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Introduction

The ACL 2014 Workshop on Statistical Machine Translation (WMT 2014) took place on Thursday and
Friday, June 26-27, 2014 in Baltimore, United States, immediately following the Conference of the
Association for Computational Linguistics (ACL).

This is the ninth time this workshop has been held. The first time it was held at HLT-NAACL 2006
in New York City, USA. In the following years the Workshop on Statistical Machine Translation was
held at ACL 2007 in Prague, Czech Republic, ACL 2008, Columbus, Ohio, USA, EACL 2009 in
Athens, Greece, ACL 2010 in Uppsala, Sweden, EMNLP 2011 in Edinburgh, Scotland, NAACL 2012 in
Montreal, Canada, and ACL 2013 in Sofia, Bulgaria.

The focus of our workshop was to use parallel corpora for machine translation. Recent experimentation
has shown that the performance of SMT systems varies greatly with the source language. In this
workshop we encouraged researchers to investigate ways to improve the performance of SMT systems
for diverse languages, including morphologically more complex languages, languages with partial free
word order, and low-resource languages.

Prior to the workshop, in addition to soliciting relevant papers for review and possible presentation, we
conducted four shared tasks: a general translation task, a medical translation task, a quality estimation
task, and a task to test automatic evaluation metrics. The medical translation task was introduced this
year to address the important issue of domain adaptation within SMT. The results of the shared tasks were
announced at the workshop, and these proceedings also include an overview paper for the shared tasks
that summarizes the results, as well as provides information about the data used and any procedures
that were followed in conducting or scoring the task. In addition, there are short papers from each
participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submission than we could accept for
presentation. This year we have received 27 full paper submissions and 49 shared task submissions. In
total WMT 2014 featured 12 full paper oral presentations and 49 shared task poster presentations.

The invited talk was given by Alon Lavie (Carnegie Mellon University and Safaba Translation Solutions,
Inc.) entitled “Machine Translation in Academia and in the Commercial World — a Contrastive
Perspective”.

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the
evaluations.

Ondfej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Matou§ Machécek,
Christof Monz, Pavel Pecina, Matt Post, Hervé Saint-Amand, Radu Soricut, and Lucia Specia
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Abstract

A main output of the annual Workshop
on Statistical Machine Translation (WMT)
is a ranking of the systems that partici-
pated in its shared translation tasks, pro-
duced by aggregating pairwise sentence-
level comparisons collected from human
judges. Over the past few years, there
have been a number of tweaks to the ag-
gregation formula in attempts to address
issues arising from the inherent ambigu-
ity and subjectivity of the task, as well as
weaknesses in the proposed models and
the manner of model selection.

We continue this line of work by adapt-
ing the TrueSkill™ algorithm — an online
approach for modeling the relative skills
of players in ongoing competitions, such
as Microsoft’s Xbox Live — to the hu-
man evaluation of machine translation out-
put. Our experimental results show that
TrueSkill outperforms other recently pro-
posed models on accuracy, and also can
significantly reduce the number of pair-
wise annotations that need to be collected
by sampling non-uniformly from the space
of system competitions.

1 Introduction

The Workshop on Statistical Machine Translation
(WMT) has long been a central event in the ma-
chine translation (MT) community for the evalua-
tion of MT output. It hosts an annual set of shared
translation tasks focused mostly on the translation
of western European languages. One of its main
functions is to publish a ranking of the systems
for each task, which are produced by aggregating
a large number of human judgments of sentence-
level pairwise rankings of system outputs. While
the performance on many automatic metrics is also

1

# | score | range | system
1 | 0.638 1 UEDIN-HEAFIELD
2 | 0.604 2-3 UEDIN
0.591 2-3 ONLINE-B
4 | 0.571 4-5 LIMSI-SOUL
0.562 | 4-5 KIT
0.541 5-6 ONLINE-A
7 | 0512 7 MES-SIMPLIFIED
8 | 0.486 8 DCU
9 | 0439 | 9-10 | RWTH
0429 | 9-11 | CMU-T2T
0.420 | 10-11 | CU-ZEMAN
12 | 0.389 12 JHU
13 | 0.322 13 SHEF-WPROA

Table 1: System rankings presented as clusters
(WMT13 French-English competition). The score
column is the percentage of time each system was
judged better across its comparisons (§2.1).

reported (e.g., BLEU (Papineni et al., 2002)), the
human evaluation is considered primary, and is in
fact used as the gold standard for its metrics task,
where evaluation metrics are evaluated.

In machine translation, the longstanding dis-
agreements about evaluation measures do not go
away when moving from automatic metrics to hu-
man judges. This is due in no small part to the in-
herent ambiguity and subjectivity of the task, but
also arises from the particular way that the WMT
organizers produce the rankings. The system-
level rankings are produced by collecting pairwise
sentence-level comparisons between system out-
puts. These are then aggregated to produce a com-
plete ordering of all systems, or, more recently, a
partial ordering (Koehn, 2012), with systems clus-
tered where they cannot be distinguished in a sta-
tistically significant way (Table 1, taken from Bo-
jar et al. (2013)).

A number of problems have been noted with
this approach. The first has to do with the na-
ture of ranking itself. Over the past few years, the
WMT organizers have introduced a number of mi-
nor tweaks to the ranking algorithm (§2) in reac-
tion to largely intuitive arguments that have been
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raised about how the evaluation is conducted (Bo-
jaretal., 2011; Lopez, 2012). While these tweaks
have been sensible (and later corroborated), Hop-
kins and May (2013) point out that this is essen-
tially a model selection task, and should prop-
erly be driven by empirical performance on held-
out data according to some metric. Instead of in-
tuition, they suggest perplexity, and show that a
novel graphical model outperforms existing ap-
proaches on that metric, with less amount of data.

A second problem is the deficiency of the mod-
els used to produce the ranking, which work by
computing simple ratios of wins (and, option-
ally, ties) to losses. Such approaches do not con-
sider the relative difficulty of system matchups,
and thus leave open the possibility that a system
is ranked highly from the luck of comparisons
against poorer opponents.

Third, a large number of judgments need to be
collected in order to separate the systems into clus-
ters to produce a partial ranking. The sheer size of
the space of possible comparisons (all pairs of sys-
tems times the number of segments in the test set)
requires sampling from this space and distributing
the annotations across a number of judges. Even
still, the number of judgments needed to produce
statistically significant rankings like those in Ta-
ble 1 grows quadratically in the number of par-
ticipating systems (Koehn, 2012), often forcing
the use of paid, lower-quality annotators hired on
Amazon’s Mechanical Turk. Part of the prob-
lem is that the sampling strategy collects data uni-
formly across system pairings. Intuitively, we
should need many fewer annotations between sys-
tems with divergent base performance levels, in-
stead focusing the collection effort on system pairs
whose performance is more matched, in order to
tease out the gaps between similarly-performing
systems. Why spend precious human time on re-
dundantly affirming predictable outcomes?

To address these issues, we developed a varia-
tion of the TrueSkill model (Herbrich et al., 2006),
an adaptative model of competitions originally de-
veloped for the Xbox Live online gaming commu-
nity. It assumes that each player’s skill level fol-
lows a Gaussian distribution N'(y, o), in which
L represents a player’s mean performance, and o2
the system’s uncertainty about its current estimate
of this mean. These values are updated after each
“game” (in our case, the value of a ternary judg-
ment) in proportion to how surprising the outcome

is. TrueSkill has been adapted to a number of
areas, including chess, advertising, and academic
conference management.

The rest of this paper provides an empirical
comparison of a number of models of human eval-
uation (§2). We evaluate on perplexity and also
on accuracy, showing that the two are not always
correlated, and arguing for the primacy of the lat-
ter (§3). We find that TrueSkill outperforms other
models (§4). Moreover, TrueSkill also allows us to
drastically reduce the amount of data that needs to
be collected by sampling non-uniformly from the
space of all competitions (§5), which also allows
for greater separation of the systems into ranked
clusters (56).

2 Models

Before introducing our adaptation of the TrueSkill
model for ranking translation systems with human
judgments (§2.3), we describe two comparisons:
the “Expected Wins” model used in recent evalu-
ations, and the Bayesian model proposed by Hop-
kins and May (§2.2).

As we described briefly in the introduction,
WMT produces system rankings by aggregating
sentence-level ternary judgments of the form:

(ia Sla 52777)

where ¢ is the source segment (id), S7 and So
are the system pair drawn from a set of systems
{S}, and 7 € {<,>,=} denotes whether the
first system was judged to be better than, worse
than, or equivalent to the second. These ternary
judgments are obtained by presenting judges with
a randomly-selected input sentence and the refer-
ence, followed by five randomly-selected transla-
tions of that sentence. Annotators are asked to
rank these systems from best (rank 1) to worst
(rank 5), ties permitted, and with no meaning as-
cribed to the absolute values or differences be-
tween ranks. This is done to accelerate data collec-
tion, since it yields ten pairwise comparisons per
ranking. Tens of thousands of judgments of this
form constitute the raw data used to compute the
system-level rankings. All the work described in
this section is computed over these pairwise com-
parisons, which are treated as if they were col-
lected independently.

2.1 Expected Wins

The “Expected Wins” model computes the per-
centage of times that each system wins in its



pairwise comparisons. Let A be the complete
set of annotations or judgments of the form
{i, 81, S2, mr}. We assume these judgments have
been converted into a normal form where .5; is ei-
ther the winner or is tied with S5, and therefore
mr € {<,=}. Let (z,y) be the Kronecker delta
function.! We then define the function:

wins(.S;, S;) =
4]

> 88,5776
n=1

which counts the number of annotations for which
system S; was ranked better than system S;. We
define a single-variable version that marginalizes
over all annotations:

wins(S;) = Z wins(.S;, S5)
S;#S;

(S5, S5)5(i <)

We also define analogous functions for /oses and
ties. Until the WMT 11 evaluation (Callison-Burch
et al., 2011), the score for each system S; was
computed as follows:

wins(S;) + ties(S;)

score(Si) = WinS(Si) + tieS(Si) + loses(Si)

Bojar et al. (2011) suggested that the inclusion of
ties biased the results, due to their large numbers,
the underlying similarity of many of the models,
and the fact that they are counted for both systems
in the tie, and proposed the following modified
scoring function:

Z wins(S;, S;)
{S}| Wms (Ss,85) + wins(S;, S;)

score(.S;)

This metric computes an average relative fre-
quency of wins, excluding ties, and was used
in WMT12 and WMT13 (Callison-Burch et al.,
2012; Bojar et al., 2013).

The decision to exclude ties isn’t without
its problems; for example, an evaluation where
two systems are nearly always judged equivalent
should be relevant in producing the final ranking
of systems. Furthermore, as Hopkins and May
(2013) point out, throwing out data to avoid bi-
asing a model suggests a problem with the model.
We now turn to a description of their model, which
addresses these problems.

1 ifz=
15(9[:,3/):{ 0 o.w. Y

2.2 The Hopkins and May (2013) model

Recent papers (Koehn, 2012; Hopkins and May,
2013) have proposed models focused on the rel-
ative ability of the competition systems. These
approaches assume that each system has a mean
quality represented by a Gaussian distribution with
a fixed variance shared across all systems. In the
graphical model formulation of Hopkins and May
(2013), the pairwise judgments (3,57, S2,7) are
imagined to have been generated according to the
following process:

e Select a source sentence ¢

e Select two systems S; and S;. A system
S; is associated with a Gaussian distribution
N (,usj,ag), samples from which represent
the quality of translations

e Draw two “translations”, adding random
Gaussian noise with variance o2 “ps L0 simulate
the subjectivity of the task and the differences
among annotators:

) +N(O Uobs)
) +N(0 Uobs)

q1 ~ N (/‘le’
a2 ~ N(us,, 0
e Let d be a nonzero real number that defines

a fixed decision radius. Produce a rating
according to:?

< q—q>d
T=9> @-q>d
= otherwise

The task is to then infer the posterior parameters,
given the data: the system means (g, and, by ne-
cessity, the latent values {g; } for each of the pair-
wise comparison training instances. Hopkins and
May do not publish code or describe details of this
algorithm beyond mentioning Gibbs sampling, so
we used our own implementation,? and describe it
here for completeness.

After initialization, we have training instances
of the form (i, S1, S2, TR, q1, ¢2), where all but the
q; are observed. At a high level, the sampler iter-
ates over the training data, inferring values of ¢;
and go for each annotation together in a single step
of the sampler from the current values of the sys-
tems means, {y;}.* At the end of each iteration,

2Note that better systems have higher relative abilities
{ms;}. Better translations subsequently have on-average
higher values {¢; }, which translate into a lower ranking 7.

3github.com/keisks/wmt—trueskill

“This worked better than a version of the sampler that
changed one at a time.



these means are then recomputed by re-averaging
all values of {¢; } associated with that system. Af-
ter the burn-in period, the us are stored as samples,
which are averaged when the sampling concludes.

