectively probe
how small we can make the training data in an
ungrounded setting. In this context, we still hy-
pothesize that an interactive, environment-aware
approach will be important in making learning ef-
ficient. We conceive of the learner as seeking out
stimuli that represent domains of syntax and se-
mantics on which the learner is furthest away from
convergence, and we represent that distance by
surprisal. We then hypothesize that the learner is
motivated to seek out or pay attention to items that
have a similar pattern of overall uncertainty, even
if the specific syntactic or semantic conditions may
be different in terms of, e.g., parts of speech or
lexical semantics.

3 The model

Training a model with active learning (Cohn et al.,
1996) involves (1) selecting an initial training set
of sentences from a pool of sentences available for
future training iterations and (2) iteratively adding
sentences from the pool to the training set based on
a criterion of uncertainty about the data. For clas-
sification tasks in scenarios with limited labelled
data, this involves a human in the loop who labels
a selection of “least certain" data from the pool,
where the certainty is calculated based on model
confidence. This form of active learning is intended
to reduce the difficulty of labelling training data
when, for example, annotators are difficult to find—
only label what the model finds most “interesting”
for the learning algorithm. This concept can be ex-
tended from classification to, for example, machine
translation in low-resource contexts (Gupta et al.,
2021), where a small group of proficient translators
would be prompted for translations of items in the
pool that the model is, e.g., most perplexed about.

Pre-training a language model is, however, not
primarily a classification task. For a generative lan-
guage model, the learning goal is for the model to
be able to produce the next token or set of tokens
given a prefix and to do so until a complete utter-
ance is produced. Uncertainty for a generative LM
over an utterance requires the aggregate of uncer-
tainty over a number of decisions, each with low
prior probability. Insofar as the model is intended
to represent an approximation of human acquisi-
tion, it is implausible that the pool (representing
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Figure 1: The architecture of our ACLM method.

the full environment over time of the learner) be
fully evaluated in advance for uncertainty in the
service of training data selection. This requires the
introduction of an additional criterion for selecting
new examples that are likely to represent utterances
that are currently uncertain to the model.

To solve this, we adapt the concept of Active
Curriculum Learning (ACL) from Jafarpour et al.
(2021), who envision a joint scoring criterion for
the selection of additional examples, composed
of the scoring criterion for an active learning al-
gorithm and the scoring criterion for a curricu-
lum learning algorithm. Our approach is two-step,
rather than a linear combination of two criteria. In
the first step, we use a trained model to select the
least certain example from the existing training set,
rather than the pool. Then we apply a heuristic to
select sentences that are structurally similar to the
current least certain training example and add them
to the next iteration’s training set (see Figure 1).

Our heuristic is similarity based on a profile of
the token-by-token incremental trigram surprisal of
each sentence. Profiles of all the training and pool
sentences are represented as seven-dimensional
surprisal vectors by rescaling the sequence of sur-
prisal values, which varies by the sentence length.
This enables us to take the least certain training
example’s surprisal vector and request the nearest-
neighbours, which are then added to the training
set.

3.1 Base model
The base model is RoBERTa (Liu et al., 2019;
Zhuang et al., 2021) trained from initialization on a
100K randomly selected subset—the initial training
set—of the strict-small dataset of the BabyLM

challenge.
The data for all our model variants was pre-

processed in the same way. The documents where
split at the sentence level and then BPE tokenized
with a truncated maximum length of 512 tokens.

3.2 Surprisal space

The surprisal space for the corpus as a whole is
generated by training a simple language model via
Maximum Likelihood Estimation on n-grams up to
trigrams via the nltk.lm module. Trigram surprisal
can be used to explain part of human linguistic be-
haviour at a syntactic and semantic level in human
dialogue (Sayeed et al., 2015).

Every sentence in the pool and training set is
then labelled with a sequence of surprial values,
one for each token. We use scikit-image’s resizing
function to stretch or shrink the surprisal sequences
to vectors of dimension seven.1

All the vectors are placed in an instance of scikit-
learn’s KDTree (Sproull, 1991) implementation,
which allows for an efficient search for the k near-
est neighbours (kNN) of a given query vector and
returns sentence identifiers for the vectors in the
pool that are nearest to the surprisal vector of the
least certain example. These are added to the train-
ing set.

For efficiency reasons, we do not re-evaluate the
surprisal space at every iteration of active learning.
This part of the model represents an oracle selecting
items from the pool that bear a model uncertainty
pattern that is similar to the least certain item in the
training set.

1This is a random choice to get a small number such that
the surprisal space can fit into the main memory.
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3.3 Active curriculum language modeling

RoBERTa is allowed to train with the current train-
ing set for multiple epochs until the least certain
training set example is found and the active learn-
ing loop initiated. This process thus combines ac-
tive learning, in terms of the model being used to
identify sets of data that need to be labelled, and
curriculum learning, where a heuristic—a vector-
based surprisal oracle—is used to schedule the
newly delivered examples. We stop the model train-
ing after a set number of iterations.

The least certain example is the one with the
highest cross-entropy loss or surprisal according to
the model; that is, while the surprisal vectors do not
change between iterations based on the RoBERTa
model, the model under training changes to pro-
duce a different ranking of sentences in its training
set, thereby allowing for variation in curriculum
presented by the surprisal oracle.

4 Results

4.1 Shared task evaluation

We use the official evaluation tools (Gao et al.,
2021) from the BabyLM Challenge to report our
results. Our submissions mostly targeted the
strict-small track, but we also report results for
one system trained for the strict track. Tables 1,
2 and 3 in Appendix A contain the details of the
obtained scores.

Strict-100M is trained with the data from
the strict track, all other models rely on the
strict-small data. 10ep10it and 10ep20it served
as our internal baselines. They are RoBERTa mod-
els without ACLM that only differ in the number
of iterations, 10 for the first and 20 for the second,
both have a batch size of 64 sentences. The ACLM
models are s50Kep1 and s50Kep5. Both have a
batch size of 64 and use a sample size of 50K sen-
tences; they differ in that the first runs one epoch
per sample and the second 5 epochs per sample.

In summary, the results for the Strict-100M
model tend to be overall higher, as it is trained
on a larger amount of data. When considering the
ACLM models, we observe that they performed the
best when evaluated on the (Super)GLUE datasets
and the worst on the MSGS one. There is also a
clear gain in performance when training the model
with more epochs per sample.
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Figure 2: Comparison of the learning curves of systems
with random sampling (green line), sampling with max-
imal surprisal (orange line), and sampling with minimal
surprisal criterion (red line).

4.2 Hyper-parameter search

We experimented with batch sizes of 32 and 64
data points and observed that it produced minimum
differences. As for the number of epochs, we tested
different values between 1 and 5 for the ACLM
systems, with 5 yielding the best performance. We
expected to see some variation if changing the size
of the sample size, but we also did not observe any
important changes.

5 Analysis

5.1 Sampling Methods

Our method set out to determine the extent to which
the principle of predictability as represented by sur-
prisal can be used to guide language model train-
ing. In order to test this hypothesis, we compared
the best performing ACLM system (s50Kep5)
using three different values of surprisal for the
query: minimum, maximum, and random (Figure
2). What we found is that the model with the maxi-
mal surprisal performed closely to the random one
and learned faster, while the one with minimal sur-
prisal did clearly well on evaluation. While this
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Figure 3: Accuracy of the systems 10ep10it (blue line, without ACLM), 50Kep5min (red line, with ACLM and
minimal surprisal sampling) and s50K_ep5 (orange line, with ACLM) in the zero-shot tasks over 20 checkpoints
during training.

seemed counter-intuitive at first, we believe that
the model with the minimal surprisal is actually se-
lecting sentences that are overall more informative

than those with the maximal surprisal which might
be too divergent. Furthermore, this also accords
with Mohiuddin et al.’s (2022) analysis that if a
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sample is too easy, the model might not gain any
useful information from it, whereas if the sample
is too hard, it might degrade the model’s perfor-
mance at that point. Taken together, this strongly
suggests that surprisal does have an effect as a sam-
pling query, but more work will need to be done to
determine the optimal curriculum for its efficiency.

5.2 Zero-shot tasks

As a means to understand the way in which the
ACLM models learn, we evaluated the 20 training
checkpoints of the models 10ep10it, 50Kep5 and
50Kep5min (50Kep5 which samples data points
with minimal surprisal) on the official zero-shot
tasks. As mentioned, while all systems are trained
on the strict-small data, the 10ep10it system
uses all the data at once, in the standard way, while
50Kep5 and 50Kep5min are trained through ACLM
with different sampling methods. These systems
have a sample size of 50k sentences and runs 5
epochs per sample. Both have a batch size of 64.
Results are depicted in Figure 3.

The plots from this figure indicate that the
ACLM model learns in a steadier fashion than
its non-ACLM counterpart, in particular for the
“agreement” categories: determiner-noun, subject-
verb and (somewhat less) anaphor agreement. This
might indicate a frequency effect better caught on
by the ACLM model, as basically every sentence
contains a positive example of correct agreement,
but it is unknown how many total examples there
are of the other tested phenomena. For most of
the other categories, the learning curves are simi-
lar overall, and the ACLM model shows consis-
tent learning increments. The exception seems
to be the island effects category, where the accu-
racy tends to drop over time. Surprisingly, the
ACLM model with minimal surprisal sampling
(50Kep5min) underperforms the ACLM model
with maximal surprisal (50Kep5) across many tasks
except congruence-tricky and island, effects even
though 50Kep5min has a lower evaluation loss than
50Kep5. The results indicate that maximal sur-
prisal sampling is an effective method to improve
model performance on zero-shot grammatical tasks.
Moreover, lower perplexity does not always imply
better performance on linguistic tasks.

6 Conclusions and future work

To our knowledge, this is the first contribution to
the literature in reducing the pre-training require-

ment of a transformer-based language model via
active curriculum learning modeling. What we
have shown is that learning does take place under
these conditions and produces promising results. It
is not the case, however, that we explored the full
potential of this technique; there is a huge scope for
plausible variants that may be even more effective
than what we have proposed.

For example, we designed the surprisal oracle
around a vector space defined by trigram surprisal
over tokens which is never re-evaluated. A more re-
alistic learner would re-evaluate the surprisal space
based on what it knows now, i.e., compute per-
token surprisal based on the current training state
of the transformer model. We did not implement
this for computational resource reasons.

Another likely possibility for improvement of
our model lies in the fact that the surprisal space
is created by resizing all the vectors to the same
dimensionality, which is equivalent to represent-
ing all sentences as having the same length. It is
implausible that longer sentences produce model
uncertainty in the same way as shorter sentences.
A future version of our work could attempt to bin
the sentences by length, creating separate surprisal
spaces.

Limitations

The models trained in this study are designed to
test ACLM as a viable method to train language
models and as such, they are not overly optimized.
Furthermore, any claims are specific to English, in
keeping with the shared-task constraints.
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Submitted RoBERTa models Official baselines

Strict small 10M

ACL

Strict-
100M

10ep10it 10ep20it s50Kep1 s50Kep5 OPT-
125m

RoBERTa-
base

T5-
base

Anaphor Agr. 82.31 77.76 74.34 42.02 75.30 63.8 81.5 68.9
Agr. Structure 74.03 72.91 68.83 61.52 60.36 70.6 67.1 63.8
Binding 68.63 69.09 67.62 64.02 85.95 67.1 67.3 60.4
Control/Raising 70.35 68.96 64.98 61.36 50.03 66.5 67.9 60.9
Det-N Agr. 94.84 95.66 91.94 55.49 55.79 78.5 90.8 72.2
Ellipsis 65.42 65.82 56.41 32.79 55.41 62 76.4 34.4
Filler-Gap 78.32 75.61 69.89 63.68 50.12 63.80 63.50 48.20
Irregular Forms 92.01 89.41 89.87 75.01 43.98 67.5 87.4 77.6
Island Effects 48.62 46.30 40.58 47.20 50.00 48.6 39.9 45.6
NPI Licensing 61.52 54.16 56.77 51.90 35.15 46.7 55.9 47.8
Quantifiers 66.82 66.87 63.96 45.96 78.02 59.6 70.5 61.2
S-V Agr. 80.85 79.33 70.66 50.44 60.39 56.9 65.4 65

Supplement

Hypernym 49.07 49.30 49.07 50.23 62.15 50 49.4 48
QA Cong. (easy) 57.81 56.25 53.13 50.00 66.51 54.7 31.3 40.6
QA Cong. (tricky) 33.33 35.76 35.76 30.30 69.17 31.5 32.1 21.2
Subj.-Aux. Inv. 78.92 75.38 82.73 75.82 62.03 80.3 71.7 64.9
Turn Taking 57.50 61.79 66.79 56.43 42.96 57.1 53.2 45

Table 1: Accuracy scores of the zero-shot evaluation on the BLiMP dataset. Comparisons per row highlighted with
bold do not include the Strict-100M column. QA Cong. means QA Congruence. Inv. means inversion.

Submitted RoBERTa models Official baselines

Strict small 10M

ACL

Strict-
100M

10ep10it 10ep20it s50Kep1 s50Kep5 Majority OPT-
125m

RoBERTa-
base

T5-
base

CoLA 73.11 72.62 70.76 69.48 61.17 69.5 64.6 70.8 61.2
SST-2 86.42 84.84 83.27 81.3 75.97 50.2 81.9 87 78.1
MRPC 63.28 64.41 64.41 64.41 90.2 82 72.5 79.2 80.5
QQP 79.93 81.65 79.88 77.65 65.98 53.1 60.4 73.7 66.2
MNLI 69.02 70.34 68.62 65.27 100 35.7 57.6 73.2 48
MNLI-mm 71.94 71.26 69.51 67.06 66.6 35.7 60 74 50.3
QNLI 64.96 66.4 66.49 58.36 68.44 35.4 61.5 77 62
RTE 47.47 51.52 49.49 49.49 98.93 53.1 60 61.6 49.4
BoolQ 65.98 63.35 66.11 66.11 74.9 50.5 63.3 66.3 66
MultiRC 57.28 58.6 56.19 50.82 58.6 59.9 55.2 61.4 47.1
WSC 61.45 61.45 61.45 61.45 81.89 53.2 60.2 61.4 61.4

Table 2: Accuracy scores of the fine-tuning evaluation on the (Super)GLUE datasets. Comparisons per row
highlighted with bold do not include the Strict-100M column.
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Submitted RoBERTa models Official baselines

Strict small 10M

ACL

Strict-
100M

10ep10it 10ep20it s50Kep1 s50Kep5 OPT-
125m

RoBERTa-
base

T5-
base

CR (Control) 91.55 86.68 86.89 75.51 94.5 86.4 84.1 78.4
LC (Control) 100 100 100 100 66.45 86.1 100 100
MV (Control) 99.72 99.77 99.63 97.57 84.33 99.8 99.4 72.7
RP (Control) 98.85 100 100 97.87 0 100 93.5 95.5
SC (Control) 81.27 89.54 90.54 88.17 66.78 94.3 96.4 94.4
CR_LC 66.76 66.74 66.69 66.32 83.46 66.5 67.7 66.7
CR_RTP 66.78 67.25 66.73 66.61 66.71 67 68.6 69.7
MV_LC 66.51 66.61 66.61 66.61 55.1 66.5 66.7 66.6
MV_RTP 67.18 69.08 67.04 66.71 100 67.6 68.6 66.9
SC_LC 63.83 66.28 67.49 67.44 66.73 80.2 84.2 73.6
SC_RP 62.32 65.05 64.86 64.07 66.19 67.5 65.7 67.8

Table 3: Accuracy scores of the fine-tuning evaluation on the MSGS datasets. Comparisons per row highlighted
with bold do not include the Strict-100M column.
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Abstract

This paper presents our findings for the
BabyLM Challenge (Warstadt et al., 2023). Our
exploration is inspired by vanilla curriculum
learning (Bengio et al., 2009) and we explored
the effect of linguistic complexity in forming
the best curriculum for pre-training. In particu-
lar, we explore curriculum formations based
on dependency-based measures (dependents
per token, average dependency distance) and
lexical-based measures (rarity, density, disper-
sion and diversity). We found that, overall,
models pretrained using curriculum learning
were able to beat the performance of a non-
curriculum learning pre-trained model. Fur-
thermore, we notice using different linguistic
metric for measuring complexity lead to advan-
tageous performance for some tasks, but not all.
We share our results and analysis in the hope
that it can provide beneficial insights for future
work.

1 Introduction

Currently, pretraining language models (LMs) in-
volve training models on large, diverse datasets
before fine-tuning them on specific downstream
tasks. As a byproduct of this procedure, datasets
have grown substantially beyond developmentally
plausible amounts. For instance, the recently re-
leased large variant of LLAMA-2 has 70 billion
parameters and it was pre-trained with 2 trillion
tokens (Touvron et al., 2023). This amount of data
is well over the amount of exposure a child would
have. Gilkerson et al. (2017) find that on average,
a child aged 48-mo would be exposed to 12,128 to-
kens, from solely their parents. Calculations show
LLAMA2’s pretraining data is 165,000 times more
than this developmental-plausible quantity.

Therefore, the goal of this task is to use human-
development plausible methods for pretraining
smaller-sized language models. In particular, we
combine intuitions from linguistics and curriculum

learning to explore whether different curricula de-
signs affect models’ performance. To do this, we
investigate two strands of complexity measures,
namely, structural complexity and lexical complex-
ity.

Our research questions (RQs) are as follows:

1. Do pre-training LMs using CL produce better
performance? If so:

2. Are linguistic complexity measures helpful in
designing curricula for CL?

3. Which linguistic metric is advantageous and
which is less? Is one strand of complexity
measure inherently better than the other?

To answer RQ1, we aim to compare a baseline
non-CL model to the results of CL-pretrained mod-
els. For RQ2, we make a similar comparison but
this time using the results of a model that is trained
on a random curriculum. For the last RQ, we make
inter-model comparisons.

We provide an analysis of curriculum designs
and the novel aspects of our work (§ 2). Following
this, we explain the linguistic metrics in detail and
provide details of our approach (§ 3). In § 4, we
present our findings and discussions, before finally
summarising the paper in § 5.

2 Related Works

Curriculum learning (CL) was first proposed by
Bengio et al. (2009). The idea behind curricu-
lum learning comes from the pedagogical obser-
vation that animals and humans learn better when
knowledge is presented in a meaningfully organ-
ised way. For instance, starting with simple ex-
amples and gradually advancing to more complex
ones (Skinner, 1958; Sweller, 1994; Krueger and
Dayan, 2009). In the language modelling experi-
ment carried out by Bengio et al. (2009), a corpus
replacement method was used to make the data
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increasingly difficult. This way of pertaining was
found to be more effective, producing improved
results.

There have been then numerous works have ex-
plored using CL as the pretraining approach for
language models. Whilst some works reported CL
as beneficial to pretraining, others have reported
the opposite results. Nagatsuka et al. (2021) inves-
tigated a CL-based pretraining scheme that utilises
the length of the input text as the measure of "dif-
ficulty" in curriculum design. It was found that
using length-based curriculum training alongside
using the maximum available batch size, models
achieved drastically faster convergence speed, and
higher scores on downstream tasks ( Nagatsuka
et al., 2021, 2022) .

Curriculum design greatly varies in each work.
Linguistic features that have been used in curricu-
lum formation include Parts-of-Speech (POS) infor-
mation, n-gram frequency (Platanios et al., 2019),
average number of dependents per word in the sen-
tence parse tree (Jafarpour et al., 2021), edit dis-
tance (Kadotani et al., 2021; Chang et al., 2021).
However, arguably, the most common curriculum
formations are based on measures of frequency
(Liu et al., 2018) and text length (Tay et al., 2019;
Cirik et al., 2016).

Comparing curriculum learning studies becomes
challenging due to the inherent variability in cur-
riculum choices across different tasks. However,
it is undeniable that the arrangement of data holds
significance. As a result, in distinction from prior
research, our work is oriented towards investigating
diverse linguistic features in curriculum formation.
Notably, we investigate 5 different measures of
linguistic complexity. They are:

• Average dependency distance (ADD)
• Dependents per word (DPW)
• Lexical rarity (RARITY)
• Lexical density (DENSITY)
• Lexical Evenness (DISPERSION)
• Lexical diversity (TTR)

We choose these measures of linguistic complexity
to address the multi-dimensionality of measuring
language complexity. In particular, we consider
not only lexical (vocabulary-based) information,
but also syntactical (structural-based) complexity
measures. To the best of our knowledge, this study
is the first to consider curriculum formation using

such a comprehensive set of measures. Moreover,
we focus our experimentation specifically on low-
resource, data-constrained scenarios. As a result,
we adopt a simple CL approach to reflect these
settings.

3 Methodology

Our submission considers GPT-2 models (Radford
et al., 2019) pretrained using curricula formed by
various linguistic measures detailed in § 2. The pre-
training approach involves sequentially training the
model using ten different curriculum levels of the
dataset, with each level building upon the previous
one in terms of difficulty. Each model is pretrained
three times, with a random seed used each time.

3.1 Curricula Formations

We used the 10M words dataset provided by the
task authors for the STRICT-SMALL track of the
Challenge. As detailed in the task description, the
dataset consists of 10 excerpts, sourced from 10
different corpora of mixed domains (Warstadt et al.,
2023). We consider all of the models to qualify for
the LOOSE track, and only the evenness and lexical
diversity models are legible for the STRICT-SMALL

track. This is due to the fact that we use existing
scripts from textcomplexity1, which makes use
of external tools, such as POS taggers trained on
much more data than the given amount for linguis-
tic complexity calculations.

For each part of the overall dataset, a score for
each linguistic metric was calculated. As an ex-
ample, Table 1 provides the TTR scores of each
subset of the data. Curriculum formation is based
on this ranking, with the "easiest", or in this case,
the least lexically diverse data being Open Subtitles
and the "hardest" being the Wikipedia data. Using
the same idea, other curricula were formed using
each linguistic measure.

3.1.1 Syntactic Diversity (DPW)
DPW quantifies the average number of syntactic de-
pendents (i.e., words that depend on another word
for their grammatical function) in a given text per
word. A DPW score indicates that, on average,
each word in a sentence has a large number of syn-
tactic dependents. This means that the sentence has
a complex and intricate syntactic structure, with
many words relying on each other to convey mean-
ing and grammatical relationships. Sentences with

1https://github.com/tsproisl/textcomplexity
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high DPW scores tend to be more challenging for
humans to process and understand (Hawkins, 1994;
Grodner and Gibson, 2005; Gibson, 1998).

3.1.2 Syntactic Proximity (ADD)
ADD is mathematically defined as (Liu et al.,
2009):

ADD =
1

n− s

n−s∑

i=1

|DDi|

where:

• n is the total number of tokens in the sentence

• s is the total number of sentences in the docu-
ment

• DDi is the dependency length of the i-th syn-
tactic link

Conceptually, this is calculating a ratio of calcu-
lating the total lengths of dependency links in a
sentence to the total number of dependencies links
in the same sentence. It gives an indication of how
closely related the words are in a sentence syn-
tactically. A lower average dependency distance
suggests that the words in a sentence tend to be
more closely connected, indicating a more compact
sentence structure. Conversely, a higher average
dependency distance suggests more complex and
possibly longer distances between heads and their
dependents in a sentence (Oya, 2011).

3.1.3 Lexical Rarity (RARITY)
As detailed in textcomplexity, rarity was cal-
culated with the help of the COW frequency list
(Schäfer, 2016). More frequent lexical items were
given a smaller score.

3.1.4 Lexical Density (DENSITY)
Lexical density is calculated as the proportion of
content words to function words. We consider a
higher score on this metric as data that is harder
to learn since it is more likely to be information-
heavy.

3.1.5 Lexical Evenness (DISPERSION)
Dispersion is measured using Gini-based disper-
sion (Gini, 1912). It measures how evenly tokens
of the same type are distributed in the text (Blom-
bach et al., 2022). The Gini-based dispersion for a
single type is computed as

1− Gini

Ginimax

where Gini is the Gini coefficient of the distances
between tokens of the same type, and Ginimax is
the maximum value for a type with frequency f in
a text of length N .

The formula for Ginimax is:

Gini_max =
(N − f) · (f − 1)

f ·N
where

• N is the length of the entire text (total number
of tokens in the text)

• f is the frequency of the type (number of
times a particular token appears in the text)

In this work, evenness serves to illustrate the
arrangement or spread of token types within a text.

3.1.6 Lexical Diversity (TTR)
Type-token ratio (TTR) is used to measure lexical
diversity. It is calculated by dividing the number of
unique words (types) to the total number of words
(tokens) present in the text (Templin, 1957). This
can be thought of as measuring the richness of the
vocabulary of the corpus. A higher TTR indicates
a more diverse vocabulary with a greater range
of unique words in the text. Conversely, a lower
TTR suggests a more repetitive or limited use of
vocabulary.

TTR is given by :

TTR =
Number of different word types

Total number of tokens

Table 1: TTR scores of each subset of the 10M words
dataset, shown in increasing order.

Subset TTR Score

open subtitles 1.623
bnc spoken 2.034
aochildes 2.068
qed 2.966
cbt 3.450
children_stories 3.570
switchboard 3.997
gutenberg 4.149
simple wikipedia 4.491
wikipedia 5.678

3.2 Model Description
We use the provided data to train a Unigram-16000
tokeniser, and our experiments all use this to-
keniser.

In this Challenge, we focus specifically on
smaller settings of the models. All models featured
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in this work are trained on architectures with 12 lay-
ers and 12 attention heads 2. Our focus is directed
towards this smaller setting since smaller mod-
els typically require less computational power and
memory, making them more accessible and cost-
effective for researchers with limited resources.

3.3 Model Evaluation

All models undergo evaluation on The Benchmark
of Linguistic Minimal Pairs (BLiMP) benchmark
as well as SuperGLUE and MSGS tasks. We run
each evaluation suite three times for every model.
Each run uses a different random seed.

BLiMP is an evaluation suite that tests LMs’
abilities on a range of grammatical phenomena in
the English language (Warstadt et al., 2020a). For
BLiMP tasks, a zero-shot evaluation approach is
used, allowing the models to be assessed without
any additional fine-tuning. On the other hand, to
gauge the models’ performance on SuperGLUE
tasks, they are subjected to fine-tuning using the
respective datasets.

SuperGLUE is a benchmark that comprises
challenging language understanding tasks. Inspired
by GLUE, SuperGLUE aims to address the limita-
tions of the original GLUE benchmark (Wang et al.,
2018), which had gradually lost its challenge due
to the improving capabilities of LMs.

Mixed Signals Generalization Set (MSGS) as-
sess whether language models exhibit preferences
for certain aspects of language, such as linguistic
features (e.g., specific sentence structures) or sur-
face features (e.g., word positioning). The MSGS
dataset evaluates whether language models can
identify and detect these linguistic and surface fea-
tures and whether they prioritize linguistic features
over surface features, which is a crucial aspect of
human language understanding abilities (Warstadt
et al., 2020b).

Taken together, these evaluation suites provide
insights into the models’ general language under-
standing capabilities as well as their adaptability
and performance on specific downstream tasks.
The code for this task’s evaluation originates from
eval-harness by Gao et al. (2021). Furthermore,
as a fascinating aspect of cognitive modelling, we
assess our models’ capability to predict the age
of word acquisition (AoA). Based on the work
of Portelance et al. (2023), computing this metric

2The code for curriculum formation and training can be
found on Github: https://github.com/mi-m1/BabyLM-Entry.

involves an estimation of the average surprisal of
words in child-directed utterances sourced from
CHILDES. Models are then evaluated using leave-
one-out cross-validation. The metric used to mea-
sure prediction is mean absolute deviation (MAD).
A lower MAD score indicates that the model’s
predictions are closer to the actual age of acqui-
sition, signifying better performance on the task.
Conversely, a higher MAD score suggests that the
model’s predictions are less accurate.

Baselines: The two baseline models we use
are a model trained without CL (NONCL) and a
model trained on a randomly formed curriculum
(RANDOM). The non-CL model represents a con-
ventional approach, where the model is trained on
all available data simultaneously for a fixed number
of steps (50000 in this case). On the other hand,
the CL model trained on a randomly formed cur-
riculum serves as a comparison to understand how
much improvement linguistically justified curricula
can provide.

4 Results

The results of models can be seen in Tables 2, 3,
4. We provide the performance results for the sup-
plement BLiMP tasks and MSGS tasks (see Table
6 and 7). The analysis of the main BLiMP, Su-
perGLUE and AoA prediction tasks serves as a
representative basis, and the conclusions drawn
from these tasks can be extended to the results pre-
sented in the Appendices. The analysis presented
takes into consideration the results of all evaluation
metrics, however, we mainly focus on the BLiMP,
SuperGLUE and AoA benchmarks; MSGS and the
supplement BLiMP tasks will be referred to on a
needs basis.

4.1 Non-CL vs. CL

By comparing the non-curriculum learning pre-
trained baseline model (NONCL) with models pre-
trained using curriculum learning, we observe that
the latter exhibit slightly better performance. For
most of the tasks, CL models (RANDOM, ADD,
DPW, DISPERSION, DENSITY, RARITY, TTR) out-
perform NONCL. Higher scores are observed in
these systems on BLiMP tasks such as ANA. AGR,
ARG. STR, QUANTIFIERS and SuperGLUE tasks
such as QQP, BoolQ, and MultiRC indicating that
curriculum learning leads to better performance.
Although the improvements are not substantial in
some cases and there exist also situations where
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Model ANA. AGR ARG. STR BINDING CTRL. RAIS D-N AGR ELLIPSIS FILLER. GAP IRREGULAR ISLAND NPI QUANTIFIERS S-V AGR
NONCL baseline 50.19 58.53 46.26 55.57 50.31 38.41 28.94 47.96 45.71 45.74 30.52 48.35
RANDOM baseline 61.28 59.53 48.74 56.87 49.24 40.36 28.99 56.49 52.14 23.70 38.01 46.91

ADD 64.37 59.53 47.03 55.04 49.58 37.30 29.05 48.50 48.13 31.49 55.15 48.93
DISPERSION 63.19 59.78 46.82 57.39 49.58 39.32 28.94 52.60 51.08 45.27 46.68 48.93
DPW 63.80 59.86 49.80 56.79 49.38 37.88 28.99 59.29 51.97 30.11 43.39 47.77
DENSITY 65.56 59.66 45.83 57.56 49.25 40.07 29.76 49.86 50.31 41.48 42.25 48.93
RARITY 59.01 59.78 49.01 57.11 49.47 38.51 29.03 56.28 50.75 18.91 41.60 48.43
TTR 59.00 59.13 44.99 56.99 49.78 36.76 30.58 47.75 49.00 49.52 33.08 48.55

Table 2: Table showing BLiMP results of models. All results are average performance accuracy over three runs.
Bold values are results that are the best performance achieved average for the given task. These values are also
statistically significantly better than the baseline CL model tested with Welch’s t-test (p < 0.05).

the NONCL model has exceeded CL models, for in-
stance, in CoLA and MRPC. Comparisons between
the random CL baseline model (RANDOM) and
models trained on structured curriculum suggest
that training data on increasing lexical complexity
can contribute to improved performance, albeit to
a limited extent.

Since the models are trained on small amounts
of data, they are likely to overfit. Future investiga-
tions can explore more computationally complex
methods, such as competency-based scheduling
functions to make more robust decisions on when
to expose a new level of curriculum to the model
(Platanios et al., 2019).

4.2 Best and Worst Curriculum Design
Considering the similarity of the results and the
diverse nature of the evaluation tasks, we deter-
mine the best model as the one that outperforms
the baseline CL model statistically significantly
in the highest number of tasks. We find that the
best curriculum depends on the evaluation suite.
On BLiMP tasks, the best curriculum is found to
be DENSITY; ADD on SuperGLUE tasks; TTR

on MSGS tasks. Interestingly, the curriculum that
demonstrated the fewest instances of outperform-
ing the baseline across all evaluation suites is DIS-
PERSION. From these observations, organising pre-
training data according to syntactic complexity is
perhaps more advantageous on the SuperGLUE
and MSGS tasks, whereas lexical information is
more effective for gaining the knowledge required
to perform well on BLiMP tasks. The best ag-
gregate model is found to be pretrained by ADD

curriculum. This could indicate that exposing data
incrementally to the model based on sentence struc-
ture is a modest choice for curriculum design.

4.3 Curriculum Design Variation
The variation in performance between each model
is observed to be diverse across all evaluation
schemes. On average, the gap in performance be-

tween the best and worst CL model on SuperGLUE
tasks (3.072) and MSGS tasks (4.670) is smaller
than on BLiMP (7.440) and supplement BLiMP
tasks (5.763). This difference in spread shows that
models perform more consistently on finetuning
tasks than BLiMP ones. We attribute this to the
nature of the evaluation tasks. SuperGLUE com-
prises a variety of natural language understanding
tasks, but they may share certain linguistic or se-
mantic characteristics that make them more pre-
dictable for models to generalize across tasks. On
the other hand, BLiMP tasks are designed to test
specific linguistic phenomena, making them more
challenging and potentially leading to greater vari-
ation in model performance. Furthermore, given
that a portion of the dataset comprises transcribed
spoken speech, the exposure to intricate linguistic
structures may be restricted, as spoken language
tends to be less complex than written language. For
instance, Chang and Bergen (2022) find that the
average mean sentence length in the CHILDES cor-
pus is 4.5 tokens. This adds plausibility to the fact
that spoken language contains simpler syntactic
structures.

4.4 Age-of-Acquisition Prediction Results
We find that some of the results for AoA predic-
tions are statistically insignificant. In particular, we
see that the models are unable to predict AoA for
Overall and Nouns categories. Out of the results
that are statistically significant, ADD is able to pre-
dict predicates more accurately than the NONCL

model and functions words more accurately than
the RANDOM model. DISPERSION and DENSITY

models have higher accuracy on function words
predictions than ADD model.

4.5 Difficulties
Overall, there are fewer instances where the models
are able to exceed the CL baseline on SuperGLUE
tasks. However, the hardest tasks, whereby models
achieved the lowest scores are mostly BLiMP tasks.
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Model CoLA (MCC) SST-2 MRPC (F1) QQP (F1) MNLI MNLI-mm QNLI RTE BoolQ MultiRC WSC
NONCL baseline 69.48 83.27 65.35 69.65 58.07 57.89 56.74 55.22 60.40 48.63 58.63
RANDOM baseline 68.92 83.14 63.65 71.30 57.76 58.84 58.30 50.84 64.08 52.39 61.45

ADD 68.56 83.07 62.90 70.56 58.56 58.94 57.58 55.89 62.52 50.38 61.45
DISPERSION 68.53 82.94 63.09 70.28 58.33 59.44 57.98 52.86 62.84 49.65 61.45
DPW 68.92 82.15 63.65 69.66 58.36 59.30 58.18 53.87 62.38 50.16 61.45
DENSITY 69.12 82.94 57.63 70.27 58.94 57.69 57.60 51.18 62.89 50.93 57.83
RARITY 67.71 82.87 59.32 73.79 58.31 57.89 56.39 51.18 62.24 51.92 61.45
TTR 69.09 82.35 60.83 73.53 58.61 59.20 55.89 53.20 57.81 48.67 60.24

Table 3: Table showing SuperGLUE results of models. All results are average performance accuracy over three runs.
Matthews correlation is reported for CoLA; F1 scores are reported for MRPC and QQP; the rest are accuracy scores.
Bold values are results that are the best-performing model for the given task. These values are also statistically
significant, tested using Welch’s t-test (p < 0.05).

