Julian Rodemann


2025

pdf bib
Towards Better Open-Ended Text Generation: A Multicriteria Evaluation Framework
Esteban Garces Arias | Hannah Blocher | Julian Rodemann | Meimingwei Li | Christian Heumann | Matthias Aßenmacher
Proceedings of the Fourth Workshop on Generation, Evaluation and Metrics (GEM²)

Open-ended text generation has become a prominent task in natural language processing due to the rise of powerful (large) language models. However, evaluating the quality of these models and the employed decoding strategies remains challenging due to trade-offs among widely used metrics such as coherence, diversity, and perplexity. This paper addresses the specific problem of multicriteria evaluation for open-ended text generation, proposing novel methods for both relative and absolute rankings of decoding methods. Specifically, we employ benchmarking approaches based on partial orderings and present a new summary metric to balance existing automatic indicators, providing a more holistic evaluation of text generation quality. Our experiments demonstrate that the proposed approaches offer a robust way to compare decoding strategies and serve as valuable tools to guide model selection for open-ended text generation tasks. We suggest future directions for improving evaluation methodologies in text generation and make our code, datasets, and models publicly available.

2024

pdf bib
Adaptive Contrastive Search: Uncertainty-Guided Decoding for Open-Ended Text Generation
Esteban Garces Arias | Julian Rodemann | Meimingwei Li | Christian Heumann | Matthias Aßenmacher
Findings of the Association for Computational Linguistics: EMNLP 2024

Despite the remarkable capabilities of large language models, generating high-quality text remains a challenging task. Numerous decoding strategies—such as beam search, sampling with temperature, top‐k sampling, nucleus (top‐p) sampling, typical decoding, contrastive decoding, and contrastive search—have been proposed to address these challenges by improving coherence, diversity, and resemblance to human-generated text. In this study, we introduce Adaptive Contrastive Search (ACS), a novel decoding strategy that extends contrastive search (CS) by incorporating an adaptive degeneration penalty informed by the model’s estimated uncertainty at each generation step. ACS aims to enhance creativity and diversity while maintaining coherence to produce high-quality outputs. Extensive experiments across various model architectures, languages, and datasets demonstrate that our approach improves both creativity and coherence, underscoring its effectiveness in text-generation tasks. We release our code, datasets, and models to facilitate further research.