During each iteration, ¢; and g9 are resampled
from their corresponding system means:

q1 ~ N(/’LSI70-2)
qz ~ N(MSQ’O-L%)

We then update these values to respect the annota-
tion 7 as follows. Let t = g1 — ¢ (S7 is the winner
by human judgments), and ensure that the values
are outside the decision radius, d:

q t>d
¢ = 1
! { Q1+ §(d—t) otherwise
q2 t>d
0 = 1
2 { q2 — §(d —t)  otherwise
In the case of a tie:
1
a5 (d—1) t>d
qi =430 t<d
1
Gt g(-d—1) t<-d
1
Q2—§(d—t) t>d
q’2: q2 t<d
1
\qz—i(—d—t) t< —d

These values are stored for the current iteration
and averaged at its end to produce new estimates
of the system means. The quantity d — ¢ can be in-
terpreted as a loss function, returning a high value
when the observed outcome is unexpected and a
low value otherwise (Figure 1).

2.3 TrueSKkill

Prior to 2012, the WMT organizers included refer-
ence translations among the system comparisons.
These were used as a control against which the
evaluators could be measured for consistency, on
the assumption that the reference was almost al-
ways best. They were also included as data points
in computing the system ranking. Another of
Bojar et al. (2011)’s suggestions was to exclude
this data, because systems compared more of-
ten against the references suffered unfairly. This
can be further generalized to the observation that

not all competitions are equal, and a good model
should incorporate some notion of “match diffi-
culty” when evaluating system’s abilities. The
inference procedure above incorporates this no-
tion implicitly in the inference procedure, but the
model itself does not include a notion of match
difficulty or outcome surprisal.

A model that does is TrueSkill®> (Herbrich et al.,
2006). TrueSkill is an adaptive, online system that
also assumes that each system’s skill level follows
a Gaussian distribution, maintaining a mean pg;
for each system S; representing its current esti-
mate of that system’s native ability. However, it
also maintains a per-system variance, a?gj, which
represents TrueSkill’s uncertainty about its esti-
mate of each mean. After an outcome is observed
(a game in which the result is a win, loss, or draw),
the size of the updates is proportional to how sur-
prising the outcome was, which is computed from
the current system means and variances. If a trans-
lation from a system with a high mean is judged
better than a system with a greatly lower mean, the
result is not surprising, and the update size for the
corresponding system means will be small. On the
other hand, when an upset occurs in a competition,
the means will receive larger updates.

Before defining the update equations, we need
to be more concrete about how this notion of sur-
prisal is incorporated. Let ¢t = pug, — ps,, the dif-
ference in system relative abilities, and let € be a
fixed hyper-parameter corresponding to the earlier
decision radius. We then define two loss functions
of this difference for wins and for ties:

~ N(—e+1)

Uwin(t,ﬁ)— (I)(—€+t)
ot )_N(—e—t)—/\/(e—t)
el T B e — 1) — B(—e 1)

where ® () is the cumulative distribution function
and the N's are Gaussians. Figures 1 and 2 display
plots of these two functions compared to the Hop-
kins and May model. Note how vy, (Figure 1) in-
creases exponentially as p1g, becomes greater than
the (purportedly) better system, pg, .

As noted above, TrueSkill maintains not only
estimates {ug;} of system abilities, but also
system-specific confidences about those estimates

5The goal of this section is to provide an intuitive descrip-
tion of TrueSkill as adapted for WMT manual evaluations,
with enough detail to carry the main ideas. For more details,
please see Herbrich et al. (2006).
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Figure 1: TrueSkill’s vyi, and the corresponding
loss function in the Hopkins and May model as
a function of the difference ¢ of system means
(e = 0.5,¢ = 0.8 for TrueSkill, and d = 0.5 for
Hopkins and May model).
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Figure 2: TrueSkills vy and the corresponding

loss function in the Hopkins and May model as

a function of the difference ¢ of system means

(e=0.5,c=0.3,and d = 0.5).

{os,}. These confidences also factor into the up-
dates: while surprising outcomes result in larger
updates to system means, higher confidences (rep-
resented by smaller variances) result in smaller
updates. TrueSkill defines the following value:

2= 252 + 0?91 + O'ng

which accumulates the variances along (3, another
free parameter. We can now define the update
equations for the system means:

The second term in these equations captures the
idea about balancing surprisal with confidence,
described above.

In order to update the system-level confidences,
TrueSkill defines another set of functions, w, for
the cases of wins and ties. These functions are
multiplicative factors that affect the amount of
change in o

wwin(ta 6) = Uwin * (Uwin +t— 6)

(e—t) - N(e—t)+ (e+1t)- N(e+1)

Wie(t; €) = vie + Ble —1) — D(—c — 1)

The underlying idea is that these functions cap-
ture the outcome surprisal via v. This update al-
ways decreases the size of the variances o2, which
means uncertainty of y decreases as comparisons
go on. With these defined, we can conclude by
defining the updates for o3 and o :

2

o t €
2 2 S1
051_051.[1_02'11}(076)]

2

g
2 _ 2 Sa
032_0-52’[1_ 2 ’

One final complication not presented here but rel-
evant to adapting TrueSkill to the WMT setting:
the parameter § and another parameter (not dis-
cussed) 7 are incorporated into the update equa-
tions to give more weight to recent matches. This
“latest-oriented” property is useful in the gaming
setting for which TrueSkill was built, where play-
ers improve over time, but is not applicable in the
WMT competition setting. To cancel this property
in TrueSkill, we set 7 = 0 and 3 = 0.025- | A| - 02
in order to lessen the impact of the order in which
annotations are presented to the system.

2.4 Data selection with TrueSKkill

A drawback of the standard WMT data collection
method is that it samples uniformly from the space
of pairwise system combinations. This is undesir-
able: systems with vastly divergent relative abil-
ity need not be compared as often as systems that
are more evenly matched. Unfortunately, one can-
not sample non-uniformly without knowing ahead
of time which systems are better. TrueSkill pro-
vides a solution to this dilemma with its match-
selection ability: systems with similar means and
low variances can be confidently considered to be
close matches. This presents a strong possibility
of reducing the amount of data that needs to be



collected in the WMT competitions. In fact, the
TrueSkill formulation provides a way to compute
the probability of a draw between two systems,
which can be used to compute for a system S5; a
conditional distribution over matches with other
systems {5+ }.

Formally, in the TrueSkill model, the match-
selection (chance to draw) between two players
(systems in WMT) is computed as follows:

/ 23 (fta — ,“b)z
Pdraw = 2 exp(—T)

However, our setting for canceling the “latest-
oriented” property affects this matching quality
equation, where most systems are almost equally
competitive (= 1). Therefore, we modify the equa-
tion in the following manner which simply de-
pends on the difference of .

1

ﬁdraw -~
exp(|pta — 1))

TrueSkill selects the matches it would like to
create, according to this selection criteria. We do
this according to the following process:

1. Select a system S; (e.g., the one with the
highest variance)

2. Compute a normalized distribution over
matches with other systems pairs pgraw

3. Draw a system .Sy from this distribution

4. Draw a source sentence, and present to the
judge for annotation

3 Experimental setup

3.1 Datasets

We used the evaluation data released by WMT13.6
The data contains (1) five-way system rankings
made by either researchers or Turkers and (2)
translation data consisting of source sentences, hu-
man reference translations, and submitted transla-
tions. Data exists for 10 language pairs. More de-
tails about the dataset can be found in the WMT
2013 overview paper (Bojar et al., 2013).

Each five-way system ranking was converted
into ten pairwise judgments (§2). We trained the
models using randomly selected sets of 400, 800,
1,600, 3,200, and 6,400 pairwise comparisons,

®statmt.org/wmt13/results.html

each produced in two ways: selecting from all re-
searchers, or split between researchers and Turk-
ers. An important note is that the training data
differs according to the model. For the Expected
Wins and Hopkins and May model, we sim-
ply sample uniformly at random. The TrueSkill
model, however, selects its own training data (with
replacement) according to the description in Sec-
tion 2.4.7

For tuning hyperparameters and reporting test
results, we used development and test sets of 2,000
comparisons drawn entirely from the researcher
judgments, and fixed across all experiments.

3.2 Perplexity

We first compare the Hopkins and May model and
TrueSkill using perplexity on the test data 7', com-
puted as follows:

ppl(p|T) = 2~ 22(1,91,89,m)eT 1082 P(7|S1,52)

where p is the model under consideration. The
probability of each observed outcome 7 between
two systems 57 and S2 is computed by taking a
difference of the Gaussian distributions associated
with those systems:

N(,U&Ug) :N(M5170%1) _N(u5270—§'2)
= N(MS& - MS27U§1 + Gg‘g)

This Gaussian can then be carved into three pieces:
the area where S loses, the middle area represent-
ing ties (defined by a decision radius, r, whose
value is fit using development data), and a third
area representing where S; wins. By integrating
over each of these regions, we have a probability
distribution over these outcomes:

[0 Nps,02) ifmis >

p(m | S1,52) = if 7 is =

f()r N(M(S? O—g)

if mis <

frOO N(M& Ug)

We do not compute perplexity for the Expected
Wins model, which does not put any probability
mass on ties.

"We use a Python implementation of TrueSkill
(github.com/sublee/trueskill).



3.3 Accuracy

Perplexity is often viewed as a neutral metric, but
without access to unbounded training data or the
true model parameters, it can only be approxi-
mated. Furthermore, it does not always corre-
late perfectly with evaluation metrics. As such,
we also present accuracy results, measuring each
model’s ability to predict the values of the ternary
pairwise judgments made by the annotators. These
are computed using the above equation, picking
the highest value of p(7) for all annotations be-
tween each system pair (S;, S;). As with perplex-
ity, we emphasize that these predictions are func-
tions of the system pair only, and not the individual
sentences under consideration, so the same out-
come is always predicted for all sentences between
a system pair.

3.4 Parameter Tuning

We follow the settings described in Hopkins and
May (2013) for their model: o4 = 0.5, 0gps = 1.0,
and d = 0.5. In TrueSkill, in accordance with the
Hopkins and May model, we set the initial pz and
o values for each system to 0 and 0.5 respectively,
and € to 0.25.

For test data, we tuned the “decision ra-
dius” parameter r by doing grid search over
{0.001,0.01,0.1,0.3,0.5}, searching for the
value which minimized perplexity and maximized
accuracy on the development set. We do this for
each model and language pair. When tuned by
perplexity, 7 is typically either 0.3 or 0.5 for both
models and language pairs, whereas, for accuracy,
the best r is either 0.001, 0.01, or 0.1.

4 Results

4.1 Model Comparison

Figure 3 shows the perplexity of the two mod-
els with regard to the number of training compar-
isons. The perplexities in the figure are averaged
over all ten language pairs in the WMT13 dataset.
Overall, perplexities decrease according to the in-
crease of training size. The Hopkins and May
and TrueSkill models trained on both researcher
and Turker judgments are comparable, whereas
the Hopkins and May model trained on researcher
judgments alone shows lower perplexity than the
corresponding TrueSkill model.

In terms of accuracy, we see that the TrueSkill
model has the highest accuracies, saturating at just
over 3,000 training instances (Figure 4). TrueSkill

3.00

@@ HM-all
@====@ HM-res
A=A TS-all

2.95 A =====A TSres [q

2.90 4

Perplexity

2.85

1000 2000 3000 4000 5000 6000

Training Data Size

Figure 3: Model Perplexities for WMT13 dataset.
‘all’ indicates that models are trained on both re-
searcher and Turker judgements, and ‘res’ means
that models are trained on only researcher judge-
ments.

outperforms Expected Win and the Hopkins and
May, especially when the training size is small
(Table 2). We also note that training on researcher
judgments alone (dashed lines) results in better
performance than training on both researchers and
Turker judgments. This likely reflects both a bet-
ter match between training and test data (recall the
test data consists of researcher judgments only),
as well as the higher consistency of this data, as
evidenced by the annotator agreement scores pub-
lished in the WMT overview paper (Bojar et al.,
2013). Recall that the models only have access
to the system pair (and not the sentences them-
selves), and thus make the same prediction for 7
for a particular system pair, regardless of which
source sentence was selected. As an upper bound
for performance on this metric, Table 2 contains
an oracle score, which is computed by selecting,
for each pair of systems, the highest-probability
ranking.®

Comparing the plots, we see there is not a per-
fect relationship between perplexity and accuracy
among the models; the low perplexity does not
mean the high accuracy, and in fact the order of
the systems is different.

4.2 Free-for-all matches

TrueSkill need not deal with judgments in pairs
only, but was in fact designed to be used in a vari-
ety of settings, including N-way free-for-all games

8Note that this might not represent a consistent ranking
among systems, but is itself an upper bound on the highest-
scoring consistent ranking.



0.500

0.495

0.490

0.485

>
9
[+]
5 0.480
3]
3]
< 0.475 Gl ExpWin-all ||
H====+4 ExpWinres
0.470 @@ HM-all
@====@ HMres
0.465 Mg\ TS-all
A =====A TSres

1000 2000 3000 4000 5000 6000
Training Data Size

Figure 4: Model accuracies with different training
domain for WMT13 dataset.