Model Overall (591 words) Nouns (322 words) Predicates (167 words) Function words (102 words)

NONCL baseline 2.053 1.970 1.867 2.619
RANDOM baseline 2.050 1.968 1.850 2.640

ADD 2.051 1.970 1.851* 2.637*
DISPERSION 2.053 1.973 1.854 2.632*
DPW 2.051 1.971 1.847 2.640
DENSITY 2.051 1.970 1.852 2.632*
RARITY 2.049 1.969 1.845 2.637
TTR 2.052 1.969 1.862 2.626

Table 4: Table showing Age-of-Acquisition prediction results of models. The scores are mean absolute deviation in
months across Leave-One-Out (LOO) cross-validation folds. Lower MAD scores denotes higher accuracy. Values*
are results that are significant, tested using Welch’s t-test (p < 0.005).

Namely, NPI (lowest = 18.91), FILLER GAP, and
QUANTIFIERS (lowest = 33.08), as can be seen
in Table 2).

As noted by Warstadt et al. (2020a), tasks such as
NPI licensing and Quantifiers require in-depth se-
mantic knowledge. LMs seem to lack such knowl-
edge, as they tend to make errors that produce con-
tradictory language and show a lack of understand-
ing of assumptions and ideas (Marvin and Linzen,
2018). Interestingly, upon inspecting the predic-
tions made by the models, it appears that there is a
strong preference for constructions that contain the
adverb "ever". In fact, all the predictions made by
the models incorporated this adverb. The predic-
tions for the Quantifier task also exhibit consistent
patterns of ungrammatically. For instance, they do
not seem to know superlative quantifiers cannot be
embedded under negation.

Table 5 provides examples that illustrate these
judgements. Taken together, this effectively shows
the models have not been able to generalise condi-
tions for NPI licensing, which is, that NPIs prefer
not to occur in positive sentences and are restricted
to specific contexts, primarily negative environ-
ments. In addition, the models seem to have also
not learned that NPI licensing environments ex-

ist and can take the form of negation and negative
quantifiers. Similarly, the model has not learned the
required knowledge for resolving the right quanti-
fier constructions.

In this light, solely relying on CL with varying
kinds of lexical complexity for forming curricula
may not be sufficient. Additional efforts are re-
quired to explicitly introduce language models with
the knowledge necessary for completing both se-
mantic and syntax tasks successfully. This draws
questions to LMs’ abilities to generalise syntactical
patterns in language. Whilst this 10M-word corpus
might be sufficient for humans acquiring language,
LMs perhaps require more targeted training and
additional data.

5 Conclusion

In this work, we investigated different CL curricula.
We find that linguistically-motivated curriculum
formation produces better results than (1) a non-CL
pretrained model, and (2) a CL model trained on a
randomly formed curriculum. In addition, we pro-
vide an analysis of the impact of linguistic curricu-
lum on evaluation tasks. The findings underscore
the potential of leveraging linguistic principles to
address the challenges posed by sequential learn-
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ID Prediction
npi_licensing_9 "Should Mitchell ever know Eva?"
npi_licensing_43 "Sharon has ever climbed down a hill."
quantifiers_62 "There weren’t most gates looking like most photographs."

Table 5: Example BLiMP predictions made by the models

ing tasks and pave the way for further research in
this promising direction. One possible direction to
explore is the adaptive CL approach, which dynam-
ically adjusts the curriculum based on the model’s
learning progress and task complexities. This could
involve incorporating feedback mechanisms to fine-
tune the curriculum during training for optimal task
mastery. With this work as a foundation, we hope
it can provide insights to linguistically-oriented
pertaining works.

6 Limitations

We would like to point out that more advanced fea-
tures, such as discourse features and additional se-
mantic features provided by Lee et al. (2021) form
promising areas of exploration. Arguably, includ-
ing these features will paint a more representative
of linguistic complexity. However, as a starting
point, we frame our work to first isolate each "di-
mensionality" of linguistic complexity, and explore
each one’s effect in pretraining independently.
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HYPERNYM QA CONGRUENCE EASY QA CONGRUENCE TRICKY SUBJECT AUX INVERSION TURN TAKING

NONCL baseline 50.85 27.60 32.73 62.63 51.31
RANDOM baseline 50.85 34.90 28.69 59.32 50.00

ADD 49.42 37.50 29.09 67.16 46.43
DISPERSION 50.81 28.65 30.30 64.16 50.95
DPW 50.58 30.73 28.69 57.37 48.10
DENSITY 49.92 32.81 30.71 65.37 47.98
RARITY 50.54 34.38 28.08 61.77 49.40
TTR 50.50 31.25 32.32 61.06 50.83

Table 6: Table showing results of supplement BLiMP tasks. All results are average performance accuracy over three
runs. Bold values are results that are the best performance achieved average for the given task. These values are
also statistically significantly better than the baseline CL model tested with Welch’s t-test (p < 0.05).

CR_CTRL LC_CTRL MV_CTRL RP_CTRL SC_CTRL CR_LC CR_RTP MV_LC MV_RTP SC_LC SC_RP
NONCL 59.64 79.23 82.98 98.85 60.58 54.61 23.22 29.39 23.92 40.82 35.40
RANDOM 59.78 93.15 82.34 99.75 60.21 51.90 24.95 23.59 26.22 40.82 34.69

ADD 61.19 98.30 76.38 99.75 60.18 48.78 23.43 22.81 22.81 40.84 30.09
DISPERSION 58.34 93.07 79.17 99.72 59.35 50.91 24.69 22.67 23.48 40.84 31.64
DPW 59.12 87.27 79.97 99.64 59.25 42.76 23.68 23.41 25.26 40.82 37.18
DENSITY 59.39 88.63 75.69 99.75 61.39 50.98 26.02 22.66 24.53 40.80 33.75
RARITY 58.70 92.71 76.71 99.82 59.96 49.84 24.49 27.18 25.62 40.82 35.10
TTR 59.17 85.87 81.26 99.09 59.20 46.57 27.83 28.82 26.92 40.84 39.42

Table 7: Results of MSGS evaluation. All results are Matthews correlation coefficients (MCCs). All results are
average performance accuracy over three runs. Bold values are results that are average MCC for the given task.
These values are also statistically significantly better than the baseline CL model tested with Welch’s t-test (p <
0.05).
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Abstract

We present our submission1 to the BabyLM
challenge, whose goal was to improve the
sample efficiency of language models. We
trained an ensemble consisting of a GPT-2 and
small LLaMA models on the developmentally-
plausible, 10M-word BabyLM dataset, then dis-
tilled it into a small, 58M-parameter LLaMA
model, which exceeds in performance both of
its teachers as well as a similar model trained
without distillation. This suggests that distil-
lation can not only retain the full performance
of the teacher model when the latter is trained
on a sufficiently small dataset; it can exceed
it, and lead to significantly better performance
than direct training.

1 Introduction

Today’s state-of-the-art language models are typi-
cally trained on the order of a trillion tokens. Hoff-
mann et al. (2022) have observed that in order to
train a model in a compute-optimal way, the num-
ber of parameters and dataset size should follow
a linear relation: the so-called Chinchilla scaling
law, with an optimal ratio of about 20 tokens per
model parameter. For models larger than ∼ 1011

parameters, this implies that the currently-available
amount of training data (∼ 1012 tokens) already
constitutes a bottleneck, that prevents scaling up
those models in a compute-optimal way.

A trillion tokens is already at least 4 orders of
magnitude larger than the estimated number of
words2 (≲ 108) to which a typical 13-year-old child
has been exposed. This suggests that current lan-
guage models are significantly less sample-efficient
than human beings.

Furthermore, the trend of scaling up models to
improve their performance may limit their usage

∗Equal contributions
1https://huggingface.co/timinar/baby-llama-58m

for the checkpoint; the training code is available at
https://github.com/timinar/BabyLlama .

2Extrapolating from Gilkerson et al. (2017).

in embedded systems, personal devices, and other
end-user technologies, as well as in specialized
applications where domain-specific training mate-
rial is scarce. Taylor et al. (2022) have shown that
training models on higher-quality data can improve
performance; however, the quantity of such high-
quality data is limited, and often represents only a
small fraction of the corpus.

This makes a strong case for trying to increase
the sample efficiency of current models and train-
ing algorithms. In this context, the BabyLM chal-
lenge (Warstadt et al., 2023) has invited researchers
to investigate ways of improving the sample effi-
ciency of small-scale language models, by restrict-
ing the training set to a developmentally plausible
corpus, consisting mostly of transcribed speech of
either 10M (strict-small track) or 100M words
(strict and loose tracks).

The present paper describes our submission
to the strict-small track of the BabyLM chal-
lenge. As such, it focuses on the 10M-word
dataset. Our proposed solution consists in dis-
tilling an ensemble of two larger “teacher” mod-
els, of different architectures (GPT-2 and LLaMA),
into a smaller “student” LLaMA model. We show
that this approach produces a model whose perfor-
mance largely matches, and often exceeds, that of
both teachers.

We introduce Baby Llama in section 2, describe
the dataset in section 3, discuss the model perfor-
mance in section 4, and finally conclude in sec-
tion 5. The full numerical results of the evals are
listed in appendix A, and in appendix B we briefly
discuss a number of experiments (including some
negative results) that we eventually chose not to
include into the final model.

2 Pretraining using distillation

Knowledge distillation (Bucila et al., 2006; Hinton
et al., 2015) is a technique that consists in training
a (usually smaller) student model to reproduce the
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behaviour of one or more teacher models. This
method has been successfully applied to large lan-
guage models, e.g. in Sanh et al. (2019).

In our submission to the strict-small track
of the BabyLM challenge, we address the sam-
ple efficiency problem by distilling an ensemble
of larger pre-trained teacher models into a smaller
student model. Specifically, we train an ensem-
ble consisting of GPT-2 (Radford et al., 2019)
and a small LLaMA model (Touvron et al., 2023)
on the 10M-word BabyLM dataset, and then dis-
till this ensemble into a smaller, 58M-parameter
LLaMA model. Despite its reduced size, our dis-
tilled LLaMA model not only retains the perfor-
mance of the larger models, but also exceeds it.
This shows that distillation can be a powerful tool
to enhance sample efficiency when training on
smaller datasets.

The distillation process involves guiding the
training of the student model using the output of
the teacher models. This output, also known as
soft targets, is obtained by applying a temperature
scaling factor to the teacher’s output logits. The
student model is then trained to approximate these
soft targets (with the same temperature) in addition
to the original hard targets, resulting in a model that
generalizes better and therefore performs better on
unseen data.

The loss function consists of a weighted sum
of the original hard target loss (cross-entropy with
the true labels) and the distillation loss (Kullback-
Leibler divergence with the teacher’s soft targets).
Formally, it can be expressed as:

L = αLCE + (1− α)LKL (1)

where α is the weight factor, LCE is the origi-
nal cross-entropy loss, and LKL is the Kullback-
Leibler divergence.

The teacher models used for the distillation are
newly-trained instances of GPT-2 and LLaMA. The
GPT-2 model has 24 layers, 16 attention heads, an
embedding dimension of 1536, intermediate size
of 6144, and maximum sequence length of 128,
resulting in 705M parameters. It was trained for
6 epochs with a batch size of 256 and maximum
learning rate3 of 2.5 · 10−4. The LLaMA model
has 24 layers, 8 attention heads, a hidden size of
1024, intermediate size of 3072, and maximum
sequence length of 256, resulting in 360M parame-
ters. It was trained for 4 epochs with a batch size of

3We trained all three models using a cosine learning rate
schedule with a warm-up of 200 steps.

128 and maximum learning rate of 3 · 10−4. Both
teacher models are pretrained exclusively on the
10M-word BabyLM dataset. We use the same to-
kenizer for both the teacher and student models,
with a vocabulary size of 16000; the tokenizer is
trained exclusively on the training split.

For the student model, we chose a smaller ver-
sion of the LLaMA model with only 16 layers, 8
attention heads, a hidden size of 512 and an inter-
mediate size of 1024, resulting in 58M parameters.
This choice was mainly motivated by the require-
ment of being able to fine-tune the model with our
limited computational resources4 for the various
benchmark tasks that require fine-tuning. The dis-
tillation process is carried out using a batch size
of 32 and a maximum learning rate of 3 · 10−4.
The loss function (1) is used throughout the en-
tire training, i.e. the student model is not trained
conventionally before the distillation. The training
lasts for 6 epochs. The temperature was set to 2
and α = 0.5. We have tried various combinations
of 2, 4, and 6 teacher models, with the best results
being achieved using two teachers.

We observed that the eval loss did not correlate
sufficiently well with the benchmarks to be able to
use it as a proxy for the final model performance.
Therefore, given the limited time and resources, we
were not able to perform a systematic hyperparam-
eter search.

The trained model can be downloaded
from the HuggingFace repository https:
//huggingface.co/timinar/baby-llama-58m .
When implementing the distillation loss, we largely
followed repository https://github.com/
philschmid/knowledge-distillation-
transformers-pytorch-sagemaker to modify
the original Trainer class from the HuggingFace
Transformers library. Pretraining a 58M-parameter
model with two teachers for 6 epochs takes less
than 3 hours on a single NVIDIA RTX 3090.
Training GPT-705M for 6 epochs takes around 12
hours, while training Llama-360M for 4 epochs
takes around 2 hours.

3 Dataset

The “train” dataset used in the strict-small track
consists of approximately 10M words (as counted
by the UNIX wc tool) that form a developmentally

4It would be interesting to see if a bigger model — possibly
larger than the teachers — can be successfully pretrained in
the same way.
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plausible corpus, i.e. the sort of “input” that a typi-
cal child has access to: mostly transcribed speech
and children’s books. A separate, similar “dev”
dataset of approximately 9.4M words is used for
validation and testing. The entire dataset is in En-
glish, with some occasional foreign words such as
e.g. proper nouns in Wikipedia articles.

Some simple, regex-based cleaning is performed
on both datasets, e.g. to remove HTML tags from
Wikipedia articles, non-verbal cues from subtitles,
or even to correct I’s that were incorrectly recog-
nized as l’s in OCR’ed uppercase text. The Python
script responsible for the cleaning, mrclean.py,
is included along with the model; it contains one
function for each data source.

The cleaned dataset is then tokenized using Byte-
Pair Encoding (BPE) with a vocabulary size of
16000. To avoid leakage, the tokenizer was trained
exclusively on the training split. All the tokens are
finally concatenated into a single one-dimensional
vector.

Each split is divided into contiguous chunks of
128 tokens. During each epoch of pretraining, the
model is presented with a new random permutation
of the chunks from the training split.5 The vali-
dation loss is computed at the end of each epoch,
by iterating in order over a fixed (but randomly
sampled at the beginning) subset of the “dev” split.

4 Performance

Baby Llama is evaluated using a suite of lin-
guistic benchmarks consisting of the BLiMP
(Warstadt et al., 2020a) zero-shot benchmark (plus
some yet-unpublished supplementary evals) as
well as two fine-tuning benchmarks: SuperGLUE
(Wang et al., 2020) and MSGS (Warstadt et al.,
2020b). In appendix A, we also discuss the
model performance when used as part of an age-
of-acquisition prediction task (Portelance et al.,
To Appear). These benchmarks are all run using
the lm-evaluation-harness package (Gao et al.,
2021), version v0.2.0.

We compare Baby Llama with three baseline
models that are similar or larger in size and
inference/fine-tuning computational cost: OPT
(125M-parameter version, Zhang et al., 2022),
RoBERTa (base, 125M parameters, Liu et al., 2019)
and T5 (base, 222M parameters, Raffel et al., 2020).

5We noticed that adding a random offset between 0 and 127
to each chunk lead to marginally better performance; however,
due to lack of time, the final teacher and student models were
trained without such an offset.

The baseline models have been re-trained on the
same 10M-word dataset by the organizers of the
BabyLM challenge.6 For the BLiMP zero-shot
benchmark, we add to the comparison the larger
GPT-2 (705M) and LLaMA (360M) models that
were used as teachers in the distillation procedure,
a LLaMA (58M) model trained without distillation,
as well as the ensemble model formed by averaging
the output logits of both teachers. However, we do
not evaluate the fine-tuning performance of these
models due to the computational cost that it would
incur.

The accuracy7 of Baby Llama on the zero-shot
benchmarks is presented in fig. 1 along with the
accuracy of the baselines, and in fig. 2 with that of
the non-distilled and teacher models. Its fine-tuning
accuracy8 is reported in fig. 3 for (Super)GLUE,
and its Matthews correlation coefficient (MCC)
in fig. 4 for MSGS. The performance is reported
in the form of parallel-coordinates plots, with the
lines serving as visual guides. The full numerical
results of the evals are listed in tables 1 and 2 in
appendix A.

Baby Llama’s performance is generally supe-
rior to all three baselines, for both zero-shot and
fine-tuning benchmarks. It only falls significantly
behind any of the baselines on a handful of evals,
thus showing a well-balanced and consistent over-
all performance.

Interestingly, Baby Llama not only performs bet-
ter that both of the individual teacher models (as
well as the non-distilled model) on most zero-shot
tasks; it also performs better than the corresponding
ensemble model. This clearly shows that the distil-
lation procedure, by itself, leads to an improvement
in the zero-shot accuracy.

When evaluating Baby Llama on the benchmarks
that require fine-tuning, we noticed that the default
fine-tuning hyperparameters suggested by the or-
ganizers lead to severe overfitting in a number of
benchmarks (as evidenced by an increasing eval
loss and no improvement — or a decrease — in
the accuracy, while the training loss kept decreas-

6The checkpoints for those baseline models can be found
at https://huggingface.co/babylm .

7We note that, despite seeding all the random number gen-
erators, we were not able to reproduce the numerical results
across different machines (possibly due to different software
versions) despite following as closely as possible the official
procedure to install the evaluation pipeline. For consistency,
all the reported results have been produced on the same ma-
chine.

8Or MCC or F1 score when explicitly mentioned.
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Figure 1: Parallel-coordinates plot summarizing the zero-shot performance of Baby Llama on the BLiMP and
BLiMP Supplement benchmarks, compared with a number of baseline models.
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ing). To avoid this issue, we have re-tuned the fine-
tuning hyperparameters as needed. The selected
sets of hyperparameters are listed in table 3. For
a small number of benchmarks, the performance
didn’t evolve smoothly as a function of the hyperpa-
rameters. Since this is symptomatic of overfitting
on the eval dataset (making any comparison po-
tentially inaccurate), we explicitly identify those
benchmarks with the † symbol in table 2.

5 Conclusion

In this work, we trained Baby Llama — a 58M-
parameter model based on the LLaMA architec-
ture — on the 10M-word BabyLM dataset using
knowledge distillation. It was distilled from an en-
semble of two, inhomogeneous teachers: a 360M-
parameter LLaMA model and a 705M-parameter
GPT-2 model, both trained on the same dataset.
We observed that the model pretrained with the
distillation loss (1) performs better that the simi-
lar 58M-parameter model trained in the usual way.
Moreover, the smaller, distilled model outperforms
both of its teachers individually, as well as the en-
semble model formed by the two teachers.

If those findings continue to hold at scale (see
Limitations), they could help improve the sample
efficiency of large language models, while reduc-
ing the amount of memory and compute necessary
to deploy them. The increased sample efficiency
could allow training larger, higher-performing mod-
els on the already-available training corpora (but at
a higher training cost). Alternatively, it could limit
the data collection necessary to train today’s state-
of-the-art models. This would e.g. allow focusing
on higher-quality data, and it could be particularly
useful in a hypothetical scenario where data col-
lection gets restricted by online platforms, regula-
tions, or due to copyright. Finally, the reduced size
and computing requirements of the distilled model
would reduce its energy footprint and facilitate
on-device/local processing, leading to potentially-
improved user privacy.

Limitations

The results presented in this article have been
obtained for models which are 103 to 104 times
smaller that current state-of-the-art language mod-
els. Many important properties of these models
have been shown to emerge as the model size in-
creases (Radford et al., 2019; Brown et al., 2020).
Therefore, the results obtained at small scales may
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not necessarily generalize to larger scales.
Furthermore, our results have been obtained in

the regime where the number of parameters signifi-
cantly exceeds the number of training tokens. This
differs from today’s state-of-the-art language mod-
els, which are usually trained on many more tokens
than their number of parameters, e.g. ∼ 20 times
more for models trained in a compute-optimal way
following Hoffmann et al. (2022). Such models
may not have the luxury to dedicate as many pa-
rameters to a given piece of information or feature
as ours. Therefore, there is no guarantee that the
nearly lossless distillation that we have observed
will generalize to such models.

Due to these differences in scale and tokens-to-
parameters ratio, it is not clear if our proposed
distillation procedure could be scaled up in order
to increase the sample efficiency of today’s largest
language models. Although this hypothesis can in
principle be tested experimentally, the authors lack
the computational resources required to perform
such a test.

Finally, our results have been obtained for a tex-
tual training corpus, in the context of language
modeling. Further experimentation will be required
in order to investigate whether our findings gener-
alize to different data modalities and to other do-
mains where transformer-based models are also
being used.
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The numerical results for the zero-shot accuracy
on the BLiMP suite of benchmarks (Warstadt et al.,
2020a) can be found in table 1, while the results
for the fine-tuning accuracy on the SuperGLUE
(Wang et al., 2020) and MSGS (Warstadt et al.,
2020b) benchmarks are listed in table 2. Finally,
the hyperparameters selected for the various fine-
tuning tasks are summarized in table 3.

Age-of-acquisition prediction In addition to the
above-mentioned benchmarks, we have tested our
model on an age-of-acquisition task proposed by
Portelance et al. (To Appear). Its aim is to predict
the median age at which a word is learned by chil-
dren, as a function of a number of variables (such
as the lexical category, concreteness, frequency,
etc.), using a linear model. One of these variables
is the average surprisal, i.e. the average negative
log-probability of the word across all the contexts
where it appears, as predicted by a causal language
model. This is the only place where the language
model enters. The use of this task as a benchmark
for language models fundamentally relies on the
assumption of a linear relationship between the sur-
prisal and the age of acquisition. If this assumption
is true, then a more accurate estimation of the to-
kens probabilities by the language model should
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indeed translate into a more accurate prediction of
the age of acquisition. If, however, this assumption
is not justified, then the linear model — but not the
language model — might be the bottleneck, and a
better language model won’t necessarily lead to a
better prediction.

The mean absolute deviations of the predicted
ages of acquisition are reported for various lan-
guage models and lexical categories in table 4. We
can only observe minor differences between the
four considered language models (likely due to
random noise), suggesting that the linear regres-
sion — and not the language model — is indeed
the bottleneck. Therefore, this task is unlikely to
be indicative of the performance of Baby Llama
relative to the baselines.

B Other attempts and null results

In this appendix, we briefly describe various ap-
proaches that we have investigated in order to im-
prove the performance of our models. Unlike distil-
lation from an ensemble of teachers, those attempts
had mixed results and we haven’t pursued them
further, in part due to our limited computational
resources.

Curriculum learning We implemented a simple
version of curriculum learning, directly inspired by
the original paper from Bengio et al. (2009). We
split the 10 files composing the training set into 5
buckets, in order of roughly increasing complexity
according to some readability metrics9 computed
using the textstat Python package. We start train-
ing for 3 epochs using the lowest bucket only, then,
every 3 epochs, we add the next bucket to the train-
ing set without removing the previous ones, until
we have trained for 3 epochs on the full training set.
The full validation set is always used to compute
the eval loss.

After training a 10M-parameter GPT-2 model
using the schedule described above, the eval loss10

plateaued at 3.75, comparable to the 3.74 obtained
by training the same model for the same wall-clock
duration but using the full training set from the

9The metrics used are the Flesch reading ease, Flesch-
Kincaid grade level, Gunning fog index, automated read-
ability index, and SMOG grade. The buckets are 1.
aochildes, 2. open_subtitles, 3. switchboard, cbt, qed,
children_stories, bnc_spoken, 4. simple_wikipedia,
gutenberg and 5. wikipedia.

10In this experiment and the others described in this ap-
pendix, the exact tokenizer and sequence length may differ
from the ones used for the final Baby Llama, therefore the loss
isn’t directly comparable.

beginning. Although the model trained with cur-
riculum learning scored on average 1 percentage
point above the non-curriculum model on the zero-
shot benchmarks, the overall picture was mixed,
due to significant regressions in two of the evals.
The absence of a significant improvement from cur-
riculum learning is in line with previously-reported
negative results in Surkov et al. (2022), although
we should remain cautious since our attempt wasn’t
comprehensive and modern sampling methods may
lead to significantly better results.

Switch Transformer Using the HuggingFace
Transformers library, we have implemented a de-
coder Switch Transformer (Fedus et al., 2022) for
causal language modeling, based on the encoder-
decoder version available in said library. This
mixture-of-experts model was initially introduced
to scale up the number of parameters at a constant
computational cost.

We train both a GPT2-10M baseline11, as well
as a number of Switch Transformers with the same
number of layers and embedding dimension but
different numbers of experts and expert capaci-
ties (tuning separately the other hyperparameters
of each model). We observe, as expected, that a
Switch Transformer with a single expert of capac-
ity 1 closely matches the performance of the base-
line GPT-2 model. However, as we scale up the
number of experts and expert capacity, we observe
a performance degradation (both in the loss and
zero-shot scores), even after allowing for longer
training of the larger models. This suggests that
mixture-of-experts models may not bring any ad-
vantages for the model and dataset sizes considered
here.

Ensembling of homogeneous models We aver-
aged the predicted logits of 4 GPT2-10M models
trained from different random initializations, but
otherwise identical, and compared the results of
the ensemble with those of its constituent GPT2-
10M models. All models had their hyperparameters
tuned to minimize the eval loss. While the individ-
ual models had an average eval loss of 3.77, the
averaged model reached 3.66, an improvement of
0.11. This translates into an improvement of 1 to 2
percentage points (depending on the specific seed)
in the average zero-shot BLiMP score; more im-
portantly, the averaged model always scored higher

118 layers, embedding dimension 256, 16 heads, and vocab-
ulary size 16000.
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Model OPT
(125M)

RoBERTa
(base)

T5
(base)

LLaMA
(58M)

LLaMA
(360M)

GPT-2
(705M)

Ensemble
of teachers

Baby Llama
(58M, distilled)

B
L

iM
P

Anaphor Agr. 63.8 81.5 68.9 87.0 87.6 89.6 89.6 89.8
Arg. Structure 70.6 67.1 63.8 72.3 73.5 73.5 75.3 73.1
Binding 67.1 67.3 60.4 71.2 72.1 71.5 72.2 72.7
Control/Raising 66.5 67.9 60.9 67.5 67.4 68.4 67.7 67.5
Det.-Noun Agr. 78.5 90.8 72.2 87.8 89.6 87.4 89.8 90.8
Ellipsis 62.0 76.4 34.4 67.3 68.5 69.9 71.7 73.3
Filler-Gap 63.8 63.5 48.2 70.9 70.6 70.2 71.1 71.8
Irregular Forms 67.5 87.4 77.6 74.1 68.9 83.1 83.4 93.1
Island Effects 48.6 39.9 45.6 57.3 50.4 51.6 50.7 51.2
NPI Licensing 46.7 55.9 47.8 51.1 57.3 50.5 55.1 56.5
Quantifiers 59.6 70.5 61.2 64.2 59.0 69.8 64.6 73.3
Subj.-Verb Agr. 56.9 65.4 65.0 73.0 69.7 67.5 70.3 75.4

B
L

iM
P

su
pp

l. Hypernym 50.0 49.4 48.0 48.7 49.4 49.2 50.1 49.3
QA Congruence (easy) 54.7 31.3 40.6 50.0 53.1 56.2 50.0 51.6
QA Congruence (tricky) 31.5 32.1 21.2 32.7 41.8 45.5 43.0 41.8
Subj.-Aux. Inversion 80.3 71.7 64.9 77.4 84.3 81.7 84.5 88.5
Turn Taking 57.1 53.2 45.0 63.9 68.6 65.7 66.4 66.1

Table 1: Zero-shot accuracy (in percent), as evaluated by the BLiMP suite of benchmarks (top) and some supple-
mentary benchmarks (bottom).

Model
OPT

(125M)
RoBERTa

(base)
T5

(base)
Baby Llama

(58M, distilled)

(S
up

er
)G

L
U

E

CoLA (MCC) 15.2 25.8 11.3 14.3
SST-2 81.9 87.0 78.1 87.2
MRPC (F1) 72.5 79.2 80.5 82.0
QQP (F1) 60.4 73.7 66.2 83.0
MNLI 57.6 73.2 48.0 72.9
MNLI-mm 60.0 74.0 50.3 73.7
QNLI 61.5 77.0 62.0 81.1
RTE 60.0 61.6 49.4 61.6†

BoolQ 63.3 66.3 66.0 67.2†

MultiRC 55.2 61.4 47.1 58.9†

WSC 60.2 61.4 61.4 61.4†

M
SG

S
(M

C
C

) CR_LC 0.4 -28.3 -78.3 -12.0
CR_RTP -70.3 -77.7 -62.0 -71.1
MV_LC -72.1 -99.3 -100.0 -41.2
MV_RTP -77.6 -79.4 -79.7 -91.7
SC_LC 13.8 16.3 -25.3 76.4
SC_RP -68.9 -45.0 -39.4 -36.0

Table 2: Fine-tuning accuracy (if not specified), Matthews correlation coefficient (MCC) or F1 score — in percent
— as evaluated by the SuperGLUE (top) and MSGS (bottom) suites of benchmarks. The † symbol indicates
benchmarks for which the best performance was reached only for a narrow range of hyperparameters, suggesting
possible overfitting of the validation set.

287



Task Max. learning rate Batch size Max. epochs Patience Eval every Seed

(S
up

er
)G

L
U

E

CoLA 4 · 10−5 64 3 10 20 12
SST-2 5 · 10−5 64 6 10 200 12
MRPC 3 · 10−5 64 3 10 20 12
QQP 4 · 10−5 64 10 10 1000 12
MNLI 5 · 10−5 64 6 10 200 12
MNLI-mm 5 · 10−5 64 6 10 200 12
QNLI 5 · 10−5 64 6 10 200 12
RTE 5 · 10−5 64 6 10 200 12
BoolQ 3 · 10−4 16 10 10 10 12
MultiRC 1 · 10−4 64 7 10 1000 42
WSC 5 · 10−7 1 10 1000 2000 12

M
SG

S

CR_LC 1 · 10−3 64 2 10 10 12
CR_RTP 5 · 10−5 64 6 10 200 12
MV_LC 5 · 10−5 64 6 10 200 12
MV_RTP 5 · 10−5 64 6 10 200 12
SC_LC 1 · 10−3 64 2 10 10 12
SC_RP 1 · 10−3 64 2 10 10 12

Table 3: List of the hyperparameters selected when fine-tuning Baby Llama on the various evals that require
fine-tuning.

Model
OPT

(125M)
RoBERTa

(base)
T5

(base)
Baby Llama

(58M, distilled)

AoA Overall (591 words) 2.03 2.06 2.04 2.06
AoA Nouns (322 words) 1.98 1.99 1.97 1.99
AoA Predicates (167 words) 1.81 1.85 1.82 1.84
AoA Function words (102 words) 2.57 2.65 2.64 2.63

Table 4: Performance of the model, when used as part of an age-of-acquisition (AoA) prediction task for various
lexical categories, as quantified by the mean absolute deviation (lower is better).
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than the average score of its constituents, and often
scored higher than all of them. Despite the initial
success of this method, adding more teachers to
the ensemble from which Baby Llama was distilled
yielded no further improvement to the performance
of the distilled model, suggesting that the gains
from using this method do not sum with those from
knowledge distillation.

Sharpness-Aware Minimization Foret et al.
(2020) have introduced a Sharpness-Aware Mini-
mization (SAM) procedure for simultaneously min-
imizing the loss value and its sharpness. It has been
shown in Bahri et al. (2021) that applying SAM
when fine-tuning on multiple downstream tasks can
result in substantial performance gains.

Here we tried a rather different approach: we
pretrained GPT2-10M in the usual way for 15
epochs and then trained it using SAM for one
more epoch. This approach in some sense resem-
bles the gradient ascent discussed in the next para-
graph. We implemented a custom training loop
for HuggingFace Transformers models based on
https://github.com/karpathy/nanoGPT. This
allowed us to use the two-step SAM optimization
from https://github.com/davda54/sam. Un-
fortunately, we have not observed any improvement
in the model’s zero-shot capabilities resulting from
this type of SAM application.

Post-training Gradient Ascent Yoon et al.
(2023) have empirically demonstrated that a few
steps of Gradient Ascent Post-training (GAP) en-
hances the zero-shot generalization capabilities
across diverse NLP tasks.

In order to test GAP, we first applied it to GPT2-
10M. We took a fully trained model and performed
15 to 100 steps of gradient ascent (following the
original paper, we used batch size 1 and learning
rate 5 ·10−5). We observed some improvements on
BLiMP (although those were not consistent among
the various tasks). However, we did not manage
to further improve the zero-shot performance of
the distilled Baby Llama, suggesting again that the
gains from using this method do not sum with those
from knowledge distillation.
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Abstract

This paper describes our proposed models in
the BabyLM Challenge (Warstadt et al., 2023).
The goal of this shared task is to pretrain mod-
els efficiently using a developmentally plausi-
ble corpus. To simulate the increasing complex-
ity of Child-Directed Speech (CDS) sentences,
we employed curriculum learning and trained
models with data reordered based on three met-
rics for sentence complexity. Among all the
models, the best performing one was trained
with data ordered by the max-dependency, al-
though the models trained with curriculum
learning did not outperform the baseline model
without curriculum learning.

1 Introduction

Successful recent large language models (LLMs)
are trained on extensive datasets, leading to a gap
between the training data of models and the in-
puts that children receive during language acqui-
sition. English-speaking children hear less than
100M words until the age of 12, while Chinchilla,
one of the recent LLMs, uses 1.4 trillion words
for training (Wertz et al., 2022). Training models
with human-like input data can improve LLM data
efficiency and shed light on efficient language ac-
quisition in children with limited data. Thus, the
BabyLM Challenge (Warstadt et al., 2023) aims
to pretrain models on a developmentally plausible
corpus, including Age-Ordered CDS (Huebner and
Willits, 2021). We used a dataset of ∼10M words,
approximating the input that children receive until
2–3 years 1.

In model training, reordering data in a mean-
ingful way (e.g., from easy to difficult samples),
known as curriculum learning (Bengio et al., 2009),
is suggested to enhance performance. In human
language acquisition, mothers adjust their speech
when addressing their children, using shorter and

1According to Gilkerson et al. (2017), children are exposed
to adult 12,300 words within a 12-hour day.

simpler sentences (Snow, 1972; Newport et al.,
1977; Fernald et al., 1989). Notably, Snow (1972)
and Fernald et al. (1989) report that the mean length
of utterance and the use of nominal compounds
increase as children age, suggesting that language-
acquiring children receive easy inputs initially and
gradually encounter more complexity as they grow.
Thus, reordering data by sentence difficulty may
improve model performance.

In this paper, we train models on data re-
ordered by sentence difficulty and evaluate them
on three designated datasets. The difficulty met-
rics include the number of subword tokens, that
of constituents and max-dependency. The max-
dependency yielded the highest scores, but cur-
riculum learning did not outperform the baseline
model.

2 Corpora and preprocessing

We used the BabyLM strict-small train/dev dataset
(Warstadt et al., 2023). First, we split the cor-
pora into sentences using the sentencizer from
spaCy2. Next, we deleted sentences that were
non-English, titles, and longer than 300 charac-
ters. For identifying non-English sentences, we
used FastText (Joulin et al., 2017). Some corpora
in the datasets contain much upper-case-only or
lower-case-only data. Therefore we trained Moses
truecaser (Koehn et al., 2007) using other training
corpora, then true-cased all data. After true-casing,
we tokenized all data. We trained the tokenizer
from scratch using RobertaTokenizer (Liu et al.,
2019) with the preprocessed training dataset.

3 Models

3.1 Baseline model

Our models are based on the RoBERTa-base (Liu
et al., 2019). We trained them on randomly shuf-

2https://spacy.io
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fled data from scratch. Their hyperparameters are
shown in Appendix A.2.

