Yao Huang


2025

pdf bib
Breaking the Ceiling: Exploring the Potential of Jailbreak Attacks through Expanding Strategy Space
Yao Huang | Yitong Sun | Shouwei Ruan | Yichi Zhang | Yinpeng Dong | Xingxing Wei
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Models (LLMs), despite advanced general capabilities, still suffer from numerous safety risks, especially jailbreak attacks that bypass safety protocols. Understanding these vulnerabilities through black-box jailbreak attacks, which better reflect real-world scenarios, offers critical insights into model robustness. While existing methods have shown improvements through various prompt engineering techniques, their success remains limited against safety-aligned models, overlooking a more fundamental problem: the effectiveness is inherently bounded by the predefined strategy spaces. However, expanding this space presents significant challenges in both systematically capturing essential attack patterns and efficiently navigating the increased complexity. To better explore the potential of expanding the strategy space, we address these challenges through a novel framework that decomposes jailbreak strategies into essential components based on the Elaboration Likelihood Model (ELM) theory and develops genetic-based optimization with intention evaluation mechanisms. To be striking, our experiments reveal unprecedented jailbreak capabilities by expanding the strategy space: we achieve over 90% success rate on Claude-3.5 where prior methods completely fail, while demonstrating strong cross-model transferability and surpassing specialized safeguard models in evaluation accuracy. The code is open-sourced at: https://github.com/Aries-iai/CL-GSO.

2022

pdf bib
Automatic Keyphrase Generation by Incorporating Dual Copy Mechanisms in Sequence-to-Sequence Learning
Siyu Wang | Jianhui Jiang | Yao Huang | Yin Wang
Proceedings of the 29th International Conference on Computational Linguistics

The keyphrase generation task is a challenging work that aims to generate a set of keyphrases for a piece of text. Many previous studies based on the sequence-to-sequence model were used to generate keyphrases, and they introduce a copy mechanism to achieve good results. However, we observed that most of the keyphrases are composed of some important words (seed words) in the source text, and if these words can be identified accurately and copied to create more keyphrases, the performance of the model might be improved. To address this challenge, we propose a DualCopyNet model, which introduces an additional sequence labeling layer for identifying seed words, and further copies the words for generating new keyphrases by dual copy mechanisms. Experimental results demonstrate that our model outperforms the baseline models and achieves an obvious performance improvement.