Train Size Exp-Win HM  TrueSkill
400 0.465 0.471 0.479
800 0.471 0.475 0.483
all 1600 0.479 0.477 0.493
3200 0.486 0.489 0.493
6400 0.487 0.490 0.495
400 0.460 0.463 0.484
800 0.475 0.473 0.488
res 1600 0.481 0.482 0.493
3200 0.492 0.494 0.497
6400 0.495 0.496 0.497
Upper Bound 0.525

Table 2: Model accuracies: models are tuned by
accuracy instead of perplexity. Upper bound is
computed by selecting the most frequent choice
(<, >, =) for each system pair.

with many players all competing for first place.
This adapts nicely to WMT’s actual collection set-
ting. Recall that annotators are presented with five
translations which are then ranked; we can treat
this setting as a 5-way free-for-all match. While
the details of these updates are beyond the scope of
this paper, they are presented in the original model
and are implemented in the toolkit we used. We
thus also conducted experiments varying the value
of N from2to 5.

The results are shown in Tables 3 and 4, which
hold constant the number of matches and pairwise
judgments, respectively. When fixing the num-
ber of matches, the 5-way setting is at an advan-
tage, since there is much more information in each
match; in contrast, when fixing the number of pair-
wise comparisons, the 5-way setting is at a dis-
advantage, since many fewer competitions consti-

#| N=2 N=3 N=4 N=5
400 | 0479 0.482 0.491 0.492
800 | 0.483 0.493 0.495 0.495

1600 | 0.493 0.492 0.497 0.495
3200 | 0.493 0.494 0.498 0.497
6400 | 0.495 0.498 0.498 0.498

Table 3: Accuracies when training with N-way
free-for-all models, fixing the number of matches.

#| N=2 N=3 N=4 N=5
400 | 0479 0475 0470 0.459
800 | 0.483 0.488 0476 0.466

1600 | 0.493 0.488 0.481 0.481
3200 | 0.493 0.492 0.487 0.489
6400 | 0.495 0.496 0.494 0.495

Table 4: Accuracies when training with N-way
free-for-all models, fixing the number of pairwise
comparisons.

tute these comparisons. The results bear this out,
but also suggest that the standard WMT setting
— which extracts ten pairwise comparisons from
each 5-way match and treats them independently
— works well. We will not speculate further here,
but provide this experiment purely to motivate po-
tential future work. Here we will focus our con-
clusions to the pair-wise ranking scenario.

5 Reduced Data Collection with
Non-uniform Match Selection

As mentioned earlier, a drawback of the selection
of training data for annotation is that it is sampled
uniformly from the space of system pair compe-
titions, and an advantage of TrueSkill is its abil-
ity to instead compute a distribution over pairings
and thereby focus annotation efforts on competi-
tive matches. In this section, we report results in
the form of heat maps indicating the percentage of
pairwise judgments requested by TrueSkill across
the full cross-product of system pairs, using the
WMT13 French-English translation task.

Figure 5 depicts a system-versus-system heat
map for all judgments in the dataset. Across this
figure and the next two, systems are sorted along
each axis by the final values of u inferred by
TrueSkill during training, and the heat of each
square is proportional to the percentage of judg-
ments obtained between those two systems. The
diagonal reflects the fact that systems do not com-
pete against themselves, and the stripe at row and
column 5 reflects a system that was entered late
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Figure 5: Heat map for the ratio of pairwise judg-
ments across the full cross-product of systems in
the WMT13 French-English translation task.
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Figure 6: Heat map for the ratio of pairwise judg-
ments across the full cross-product of systems
used in the first 20% of TrueSkill model.
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Figure 7: Heat map for the ratio of pairwise judg-
ments across the full cross-product of systems
used in the last 20% of TrueSkill model.

into the WMT13 competition and thus had many
fewer judgments. It is clear that these values are
roughly uniformly distributed. This figure serves
as a sort of baseline, demonstrating the lack of pat-
terns in the data-selection process.

The next two figures focus on the data that
TrueSkill itself selected for its use from among all
of the available data. Figure 6 is a second heat
map presenting the set of system pairs selected by
TrueSkill for the first 20% of its matches chosen
during training, while Figure 7 presents a heat map
of the last 20%. The contrast is striking: whereas
the judgments are roughly uniformly distributed at
the beginning, the bulk of the judgments obtained
for the last set are clustered along the diagonal,
where the most competitive matches lie.

Together with the higher accuracy of TrueSkill,
this suggests that it could be used to decrease the
amount of data that needs to be collected in future
WMT human evaluations by focusing the annota-
tion effort on more closely-matched systems.

6 Clustering

As pointed out by Koehn (2012), a ranking pre-
sented as a total ordering among systems con-
ceals the closeness of comparable systems. In the
WMTI13 competition, systems are grouped into
clusters, which is equivalent to presenting only
a partial ordering among the systems. Clusters
are constructed using bootstrap resampling to in-
fer many system rankings. From these rankings,
rank ranges are then collected, which can be used
to construct 95% confidence intervals, and, in turn,
to cluster systems whose ranges overlap. We use
a similar approach for clustering in the TrueSkill
model. We obtain rank ranges for each system by
running the TrueSkill model 100 times,” throw-
ing out the top and bottom 2 rankings for each
system, and clustering where rank ranges overlap.
For comparison, we also do this for the other two
models, altering the amount of training data from
1k to 25k in increments of 1,000, and plotting the
number of clusters that can be obtained from each
technique on each amount of training data.

Figure 8 show the number of clusters according
to the increase of training data for three models.
TrueSkill efficiently split the systems into clusters
compared to other two methods. Figure 9 and 10
present the result of clustering two different size of

"We also tried the sampling 1,000 times and the clustering
granularities were the same.
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Figure 8: The number of clusters according to
the increase of training data for WMT13 French-
English (13 systems in total).

training data (1K and 25K pairwise comparisons)
on the TrueSkill model, which indicates that the
rank ranges become narrow and generate clusters
reasonably as the number of training samples in-
creases. The ranking and clusters are slightly dif-
ferent from the official result (Table 1) mainly be-
cause the official result is based on Expected Wins.

One noteworthy observation is that the ranking
of systems between Figure 9 and Figure 10 is the
same, further corroborating the stability and ac-
curacy of the TrueSkill model even with a small
amount of data. Furthermore, while the need
to cluster systems forces the collection of sig-
nificantly more data than if we wanted only to
report a total ordering, TrueSkill here produces
nicely-sized clusters with only 25K pairwise com-
parisons, which is nearly one-third large of that
used in the WMT13 campaign (80K for French-
English, yielding 8 clusters).

7 Conclusion

Models of “relative ability” (Koehn, 2012; Hop-
kins and May, 2013) are a welcome addition to
methods for inferring system rankings from hu-
man judgments. The TrueSkill variant presented
in this paper is a promising further development,
both in its ability to achieve higher accuracy levels
than alternatives, and in its ability to sample non-
uniformly from the space of system pair match-
ings. It’s possible that future WMT evaluations
could significantly reduce the amount of data they
need to collect, also potentially allowing them to
draw from expert annotators alone (the developers
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Figure 9: The result of clustering by TrueSkill
model with 1K training data from WMTI13
French-English. The boxes range from the lower
to upper quartile values, with means in the middle.
The whiskers show the full range of each system’s
rank after the bootstrap resampling.
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Figure 10: The result of clustering by TrueSkill
model with 25K training data. Dashed lines sep-
arate systems with non-overlapping rank ranges,
splitting the data into clusters.

of the participating systems), without the need to
hire non-experts on Mechanical Turk.

One piece missing from the methods explored
and proposed in this paper is models of the actual
translations being compared by judges. Clearly,
it is properties of the sentences themselves that
judges use to make their judgments, a fact which
is captured only indirectly by modeling transla-
tion qualities sampled from system abilities. This
observation has been used in the development
of automatic evaluation metrics (Song and Cohn,
2011), and is something we hope to explore in fu-
ture work for system ranking.
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Abstract

This paper presents the results of the
WMT14 shared tasks, which included a
standard news translation task, a sepa-
rate medical translation task, a task for
run-time estimation of machine translation
quality, and a metrics task. This year, 143
machine translation systems from 23 insti-
tutions were submitted to the ten transla-
tion directions in the standard translation
task. An additional 6 anonymized sys-
tems were included, and were then evalu-
ated both automatically and manually. The
quality estimation task had four subtasks,
with a total of 10 teams, submitting 57 en-
tries.

1 Introduction

We present the results of the shared tasks of
the Workshop on Statistical Machine Translation
(WMT) held at ACL 2014. This workshop builds
on eight previous WMT workshops (Koehn and
Monz, 2006; Callison-Burch et al., 2007, 2008,
2009, 2010, 2011, 2012; Bojar et al., 2013).

This year we conducted four official tasks: a
translation task, a quality estimation task, a met-
rics task! and a medical translation task. In the
translation task (§2), participants were asked to
translate a shared test set, optionally restricting
themselves to the provided training data. We held
ten translation tasks this year, between English and
each of Czech, French, German, Hindi, and Rus-
sian. The Hindi translation tasks were new this
year, providing a lesser resourced data condition
on a challenging language pair. The system out-
puts for each task were evaluated both automati-
cally and manually.

'The metrics task is reported in a separate paper
(Machécek and Bojar, 2014).

Johns Hopkins University

Lucia Specia
University of Sheffield
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The human evaluation (§3) involves asking
human judges to rank sentences output by
anonymized systems. We obtained large num-
bers of rankings from researchers who contributed
evaluations proportional to the number of tasks
they entered. Last year, we dramatically increased
the number of judgments, achieving much more
meaningful rankings. This year, we developed a
new ranking method that allows us to achieve the
same with fewer judgments.

The quality estimation task (§4) this year
included sentence- and word-level subtasks:
sentence-level prediction of 1-3 likert scores,
sentence-level prediction of percentage of word
edits necessary to fix a sentence, sentence-level
prediction of post-editing time, and word-level
prediction of scores at different levels of granular-
ity (correct/incorrect, accuracy/fluency errors, and
specific types of errors). Datasets were released
with English-Spanish, English-German, Spanish-
English and German-English news translations
produced by 2-3 machine translation systems and,
for some subtasks, a human translation.

The medical translation task (§5) was intro-
duced this year. Unlike the “standard” translation
task, the test sets come from the very specialized
domain of medical texts. The aim of this task was
not only domain adaptation but also the utilization
of translation systems in a larger scenario, namely
cross-lingual information retrieval (IR). Extrinsic
evaluation in an IR setting was a part of this task
(on the other hand, manual evaluation of transla-
tion quality was not carried out).

The primary objectives of WMT are to evaluate
the state of the art in machine translation, to dis-
seminate common test sets and public training data
with published performance numbers, and to re-
fine evaluation and estimation methodologies for
machine translation. As before, all of the data,

Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 12-58,
Baltimore, Maryland USA, June 26-27, 2014. (©2014 Association for Computational Linguistics



translations, and collected human judgments are
publicly available.> We hope these datasets serve
as a valuable resource for research into statistical
machine translation and automatic evaluation or
prediction of translation quality.

2 Overview of the Translation Task

The recurring task of the workshop examines
translation between English and other languages.
As in the previous years, the other languages in-
clude German, French, Czech and Russian.

We dropped Spanish and added Hindi this year.
From a linguistic point of view, Spanish poses
similar problems as French, making its prior in-
clusion less valuable. Hindi is not only interest-
ing since it is a more distant language than the
European languages we include, but also because
we have much less training data, thus forcing re-
searchers to deal with low resource conditions, but
also providing them with a language pair that does
not suffer from the computational complexities of
having to deal with massive amounts of training
data.

We created a test set for each language pair by
translating newspaper articles and provided train-
ing data.

2.1 Test data

The test data for this year’s task was selected from
news stories from online sources, as before. How-
ever, we changed our method to create the test sets.

In previous years, we took equal amounts of
source sentences from all six languages involved
(around 500 sentences each), and translated them
into all other languages. While this produced a
multi-parallel test corpus that could be also used
for language pairs (such as Czech-Russian) that
we did not include in the evaluation, it did suf-
fer from artifacts from the larger distance between
source and target sentences. Most test sentences
involved the translation a source sentence that
was translated from a their language into a tar-
get sentence (which was compared against a trans-
lation from that third language as well). Ques-
tions have been raised, if the evaluation of, say,
French-English translation is best served when
testing on sentences that have been originally writ-
ten in, say, Czech. For discussions about trans-
lationese please for instance refer to Koppel and
Ordan (2011).

2http ://statmt.org/wmtl4/results.html
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This year, we took about 1500 English sen-
tences and translated them into the other 5 lan-
guages, and then additional 1500 sentences from
each of the other languages and translated them
into English. This gave us test sets of about 3000
sentences for our English-X language pairs, which
have been either written originally written in En-
glish and translated into X, or vice versa.

The composition of the test documents is shown
in Table 1. The stories were translated by the pro-
fessional translation agency Capita, funded by the
EU Framework Programme 7 project MosesCore,
and by Yandex, a Russian search engine com-
pany.® All of the translations were done directly,
and not via an intermediate language.

2.2 Training data

As in past years we provided parallel corpora
to train translation models, monolingual cor-
pora to train language models, and development
sets to tune system parameters. Some train-
ing corpora were identical from last year (Eu-
roparl*, United Nations, French-English 10° cor-
pus, CzEng, Common Crawl, Russian-English
Wikipedia Headlines provided by CMU), some
were updated (Russian-English parallel data pro-
vided by Yandex, News Commentary, monolin-
gual data), and a new corpus was added (Hindi-
English corpus, Bojar et al. (2014)), Hindi-English
Wikipedia Headline corpus).