3.2 Curriculum learning model

We employed curriculum learning in our baseline
models. Training data were sorted by a particular
difficulty metric. We focused on sentence complex-
ity and used three metrics, the number of subword
tokens (Ntoken), that of constituency (Nconst.),
and maximum depth of dependency tree (Max-
dep.). We split the data into several blocks and
trained models on them in order with particular
steps. Note that we adjusted the number of steps
in each block to be proportional to the number of
subwords in each block.

4 Experiments

To find optimal settings for curriculum learning,
we begin with investigating which difficulty met-
rics are better and how many blocks of data should
be split into for this task. To explore the effect
of curriculum learning, we then compare the base-
line model, which is trained on randomly shuffled
data, with the curriculum learning models. We
use parsers from spaCy to calculate the number of
constituents and max-dependency.

4.1 Evaluation

We evaluated our models with the shared
evaluation datasets (Gao et al., 2021). These
consist of BLiMP (Warstadt et al., 2020a),
(Super)GLUE (Wang et al., 2018) and
MSGS (Warstadt et al., 2020b). BLiMP is
used for zero-shot evaluation, and it includes
supplement tasks that are specifically made
for BabyLM. We report its accuracy. GLUE
and MSGS are used for fine-tuning evaluation.
We report F1 score for GLUE and Matthews
Correlation Coefficient (MCC) for MSGS.

4.2 Results

Difficulty metrics We compare the models
trained on the sorted data with the three difficulty
metrics (See section 3.2). The bottom of Table 1
shows the performance of curriculum learning mod-
els in the different difficulty metrics. The results
suggest that the difficulty metrics affect the perfor-
mance of the models. Notably, the model trained
on the data sorted by Max-dep. achieved slightly
higher performance than the other metrics.

Model Curr. BLiMP GLUE MSGS Avg.

Baseline 69.23 65.74 −0.57 44.80
+cleaning 70.46 66.40 6.86 47.91

Ntoken ✓ 68.37 64.96 −5.56 42.59
Nconst. ✓ 65.90 64.71 −2.73 42.63
Max-dep. ✓ 68.27 65.90 3.26 45.81

Table 1: Performance of models. The models at the top
are baseline models with and without data preprocessing.
Those at the bottom are curriculum learning models in
different difficulty metrics. ✓in Curr. denotes whether
curriculum learning is applied to the models.

Model n BLiMP GLUE MSGS Avg.

Max-dep.

3 68.70 65.06 0.37 44.71
4 68.27 65.90 3.26 45.81
6 67.85 64.97 9.56 47.46
8 67.93 65.05 0.33 44.44

Table 2: Performance of models with different split
blocks. n indicates the number of blocks.

Number of blocks We compare the models
trained on the data split into {3, 4, 6, 8} blocks.
As difficulty metrics, we use Max-dep., which
achieves the highest score among the three mod-
els at the bottom of Table 1. Table 2 indicates the
performance of models with different split blocks.
This result shows that there is no significant differ-
ence between the models with different split blocks,
suggesting that scores will not be improved by the
simple increase or decrease in the number of split
blocks.

Baseline model vs. Curriculum learning model
Finally, we compare the curriculum learning
model 3, in which difficulty metrics are Max-dep.
and the number of blocks is 4, with the baseline
model. The top of Table 1 shows that the baseline
model obtains higher scores than the curriculum
learning model. This result implies that at least
the curriculum learning settings attempted in this
work are inadequate in facilitating higher model
performance. Investigating other effective training
settings would be interesting for future work; e.g.,
warmup, optimizers.

5 Conclusion

In summary, our participation in the BabyLM Chal-
lenge centered on curriculum learning based on
the three metrics of sentence complexity. While

3The model is available at https://huggingface.co/
akari000/roberta-dependency-max-4split
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the max-dependency demonstrated slightly higher
performance scores than the other metrics, it did
not outperform the baseline model without curricu-
lum learning on the BLiMP dataset. These findings
suggest the complexity of language acquisition and
the need to improve the experimental setting in fu-
ture research to enhance the models’ performance.
To enhance the validity of our research as a future
work, we need to use multiple random seeds to
train the model to verify how much those affect the
results.
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A Appendix

A.1 Difficulty Metrics
Number of constituents The number of con-
stituents was counted using the Berkley Neural
Parser (Kitaev and Klein, 2018) in spaCy. This
parser uses a self-attentive encoder in place of
LSTM along with a chart decoder. This parser
outputs POS tags and surface strings in brackets as
in (1), and we count the number of phrasal nodes
(e.g., NP) in the outputs. In this case, the number
of constituents is counted as 4.

(1) (S (NP (DT That)) (VP (MD might) (VP
(VB be) (ADJP (JJR better)))) (. .))

Max-dependency We count max-dependency us-
ing the dependency parser in spaCy, which is a
transition-based system by Honnibal and John-
son (2015) along with Nivre and Nilsson (2005)’s
pseudo-projective dependency transformation. We
count the number of dependent nodes from the root
and choose the maximum depth as the value of
max-dependency. For example, the dependency
tree in (2) is an example of parsing by the depen-
dency parser. In this case, the longest dependency
is either ‘told → happened → had’ or ‘told → hap-
pened → what’. Given that the root is counted as
0, the max-dependency of this sentence is 2.

(2)

Hans told him what had happened.

ROOT

nsubj dobj

ccomp

nsubj

aux

A.2 Hyperparameters
We arranged the number of instances that we input
into our models for all steps to 28,800k instances.
Other hyperparameters are shown in Table 3.

A.3 Detailed results
We show the details of the results for each task.
Table 4 – 6 shows the accuracies for all measures
in BLiMP and GLUE. Table 7 shows the F1 scors
for all measures in GLUE, where we use macro-F1,
and Table 8 shows the MCC scores for all measures
in MSGS.

Model

architecture roberta-base
vocab size 50,265
hidden size 768
heads 12
layers 12
dropout 0.1
layer norm eps 1e-12

Optimizer

algorithm AdamW
learning rates 3e-4
betas (0.9, 0.999)
weight decay 0.1
clip norm 0.0

Scheduler
type cosine
warmup updates 5000

Training
gradient accumulation 4
line by line true
NGPU 4

Table 3: Hyperparameters of the models
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Model Curr. n
Anaphor Agr.

Binding Control/Raising
D-N

Ellipsis
Agr. Structure Agr.

Baseline model - 86.09 73.68 67.84 68.03 95.57 73.44
+cleaning - 91.82 74.32 74.16 73.75 96.29 77.19

Ntoken ✓ 4 88.45 75.24 73.67 73.75 95.47 74.19
Nconst. ✓ 4 83.44 72.50 73.75 71.74 91.45 75.17

Max-dep.

✓ 3 90.85 73.82 73.76 72.45 95.62 79.68
✓ 4 91.21 74.98 73.49 71.06 95.48 78.58
✓ 6 87.68 71.59 73.79 68.43 93.86 76.21
✓ 8 91.26 72.25 73.43 67.21 94.55 74.54

Model Curr. n
Filler Irregular Island NPI

Quantifiers
S-V

Gap Forms Effects Licensing Agr.

Baseline model - 75.26 90.69 37.56 52.73 74.86 78.14
+cleaning - 76.39 90.99 44.96 56.71 73.98 82.48

Ntoken ✓ 4 74.93 89.57 38.08 55.10 72.41 81.43
Nconst. ✓ 4 77.65 74.66 39.57 61.75 65.10 76.50

Max-dep.

✓ 3 71.49 87.48 35.24 57.91 72.05 81.70
✓ 4 71.88 88.80 33.15 53.72 71.95 83.04
✓ 6 71.94 89.87 26.76 60.04 69.91 81.43
✓ 8 72.08 91.40 28.70 58.56 75.94 78.34

Table 4: Accuracies for all measures in BLiMP

Model Curr. n Hypernym
QA Congruence QA Congruence Subj.-Aux. Turn

(easy) (tricky) Inversion Taking

Baseline model - 49.53 60.94 43.03 84.24 65.36
+cleaning - 49.19 67.19 39.39 68.72 60.36

Ntoken ✓ 4 48.72 59.38 40.00 64.85 57.14
Nconst. ✓ 4 48.02 54.69 29.70 67.14 57.50

Max-dep.

✓ 3 48.84 68.75 36.97 63.09 58.21
✓ 4 46.98 65.63 39.39 63.77 57.50
✓ 6 47.91 67.19 43.03 63.53 60.36
✓ 8 51.40 60.94 37.58 63.38 63.21

Table 5: Accuracies for all measures in BLiMP supplement task

295



Model Curr. n CoLA SST-2 MRPC QQP MNLI MNLI-mm

Baseline model - 72.91 87.01 64.97 80.61 70.04 71.13
+cleaning - 76.84 88.39 69.49 82.32 72.19 74.06

Ntoken ✓ 4 76.15 87.60 64.41 82.31 72.14 71.79
Nconst. ✓ 4 73.01 87.01 66.67 82.74 70.41 72.14

Max-dep.

✓ 3 75.17 87.40 70.62 83.46 72.90 73.01
✓ 4 75.17 87.20 67.23 82.75 72.37 73.50
✓ 6 75.47 87.60 70.06 82.13 72.04 73.98
✓ 8 75.47 88.39 66.67 83.14 71.96 73.22

Model Curr. n QNLI RTE BoolQ MultiRC WSC

Baseline model - 69.25 51.52 65.15 60.35 61.45
+cleaning - 71.26 52.53 66.67 58.71 63.86

Ntoken ✓ 4 66.01 52.53 65.98 59.26 61.45
Nconst. ✓ 4 64.92 56.57 66.11 59.15 61.45

Max-dep.

✓ 3 71.00 48.48 66.11 60.46 61.45
✓ 4 70.25 52.53 65.98 61.34 61.45
✓ 6 70.73 46.46 64.04 59.04 61.45
✓ 8 70.21 57.58 66.39 59.26 61.45

Table 6: Accuracies for all measures in GLUE task

Model Curr. n CoLA SST-2 MRPC QQP MNLI MNLI-mm

Baseline model - 82.92 87.36 74.80 76.27 - -
+cleaning - 84.58 88.45 80.58 79.78 - -

Ntoken ✓ 4 83.77 87.52 76.92 79.10 - -
Nconst. ✓ 4 82.22 87.36 77.90 79.36 - -

Max-dep.

✓ 3 83.96 87.64 80.88 80.38 - -
✓ 4 83.77 87.67 78.68 79.96 - -
✓ 6 83.66 87.67 80.87 79.12 - -
✓ 8 83.85 88.54 78.07 79.93 - -

Model Curr. n QNLI RTE BoolQ MultiRC WSC

Baseline model - 72.89 45.45 74.65 57.31 20.00
+cleaning - 74.47 47.19 76.11 54.63 11.76

Ntoken ✓ 4 71.36 52.53 73.72 59.74 00.00
Nconst. ✓ 4 71.44 59.05 75.57 49.53 00.00

Max-dep.

✓ 3 74.82 45.16 75.52 57.18 00.00
✓ 4 74.46 53.47 74.11 60.99 00.00
✓ 6 72.16 51.38 74.61 55.26 00.00
✓ 8 72.51 55.32 75.92 51.31 00.00

Table 7: F1 scores for all measures in GLUE task
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Model Curr. n
CR LC MV RP SC

(Control) (Control) (Control) (Control) (Control)

Baseline model - 64.29 99.98 92.47 75.34 73.65
+cleaning - 76.34 100.00 99.64 99.91 27.19

Ntoken ✓ 4 66.43 100.00 96.66 90.15 53.17
Nconst. ✓ 4 64.76 100.00 97.11 96.48 49.27

Max-dep.

✓ 3 81.61 100.00 99.59 99.98 24.81
✓ 4 77.71 100.00 99.23 100.00 52.80
✓ 6 67.47 100.00 99.37 92.35 74.47
✓ 8 55.99 100.00 98.98 99.82 38.54

Model Curr. n CR_LC CR_TP MV_LC MV_RTP SC_LC SC_RP

Baseline model - -70.37 -69.93 -100.00 -81.71 -57.74 -32.27
+cleaning - 33.37 -65.21 -99.54 -79.93 -59.83 -56.48

Ntoken ✓ 4 -92.54 -44.48 -100.00 -89.32 -78.91 -62.35
Nconst. ✓ 4 -47.57 -98.28 -98.55 -85.35 -52.81 -55.07

Max-dep.

✓ 3 -39.21 -73.38 -100.00 -83.32 -48.79 -57.24
✓ 4 -32.06 -62.60 -100.00 -77.70 -59.96 -61.52
✓ 6 20.13 -65.46 -100.00 -86.16 -32.50 -64.47
✓ 8 -17.58 -63.82 -100.00 -99.03 -47.53 -61.69

Table 8: MCC scores for all measures in MSGS

Models Curr. n Perplexity

Baseline model – 14.58
+cleaning – 19.80

Ntoken ✓ 4 25.74
Nconst. ✓ 4 32.20

Max-dep.

✓ 3 24.42
✓ 4 27.35
✓ 6 38.61
✓ 8 40.16

Table 9: Perplexity for all measures
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Abstract

In this paper, we demonstrate the benefits of
jointly using Masked Latent Semantic Model-
ing (MLSM) and traditional Masked Language
Modeling (MLM) as the pre-training objective
of masked language models. The core idea
behind MLSM is to modify the pre-training
objective in a way which ensures that the lan-
guage models predict a (latent) semantic dis-
tribution for the masked tokens – instead of
outputting their exact identity as in MLM. Lan-
guage models pre-trained with MLSM behave
more favorable in terms of fine-tuneability to-
wards downstream tasks, however, their perfor-
mance lags behind MLM pre-trained language
models in evaluations that investigate the lin-
guistic capabilities. In an attempt to combine
the strengths of the two different pre-training
paradigms, we propose their joint use in a multi-
task learning setting. Our evaluations that we
performed using the BabyLM evaluation frame-
work (Warstadt et al., 2023) demonstrate the
synergistic effects of the joint use of the two
different kinds of pre-training objectives.

1 Introduction

Albeit being effective and easy to implement in
practice, the highly stochastic batch-based masked
language modeling (MLM) objective frequently
used for pre-training language models, such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), is not sample efficient and works
in a rather unnatural way from a human cogni-
tive perspective. This is caused by the fact that
traditional MLM expects the neural models to re-
cover the exact identity of the masked (sub)words
within an input sequence. In an attempt to over-
come the unnaturalness of MLM, (Berend, 2023)
has recently proposed masked latent semantic mod-
eling (MLSM), a sample efficient alternative to
traditional masked language modeling.

MLSM differs from MLM in that its objective
is to recover the semantic distribution of masked

ap
pl

e ... bu
s ...

cr
oi

ss
an

t ...
do

nk
ey ...

pe
ac

h ...
pe

ar ...
wa

lk
in

g ...
ze

br
a0.0

0.2

0.4

0.6

0.8

1.0

Ou
tp

ut
 p

ro
ba

bi
lit

y
(a) MLM objective

Pr
op

er
ty

 0

Pr
op

er
ty

 1

Pr
op

er
ty

 2

Pr
op

er
ty

 3

Pr
op

er
ty

 4

Pr
op

er
ty

 5

Pr
op

er
ty

 6

Pr
op

er
ty

 7

Pr
op

er
ty

 8

Pr
op

er
ty

 9

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tp

ut
 p

ro
ba

bi
lit

y

(b) MLSM objective

Figure 1: Comparisons of the probability distributions
used in MLM (a) and MLSM (b) pre-training.

(sub)tokens over an unsupervised inventory of la-
tent semantic properties — as opposed to that of a
one-hot distribution over the entire vocabulary of
the language model. This kind of pre-training is
arguably more plausible from a human cognitive
perspective, i.e., traditional MLM acts as if there
was a single proper substitute for a special [MASK]
token (the one that got masked), whereas from a
human perspective multiple viable tokens – tokens
that share some common semantic properties – can
substitute a masked token.

For instance, in the sentence ’She picked a deli-
cious [MASK].’, human subjects would agree that
any word referring to an edible concept is a viable
substitute for the last word of the sentence. In Fig-
ure 1, we illustrate the different kinds of outputs
that the MLM (Figure 1a) and the MLSM (Fig-
ure 1b) objectives could produce for some masked
token such as the one in the above example.

Even though (Berend, 2023) has demonstrated
the improved sample efficiency of MLSM, lan-
guage models pre-trained with it perform poorly
in evaluations that test the linguistic capabilities
of language models. In this paper, we extend the
results from (Berend, 2023) in several important
aspects. On the one hand, – instead of using a
medium-sized BERT model – we pre-train base-
sized DeBERTa (He et al., 2021) models, illustrat-
ing that the MLSM pre-training objective gener-
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alizes across different model types and sizes. On
the other hand, we investigate the added value of
a multi-task learning setting during pre-training,
in which the use of MLSM objective is coupled
with traditional MLM. Our empirical results show
vast improvements in the performance of the pre-
trained language models using the joint objective.
We release our source code1 and pre-trained models
that we created using the strict2 and strict-small3

datasets provided as part of the BabyLM shared
task (Warstadt et al., 2023).

2 Methodology

In this section, we introduce the pre-training train-
ing objectives that we conducted experiments with.

2.1 Standard Masked Language Modeling
During MLM pre-training, we expect the masked
language model to output a probability distribution
over its entire vocabulary and the objective is to
return one-hot distributions corresponding to the
actually masked token, similar to what is illustrated
in Figure 1a. The loss function for this kind of pre-
training is the categorical cross entropy.

2.2 Knowledge distillation (KD)
During knowledge distillation (KD), we expect the
language model to output such a probability distri-
bution over its entire vocabulary that tries to mimic
the output distribution of viable masked token sub-
stitutes, produced by another language model that
is (partially) pre-trained using the standard MLM
objective. This setting, hence, is basically a two
phase pre-training, in which the first phase is a reg-
ular pre-training, followed by a knowledge distilla-
tion phase, during which we calculate the Kullback-
Leibler divergence between the probability distri-
bution outputted by the language model from the
first phase and the model that is being trained.

In this two phase setting, we have the option to
reinitalize the model weights, or to make a copy
of the (partially) pre-trained model from the first
phase, and start KD pre-training with the weights of
the MLM pre-trained model in a transfer learning
setting. As our preliminary experiments suggested
that this latter form of continued pre-training is
more beneficial, we opted for that variant of KD.

1https://github.com/SzegedAI/MLSM
2https://huggingface.co/SzegedAI/

babylm-strict-mlsm
3https://huggingface.co/SzegedAI/

babylm-strict-small-mlsm

2.3 Masked Latent Semantic Modeling
We also utilize Masked Latent Semantic Modeling
(Berend, 2023). MLSM is based on an efficient
unsupervised method for determining the context-
sensitive latent semantic distribution of any token.
We use this as the target distribution that the lan-
guage model needs to recover during a pre-training
as illustrated in Figure 1b.

MLSM is similar to knowledge distillation in
that it also relies on a (partially) pre-trained model,
however, the mechanism in which it gets utilized
differs rather substantially. The partially pre-
trained model was not only used for providing the
training signal, but also for initializing the weights
of MLSM pre-trained models.

The MLSM approach is based on the observation
that (sub)tokens with overlapping semantic content
tend to have an overlapping set of non-zero coordi-
nates in their sparse contextualized representation,
which can be obtained by performing sparse cod-
ing on the hidden representations of transformer
architectures (Berend, 2020). We incorporate this
property of sparse token representations into pre-
training, i.e., we devise such distributions of latent
semantic properties of masked tokens that are based
on the sparsity structure of the sparse representa-
tions during the second phase of pre-training.

Suppose that the language model from the first
phase of pre-training produces hidden vectors
h(l) ∈ Rd by its lth layer for a particular token
within its context. We then construct a collection
of hidden representations as H(l) ∈ Rd×n, and,
as a preparatory step for the second phase of pre-
training, we jointly optimize for a dictionary matrix
D ∈ Rd×k and αH(l) ∈ Rd×n, such that

min
D,α

H(l)

1

2
∥H(l) −DαH(l)∥2F + λ∥αH(l)∥1,

where the norm of the columns vectors in D do not
exceed 1, and the sparse linear coefficients in α are
non-negative, with the regularization coefficient λ
controlling the sparsity level of α.

Once the dictionary matrix D is determined, we
can obtain sparse contextualized representation for
any token described by h(l) via solving

min
α∈Rk

≥0

1

2
∥h(l) −Dα∥22 + λ∥α∥1. (1)

As such, the determination of (1) can provide use-
ful signal during the second phase of pre-training,
i.e., by determining the sparse α representation for
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the token which was assigned h(l) by the language
model from the first phase of pre-training, we can
obtain its latent semantic profile via investigating
its non-zero coefficients. Due to the non-negativity
of α, it can be conveniently transformed into a
probability distribution of semantic profiles via ℓ1-
normalization, each coordinate corresponding to
a (latent) semantic property as illustrated in Fig-
ure 1b.

Similar to KD pre-training, MLSM also employs
the Kullback-Leibler divergence as its objective for
comparing the expected semantic distribution and
the model output. A major difference between
KD and MLSM though is that for the former, the
domain of the target distribution is the entire vocab-
ulary, whereas for MLSM, there are k many latent
semantic properties to consider.

2.4 Joint training objectives

We relied on standard MLM on its own as one
of our baseline approaches, as well as in conjunc-
tion with other pre-training objectives, in order to
assess its added value as a joint self-supervised
pre-training task. In the case MLM was used as an
additional pre-training task, the losses of the differ-
ent pre-training paradigms were added together and
backpropagation was performed over the joint loss.
When using MLM as an additional loss, we add
the +MLM suffix to the pre-training approach that
we augment it with. For instance, KD+MLM refers to
such a pre-trained model that we obtained by rely-
ing on the joint objective of knowledge distillation
and MLM.

3 Experiments and results

We performed our experimental evaluation based
on the BabyLM Challenge environment (Warstadt
et al., 2023), the goal of which is to provide a uni-
fied framework for pre-training language models
based on moderate amounts of texts, inspired by
children language acquisition (Saffran et al., 2001;
Gilkerson et al., 2017; Dupoux, 2018). The size
and the contents of the pre-training dataset released
as part of the BabyLM Challenge is guided by the
amount and types of texts children are typically
exposed to by reaching preadolescence.

That is, the size of the pre-training corpus is
limited in either 100 million (strict) or 10 mil-
lion (strict-small) tokens, and the released text is
mostly composed of transcribed speech. The con-
crete subcorpora of the challenge are the CHILDES

(Macwhinney, 2000), dialogue portion of the
British National Corpus (BNC), Children’s Book
Test (cbt; Hill et al., 2016), Children’s Stories
Text Corpus, Standardized Project Gutenberg Cor-
pus (Gerlach and Font-Clos, 2020), OpenSubti-
tles (Lison and Tiedemann, 2016), QCRI Educa-
tional Domain Corpus (qed; (Abdelali et al., 2014)),
Wikipedia, Simple Wikipedia and the Switchboard
Dialog Act Corpus (Stolcke et al., 2000).

The evaluation framework contains a collection
of supervised fine-tuning and zero-shot evaluations
for assessing the utility and the linguistic capabili-
ties of the pre-trained language models.

3.1 Training a tokenizer
As the goal of the BabyLM Challenge is to create
an environment in which language models are not
exposed to colossal amounts of pre-training text,
all components of the trained language models con-
formed to the standardized pre-training data. To
this end, we first trained a unigram tokenizer (Kudo,
2018) over the corresponding BabyLM strict/strict-
small dataset, that comprised of roughly 100/10
million (whitespace separated) tokens. The vocab-
ulary size we employed is 25000.

As increased vocabulary size can potentially
yield better downstream performance (e.g., one
of the potential reasons why RoBERTa (Liu et al.,
2019) often performs better than BERT (Devlin
et al., 2019) is due to its increased vocabulary size),
we also attempted to train a unigram tokenizer with
50000 subtokens as well. Our preliminary results,
however, showed vastly degraded performance for
the increased vocabulary size.

For this reason, we continued our experiments
with the tokenizers with 25000 cased entries, which
was likely more beneficial compared to the one
with twice the number of subtokens, as the training
corpus itself was intentionally limited in its size,
and the increased vocabulary was too large for the
relatively small number of unique tokens in the
pre-training corpora.

3.2 Pre-training
We used almost identical hyperparameters to
(Berend, 2023). That is, we employed a batch size
of 128 and a gradient accumulation over 8 batches,
yielding an effective batch size of 1024. The learn-
ing rate for pre-training was set to 1e−4 with linear
scheduling.

We employed the kind of two-phase pre-training
introduced earlier in Section 2, i.e., we first pre-
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KD KD+MLM MLM MLSM MLSM+MLM

anaphor agreement 0.801 0.893 0.801 0.476 0.718
argument structure 0.760 0.797 0.779 0.700 0.762
binding 0.655 0.645 0.660 0.680 0.654
control raising 0.763 0.771 0.766 0.706 0.770
determiner noun agreement 0.969 0.969 0.969 0.847 0.969
ellipsis 0.908 0.936 0.924 0.690 0.930
filler gap 0.826 0.850 0.850 0.714 0.850
hypernym 0.492 0.510 0.480 0.503 0.480
irregular forms 0.850 0.907 0.949 0.794 0.948
island effects 0.669 0.754 0.782 0.629 0.773
npi licensing 0.732 0.781 0.759 0.628 0.768
qa congruence easy 0.625 0.672 0.688 0.438 0.688
qa congruence tricky 0.358 0.394 0.467 0.442 0.424
quantifiers 0.733 0.752 0.768 0.484 0.754
subject aux inversion 0.929 0.949 0.951 0.808 0.951
subject verb agreement 0.893 0.904 0.893 0.764 0.903
turn taking 0.557 0.604 0.643 0.571 0.611

Average 0.736 0.770 0.772 0.640 0.762

(a) strict

KD+MLM MLM MLSM+MLM

0.880 0.829 0.831
0.765 0.739 0.737
0.684 0.661 0.676
0.737 0.728 0.757
0.948 0.933 0.939
0.830 0.819 0.827
0.781 0.768 0.777
0.477 0.495 0.479
0.910 0.896 0.902
0.630 0.650 0.685
0.719 0.712 0.743
0.734 0.688 0.703
0.370 0.364 0.333
0.706 0.728 0.733
0.863 0.827 0.830
0.852 0.816 0.825
0.525 0.521 0.521

0.730 0.716 0.724

(b) strict-small

Table 1: BLiMP results for the models pre-trained on the strict (a) and the strict-small (b) corpora.

trained a model using standard MLM, then used
this model for initializing the second-phase model,
the pre-training objective of which can poten-
tially differ from MLM. We performed 20,000 and
80,000 update steps during the first and second
phases, respectively.

As such, we had a total of 100,000 update steps,
which together with the fact that we had an effec-
tive batch size of 1024, means that we considered
approximately 100,000,000 sequences during pre-
training. This resulted in 17 and 166 epochs when
using the strict and the strict-small pre-training cor-
pora, respectively. We performed pre-training on
NVIDIA A6000 or V100 GPUs (depending on their
availability). One pre-training took approximately
5 days to finish.

For the strict scenario, we report results when
using the different pre-training paradigms on their
own and in conjunction with MLM. As our ex-
periments revealed a superior performance for the
joint pre-training with MLM, we only consider
those models that jointly use one of the pre-training
paradigms and MLM during the second phase of
pre-training for the strict-small case.

When applying MLSM, we set the number of
latent semantic properties to one tenth of the size
of the vocabulary, i.e., we had k = 2500. For the
joint objectives (KL+MLM and MLSM+MLM),
we weighted the two loss terms equally by simply
adding the two loss terms together. Investigating
different weighting of the MLM term could have

been an interesting, but computationally demand-
ing ablation experiment to conduct.

3.3 Quantitative evaluation

We next report our experimental results towards
zero-shot (§3.3.1) and fine-tuning (§3.3.2) evalua-
tion, using the BabyLM evaluation framework.4

3.3.1 Zero-shot results on BLiMP
The BabyLM framework uses the BLiMP dataset
(Warstadt et al., 2020a) for assessing the linguistic
capabilities of language models. BLiMP contains
English sentence pairs that differ in their linguistic
acceptability regarding a variety of grammatical
concepts and the task is to select the correct sen-
tence based on the pre-trained model.

To decide which sentence is linguistically
more acceptable, the pseudo-log-likelihood (PLL;
Salazar et al., 2020) scores of the sentences are
calculated, and the sentence with the higher PLL
is considered grammatically acceptable. The
BabyLM evaluation framework focuses on 17
grammatical phenomena, the results of which are
included in Table 1.

Table 1a reveals that the MLSM pre-trained
model performs poorly on BLiMP. This is not sur-
prising, as PLL is based on the predictions over the
vocabulary of the model, however, MLSM totally
neglect the kind of objective that is related to the
vocabulary of the model, making the PLL values

4https://github.com/babylm/
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Figure 2: Pairwise comparison of BLiMP task per-
formances between the MLSM (x-axis) and the
MLSM+MLM (y-axis) pre-trained models.

calculated by MLSM-only models less useful for
approximating linguistic acceptability.

The model pre-trained with the joint MLSM ob-
jective (MLSM+MLM), however, performs 0.122
points better on average (0.640→0.762), nearly as
good as the model pre-trained with MLM alone
(0.772). The additional use of MLM also improves
the BLiMP performance of knowledge distillation
by 0.034 points on average (0.736→0.770).

Table 1b reveals that when using the reduced
amount of strict-small pre-training corpus, the
MLSM+MLM pre-trained model in fact outper-
forms the purely MLM pre-trained model variant.

We depict the added value of using the joint
MLSM+MLM objective over the MLSM only
objective when conducting pre-training on the
100 million token strict corpus in Figure 2. Each of
the 17 sub-task is visualized by a point in the figure,
with its x and y coordinates displaying the perfor-
mance of the pre-trained model that was based on
the MLSM and MLSM+MLM objectives. The
dashed line indicates chance performance, and the
diagonal line helps in identifying the added value
of joint pre-training, i.e., the further away a point
above the diagonal line is, the bigger positive im-
pact the joint pre-training had towards the evalua-
tion on the subtask represented by the given point.

During the second phase of pre-training, we eval-
uated intermediate checkpoints. Figure 3a and Fig-
ure 3b illustrates the average BLiMP performance
of the models pre-trained with varying strategies
and at different readiness levels for using the strict
and the strict-small pre-training corpora, respec-
tively. The x-axis indicates the number of addi-
tional update steps performed during the second
phase of the pre-training.
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Figure 3: Average BLiMP performances as a function
of the number of update steps performed in the second
phase of pre-training.

The MLSM curve in Figure 3a shows that
the masked language modeling capabilities of an
MLSM-only pre-trained model fade out quickly, as
the average BLiMP performance drops drastically
already at the first investigated checkpoint, i.e., at
16,000 additional MLSM update steps performed
on a model that had gone through 20,000 steps of
first phase MLM pre-training.

Figure 3a further reveals that there is a
large performance gap between the MLSM and
MLSM+MLM pre-trained models at every check-
point, with the performance of MLSM+MLM be-
ing nearly as good or better than that of the purely
MLM pre-trained model. As the size of the pre-
training corpus gets reduced from 100 million to
10 million tokens, the average BLiMP performance
of the alternatively pre-trained models becomes fa-
vorable compared to the MLM-only models as it is
illustrated in Figure 3b.

3.3.2 Fine-tuning results
The BabyLM evaluation framework also includes
supervised learning tasks from the GLUE (Wang
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KD KD+MLM MLM MLSM MLSM+MLM

BoolQ 0.6943 0.6885 0.6936 0.6857 0.6826
CoLA 0.4551 0.4687 0.4962 0.4758 0.4854
MNLI 0.7620 0.7669 0.7695 0.7558 0.7704
MNLI-mm 0.7641 0.7761 0.7779 0.7687 0.7808
MRPC 0.8263 0.8406 0.8496 0.8325 0.8339
MultiRC 0.5578 0.6114 0.6238 0.6309 0.5983
QNLI 0.8350 0.8409 0.8447 0.8427 0.8438
QQP 0.8366 0.8451 0.8492 0.8421 0.8428
RTE 0.5985 0.6010 0.6010 0.6010 0.5808
SST2 0.8907 0.8922 0.8927 0.8952 0.8907
WSC 0.6024 0.5964 0.5843 0.6024 0.6054

(a) strict

KD+MLM MLM MLSM+MLM

0.6843 0.6729 0.6670
0.3889 0.3794 0.4171
0.7503 0.7426 0.7542
0.7506 0.7527 0.7535
0.7645 0.7766 0.7653
0.580 0.6076 0.5676
0.8205 0.8261 0.8237
0.8343 0.8346 0.8351
0.5404 0.5556 0.5202
0.8903 0.8937 0.8917
0.5813 0.5964 0.6084

(b) strict-small

Table 2: (Super)GLUE results for the models pre-trained on the strict (a) and the strict-small (b) corpora. Metrics
are reported as accuracy, except for CoLA (Matthew Correlation Coefficient), MRPC (F1) and QQP (F1).

et al., 2019b) and SuperGLUE (Wang et al.,
2019a) benchmarks and selected subtasks of MSGS
(Mixed Signals Generalization Set; Warstadt et al.,
2020b). The original datasets are filtered to those
cases that include words that are present at least
twice in the 10 million token strict-small training
corpus. Unless stated otherwise, we report perfor-
mance metrics in the form of accuracy.

We made no modifications in the hyperparam-
eters of the official evaluation framework, apart
from reducing the batch size from 64 to 32, which
was necessary for avoiding out-of-memory error on
the NVIDIA 2080Ti GPUs that accommodated our
fine-tuning experiments. In order to account for the
high variability in fine-tuning results, we repeated
all experiments involving fine-tuning four times
with different random seeds and report the average
of the scores that we obtained. Due to the com-
putational need of fine-tuning, we only evaluated
the intermediate checkpoints at the 20%, 60% and
100% readiness levels, i.e., after 16000, 48000 and
80000 additional second phase pre-training steps.

(Super)GLUE Vocabulary-filtered versions of
11 different subtasks from (Super)GLUE are in-
cluded in the BabyLM evaluation environment.
The individual results obtained by the differently
pre-trained DeBERTa models are listed in Table 2.
Fine-tuning MLSM+MLM models again yielded
better results compared to the MLSM models, how-
ever, the performance gap is not that pronounced
as it was for BLiMP. The average fine-tuning per-
formance of MLSM+MLM pre-trained model is
on par with the one that got pre-trained with tra-
ditional MLM considering the models pre-trained

over the 100 million corpus.
Figure 4 displays the fine-tuning performance

of the intermediate model checkpoints of second
phase pre-training. Figure 4a reveals that when
using the 100 million token training corpus, the
intermediate checkpoints of the MLSM+MLM
and MLM models have similar fine-tuning perfor-
mances averaged over the (Super)GLUE tasks, with
a slight advantage towards MLSM+MLM.

For the smaller training corpus in Figure 4b, the
advantage of MLSM+MLM pre-trained model is
more notable, confirming that jointly using MLSM
with MLM offers better sample efficiency.

MSGS MSGS (Warstadt et al., 2020b) is a sen-
tence classification challenge set that contains train-
ing instances towards different linguistic categories
and surface form features of sentences. Control
tasks are ’regular’ training and evaluation splits in
the sense that there is no purposefully encoded spu-
rious correlation in the training dataset that is not
present in the test set. The challenge tasks, how-
ever, are designed with the intention of conflating
two properties with each other in the training set
in a way that the given relation do not hold for
the test instances. This way, one can measure to
what extent the model was able to learn and rely on
the actual target contept to be learned as opposed
to the deliberately included surface level spruious
correlation in the training data.

