Renjing Xu
2025
MapNav: A Novel Memory Representation via Annotated Semantic Maps for VLM-based Vision-and-Language Navigation
Lingfeng Zhang
|
Xiaoshuai Hao
|
Qinwen Xu
|
Qiang Zhang
|
Xinyao Zhang
|
Pengwei Wang
|
Jing Zhang
|
Zhongyuan Wang
|
Shanghang Zhang
|
Renjing Xu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Vision-language navigation (VLN) is a key task in Embodied AI, requiring agents to navigate diverse and unseen environments while following natural language instructions. Traditional approaches rely heavily on historical observations as spatio-temporal contexts for decision making, leading to significant storage and computational overhead. In this paper, we introduce MapNav, a novel end-to-end VLN model that leverages Annotated Semantic Map (ASM) to replace historical frames. Specifically, our approach constructs a top-down semantic map at the start of each episode and update it at each timestep, allowing for precise object mapping and structured navigation information. Then, we enhance this map with explicit textual labels for key regions, transforming abstract semantics into clear navigation cues and generate our ASM. MapNav agent using the constructed ASM as input, and use the powerful end-to-end capabilities of VLM to empower VLN. Extensive experiments demonstrate that MapNav achieves state-of-the-art (SOTA) performance in both simulated and real-world environments, validating the effectiveness of our method. We will release our ASM generation source code and dataset to ensure reproducibility, contributing valuable resources to the field. We believe that our proposed MapNav can be used as a new memory representation method in VLN, paving the way for future research in this field.
2024
Shifting Attention to Relevance: Towards the Predictive Uncertainty Quantification of Free-Form Large Language Models
Jinhao Duan
|
Hao Cheng
|
Shiqi Wang
|
Alex Zavalny
|
Chenan Wang
|
Renjing Xu
|
Bhavya Kailkhura
|
Kaidi Xu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large Language Models (LLMs) show promising results in language generation and instruction following but frequently “hallucinate”, making their outputs less reliable. Despite Uncertainty Quantification’s (UQ) potential solutions, implementing it accurately within LLMs is challenging. Our research introduces a simple heuristic: not all tokens in auto-regressive LLM text equally represent the underlying meaning, as “linguistic redundancy” often allows a few keywords to convey the essence of long sentences. However, current methods underestimate this inequality when assessing uncertainty, causing tokens with limited semantics to be equally or excessively weighted in UQ. To correct this, we propose Shifting Attention to more Relevant (SAR) components at both token- and sentence-levels for better UQ. We conduct extensive experiments involving a range of popular “off-the-shelf” LLMs, such as Vicuna, WizardLM, and LLaMA-2-chat, with model sizes extending up to 33B parameters. We evaluate various free-form question-answering tasks, encompassing domains such as reading comprehension, science Q&A, and medical Q&A. Our experimental results, coupled with a comprehensive demographic analysis, demonstrate the superior performance of SAR. The code is available at https://github.com/jinhaoduan/SAR.
Search
Fix author
Co-authors
- Hao Cheng 1
- Jinhao Duan 1
- Xiaoshuai Hao 1
- Bhavya Kailkhura 1
- Shiqi Wang 1
- show all...
Venues
- acl2