Some statistics about the training materials are
given in Figure 1.

2.3 Submitted systems

We received 143 submissions from 23 institu-
tions. The participating institutions and their entry
names are listed in Table 2; each system did not
necessarily appear in all translation tasks. We also
included four commercial off-the-shelf MT sys-
tems and four online statistical MT systems, which
we anonymized.

For presentation of the results, systems are
treated as either constrained or unconstrained, de-
pending on whether their models were trained only
on the provided data. Since we do not know how
they were built, these online and commercial sys-
tems are treated as unconstrained during the auto-
matic and human evaluations.

3h‘ctp ://www.yandex.com/
*As of Fall 2011, the proceedings of the European Parlia-
ment are no longer translated into all official languages.



Europarl Parallel Corpus

French — English German — English Czech — English
Sentences 2,007,723 1,920,209 646,605
Words 60,125,563 | 55,642,101 | 50,486,398 | 53,008,851 | 14,946,399 | 17,376,433
Distinct words 140,915 118,404 381,583 115,966 172,461 63,039
News Commentary Parallel Corpus
French < English | German < English | Czech < English | Russian < English
Sentences 183,251 201,288 146,549 165,602
Words 5,688,656 | 4,659,619 | 5,105,101 | 5,046,157 | 3,288,645 | 3,590,287 | 4,153,847 | 4,339,974
Distinct words | 72,863 62,673 150,760 | 65,520 | 139,477 | 55,547 | 151,101 | 60,801
Common Crawl Parallel Corpus
French < English German < English | Czech < English | Russian < English
Sentences 3,244,152 2,399,123 161,838 878,386
Words 91,328,790 (81,096,306 |54,575,405|58,870,638 (3,529,783 13,927,378 | 21,018,793 | 21,535,122
Distinct words| 889,291 | 859,017 | 1,640,835 | 823,480 | 210,170 | 128,212 | 764,203 | 432,062
United Nations Parallel Corpus Hindi-English Parallel Corpus
French < English Hindi < English
Sentences 12,886,831 Sentences 287,202
Words 411,916,781 | 360,341,450 Words 6,002,418 | 3,953,851
Distinct words 565,553 666,077 Distinct words 121,236 105,330
102 Word Parallel Corpus Yandex 1M Parallel COl'pllS
French — English Russian < English
Sentences 22,520,400 Sentences 1,000,000
Words 811,203,407 | 668,412,817 Words 24,121,459 | 26,107,293
Distinct words | 2,738,882 2,861,836 Distinct words | 701,809 387,646
CzEng Parallel Corpus Wiki Headlines Parallel Corpus
Czech < English Russian — English | Hindi — English
Sentences 14,833,358 Sentences 514,859 32,863
Words 200,658,857 | 228,040,794 Words 1,191,474 | 1,230,644 | 141,042 | 70,075
Distinct words 1,389,803 920,824 Distinct words | 282,989 251,328 25,678 | 26,989
Europarl Language Model Data
English French German Czech
Sentence 2,218,201 2,190,579 2,176,537 668,595
Words 59,848,044 | 63,439,791 | 53,534,167 | 14,946,399
Distinct words 123,059 145,496 394,781 172,461
News Language Model Data
English French German Czech Russian Hindi
Sentence 90,209,983 30,451,749 89,634,193 36,426,900 32,245,651 1,275,921
Words 2,109,603,244 | 748,852,739 | 1,606,506,785 | 602,950,410 | 575,423,682 | 36,297,394
Distinct words 4,089,792 1,906,470 10,248,707 3,101,846 2,860,837 258,759
News Test Set
French — English | German — English | Czech < English | Russian < English | Hindi < English
Sentences 3003 3003 3003 3003 2507
Words 81,194 | 71,147 63,078 67,624 60,240 | 68,866 | 62,107 69,329 86,974 | 55,822
Distinct words | 11,715 10,610 13,930 10,458 16,774 9,893 17,009 9,938 8,292 9,217

Figure 1: Statistics for the training and test sets used in the translation task. The number of words and the number of distinct
words (case-insensitive) is based on the provided tokenizer.
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aktudlné.cz (2), blesk.cz (3), blisty.cz (1), denik.cz (9), e15.cz (1), iDNES.cz (17), ihned.cz (14), lidovky.cz (8), medi-

BBC French Africa (1), Canoe (9), Croix (4), Cyber Presse (12), Dernieres Nouvelles (1), dhnet.be (5), Equipe (1),
Euronews (6), Journal Metro.com (1), La Libre.be (2), La Meuse.be (2), Le Devoir (3), Le Figaro (8), Le Monde (3),
Les Echos (15), Lexpress.fr (3), Liberation (1), L’independant (2), Metro France (1), Nice-Matin (6), Le Nouvel Ob-

ABC News (5), BBC (5), CBS News (5), CNN (5), Daily Mail (5), Financial Times (5), Fox News (2), Globe and
Mail (1), Independent (1), Los Angeles Times (1), New Yorker (1), News.com Australia (16), Reuters (3), Scotsman (2),

Abendzeitung Niirnberg (1), all-in.de (2), Augsburger Allgemeine (1), AZ Online (1), Borsenzeitung (1), come-
on.de (1), Der Westen (2), DZ Online (1), Reutlinger General-Anzeiger (1), Generalanzeiger Bonn (1), Giessener
Anzeiger (1), Goslarsche Zeitung (1), Hersfelder Zeitung (1), Jiidische Allgemeine (1), Kreisanzeiger (2),
Kreiszeitung (2), Krone (1), Lampertheimer Zeitung (2), Lausitzer Rundschau (1), Mittelbayerische (1), Morgen-
post (1), nachrichten.at (1), Neue Presse (1), OP Online (1), Potsdamer Neueste Nachrichten (1), Passauer Neue
Presse (1), Recklinghéduser Zeitung (1), Rhein Zeitung (1), salzburg.com (1), Schwarzwilder Bote (29), Segeberger
Zeitung (1), Soester Anzeiger (1), Siidkurier (17), svz.de (1), Tagesspiegel (1), Usinger Anzeiger (3), Volksblatt.li (1),
Westfilischen Anzeiger (3), Wiener Zeitung (1), Wiesbadener Kurier (1), Westdeutsche Zeitung (1), Wilhelmshavener

168.ru (1), aif (3), altapress.ru (2), argumenti.ru (2), BBC Russian (3), belta.by (2), communa.ru (1), dp.ru (1), eg-
online.ru (1), Euronews (2), fakty.ua (2), gazeta.ru (1), inotv.rt.com (1), interfax (1), Izvestiya (1), Kommersant (7),
kp (2), lenta.ru (4), lgng (1), litrossia.ru (1), mirnov.ru (5), mk (8), mn.ru (2), newizv (2), nov-pravda.ru (1), no-
vayagazeta (1), nr2.ru (8), pnp.ru (1), rbc.ru (3), ria.ru (4), rosbalt.ru (1), sovsport.ru (6), Sport Express (10), trud.ru (4),

Language | Sources (Number of Documents)
Czech
afax.cz (2), metro.cz (1), Novinky.cz (5), pravo.novinky.cz (6), reflex.cz (2), tyden.cz (1), zdn.cz (1).
French
servateur (3), Radio Canada (6), Reuters (7).
English
smh.com.au (2), stv.tv (1), Telegraph (6), UPI (2).
German
Zeitung (1), Yahoo Deutschland (1).
Hindi Bhaskar (24), Jagran (61), Navbharat Times / India Times (4), ndtv (2).
Russian
tumentoday.ru (1), vesti.ru (10), zr.ru (1).

Table 1: Composition of the test set. For more details see the XML test files. The docid tag gives the source and the date for
each document in the test set, and the origlang tag indicates the original source language.

3 Human Evaluation

As with past workshops, we contend that auto-
matic measures of machine translation quality are
an imperfect substitute for human assessments.
We therefore conduct a manual evaluation of the
system outputs and define its results to be the prin-
cipal ranking of the workshop. In this section, we
describe how we collected this data and compute
the results, and then present the official results of
the ranking.

This year’s evaluation was conducted a bit dif-
ferently. The main differences are:

e In contrast to the past two years, we collected
judgments entirely from researchers partici-
pating in the shared tasks and trusted friends
of the community. Last year, about two thirds
of the data were solicited from random volun-
teers on the Amazon Mechanical Turk. For
some language pairs, the Turkers data had
much lower inter-annotator agreement com-
pared to the researchers.

e As a result, we collected about seventy-five
percent less data, but were able to obtain
good confidence intervals on the clusters with
the use of new approaches to ranking.

e We compared three different ranking method-
ologies, selecting the one with the highest ac-
curacy on held-out data.
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We also maintain many of our customs from
prior years, including the presentation of the re-
sults in terms of a partial ordering (clustering) of
the systems. Systems in the same cluster could not
be meaningfully distinguished and should be con-
sidered ties.

3.1 Data collection

The system ranking is produced from a large set of
pairwise annotations between system pairs. These
pairwise annotations are collected in an evaluation
campaign that enlists participants in the shared
task to contribute one hundred “Human Intelli-
gence Tasks” (HITs) per system submitted. Each
HIT consists of three ranking tasks. In a rank-
ing task, an annotator is presented with a source
segment, a human reference translation, and the
outputs of five anonymized systems, randomly se-
lected from the set of participating systems, and
randomly ordered.

To run the evaluation, we use Appraise® (Fe-
dermann, 2012), an open-source tool built on
Python’s Django framework. At the top of each
HIT, the following instructions are provided:

You are shown a source sentence fol-
lowed by several candidate translations.
Your task is to rank the translations from
best to worst (ties are allowed).

5https ://github.com/cfedermann/Appraise



ID

Institution

AFRL, AFRL-PE Air Force Research Lab (Schwartz et al., 2014)

CIMS University of Stuttgart / University of Munich (Cap et al., 2014)
CMU Carnegie Mellon University (Matthews et al., 2014)

CU-* Charles University, Prague (Tamchyna et al., 2014)

DCU-FDA Dublin City University (Bicici et al., 2014)

DCU-ICTCAS Dublin City University (Li et al., 2014b)

DCU-LINGO24 Dublin City University / Lingo24 (wu et al., 2014)

EU-BRIDGE EU-BRIDGE Project (Freitag et al., 2014)

KIT Karlsruhe Institute of Technology (Herrmann et al., 2014)
[IT-BOMBAY IIT Bombay (Dungarwal et al., 2014)

HIT-HYDERABAD IIIT Hyderabad

IMS-TTT University of Stuttgart / University of Munich (Quernheim and Cap, 2014)
IPN-UPV-* IPN-UPV (Costa-jussa et al., 2014)

KAZNU Amandyk Kartbayev, FBK

LIMSI-KIT LIMSI / Karlsruhe Instutute of Technology (Do et al., 2014)
MANAWI-* Universitit des Saarlandes (Tan and Pal, 2014)

MATRAN Abu-MaTran Project: Promsit / DCU / UA (Rubino et al., 2014)
PROMT-RULE, PROMT

PROMT-HYBRID

RWTH RWTH Aachen (Peitz et al., 2014)

STANFORD Stanford University (Neidert et al., 2014; Green et al., 2014)
UA-* University of Alicante (Sanchez-Cartagena et al., 2014)
UEDIN-PHRASE, University of Edinburgh (Durrani et al., 2014b)
UEDIN-UNCNSTR

UEDIN-SYNTAX University of Edinburgh (Williams et al., 2014)

UU, UU-DOCENT Uppsala University (Hardmeier et al., 2014)

YANDEX Yandex School of Data Analysis (Borisov and Galinskaya, 2014)
COMMERCIAL-[1,2] | Two commercial machine translation systems
ONLINE-[A,B,C,G] Four online statistical machine translation systems

RBMT-[1,4] Two rule-based statistical machine translation systems

Table 2: Participants in the shared translation task. Not all teams participated in all language pairs. The translations from the
commercial and online systems were not submitted by their respective companies but were obtained by us, and are therefore
anonymized in a fashion consistent with previous years of the workshop.
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XoTuUTe CBeTALLerocs B
TEMHOTEe MOpOoXeHoro?
BpuTaHckKiA NpegnpuHUMaTeb
co30an Nepsoe B MUpe
CEETALLEECA B TEMHOTE

MOPOXEHOE C NOMOLLILIO Mey3bl.
— Source

Fancy a glow-in-the-dark ice
cream? A British entrepreneur has
created the world's first glow-in-

the-dark ice cream - using jellyfish.
— Reference

- 0 —0 —0 0 0 -CZ)

You do want ice cream luminous in the darkness?

— Translation 1

@) ~ 0 —=0 ~0 ~0 0 (L)

You want to glowing in the dark ice cream?

— Translation 2

@) 0 —0 ~0 o o (&)

You want the luminous in the dark ice cream?

— Translation 3

- 0 —0 —0 0o 0 -(E)

Want luminous in the dark ice cream?

— Translation 4

Best E3d

(E=00) (7520) (E=0) [E=20) (F=50) ~ (G

Want to llluminate the Dark with Ice Cream?