Table 3 contains the results for the control tasks
as well as for the challenging cases with the pur-
posefully malignant training data in which a surface
form characteristic goes along with the linguistic
properties to be tested. The different kinds of test
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KD KD+MLM MLM MLSM MLSM+MLM

CR (control) 0.7521 0.7609 0.7739 0.7842 0.7940
LC (control) 1.0 1.0 1.0 1.0 1.0
MV (control) 0.9999 0.9994 0.9997 0.9996 0.9995
RTP (control) 0.6905 0.8738 0.9117 0.9344 0.8785
SC (control) 0.7603 0.7786 0.7940 0.7130 0.7794

CR_LC -0.4572 -0.6195 -0.6733 -0.6766 -0.5380
CR_RTP -0.7686 -0.6571 -0.7805 -0.6051 -0.7613
MV_LC -0.5329 -0.3928 -0.7954 -0.8370 -0.8558
MV_RTP -0.0097 0.0729 -0.2217 -0.1047 -0.0385
SC_LC -0.2849 -0.2673 -0.3011 -0.3087 -0.3223
SC_RP -0.5758 -0.5601 -0.5039 -0.5346 -0.5173

(a) strict

KD+MLM MLM MLSM+MLM

0.6311 0.6872 0.7351
1.0 1.0 1.0

0.9988 0.9956 0.9985
0.8579 0.9857 0.8963
0.6657 0.6829 0.7845

-0.2261 -0.4080 -0.0729
-0.6850 -0.8230 -0.6516
-0.9055 -0.9522 -0.9465
-0.2882 -0.5484 -0.3947
-0.0300 -0.2715 -0.1664
-0.5290 -0.5681 -0.5275

(b) strict-small

Table 3: MSGS results for the models pre-trained on the strict (a) and the strict-small (b) corpora.
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(b) Models pre-trained using the 10M token strict-small corpus

Figure 4: Average SuperGLUE performances as a func-
tion of the number of update steps performed in the
second phase of pre-training.

cases are separated by an underscore. The five lin-
guistic categories (and their combined challenge
tasks) in the BabyLM evaluation framework are
the control raising (CR), lexical content (LC), main
verb (MV), relative token position (RTP) and SC
(syntactic category) classes. The challenge sets are
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(b) Models pre-trained using the 10M token strict-small corpus

Figure 5: Average MSGS performances expressed in
Matthew Correlation Coefficient as a function of the
number of update steps performed in the second phase
of pre-training.

referenced as X_Y, where both X and Y corresponds
to one of the above categories and they indicate the
two categories that are purposefully conflated in
the training, but not in the test set.

The performance of the differently pre-trained
models on MSGS is similar to the previously re-

304



1.0 0.5 0.0 0.5 1.0
MLM

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

M
LS

M
+M

LM

SC

SC_LC

MV

MV_LC

MV_RTP

RP

CR_RTP

CR

SC_RPCR_LC

LC

(a) Models pre-trained using the 100M token strict corpus

1.00 0.75 0.50 0.250.00 0.25 0.50 0.75 1.00
MLM

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

M
LS

M
+M

LM

SC

SC_LC

MV

MV_LC

MV_RTP

RP

CR_RTP

CR

SC_RP

CR_LC

LC

(b) Models pre-trained using the 10M token strict-small corpus

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
KD+MLM

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

M
LS

M
+M

LM

SC

SC_LC

MV

MV_LC

MV_RTP

RP

CR_RTP

CR

SC_RPCR_LC

LC

(c) Models pre-trained using the 100M token strict corpus

1.00 0.75 0.50 0.250.00 0.25 0.50 0.75 1.00
KD+MLM

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

M
LS

M
+M

LM

SC

SC_LC

MV

MV_LC

MV_RTP

RP

CR_RTP

CR

SC_RP

CR_LC

LC

(d) Models pre-trained using the 10M token strict-small corpus

Figure 6: Pairwise performance comparison of best performing fully pre-trained models. MLSM+MLM per-
formances are along the y-axis, the x-axis contains the performance of an alternatively pre-trained model. The
fine-tuning performance on the unambiguous control tasks and the challenge tasks are denoted by squares and
circles, respectively. For the task located above the main diagonal line, MLSM+MLM pre-trained models delivered
better fine-tuning performance than the alternatively pre-trained model. The error bars correspond to the standard
deviations of the Matthew Correlation Coefficient evaluation scores calculated over four experiments.

ported BLiMP and (Super)GLUE evaluations, i.e.,
MLSM+MLM pre-trained models perform well
not only at the end of pre-training, but also across
all the intermediate checkpoints as illustrated by
Figure 5. The added value of MLSM+MLM pre-
training is the most pronounced when the number
of additional update steps is low. For the MSGS
evaluation, we can see the largest average perfor-
mance gain of MLSM+MLM when pre-training
was conducted over the 10 million token strict-
small training corpus (Figure 5b). The performance
gains are already apparent (and actually the most
pronounced) after performing only 16000 addi-
tional training steps.

Figure 6 contains scatter plots in which the
MSGS fine-tuning performance of the best per-
forming pre-trained models can be assessed on the
individual tasks. The further a marker above the

dashed diagonal line, the larger added value the use
of the MLSM+MLM pre-trained model had over an
alternatively pre-trained model for the given task.
In case a point is located under the main diagonal,
MLSM+MLM pre-trained model performed worse
than a differently pre-trained model. The majority
of the points are located above the diagonal line
in each subplot, often by a large margin, confirm-
ing the additional benefits of jointly pre-training
with masked latent semantic modeling and masked
language modeling.

4 Conclusions

Even though MLSM is a cognitively more appeal-
ing pre-training objective than MLM, models ex-
clusively pre-trained with MLSM fail at assigning
reliable pseudo-log-likelihood scores to sequences
(§3.3.1). To this end, we experimented with the
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coupled use of MLSM loss and the traditional
MLM objective.

Our empirical results suggest that the joint use
of masked latent semantic modeling and traditional
masked language modeling can boost the perfor-
mance of the pre-trained language models. This is
especially the case for tasks that directly assess the
linguistic capabilities of the pre-trained models that
were obtained by relying on limited corpus size, i.e.,
the 10 million token strict-small dataset. Our abla-
tion experiments also revealed that the advantages
of MLSM pre-training are more pronounced during
the earlier phase of pre-training.
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Abstract

We present Lil-Bevo, our submission to the
BabyLM Challenge. We pretrained our masked
language models with three ingredients: an ini-
tial pretraining with music data, training on
shorter sequences before training on longer
ones, and masking specific tokens to target
some of the BLiMP subtasks. Overall, our base-
line models performed above chance, but far
below the performance levels of larger LLMs
trained on more data. We found that training on
short sequences performed better than training
on longer sequences. Pretraining on music may
help performance marginally, but, if so, the
effect seems small. Our targeted Masked Lan-
guage Modeling augmentation did not seem to
improve model performance in general, but did
seem to help on some of the specific BLiMP
tasks that we were targeting (e.g., Negative Po-
larity Items). Training performant LLMs on
small amounts of data is a difficult but poten-
tially informative task. While some of our tech-
niques showed some promise, more work is
needed to explore whether they can improve
performance more than the modest gains here.
Our code and models are available online.1.

1 Introduction

Large Language Models (LLMs) generate com-
plex and largely grammatical strings and display
impressive performance with structures tradition-
ally thought to require abstract and hierarchical
syntax (Linzen et al., 2016; Linzen and Baroni,
2021; Wilcox et al., 2022; Futrell and Levy, 2019).
They have achieved human-like performance at a
wide range of natural language tasks (Bubeck et al.,
2023; Frank, 2023), particularly those having to do
with linguistic form (Mahowald et al., 2023). This
state of affairs has led to claims that such models
should be taken seriously as cognitive models of
human language (Piantadosi, 2023; Baroni, 2022;

1https://github.com/venkatasg/Lil-Bevo

Frank, 2023), in line with claims from the neuro-
science literature to “take mechanistic abstraction
seriously” (Cao and Yamins, 2021).

One reason that has been posited not to take
LLMs seriously as cognitive models, though, is the
immense amount of data they are trained on rela-
tive to what a human child is exposed to (Warstadt
and Bowman, 2022; van Schijndel et al., 2019).
Thus, it is possible that models memorize more
than humans do and, relative to humans, over-rely
on statistical heuristics and memorized chunks of
language (Bender et al., 2021).

On the other hand, the quality of data that LLMs
get during pretraining is, in many ways, much
worse than what human learners get. Children get
richly structured, interactive, multimodal input, tai-
lored to their specific interests and needs. A baby
might reach for a cup of water and be told “Wa-
ter. You want some water?” Given that babies are
known to conduct repeated experiments to learn
about the world (Gopnik et al., 1999), the baby
might try this again and again until mastering the
concept of what water is. An LLM, meanwhile,
might begin learning language by being asked to
predict random tokens in the Wikipedia article on
quantum mechanics.

In this paper, we describe our experiments
with Lil-Bevo, a small language model trained
on human-scale data for the BabyLM competition
(Warstadt et al., 2023). The goal of the compe-
tition is to train a performant LM on a human-
scale amount of data: 10M words for the small
track, 100M for the larger track. We submitted
to both strict tracks — however, we were notified
through the meta-review that our models qualify
only for the loose track due to the usage of addi-
tional non-linguistic data (music from the MAE-
STRO dataset (Hawthorne et al., 2019)). The evalu-
ation is on a set of natural language tasks including
grammatical acceptability judgments via minimal
pairs in the BLiMP benchmark (Warstadt et al.,
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2020a), language understanding tasks in Super-
GLUE (Wang et al., 2019), and MSGS (the Mixed
Signals Generalization Set) (Warstadt et al., 2020b)

We started with a baseline DeBERTa model,
trained from scratch on BabyLM data using a cus-
tom unigram SentencePiece tokenizer (Kudo and
Richardson, 2018). Our strategy was not focused
on the architecture, but on ways in which we could
adjust the training regime to improve performance
above the baseline.

Specifically, our strategy targets 3 ways in which
typical LLM training regimes lead to lower-quality
data than humans have access to. Here, we describe
those strategies and their motivation. We give de-
tailed methods in Section 2 and then present results,
including a number of ablation studies that attempt
to partition out what strategies were successful.

We treated these studies as proof-of-concept and
did not exhaustively test these strategies. Thus, we
think that there is still room for improvement.

Training on Short Sequences Unlike LLMs, ba-
bies do not start language by learning long com-
plicated sequences all at once. Using databases
of child and child-directed speech, it has been
shown that there is some alignment of caretakers to
the child’s level in terms of linguistic complexity
such that caregivers talk to younger children using
shorter utterances and longer utterances as they de-
velop (Schwab and Lew-Williams, 2016; Kunert
et al., 2011). To that end, Mueller and Linzen
(2023) showed that training on simpler data first
could induce a better hierarchical bias for learning
language. We specifically take inspiration from
Press et al. (2021) who showed that LLMs learn
better when trained on shorter sequences before
being trained on longer sequences.

Training on Music Before Training on Language
Unlike LLMs, babies are exposed to a wide range
of input besides just text. Before and while learning
language, they are also learning to map the visual
world, to navigate the physical world, to process
non-linguistic auditory stimuli, and to engage in
a wide variety of cognitive operations. Thus, it is
commonly observed that some of the machinery
thought to be language-specific (e.g., hierarchical
structure) might be induced in pre-linguistic in-
fants through exposure to other kinds of stimuli.
Papadimitriou and Jurafsky (2020) use this idea to
show that training language models on structured
data (e.g., music) can help models learn faster. We

use a similar idea, with initial pretraining on a mix
of music (piano performances) and text.

Targeted Masked Language Model The role
of child-directed speech in human language learn-
ing is controversial (see Consortium and et. al.,
2020, for discussion and a large-scale replication of
infant-directed speech preferences). It is generally
agreed that parents do not correct a child every time
they make a grammatical error (Marcus, 1993), but
there is also evidence that social feedback acts as a
signal (Tomasello, 1992) and that parents structure
input to be helpful (Weisleder and Fernald, 2013).
When a child says something wrong, a parent might
“recast” the utterance or highlight grammatical fea-
tures that children are struggling with (Nicholas
et al., 2001). Inspired by this idea, targeting the
BLiMP (Warstadt et al., 2020a) syntactic evalua-
tions as well as more general tasks, we trained with
a targeted MLM objective.

We considered some variations of the idea of
learning with some external feedback that distin-
guishes correct tokens against corrupted/noisy re-
placements. For example, ELECTRA (Clark et al.,
2020) consists in learning to detect tokens which
have been replaced by an auxiliary model. Un-
fortunately, replaced token detection approaches
such as ELECTRA (Clark et al., 2020) suffer from
an inability to learn probability distributions over
the entire vocabulary, and so cannot be used for
(pseudo)-likelihood scoring (Salazar et al., 2020).
Another related approach is Corrective Language
Modeling (CLM) (Bajaj et al., 2022), in which the
model is trained to correctly replace corrupted to-
kens; however, it is not clear how to best use these
models for scoring sentences in BLiMP.2

Given the problems outlined above, we decided
to use masked language modeling (MLM) with
targeted masks. The motivation is to make it eas-
ier for the model to learn syntactic phenomena
that co-occur frequently with certain words. Other
strategies for selecting masks were used in Sadeq
et al. (2022); Gu et al. (2020); unlike these works,
we mask specific words which are essential to the
phenomena in BLiMP. For example, to target the
filler-gap dependency subtask in BLiMP, we go
through the original data set and mask every oc-
currence of “that” and “what” in the corpus. By

2Initial experiments with CLM performed worse than
masked language modeling (MLM); we believe this is due to
a mismatch between training and how the pseudo-likelihood
scoring is done via masking.
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focusing on these words, we anticipate that the
model will more quickly learn to score “I know
what you did last summer.” more highly than “I
know that you did last summer.”

2 Experiments & Methods

We report all experiments and results for Lil-Bevo
in this paper, as it enabled quick prototyping, and
because we find similar trends with our larger
model Lil-Bevo-X. Lil-Bevo-X differs from Lil-
Bevo in the model used (deberta-base rather
than deberta-small), training data (100M versus
10M), and vocabulary size. Final results for the
Lil-Bevo-X are available on our online repository.

Tokenizer We trained a unigram SentencePiece
tokenizer (Kudo and Richardson, 2018) from
scratch on the BabyLM data combined with the
MAESTRO (Hawthorne et al., 2019) dataset (de-
scribed in detail below) using the sentencepiece
library. Specifically, we trained a tokenizer with a
vocabulary size of 16,640 and 33,280 for Lil-Bevo
and Lil-Bevo-X respectively. <mask> and <cls>
were included as control symbols in the vocabulary,
along with an end-of-sequence token (</s>), a pad
token (<pad>) and an unknown token (<unk>).

Model We chose to use an encoder-based lan-
guage model, specifically DeBERTa since (a)
encoder-based language models are known to
capture many syntactic and semantic features in
language when pretrained on relatively modest
amounts of data (Zhang et al., 2021), (b) there
were a wide variety of off-the-shelf DeBERTa ar-
chitectures available on HuggingFace for easy pro-
totyping and use.

We trained the model in three phrases: (1) pre-
training on a combination of music and text for 5
epochs with a sequence length of 64 tokens, (2)
continuing pretraining on text for 50 epochs with a
sequence length of 128 tokens, and (3) finally pre-
training on text using targeted MLM for 2 epochs
with a sequence length of 512 tokens. Each of these
is described in more detail below.

1. Music Pretraining Papadimitriou and Juraf-
sky (2020) find that pretraining on languages other
than the target language — including music and
code — lead to lower perplexities on target lan-
guage as compared to random distributions of to-
kens, or even Zipfian token distributions. Inspired
by this idea, we explored whether supplementing

the 10M linguistic tokens with non-linguistic musi-
cal tokens from the MAESTRO dataset (Hawthorne
et al., 2019) could lead to noticeable improvements
in LM learning. The impetus behind pretraining on
music is two-fold: (a) additional training data that
nevertheless has structural biases that could help
the model learn structural biases found in language
(b) the model reaching a stable region in parame-
ter space that enables it to learn desired linguistic
properties much faster and/or better.

After several experiments, we found that pre-
training on the combined strict-small and the en-
tire MAESTRO dataset for 5 epochs provided the
best results. We use V3.0.0 of the MAESTRO
dataset, which contains 85M tokens using our cus-
tom trained tokenizer. The dataset consists of 200
hours of MIDI piano recordings, which we convert
to text and tokenize with the shared unigram Sen-
tencePiece tokenizer. Our textual representation of
MIDI consists of a chronological sequence of codes
describing the channel and key of each note onset
and release event (e.g. c0n71 for ‘note on, channel
0, key 71’) delimited by spaces and optional codes
for time between events (e.g. t18 for 18 MIDI
ticks). We chose a short sequence length of 64
tokens for pretraining inspired by the Shortformer,
which we now explain in further detail.

2. Shortformer Press et al. (2021) introduce a
few innovations to the training regime. In particu-
lar, we focused on their idea of training for shorter
sequence lengths before moving onto longer ones.
We used a similar training regime to (Press et al.,
2021), where we started with a training sequence
length of 128 for 50 epochs, before moving to a
training sequence length of 512. We initially ex-
perimented with training on longer subsequence
length for 150 epochs as in Press et al. (2021),
but discovered lower evaluation results on most
BLiMP categories (albeit with some improvements
on some categories like Island Effects and Quanti-
fiers). Results on BLiMP (Warstadt et al., 2020a)
and SuperGLUE (Wang et al., 2019) saturated with
as little as 2 epochs — we believe this is because of
the much smaller size of the dataset as compared
to that in (Press et al., 2021), leading to overfitting
on the dataset.

3. Targeted MLM We specifically masked out
words which were essential to some of the BLIMP
subtasks. Some of these, such as quantifier and
negation words, are also important to some of the
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Category Total Avg

S-V agreement 124197 4.3
Animacy 100206 3.5
Quantifiers 89926 3.1
Modal verbs 58604 2.0
NPI licensing 47484 1.6
Filler gap 34988 1.2
D-N agreement 28675 1.0
Adverbs 19332 0.7
Anaphor agreement 3659 0.1

Table 1: Total number of masks and average number
of masks per sample for each targeted category (S-V
agreement stands for subject-verb agreement, and D-N
agreement stands for determiner-noun agreement).

SuperGLUE tasks (e.g., textual entailment.) For
anaphor agreement, we masked the words “him-
self”, “herself”, “itself”, “themselves”. For NPI
licensing the masked words included “not”, “of-
ten”, and “probably”3. The list of words which
were masked in each category are shown in Table 3
in Appendix A. We used a sequence length of 512
tokens, and additionally masked other random to-
kens in order to mask a total of 15% of tokens per
sample.

The total number of words masked for each cat-
egory across the 10M train set are given in Table 1.

The Animacy class consists of animate nouns,
and was used to target the minimal pairs in the Ar-
gument Structure category with animate/inanimate
subjects (“Amanda was respected by some wait-
resses.” vs “Amanda was respected by some pic-
ture”). To obtain a list of animate nouns we used
all the lemmas of (direct and indirect) hyponym
synsets of person.n.01 in WordNet.

In addition to targeting the BLiMP categories
of S-V agreement, quantifiers, NPI licensing,
filler gap, argument structure, DN- agreement and
anaphor agreement, we also included some modal
verbs (e.g., can, might, shall) and certain adverbs
(e.g., never, maybe, always, perhaps), since these
are important for textual entailment.

2.1 Ablations

We compare Lil-Bevo with ablations to explore
how important our three strategies are for final per-
formance. Specifically, we compare Lil-Bevo with

3Note that the masked words are not necessarily NPI items
themselves, but rather that they are targets of single word
substitutions in NPI items.

the following:

Long-only Train DeBERTa with a sequence
length of 512 tokens for 57 epochs.

Short-only Train DeBERTa with a sequence
length of 128 tokens for 57 epochs.

Short+target Train DeBERTa with a sequence
length of 128 tokens for 55 epochs. Then train with
targeted MLM for 2 epochs.

Music+short Train DeBERTa on music and text
for 5 epochs with a sequence length of 64 tokens.
Then continue training on text with a sequence
length of 128 tokens for 52 epochs.

Music+short+long Train DeBERTa on music
and text for 5 epochs with a sequence length of
64 tokens. Then continue training on text with a
sequence length of 128 tokens for 50 epochs, fol-
lowed by training with a sequence length of 512
tokens for 2 epochs.

Lil-Bevo (music+short±target) This is the same
as Music+short+long except that the final stage of
pretraining for 2 epochs uses targeted MLM.

Implementation We train all our models using
the Trainer API, part of the huggingface python
package. Models are trained using 4 Nvidia A40
GPUs, with the maximum possible batch size that
was permissible with each experiment. Apart from
setting initial learning rate to 6e-4, weight decay
to 0.1 and a warmup ratio to 0.0001, we use de-
fault training arguments in the API (except for the
final targeted MLM/long stage, where we used all
default parameters). Models are evaluated on the
validation split of the BabyLM dataset. We did not
use the test split of the BabyLM data. We release
all of the above pretrained models online on the
Huggingface Hub.

3 Results

Results for BLiMP, MSGS, SuperGLUE and the
supplementary tasks are shown in Figure 1. The
results are color-coded to represent each model’s
differences from the Short-only ablation. We high-
light some results below.

Does pretraining on music help? Comparing
short-only with music+short, we see that pretrain-
ing on music helps slightly on 8 of the 12 BLiMP
subtasks, and on two of the 5 supplement tasks.
However, it suffers from a large gap of 9.1 points
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Figure 1: Results for each model, for each task. The color reflects the difference in score between the given model
and the RoBERTa baseline results released by the organizers of BabyLM.
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on QA Congruence tricky. On SuperGLUE, mu-
sic+short outperforms short-only on 6 of the 11
subtasks, and only slightly. Thus, we do not think
there is strong evidence that pretraining on music
improves over the short-only condition, in isola-
tion.

Comparing Lil-Bevo (music+short+target) with
short+target, we see that Lil-Bevo outperforms
short+target on 69% of all tasks. Predicting score
for each task in a mixed-effect linear regression
with a fixed effect predictor for whether the model
was Lil-Bevo or short+target, we found that Lil-
Bevo was slightly better (β = 1.3, χ2(1) =
4.11, p < .05 by a likelihood ratio test). So, while
music pretraining may help, the effect is small and
inconsistent in our observed data.

What is the effect of targeted MLM? We
compare music+short+long with Lil-Bevo (mu-
sic+short+target) and short-only with short+target
to ascertain whether targeted MLM helps over
random masking. Targeted MLM does not sys-
tematically improve performance, except for two
BLiMP tasks: NPI Licensing and Argument Struc-
ture. For NPI Licensing, Lil-Bevo outperforms mu-
sic+short+long by 14.8 points, and short+target
outperforms short-only by 16.2 points. We suspect
that this difference could be meaningful since our
Targeted MLM strategy specifically targets NPI
terms that are substituted in BLiMP.

The effect of increasing sequence length When
comparing music+short with music-short-long,
and short-only with long-only, we find that pretrain-
ing with 512-token sequence lengths generally un-
derperforms pretraining with 128-token sequence
lengths. The difference between short-only and
long-only conditions is quite large in fact. A linear
mixed effect regression comparing the two using
the same method as above found that performance
was 1.8 points worse on average for the long-only
method (β = 1.8, χ2(1) = 14.2, p < .001 by a
likelihood ratio test). Thus, we believe pretrain-
ing with shorter sequences helps significantly com-
pared to using longer sequences.

4 Discussion

Overall, we found that, for BabyLM’s, sequence
length matters, music pretraining may help a little
(but may be spurious), and targeted MLM training
may help on specific tasks.

These results are far from exhaustive, and we

Model Dynabench score

Lil-Bevo 0.64
Music-short-long 0.64
Music-short 0.69
Short-only 0.63
Short-target 0.62
Long-only 0.61
Lil-Bevo-X 0.69

Table 2: Scores on Dynabench for different models.

see a number of areas for future improvement us-
ing these methods. To fully understand the role of
initial pretraining on music, one could construct
a series of synthetically-generated music datasets,
with varying degrees of complexity. Would pre-
training on music that is more “language-like” (Ler-
dahl, 1996) in some sense improve performance on
downstream tasks? Perhaps there is a principled
way to interpolate between music and language,
using the same kind of data format (MIDI). At one
end of the spectrum one would have MAESTRO,
and at the other end, text that has been encoded as
into MIDI events.

Related to the use of varying sequence lengths,
future work could consider improvements in data
preprocessing and batching; in particular, knowing
the beginning and ending of coherent chunks of text
(e.g., dialogues or documents) could help improve
the model. Beyond this, Mueller and Linzen (2023)
provide some evidence that curriculum learning ap-
proaches may be fruitful to improving low-resource
language models.

Finally, a more thorough analysis is needed on
when (and by how much) targeted MLM is able
to boost model performance. Other strategies are
also possible, such as combining targeted MLM
with information-theoretic strategies for picking
random masks (Sadeq et al., 2022). Beyond MLM,
contrastive objectives could be used to encourage
the model to score grammatical sentences more
highly than ungrammatical sentences.

5 Conclusion

A big motivating question for training models on
human-scale data is whether it is possible for mod-
els to attain linguistic competence without the mas-
sive amounts of data used to train the massive
LLMs that dominate NLP leaderboards. If so,
that would make it more plausible that we should
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take LLMs seriously as cognitive models. So can
BabyLMs learn like grown-up ones? While we
find some hints of directions to pursue for mak-
ing small language models learn more from less,
we did not come close to matching LLM perfor-
mance from larger amounts of data. Of course, that
does not mean it is not possible to do so, and other
teams might have different experiences. We did not
fully explore optimizing all of our methods, and
we treated our manipulations largely as proof-of-
concept. Aggregating methods and results from
a wider variety of teams will make it possible to
more fully explore these questions.
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A Appendix

Table 3 shows the list of words selected for targeted
MLM for each linguistic category, while age of
acquisition results are presented in Table 4
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Category Words

S-V agreement
is, was, have, do, are, don’t, were, has, does, isn’t, doesn’t, wasn’t, haven’t,
aren’t, weren’t, hasn’t

Quantifiers
all, some, more, any, little, many, much, most, every, both, each, few, enough,
several,half, less,either, none,. lots, neither, plenty

Filler gap that

Modal verbs can, would, will, could, should, may, must, might, shall

NPI licensing not, only, also, really, probably, often, certainly, clearly

D-N agreement this, these

Adverbs
never, always, maybe, probably, perhaps, certainly, absolutely, likely, possibly,
definitely, surely, truly, constantly, forever, potentially, positively, undoubtedly,
consistently, invariably, eternally, perpetually, dubiously, uncertainly

Anaphor agreement himself, themselves, itself, herself

Animacy
people, man, men, family, person, father, mother, girl, woman, son, children,
guy, friend, wife, boy, guys, human, member, friends, women, members,
daughter, child, brother, boys, husband, girls, lady, parents, kids, king, sister, dad,
mommy, daddy, player, students, doctor, president, captain, kid, mom, leader,
officer, director, players, soldiers, teacher, god, student, sir, officers, judge, patient,
brothers, families, mark, actor, ladies, singer, uncle, author, manager, gentleman,
humans, lad, writer, sweetie, prince, lawyer, artist, mum, host, owner, guest,
teachers, princess, scientists, guard, professor, artists, leaders, agent, assistant,
patients, mama, workers, minister, boss, sons, criminal, partner, babies, citizens,
adult, politician, gods, mayor, actress, principal, cousin, witness, driver, hero,
governor, lord, doctors, authorities, maiden, suspect, victims, aunt, candidate,
individuals, producer, champion, gentlemen, founder, enemies, sisters, winner,
passenger, client, bride, priest, prisoners, pilot, inhabitants, ghost, chairman,
nurse, guests, user, pirate, graduate, merchant, cats, victim, passengers, pirates,
noble, agents, expert, parent, editor, grandma, officials, subjects, cops, maid,
commander, policeman, writers, servants, academic, peasant, eldest, engineer,
musician, devil, critics, users, creatures, twin, composer, personality, lads,
followers, poet, adults, boyfriend, fellows, actors, ruler, judges, witch, daughters,
lieutenant, musicians, servant, secretary, slave, priests, scholars, prisoner,
visitors, residents, lover, cop, companion, knight, deputy, customers, tourist,
guards, grandfather, journalist, architect, rival, kings, colleagues, farmers,
owners, farmer,...

Table 3: Words which were masked in targeted MLM in the 10M train set. For Animacy only words appearing over
100 times are shown in the table.

Model Overall Nouns Predicates Function words

RoBERTa-baseline 2.06 1.99 1.85 2.65
Lil-Bevo 2.06 2.0 1.84 2.65
Lil-Bevo-X 2.05 1.99 1.85 2.59

Table 4: Age of Acquisiton results
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Abstract

Taking inspiration from human children learn-
ing, we pose a question: can a “baby language
model” gradually internalize a concept by ex-
posing itself to the concept in unlimited, often-
times irrelevant contexts, and what this means
to limited pretraining resource (both data-wise
and GPU-wise).

Throughout the study, we restrict our experi-
ments to two data-limited settings, 10M and
100M tokens, which are respectively 1/3000
and 1/300 to what were available to the train-
ing of RoBERTa. Our best performing training
recipe performs within 1.2% of RoBERTa, and
on-par with BERT, on the BLiMP zero-shot
linguistic knowledge benchmark, using 1/300
RoBERTa’s pretraining data and can be trained
on only 1 GPU in 4 days, trained for only 1
epoch.

1 Introduction

In recent years, the success of pretrained language
models has relied on scaling up both parameter
counts and the size of the datasets that models
are exposed to, in order to improve performance.
According to (Warstadt et al., 2023), the number
of words that the modestly-sized language model,
Chinchilla (Hoffmann et al., 2022) goes through
(1.4 trillion words), is equivalent to over 10000
words for every one word a 13-year-old child has
heard in their entire life.

In this work, we take a contextualization per-
spective to rethink, why can a human child build
up their understanding of the world with an expo-
sure to merely 2M-7M words per year (Gilkerson
et al., 2017), and without largely changing the cur-
rent pretraining techniques, how can we facilitate
the learning of a language model to imitate such
behaviors to the greatest extent.

With many nuanced experimental findings, our
main findings can be summarized analogically as
one trick:

“Learning to solve math problems in a history
class”.

Metaphorically, exposing a language model to
datasets of different domains is like sending a kid
to a kindergarden that teaches classes of diverse
content. Taking the learning of math as an example,
a child does not only do math in a math class, nor
is their math capability only aroused when they
see a math test paper. They do math in a math
class, at home, and during playing time. If a child
is good at math in a math class, they theoretically
should be able to demonstrate their math abilities
any time when presented with a real-life scenario
that requires these skills.

We argue that such ability should also apply
to language models, and find that, exposing a
language model to knowledges of a domain sur-
rounded by knowledges of that same domain, poses
a “contextualization trap”. This induces over-
fitting to contexts, over-attendance to spuriously
relevant tokens, and thus under-exploitation of se-
mantics signals in the limited data available.

In fact, if a language model can recover masked
Wikipedia texts surrounded by Wikipedia texts, it
should be no worse at recovering them when it is
“watching” cartoons.

We find that, designing training recipes solely
based on this inspiration largely improves pretrain-
ing performance, enabling a baby language model
to achieve similar performance to RoBERTa on
zero-shot linguistic knowledge tasks, and competi-
tive SuperGLUE performance, with less than 1/300
of its pretraining data.

2 Method: Contextualizer

To exploit the limited data available, we propose
Contextualizer, a framework to create more (the-
oretically unlimited) contexts that a fixed input is
surrounded by.
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(2) Clean

(4a) Context-fixed Padding:
Shuffle the padded (3) and

do not re-pad

(3) Noisy padding:
First Portion

(4b) Context-augmented Padding:
Shuffle unpadded (1) then re-pad

(1) Original Inputs

Math History Politics Physics Break (Padding Tokens)

Figure 1: Concept of Contextualizer. Assume we build a training set with four datasets of different domains (say
math, history, politics, and physics), each with one input. Clean Padding splits every input to different chunks, then
pads the end of each input with padding tokens, and does not allow mixing components of different inputs to a same
chunk. Noisy Padding, on the other hand, allows different inputs to be padded to the same chunk. Context-fixed
Padding simply takes the chunks padded by Noisy Padding and does a round of shuffling. Context-augmented
Padding shuffles the original inputs every time and re-pads them, allowing original inputs to be truncated at diverse
positions and joint with different contexts. In our best training configuration, we do (4b) 40 times.

2.1 Recipes

We have designed two recipes to facilitate
Contextualizer. 1) Contextclean. Aligning with
the process of children learning, one would expect
that teaching a concept to a baby for the first time re-
quires exposing them to the concept in a "clean con-
text", i.e., the context that the concept’s supposed
to be in. 2) Contextnoisy. After a model/baby
has attained certain level of knowledge, we con-
sider augmenting this knowledge by practicing the
knowledge in different contexts. As a further intu-
itive example, after a baby has remembered a quote
from some cartoon character, they can repeat this
sentence in a standalone manner in any context,
and this does not require locating this sentence in a
context with (max sequence length - quote length)
of relevant cartoon dialogues any more.

Apart from intuitions from children learning,
the spirit of the recipes has also seen its empiri-
cal ground in previous research. For one, research
on shortcut learning (Geirhos et al., 2020) has at-
tributed vulnerability of a model’s prediction partly
to its overfitting towards spurious correlation. Tak-
ing Tweet toxicity classification as an example, a

model can easily learn its over-reliance on @ as
an indicator for toxicity, because of the frequent
appearance of @user in toxic tweets. Such vulner-
ability has hindered a real understanding towards
the semantics of a large amount of tokens. Our con-
textualization method has largely removed learning
shortcuts, by truncating complete inputs at diverse
positions, making tokens in the input unseen from
one another from time to time, while co-occurring
with unlimited contexts from other inputs (be them
relevant or irrelevant). This improves the model’s
robustness against irrelevant noise, while training
its intra-input attentions to be activated by real rel-
evant tokens.

2.2 Implementation Details

As discussed, we process data into Contextclean

and Contextnoisy on a high level. However, un-
der the category of Contextnoisy, we have de-
signed three settings, namely, Noisy Padding, fol-
lowed by either Context-fixed Padding and Context-
augmented Padding (Figure 1). As we will show
in later experiments, these techniques show large
behavioral and performance gap.
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Contextclean The concept of Contextclean is
very straightforward and only facilitated by one
setting: Clean Padding (Figure 1). Taking the orig-
inal inputs, Clean Padding truncates and allocates
each original input to different chunks, and extends
each input with [pad] tokens, if the last portion of
the input is shorter than the max chunk length by
itself.

Contextnoisy Contextnoisy, on the other hand, is
facilitated by three settings. As opposed to Clean
Padding, techniques in Contextnoisy allow text
from different original inputs to appear in a same
chunk. 1) "Noisy Padding: First Portion" is used
to create the first portion of noisy training set, in a
dataset curriculum order (will be discussed later).
In this setting, datasets are first concatenated in
a pre-defined easy-to-difficult order. At the end
of each input, the next input will follow immedi-
ately, instead of starting a new chunk. 2) Later
portions of the training set are created by two op-
tions: 2a) Context-fixed Padding directly takes
the first portion created by noisy padding, and shuf-
fles them on a chunk level. This will only enable
different chunks to appear in different batches in
later training, but will not re-pad different contexts
in a same chunk. In other words, content in a
chunk always stays the same, but is just shuffled
to different indexes in the training set portion. 2b)
Context-augmented Padding is the most noisy
setting (and most beneficial, as will be shown). At
each operation, it shuffles the original input order
again, and conducts Noisy Padding. In other words,
Context-augmented Padding is in essence Noisy
Padding without the dataset curriculum scheme.
Using Context-augmented Padding, we can theoret-
ically create n! training data examples by exhaust-
ing the order permutation of the original inputs,
where n is the number of original inputs. As we
will show, this technique leads to the most perfor-
mance gain, by allowing the model/baby to revisit
the same knowledge in many contexts, with dif-
ferent amounts of clean context available, and to
develop different ‘perspectives’ to understand the
same knowledge.

