Kushal Kafle


2025

pdf bib
MAGNET: Augmenting Generative Decoders with Representation Learning and Infilling Capabilities
Savya Khosla | Aditi Tiwari | Kushal Kafle | Simon Jenni | Handong Zhao | John Collomosse | Jing Shi
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

While originally designed for unidirectional generative modeling, decoder-only large language models (LLMs) are increasingly being adapted for bidirectional modeling. However, unidirectional and bidirectional models are typically trained separately with distinct objectives (generation and representation learning). This separation overlooks the opportunity for developing a more versatile language model and for these objectives to complement each other. In this work, we propose MAGNET, a method for adapting decoder-only LLMs to generate robust representations and infill missing text spans. MAGNET employs three self-supervised training objectives and introduces an attention mechanism that combines bidirectional and causal attention, enabling unified training across all objectives. Our results demonstrate that LLMs adapted with MAGNET (1) surpass strong text encoders on token-level and sentence-level representation learning tasks, (2) generate contextually appropriate text infills by leveraging past and future contexts, (3) perform open-ended text generation without excessive repetition of words or phrases, and (4) preserve the knowledge and reasoning capability gained by the LLM during pretraining.

2020

pdf bib
A negative case analysis of visual grounding methods for VQA
Robik Shrestha | Kushal Kafle | Christopher Kanan
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Existing Visual Question Answering (VQA) methods tend to exploit dataset biases and spurious statistical correlations, instead of producing right answers for the right reasons. To address this issue, recent bias mitigation methods for VQA propose to incorporate visual cues (e.g., human attention maps) to better ground the VQA models, showcasing impressive gains. However, we show that the performance improvements are not a result of improved visual grounding, but a regularization effect which prevents over-fitting to linguistic priors. For instance, we find that it is not actually necessary to provide proper, human-based cues; random, insensible cues also result in similar improvements. Based on this observation, we propose a simpler regularization scheme that does not require any external annotations and yet achieves near state-of-the-art performance on VQA-CPv2.

2019

pdf bib
Proceedings of the Second Workshop on Shortcomings in Vision and Language
Raffaella Bernardi | Raquel Fernandez | Spandana Gella | Kushal Kafle | Christopher Kanan | Stefan Lee | Moin Nabi
Proceedings of the Second Workshop on Shortcomings in Vision and Language

2017

pdf bib
Data Augmentation for Visual Question Answering
Kushal Kafle | Mohammed Yousefhussien | Christopher Kanan
Proceedings of the 10th International Conference on Natural Language Generation

Data augmentation is widely used to train deep neural networks for image classification tasks. Simply flipping images can help learning tremendously by increasing the number of training images by a factor of two. However, little work has been done studying data augmentation in natural language processing. Here, we describe two methods for data augmentation for Visual Question Answering (VQA). The first uses existing semantic annotations to generate new questions. The second method is a generative approach using recurrent neural networks. Experiments show that the proposed data augmentation improves performance of both baseline and state-of-the-art VQA algorithms.