— Translation 5

Figure 2: Screenshot of the Appraise interface used in the human evaluation campaign. The annotator is presented with a
source segment, a reference translation, and the outputs of five systems (anonymized and randomly ordered), and is asked to
rank these according to their translation quality, with ties allowed.

A screenshot of the ranking interface is shown in
Figure 2. Annotators are asked to rank the sys-
tems from 1 (best) to 5 (worst), with ties permit-
ted. Note that a lower rank is better. The rankings
provided by a ranking task are then reduced to a
set of ten pairwise rankings produced by consider-
ing all (3) combinations of systems in the ranking
task. For example, consider the following annota-
tion provided among systems A, B, F, H, and J:

1 2 3 4 5

T~ W >

[ ]
This is reduced to the following set of pairwise
judgments:
A>B A=FA>HA<J
B<F,B<HB<J
F>HF<J
H<J
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Here, A > B should be read is “A is ranked higher
than (worse than) B”. Note that by this procedure,
the absolute value of ranks and the magnitude of
their differences are discarded.

For WMT13, nearly a million pairwise anno-
tations were collected from both researchers and
paid workers on Amazon’s Mechanical Turk, in
a roughly 1:2 ratio. This year, we collected data
from researchers only, an ability that was enabled
by the use of a new technique for producing the
partial ranking for each task (§3.3.3). Table 3 con-
tains more detail.

3.2 Annotator agreement

Each year we calculate annotator agreement
scores for the human evaluation as a measure of
the reliability of the rankings. We measured pair-
wise agreement among annotators using Cohen’s
kappa coefficient (k) (Cohen, 1960). If P(A) be
the proportion of times that the annotators agree,
and P(F) is the proportion of time that they would



LANGUAGE PAIR Systems Rankings Average
Czech—English 5 21,130  4,226.0
English—Czech 10 55,900 5,590.0
German—English 13 25,260 1,943.0
English—-German 18 54,660 3,036.6
French—English 8 26,090 3,261.2
English-French 13 33,350 2,565.3
Russian—-English 13 34,460 2,650.7
English—Russian 9 28,960 3,217.7
Hindi—English 9 20,900 2,322.2
English-Hindi 12 28,120 2,343.3
TOTAL WMT 14 110 328,830 2,989.3
WMT13 148 942,840 6,370.5
WMT12 103 101,969 999.6
WMTI11 133 63,045 474.0

Table 3: Amount of data collected in the WMT14 manual evaluation. The final three rows report summary information from

the previous two workshops.

agree by chance, then Cohen’s kappa is:

_ P(A)—P(E)
- 1-P(E)

Note that « is basically a normalized version of
P(A), one which takes into account how mean-
ingful it is for annotators to agree with each other
by incorporating P(E). The values for x range
from O to 1, with zero indicating no agreement and
1 perfect agreement.

We calculate P(A) by examining all pairs of
systems which had been judged by two or more
judges, and calculating the proportion of time that
they agreed that A < B, A = B,or A > B. In
other words, P(A) is the empirical, observed rate
at which annotators agree, in the context of pair-
wise comparisons.

As for P(E), it captures the probability that two
annotators would agree randomly. Therefore:

P(E) = P(4<B)* 4+ P(4=B)* + P(A>B)?

Note that each of the three probabilities in P(E)’s
definition are squared to reflect the fact that we are
considering the chance that rwo annotators would
agree by chance. Each of these probabilities is
computed empirically, by observing how often an-
notators actually rank two systems as being tied.
Table 4 gives x values for inter-annotator agree-
ment for WMT11-WMT14 while Table 5 de-
tails intra-annotator agreement scores, including
the division of researchers (WMT13,.) and MTurk
(WMT13,,) data. The exact interpretation of the
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kappa coefficient is difficult, but according to Lan-
dis and Koch (1977), 0-0.2 is slight, 0.2-0.4 is
fair, 0.4-0.6 is moderate, 0.6—0.8 is substantial,
and 0.8-1.0 is almost perfect. The agreement rates
are more or less in line with prior years: worse for
some tasks, better for others, and on average, the
best since WMT11 (where agreement scores were
likely inflated due to inclusion of reference trans-
lations in the comparisons).

3.3 Models of System Rankings

The collected pairwise rankings are used to pro-
duce a ranking of the systems. Machine transla-
tion evaluation has always been a subject of con-
tention, and no exception to this rule exists for the
WMT manual evaluation. While the precise met-
ric has varied over the years, it has always shared
a common idea of computing the average num-
ber of times each system was judged better than
other systems, and ranking from highest to low-
est. For example, in WMT 11 Callison-Burch et al.
(2011), the metric computed the percentage of the
time each system was ranked better than or equal
to other systems, and included comparisons to hu-
man references. In WMT12 Callison-Burch et al.
(2012), comparisons to references were dropped.
In WMT13, rankings were produced over 1,000
bootstrap-resampled sets of the training data. A
rank range was collected for each system across
these folds; the average value was used to order
the systems, and a 95% confidence interval across
these ranks was used to organize the systems into
equivalence classes containing systems with over-



LANGUAGE PAIR | WMTI11 WMTI12 WMTI3 WMTI13, WMTI13,, WMTI14
Czech—-English 0.400 0.311 0.244 0.342 0.279 0.305
English—Czech 0.460 0.359 0.168 0.408 0.075 0.360
German—English 0.324 0.385 0.299 0.443 0.324 0.368
English-German 0.378 0.356 0.267 0.457 0.239 0.427
French-English 0.402 0.272 0.275 0.405 0.321 0.357
English—-French 0.406 0.296 0.231 0.434 0.237 0.302
Hindi—English — — — — — 0.400
English—-Hindi — — — — — 0.413
Russian—-English — — 0.278 0.315 0.324 0.324
English—Russian — — 0.243 0.416 0.207 0.418
MEAN 0.395 0.330 0.260 0.367

Table 4: ~ scores measuring inter-annotator agreement.

See Table 5 for corresponding intra-annotator agreement scores.

LANGUAGE PAIR | WMT11 WMTI12 WMTI3 WMTI13, WMTI13,, WMTI14
Czech-English 0.597 0.454 0.479 0.483 0.478 0.382
English-Czech 0.601 0.390 0.290 0.547 0.242 0.448
German—English 0.576 0.392 0.535 0.643 0.515 0.344
English—-German 0.528 0.433 0.498 0.649 0.452 0.576
French—English 0.673 0.360 0.578 0.585 0.565 0.629
English—French 0.524 0.414 0.495 0.630 0.486 0.507
Hindi—English — — — — — 0.605
English-Hindi — — — — — 0.535
Russian—English — — 0.450 0.363 0.477 0.629
English—Russian — — 0.513 0.582 0.500 0.570
MEAN 0.583 0.407 0.479 0.522

Table 5: k scores measuring intra-annotator agreement, i.e., self-consistency of judges, across for the past few years of the

human evaluation.

lapping ranges.

This year, we introduce two new changes. First,
we pit the WMT13 method against two new ap-
proaches: that of Hopkins and May (2013, §3.3.2),
and another based on TrueSkill (Sakaguchi et al.,
2014, §3.3.3). Second, we compare these two
methods against WMT13’s “Expected Wins” ap-
proach, and then select among them by determin-
ing which of them has the highest accuracy in
terms of predicting annotations on a held-out set
of pairwise judgments.

3.3.1 Method 1: Expected Wins (EW)

Introduced for WMT 13, the EXPECTED WINS has
an intuitive score demonstrated to be accurate in
ranking systems according to an underlying model
of “relative ability” (Koehn, 2012a). The idea is
to gauge the probability that a system .S; will be
ranked better than another system randomly cho-
sen from a pool of opponents {S; : j # i}. If
we define the function win(A, B) as the number
of times system A is ranked better than system B,
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then we can define this as follows:

scoregy (Si) =

{S}IZ

win(S;, S;)
win(.S;, S;) + win(S;, S;)

Note that this score ignores ties.

3.3.2 Method 2: Hopkins and May (HM)

Hopkins and May (2013) introduced a graphical
model formulation of the task, which makes the
notion of underlying system ability even more ex-
plicit. Each system S in the pool {S;} is repre-
sented by an associated relative ability p; and a
variance o2 (fixed across all systems) which serve
as the parameters of a Gaussian distribution. Sam-
ples from this distribution represent the quality
of sentence translations, with higher quality sam-
ples having higher values. Pairwise annotations
(S1, S2,m) are generated according to the follow-
ing process:



1. Select two systems .S1 and Sy from the pool
of systems {.S; }

. Draw two “translations”, adding random
Gaussian noise with variance O'gb . to simulate
the subjectivity of the task and the differences
among annotators:

@~ N(us,,07) +N(0,0%)
q2 ~ N(/‘Szv UZ) +N(0? Ugbs)

3. Let d be a nonzero real number that defines
a fixed decision radius. Produce a rating 7

according to:

< qG1—q>d
T=49> @-q>d
= otherwise

Hopkins and May use Gibbs sampling to infer
the set of system means from an annotated dataset.
Details of this inference procedure can be found in
Sakaguchi et al. (2014). The score used to produce
the rankings is simply the system mean associated
with each system:

SCOI'GHM<Si) = us;

3.3.3 Method 3: TrueSKill (TS)

TrueSkill is an adaptive, online system that em-
ploys a similar model of relative ability Herbrich
et al. (2006). It was initially developed for Xbox
Live’s online player community, where it is used
to model player ability, assign levels, and select
competitive matches. Each player S; is modeled
by two parameters: TrueSkill’s current estimate
of each system’s relative ability, us;, and a per-
system measure of TrueSkill’s uncertainty of those
estimates, J?gj. When the outcome of a match is
observed, TrueSKkill uses the relative status of the
two systems to update these estimates. If a trans-
lation from a system with a high mean is judged
better than a system with a greatly lower mean, the
result is not surprising, and the update size for the
corresponding system means will be small. On the
other hand, when an upset occurs in a competition,
the means will receive larger updates. Sakaguchi
etal. (2014) provide an adaptation of this approach
to the WMT manual evaluation, and showed that
it performed well on WMT13 data.

Similar to the Hopkins and May model,
TrueSkill scores systems by their inferred means:

scorers(S;) = ps;
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This score is then used to sort the systems and pro-
duce the ranking.

3.4 Method Selection

We have three methods which, provided with the
collected data, produce different rankings of the
systems. Which of them is correct? More imme-
diately, which one of them should we publish as
the official ranking for the WMT14 manual eval-
uation? As discussed, the method used to com-
pute the ranking has been tweaked a bit each year
over the past few years in response to criticisms
(e.g., Lopez (2012); Bojar et al. (2011)). While the
changes were reasonable (and later corroborated),
Hopkins and May (2013) pointed out that this task
of model selection should be driven by empirical
evaluation on held-out data, and suggested per-
plexity as the metric of choice.

We choose instead a more direct gold-standard
evaluation metric: the accuracy of the rankings
produced by each method in predicting pairwise
judgments. We use each method to produce a par-
tial ordering of the systems, grouping them into
equivalence classes. This partial ordering unam-
biguously assigns a prediction mp between any
pair of systems (S;,.Sj). By comparing the pre-
dicted relationship 7p to the actual annotation for
each pairwise judgment in the test data (by token),
we can compute an accuracy score for each model.

We predict accuracy in this manner using 100-
fold cross-validation. For each task, we split the
data into a fixed set of 100 randomly-selected
folds. Each fold serves as a test set, with the
remaining ninety-nine folds available as training
data for each method. Note that the total order-
ing over systems provided by the score, functions
defined do not predict ties. In order to do enable
the models to predict ties, we produce equivalence
classes using the following procedure:

e Assign Sj to a cluster

e For each system .5;, assign it to the current
cluster if score(.S;—1) — score(S;) < r; oth-
erwise, assign it to a new cluster

The value of r (the decision radius for ties)
is tuned using accuracy on the entire training
data using grid search over the values r &
0,0.01,0.02,...,.25 (26 values in total). This
value is tuned separately for each method on each
fold. Table 6 contains an example partial ordering.



System Score Rank
B 0.60 1
D 0.44 2
E 0.39 2
A 0.25 2
F -0.09 3
C -0.22 3

Table 6: The partial ordering computed with the provided
scores when r = (.15.

Task EW HM TS | Oracle
Czech—English 404 411 411 41.2
English—Czech 453 456 459 46.8
French—English | 49.0 494 49.3 50.3
English-French | 44.6 444 44.7 46.0
German—English | 43.5 43.7 43.7 45.2
English—-German | 47.3 47.4 47.2 48.2
Hindi—English 62.5 622 625 62.6
English-Hindi 533 53.7 535 55.7
Russian-English | 47.6 47.7 47.7 50.6
English—Russian | 46.5 46.1 46.4 48.2
MEAN 48.0 48.1 48.2 49.2

Table 7: Accuracies for each method across 100 folds, for
each translation task. The oracle uses the most frequent out-
come between each pair of systems, and therefore might not
constitute a feasible ranking.

After training, each model has defined a partial
ordering over systems.® This is then used to com-
pute accuracy on all the pairwise judgments in the
test fold. This process yields 100 accuracies for
each method; the average accuracy across all the
folds can then be used to compute the best method.