Datasets Our 10M and 100M datasets come
from the two tracks of the BabyLM Challenge
(Warstadt et al., 2023), including data sam-
pled from CHILDES, Switchboard, OpenSubtitles,
BNC, QED, CBT, Children Stories, Gutenberg,
Simple Wikipedia, and Wikipedia, covering chil-

dren speech, transcribed text, children stories, and
Wikipedia data. In order to further imitate human
learning, we apply a rough dataset-level curricu-
lum for clean padding and the first portion of noisy
padding, by manually arranging the order of im-
porting the 10 datasets.

Notably, we did not apply any annotations or or-
dering to input-level data, but only arranged the
training set at the dataset level following com-
monsense understanding (such as children speech
datasets at the beginning, followed by children sto-
ries, and lastly Wikipedia datasets), further con-
firmed by manual inspection of linguistic statistics.

We leverage the TCT toolkit (Simig et al., 2022)
to generate these statistics. For every dataset, we
first compute the statistics on sentence level-inputs,
and then average all outputs on the dataset level.
As a further note, sentence-level statistics are just
used to compute dataset-level statistics to roughly
confirm our dataset order, and none of these statis-
tics provides signals to the training inputs in
any form. Also, there is no evidence that apply-
ing dataset-level curriculum in the first portion is
useful to our method, but we would like to provide
a starting point for future studies to combine our
method with more human-like data orders.

Table 1 presents statistics of four of the repre-
sentative properties: Age of Acquisition (Mean),
Age of Acquisition (Max), Flesch Reading Ease,
and Flesch-Kincaid Grade Level. We also ran com-
putations on Word per Sentence, Average Word
Length - syllables, Average Word Length - letters,
type-token ratio computed over all words, lexical
diversity, mean meaningfulness, etc. We find that,
albeit we cannot find a dataset order that makes
all linguistic statistics monotonically decrease or
increase, statistics computed on all linguistic prop-
erties display a strong correlation. These statistics
also align with one’s common sense.

Following these inspections, the final data or-
der is determined to be: CHILDES, Switchboard,
OpenSubtitles, BNC, QED, CBT, Children Stories,
Gutenberg, Simple Wikipedia, and Wikipedia. For
Contextclean and the first portion of Contextnoisy,
all datasets are concatenated in this order before
processing. They are then shuffled before creating
later portions of Contextnoisy.

2.3 Other technical Details

Tokenizer For 10M and 100M settings, we train
separate BPE tokenizers (Sennrich et al., 2016)
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CHILDES Switchboard OpenSub. BNC QED CBT Child.
Stories Gutenberg Sim.

Wiki. Wiki.

Age of Acquisition (Mean) 4.38 4.69 4.76 4.72 5.01 4.89 4.84 5.49 5.84 5.79
Age of Acquisition (Max) 5.43 6.80 6.66 6.94 7.88 8.62 9.58 9.38 9.99 11.37
Flesch Reading Ease 105.41 101.19 94.83 96.88 85.61 84.51 83.00 79.07 58.51 62.68
Flesch-Kincaid Grade Level -0.28 1.03 1.53 2.15 3.86 6.19 6.80 4.35 7.67 9.30

Table 1: Dataset-level statistics of selected linguistic features, computed with TCT toolkit (Simig et al., 2022).
These statistics align well with common sense, and confirm our manual dataset order.

from scratch with a fixed vocabulary size of 50k,
in line with the original RoBERTa. We find that a
vocabulary size of 10k and 30k degrades the perfor-
mance of most BLiMP tasks (except on Irregular
Forms, noticeably) in inital experiments with 10M
datasets.

Arch./Size/Init. We use the architecture and pa-
rameter size of RoBERTa-base (Liu et al., 2019),
and initialize the models with random weights.

Training Cost We fix the computation cost for
models under the same track to be roughly the
same. For 10M track, every model takes around
6-8 hours on a single RTX 3090; and for 100M
track, every model takes around 3-4 days. The only
factor that brings this around 10% - 20% training
time difference is whether we add a round or two
of Contextclean before or after the training with
Contextnoisy. We will explain how we decide the
computation cost in experiment setting section.

Chunk Length For 10M track, we set the max
sequence length of each padded input to be 64
(i.e., max length of input chunks), and for 100M
track, we set it to 128. We find that a max chunk
length of 128 degrades the performance of mod-
els trained on 10M corpus on BLiMP tasks. No-
tably, in initial tokenization before post-processing
with Contextualizer, we do not impose any
max sequence length, and keep every token avail-
able before context augmentation padding with
Contextualizer, i.e., the “max sequence length”
only applies to padding complete inputs to chunks.

We hypothesize that there exists a training
stability-oriented scaling law between corpus size
and max sequence length to be padded to, due to
the difficulty of learning robust long-range depen-
dencies with limited amount of training examples.

Training Objectives We stick to MLM objective
with 15% masking rate, and use dynamic masking
(Liu et al., 2019). For all stratigies we use, we
conduct random masking on the tokenized inputs
on the fly (in training loop instead of before).

Interestingly, in initial experiments, we find that
using reconstruction loss instead of MLM loss im-
proves performance of checkpoints in early phase
of training, and the isotropy of the embeddings
encoded (Xiao et al., 2023) (also better zero-shot
performance on sts-b). However, the gap could be
bridged in later training. We leave further explo-
ration of this phenomenon for future work.

We have also tried combining mlm loss and un-
supervised contrastive loss (Gao et al., 2021b), and
find unstable improvements (better on tasks related
to representation - such as QQP and NLI tasks, and
opposite otherwise). We have also tried masking
rate curriculum and contrastive loss weighting cur-
riculum, and find unstable improvements as well.

Therefore, we decide to only use a MLM loss
with a static masking rate to focus on the study of
contextualization.

Other Dataset Pre-processing We include a few
extra pre-processing steps for all experiments. For
Contextclean, we filter all original tokenized inputs
that have only 2 tokens ([cls] and [sep] tokens) to
make sure that the processed chunks later are not
empty strings with only [cls], [sep] and the rest
being all [pad] tokens. For Contextnoisy, we only
keep original tokenized inputs with at least 5 tokens
before conducting noisy padding. This is because
inputs with too few tokens are not self-contained.
For instance, predicting “[cls] Hello! [sep]” with
“hello” masked would only provide signals for the
model’s prediction to converge to token frequency-
based probability distribution of the corpus (Chang
and Bergen, 2022), and it is not useful for our noisy-
context strategy. In terms of the datasets, we find
that the Gutenberg dataset provided officially by
BabyLM contains nextline splits in every paragraph
once each line reaches certain length, and it is not
ideal - because after tokenization, this would give
unwanted [sep] tokens within a complete sentence
that is not supposed to be split. Thus, we remove
all nextline splits within same paragraphs. We find
performance gains in initial experiments for all pre-
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Task→
Model ↓

Anaph.
Agr.

Agr.
Struct. Bndg. Ctrl./

Raise.
D-N
Agr. Ell. F-G.

Irreg.
Forms

Island
Effects

NPI
Lic. Qnts. S-V

Agr.
Main
Avg.

Baseline 89.50 71.30 71.00 67.10 93.10 83.80 68.00 89.60 54.50 66.30 70.30 76.20 75.06
1-40 n (ours) 96.01 78.84 76.68 74.52 96.45 91.97 76.13 90.48 70.67 71.99 65.20 83.41 81.03
40-1 n (ours) 97.49* 79.58 79.98* 78.26 96.80 92.73** 83.94* 94.50* 78.18 81.22 73.31** 90.35 85.53
40-1 cnc (ours) 97.55* 80.15* 77.06 80.11 96.57 92.26** 84.97* 90.53 80.12** 83.71* 73.80** 89.63 85.54
BERT 97.03 79.62 81.23 81.02 96.83 89.03 81.85 94.30 79.56 84.97 69.91 91.80 85.60
RoBERTa 97.70 83.04 79.21 81.90 97.28 92.15 89.39 95.67 79.67 82.58 70.40 91.47 86.70

Table 2: BLiMP Results of 100M recipes. Bold Numbers represent the best performance among our training
recipes. Underlined Numbers represent second best. * denotes that the performance outperforms either BERT or
RoBERTa. ** denotes that the performance outperforms both BERT and RoBERTa. Notably, our performances on
Ellipsis, Island Effects, and Quantifiers outperform both BERT and RoBERTa, using respectively under 1/40 and
1/300 of their training data.

processing steps stated above.

Experiment Settings We conduct experiments
with combinations of the above described
Contextualizer data processing settings.

As stated, we fix the computation cost of exper-
iments in the same track to be roughly the same.
The exact cost is decided to align with the epoch
number used in RoBERTa. We calculated that
RoBERTa was roughly trained for 40 epochs on
their training set. Therefore, for the noisy training
set created by Context-fixed Padding, we train the
model for 40 epochs (in result tables, we call this
setting “1-40”). Then to align with this computa-
tion cost for context-augmented experiments, we
perform Context-augmented Padding for 39 times
on top of Noisy Padding first portion, creating a
noisy training set 40 times larger than the context-
fixed training set, and train it for only 1 epoch (we
refer to this as "40-1" in result tables). Further-
more, we consider adding a round or two of Clean
Padding data before or after the noisy data. This
typically brings around 10% to 20% computation
cost difference, since clean padding data has more
examples (For instance, if we have 10 original in-
puts, each with 10 tokens, they could fit in one
single chunk using Noisy Padding under a max
chunk length of 128, but would create 10 chunks,
using Clean Padding).

Concretely, “1-40 n” in result tables means: we
train the model only on 1 portion of noisy data
for 40 epochs. This is achieved by doing Noisy
Padding to create one portion of data, and just shuf-
fle this portion in the rest of the 39 epochs (essen-
tially 39 times of “context-fixed padding”). On
the other hand, "40-1 n" means that we create the
first portion of data, and create 39 more portions
with context-augmented padding, training on this
40-times larger training set for 1 epoch. “c” in the

result tables denotes the number of clean data con-
catenated before and after noisy data. For instance,
“1-40 ccn” denotes first training on clean data twice,
then 1 portion of noisy data for 40 epochs.

3 Results

We evaluate our models on BLiMP, SuperGLUE
and MSGS tasks (Warstadt et al., 2020a; Wang
et al., 2019; Warstadt et al., 2020b; Gao et al.,
2021a). Notably, we use the versions processed
by BabyLM, where each word has appeared in the
10M training set at least twice.

3.1 BLiMP Results

100M Track For the 100M track (Table 2), we
can clearly see the benefits brought by Context-
augmented Padding (40-1 n), outperforming its
Context-fixed Padding counterpart (1-40 n) by a
large margin on the zero-shot BLiMP benchmark,
and outperforming BabyLM official baseline for
over 10 absolute percentage points. The model
trained with Context-augmented Padding outper-
forms Context-fixed Padding on all BLiMP tasks,
showing no trade-offs in introducing more noise
from mixing contexts in the same inputs in the
100M setting.

Adding a round of clean data before and after
noisy data (40-1 cnc) improves tasks like Agree-
ment Structure, Control/Raising, Island Effects,
and NPI Licensing, but degrades the model’s perfor-
mance largely on Irregular Forms, leading to only
a small gain on average performance of all tasks.
We hypothesize that there might exist a better data
shuffling strategy when combining noisy and clean
data, such as doing another round of training set-
level shuffling after concatenating clean and noisy
data. We leave this for future work.

Notably, our best performing models are on-
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Model CoLA SST-2 MRPC QQP MNLI MNLI-mm QNLI RTE BoolQ MuiltiRC WSC Main Avg.

Strict-Small (10M Track)

Baseline 25.80 87.00 79.20 73.70 73.20 74.00 77.00 61.60 66.30 61.40 61.40 67.33
1-40 cnc (Ours) 38.70 89.76 79.55 84.19 73.61 74.89 83.01 52.53 66.39 61.23 61.45 69.58

Strict (100M Track)

Baseline 45.30 88.60 80.50 78.50 68.70 78.00 82.30 51.50 59.90 61.30 61.40 68.73
40-1 cnc (Ours) 56.09 90.55 83.74 85.63 77.92 78.36 83.60 53.54 68.46 64.40 59.04 72.85

Model CR LC MV RP SC CR-LC CR-RTP MV-LC MV-RTP SC-LC SC-RP Main Avg.

Strict-Small (10M Track)

Baseline 43.10 100.0 97.70 76.70 86.20 -28.30 -77.70 -99.30 -79.40 16.30 -45.00 8.21
1-40 cnc (Ours) 75.68 100.00 99.93 99.96 85.67 -46.28 -89.12 -100.00 -62.37 13.40 -37.24 12.69

Strict (100M Track)

Baseline 74.7 100.0 99.9 100.0 59.2 -89.0 -91.2 -99.8 -15.3 -57.7 -39.2 3.78
40-1 cnc (Ours) 96.48 100.00 100.00 100.00 96.68 88.03 71.76 -32.02 30.91 21.97 -35.93 57.99

Table 3: SuperGLUE and MSGS results for 10M track and 100M track, comparing our selected models and
baselines. Except CoLA (MCC), MRPC (F1) and QQP (F1), all other scores are Accuracy.

par with BERT, and is within a 1.2% gap with
RoBERTa, using 1/40 and 1/300 of their train-
ing data respectively. This validates that, us-
ing Context-augmented Padding, we can create
more pseudo-data that behaves closely like the real
data. In our case, by running Context-augmented
Padding 39 times, we actually create a 4B-token
dataset using the 100M-token dataset. This is on-
par with the training set with BERT, and actually
gives us a model that behaves on-par with BERT
on BLiMP. Given enough compute resource, we
would expect running the augmentation 299 times
would give us a model that performs more on-par
with RoBERTa.

10M Track We find that, the best strategy for
10M deviates from the best strategy for 100M.
We suggest this is because Context-Augmented
padding dilutes the impact of informative datasets
such as Wikipedia with noise (children mum-
bling, onomatopoeia data) from datasets such as
CHILDES. Therefore, the decision for the optimal
10M strategy has been more difficult and nuanced.
We leave the full 10M BLiMP results of 7 strate-
gies that we have explored in Appendix A, and
only present the SuperGLUE and MSGS results for
one representative strategy (1-40 cnc, created by
Context-fixed Padding) in the next section.

3.2 SuperGLUE and MSGS Results

Table 3 presents the results of SuperGLUE and
MSGS tasks. Due to compute constraints, we
only compare one of our models in each track
with the BabyLM baselines. Our hyperparameter
search space only concerns learning rate and batch

size, with the rest of hyperparameters following
BabyLM’s offical repo. With limited compute re-
source (evaluating all fine-tuning tasks once takes
around 13-15 hours on 2 RTX 3090s), we have only
explored the combinations of {5e−5, 64}, {3e−5,
32} and {2e− 5, 16}, instead of exhaustive permu-
tations of them. This follows the empirical intuition
that, smaller batch sizes lead to more unstable opti-
mization, and should be paired with small learning
rates. We find that smaller learning rates and batch
sizes generally work better for small datasets like
CoLA, MultiRC and RTE.

For 100M track, our model outperforms baseline
models on all SuperGLUE and MSGS tasks. On av-
erage, our model outperforms baselines by 4.1 and
54.2 absolute percentage points on SuperGLUE
and MSGS respectively.

For 10M track, our methods also provide com-
petitive results, outperforming baselines by 2.3 and
4.5 absolute percentage points on SuperGLUE and
MSGS respectively.

This again confirms the universal effectiveness
of our recipe pool, and also provides support for
our hypothesis when evaluating BLiMP that, 10M
datasets seem to work less well with our method
compared to 100M dataset, because of the less self-
contained original inputs provided by informative
datasets like Wikipedia.

3.3 BabyLM challenge

The resultant models are submitted as part of
the BabyLM challenge. Considering all results,
we submitted the 1-40 cnc model for 10M track,
and 40-1 cnc model for 100M track, and named
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Tasks→
Models ↓ BLiMP BLiMP-sup SuperGLUE MSGS Weighted Avg.

Contextualizer-RoBERTa-base-10M-v1 79.24 62.30 69.58 12.69 60.54
Contextualizer-RoBERTa-base-100 85.54 63.35 72.85 57.99 72.96

Table 4: Results on Dynabench Leaderboard. Notably, the BabyLM official evaluation has further included 5
BLiMP supplementary tasks, denoted as BLiMP-sup here.

them Contextualizer-RoBERTa-base-10M-v11

and Contextualizer-RoBERTa-base-100M2.
Table 4 presents the official BabyLM Challenge

results of our two models on the Dynabench Leader-
board.

4 Inner-workings Analysis

As simple as learning the same things repeatedly
in different, oftentimes irrelevant contexts is, our
method achieves surprising results without chang-
ing other technical details. It is a natural question
to wonder how the method has facilitated better
learning.

As partly discussed in the Recipe section, we hy-
pothesize that the inner-working of this method is
largely relevant to mitigating shortcut learning, and
spurious correlation. For instance, if the same data
keeps being displayed to the models throughout
all epochs, the model might tend to overfit to the
co-occurrence of words in certain inputs, or even
simply remember the sequence.

For instance, without our method, if a padded
input “[cls] Figure 1 is an example figure for the
concept. [cls] This is a completely irrelevant sen-
tence.” is seen by the model 40 times, the model
might incorrectly learn a rule that “example” is two
tokens before “for”, or even depends on “irrelevant”
in the irrelevant chunk padded to the same input,
due to stochasticity in optimization, instead of re-
lying “example” on the information in “Figure 1”
and “for the concept”.

By contrast, our method makes sure 1) an input
is padded with a different input in every portion,
so it will not be padded with the same “This is
a completely random sentence.” and seen by the
model multiple times. This way, the model learns
to focus attention within one document, instead of
“peeking” tokens in other text chunks that happen
to be padded into the same input with them. 2) an
input is cropped at different positions in different
portions of the data, making sure the model utilize

1Dynabench ID: 1450
2Dynabench ID: 1343

information in a flexible way, instead of building
over-reliance on certain shortcuts. As an example,
in one portion, it might be "an example figure for
the concept. [cls] sentences from dataset 1"; and
in a different portion, it might be "sentences from
dataset 5 [cls] Figure 1 is an example".

We have conducted a proof-of-concept exper-
iment to support this hypothesis. We take the
100M 1-40 n and 40-1 n models respectively. Note
that the 1-40n model sees the same padded inputs
40 times, and is theoretically prone to shortcut
learning; while the 40-1 n model is expected to
learn more actual dependencies among tokens, as
it keeps seeing the different combinations of in-
puts. Note that they are both trained with 15%
masking probability. We take the padded training
set that is exposed to the 1-40 model, and mask
{50%, 85%, 95%} tokens in every input respec-
tively, we then compare the mlm loss produced
by both models. Masking more than 50% of to-
kens should have already made most documents
lose its semantics. If the mlm loss produced by
1-40 n model is much lower than 40-1 n model, we
can conclude that, it presents certain levels of over-
fitting and shortcut learning, shown by its ability to
recover more tokens, with very broken evidence.

Mask Prob.→
Model ↓ 50% 85% 95%

1-40 n 2.20 4.53 6.23
40-1 n 2.67 4.69 5.81

Table 5: Memory Analysis. Both models are trained
with 15% mask probability. We get the mlm losses with
different mask probabilities on data exposed to 1-40 n
model in training.

As Table 5 shows, this pattern clearly holds. For
50% and 85%, 1-40n model produces much lower
mlm losses, showing its imposed memory on the
corpus.

However, when the masking rate is increased
to 95%, the 40-1 n model produces a lower loss.
We speculate that this is because with 95% tokens
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masked (leaving around 6 tokens in every 128-
token input), the documents are extremely broken,
and knowledge about basic grammar depending on
these ∼ 6 tokens are beneficial to recover parts
of the tokens. Therefore, 40-1 n shows its robust
grammar understanding towards more ubiquitous
grammar phenomena.

5 Discussions

Due to limited time and compute resources, we
position this work as a humble first step in studying
contextualization as a data augmentation method
for more human-like learning. We have proved the
effectiveness of this context augmentation frame-
work with its strong zero-shot linguistic knowledge
performance gain, and leave design of other de-
tails such as the optimal way to tokenize, process
and train the [cls] token for better performance on
downstream fine-tuning tasks, as future work.

Moreover, while this work is largely restricted
to studying pretraining of encoder models because
of limited compute resources, we envision that the
general findings are transferable to, or at least worth
attention in several settings, including:

1) Multilingual Models. In the training of multi-
lingual models, does practicing multiple languages
in the same input chunk improve performance not
only in code-switching scenarios, but also reflect
in all languages individually? Does this perfor-
mance manifest differently in low-resource lan-
guages, than in high-resource languages?

2) Generative LLMs. Does doing multiple in-
structions at the same time not only improve a
LLM’s multi-tasking abilities, but also improve
abilities of individual tasks? How will this affect
hallucinations?

Limitations

As discussed, our work is restricted to the study
of encoder models. However, we envision cer-
tain transferability of our conclusions to encoder-
decoder models and decoder-only models, and
leave these for future work.

Moreover, again due to compute constraints, we
have not been able to study the scaling law between
model size and the number of times to augment the
data with our Context-augmented Padding opera-
tion. We envision this to be very interesting, and
SOTA-result-promising, as discussed in § 3.1.
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A 10M BLiMP results

The decision for which strategy to use for 10M
track has been more nuanced and difficult. As
shown in Table 6, we could see that Context-
augmented Padding models (40-1) still outperform
their Context-fixed Padding counterparts (1-40).
However, this gap is not as large as the results in
100M, which as we discussed in main sections,
is probably because of that, there exists much
less self-contained data to resist against the noise
brought by less semantic data (like children mum-
bling).

As shown in Table 2, using pure noisy data (en-
tries with only "n" but no "c"), Context-augmented
Padding (40-1 n) still outperforms Context-fixed
Padding (1-40 n). However, when combining Clean
Padding data, it seems to be detrimental to Context-
augmented Padding data, while is consistently con-
tributing to Context-fixed Padding data. We hy-
pothesize that, mixing Clean data and Noisy data
in essence is a context-augmenting operation itself.
And as we discussed, for 10M track, a moderate
amount of noisy context, instead of too much, is
better.

We have also run some experiments on fine-
tuning tasks on all model entries, and decided to use
"1-40 cnc" for our final submission. Even though
"40-1 n" provides the best BLiMP scores, it seems
to rely on tasks with unstable behaviours such as
irregular forms and quantifiers.
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Task→
Model ↓

Anaph.
Agr.

Agr.
Struct. Bndg. Ctrl./

Raise.
D-N
Agr. Ell. F-G.

Irreg.
Forms

Island
Effects

NPI
Lic. Qnts. S-V

Agr.
Main
Avg.

Baseline 81.50 67.10 67.30 67.90 90.80 76.40 63.50 87.40 39.90 55.90 70.50 65.40 69.47
1-40 n 90.18 74.73 69.07 71.90 94.59 86.49 72.74 88.40 59.60 67.70 69.45 84.17 77.42
1-40 cn 91.62 76.13 69.83 71.23 94.51 89.03 77.30 82.29 58.67 67.04 72.21 83.96 77.82
40-1 n 92.02 76.02 70.66 73.07 95.66 82.39 77.48 93.13 61.47 66.75 81.43 85.56 79.64
40-1 cn 93.15 76.33 70.73 73.93 96.96 82.91 77.90 87.74 63.23 66.50 77.77 87.35 79.54
40-1 ccn 92.38 77.30 70.97 74.61 95.48 82.56 78.20 86.77 62.03 62.92 71.90 87.05 78.51
1-40 cnc 92.79 76.33 71.64 72.56 95.65 89.15 75 4.99 87.63 61.47 69.78 72.46 86.43 79.24
40-1 cnc 94.12 74.48 67.60 71.45 95.12 82.79 76.38 91.55 58.67 74.05 82.17 83.34 79.31

Table 6: BLiMP Results of 10M recipes. Clearly, while all of our strategies outperform the baseline by a large
margin, results are more nuanced and it is not that straightforward to see which strategy is the best.
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Abstract

In this paper, we describe our submission to
the BabyLM Challenge 2023 shared task on
data-efficient language model (LM) pretraining
(Warstadt et al., 2023). We train transformer-
based masked language models that incorpo-
rate unsupervised predictions about hierarchi-
cal sentence structure into the model architec-
ture. Concretely, we use the Structformer archi-
tecture (Shen et al., 2021) and variants thereof.
StructFormer models have been shown to per-
form well on unsupervised syntactic induction
based on limited pretraining data and to yield
performance improvements over a vanilla trans-
former architecture (Shen et al., 2021). Eval-
uation of our models on 39 tasks provided by
the BabyLM challenge shows promising im-
provements of models that integrate a hierarchi-
cal bias into the architecture at some particular
tasks, even though they fail to consistently out-
perform the baseline model on all tasks.1

1 Introduction

Transformer-based Language Model (LM) perfor-
mance is heavily influenced by three scaling factors:
the number of model parameters, the pretraining
dataset size, and the amount of computing. For
optimal performance, all three factors must be si-
multaneously scaled up (Kaplan et al., 2020). This
scaling law has introduced several challenges in
advancing research on neural language modeling.
One major obstacle lies in the unequal distribu-
tion of resources across languages. Consequently,
the current approach of transformer-based models
falls short of achieving equally high-performance
levels for models dedicated to different languages
(Choudhury and Deshpande, 2021).

Moreover, we see a considerable difference
when comparing the way LMs learn how humans
acquire language. One difference concerns the data

1Implementation and models checkpoints can
be found here: https://github.com/omarTronto/
structformer-babylm

that is input to learning: LMs such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019b)
or GPT-3 (Brown et al., 2020) are exposed to bil-
lions of tokens during training, far surpassing what
an individual human is exposed to when learning
a language (Warstadt and Bowman, 2022). This
fundamental discrepancy raises important consid-
erations when drawing parallels between language
learning in machines and humans.

To improve the data-efficiency of LMs, one di-
rection is to adapt the model architecture. An effec-
tive approach in this endeavor involves incorporat-
ing an inductive bias into the models’ architectures,
which could potentially facilitate acquiring more
knowledge from the same amount of data com-
pared to standard models. However, the specific
type of inductive bias to be added is still under
exploration. Recently, there have been efforts to in-
vestigate the use of syntactic hierarchical inductive
biases as a potential improvement (Mulligan et al.,
2021; Papadimitriou and Jurafsky, 2023).2

One of these potential solutions is the Struct-
Former architecture (Shen et al., 2021), a trans-
former that is trained on the masked language
modeling task. An additional convolutional neu-
ral network (CNN) component produces unlabeled
dependency and constituency trees as a byprod-
uct and influences the self-attention mechanism of
the transformer layers. The model has obtained
demonstrated competitive results in structure in-
duction evaluations and a decrease in perplexity
over a vanilla transformer baseline (Vaswani et al.,
2017). However, it is an open question whether the
inductive bias learned in this architecture enhances
performance on downstream NLP tasks.

We pretrain the StructFormer architecture on a
dataset from a different domain that had not been
tested on that model before. Moreover, we use a

2Note that we don’t want to claim that humans integrate
such an inductive bias and therefore can learn language with
less data, compared to large LMs.
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more sophisticated tokenizer in comparison to the
most frequent words dictionary used to train the
models in the original experiment. Additionally,
we modify the model architecture to investigate
whether injecting a hierarchical bias in the middle
layers of the transformer architecture (rather than
after the embedding layer) leads to improved down-
stream performance. Eventually, we evaluate seven
model variants through the evaluation pipeline of
the shared task and submit our best-performing
model to the shared task challenge.

1.1 The BabyLM Challenge

The BabyLM Challenge is a shared task with the
aim of data-efficient language modeling for En-
glish. Participants pretrain a LM from scratch on
data that corresponds to the amount of linguistic
data available to a child. The task is a great set-
ting for conducting our experiments. It provides
us with a pretraining dataset, a thorough evalua-
tion pipeline, and, furthermore, an environment
where we can compare our models’ performance
to other interesting architectures from the systems
participating in the shared task.

Dataset The shared task is conducted in two
tracks with different dataset sizes: a 100M words
corpus, and a 10M words corpus as a sample of the
larger corpus. The size is inspired by the assump-
tion that children are exposed to 2M-7M words per
year (Gilkerson et al., 2017). To account for the
fact that children mostly interact with spoken rather
than written language data, the datasets include a
high proportion of transcribed data from different
domains. For more details regarding the source
domains, please refer to Warstadt et al. (2023).

Evaluation A thorough evaluation pipeline that
comprises 39 different tasks is used to evaluate ev-
ery model participating in the shared task. These
tasks are supposed to represent a model’s perfor-
mance with respect to efficiency and applied NLP,
as well as cognitive science, and linguistics. A
group of 17 tasks, named BLiMP (Warstadt et al.,
2020a) are performed via zero-shot predictions,
while the other two groups of tasks; SuperGLUE
(11 tasks, Wang et al., 2019) and MSGS (11 tasks,
Warstadt et al., 2020b) need finetuning of the sub-
mitted models for classification. Refer to Appendix
A for the complete list of tasks.

2 Language Modeling and Hierarchical
Information

Transformer LMs use syntactic information in their
predictions. This has been shown by work on inter-
preting their internal representations as well as by
investigating the grammatical correctness of their
predictions (Mahowald et al., 2023; Kulmizev and
Nivre, 2022). However, the vanilla transformer ar-
chitecture that underlies both encoder and decoder-
based LMs does not encode hierarchical informa-
tion explicitly. Rather, objectives such as masked
language modeling and next-token prediction are
based on linear relationships between tokens. This
has inspired two lines of work that incorporate hi-
erarchical knowledge into LMs. The first group
of papers introduces models in which the training
objective involves syntactic labels explicitly (e.g.
Dyer et al., 2016; Sartran et al., 2022), The second
group introduces models in which hierarchical in-
formation is encoded implicitly as a byproduct of
a language modeling task (Shen et al., 2018, 2021;
Li et al., 2019; Kim et al., 2019; Choi et al., 2018;
Williams et al., 2018). We consider the second
group of models more relevant for this shared task
since it allows us to train models with a hierarchical
architecture bias on raw text data. In particular, we
use the StructFormer model (Shen et al., 2021), a
transformer in which one architecture component,
the parser network, predicts the position of each
token in the hierarchical structure of the sentence.
The prediction of the parser network puts soft con-
straints on the attention mask of the transformer
layers. The model is pretrained on the masked
language modeling task, and we view two experi-
mental contributions of Shen et al. (2021) as most
relevant for using this model: First, they show that a
StructFormer achieves lower perplexity on limited
training data than a transformer that replaces the
parser network with standard self-attention. Sec-
ond, the induced hierarchical structure corresponds
to unlabeled dependency trees. Concretely, evalua-
tion on the Penn Treebank (PTB) shows that 61.6%
of the undirected dependency edges are recovered.
We further implement a variant of the model in
which the parser network predicts hierarchical in-
formation based on hidden states that are contextu-
alized with classical transformer layers, rather than
using uncontextualized token embeddings as direct
input to the parser network (Sec. 3.2.4).
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3 Experiment

This section introduces the objectives of our ex-
periment, a description of the model architectures,
and the technical aspects of the pretraining and
evaluation process.

3.1 Objectives
In this work, we aim to validate the claim that
the performance of LMs, in particular on syntax-
sensitive tasks, can be improved through the im-
plicit integration of an inductive bias into the
model’s architecture that yields a hierarchical struc-
ture of the tokens. Concretely, we conduct experi-
ments towards pursuing the following three primary
objectives:

1. Assess the robustness of the finding that LM
performance is enhanced through the utiliza-
tion of a linguistically informed model archi-
tecture (Shen et al., 2021).

2. Investigate whether the claim that transformer
architectures better represent syntactic infor-
mation in their middle attention layers is
supported in a practical use case (Vig and
Belinkov, 2019; Arps et al., 2022; Müller-
Eberstein et al., 2022).

3. Develop models that surpass the performance
of the baseline models offered by the organiz-
ers of the shared task.

3.2 Methodology
In order to address the questions posed by the ex-
periment’s objectives, we train a tokenizer, develop
several model variants, and perform iterations of
model pretraining, finetuning, and evaluation. Due
to limited resources, we only conducted our ex-
periments on the 10M words dataset. Further-
more, from the model architectures provided by
the shared task, we chose the encoder-type models
due to their adaptability for integrating a hierarchi-
cal bias in the model architecture.

3.2.1 Tokenizer
We use the same tokenizer across all variations
of our models. Specifically, we train a Byte Pair
Encoding (BPE) tokenizer (Sennrich et al., 2016;
Gage, 1994) from scratch on the 10M BabyLM cor-
pus. Since BPE tokenizers require specifying the
vocabulary size as a hyperparameter before training
on the corpus, we carefully determined an appro-
priate size. Our goal was to obtain a tokenizer that

Vocabulary Size Least Frequent Tokens Frequency

8K sought, arts, stolen, ATOR 230
10k accounts, seated, lemn, feathers 165
12k sailors, goss, reun, irlines 126
16k sophisticated, olleyball, AMES, poorly 80
32k jets, estus, iesselin, UCLA, mannik 26

Table 1: Tokenizer Vocabulary Size Experiments

accurately represents tokens in our relatively small
dataset while adhering to best practices for LMs.
To achieve this, we train the tokenizer on the same
corpus with different vocabulary sizes. We then
observed the resulting vocabularies and identified
the least frequent tokens within each (Table 1).

Based on our analysis, a vocabulary size of 32K
tokens provides a fair representation relative to the
corpus size for the least frequent tokens. Addition-
ally, Geiping and Goldstein (2022) found that a
BPE tokenizer with 32K tokens yielded the best
results.

3.2.2 Baseline model
To achieve objective 1, we pretrained a standard
transformer architecture that we call transformer-
base, using our custom-trained tokenizer and fol-
lowing the same model and training hyperparam-
eters to minimize any effects due to uncontrolled
variables.

3.2.3 Hyperparameters
Due to resource limitations, and to assure fair
comparisons between models, we use one set of
pretraining and finetuning hyperparameters: We
chose the default hyperparameters settings that
were used to pretrain the shared task baseline mod-
els (Warstadt et al., 2023). In order to speed up
the evaluation of finetuning tasks, we made mod-
ifications to the finetuning hyperparameters that
were used to evaluate the baseline models. Our
main hyperparameters are reported in Appendix B.
We pretrain all models with the same batch size
and the same number of steps. We use the training
pipeline that Warstadt et al. (2023) introduced to
train their baseline modes to minimize any effects
due to uncontrolled variables.

However, one variable that could not be fixed
during the experiment is the number of trainable
parameters in each model. When adding a convo-
lution parser network to a particular model, the in-
crease in the number of parameters in that model is
inevitable (parameter counts are listed in Appendix
B). We are aware that this can have misleading ef-
fects on the results and conclusions, however, we
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still think that the experiment in its current setting
can show interesting behaviors that may encourage
further investigation in a fully controlled experi-
ment.

3.2.4 Model Architectures
We develop two primary variants of model archi-
tectures for our experiment.

StructFormer This variant (Figure 1) closely fol-
lows the architecture in Shen et al. (2021). In brief,
it incorporates a parser network that consists of
4 convolution layers. The input to the parser net-
work is token embeddings, and the output is prob-
ability distributions for dependencies between to-
kens. These distributions are then integrated into
the multi-head self-attention mechanism of a stan-
dard transformer model. For a complete description
of the architecture, we refer readers to Shen et al.
(2021). We name models of this variant by the
prefix structformer.

StructRoBERTa The second variant (Figure 1)
is similar to the StructFormer, but instead of em-
ploying a standard transformer, it utilizes a base
RoBERTa encoder (Liu et al., 2019b). We modify
the HuggingFace (Wolf et al., 2020) implementa-
tion, which has a few differences from the vanilla
transformer implementation, mainly adding nor-
malization and dropout layers after the embeddings
layer, and also adding an additional intermediate
block within each layer. The models following
this architecture will be identified with the prefix
structroberta.

