Xingshan Li


2025

pdf bib
CogSteer: Cognition-Inspired Selective Layer Intervention for Efficiently Steering Large Language Models
Xintong Wang | Jingheng Pan | Liang Ding | Longyue Wang | Longqin Jiang | Xingshan Li | Chris Biemann
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Models (LLMs) achieve remarkable performance through pretraining on extensive data. This enables efficient adaptation to diverse downstream tasks. However, the lack of interpretability in their underlying mechanisms limits the ability to effectively steer LLMs for specific applications. In this work, we investigate the intrinsic mechanisms of LLMs from a cognitive perspective using eye movement measures. Specifically, we analyze the layer-wise correlation between human cognitive indicators and LLM representations. Building on these insights, we propose a heuristic approach for selecting the optimal steering layer to modulate LLM semantics. To this end, we introduce an efficient selective layer intervention based on prominent parameter-efficient fine-tuning methods, which conventionally adjust either all layers or only the final layer. Additionally, we present an implicit layer contrastive intervention during inference to steer LLMs away from toxic outputs. Extensive experiments on natural language understanding, reasoning, and generation tasks, conducted on GPT-2, LLaMa2-7B, and Mixtral-7B, demonstrate the effectiveness and efficiency of our approach. As a model-agnostic framework, it enhances the interpretability of LLMs while improving efficiency for safe deployment.

2024

pdf bib
Probing Large Language Models from a Human Behavioral Perspective
Xintong Wang | Xiaoyu Li | Xingshan Li | Chris Biemann
Proceedings of the Workshop: Bridging Neurons and Symbols for Natural Language Processing and Knowledge Graphs Reasoning (NeusymBridge) @ LREC-COLING-2024

Large Language Models (LLMs) have emerged as dominant foundational models in modern NLP. However, the understanding of their prediction processes and internal mechanisms, such as feed-forward networks (FFN) and multi-head self-attention (MHSA), remains largely unexplored. In this work, we probe LLMs from a human behavioral perspective, correlating values from LLMs with eye-tracking measures, which are widely recognized as meaningful indicators of human reading patterns. Our findings reveal that LLMs exhibit a similar prediction pattern with humans but distinct from that of Shallow Language Models (SLMs). Moreover, with the escalation of LLM layers from the middle layers, the correlation coefficients also increase in FFN and MHSA, indicating that the logits within FFN increasingly encapsulate word semantics suitable for predicting tokens from the vocabulary.