Table 7 contains accuracy results for the three
methods on the WMT14 tasks. On average, there
is a small improvement in accuracy moving from
Expected Wins to the H&M model, and then again
to the TrueSkill model; however, there is no pat-
tern to the best model for each class. The Oracle
column is computed by selecting the most prob-
able outcome (7 € {<,=,>}) for each system
pair, and provides an upper bound on accuracy
when predicting outcomes using only system-level
information. Furthermore, this method of oracle
computation might not represent a feasible rank-
ing or clustering,’.

The TrueSkill approach was best overall, so we
used it to produce the official rankings for all lan-

®1t is a total ordering when r = 0, or when all the system
scores are outside the decision radius.

"For example, if there were a cycle of “better than” judg-
ments among a set of systems.
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guage pairs.

3.5 Rank Ranges and Clusters

Above we saw how to produce system scores for
each method, which provides a total ordering of
the systems. But we would also like to know if the
obtained system ranking is statistically significant.
Given the large number of systems that participate,
and the similarity of the underlying systems result-
ing from the common training data condition and
(often) toolsets, there will be some systems that
will be very close in quality. These systems should
be grouped together in equivalence classes.

To establish the reliability of the obtained sys-
tem ranking, we use bootstrap resampling. We
sample from the set of pairwise rankings an equal
sized set of pairwise rankings (allowing for multi-
ple drawings of the same pairwise ranking), com-
pute a TrueSkill model score for each system
based on this sample, and then rank the systems
from 1..|{S;}|. By repeating this procedure 1,000
times, we can determine a range of ranks, into
which system falls at least 95% of the time (i.e.,
at least 950 times) — corresponding to a p-level
of p < 0.05. Furthermore, given the rank ranges
for each system, we can cluster systems with over-
lapping rank ranges.®

Table 8 reports all system scores, rank ranges,
and clusters for all language pairs and all systems.
The official interpretation of these results is that
systems in the same cluster are considered tied.
Given the large number of judgments that we col-
lected, it was possible to group on average about
two systems in a cluster, even though the systems
in the middle are typically in larger clusters.

3.6 Cluster analysis

The official ranking results for English-German
produced clusters compute at the 90% confidence
level due to the presence of a very large cluster
(of nine systems). While there is always the pos-
sibility that this cluster reflects a true ambiguity, it
is more likely due to the fact that we didn’t have
enough data: English—-German had the most sys-

8Formally, given ranges defined by start(S;) and end(S;),
we seek the largest set of clusters {C.} that satisfies:

vS3ac:SeC
S€Ca,Se€lCy—Ca=0Cy
C, #Cb — VS; € CmSj c€Cy:
start(S;) > end(S;) or start(S;) > end(S;)



Czech-English German-English English-German

# | score | range | system # | score | range | system # | score | range | system
1] 0.591 1 ONLINE-B 1] 0.451 1 ONLINE-B 1| 0.264 1-2 | UEDIN-SYNTAX
21 0.290 2 UEDIN-PHRASE 21 0.267 | 2-3 | UEDIN-SYNTAX 0.242 1-2 | ONLINE-B
31-0.171| 3-4 | UEDIN-SYNTAX 0.258 | 2-3 | ONLINE-A 21 0.167 | 3-6 | ONLINE-A
-0.243 | 3-4 | ONLINE-A 310.147 | 4-6 | LIMSI-KIT 0.156 | 3-6 | PROMT-HYBRID
41-0.468 5 CU-MOSES 0.146 | 4-6 | UEDIN-PHRASE 0.155 3-6 | PROMT-RULE
0.138 | 4-6 | EU-BRIDGE 0.155 3-6 | UEDIN-STANFORD
. 41 0.026 | 7-8 | KIT 31 0.094 7 EU-BRIDGE
English-Czech 0.049 | 7-8 | RWTH 410033 | 8-10 | REMT4
#| score | range | system 57-0.125 | 9-11 | DCU-ICTCAS 0.031 | 8-10 | UEDIN-PHRASE
1| 0.371 1-3 | CU-DEPFIX -0.157 | 9-11 | cMU 0.012 | 8-10 | RBMT1
0.356 | 1-3 | UEDIN-UNCNSTR -0.192 | 9-11 | RBMT4 51-0.032 | 11-12 | KIT
0.333 | 1-4 | CU-BOJAR 6]-0306| 12 [ RBMTI -0.069 | 11-13 | STANFORD-UNC
0.287 | 3-4 | CU-FUNKY 71-0.604 | 13 | ONLINE-C -0.100 | 12-14 | ciMs
21 0.169 | 5-6 | ONLINE-B -0.126 | 13-15 | STANFORD
0.113 | 5-6 | UEDIN-PHRASE -0.158 | 14-16 | UU
31 0.030 7 ONLINE-A -0.191 | 15-16 | ONLINE-C
41-0.175 8 CU-TECTO 6| -0.307 | 17-18 | IMS-TTT
51-0.534 9 COMMERCIAL1 -0.325 | 17-18 | UU-DOCENT
61-0950| 10 | COMMERCIAL2
Russian-English
# | score | range | system French-English Hindi-English
110583 1 AFRL-PE # | score | range | system # | score | range | system
2] 0.299 2 | ONLINE-B 1] 0.608 I | UEDIN-PHRASE 1| 1.326 1 | ONLINE-B
31 0.190 | 3-5 | ONLINE-A 210479 | 2-4 |kiIT 2| 0.559 | 2-3 | ONLINE-A
0.178 | 3-5 | PROMT-HYBRID 0.475 | 2-4 | ONLINE-B 0.476 | 2-4 | UEDIN-SYNTAX
0.123 | 4-7 | PROMT-RULE 0.428 | 2-4 | STANFORD 0.434 | 34 |cmu
0.104 | 5-8 | UEDIN-PHRASE 3| 0331 5 | ONLINE-A 310323 5 | UEDIN-PHRASE
0.069 | 5-8 | YANDEX 4 1-0.389 6 RBMT1 41-0.198 | 6-7 | AFRL
0.066 | 5-8 | ONLINE-G 5[ -0.648 7 RBMT4 -0.280 | 6-7 | IT-BOMBAY
41-0.017 9 AFRL 6| -1.284 S ONLINE-C 5| -0.549 8 DCU-LINGO24
51-0.159 | 10 | UEDIN-SYNTAX 6 | -2.092 9 NIT-HYDERABAD
6]-0306| 11 | KAZNU .
70487 | 12 | RBMTI English-French English-Hindi
8[-0642| 13 | RBMT4 # ‘ score ‘ range ‘ system &
1T 0327 I SRR # | score | range | system
. . 210.232 | 2-4 | UEDIN-PHRASE 1] 1.008 I | ONLINE-B
English-Russian 8 134 2.5 EIT > 2[0915| 2 |ONLINE-A
# | score | range | system 0.185 | 2-5 | MATRAN 3| 0.214 3 UEDIN-UNCNSTR
1]0.575 | 1-2 | PROMT-RULE 0.142 | 4-6 | MATRAN-RULES 4| 0.120 | 4-5 | UEDIN-PHRASE
0.547 | 1-2 | ONLINE-B 0.120 | 4-6 | ONLINE-A 0.054 | 4-5 | CU-MOSES
2| 0.426 3 PROMT-HYBRID 3] 0.003 | 7-9 | UU-DOCENT 51-0.111 | 6-7 | IT-BOMBAY
310305 | 4-5 | UEDIN-UNCNSTR -0.019 | 7-10 | PROMT-HYBRID -0.142 | 6-7 | IPN-UPV-CNTXT
0.231 | 4-5 | ONLINE-G -0.033 | 7-10 | vA 6]-0.233 | 8-9 | DCU-LINGO24
4| 0.089 | 6-7 | ONLINE-A -0.069 | 8-10 | PROMT-RULE -0.261 | 8-9 | IPN-UPV-NODEV
0.031 | 6-7 | UEDIN-PHRASE 41-0.215 11 RBMT1 71-0.449 | 10-11 | MANAWI-H1
51-0.920 8 RBMT4 51-0328 | 12 | RBMT4 -0.494 | 10-11 | MANAWI
6| -1.284 9 RBMTI1 6]-0540| 13 | ONLINE-C 81-0.622 | 12 | MANAWI-RMOOV

Table 8: Official results for the WMT14 translation task. Systems are ordered by their inferred system means. Lines between
systems indicate clusters according to bootstrap resampling at p-level p < .05, except for English-German, where p < 0.1.
This method is also used to determine the range of ranks into which system falls. Systems with grey background indicate use
of resources that fall outside the constraints provided for the shared task.
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tems (18, compared to 13 for the next languages),
yet only an average amount of per-system data.
Here, we look at this language pair in more detail,
in order to justify this decision, and to shed light
on the differences between the ranking methods.

Table 9 presents the 95% confidence-level clus-
terings for English—-German computed with each
of the three methods, along with lines that show
the reorderings of the systems between them. Re-
orderings of this type have been used to argue
against the reliability of the official WMT rank-
ing (Lopez, 2012; Hopkins and May, 2013). This
table shows that these reorderings are captured en-
tirely by the clustering approach we used. This rel-
ative consensus of these independently-computed
and somewhat different models suggests that the
published ranking is approaching the true ambigu-
ity underlying systems within the same cluster.

Looking across all language pairs, we find that
the total ordering predicted by EW and TS is ex-
actly the same for eight of the ten language pair
tasks, and is constrained to reorderings within
the official cluster for the other two (German—
English — just one adjacent swap — and English—
German, depicted in Table 9).

3.7 Conclusions

The official ranking method employed by WMT
over the past few years has changed a few times as
a result of error analysis and introspection. Until
this year, these results were largely based on the
intuitions of the community and organizers about
deficiencies in the models. In addition to their in-
tuitive appeal, many of these changes (such as the
decision to throw out comparisons against refer-
ences) have been empirically validated Hopkins
and May (2013). The actual effect of the refine-
ments in the ranking metric has been minor pertur-
bations in the permutation of systems. The cluster-
ing method of Koehn (2012b), in which the official
rankings are presented as a partial (instead of to-
tal) ordering, alleviated many of the problems ob-
served by Lopez (2012), and also capture all the
variance across the new systems introduced this
year. In addition, presenting systems as clusters
appeals to intuition. As such, we disagree with
claims that there is a problem with irreproducibil-
ity of the results of the workshop evaluation task,
and especially disagree that there is anything ap-
proaching a “crisis of confidence” (Hopkins and
May, 2013). These claims seem to us to be over-
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stated.

Conducting proper model selection by compar-
ison on held-out data, however, is a welcome sug-
gestion, and our inclusion of this process supports
improved confidence in the ranking results. That
said, it is notable that the different methods com-
pute very similar orderings. This avoids hallu-
cinating distinctions among systems that are not
really there, and captures the intuition that some
systems are basically equivalent. The chief ben-
efit of the TrueSkill model is not in outputting a
better complete ranking of the systems, but lies in
its reduced variance, which allow us to cluster the
systems with less data. There is also the unex-
plored avenue of using TrueSkill to drive the data
collection, steering the annotations of judges to-
wards evenly matched systems during the collec-
tion phase, potentially allowing confident results
to be presented while collecting even less data.

There is, of course, more work to be done.
We have produced this year statistically significant
clusters with a third of the data required last year,
which is an improvement. Models of relative abil-
ity are a natural fit for the manual evaluation, and
the introduction of an online Bayesian approach
to data collection present further opportunities to
reduce the amount of data needed. These methods
also provide a framework for extending the models
in a variety of potentially useful ways, including
modeling annotator bias, incorporating sentence
metadata (such as length, difficulty, or subtopic),
and adding features of the sentence pairs.

4 Quality Estimation Task

Machine translation quality estimation is the task
of predicting a quality score for a machine trans-
lated text without access to reference translations.
The most common approach is to treat the problem
as a supervised machine learning task, using stan-
dard regression or classification algorithms. The
third edition of the WMT shared task on qual-
ity estimation builds on the previous editions of
the task (Callison-Burch et al., 2012; Bojar et al.,
2013), with tasks including both sentence-level
and word-level estimation, with new training and
test datasets.
The goals of this year’s shared task were:

e To investigate the effectiveness of different
quality labels.

e To explore word-level quality prediction at



Expected Wins Hopkins & May TrueSKkill
UEDIN-SYNTAX UEDIN-SYNTAX UEDIN-SYNTAX
ONLINE-B ONLINE-B ONLINE-B
ONLINE-A UEDIN-STANFORD ONLINE-A

UEDIN-STANFORD PROMT-HYBRID PROMT-HYBRID
PROMT-RULE ONLINE-A PROMT-RULE
PROMT-HYBRID PROMT-RULE UEDIN-STANFORD
EU-BRIDGE EU-BRIDGE EU-BRIDGE
RBMT4 UEDIN-PHRASE RBMT4
UEDIN-PHRASE>< RBMT4 ><UEDIN—PHRASE
RBMT1 RBMT1 RBMT1
KIT KIT KIT
STANFORD-UNC STANFORD-UNC STANFORD-UNC
CIMS CIMS CIMS
STANFORD STANFORD STANFORD
1000 1000 1020
ONLINE-C ONLINE-C ONLINE-C

IMS-TTT ><UU-DOCENT>< IMS-TTT
UU-DOCENT IMS-TTT UU-DOCENT

Table 9: A comparison of the rankings produced by Expected Wins, Hopkins & May, and TrueSkill for English-German (the
task with the most systems and the largest cluster). The lines extending all the way across mark the official English—-German
clustering (computed from TrueSkill with 90% confidence intervals), while bold entries mark the start of new clusters within
each method or column (computed at the 95% confidence level). The TrueSkill clusterings contain all the system reorderings

across the other two ranking methods.

different levels of granularity.

e To study the effects of training and test
datasets with mixed domains, language pairs
and MT systems.

e To examine the effectiveness of quality pre-
diction methods on human translations.