Vanilla transformer For transformers without
parser networks, we reuse the implementation by
Shen et al. (2021) which follows the standard trans-
former introduced by Vaswani et al. (2017), except
that a layer normalization is added in front of each
layer.

Variants Subsequently, for each of the main vari-
ants, structformer and structroberta, we create two
sub-variants to explore a different placement of the
parser network within the architecture (Figure 2).
This decision is based on insights from previous
experiments, which indicate that syntactic informa-
tion tends to be better represented in the middle
layers of the transformer (Liu et al., 2019a; Vig and
Belinkov, 2019; Arps et al., 2022).

In our approach, we divide the initial ncontext

layers of either the transformer or RoBERTa com-
ponent in structformer or structroberta respectively.

Embeddings Layer

Convolution Layers
Transformer Layers

or
RoBERTa Layers

p(x)

Dependency

Distributions

Figure 1: StructFormer and StructRoBERTa Architec-
tures (s1)

We label these ncontext layers as the Front Atten-
tion Layers, while the remaining attention layers
are labeled as Rear Attention Layers. The input em-
beddings pass through the Front component, gener-
ating embeddings that are subsequently fed into the
parser network. The parser network, in turn, out-
puts dependency distributions that are integrated
into the Rear component of the architecture.

Embeddings Layer

Embeddings

Convolution Layers

p(x)

Dependency Distributions

Rear
Attention Layers

Front
Attention Layers

Figure 2: In-between Parser Architectures (s2), dotted
lines indicate intervening the encoder layers at two po-
sitions, where the parser network connects the two split
parts of the encoder
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To distinguish between the two sub-variants, we
append the suffix s1 to models with the parser net-
work before the attention layers (Figure 1), and
the suffix s2 to models with the parser network
in-between the middle attention layers (Figure 2).

To achieve objective 3, we introduce two addi-
tional models, structrobertas1′ and structrobertas2′ ,
to enhance the evaluation scores so we could sub-
mit the best attainable results to the shared task.
These two models are basically an upgrade in the
number of convolution layers (from 4 to 6) of
the parser network in structrobertas1 and struc-
trobertas2 respectively.

4 Results

After completing the pretraining process of the
7 investigated models, a comprehensive linguis-
tic evaluation is conducted for the seven models
under study. The shared task evaluation pipeline
is used for this purpose. Detailed evaluation
results are presented in Tables 2 3, 4, and 5.
We compare the scores of the following models:
transformer-base (TFbase), structformers1 (SFs1),
structformers2 (SFs2), structrobertas1 (SRs1),
structrobertas2 (SRs2), structrobertas1′ (SRs1′)
and structrobertas2′ (SRs2′). We are particularly
interested in assessing to which extent the intro-
duction of a hierarchical bias improves a model’s
performance on a specific task. Therefore, in addi-
tion to the scores of the individual models, we also
report the differences in scores as follows:

• ∆SFs1 = Score(SFs1)− Score(TFbase)

• ∆SFs2 = Score(SFs2)− Score(TFbase)

• ∆SRs12 = Score(SRs1)− Score(SRs2)

• ∆SRs1′ = Score(SRs1′)− Score(SRs1)

• ∆SRs2′ = Score(SRs2′)− Score(SRs2)

All numerical values in the result tables are mea-
sures of accuracy unless explicitly stated otherwise.

4.1 Pseudo-perplexity
We report the corpus-level pseudo-perplexity
(PPPL, Salazar et al., 2020) on the test split
of the BabyLM shared task dataset3 (Table 2).
PPPL is computed by masking out each token
in turn and collecting the log-likelihoods. This
evaluation contributes to objective 1 in our exper-
iment. Shen et al. (2021) found that structformer

3We use Kauf and Ivanova (2023)’s implementation for
computing PPPL scores and remove the 100 longest sen-
tences from the dataset to reduce the computation time.

models incorporating hierarchical inductive bias
achieve lower PPPL than their baseline trans-
former model. We want to assess this finding on
the BabyLM dataset and using our custom-trained
tokenizer. SFs1 shows lower PPPL compared to
TFbase, which follows the previous findings. How-
ever, the model with a parser network within the
middle layers shows a higher PPPL than the base-
line TFbase. The addition of more convolution lay-
ers at the parser network shows an improvement
at SRs2′ but surprisingly shows a deterioration at
SRs1′ .

4.2 BLiMP

BLiMP is a challenging benchmark comprising
a set of tests designed to evaluate the linguistic
knowledge of LMs with a specific focus on linguis-
tic phenomena encompassing syntax, morphology,
and semantics (Warstadt et al., 2020a). Originally,
the benchmark consisted of 12 tasks (see Appendix
A). Additionally, in the shared task (Warstadt et al.,
2023), 5 more tasks were added to BLiMP as held-
out tasks, aiming to assess the generalization ca-
pabilities of the submitted models. The random
chance accuracy for all original BLiMP tasks is 50,
while chance was not reported for the additional 5
supplement tasks.

According to the BLiMP scores in Table 3,
within the Set A models, the models incorporat-
ing hierarchical inductive bias (SFs1 and SFs2) do
not show consistent outperformance or underperfor-
mance in comparison to the baseline model TFbase.

However, on average, the SFs1 model is on
par with and occasionally outperforms the TFbase

model. In particular, SFs1 excels in the follow-
ing tests: Argument Structure, Determiner Noun
Agreement, Filler Gap, Irregular Forms, Quanti-
fiers, and Subj. Verb Agreement. Conversely, SFs1

underperforms the TFbase in the tasks of QA Con-
gruence Easy, Subject Aux Inversion and Turn Tak-
ing. We hypothesize that this is because syntactic
knowledge is helpful for the former list of tasks, but
to a lesser degree for the latter, for example, Turn
Taking, which focuses on knowledge of discourse
and dialogue structure, in particular of referential
properties of NPs, which is not reflected in the syn-
tactic structure. A sample pair from this data set is
"Should you quit?" – "No, I shouldn’t." (good) ver-
sus "Should she quit?" – "No, I shouldn’t." (bad).
The negative and the positive data points have the
same syntactic structure and the dependents are
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Set A Set B

TFbase SFs1 SFs2 SRs1 SRs2 SRs1′ SRs2′

Perplexity 32.84 26.48 38.26 21.15 23.15 37.11 22.48

Table 2: Perplexity Results

Set A Set B

TFbase SFs1 SFs2 ∆SFs1
∆SFs2

SRs1 SRs2 SRs1′ SRs2′ ∆SRs12
∆SR

s1′ ∆SR
s2′

Anaphor Agreement 88 88 74 0 -14 89 87 90 87 -2 1 0
Argument Structure 68 69 68 1 0 69 72 73 68 3 4 -4
Binding 68 68 66 0 -2 72 70 70 67 -2 -2 -3
Control Raising 66 66 64 0 -2 69 70 68 63 1 -1 -7
Det. Noun Agreement 87 90 86 3 -1 92 93 93 88 1 1 -5
Ellipsis 79 79 72 0 -7 70 71 77 70 1 7 -1
Filler Gap 63 70 63 7 0 69 67 74 64 -2 5 -3
Irregular Forms 76 90 86 14 10 83 92 85 84 9 2 -8
Island Effects 44 44 37 0 -7 49 45 52 43 -4 3 -2
NPI Licensing 58 58 55 0 -3 55 59 68 53 4 13 -6
Quantifiers 73 78 73 5 0 71 68 68 71 -3 -3 3
Subj. Verb Agreement 64 70 60 6 -4 75 75 76 66 0 1 -9
Hypernym 50 50 50 0 0 48 48 50 49 0 2 1
QA Congruence Easy 59 56 56 -3 -3 64 69 66 64 5 2 -5
QA Congruence Tricky 38 35 35 -3 -3 28 34 28 28 6 0 -6
Subject Aux Inversion 82 78 81 -4 -1 70 71 76 70 1 6 -1
Turn Taking 67 65 55 -2 -12 61 59 60 61 -2 -1 2
Average 66.5 67.9 63.6 1.4 -2.9 66.7 67.7 69.1 64.5 0.9 2.4 -3.2

Table 3: BLiMP Results

perfectly fine as argument fillers.
While the model with a parser network in-

between the middle layers SFs2, underperforms
TFbase on average, but interestingly it demonstrates
a noteworthy improvement in the specific task of
Irregular Forms. Remarkably, similar to SFs1, SFs2

significantly outperform TFbase in this particular
task. The task of Irregular Forms involves aspects
of lexical decisions but the syntax of course also
plays a role.

Within the RoBERTa model variations in Set B,
again the model with a parser network in-between
the middle layers SRs2 fails to improve over the
one with a parser network ahead of the encoder
layers SRs1 in most of the tasks. It even gets worse
with the upgrade in the number of convolution lay-
ers within the parser network at SRs2′ . On the other
hand, the upgrade in the number of convolution lay-
ers at SRs1′ shows also an upgrade in accuracies
over SRs1. Generally, SRs1′ achieves the best re-
sults among all the investigated models on average.

Moreover, the Set B models exhibit improve-
ments over Set A models in the tests of Binding,
Det. Noun Agreement, Subject Verb Agreement,
and QA Congruence Easy.

It is not so clear how to interpret the results of the
two Question Answering (QA) Congruence tasks,
where the baselines achieve only very low scores.
For the QA Congruence Easy task, which tests for
detecting selectional preference violations on ob-

ject fillers in answers (e.g., "What did you sell? - A
chair." (good) versus "What did you sell? - Sarah."
(bad)), knowing about the syntactic structure of the
first sentence probably helps to apply selectional
restrictions and thereby assessing the quality of the
second as a possible reply. This might be the reason
why we see an improvement in model performance
in the SR models when adding implicit hierarchi-
cal information that reflects syntactic dependencies.
The QA Congruence Tricky task is similar, except
that the selectional preference that is violated in
the negative data points does not refer to the direct
object. Furthermore, the object is dropped in most
examples and sometimes the (incorrect) argument
filler would be a plausible direct object (e.g., "Who
ate? - Sarah ate." (good) versus "Who ate? - Pasta
ate." (bad)). This is why the task is tricky. In this
context, it is important to keep in mind that our
StructFormer models learn only unlabeled depen-
dencies and therefore cannot distinguish between
object and subject. This means that for Pasta ate, a
structure would be implicitly predicted where pasta
is a dependent of ate, which is perfectly fine seman-
tically (as a direct object). This might be a reason
why the structformer models struggle with this test
and partly lead to a decrease in the performance,
compared to our baseline, since the unlabeled de-
pendency tree actually licenses the negative data
points.
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4.3 SuperGLUE

SuperGLUE consists of eleven diverse tasks (see
Appendix A) which evaluate various performance
aspects. These tasks include sentiment analysis, lin-
guistic acceptability judgments, entailment detec-
tion, and semantic similarity evaluations of words
within contexts, among others (Wang et al., 2019).

The scores (see Table 4) in most of the tasks
fall in a narrow range across all the investigated
models. The incorporation of hierarchical inductive
bias does not show clear improvements in most of
the tasks. A noticeable result that is observed for
the models with a parser network within the middle
layers (s2) is the result of the MRPC task, where
s2 models consistently outperform the s1 models
in both sets for this particular task. The upgrade
in the number of convolution layers also does not
show a clear improvement in most of the tasks for
both SRs1′ and SRs2′ models.

Notably, in the case of the WSC task, we ob-
serve that all models’ predictions heavily favored
one specific class. This raises concerns about the
success of the finetuning process for this particular
task.

4.4 MSGS

The MSGS tasks, listed in Appendix A, were intro-
duced by the shared task as held-out tests specifi-
cally designed to evaluate generalization capabil-
ities. Detailed information and further insights
about these tasks are expected to be disclosed in an
upcoming publication. MSGS tasks are measured
using the Matthews correlation coefficient (MCC).
MCC is used in machine learning as a measure
of the quality of binary (two-class) classifications,
introduced by Matthews (1975)

The MSGS results (Table 5), resemble to the Su-
perGLUE results. The models incorporating hierar-
chical inductive bias show contradicting behavior
across the different tasks. While for some tasks e.g
Control Raising (Control), Relative Position (Con-
trol), and Syntactic Category (Relative Position),
SFs1 and SFs2 are strengthening the correlation in
comparison to the baseline model, but with other
tasks e.g Lexical Content (Control), Main Verb
(Lexical Content) and Syntactic Category (Lexical
Content), SFs1 and SFs2 are shown weakening the
correlation.

4.5 Aggregation

Indeed, analyzing the performance changes across
39 tasks for 7 different models is a complex process.
To simplify the assessment and present a concise
summary of each model’s overall performance, we
report an aggregate score of all the 39 scores for
each model (Table 6). This aggregation approach
was internally computed by the shared task submis-
sion platform to represent each model with a single
score, providing a more straightforward evaluation
of the overall performance. Subsequently, we se-
lect the model with the best aggregate score SRs1′

to represent our submission in the shared task.

5 Discussion

Although the evaluation pipeline of the shared task
was meticulously designed to encompass a com-
prehensive analysis of pretrained LMs, covering
aspects of efficiency, applied NLP standards, cog-
nitive science, linguistics, and language acquisition
(Warstadt et al., 2023), it was discussed in Warstadt
et al. (2020a) that some tasks that involve semantic
phenomena such as Island Effects and NPI Licens-
ing are very difficult for LMs in general. Conse-
quently, the consistently low performance observed
across all models on these tests can be attributed to
this matter. As a result, we refrain from considering
the aggregate score as a single definitive metric for
representing how a model’s performance compares
to another. Instead, we advocate for a thorough in-
vestigation of individual tests while considering the
test’s objectives, dataset, and evaluation strategy.

Overall, the models incorporating hierarchical
inductive bias did not show significant improve-
ment in the scores of the BabyLM evaluation tasks,
however, some exceptions of the evaluation tasks
that show improvements in terms of scores when
using the structformer and structroberta models,
encourage a deeper investigation for patterns in the
outputs predictions that might lead to a different
conclusion. Namely, the tasks that we think are
worth more investigation are: Argument Structure,
Determiner Noun Agreement, Filler Gap, Irregular
Forms, Quantifiers, Subj. Verb Agreement, Control
Raising (Control), Relative Position (Control) and
Syntactic Category (Relative Position).

Contrary to our expectations, the modification of
placing the parser in-between the middle attention
layers has not demonstrated notable improvements
but rather a decline in performance compared to the
models with the parser placed right after the input
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Set A Set B

TFbase SFs1 SFs2 ∆SFs1
∆SFs2

SRs1 SRs2 SRs1′ SRs2′ ∆SRs12
∆SR

s1′ ∆SR
s2′

BoolQ 63 61 62 -2 -1 66 66 64 65 0 -2 -1
COLA (MCC) 0.16 0.19 0.14 — — 0.23 0.23 0.19 0.26 — — —
MNLI 71 71 70 0 -1 72 72 69 72 0 -3 0
MNLI-MM 72 73 72 1 0 73 73 70 73 0 -3 0
MRPC (F1) 75 75 79 0 4 76 81 77 75 5 1 -6
MultiRC 61 58 62 -3 1 62 59 59 54 -3 -3 -5
QNLI 81 77 78 -4 -3 71 72 66 74 1 -5 2
QQP (F1) 81 82 81 1 0 82 82 80 81 0 -2 -1
RTE 48 42 47 -6 -1 46 57 53 56 11 7 -1
SST2 87 85 82 -2 -5 87 82 86 83 -5 -1 1
WSC 61 61 61 0 0 61 59 61 61 -2 0 2

Table 4: (Super)GLUE Results. Values are not aggregated across each model due to the presence of different metrics
(Accuracy, F1 score, and MCC)

Set A Set B

TFbase SFs1 SFs2 SRs1 SRs2 SRs1′ SRs2′

Control Raising (Control) 0.54 0.56 0.69 0.57 0.56 0.69 0.56
Control Raising (Lexical Content) -0.45 -0.04 -0.02 -0.03 -0.07 -0.36 -0.14
Control Raising (Relative Position) -0.94 -0.89 -0.92 -1.00 -0.98 -0.77 -0.98
Lexical Content (Control) 1.00 0.88 0.6 1.00 0.98 1.00 0.78
Main Verb (Control) 0.93 0.96 0.84 0.85 0.98 0.96 0.98
Main Verb (Lexical Content) -1.00 -0.79 -0.84 -1.00 -1.00 -0.99 -1.00
Main Verb (Relative Position) -0.87 -0.78 -0.89 -0.98 -0.93 -0.83 -0.95
Relative Position (Control) 0.67 0.81 0.78 0.86 0.95 0.97 1.00
Syntactic Category (Control) 0.62 0.23 0.47 0.80 0.73 0.66 0.87
Syntactic Category (Lexical Content) -0.61 -0.17 -0.17 -0.42 -0.59 -0.26 -0.76
Syntactic Category (Relative Position) -0.32 -0.57 -0.44 -0.47 -0.47 -0.63 -0.52

Table 5: MSGS Results

Set A Set B

TFbase SFs1 SFs2 SRs1 SRs2 SRs1′ SRs2′

Aggregate Score 0.52 0.53 0.52 0.53 0.54 0.55 0.52

Table 6: Shared Task Leaderboard Results
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embedding layer. We can only speculate about why
this is so. It might be that it is an advantage to push
the model very early towards identifying structural
relations between words. More precisely to do so
at a stage where the contributions of the single
tokens are still separated from each other. The
parsing network placed between the middle layers
acts at a moment where single token contributions
are already blurred.

To understand the effect of placing the parser
network within the middle layers, we propose prob-
ing the layers of the Front and Rear modules and
comparing them to the corresponding layers in the
model where the parser network is placed ahead of
the attention layers. Such a comparative analysis
can provide valuable insights and either support
or contradict our hypothesis regarding the learn-
ing of syntactic features in the middle layers of
transformer models.

Regarding the aim of achieving competitive
scores on the shared task challenge, the best score
we could get was from the model structrobertas1′ ,
this model is an upscaling of the structrobertas1.

6 Conclusion

In this paper, we extend the work of Shen et al.
(2021) to explore the capabilities of the Struct-
Former architecture as an example of employing
hierarchical bias in addressing the challenges posed
by relatively small LLM pretraining datasets. Fur-
thermore, we modify the StructFormer architecture
to examine whether integrating the hierarchical bias
within the middle attention layers leads to perfor-
mance improvements. To accomplish these objec-
tives, we pretrain seven model variants using the
same dataset and configuration settings. We evalu-
ate these models on 39 different tasks. The evalua-
tion outcomes reveal varying behavior across the
models, exhibiting inconsistencies in performance.
We could not show strong evidence that models
incorporating hierarchical bias are performing bet-
ter in the context of this shared task, nor could we
show practical evidence for the claim that syntac-
tic information is better represented in the middle
attention layers within the scope of our experiment.
We have noted substantial enhancements in certain
tasks when models incorporate hierarchical bias in
their architectural designs. Nonetheless, to ensure
the reliability of our findings and to eliminate po-
tential confounding factors related to the varying
number of parameters in each model, as well as the

distinct objectives and complexities of individual
tasks, we intend to carry out an in-depth analysis of
each model’s performance on a task-by-task basis.
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Appendix

A Evaluation Tasks

BLiMP

1. Anaphor Agreement

2. Argument Structure

3. Binding

4. Control Raising

5. Determiner Noun Agreement

6. Ellipsis

7. Filler Gap

8. Irregular Forms

9. Island Effects

10. Negative Polarity Items NPI Licensing

11. Quantifiers

12. Subject Verb Agreement

13. Hypernym

14. QA Congruence Easy

15. QA Congruence Tricky

16. Subject Aux Inversion

17. Turn Taking

SuperGLUE

18. Corpus of Linguistic Acceptability CoLA
(MMC)

19. Stanford Sentiment Treebank SST-2
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20. Microsoft Research Paraphrase Corpus
MRPC (F1)

21. Quora Question Pairs QQP (F1)

22. MultiNLI Matched MNLI

23. MultiNLI Mismatched MNLI-mm

24. Question NLI QNLI

25. Recognizing Textual Entailment RTE

26. Boolean Questions BoolQ

27. Multi-Sentence Reading Comprehension Mul-
tiRC

28. Winograd Schema Challenge WSC

MSGS

29. Main Verb (Control)

30. Control Raising (Control)

31. Syntactic Category (Control)

32. Relative Position (Control)

33. Lexical Content The (Control)

34. Main Verb Lexical Content The

35. Main Verb Relative Token Position

36. Control Raising Lexical Content The

37. Control Raising Relative Token Position

38. Syntactic Category Lexical Content The

39. Syntactic Category Relative Position

B Hyperparameters and Models
Configurations

In Table 7, we report the number of trainable param-
eters per model. In Table 8, we report all the impor-
tant hyperparameters values for all our pretraining
and finetuning experiments. Also, we report the
main configuration settings for all our models. Un-
less specified otherwise, these values were used
across all models.

Model # of trainable parameters

transformer-base 110M
structformers1 133M
structformers2 133M
structrobertas1 133M
structrobertas2 133M
structrobertas1′ 144M
structrobertas2′ 144M

Table 7: Number of trainable parameters per model

Training Hyperparameters

Batch size 96
Sequence Length 128
Optimizer AdamW
Weight Decay 0.1
Learning Rate (Linear) 1e-4
Max Steps 62K
Masking Probability 0.15

Finetuning Hyperparameters

Initial learning rate 5e-5
Batch size 120
Maximum epochs 10
Evaluate every (steps) 400
Patience 5
Random seed 12

Models configurations

Number of Attention Heads 12
Number of Attention Layers 12
Embeddings (Hidden) Size 768
FFN inner hidden size 3072
Attention Dropout 0.1
Front Attention Layers (where applicable) 4
Rear Attention Layers (where applicable) 8
Parser Convolution Layers (where applicable) 4
Convolution Kernel Size 9

Table 8: Pretraining and Finetuning Hyperparameters,
and Models Configurations Settings
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Abstract

Pre-trained Large Language Models (LLMs)
have shown success in a diverse set of language
inference and understanding tasks. The pre-
training stage of LLMs looks at a large corpus
of raw textual data. This shared task compares
LLM pre-training to human language acquisi-
tion, where the number of tokens seen by 13-
year-old kids is magnitudes smaller than the
number of tokens seen by LLMs. In this work,
we pre-train and evaluate LLMs on their ability
to learn contextual word representations using
roughly the same number of tokens as seen
by children. We provide a strong set of base-
lines; with different architectures, evaluation of
changes in performance across epochs, and re-
ported pre-training metrics for the strict small
and strict tracks of the task. We also try to
loosely replicate the RoBERTa baseline given
by the task organizers to observe the training ro-
bustness to hyperparameter selection and repli-
cability. We provide the submission details to
the strict and strict-small tracks in this report.

1 Introduction

Transformer-based LLMs (Vaswani et al., 2017)
show state-of-the-art performance on a variety
of language processing tasks. In the last few
years, pre-training methods for LLMs have evolved
rapidly to meet task-driven demands. This evo-
lution has focused on model expansion (Brown
et al., 2020), more pre-training data (Hoffmann
et al., 2022), use of higher quality data (Raffel
et al., 2019), model alignment (von Werra et al.,
2020), quicker run-time inference (Sanh et al.,
2020), quicker pre-training (Clark et al., 2020),
faster fine-tuning (Sanh et al., 2020), domain adap-
tation (Alsentzer et al., 2019; Caselli et al., 2021;
Beltagy et al., 2019; Shah et al., 2022), and the ad-
dition of multi-modal capabilities (OpenAI, 2023;
Gatti et al., 2022). The task-driven nature of this
development optimizes performance at scale but
fails to account for human-like learning.

Humans typically encounter fewer than 100 mil-
lion tokens through language exposure by the time
they are 13 years old (Warstadt et al., 2023). LLMs,
on the other hand, parse tens of billions to tril-
lions of tokens in their pre-training stage, typically
from sources like Wikipedia (Wikipedia contrib-
utors, 2004), and Open Book Corpus (Zhu et al.,
2015), which consist of different tokens than the
ones seen by children. In this paper, we evaluate
the capabilities of popular architectures on various
tasks when trained on a number of tokens compa-
rable to that seen by 13-year-old children. Such
scaled-down pre-training has several potential ben-
efits:

• A better sandbox for the development of new
LLM training techniques inspired by the cog-
nitive science literature (Yiu et al., 2023).

• Robust evaluation of models on human behav-
ioral signatures (Shah et al., 2023).

• Building plausible human cognition models
using LLMs aligned to actual human actions
(Park et al., 2022).

Track Data
size

Datasets Our work

Strict-small 10M
words

Child-directed speech,
transcribed speech
from multiple sources,
children’s books, and
Wikipedia, etc.

Strict 100M
words

Loose 100M
words

Strict track data + un-
limited non-linguistic
data

×

Table 1: Task Summary

1.1 Task Descriptions
The shared task has three tracks: Strict, Strict-small,
and Loose. The details of each track are summa-
rized in Table 1. The Strict and Strict-small tracks
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use pre-released datasets containing Child-directed
speech, transcribed speech from multiple sources,
children’s books, and Wikipedia. These tracks are
meant to encourage explorations of architectural
variation and self-supervised approaches.

1.2 Key Contributions

Given the benefits of using scaled-down human-
like pre-training data, our work focuses on the fol-
lowing aspects of the shared task:

1. Replication details: Can we replicate the re-
sults of the baselines given by the task orga-
nizers?

2. Can we understand the impact of more train-
ing epochs on the same architecture?

3. Providing each training checkpoint for the dif-
ferent model architectures to facilitate future
modeling of development. All checkpoints
can be found here.

We provide details of training and evaluation for
the strict and strict-small tracks of this task.

2 Related Work

2.1 Cognitive science driven LLM
architecture development

With the efforts put into LM pre-training, learning
frameworks informed by cognitive science have
received increasing attention. For instance, unsu-
pervised and adversarial pre-training methods have
been employed to enhance the logical reasoning
capabilities of language models (Pi et al., 2022b).
Using pre-training to inject numerical (Pi et al.,
2022a) and commonsense reasoning (Zhong et al.,
2019) has also been recently explored. Huebner
et.al have constructed pre-training paradigms using
curriculum learning (Huebner et al., 2021) to show
the advantages of incremental learning.

2.2 Pre-training with limited data

Previous experiments show that pre-training data
size is positively correlated with the syntactic capa-
bilities of RoBERTa in terms of generalization and
robustness (Pérez-Mayos et al., 2021). However, it
has been discovered that model performance gains
bring a high financial and environmental cost (Tay
et al., 2021). This justifies the appeal of small-
scale pretraining with data limitations. There have
also been explorations of how human-like data

scales could improve our understanding of lan-
guage acquisition and solidify current cognitive
models (Dupoux, 2018).

Track Model Competition Scores Perplexity
(Dynabench)

Strict Small Distilbert Epoch 20 0.62 86.283
Distilbert Epoch 60 0.65 17.278
RoBERTa Epoch 20 0.58 49.586

GPT2 Epoch 20 0.64 79.318
Competition Max 0.73

Strict Distilbert Epoch 20 0.66 39.427
Distilbert Epoch 60 0.71 10.332
RoBERTa Epoch 20 0.63 27.566

GPT2 Epoch 20 0.67 34.950
Competition Max 0.81

Table 2: Model scores on dynabench

3 Methodology

3.1 Models
We use the simple-transformers library (Rajapakse,
2019) to pre-train the models below from scratch.
The library uses the Huggingface trainer for pre-
training. Note: We build new vocabularies for all
models and limit the number of training epochs due
to computational constraints in certain models.

• RoBERTa: We train the RoBERTa-base model
(Liu et al., 2019) for comparison to the base-
line given by the task organizers. This model
is trained for 20 epochs on both datasets (strict
and strict-small). The size of this model is
roughly 125M parameters.

• DistilBert (uncased): Because this model
(Sanh et al., 2020) is smaller (roughly 66M
parameters) and quicker to pre-train, we addi-
tionally train it for 60 epochs. This allows us
to explore the impact of more training epochs
on performance.

• GPT2: We include a decoder-based architec-
ture (Radford et al., 2019) in our pre-training
to explore the impact of architecture type on
the evaluation tasks. This model has a simi-
lar size to RoBERTa (117M parameters). We
train it for 20 epochs due to computational
constraints.

All of the checkpoints for the three architectures
and the two tracks are uploaded on Huggingface
(Wolf et al., 2020). Hyperparameters: We per-
form a grid search over the hyperparameters for all
three architecture types. We use a subset of 0.5 GB
of the training data for the search. The learning
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Tasks Super GLUE
Model CoLA SST-2 MRPC (F1) QQP (F1) MNLI MNLI-mm QNLI RTE BoolQ MultiRC WSC

Strict Small Majority label 69.50 50.20 82.00 53.10 35.70 35.70 35.40 53.10 50.50 59.90 53.20
OPT-125m 64.60 81.90 72.50 60.40 57.60 60.00 61.50 60.00 63.30 55.20 60.20
RoBERTa-base 70.80 87.00 79.20 73.70 73.20 74.00 77.00 61.60 66.30 61.40 61.40
T5-base 61.20 78.10 80.50 66.20 48.00 50.30 62.00 49.40 66.00 47.10 61.40
Distilbert Epoch 20 69.38 83.46 79.69 80.21 69.80 71.56 60.15 54.55 65.42 53.67 51.81
Distilbert Epoch 60 69.68 85.63 78.81 82.28 71.62 73.11 76.73 60.61 67.77 56.74 61.45
RoBERTa Epoch 20 65.55 81.30 79.71 76.37 65.16 65.82 62.73 56.57 62.38 44.91 61.45
GPT2 Epoch 20 69.58 83.07 75.47 73.13 63.88 65.95 59.84 56.57 64.45 58.38 46.99

Strict OPT-125m 73.70 86.60 82.10 77.80 70.10 71.90 80.10 67.70 66.00 61.10 59.00
RoBERTa-base 75.90 88.60 80.50 78.50 68.70 78.00 82.30 51.50 59.90 61.30 61.40
T5-base 76.30 88.00 85.90 79.70 71.50 74.00 83.10 60.60 69.00 62.40 60.20
Distilbert Epoch 20 69.48 86.22 62.98 83.81 73.44 74.97 79.00 60.61 67.91 62.98 44.58
Distilbert Epoch 60 74.78 87.01 81.40 84.37 74.95 75.27 80.97 55.56 65.56 65.83 61.45
RoBERTa Epoch 20 67.81 84.06 82.00 82.12 72.22 73.19 77.17 53.54 60.30 51.48 38.55
GPT2 Epoch 20 69.58 87.20 79.29 82.23 74.00 74.98 81.01 52.53 69.58 57.83 48.19

Table 3: Results for the Super GLUE tasks

Tasks Blimp
Model Anaphor Agr. Binding Control/ D-N Ellipsis Filler-Gap Irregular Island NPI Quantifiers S-V

Agr. Structure Binding Raising Agr. Forms Effects Licensing Agr.
Strict Small OPT-125m 63.8 70.6 67.1 66.5 78.5 62 63.8 67.5 48.6 46.7 59.6 56.9

RoBERTa-base 81.5 67.1 67.3 67.9 90.8 76.4 63.5 87.4 39.9 55.9 70.5 65.4
T5-base 68.9 63.8 60.4 60.9 72.2 34.4 48.2 77.6 45.6 47.8 61.2 65
Distilbert Epoch 20 83.49 64.12 63.98 62.22 77.72 62.76 62.36 85.24 42.94 41.38 67.47 55.81
Distilbert Epoch 60 89.62 68.44 64.08 65.20 89.70 81.64 63.57 89.92 39.69 44.58 66.20 78.09
RoBERTa Epoch 20 84.76 60.54 67.97 60.69 56.47 52.25 65.48 64.53 54.22 52.51 52.42 66.63
GPT2 Epoch 20 81.24 72.56 67.81 67.43 86.98 59.82 67.72 84.38 52.62 51.76 58.14 64.12

Strict OPT-125m 94.9 73.8 73.8 72.2 93.1 80.5 73.6 80.8 57.8 51.6 74.5 77.3
RoBERTa-base 89.5 71.3 71 67.1 93.1 83.8 68 89.6 54.5 66.3 70.3 76.2
T5-base 66.7 61.2 59.4 59.8 53.8 49.1 70 75.5 43.6 45.6 34.2 53.2
Distilbert Epoch 20 92.43 67.06 67.66 65.27 94.38 87.24 65.42 85.04 42.86 50.43 67.41 66.25
Distilbert Epoch 60 94.68 70.39 68.39 68.25 96.39 89.03 68.69 90.08 45.59 64.67 70.20 72.32
RoBERTa Epoch 20 85.94 67.68 65.27 63.74 91.04 75.52 62.98 87.23 46.41 44.47 61.46 60.51
GPT2 Epoch 20 91.56 74.88 73.21 69.22 91.89 75.52 71.91 75.32 55.04 51.20 66.13 67.19

Table 4: Results for the Blimp tasks

Tasks Blimp Supplement Tasks
Model Hypernym QA Congruence (easy) QA Congruence (tricky) Subj.-Aux. Inversion Turn Taking

Strict Small OPT-125m 50.00 54.7 31.5 80.3 57.1
RoBERTa-base 49.4 31.3 32.1 71.7 53.2
T5-base 48 40.6 21.2 64.9 45
Distilbert Epoch 20 50.00 65.63 42.42 77.31 61.79
Distilbert Epoch 60 48.95 70.31 41.21 60.87 62.86
RoBERTa Epoch 20 51.28 48.44 31.52 53.86 66.07
GPT2 Epoch 20 47.44 48.44 45.45 72.41 62.86

Strict OPT-125m 46.3 76.50 47.9 85.3 82.9
RoBERTa-base 50.8 34.4 34.5 45.6 46.8
T5-base 51.1 45.3 25.5 69.2 48.9
Distilbert Epoch 20 48.26 64.06 40.61 81.53 65.36
Distilbert Epoch 60 48.95 73.44 47.88 83.43 65.36
RoBERTa Epoch 20 51.16 46.88 37.58 76.85 64.29
GPT2 Epoch 20 49.53 57.81 45.45 81.85 65.00

Table 5: Results for the Blimp supplemental tasks

rate ranges from 5e-5 to 4e-4 across the searches,
with weight decay in place but no early stopping
mechanisms.

4 Results

Table 2 shows the results obtained from the dyn-
abench submission portal. The individual results
for each of the tasks in different benchmarks are
available in Tables 3, 4, 5, 6, 7. Looking at these

tables, we observe the following patterns:

1. We see that training for more epochs leads to
better overall performance (compare 20 and
60 epochs of DistilBert in Table 2).

