Tao Zeng
2025
DUT_IR at SemEval-2025 Task 11: Enhancing Multi-Label Emotion Classification with an Ensemble of Pre-trained Language Models and Large Language Models
Chao Liu
|
Junliang Liu
|
Tengxiao Lv
|
Huayang Li
|
Tao Zeng
|
Ling Luo
|
Yuanyuan Sun
|
Hongfei Lin
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
In this work, we tackle the challenge of multi-label emotion classification, where a sentence can simultaneously express multiple emotions. This task is particularly difficult due to the overlapping nature of emotions and the limited context available in short texts. To address these challenges, we propose an ensemble approach that integrates Pre-trained Language Models (BERT-based models) and Large Language Models, each capturing distinct emotional cues within the text. The predictions from these models are aggregated through a voting mechanism, enhancing classification accuracy. Additionally, we incorporate threshold optimization and class weighting techniques to mitigate class imbalance. Our method demonstrates substantial improvements over baseline models. Our approach ranked 4th out of 90 on the English leaderboard and exhibited strong performance in English in SemEval-2025 Task 11 Track A.
2024
ChatASU: Evoking LLM’s Reflexion to Truly Understand Aspect Sentiment in Dialogues
Yiding Liu
|
Jingjing Wang
|
Jiamin Luo
|
Tao Zeng
|
Guodong Zhou
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Aspect Sentiment Understanding (ASU) in interactive scenarios (e.g., Question-Answering and Dialogue) has attracted ever-more interest in recent years and achieved important progresses. However, existing studies on interactive ASU largely ignore the coreference issue for opinion targets (i.e., aspects), while this phenomenon is ubiquitous in interactive scenarios especially dialogues, limiting the ASU performance. Recently, large language models (LLMs) shows the powerful ability to integrate various NLP tasks with the chat paradigm. In this way, this paper proposes a new Chat-based Aspect Sentiment Understanding (ChatASU) task, aiming to explore LLMs’ ability in understanding aspect sentiments in dialogue scenarios. Particularly, this ChatASU task introduces a sub-task, i.e., Aspect Chain Reasoning (ACR) task, to address the aspect coreference issue. On this basis, we propose a Trusted Self-reflexion Approach (TSA) with ChatGLM as backbone to ChatASU. Specifically, this TSA treats the ACR task as an auxiliary task to boost the performance of the primary ASU task, and further integrates trusted learning into reflexion mechanisms to alleviate the LLMs-intrinsic factual hallucination problem in TSA. Furthermore, a high-quality ChatASU dataset is annotated to evaluate TSA, and extensive experiments show that our proposed TSA can significantly outperform several state-of-the-art baselines, justifying the effectiveness of TSA to ChatASU and the importance of considering the coreference and hallucination issues in ChatASU.
Search
Fix author
Co-authors
- Huayang Li 1
- Hongfei Lin (林鸿飞) 1
- Yiding Liu 1
- Chao Liu 1
- Junliang Liu 1
- show all...