Four tasks were proposed: Tasks 1.1, 1.2, 1.3
are defined at the sentence-level (Sections 4.1),
while Task 2, at the word-level (Section 4.2). Each
task provides one or more datasets with up to four
language pairs each: English-Spanish, English-
German, German-English, Spanish-English, and
up to four alternative translations generated by:
a statistical MT system (SMT), a rule-based MT
system (RBMT), a hybrid MT system, and a hu-
man. These datasets were annotated with differ-
ent labels for quality by professional translators as
part of the QTLaunchPad’ project. External re-
sources (e.g. parallel corpora) were provided to
participants. Any additional resources, including
additional quality estimation training data, could

9http ://www.qt21.eu/launchpad/
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be used by participants (no distinction between
open and close tracks is made). Participants were
also provided with a software package to extract
quality estimation features and perform model
learning, with a suggested list of baseline features
and learning method for sentence-level prediction.
Participants, described in Section 4.3, could sub-
mit up to two systems for each task.

Data used for building specific MT systems or
internal system information (such as n-best lists)
were not made available this year as multiple MT
systems were used to produced the datasets, in-
cluding rule-based systems. In addition, part of
the translations were produced by humans. Infor-
mation on the sources of translations was not pro-
vided either. Therefore, as a general rule, partici-
pants were only allowed to use black-box features.

4.1 Sentence-level Quality Estimation

For the sentence-level tasks, two variants of the
results could be submitted for each task and lan-
guage pair:

e Scoring: An absolute quality score for each
sentence translation according to the type of



prediction, to be interpreted as an error met-
ric: lower scores mean better translations.

Ranking: A ranking of sentence translations
for all source test sentences from best to
worst. For this variant, it does not matter how
the ranking is produced (from HTER predic-
tions, likert predictions, or even without ma-
chine learning).

Evaluation was performed against the true label
and/or HTER ranking using the same metrics as in
previous years:

e Scoring: Mean Average Error (MAE) (pri-
mary metric), Root Mean Squared Error
(RMSE).

e Ranking: DeltaAvg (primary metric) (Bojar
etal., 2013) and Spearman’s rank correlation.

For all sentence-level these tasks, the same 17
features as in WMT12-13 were used to build base-
line systems. The SVM regression algorithm
within QUEST (Specia et al., 2013)'° was applied
for that with RBF kernel and grid search for pa-
rameter optimisation.

Task 1.1 Predicting post-editing effort
Data in this task is labelled with discrete and

absolute scores for perceived post-editing effort,
where:

o1 Perfect translation,
needed at all.

no post-editing

e 2 = Near miss translation: translation con-
tains maximum of 2-3 errors, and possibly
additional errors that can be easily fixed (cap-
italisation, punctuation, etc.).

e 3 = Very low quality translation, cannot be
easily fixed.

The datasets were annotated in a “triage” phase
aimed at selecting translations of type “2” (near
miss) that could be annotated for errors at the
word-level using the MQM metric (see Task 2, be-
low) for a more fine-grained and systematic trans-
lation quality analysis. Word-level errors in trans-
lations of type “3” are too difficult if not impos-
sible to annotate and classify, particularly as they
often contain inter-related errors in contiguous or
overlapping word spans.

Yhttp://www.quest.dcs.shef.ac.uk/
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For the training of prediction models, we pro-
vide a new dataset consisting of source sen-
tences and their human translations, as well as
two-three versions of machine translations (by an
SMT system, an RBMT system and, for English-
Spanish/German only, a hybrid system), all in the
news domain, extracted from tests sets of various
WMT years and MT systems that participated in
the translation shared task:

# Source sentences | # Target sentences
954 English 3,816 Spanish
350 English 1,400 German
350 German 1,050 English
350 Spanish 1,050 English

As test data, for each language pair and MT sys-
tem (or human translation) we provide a new set
of translations produced by the same MT systems
(and humans) as those used for the training data:

# Source sentences | # Target sentences
150 English 600 Spanish
150 English 600 German
150 German 450 English
150 Spanish 450 English

The distribution of true scores in both training
and test sets for each language pair is given in Fig-
ures 3.

= Test

& Training
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Figure 3: Distribution of true 1-3 scores by langauge pair.

Additionally, we provide some out of domain
test data. These translations were annotated in
the same way as above, each dataset by one Lan-
guage Service Provider (LSP), i.e, one profes-
sional translator, with two LPSs producing data in-
dependently for English-Spanish. They were gen-
erated using the LSPs’ own source data (a different
domain from news), and own MT system (differ-
ent from the three used for the official datasets).
The results on these datasets were not considered



for the official ranking of the participating sys-
tems:

# Source sentences
971 English
297 English
388 Spanish

# Target sentences
971 Spanish
297 German
388 English

Task 1.2 Predicting percentage of edits

In this task we use HTER (Snover et al., 2006) as
quality score. This score is to be interpreted as
the minimum edit distance between the machine
translation and its manually post-edited version,
and its range is [0, 1] (O when no edit needs to
be made, and 1 when all words need to be edited).
We used TERp (default settings: tokenised, case
insensitive, etc., but capped to 1)'! to compute the
HTER scores.

For practical reasons, the data is a subset of
Task 1.1°s dataset: only translations produced
by the SMT system English-Spanish. As train-
ing data, we provide 896 English-Spanish trans-
lation suggestions and their post-editions. As
test data, we provide a new set of 208 English-
Spanish translations produced by the same SMT
system. Each of the training and test translations
was post-edited by a professional translator using
the CASMACAT!? web-based tool, which also col-
lects post-editing time on a sentence-basis.

Task 1.3 Predicting post-editing time

For this task systems are required to produce, for
each translation, a real valued estimate of the time
(in milliseconds) it takes a translator to post-edit
the translation. The training and test sets are a sub-
set of that uses in Task 1.2 (subject to filtering of
outliers). The difference is that the labels are now
the number of milliseconds that were necessary to
post-edit each translation.

As training data, we provide 650 English-
Spanish translation suggestions and their post-
editions. As fest data, we provide a new set of 208
English-Spanish translations (same test data as for
Task 1.2).

4.2 Word-level Quality Estimation

The data for this task is based on a subset of the
datasets used for Task 1.1, for all language pairs,

11http://www.umiacs.umd.edu/~snover/terp/
Zhttp://casmacat.eu/
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human and machine translations: those transla-
tions labelled “2” (near misses), plus additional
data provided by industry (either on the news do-
main or on other domains, such as technical doc-
umentation, produced using their own MT sys-
tems, and also pre-labelled as “2”). All seg-
ments were annotated with word-level labels by
professional translators using the core categories
in MQM (Multidimensional Quality Metrics)!3 as
error typology (see Figure 4). Each word or se-
quence of words was annotated with a single error.
For (supposedly rare) cases where a decision be-
tween multiple fine-grained error types could not
be made, annotators were requested to choose a
coarser error category in the hierarchy.

Participants are asked to produce a label for
each token that indicates quality at different lev-
els of granularity:

e Binary classification: an OK / bad label,
where bad indicates the need for editing the
token.

Level 1 classification: an OK / accuracy /
fluency label, specifying coarser level cate-
gories of errors for each token, or “OK” for
tokens with no error.

Multi-class classification: one of the labels
specifying the error type for the token (termi-
nology, mistranslation, missing word, etc.) in
Figure 4, or “OK” for tokens with no error.

As training data, we provide tokenised transla-
tion output for all language pairs, human and ma-
chine translations, with tokens annotated with all
issue types listed above, or “OK”. The annotation
was performed manually by professional transla-
tors as part of the QTLaunchPad project. For
the coarser variants, fine-grained errors are gen-
eralised to Accuracy or Fluency, or “bad” for the
binary variant. The amount of available training
data varies by language pair:

# Source sentences
1,957 English

# Target sentences
1,957 Spanish

715 English 715 German
350 German 350 English
900 Spanish 900 English

Bhttp://www.qt21.eu/launchpad/content/
training
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Figure 4: MQM metric as error typology.

As test data, we provide additional data points
for all language pairs, human and machine trans-
lations:

# Source sentences | # Target sentences
382 English 382 Spanish
150 English 150 German
100 German 100 English
150 Spanish 150 English

In contrast to Tasks 1.1-1.3, no baseline feature
set is provided to the participants.

Similar to last year (Bojar et al., 2013), the
word-level task is primarily evaluated by macro-
averaged F-measure (in %). Because the class dis-
tribution is skewed — in the test data about 78% of
the tokens are marked as “OK” — we compute pre-
cision, recall, and F} for each class individually,
weighting F} scores by the frequency of the class
in the test data. This avoids giving undue impor-
tance to less frequent classes. Consider the follow-
ing confusion matrix for Level 1 annotation, i.e.
the three classes (O)K, (F)luency, and (A )ccuracy:

reference
(0] F A
O | 4172 1482 193
predicted F | 1819 1333 214

Al 198 133 69

For each of the three classes we assume a binary
setting (one-vs-all) and derive true-positive (tp),
false-positive (fp), and false-negative (fn) counts
from the rows and columns of the confusion ma-

trix as follows:

tpo = 4172
fpo = 1482 + 193 = 1675
fno = 1819 + 198 = 2017
tpr = 1333

fpr = 1819 + 214 = 2033
fnp = 1482 4 133 = 1615
tpa = 69

fpa =198 4+ 133 = 331
fna =193 + 214 = 407

We continue to compute F) scores for each
class c € {O, F, A}:

precision, = tp./(tpe + fpe)
recall, = tp./(tpe + fne)

2 - precision,, - recall,
Fi.=

)

precision, + recall.
yielding:
precisiony = 4172/(4172 + 1675) = 0.7135

recallp = 4172/(4172 + 2017) = 0.6741
2.0.7135 - 0.6741

_ — 0.6932
LO = 70,7135 + 0.6741

Fip = 0.4222

Fi 4 = 0.1575

Finally, we compute the average of 7. scores
weighted by the occurrence count N (c) of ¢:

) 1
weighted Fl,ALL = m Z N, - Fl,c
c c

Weighted Fl,ERR =

1
_ E N, - F
Zc:c;éO N(C) ‘ be



which for the above example gives:

1
6189 + 2948 + 476
(6189 - 0.6932 + 2948 - 0.4222
+476 - 0.1575) = 0.5836

1
2048 + 476
(2948 - 0.4222 + 476 - 0.1575)
= 0.3854

Weighted Fl,ALL =

weighted F1 grr =

We choose I grpr as our primary evaluation mea-
sure because it most closely mimics the common
application of F} scores in binary classification:
one is interested in the performance in detecting a
positive class, which in this case would be erro-
neous words. This does, however, ignore the num-
ber of correctly classified words of the OK class,
which is why we also report F1_47,7,. In addition,
we follow Powers (2011) and report Matthews
Correlation Coefficient (MCC), averaged in the
same way as F1, as our secondary metric. Finally,
for contrast we also report Accuracy (ACC).

4.3 Participants

Table 10 lists all participating teams. Each team
was allowed up to two submissions for each task
and language pair. In the descriptions below, par-
ticipation in specific tasks is denoted by a task
identifier: T1.1, T1.2, T1.3, and T2.

Sentence-level baseline system (T1.1, T1.2,
T1.3): QUEST is used to extract 17 system-
independent features from source and trans-
lation sentences and parallel corpora (same
features as in the WMT12 shared task):

e number of tokens in the source and tar-
get sentences.

e average source token length.

e average number of occurrences of the
target word within the target sentence.

e number of punctuation marks in source
and target sentences.

e language model (LM) probability of
source and target sentences based on
models for the WMT News Commen-
tary corpus.

e average number of translations per
source word in the sentence as given by
IBM Model 1 extracted from the WMT
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News Commentary parallel corpus, and
thresholded so that P(t|s) > 0.2, or
so that P(t|s) > 0.01 weighted by the
inverse frequency of each word in the
source side of the parallel corpus.

e percentage of unigrams, bigrams and tri-
grams in frequency quartiles 1 (lower
frequency words) and 4 (higher fre-
quency words) in the source language
extracted from the WMT News Com-
mentary corpus.

e percentage of unigrams in the source
sentence seen in the source side of the
WMT News Commentary corpus.

These features are used to train a Support
Vector Machine (SVM) regression algorithm
using a radial basis function kernel within
the SCIKIT-LEARN toolkit. The 7, € and C
parameters were optimised via grid search
with 5-fold cross validation on the training
set. We note that although the system is re-
ferred to as “baseline”, it is in fact a strong
system. It has proved robust across a range
of language pairs, MT systems, and text do-
mains for predicting various forms of post-
editing effort (Callison-Burch et al., 2012;
Bojar et al., 2013).