2. Variation among architecture types exists
when limiting the training to the same num-
ber of epochs, but it is difficult to identify a
definitively better architecture.
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Tasks MSGS Tasks
Model CR LC MV RP SC CR_LC CR_RTP MV_LC MV_RTP SC_LC SC_RP

(Control) (Control) (Control) (Control) (Control)
Strict-Small OPT-125m 86.40 86.10 99.80 100.00 94.30 66.50 67.00 66.50 67.60 80.20 67.50

RoBERTa-base 84.10 100.00 99.40 93.50 96.40 67.70 68.60 66.70 68.60 84.20 65.70
T5-base 78.40 100.00 72.70 95.50 94.40 66.70 69.70 66.60 66.90 73.60 67.80
Distilbert Epoch 20 79.22 100.00 97.17 98.57 96.36 66.53 66.71 66.61 67.47 67.89 67.58
Distilbert Epoch 60 81.68 100.00 98.61 99.14 95.66 67.24 66.72 66.61 67.03 67.76 68.27
RoBERTa Epoch 20 73.02 100.00 73.91 99.59 86.47 66.70 67.19 66.61 66.84 67.44 71.93
GPT2 Epoch 20 89.78 96.30 99.23 100.00 97.13 66.46 66.72 66.58 66.83 78.78 64.87

Strict OPT-125m 97.20 82.60 100.00 99.80 88.10 75.30 67.10 66.30 66.80 84.80 62.00
RoBERTa-base 93.00 100.00 100.00 100.00 89.00 68.30 66.80 66.60 80.20 67.40 67.40
T5-base 95.10 100.00 100.00 99.80 88.70 76.70 69.40 67.00 67.70 72.70 68.00
Distilbert Epoch 20 81.44 100.00 97.36 97.35 94.77 67.26 66.72 66.61 66.97 67.67 68.63
Distilbert Epoch 60 93.23 100.00 99.33 99.17 95.64 68.91 66.77 66.61 67.45 67.89 66.59
RoBERTa Epoch 20 84.63 97.38 92.12 98.15 95.54 66.47 66.59 66.41 66.05 68.17 72.78
GPT2 Epoch 20 95.35 76.53 99.55 99.83 96.76 67.21 68.46 66.78 66.70 91.90 65.90

Table 6: Results for the MSGS tasks

Tasks Age of Acquisition tasks (mean absolute deviation)
Model Overall (591 words) Nouns (322) Predicates (167) Function words (102)

Strict Small OPT-125m 2.03 1.98 1.81 2.57
RoBERTa-base 2.06 1.99 1.85 2.65
T5-base 2.04 1.97 1.82 2.64
Distilbert Epoch 20 2.06 2.00 1.84 2.65
Distilbert Epoch 60 2.09 2.00 1.84 2.76
RoBERTa Epoch 20 2.06 2.00 1.84 2.63
GPT2 Epoch 20 2.06 2.00 1.85 2.64

Strict OPT-125m 2.04 1.97 1.83 2.61
RoBERTa-base 2.06 1.99 1.82 2.66
T5-base 2.06 2.00 1.83 2.65
Distilbert Epoch 20 2.06 2.00 1.83 2.65
Distilbert Epoch 60 2.08 2.00 1.81 2.79
RoBERTa Epoch 20 2.06 2.00 1.84 2.62
GPT2 Epoch 20 2.04 1.98 1.81 2.60

Table 7: Results for the Age of Acquisition tasks

3. Tables 3, 4, 5, 6, and 7 show that pre-training
(RoBERTa) is not robust to initialization, and
the competition scores would greatly benefit
from a warm-up or a grid search over different
hyper-parameters.

4. In most cases, the pre-training improves per-
formance over the majority label in the Super
GLUE tasks.

5. Tables 8, 9 shows that the performance on
the BLIMP tasks becomes better with more
training epochs. While this is orthogo-
nal to wisdom performance saturates at one
epoch(Biderman et al., 2023). Our results hint
that training saturation or stability may be a
function of model size divided by the number
of tokens seen.

5 Conclusions

We pre-train popular LLM architectures on the kind
of textual data seen by children when they are

around 13 years old. We show that pre-training
paradigms like Masked Language Modeling or
Causal Language Modeling lead to only minor vari-
ations. Our results show that models are not robust
to the initialization of weights. Our work provides
each and every checkpoint of the model architec-
tures on Huggingface to facilitate future research.
All checkpoints can be found here.

6 Limitations

Our work trains some of the popular Language
Model architectures on human-like scaled-down
training data, it does not introduce new training
methodologies or architectures which may be better
suited for such tasks. Furthermore, our work does
not exhaustively cover different model types in the
literature. Our results are preliminary as they do
not account for all possible confounds.
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Epochs
BLIMP Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Anaphor Agr. 50.77 70.81 82.21 79.75 84.46 84.00 86.71 88.14 87.27 87.88 87.42 87.32 83.54 86.91 86.30 84.76 85.22 85.99 85.22 85.94
Agr. Str. 58.69 59.81 60.46 60.83 59.80 60.39 60.43 60.84 61.02 60.60 59.69 62.08 63.70 65.22 65.39 66.56 67.54 67.34 67.92 67.68
Binding 64.43 68.06 64.84 65.32 64.31 67.17 64.31 66.00 63.92 64.10 64.00 59.45 61.52 62.60 62.72 63.67 64.54 65.21 65.18 65.27
Control Rais. 59.17 59.19 58.17 58.24 59.06 59.01 59.79 59.70 59.70 60.01 58.51 62.22 60.25 59.41 60.87 62.88 62.79 63.57 63.85 63.74
Det-N Agr. 51.47 56.72 58.87 59.57 58.63 58.62 58.18 60.09 60.16 59.06 59.63 63.47 71.69 80.95 85.20 87.18 88.49 90.51 90.98 91.04
Ellipsis 37.93 44.05 46.54 50.87 50.98 54.27 56.12 58.43 59.70 61.61 55.02 51.96 54.62 65.47 68.30 73.85 72.92 75.64 75.23 75.52
Filler Gap 69.39 64.53 66.48 63.66 65.38 61.95 61.31 61.95 61.84 65.39 60.58 61.86 60.21 62.14 61.47 61.80 62.40 63.35 63.38 62.98
Hypernym 53.84 49.77 52.09 51.74 48.02 48.49 48.72 50.12 49.88 51.28 50.35 50.70 48.84 50.35 51.28 49.77 51.51 50.47 51.86 51.16
Irr. Forms 45.90 59.75 60.87 61.32 63.66 59.54 65.24 63.36 64.83 64.99 69.97 78.07 76.39 81.53 86.92 86.87 88.96 88.85 87.74 87.23
Island Effects 53.66 42.68 56.20 55.53 54.67 44.66 48.28 51.91 49.93 52.88 47.31 45.22 51.76 50.67 47.83 48.92 46.82 46.38 45.40 46.41
NPI Lic. 34.89 43.58 35.71 46.96 40.81 43.41 43.29 42.97 39.60 44.02 37.25 38.23 39.20 40.80 40.10 43.77 44.05 44.46 43.65 44.47
QA_cong. Easy 34.38 35.94 39.06 42.19 39.06 35.94 40.63 40.63 37.50 37.50 37.50 46.88 56.25 57.81 56.25 50.00 45.31 45.31 48.44 46.88
QA_cong. Tricky 38.18 34.55 32.73 31.52 31.52 30.91 30.30 29.70 28.48 28.48 27.27 24.85 23.64 30.30 33.94 32.73 35.76 35.15 38.18 37.58
Quantifiers 37.92 38.15 36.22 40.96 43.07 41.96 49.00 50.05 43.07 51.91 51.52 66.95 65.35 67.85 60.72 64.30 61.98 64.09 61.39 61.46
S-Aux Inv. 74.68 75.04 69.85 68.87 63.19 52.74 55.40 50.65 47.89 48.65 52.28 62.94 66.85 72.82 70.36 77.92 73.82 76.38 75.43 76.85
S-V Agr. 49.67 50.89 52.10 51.91 52.34 53.68 53.80 54.47 55.54 55.83 54.87 52.72 54.27 57.58 58.10 58.70 60.09 60.31 60.23 60.51
Turn-Taking 59.64 59.64 60.00 59.29 61.43 60.36 58.57 59.64 58.93 58.57 61.07 63.57 64.64 67.14 63.57 63.57 64.29 63.93 64.64 64.29

Table 8: Results for the BLIMP tasks across different epochs of the RoBERTa-base model architecture for the strict
(100M token) track.

Epochs
Behavior/ Model +Epoch 1 5 10 15 20 25 30 35 40 45 50 55 60
Anaphor Agr. 46.57 82.87 89.88 91.21 92.43 93.10 94.07 94.17 95.19 94.94 94.58 94.43 94.68
Agr. Str. 58.06 59.71 61.78 65.69 67.06 68.02 70.05 69.07 69.67 70.55 70.49 70.27 70.39
Binding 59.65 65.24 63.15 67.14 67.66 66.93 68.48 66.55 69.07 68.76 68.95 68.27 68.39
Control Rais. 58.33 58.93 60.01 64.14 65.27 66.00 65.91 67.12 67.30 67.41 68.10 67.87 68.25
Det-N Agr. 50.76 60.30 70.41 92.16 94.38 95.24 95.94 95.97 96.34 96.14 96.27 96.37 96.39
Ellipsis 37.53 54.16 55.08 81.99 87.24 86.49 86.20 89.32 89.32 89.38 88.57 88.86 89.03
Filler Gap 70.23 64.89 58.56 62.06 65.42 64.74 66.64 67.49 67.54 67.24 69.00 68.88 68.69
Hypernym 51.40 50.23 50.70 48.84 48.26 50.00 48.60 51.40 50.23 50.00 49.77 48.49 48.95
Irr. Forms 56.39 65.24 87.38 85.55 85.04 86.92 88.50 89.16 88.85 88.85 89.72 89.72 90.08
Island Effects 46.52 44.62 48.09 45.52 42.86 45.07 43.20 46.49 44.81 43.80 44.39 45.44 45.59
NPI Lic. 53.23 46.90 41.06 46.67 50.43 55.25 58.56 57.39 61.69 64.36 64.09 64.15 64.67
QA_cong. Easy 31.25 43.75 59.38 67.19 64.06 68.75 70.31 73.44 75.00 70.31 70.31 73.44 73.44
QA_cong. Tricky 333.33 22.42 23.03 35.15 40.61 42.42 46.06 43.03 44.24 41.82 46.06 46.06 47.88
Quantifiers 54.87 69.55 62.31 65.43 67.41 70.40 70.50 72.82 70.74 70.63 70.25 70.81 70.20
S-Aux Inv. 58.45 65.77 73.65 79.21 81.53 81.19 81.85 81.75 83.17 82.80 83.63 82.53 83.43
S-V Agr. 48.93 54.60 55.56 62.06 66.25 68.24 70.82 70.05 71.64 72.50 71.73 72.41 72.32
Turn-Taking 59.29 60.71 65.36 64.29 65.36 63.93 64.64 65.36 65.36 65.00 66.07 65.00 65.36

Table 9: Results for the BLIMP tasks across different epochs of the DistilBERT-base model architecture for the
strict (100M token) track.

7 Ethical Considerations

All researchers in this study have active responsi-
ble code of conduct in research certifications. The
models shared on Huggingface have the same risks
associated with any other Large Language Model.
Researchers in this study have tried to be mindful of
the environment while doing the pre-training runs
and hope that publically available checkpoints will
help other researchers avoid computation and envi-
ronmental costs associated with repeat pre-training.

8 Computational Resources

The models are trained on Nvidia-RTX 2080 GPUs
with 12 GB RAM. The models are trained for
nearly 975 GPU hours.

References
Emily Alsentzer, John Murphy, William Boag, Wei-

Hung Weng, Di Jin, Tristan Naumann, and Matthew
McDermott. 2019. Publicly available clinical BERT
embeddings. In Proceedings of the 2nd Clinical Nat-
ural Language Processing Workshop, pages 72–78,
Minneapolis, Minnesota, USA. Association for Com-
putational Linguistics.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scib-
ert: Pretrained language model for scientific text. In
EMNLP.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar van der Wal. 2023. Pythia:
A suite for analyzing large language models across
training and scaling.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda

343

https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/W19-1909
http://arxiv.org/abs/arXiv:1903.10676
http://arxiv.org/abs/arXiv:1903.10676
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373


Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Tommaso Caselli, Valerio Basile, Jelena Mitrović, and
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Abstract
This work explores the degree to which gram-
mar acquisition is driven by language ‘simplic-
ity’ and the source modality (speech vs. text) of
data. Using BabyBERTa (Huebner et al., 2021)
as a probe, we find that grammar acquisition is
largely driven by exposure to speech data, and
in particular through exposure to two of the
BabyLM (Warstadt et al., 2023) training cor-
pora: AO-Childes and Open Subtitles. We ar-
rive at this finding by examining various ways
of presenting input data to our model. First,
we assess the impact of various sequence-level
complexity based curricula. We then examine
the impact of learning over ‘blocks’—covering
spans of text that are balanced for the number of
tokens in each of the source corpora (rather than
number of lines). Finally, we explore curricula
that vary the degree to which the model is ex-
posed to different corpora. In all cases, we find
that over-exposure to AO-Childes and Open
Subtitles significantly drives performance. We
verify these findings through a comparable con-
trol dataset in which exposure to these corpora,
and speech more generally, is limited by design.
Our findings indicate that it is not the propor-
tion of tokens occupied by high-utility data that
aids acquisition, but rather the proportion of
training steps assigned to such data. We hope
this encourages future research into the use of
more developmentally plausible linguistic data
(which tends to be more scarce) to augment
general purpose pre-training regimes.

1 Introduction

Pre-training modern LLMs has become an increas-
ingly resource intensive process, often requiring
hundreds of GPU hours, and enough electricity to
power a small village. These requirements have
led to model creation increasingly becoming re-
stricted to the few actors that are able to muster the
resources necessary, excluding many from being
able to participate in researching the field.

On the other hand, recent work (Huebner et al.,
2021; Mueller and Linzen, 2023) has shown that

Transformer LLMs can acquire knowledge of gram-
mar and syntax with less data scale than was pre-
viously thought necessary, provided that they are
exposed to simpler forms of language. These find-
ings provide a hope that research on pre-training
can once again become accessible to the commu-
nity as a whole.

However, even if scale may not be such a strict
requirement for the acquisition of linguistic knowl-
edge, there are two tendencies exhibited by trans-
former models that may still be barriers to acces-
sibility. Firstly, simply increasing the number of
training steps generally yields better results. In
fact, recent work by Murty et al. (2023) has shown
that continuing training long past train loss sat-
uration can lead to acquisition of a bias towards
tree-likeness. While a fascinating finding in its
own right (as hierarchical structure is considered a
central feature of natural language) many groups
simply won’t have the GPU hours necessary to
reach this point, so resources may remain a barrier.
Secondly, it is often the case that simply increas-
ing the complexity of a model can be beneficial
(e.g. greater depth can aid syntactic generalisa-
tion (Mueller and Linzen, 2023)), but increasing
complexity also increases cost.

This work investigates whether we can use the
starting small approach to curriculum learning (El-
man, 1993) combined with a small scale develop-
mentally plausible pre-training set to aid model
grammar acquisition without necessitating an in-
creased budget of training steps. Our findings are
mixed. We were unable to significantly outper-
form a random sampling baseline over all the pre-
training corpora contained in the strict-small track.
However, we are able to attribute this to the preva-
lence of high-utility simple speech data. We demon-
strate through the use of a control corpus that in a
setting where this high-utility data is more scarce,
the benefits of developmentally ordered learning
start to show themselves.
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2 Related Work

Elman (1993)’s seminal early work presented the
idea of starting small, whereby a model is first ex-
posed to simpler data before moving on to more
complex types of input. The idea is that complex
data might get the model to learn ‘false friend’
heuristics that are actually harmful in the long run,
but simple data might get it to learn in a way that
generalises well. However, this hypothesis is not
without controversy. Rohde and Plaut (1999) found
that networks trained on complex sentences from
the start performed better than those trained on sim-
pler sentences initially, contradicting the starting-
small hypothesis. They argue that previous studies
supporting the starting small hypothesis may have
terminated the training of complex networks too
early. Bengio et al. (2009) train a language model
using a curriculum learning strategy where only
spans of text containing the first 5k most frequent
words are included, then expanding to the first 10k
and so on. They find that while a random sampling
baseline initially achieves a superior loss, with suf-
ficient updates the curriculum strategy comes to a
better minimum and converges more stably.

These approaches have in common that they
gradually reveal more and more of the dataset. An
alternative approach is a single-phase curriculum
where the input data is sorted by some criterion
and then presented to the model in a fixed ordering.
The model goes through the curriculum once, and
does not revisit simpler data once it transitions to
more complex data. The success of the single phase
approach depends heavily on how complexity is de-
fined, and has shown dubious results when applied
to NLP (Campos, 2021; Surkov et al., 2022). Even
under a developmentally plausible setting, the effi-
cacy of the single phase approach has been shown
to be mixed (Huebner et al., 2021).

3 BabyBERTa

3.1 Model and Training Details

The baseline model architecture we use in this work
is an adaptation of BabyBERTa (Huebner et al.,
2021). BabyBERTa is a variant of RoBERTa (Liu
et al., 2019), with a few key differences:
No Unmasking: RoBERTa had used unmasking

to minimise the disparity between pre-training
and fine-tuning (where no mask tokens are
used). Instead, BabyBERTa prioritises the
finding that removing unmasking substantially

improves model grammar acquisition.
No length truncation: Sequences which exceed

the max length set in BabyBERTa are ex-
cluded instead of truncated. This ensures the
model is only provided with whole utterances
that correspond to a coherent linguistic unit.

Smaller Size: BabyBERTa is both shallower
(fewer layers) and narrower (lower hidden
and feed-forward size) than the original
RoBERTa.

Training Data and Vocab Size: BabyBERTa is
pre-trained on child directed speech and uses
a substantially smaller vocabulary size in or-
der to mimic that of a 6-year-old (theorised to
be roughly 6k words).

We adopt this architecture for use in our paper with
some alterations:

Increased Vocabulary: The BabyLM training
corpora consist of more diverse data than
AO-Childes, and encompass a wider range
of developmental complexity. Consequently,
a greater vocabulary size may be beneficial.
We performed a grid search over vocabulary
sizes 10k, 20k, 30k, 40k and 50k and found
30k to be optimal.

Increased Width: We double the hidden size
and feed-forward network dimension of the
original BabyBERTa from 256 to 512 and
1024 to 2048 respectively. These changes
yielded slight improvements in BLiMP perfor-
mance, but without them the model performed
substantially worse on NLI tasks than the
RoBERTa baseline provided for the challenge.
However, increased width yields only minimal
improvements in terms of grammar acquisi-
tion. We tested increasing the depth of the
model (more layers), but found this yielded
no improvements within the pre-training step
budget we had available, neither did increas-
ing the number of attention heads.

Our remaining model parameters are the defaults
for RoBERTa from the transformer’s library (Wolf
et al., 2019). We use relative key query positional
embeddings and set our max sequence length dur-
ing training to 128 for efficiency reasons, and fol-
low the no-truncation strategy. We set the learn-
ing rate to 1e-5 and the max number of steps to
120k using batch size 128. Unless stated other-
wise, all our experiments utilise these same hyper-
parameters. We utilise dynamic masking as with
the original RoBERTa, and no unmasking follow-
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ing BabyBERTa in all cases without exception.
While the latter choice may impact downstream
performance in the fine-tuning tasks, the focus of
this paper is largely on grammar acquisition as mea-
sured by the zero-shot evaluation suite and here
removing unmasking proved beneficial.

4 Sequence Complexity Curricula

Our first point of investigation was to examine
whether we could use sequence complexity based
curricula to improve grammar acquisition. In the
original BabyBERTa paper, the authors found that
training on AO-Childes in its original ordering
(which corresponds to age ordering, hence AO) led
to better grammar acquisition than the reverse, but
failed to outperform a random sampling baseline.
They attribute this failure to a lack of vocabulary di-
versity in each batch when using age ordering. By
contrast, the BabyLM pre-training corpora exhibit
varying complexities (AO-Childes or Open Subti-
tles are on average much simpler than Wikipedia,
see Figure 2), as well as variance in complexity
within the corpora. Consequently, we hypothesised
that we may be able to scaffold learning by present-
ing sequences to the model in order of complexity,
while mitigating the potential issue of vocabulary
and domain diversity by drawing these sequences
from across all the source corpora.

4.1 Curriculum Types

We tested three kinds of curricula using different
measures for complexity. As we were submitting
to the strict small track, we only used sequence
complexity metrics that could be easily inferred
from the raw data. We call lines of the corpora
‘sequences’ for lack of a better term. Each corre-
sponds to a linguistically coherent unit, but they
can vary from short transcribed utterances to full
articles. It is likely that better curricula can be
created by using more complex and linguistically
motivated metrics, but without the use of external
resources this is difficult to achieve. The three
types we tried are:
Entropy: Entropy favours highly likely sequences,

but penalises based on length. This should
order data such that the most likely shortest
sequences appear first, allowing the model to
learn simple local dependencies before mov-
ing to more complex data.

Unigram Probability: Orders sequences by the
average unigram probability of their tokens.

This is similar to entropy, except without pe-
nalising length directly. The idea here is that
the model can learn good representations for
highly likely tokens first and use that to inform
its decision around more complicated/rarer to-
kens later down the line. The approach is
similar to that of Bengio et al. (2009).

Block: Introduced by Nagatsuka et al. (2021) in
the block curriculum, block size is increased
during the course of training. This allows the
model to first learn to optimise local dependen-
cies before moving to longer range ones. The
block curriculum differs from the other two
in that each stage of learning does not present
a subset of sequences, but rather is over the
entirety of data in all the corpora, with each
stage providing a greater context window for
the model to consider. Secondly, by utilis-
ing blocks, each input consists of a span of
tokens rather than a linguistically coherent
unit like a transcribed utterance or article, and
can include segments that represent partial
units both at the start or end of a block. This
means that the model must learn to identify
the boundaries between coherent units during
training, which may be a burden.

4.2 Creation

We first tokenised all sequences using the model’s
tokeniser, then calculated probabilities for each
token using MLE, and scored each sequence, and
subsequently re-ranked the data. The re-ranked
sequence were then divided into different stages, by
chunking according to rank. We used 4 stages for
all curricula, with each stage containing a roughly
equal number of sequences. Increasing this number
did not yield significant improvements.

In the original block curriculum Nagatsuka et al.
(2021) use block sizes 64, 128, 256 and 512, with
the maximum batch size that could fit on their GPU
at each step. We adopt this approach, but following
initial findings that significantly smaller block sizes
proved more beneficial than larger ones (potentially
as a result of us limiting the max number of steps
to 120k to enforce consistency across experiments),
we instead switched to block sizes 16, 32, 64, 128.

In some preliminary training runs, we tested both
the single phase and starting small approaches to
curriculum learning. The single phase approach
proved significantly inferior and exhibited a ten-
dency towards catastrophic forgetting. Instead, we
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Figure 1: Zero-shot performance for curricula vs.
random-sampling baseline with training (over 3 seeds).

Figure 2: Heatmap ranking of the BabyLM Strict Small
training corpora according to complexity measures.

used the following strategy: Each stage introduces
new data for training, and the model is trained on
the data in the current stage concatenated with that
of all stages seen prior. This approach worked best
for us. Each stage was trained on for 30k steps, to-
talling a combined 120k. As a baseline, we trained
using random sampling over the whole data, also
for 120k steps.

4.3 Summary

Figure 1 shows results. None of the curricula
were able to outperform a baseline measure of sim-
ply sampling random sequences from the concate-
nation of all the datasets. Though the sequence
complexity based curricula showed improvement
throughout training, the block curriculum got worse
with each stage. This raised two follow-up ques-
tions for us. First, what causes the random sam-
pling baseline to do so well? Second, is using
blocks as inputs rather than sequences causing the
block curriculum to fail, or some other factor 1?

5 Investigating Random Sampling

Why might random sampling be successful? Let
us begin by examining how we present our data.

1The large variance exhibited by the block curriculum
suggests significantly more steps would be needed to perform
well.

Figure 3: Distribution of line counts across the ten lan-
guage corpora, with each line treated as a unique se-
quence. The percentages represent the proportion of
total lines that each individual corpus contributes to the
overall dataset.

In terms of number of tokens, the BabyLM pre-
training corpora are roughly equally divided be-
tween the source modalities: text and (transcribed)
speech. Though there is a slight weighting in favour
of speech, which comprises 56% of total tokens.
Now let us contrast this with the relative complex-
ity of each corpus (see Figure 2). We can see that
the speech corpora on average, across all metrics,
contain far simpler language than the text corpora.
Secondly, as we were submitting to the strict small
track we do not perform any augmentation on the
data, including sentence tokenisation. This means
that the random sampling baseline takes as input
lines from each corpus. If we examine the distribu-
tion of number of lines between corpora, we find a
very different division compared with the number
of tokens. Figure 3 shows the breakdown. Look-
ing at the number of lines, the balance between
transcribed speech and text data becomes highly
unequal, with transcribed speech now comprising
a total of 80% of all examples. Secondly, the two
corpora which contain on average the simplest lan-
guage (AO-Childes and Open-Subtitles) represent
59.8% of all lines, and these may be responsible
for driving the majority of grammar acquisition.
If this is the case, then it may explain the perfor-
mance of the random sampling baseline, as it is
more likely to see sequences from these two cor-
pora than any others, while still being provided
a degree of diverse examples in each batch. By
contrast, when the input is treated as blocks rather
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Figure 4: By-task breakdown of zero-shot performance
when input data is either a linguistically coherent se-
quence or a block. Results averaged over 3 seeds.

than lines, the balance between speech and text
inputs corresponds to the proportion of number of
tokens. Alternatively, it may simply be that training
on blocks requires more steps so that the model can
identify linguistically coherent units.

To test this hypothesis, we train on both mod-
els, taking either blocks or lines from the corpora
(henceforth referred to as sequences) as input. We
train for an equal number of steps (120k). We re-
port results for block size 32, as when trained for
the full number of steps, this worked best out of all
the variations tested in the block curriculum.

5.1 Summary

Even when trained for a greater number of steps we
find that sequences as input still quite substantially
outperform blocks. Results are shown in Figure 4
and Table 1. The only exception is on the held out
tasks, however, this is due to the block variant of
the model essentially having random accuracy on
the QA congruence tasks (close to 50%) while the
sequences variants appear to have learned to solve
the easy tasks, but fail at the hard ones (see Table 7
for full results by for each task).

We can conclude from this that providing linguis-
tically coherent units as input is beneficial for over-
all efficient grammar acquisition, despite the fact
that the model is disproportionately being exposed
to speech data, and therefore only a subset of the
overall tokens throughout pre-training. However,
we still need to disentangle whether it is speech
that is driving this effect or the fact that the model
is being presented linguistically coherent units.

Table 1: By-task breakdown of zero-shot performance
between models utilising random sampling strategies
where inputs are either linguistically coherent sequences
or blocks. Results averaged over 3 seeds.

Tasks Blocks Sequences

Original 65.98 ± 1.02 73.11 ± 0.89
Held Out 59.59 ± 0.6 56.45 ± 0.88
Overall 64.1 ± 0.2 68.21 ± 0.23

Figure 5: Zero-shot performance by step when the
model is trained on either the transcribed speech or
text portions of the pre-training corpora (over 3 seeds).

6 Speech vs Text

6.1 Efficient Acquisition by Modality

Prior work examining the impact of pre-training
on AO-Childes (Huebner et al., 2021; Mueller and
Linzen, 2023) has shown that utilising this simpler
form of language enables more efficient acquisition
of grammatical knowledge and encourages a bias
towards hierarchical generalisation in transformer
language models. As such, it is not improbable that
simply over exposing the model to simpler data
such as speech may be driving performance. To
test this, we perform two ablations. First, we assess
the impact of training on only one source modality
for an equal, but reduced, number of steps to assess
whether one provides a better starting point for ac-
quisition. This instance actually in some respects
favours the textual data, which contains longer se-
quences and therefore should provide more signal
per step, as each input will contain more masks
and contexts while still representing a linguistically
coherent unit. Figure 5 shows results on the first
comparing the two modalities when trained for 40k
steps each. Training on transcribed speech con-
sistently outperforms training on text alone, and
leads to more stable improvements than just text.
Indicating that it is a better starting point.
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Table 2: Comparison of Ordering Effects Given Source
Modality. Results averaged across 3 seeds.

Training Data Original Held Out Overall

Speech→ Speech+Text 72.99 ± 0.53 56.26 ± 1.3 67.74 ± 0.77
Text→ Speech+Text 71.69 ± 0.6 53.77 ± 2.78 66.42 ± 1.2

Speech+Text 73.11 ± 0.89 56.45 ± 0.88 68.21 ± 0.52

6.2 Speech Data as a Foundation
As a second follow-up investigation, we once again
trained on two different settings. In the first we
train on speech first and then the concatenation of
text and speech for 60k steps respectively. This is
to check whether we can build a foundation from
speech data alone, and then transition to includ-
ing both modalities. However, here text data only
occupies 10% of the overall proportion of inputs,
and is only observed in the later stages of train-
ing. As a control, we also try the inverse, starting
with text first and then transitioning to the concate-
nation of all the corpora, this means that the text
data now provides 60% of all the total inputs and
speech is only introduced once the model later in
training, no longer acting as a foundation. Results
are in Table 2. Further, weighting things towards
speech improves over the text control on the origi-
nal BLiMP tasks, and secondly makes performance
indistinguishable from random sampling if we ac-
count for standard deviation overlap. The only area
where this does not hold is in the held out tasks.

6.3 Summary
We find that transcribed speech leads to improved
BLiMP performance and lower variance compared
with text only data. Based on this finding, we in-
vestigated whether we could design a simple two
stage curriculum where we first train the model on
speech only and then transfer to the full dataset.
Under this setting, performance is roughly equal
to random sampling, and shows some very slight
improvements compared to the reverse curriculum.
This is despite the fact that the model is only ex-
posed to the≈ 50% of total tokens contained in the
text portion in the latter half of training.

7 Corpora Complexity Curricula

Having found that speech data can provide a bet-
ter foundation than text, and that over exposure
may be behind the random sampling baselines per-
formance, we conduct a follow-up investigation.
How much exposure to more complex data is nec-
essary in order to achieve grammar acquisition?
To probe this question, we use the same strategy

Figure 6: Proportion of total inputs comprised by each
of the corpora using the corpus complexity curriculum.

for our curriculum by training on a stage and the
concatenation of all previous stages. This time we
define our ordering using the average rank across
our various corpus complexity measures as shown
in Figure 2. So our ordering starts with AO-Childes
and ends with Wikipedia. The curriculum is simply
the corpus complexity ordering, with two caveats.
We treat BNC spoken and switchboard as one cor-
pus, as switchboard is too small to warrant a new
stage. We also do the same for CBT and children’s
stories, as they are very similar in terms of com-
plexity. Using this form of curriculum further in-
creases the model’s exposure to simple data, with
AO-Childes and Open Subtitles now representing
72.2% of all total training examples, compared
with 59.8% before, and Wikipedia representing
only 0.3% (see Figure 6). We again implement the
reverse curriculum as a control measure, starting
with Wikipedia and finishing with AO-Childes, and
compare results to the random sampling baseline
(see Table 3). The simple to complex curriculum
yields marginally better results overall compared
to the random sampling baseline, and the gap with
the reverse curriculum is wider here than for the
previous speech versus text curriculum.

However, the marginality of the increase com-
pared to the random sampling baseline makes it

Table 3: Comparison of performance by corpora com-
plexity ordering. Results averaged across 3 seeds.

Training Data Original Held Out Overall

Simple→ Complex 74.14 ± 0.39 55.9 ± 0.74 68.77 ± 0.04
Complex→ Simple 71.89 ± 0.9 54.29 ± 2.74 66.72 ± 0.42

Random Sampling 73.11 ± 0.89 56.45 ± 0.88 68.21 ± 0.52
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Table 4: Control Dataset Statistics

Name Tokens % Input % Curriculum Input %

AO-Childes 4% 15.8% 26%
CBT 50% 51.8% 56%
Wikipedia 46% 32.4% 18%

difficult to make any strong claims regarding the ef-
fect of ordering. We wondered if this was because
the BabyLM training data is already favourable for
grammar acquisition and weighted towards speech,
and whether we would observe greater benefits over
random sampling in a setting where the data did
not have these properties.

7.1 Summary
We wanted to test whether we could design a cur-
riculum based on the complexity of the various
pre-training corpora (see Figure 2). We find that
following this approach led to improvements over
the reverse, especially on the original set of BLiMP
tasks, but failed to show a significant difference
over random sampling. We hypothesise that this
due to AO-Childes and Open Subtitles, two of the
most high utility corpora for grammar acquisition,
already making up a large percentage of inputs in
the random-sampling setting. Thus, the introduc-
tion of a curriculum may have little impact.

8 Control Dataset

To test whether complexity ordering helped more
when the training data was less optimal, we created
a new dataset. It consists of the AO-Childes portion
of BabyLM 10M, and the CBT and Wikipedia por-
tions of BabyLM 100M, representing the simplest,
middle, and most complex corpora respectively.
We set max sequence length to 512 to allow train-
ing on as much of the data as possible. Combined,
these three corpora have approximately 10 million
tokens (similar to the ‘strict-small’ track), but with
the vast majority of these coming from text data.
It also means that the number of inputs that come
from simpler, more beneficial data is reduced. De-
scriptive statistics can be found in Table 4.

We train a new tokeniser on the data, and then
compare results between a random sampling base-

Table 5: Control Dataset Results on Zero-shot Tasks.
Results averaged across 3 seeds.

Training Data Original Held Out Overall

Simple→ Complex 72.18 ± 0.88 55.52 ± 1.08 67.28 ± 0.52
Random Sampling 70.77 ± 0.37 55.88 ± 1.11 66.38 ± 0.1

Figure 7: Zero-shot performance by step when the
model is trained using the curriculum or random sam-
pling on our control dataset (over 3 seeds).

Figure 8: By-task breakdown of zero-shot performance
on the control dataset curriculum vs random sampling.
Results averaged across 3 seeds.

line and corpus complexity curriculum approach
described in the previous section. Both versions
are trained for 120k steps, but we had to lower the
batch size to 64 due to GPU memory constraints
with longer sequences. Results are in Table 5, and
a plot of the by task scores can be found in Fig-
ure 8. Under this setting, the curriculum approach
begins to demonstrate modest, but visible improve-
ments over random sampling, though this does not
extend to the held out tasks. Figure 7 shows the
performances patterns as the number of steps in-
creases. The curriculum consistently offers slight
improvements over random sampling.

9 Summary

We wanted to test whether curriculum learning
can be beneficial in a scenario where the majority
of data is not high utility, i.e., simple transcribed
speech. To do so, we created a control corpus
where the majority of data comes from long form
text. Under this setting, we find a slight, but dis-
cernable improvement from using the curriculum.
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10 Conclusion

We began our exploration by attempting to design a
learning curriculum to further grammar acquisition
for the BabyLM strict-small track. We found that
when the majority of the data is high-utility, as is
the case here, curriculum learning shows no sub-
stantial benefits. However, such training data is not
always available or may be dwarfed by the number
of tokens of low utility data available. In these
settings—common for pre-training NLP models—
our results indicate some promise in starting small
after all. However, extensive further experimenta-
tion, most likely requiring larger scale corpora, is
necessary to properly test and verify this claim.

11 Limitations

The work presented in this paper represents an ini-
tial foray into starting-small-style learning. There
are a number of extensions and further questions
one could ask, building upon the work presented
here, that could help shine further light on the nu-
ances of this style of learning.

• Although the control-dataset experiments in
Section 8 show better performance when start-
ing small compared to random sampling, we
don’t yet definitively discount that starting
large in the same setting does not achieve the
same results. This could be remedied by con-
structing a careful ‘complementary’ large-to-
small-complexity curriculum.

• Given our training regime, for both random
sampling and corpus curricula, on both the
original data and the control, we don’t know
if the eventual trends over training will resem-
ble that reported by Rohde and Plaut (1999)
or that of Bengio et al. (2009). We could ex-
plore this by attempting to train over longer
horizons to see if a comparable trend emerges.

• In our submission for the competition, we
used an additional technique: layer stacking
(Gong et al., 2019), which involved progres-
sively growing the model as we advanced
through the curriculum (following Elman
(1993)). The hypothesis was that we would be
starting small in two ways: from simple data
and/or a simple model. This yielded some
slight improvements over only using the cor-
pora curriculum over the entirety of the strict-
small training data, which had been our previ-
ous best scoring model. We do not yet have a
complete picture of how layer-stacking affects

all the various training regimes discussed in
this manuscript, and hence only describe the
basic algorithm in the appendix A.

• Follow on work could probe how much of a
token disparity can be tolerated before loseing
the benefits of starting small from transcribed
speech. This could be, for example, replacing
CBT with a larger proportion of Wikipedia;
e.g. Wiki-103 (Merity et al., 2016).

