Jafar Razmara
2025
Homa at SemEval-2025 Task 5: Aligning Librarian Records with OntoAligner for Subject Tagging
Hadi Bayrami Asl Tekanlou
|
Jafar Razmara
|
Mahsa Sanaei
|
Mostafa Rahgouy
|
Hamed Babaei Giglou
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
This paper presents our system, Homa, for SemEval-2025 Task 5: Subject Tagging, which focuses on automatically assigning subject labels to technical records from TIBKAT using the Gemeinsame Normdatei (GND) taxonomy. We leverage OntoAligner, a modular ontology alignment toolkit, to address this task by integrating retrieval-augmented generation (RAG) techniques. Our approach formulates the subject tagging problem as an alignment task, where records are matched to GND categories based on semantic similarity. We evaluate OntoAligner’s adaptability for subject indexing and analyze its effectiveness in handling multilingual records. Experimental results demonstrate the strengths and limitations of this method, highlighting the potential of alignment techniques for improving subject tagging in digital libraries.
2021
UoT-UWF-PartAI at SemEval-2021 Task 5: Self Attention Based Bi-GRU with Multi-Embedding Representation for Toxicity Highlighter
Hamed Babaei Giglou
|
Taher Rahgooy
|
Mostafa Rahgouy
|
Jafar Razmara
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
Toxic Spans Detection(TSD) task is defined as highlighting spans that make a text toxic. Many works have been done to classify a given comment or document as toxic or non-toxic. However, none of those proposed models work at the token level. In this paper, we propose a self-attention-based bidirectional gated recurrent unit(BiGRU) with a multi-embedding representation of the tokens. Our proposed model enriches the representation by a combination of GPT-2, GloVe, and RoBERTa embeddings, which led to promising results. Experimental results show that our proposed approach is very effective in detecting span tokens.