Moule Lin


2025

pdf bib
PreP-OCR: A Complete Pipeline for Document Image Restoration and Enhanced OCR Accuracy
Shuhao Guan | Moule Lin | Cheng Xu | Xinyi Liu | Jinman Zhao | Jiexin Fan | Qi Xu | Derek Greene
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper introduces PreP-OCR, a two-stage pipeline that combines document image restoration with semantic-aware post-OCR correction to enhance both visual clarity and textual consistency, thereby improving text extraction from degraded historical documents.First, we synthesize document-image pairs from plaintext, rendering them with diverse fonts and layouts and then applying a randomly ordered set of degradation operations. An image restoration model is trained on this synthetic data, using multi-directional patch extraction and fusion to process large images. Second, a ByT5 post-OCR model, fine-tuned on synthetic historical text pairs, addresses remaining OCR errors.Detailed experiments on 13,831 pages of real historical documents in English, French, and Spanish show that the PreP-OCR pipeline reduces character error rates by 63.9-70.3% compared to OCR on raw images. Our pipeline demonstrates the potential of integrating image restoration with linguistic error correction for digitizing historical archives.

2024

pdf bib
Effective Synthetic Data and Test-Time Adaptation for OCR Correction
Shuhao Guan | Cheng Xu | Moule Lin | Derek Greene
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Post-OCR technology is used to correct errors in the text produced by OCR systems. This study introduces a method for constructing post-OCR synthetic data with different noise levels using weak supervision. We define Character Error Rate (CER) thresholds for “effective” and “ineffective” synthetic data, allowing us to create more useful multi-noise level synthetic datasets. Furthermore, we propose Self-Correct-Noise Test-Time Adaptation (SCN-TTA), which combines self-correction and noise generation mechanisms. SCN-TTA allows a model to dynamically adjust to test data without relying on labels, effectively handling proper nouns in long texts and further reducing CER. In our experiments we evaluate a range of models, including multiple PLMs and LLMs. Results indicate that our method yields models that are effective across diverse text types. Notably, the ByT5 model achieves a CER reduction of 68.67% without relying on manually annotated data