12 Full Results

While our focus here has been grammar acquisition,
we present results on all tasks in Table 6. We per-
form favourably compared to the official RoBERTa
baseline for the challenge, but one area shows a
notable disparity—MSGS tasks (Warstadt et al.,
2020) measuring syntactic category. This may be
because our model is too shallow (RoBERTa base
has 12 layers vs. our 8).

Table 6: Full results from Dynabench for our submission
vs. the official RoBERTa baseline for the challenge.

Task Ours RoBERTa Base

Anaphor Agreement 84 82
Argument Struct 70 67
Binding 69 67
Control R 70 68
DN Agreement 92 91
Ellipsis 77 76
Filler Gap 76 64
Irregular Forms 87 87
Island Effects 42 40
NPI Licensing 65 56
Quantifiers 78 71
SV Agreement 77 66
Hypernym 45 49
QA Cong Easy 69 31
QA Cong Hard 33 32
SA Inversion 77 72
Turn Taking 57 53

CoLA 32 26
SST-2 87 87
MRPC 79 79
QQP 82 74
MNLI 73 73
MNLI-MM 74 74
QNLI 78 77
RTE 49 62
BoolQ 62 66
MultiRC 60 61
WSC 61 61

CR 0.73 0.43
LC 1.0 1.0
MV 1.0 0.98
RP 0.84 0.94
SC 0.16 0.86
CR_LC -0.58 -0.28
CR_RTP -0.92 -0.77
MV_LC -1.0 -0.99
MV_RTP -0.26 -0.79
SC_LC -0.43 0.16
SC_RP -0.59 -0.45
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Appendices

A Layer Stacking

We grew our model during training by adding a
layer when we reached each new stage of our cur-
riculum. We cloned the existing uppermost layer at
the beginning of each new stage of our curriculum,
then stacked that layer on top of the existing layers
of our model. Our model then proceeds to learn
from our new mix of datasets for the new stage
of the curriculum, with the uppermost layer most
responsive to the newly revealed datasets in our
curriculum. In this way we progressed from 1 to 8
layers over the course of our training regime.

Figure 9: Our learning curriculum exposes our model
to additional datasets stage-by-stage as it progresses
through our training regime.

B Full Results Table

Table 7: Sequence vs block input performance on zero-shot tasks. Results are averaged across three random seeds. 4

Model Anaphor A Argument S Binding Control R Det Noun A Ellipsis Filler Gap Irregular Forms Island Effects

Sequences 86.78 70.84 68.58 66.60 92.31 74.12 74.20 89.47 42.91
Blocks 86.39 63.59 65.36 63.66 80.91 73.81 67.19 77.89 39.08

Model Npi Licensing Quantifiers Subj Verb A Hypernym QA Con Easy QA Con hard Subj Aux Inv Turn Taking Score

Sequences 58.97 76.06 76.52 49.19 65.63 29.90 81.21 56.31 68.21
Blocks 43.85 68.20 61.81 48.22 64.06 49.50 76.99 59.17 64.01
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Abstract

This paper focuses on enhancing the perfor-
mance of GPT-2, pre-trained on the BabyLM
Strict-Small challenge datasets, for the BLiMP
zero-shot tasks. We explored various curricu-
lum learning optimizations to supervise the or-
der of training samples presented to the model.
We discovered that training GPT-2 on a cor-
pus consisting of one dataset sorted based on
difficulty leads to improved BLiMP scores. Ad-
ditionally, we measured the loss of contextual
information by comparing the semantic simi-
larity of neighboring sentences before and after
reordering inputs of each dataset. A positive
correlation is found between the measured con-
textual similarity of sentences in the difficulty-
sorted dataset and the BLiMP performance of
the model trained on the rearranged dataset. We
conclude that reordering sentences based on
difficulty while minimizing the loss of contex-
tual and semantic similarity between sentences
that follow each other in a context length can
enhance the model’s performance. Using this
approach we trained a model with an average
of 75.77% across all BLiMP’s tasks. Addition-
ally, data cleaning using ASR further enhanced
the model performance on BLiMP to 75.84%,
an improvement of over 6% compared to the
baselines released for the BabyLM Strict-Small
challenge.

1 Introduction

Language models have shown significant progress
in natural language processing tasks, but their
performance heavily relies on the diversity and
quality of large-scale training data. This paper
aims to enhance the performance of language mod-
els trained exclusively on the datasets from the
BabyLM Strict-Small challenge (Warstadt et al.,
2023). We evaluate the models using the aver-
age across all BLiMP’s zero-shot tasks, which as-
sess language models’ knowledge of major English
grammatical phenomena (Warstadt et al., 2020).

The reason we exclusively relied on BLiMP re-
sults to optimize the performance of our models
is that other evaluation tasks within the BabyLM
evaluation pipeline, like (Super)GLUE and held-
out MSGS tasks, require fine-tuning the model and
demand more computational resources than we had
available.

In this paper, we attempt to optimize the per-
formance of language models on the BLiMP eval-
uation by using heuristics inspired by difficulty
metrics proposed in Competence-based Curricu-
lum Learning (Platanios et al., 2019) to reorder
sentences in the datasets and remove semantically
meaningless inputs. As a result, we achieved an im-
provement of over 6 percent on BLiMP compared
to the baseline results released for the BabyLM
Strict-Small track (Table 1).

We first manually analyzed the training data to
gain a better understanding of the training data. The
analysis revealed the sentences in the gutenberg
dataset were fragmented across lines. This frag-
mentation could disrupt the intrinsic structure and
the contextual information provided by each sen-
tence during training, as irrelevant fragments would
follow each other in a single context length due
to the shuffling of training samples at each train-
ing epoch. To rectify this, we preprocessed the
gutenberg dataset by merging subsegments of
each sentence into a coherent sentence printed in
one line (Table 1).

We then attempted to optimize the use of lim-
ited training samples by supervising the order of
samples presented to the model using Curriculum
Learning (CL) and Competence-based Curriculum
Learning. These methods involve starting the train-
ing of the model with simpler examples and grad-
ually introducing harder ones. In Competence-
based CL, the training corpus is constructed us-
ing the competence function which samples from
the difficulty-sorted training inputs based on the
competence of the model at time t compared to
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Baselines BLiMP
OPT-125 - BabyLM baseline 62.63%

RoBERTa-base - BabyLM baseline 69.47%
T5-base - BabyLM baseline 58.83%

GPT-2 - gutenberg not merged 73.40%
GPT-2 - gutenberg merged 75.05%

Table 1: The BLiMP evaluation results comparing
the baselines released for the BabyLM Strict-Small
challenge and our baseline GPT-2 models. GPT-2
gutenberg not merged is trained on all raw datasets in
the Strict-Small track, and GPT-2 - gutenberg merged
model is trained on 9 unchanged datasets and the prepro-
cessed gutenberg dataset, where sentences are merged
into a single line.

the competence of the model at convergence time.
Using this method leads to an overrepresentation of
shorter sentences (which are sorted as easier using
length-dependent difficulty metrics such as sen-
tence length (SL) or sentence rarity (SR) suggested
in Platanios et al. (2019)) in the training corpus.
Shorter sentences tend to contain more grammati-
cal errors in the BabyLM datasets, as these datasets
consist largely of spoken language sentences. We
hypothesize this could result in suboptimal results
on BLiMP when implementing Competence-based
CL optimizations. To address this, we proposed
a novel length-independent difficulty metric, av-
erage sentence rarity (ASR), calculated by taking
the average frequency of words in a sentence to
determine the singular score for the difficulty of
the sentence.

We hypothesize that when using CL optimiza-
tions, the performance of the model is also neg-
atively impacted because the contextual informa-
tion provided by neighboring sentences is disrupted
when reordering sentences based on difficulty. To
tackle the loss of contextual information, we nar-
row our focus to a smaller optimization problem,
supervising the order of sentences within a con-
text length rather than the order of all sentences in
the training corpus, as determined by the compe-
tence function. To measure contextual information
provided by nearby sentences, we propose a new
heuristic, local coherence, calculated by quantify-
ing the similarity between a central sentence and its
adjacent ones using sup-simcse-roberta-large
model (Gao et al., 2021) within a specific window
of seven inputs. The size of this window is deter-
mined by the average number of samples combined
into a context length after tokenization.

Excluded BLiMP
aochildes 74.40%
bnc_spoken 73.91%
cbt 74.21%
children_stories 73.36%
gutenberg 73.48%

Excluded BLiMP
open_subtitles 72.81%
qed 74.12%
simple_wikipedia 73.64%
switchboard 73.93%
wikipedia 72.70%

Table 2: BLiMP evaluation results for GPT-2 model
trained on all datasets in Strict-Small track beside the
dataset listed under the ’Excluded’ column. The sen-
tences in the gutenberg dataset are merged into one
line, and thus the baseline model for this experiment
is GPT-2 - gutenberg merged with a BLiMP score of
75.05%.

To enhance the model’s performance and inves-
tigate our hypothesis about the correlation between
the local coherence of sentences in the datasets
sorted based on difficulty and the resulting im-
provement in the language model’s performance
on BLiMP, we conducted a series of 20 experi-
ments. In these experiments, we exclusively re-
ordered sentences from one dataset based on SR or
ASR, while leaving the other 9 datasets unchanged.
Upon analyzing the results, we found a positive
correlation between the expected local coherence
of the sorted datasets and the BLiMP performance
of the models trained on the corpus compromising
of one sorted dataset. The positive correlations in-
dicate that reordering sentences based on difficulty
while minimizing the loss of contextual and seman-
tic similarity between sentences that follow each
other in a context length can enhance the model’s
performance.

We were also able to improve the model’s per-
formance with data cleaning. ASR sorts inputs
with high counts of frequent words and low counts
of other words, as easy inputs. Through man-
ual evaluation of datasets, we discovered that
these characteristics often correspond to mean-
ingless or grammatically incoherent inputs in
the 3 following datasets: cbt, gutenberg, and
bnc\_spoken. Removing these redundant inputs
from the gutenberg dataset, led to improved
BLiMP performances for the model trained on the
sorted and cleaned dataset (Table 6).

While we did achieve improvements in the
BLiMP evaluation by training models only on the
Strict-Small datasets using the described methods,
the most significant intellectual contribution of this
paper is highlighting the importance of considering
contextual and knowledge-based similarity when
reordering training inputs with any performance-
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enhancing metrics for language models. This con-
cept reflects how humans learn effectively. In
schools, subjects like math and English are not
mixed in the same class period, regardless of the
difficulty of the subjects, unless students are al-
ready proficient in both.

If we compare a context length-sized input to a
human’s attention span of 5 minutes, teaching math
to a model or human is more effective if we present
10 similar examples of arithmetic operations that
follow the same logical pattern within that 5-minute
span, rather than presenting examples of different
mathematical operations (like basic combinatorics
mixed with calculus and geometry) without any log-
ical pattern connecting the examples, even if these
examples share the same level of difficulty. There-
fore, in curriculum learning for language models,
we argue that sentences that are presented together
within a context length should be semantically and
contextually similar beyond having the same level
of difficulty.

2 Model Architecture & Training Loop

To identify the optimal base model architecture
for our experiments, we trained BERT(Devlin
et al., 2018), RoBERTa(Liu et al., 2019), and GPT-
2(Radford et al., 2019) on the given datasets, ad-
hering to the conventional guidelines for language
model training, and utilizing identical hyperparam-
eters, without any extra optimizations. Our results
revealed that GPT-2 not only converged at a faster
rate but also marginally outperformed the other
models in the BLiMP evaluation. Consequently,
we selected GPT-2 as the base model architecture
for all our following experiments.

The GPT2 models were trained for six epochs,
with convergence typically occurring around the
fifth epoch. Throughout the training process, we
assessed the models on the evaluation dataset every
500 steps, with the gradient accumulation set to 1.
We then selected the best checkpoint based on the
evaluation loss to assess with BLiMP evaluation.
For all experiments, we utilized the DataLoader
function to load data in batches of size 64. We set
the shuffle boolean to True, which rearranges the
indices of all samples at each epoch for the baseline
experiments and the ablation experiments (results
in Table 2) that did not involve reordering the data.

The data preparation process involved reading
each line of the dataset files as a separate sample.
We then joined all the tokenized samples in a batch

with an eos_token_id token in between and then
divided the concatenated samples into sequences
of size context-length. During experiments that in-
volved sorting the sentences based on difficulty, we
eliminated any duplicated inputs from the dataset.
We used the preprocessed gutenberg dataset, with
sentence fragments merged into one line, as our
baseline gutenberg dataset for all the experiments
besides GPT-2 gutenberg not merged (Table 1).

In our experimental setup, we tested our base-
line model using different context length sizes. We
observed that a context length of 64 resulted in a
decline in the model’s performance on BLiMP. On
the other hand, context lengths of 512 and 256 did
not yield any performance improvements over a
context length of 128. However, they significantly
increased the GPU memory usage and extended
the training time. Consequently, we chose a con-
text length of 128, the smallest size that did not
adversely affect the model’s performance, for all
subsequent experiments.

We repeated a subset of baseline experiments
multiple times to understand the effect of random-
ness on the outcome of experiments. The limited
volume of data used to train our models introduces
an inherent instability in the training process, re-
sulting in some variation in the BLiMP evaluation
results. We observed a variance of up to 0.6% in the
experiments with the same setup when altering the
seed before instantiating the model. To neutralize
the randomness effect and ensure a valid compari-
son of different optimizations, we standardized the
seed value to 1 for all the experiments discussed in
this paper.

3 Dataset Analysis

In order to gain a better understanding of the train-
ing data, we conducted a manual analysis of the
datasets. This examination revealed that the sen-
tences in the Gutenberg dataset were fragmented
across multiple lines. Given that each line is read
as a separate sample in our baseline training loop,
shuffling the sample indices results in unrelated
sentence segments following one another in a con-
text length. This disrupts the inherent structure of
the sentences and interrupts the contextual infor-
mation provided by the surrounding words when
learning word embeddings during training.

To address this issue, we preprocessed the Guten-
berg dataset by consolidating subsegments of each
sentence into a single, coherent sentence printed
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in one line. This modification led to an improve-
ment of over 1.6% percent in the model’s BLiMP
evaluation results compared to the baseline (Table
1). This notable enhancement over the baseline,
achieved through a straightforward preprocessing
step, highlights the importance of maintaining the
contextual information provided by the surround-
ing sentences when feeding the training data to the
model.

To evaluate the influence of each dataset on
the model’s performance during the BLiMP as-
sessment, we conducted an ablation study consist-
ing of 10 experiments. In each of these exper-
iments, the model was trained on nine datasets,
with one dataset being excluded in each itera-
tion (Table 2). The results show that removing
the aochildes dataset has the least influence on
the model’s performance. However, excluding
the wikipedia dataset significantly reduced the
model’s BLiMP score. A comparison between sen-
tences in the aochildes and wikipedia datasets
highlights their distinct grammatical characteris-
tics. Sentences in the aochildes dataset, which
are compiled from child-directed speech (Huebner
et al., 2021), are short, informal, and often con-
tain grammatical errors, including missing or mis-
placed pronouns and verbs. On the other hand, the
wikipedia dataset contains longer sentences that
strictly adhere to grammatical rules while avoiding
unnecessary repetition.

As BLiMP is specifically designed to assess
the sensitivity of language models to acceptabil-
ity contrasts using grammar templates (Warstadt
et al., 2020), it follows that the impact of excluding
spoken language sentences in aochildes, which
are incomplete and error-prone, on improving the
model’s performance in BLiMP evaluation is less
significant. Additionally, we can observe that
shorter sentences in the BabyLM datasets are less
effective in training the model for BLiMP evalua-
tion.

4 Curriculum Learning

To optimize the use of the limited training samples
available and improve the model’s performance,
we chose to supervise the order in which samples
are presented to the model. To this end, we imple-
mented Curriculum Learning (CL) (Bengio et al.,
2009) and Competence-based Curriculum Learn-
ing (Platanios et al., 2019). The fundamental idea
behind CL is to initiate learning with simpler ex-

Difficulty Metric BLiMP
Sentence Length 69.93%
Sentence Rarity 71.49%

Average Sentence Rarity 74.51%

Table 3: BLiMP results for competence-based CL using
different difficulty metrics. The gutenberg dataset is
preprocessed to have complete sentences in each line
before reordering the samples based on difficulty. Shuf-
fle is set to false, and the number of training epochs is 1,
as the competence function samples from the difficulty-
sorted datasets multiple times when constructing the
training corpus.

amples and gradually incorporate harder ones by
sorting the samples based on their difficulty. In
Competence-based CL, the training data is filtered
based on the estimated difficulty of the sample and
model competence.

To implement Competence-based CL, we sorted
the training samples based on the difficulty metrics
outlined in the Platanios et al. (2019): Sentence
Length (SL), which ranks samples based on length,
considering shorter samples as easier, and Sentence
Rarity (SR), which is the overall likelihood of a
sentence, incorporating both word frequency and
sentence length, with less likely or more rare sen-
tences being considered more difficult. To build the
training corpus with a supervised order of samples,
we employed the square root competence function
which determines which examples should be in-
corporated into the training corpus, based on the
competence of the model at time t of training, and
the pace at which new examples are introduced
during the training process, where the rate of new
examples added decreases over time, allowing the
learner more time to assimilate the information
(Table 3).

However, BLiMP results for models trained us-
ing SL or SR difficulty metrics were worse than
the performance achieved when training the model
on the base datasets (with gutenberg sentences
merged) without any CL optimizations. We hypoth-
esize that the sub-optimal performance is linked to
the competence function’s design and the unique at-
tributes of the BabyLM datasets. The competence
function samples more from easier sentences when
constructing the training corpus, and both SR and
SL heuristics employ sentence length as a criterion,
either implicitly or explicitly, to determine the dif-
ficulty of sentences. Consequently, this leads to
an overrepresentation of shorter sentences in the
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training data created using this competence func-
tion. Furthermore, a higher portion of the BabyLM
datasets includes transcribed speech, and shorter
spoken language sentences are often fragmented
and contain more grammatical errors due to the
spontaneous flow of the speech. Our prior obser-
vations also show a negative correlation between
sentence length and the importance of the sentence
in training the model for BLiMP evaluation. Thus,
we can deduce that the overrepresentation of short
sentences in the Competence-based CL training
dataset adversely affects the model’s performance
on BLiMP.

5 Proposed Methods

5.1 Average Sentence Rarity

Using word frequencies as a difficulty heuristic
can be helpful when training language models with
limited data. Training examples with rare words
need repeated exposure for effective learning, mak-
ing them difficult to learn (Platanios et al., 2019).
Moreover, limited data can lead to high variance
in gradients for rare word embedding due to in-
sufficient contextual information. This suggests
that word frequencies can be an effective difficulty
heuristic.

Given a corpus of M sentences, {si}Mi=1, where
each sentence is a sequence of words, si =
{wi

1, ..., w
i
Ni
}, word frequencies are defined as:

f̂(wj) ≜
M∑

i=1

Ni∑

k=1

1wi
k=wj

where j = 1, ...,, #{unique words in corpus}
and 1condition is the indicator function which is
equal to 1 if its condition is satisfied and 0 other-
wise. Here, we argue that using the product of the
unigram probabilities of word frequency counts,
which is employed to compute SR, is not an ap-
propriate strategy for aggregating word frequencies
into a singular difficulty score for sentences in the
BabyLM Corpus. This approach implicitly incor-
porates sentence length into the difficulty score, re-
sulting in shorter sentences being classified as easy
and subsequently overrepresented in the training
dataset when sampling from the difficulty-sorted
datasets with the competence function. Instead, we
propose using the average of the word frequencies
as the singular score for sentence difficulty. This
ensures that the difficulty metric is independent
of sentence length. We thus propose the average

sentence rarity difficulty heuristic:

davg_rarity(si) ≜
−1

Ni

Ni∑

k=1

f̂(wj)

For the easier sentences to receive a higher score us-
ing this metric, we incorporate the −1 factor in our
difficulty metric. Implementing this difficulty met-
ric along with the competence function to construct
the training corpus led to a performance increase
of over 3% on BLiMP, reaching 74.51% (Table 3).

5.2 Local Coherence

There is semantic similarity between consecutive
sentences that convey information about the same
concept. For instance, sentences from a Wikipedia
article on engines are more similar compared to
sentences from a conversation between parents and
children about lunch. Therefore, adjacent sentences
encoding the same concept tend to be more seman-
tically similar. This semantic coherence between
adjacent sentences is preserved when sentences
from a dataset are in their original order. However,
reordering sentences based on difficulty metrics
can disrupt the semantic distribution of nearby sen-
tences.

Learning contextualized word embeddings heav-
ily relies on the sequence of words presented to-
gether within a context length. We hypothesize
that the inferior performance of models developed
using Competence-based CL optimizations, in com-
parison to baselines achieved with simple prepro-
cessing steps, is likely due to the language model’s
inability to capture important context encoded by
nearby sentences. This is because as a consequence
of reordering sentences based on difficulty metrics,
sentences are followed by others that are gram-
matically and semantically different, potentially
sampled from other datasets, and encoding a com-
pletely different concept.

The objective here is to reorder sentences based
on difficulty in a manner that minimizes the loss
of contextual information encoded by nearby se-
mantically similar sentences, to enhance model
performance. To achieve this, we diverge from the
competence algorithm proposed, which controls
the order of all sentences that the model sees during
training. Instead, we focus on a smaller-scale opti-
mization problem by supervising the sequence of
sentences that follow each other within a given con-
text length. The order of sentences grouped at the
context length level has a significant impact on the
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Figure 1: Frequency of context length size samples
that are a merge of x number of tokenized inputs in
the BabyLM datasets. The average number of merged
inputs in a context length is 8.512. However, for the
80% longer portion of inputs, the average is 6.55.

model’s performance, because, due to the shorter
length of sentences in the BabyLM datasets, an av-
erage of 8 sentences are grouped within a context
length of 128 tokens when using the concatenation
algorithm to merge tokenized inputs (Figure 1).

To assess the extent of contextual informa-
tion that is lost during sentence reordering, we
use local coherence as a heuristic. This metric
quantifies the pair-wise contextual similarity be-
tween a central sentence and its adjacent sentences
within a window of seven sentences, as measured
by sup-simcse-roberta-large, a model specifi-
cally designed to produce contextualized sentence
embeddings (Gao et al., 2021). It’s important to
note that this measurement, produced by a pre-
trained Roberta model, is completely independent
of the training process of our models. We define
local coherence for sentence si as:

c(si) ≜
1

6

3∑

k=−3
k ̸=0

sim(si, si+k)

Where sim(si, sj) is the cosine similarity be-
tween the sentence embeddings encoded for si and
sj using sup-simcse-roberta-large. To deter-
mine the size of the local similarity window, we
consider the average number of inputs concatenated
in a context length of 128, which is 8.512 for all sen-
tences in the BabyLM datasets. However, for the
subset of sentences that make up the 80% of longer
inputs, which are more influential in optimizing
the model’s performance for BLiMP, the average

number of inputs merged in a context length of 128
reduces to 6.55. Thus, we opt for a window size of
seven for this particular metric.

To unify the local coherence of individual sen-
tences into a single metric for a given corpus, we
use an average pooling function. However, due
to limited computational resources and to enhance
time efficiency, we opt for calculating the expected
local coherence of a corpus. To compute this, in-
stead of calculating the local coherence of all sen-
tences in the corpus, we take the average of the
local coherence values of 1000 randomly selected
unique sentences from each dataset in the BabyLM
Strict-Small track.

5.3 Data Cleaning With ASR

ASR sorts sentences based on the relative frequency
of the words, classifying sentences with a high con-
centration of common words as the easiest and
those with a high concentration of rare words as
the hardest. Manual evaluation of datasets sorted
using this metric indicates that sentences classified
as easy tend to lack semantic meaning and appear
fragmented in some datasets. This is expected, as
this metric ignores sentence length, and thus, sen-
tences classified as easy have few words besides
the most frequent words, which include numbers,
articles, and pronouns. This leaves limited room
for meaningful development of concepts in those
sentences. The datasets that display this pattern
most prominently are gutenberg, bnc, and cbt.
gutenberg contains thousands of lines consisting
of a few words and a long series of numbers, likely
corresponding to Project Gutenberg catalog num-
bers. These lines are isolated when the dataset is
sorted by ASR and ranked as the easiest sentences.

We found that cleaning the datasets by removing
redundant or semantically meaningless lines with
a high count of common words can improve the
model’s performance. ASR also effectively iden-
tifies meaningless inputs containing a high count
of rare words, as hard samples; however, we found
that removing such samples did not provide an
improvement in the model’s performance. This
might be because removing the limited contextual
information available for the rare words either en-
tirely erases them from the model’s vocabulary or
increases the variance in gradients of their embed-
dings, given the small size of our dataset. Alterna-
tively, removing meaningless contextual informa-
tion for high-frequency tokens from the datasets
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can be advantageous, because when learning em-
beddings for the common words, the noise intro-
duced by meaningless samples can be amplified
due to the small size of our training datasets.

When employing SR to sort inputs in the
datasets, the isolation of semantically meaningless
lines does not occur, because this metric is depen-
dent on sentence length. This difficulty metric fails
to identify inputs with a high count of frequent to-
kens and a low count of all other tokens, which is a
marker for meaningless inputs in the target datasets.
Examples classified as hard tend to be very long,
and at least segments of those sentences are coher-
ent. On the other hand, the frequency of common
words is lower compared to the frequency of other
words in the inputs classified as easy, primarily due
to the imposed short length limit for these inputs.
As a result, sentence rarity cannot be used as an
effective metric to clean these datasets.

6 Experiments

6.1 Reordering One Dataset

The primary objective of these experiments is to
enhance the performance of the language model
on BLiMP by grouping training samples with a
similar difficulty, as quantified by either SR or ASR,
in the same context length, and to measure the
loss of contextual information when sentences are
rearranged to this new order.

The BabyLM datasets are derived from various
sources, each encoding distinct conceptual informa-
tion. As a result, sentences from the same database
exhibit a higher level of grammatical and semantic
similarity. Thus, to preserve the maximum contex-
tual information when rearranging sentences, we
reorder sentences only within each dataset in this
series of experiments.

To quantify the extent of contextual information
loss following sentence reordering, we calculate
the expected local coherence of each dataset in
the Strict-Small track separately with the sentences
of the dataset in their original order and with the
sentences sorted based on either of the difficulty
metrics (Table 4). As expected, rearranging sen-
tences using either difficulty metric significantly
reduced the expected local coherence across all
datasets. When it comes to arranging sentences
with a similar context close to each other, both
metrics demonstrated comparable performance.

To assess the potential improvement of GPT-2’s
performance on the BLiMP evaluation through or-

ganizing sentences of a single dataset based on a
difficulty metric, we conducted a series of 20 exper-
iments. In each experiment, GPT-2 is trained on a
training corpus consisting of 9 unchanged datasets
concatenated with one dataset sorted based on dif-
ficulty. The model’s performance is then evaluated
on the BLiMP evaluation (Table 5). We also mea-
sure the correlation between the expected local co-
herence of the difficulty-sorted dataset and model
performance to test our hypothesis that even though
sorting inputs based on difficulty can improve per-
formance, interrupting the semantic distribution of
nearby contextual sentences can reduce the model
performance.

We observed a positive correlation between the
expected local coherence of datasets sorted by ei-
ther difficulty metric and the evaluation results of
the model on BLiMP (Figure 2). To assess the re-
lationship between these two variables, we used
Spearman’s Rank correlation coefficient. The cor-
relation coefficient between the coherence score of
datasets sorted with SR and the BLiMP score of
the models is 0.693, indicating a strong correlation.
For datasets sorted with average sentence rarity, the
coefficient is 0.559, indicating a moderate correla-
tion.

The larger correlation coefficient achieved for
datasets sorted with SR may be caused by the im-
plicit similarity in length among neighboring sen-
tences within the window of local coherence when
sentences are sorted by SA. And this similarity in
turn increases the local coherence score and BLiMP
performance of the model. This suggests that con-
sidering sentence length when sorting sentences
by difficulty is beneficial, however, it is the high
sampling frequency from shorter sentences in our
datasets, ranked as easier using SA, that reduces the
model’s performance when using the competence
function.

Out of the 20 experiments conducted, 8 re-
sulted in an improvement in the BLiMP evalua-
tion relative to our baseline of 75.05% achieved
by preprocessing gutenberg, and all results were
above the 73.40% BLiMP score achieved with
no optimizations. Notably, the model trained on
aochildes sorted with SA achieved a 0.72% in-
crease in BLiMP and reached a score of 75.77%.

The lower performance of certain models in this
experiment on BLiMP is most likely attributed to
the loss of significant contextual information in the
dataset during the reordering of sentences based
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Datasets

Order of Sentences aochildes bnc_spoken cbt children_stories gutenberg open_subtitles qed simple_wikipedia switchboard wikipedia

Original Order 0.303 0.228 0.227 0.326 0.307 0.204 0.240 0.348 0.249 0.400
SA 0.149 0.114 0.127 0.180 0.121 0.104 0.090 0.108 0.147 0.124

ASR 0.152 0.108 0.124 0.172 0.120 0.110 0.086 0.115 0.120 0.127

Table 4: Comparing the expected local coherence of each dataset when its sentences are in their original order to when the
sentences are sorted based on sentence rarity (SA) or average sentence rarity (ASR).

Rearranged Dataset In The Training Data

Order of Sentences aochildes bnc_spoken cbt children_stories gutenberg open_subtitles qed simple_wikipedia switchboard wikipedia

SA 75.77% 75.19% 74.64% 75.42% 75.42% 74.58% 74.54% 74.29% 74.81% 75.48%
ASR 74.85% 75.37% 75.59% 75.40% 74.71% 74.69% 74.11% 74.32% 74.88% 74.74%

Table 5: BLiMP results for models trained on the BabyLM Strict Small Corpus with one dataset sorted based on SA or ASR.

on difficulty. This is evident from the positive cor-
relation between the local coherence score of the
dataset and the model’s performance on BLiMP,
which suggests that models that achieved lower
performance on BLiMP were trained on datasets
with higher contextual information loss.

The loss of contextual information may also
be attributed to higher subject variance in certain
datasets. In that case, to improve the preservation
of local contextual information, it may be benefi-
cial to sort sentences at a sub-dataset level. For
instance, rearranging sentences from only a single
story in the children\_stories dataset instead of
rearranging all sentences in the dataset could poten-
tially lead to better results. Furthermore, to enhance
the model’s performance on these datasets, it may
be essential to implement a larger-scale supervi-
sion of the sentence order. This can be achieved
through the development of a difficulty metric that
considers the semantic similarity of consecutive
sentences when reordering sentences from different
datasets, leading to a minimum loss of contextual
information when sorting sentences with different
meanings and grammar styles.

6.2 Data Cleaning

In this series of experiments, we applied the previ-
ously discussed data-cleaning method to 3 datasets:
bnc, cbt, and gutenberg. To set up these ex-
periments, we initially sorted the datasets using
ASR. Next, we determined the number of lines to
eliminate from the easiest sentences in the dataset
through manual evaluation. For every 200 lines,
we assessed 10 lines and removed the preceding
200 lines if more than 1 out of the 10 lines con-
tained grammatically incoherent or semantically
meaningless sentences. Subsequently, the sorted
and cleaned dataset was concatenated with the 9

Data Cleaning with ASR ASR
Dataset BLiMP # Lines Cut BLiMP
bnc_spoken 75.53% 4600 75.37%
cbt 75.69% 800 75.59%
gutenberg 75.84% 3200 74.71%

Table 6: A comparison between the results of training GPT-2
on the training corpus consisting of one dataset cleaned and
sorted with ASR and the earlier experiment results obtained
by simply reordering the dataset with ASR. The number of
lines eliminated from the sorted dataset (after duplicates were
removed) is also stated.

base datasets to create the training corpus. We
trained a model on each corpus and evaluated their
performance using BLiMP. Table 6 compares the
results of training GPT-2 on the training corpus
composed of one dataset cleaned and sorted with
ASR with the experiment results achieved earlier
by only reordering the dataset with ASR.

By employing this method, we achieved a con-
siderable improvement in the performance of the
model trained on the cleaned gutenberg dataset.
However, the improvement achieved in the perfor-
mance of the two other models was negligible. We
believe the substantial enhancement on gutenberg
is because a higher portion of the excluded inputs
was meaningless relative to the inputs cut from the
other two datasets. The model trained on ASR
sorted and cleaned gutenberg performed the best
on BLiMP among the other models we trained and
is the model submitted for the challenge. This
model’s perplexity on the BabyLM test datasets is
54.8.

7 Conclusion and Future Work

In conclusion, the primary objective of this paper
was to enhance GPT-2’s performance on BLiMP
zero-shot tasks by pre-training the model on the
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Figure 2: The graph illustrates a positive correlation between
the expected local coherence of the sorted dataset and the
BLiMP score of the model trained on it. The Spearman’s
Rank correlation coefficient is 0.693 for datasets sorted with
SA (represented in orange) and 0.559 for those sorted with
ASR. The green line indicates the best BLiMP score obtained
without any CL optimizations, achieved by preprocessing the
gutenberg dataset.

datasets provided in the BabyLM Strict Small track.
Various difficulty metrics were explored to super-
vise the order of sentences presented to the model.
It was observed there’s a positive correlation be-
tween the BLiMP result of models trained on a
corpus comprised of one dataset sorted based on
difficulty and the contextual coherence of nearby
sentences in the rearranged dataset. Thus, Train-
ing models on a dataset sorted by difficulty with
preserved contextual coherence could lead to better
performance on BLiMP. By employing difficulty-
based sentence reordering, we trained a model
that achieved an average accuracy of 75.77% on
BLiMP’s zero-shot tasks. Additionally, we used
average sentence rarity, a length-independent sen-
tence rarity metric, to clean and sort the gutenberg
dataset, which further improved the performance
to 75.84%.

Hence, to improve curriculum learning optimiza-

tions for language models, we argue that sentences
presented together within a context length should
exhibit not only the same level of difficulty but also
semantic and contextual similarity. In our study,
we employed similarity measures to assess the con-
textual coherence of rearranged datasets after the
sentences were ordered based on word frequencies;
the semantic similarity of sentences had no impact
on the actual order of the sentences. A critical fu-
ture advancement arising from this research lies in
the development of more sophisticated difficulty
metrics that consider both the similarity among
sentences and their individual difficulty levels.

8 Limitations

No measure of grammatical similarity of sen-
tences: When assessing the correlation between
the expected local coherence of a dataset and the
performance of the model trained on the rearranged
dataset, we are considering the semantic similarity
of sentences within a context length, but using a
grammar-based evaluation to assess the model’s
performance. While we hypothesize that training
the model on difficulty-sorted datasets that have
more semantically similar sentences sequenced af-
ter each other improves the model’s overall perfor-
mance, leading to better BLiMP results, it might be
more effective to optimize for higher BLiMP scores
by evaluating the grammatical similarity of sen-
tences that follow each other. Nevertheless, there
is currently no reliable method to solely measure
the grammatical similarity of two sentences to the
best of our knowledge. Alternatively, using an eval-
uation pipeline that assesses the model’s semantic
understanding of sentences would be a good way
to compare against the received local coherence
scores. However, our available resources did not al-
low us to optimize our models using such pipelines.

Lack of scalability: Our current approaches to
enhance model performance are not scalable as re-
ordering two or more datasets did not yield any
improvement in BLiMP scores in our experiments.
This lack of scalability is the motivation behind the
investigation of the semantic similarity of sentences
that follow each other in a context length. We hy-
pothesize that although sorting a higher number
of datasets increases the number of context-length
samples where the concatenated sentences have the
same difficulty, sequencing sentences from differ-
ent sources with distinct grammar styles and se-
mantic meanings within a context length results in
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a decrease in the model’s performance. The resolu-
tion to this scalability issue lies in the development
of more advanced difficulty metrics that take into
account both the similarity between sentences and
their individual difficulty levels when reordering
the training samples.
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