DCU (T1.1): DCU-MIXED and DCU-SVR use
a selection of features available in QUEST,
such as punctuation statistics, LM perplex-
ity, n-gram frequency quartile statistics and
coarse-grained POS frequency ratios, and
four additional feature types: combined POS
and stop word LM features, source-side
pseudo-reference features, inverse glass-box
features for translating the translation and er-
ror grammar parsing features. For machine
learning, the QUEST framework is expanded
to combine logistic regression and support
vector regression and to handle cross- valida-
tion and randomisation in a way that training
items with the same source side are kept to-
gether. External resources are monolingual
corpora taken from the WMT 2014 transla-
tion task for LMs, the MT system used for the
inverse glass-box features (Li et al., 2014b)
and, for error grammar parsing, the Penn-
Treebank and an error grammar derived from
it (Foster, 2007).



ID | Participating team

FBK-UPV-UEDIN

DCU
DFKI
2014)

LIG
LIMSI

MULTILIZER
RTM-DCU
SHEF-lite
USHEFF
YANDEX

Multilizer, Finland

Yandex, Russia

Dublin City University Team 1, Ireland (Hokamp et al., 2014)
German Research Centre for Artificial Intelligence, Germany (Avramidis,

Fondazione Bruno Kessler, Italy, UPV Universitat Politecnica de Valéncia,
Spain & University of Edinburgh, UK (Camargo de Souza et al., 2014)
Laboratoire d’Informatique Grenoble, France (Luong et al., 2014)
Laboratoire d’Informatique pour la Mécanique et les Sciences de 1’Ingénieur,
France (Wisniewski et al., 2014)

Dublin City University Team 2, Ireland (Bicici and Way, 2014)
University of Sheffield Team 1, UK (Beck et al., 2014)
University of Sheffield Team 2, UK (Scarton and Specia, 2014)

Table 10: Participants in the WMT14 Quality Estimation shared task.

DFKI (T1.2): DFKI/SVR builds upon the base-

line system (above) by adding non-redundant
data from the WMT13 task for predicting
the same label (HTER) and additional fea-
tures such as (a) rule-based language cor-
rections (language tool) (b), PCFG parsing
statistics and counts of tree labels, (c) po-
sition statistics of parsing labels, (d) posi-
tion statistics of trigrams with low probabil-
ity. DFKI/SVRxdata uses a similar setting,
with the addition of more training data from
non-minimally post-edited translation out-
puts (references), filtered based on a thresh-
old on the edit distance between the MT out-
put and the freely-translated reference.

FBK-UPV-UEDIN (T1.2, T1.3, T2): The sub-

missions for the word-level task (T2) use fea-
tures extracted from word posterior probabil-
ities and confusion network descriptors com-
puted over the 100k-best hypothesis transla-
tions generated by a phrase-based SMT sys-
tem. They also use features from word lexi-
cons, and POS tags of each word for source
and translation sentences. The predictions of
the Binary model are used as a feature for the
Level 1 and Multi-class settings. Both condi-
tional random fields (CRF) and bidirectional
long short-term memory recurrent neural net-
works (BLSTM-RNNSs) are used for the Bi-
nary setting, and BLSTM-RNNSs only for the
Level 1 and Multi-class settings.

The sentence-level QE submissions (T1.2
and T1.3) are trained on black-box features
extracted using QUEST in addition to fea-
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tures based on word alignments, word poste-
rior probabilities and diversity scores (Souza
et al.,, 2013). These features are computed
over 100k-best hypothesis translations also
used for task 2. In addition, a set of ratios
computed from the word-level predictions of
the model trained on the binary setting of
task 2 is used. A total of 221 features and
the extremely randomised trees (Geurts et al.,
2006) learning algorithm are used to train re-
gression models.

LIG (T2): Conditional Random Fields classi-

fiers are trained with features used in LIG’s
WMT13 systems (Luong et al., 2013): tar-
get and source words, alignment informa-
tion, source and target alignment context,
LM scores, target and source POS tags,
lexical categorisations (stopword, punctua-
tion, proper name, numerical), constituent
label, depth in the constituent tree, target
polysemy count, pseudo reference. These
are combined with novel features: word
occurrence in multiple translation systems
and POS tag-based LM scores (longest tar-
get/source n-gram length and backoff score
for POS tag). These features require external
NLP tools and resources such as: TreeTag-
ger, GIZA++, Bekerley parser, Link Gram-
mar parser, WordNet and BabelNet, Google
Translate (pseudo-reference). For the binary
task, the optimal classification threshold is
tuned based on a development set split from
the original training set. Feature selection is
employed over the all features (for the binary



task only), with the Sequential Backward Se-
lection algorithm. The best performing fea-
ture set is then also used for the Level 1 and
Multi-class variants.

LIMSI (T2): The submission relies on a ran-

dom forest classifier and considers only 16
dense and continuous features. To prevent
sparsity issues, lexicalised information such
as the word or the previous word identities
is not included. The features considered are
mostly classic MT features and can be cat-
egorised into two classes: association fea-
tures, which describe the quality of the as-
sociation between the source sentence and
each target word, and fluency features, which
describe the ’quality’ of the translation hy-
potheses. The latter rely on different lan-
guage models (either on POS or on words)
and the former on IBM Model 1 translation
probabilities and on pseudo- references, i.e.
translation produced by an independent MT
system. Random forests are known to per-
form well in tasks like this one, in which
only a few dense and continuous features are
available, possibly because of their ability to
take into account complex interactions be-
tween features and to automatically partition
the continuous feature values into a discrete
set of intervals that achieves the best classifi-
cation performance. Since they predict the
class probabilities, it is possible to directly
optimize the F} score during training by find-
ing, with a grid search method, the decision
threshold that achieved the best I} score on
the training set.

MULTILIZER (T1.2, T1.3): The 80 black-box

features from QUEST are used in addition to
new features based on using other MT en-
gines for forward and backward translations.
In forward translations, the idea is that dif-
ferent MT engines make different mistakes.
Therefore, when several forward translations
are similar to each other, these translations
are more likely to be correct. This is con-
firmed by the Pearson correlation of similar-
ities between the forward translations against
the true scores (above 0.5). A backward
translation is very error-prone and therefore
it has to be used in combination with for-
ward translations. A single back-translation

similar to original source segment does not
bring much information. Instead, when sev-
eral MT engines give back-translations simi-
lar to this source segment, one can conclude
that the translation is reliable. Those transla-
tions where similarities both in forward trans-
lation and backward translation are high are
intuitively more likely to be good. A simple
feature selection method that omits all fea-
tures with Pearson correlation against the true
scores below 0.2 is used. The systems sub-
mitted are obtained using linear regression
models.

RTM-DCU (T1.1, T1.2, T1.3, T2): RTM-DCU

systems are based on referential translation
machines (RTM) (Bicici, 2013) and parallel
feature decay algorithms (ParFDAS) (Bigici
et al., 2014), which allow language and MT
system-independent predictions. For each
task, individual RTM models are developed
using the parallel corpora and the language
model corpora distributed by the WMT14
translation task and the language model cor-
pora provided by LDC for English and Span-
ish. RTMs use 337 to 437 sentence-level fea-
tures for coverage and diversity, IBM1 and
sentence translation performance, retrieval
closeness and minimum Bayes retrieval risk,
distributional similarity and entropy, IBM2
alignment, character n-grams, sentence read-
ability, and parse output tree structures. The
features use ngrams defined over text or com-
mon cover link (CCL) (Seginer, 2007) struc-
tures as the basic units of information over
which similarity calculations are performed.
Learning models include ridge regression
(RR), support vector machines (SVR), and
regression trees (TREE), which are applied
after partial least squares (PLS) or feature
selection (FS). For word-level prediction,
generalised linear models (GLM) (Collins,
2002) and GLM with dynamic learning
(GLMd) (Bigici, 2013) are used with word-
level features including CCL links, word
length, location, prefix, suffix, form, context,
and alignment, totalling up to a couple of mil-
lion features.

SHEF-lite (T1.1, T1.2, T1.3): These submis-

sions use the framework of Multi-task Gaus-
sian Processes, where multiple datasets are



combined in a multi-task setting similar to
the one used by Cohn and Specia (2013).
For T1.1, data for all language pairs is put
together, and each language is considered a
task. For T1.2 and T1.3, additional datasets
from previous shared task years are used,
each encoded as a different task. For all tasks,
the QUEST framework is used to extract a set
of 80 black-box features (a superset of the 17
baseline features). To cope with the large size
of the datasets, the SHEF-lite-sparse submis-
sion uses Sparse Gaussian Processes, which
provide sensible sparse approximations using
only a subset of instances (inducing inputs)
to speed up training and prediction. For this
“sparse” submission, feature selection is per-
formed following the approach of Shah et al.
(2013) by ranking features according to their
learned length-scales and selecting the top 40
features.

USHEFF (T1.1, T1.2, T1.3): USHEFF submis-
sions exploit the use of consensus among
MT systems by comparing the MT sys-
tem output to several alternative translations
generated by other MT systems (pseudo-
references). The comparison is done using
standard evaluation metrics (BLEU, TER,
METEOR, ROUGE for all tasks, and two
metrics based on syntactic similarities from
shallow and dependency parser information
for T1.2 and T1.3). Figures extracted from
such metrics are used as features to com-
plement prediction models trained on the 17
baseline features. Different from the standard
use of pseudo-reference features, these fea-
tures do not assume that the alternative MT
systems are better than the system of inter-
est. A more realistic scenario is considered
where the quality of the pseudo-references is
not known. For T1, no external systems in
addition to those provided for the shared task
are used: for a given translation, all alter-
native translations for the same source seg-
ment (two or three, depending on the lan-
guage pair) are used as pseudo-references.
For T1.2 and T1.3, for each source sentence,
all alternative translations produced by MT
systems on the same data (WMT12/13) are
used as pseudo-references. The hypothesis
is that by using translations from several MT
systems one can find consensual information
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and this can smooth out the effect of “coinci-
dences” in the similarities between systems’
translations. SVM regression with radial ba-
sis function kernel and hyper-parameters op-
timised via grid search is used to build the
models.

YANDEX (T1.1): Both submissions are based
on the the 80 black-box features, plus an
LM score from a larger language model,
a pseudo-reference, and several additional
features based on POS tags and syntactic
parsers. The first attempt uses an extract
of the top 5 features selected with a greedy
search from the set of all features. SVM re-
gression is used as machine learning algo-
rithm. The second attempt uses the same
features processed with Yandex’ implemen-
tation of the gradient tree boosting (Ma-
trixNet).

4.4 Results

In what follows we give the official results for all
tasks followed by a discussion that highlights the
main findings for each of the tasks.

Task 1.1 Predicting post-editing effort

Table 11 summarises the results for the ranking
variant of Task 1.1. They are sorted from best to
worst using the DeltaAvg metric scores as primary
key and the Spearman’s rank correlation scores as
secondary key.

The winning submissions for the ranking vari-
ant of Task 1.1 are as follows: for English-Spanish
it is RTM-DCU/RTM-TREE, with a DeltaAvg
score of 0.26; for Spanish-English it is USH-
EFF, with a DeltaAvg score of 0.23; for English-
German it is again RTM-DCU/RTM-TREE, with a
DeltaAvg score of 0.39; and for German-English it
is RTM-DCU/RTM-RR, with a DeltaAvg score of
0.38. These winning submissions are better than
the baseline system by a large margin, which indi-
cates that current best performance in MT quality
estimation has reached levels that are clearly be-
yond what the baseline system can produce. As for
the other systems, according to DeltaAvg, com-
pared to the previous year results a smaller per-
centage of systems is able to beat the baseline.
This might be a consequence of the use of the met-
ric for the prediction of only three discrete labels.

The results for the scoring task are presented in
Table 12, sorted from best to worst using the MAE



System ID | DeltaAvg | Spearman Corr

English-Spanish

e RTM-DCU/RTM-PLS-TREE 0.26 0.38
¢ RTM-DCU/RTM-TREE 0.26 0.41
e YANDEX/SHAD_BOOSTEDTREES2 0.23 0.35
USHEFF 0.21 0.33
SHEFF-lite 0.21 0.33
YANDEX/SHAD_SVRI1 0.18 0.29
SHEFF-lite-sparse 0.17 0.27
Baseline SVM 0.14 0.22
Spanish-English
e USHEFF 0.23 0.30
e RTM-DCU/RTM-PLS-RR 0.20 0.35
e RTM-DCU/RTM-FS-RR 0.19 0.36
Baseline SVM 0.12 0.21
SHEFF-lite-sparse 0.12 0.17
SHEFF-lite 0.11 0.15
English-German
e RTM-DCU/RTM-TREE 0.39 0.54
RTM-DCU/RTM-PLS-TREE 0.33 0.42
USHEFF 0.26 0.41
SHEFF-lite 0.26 0.36
Baseline SVM 0.23 0.34
SHEFF-lite-sparse 0.23 0.33
German-English
¢ RTM-DCU/RTM-RR 0.38 0.51
e RTM-DCU/RTM-PLS-RR 0.35 0.45
USHEFF 0.28 0.30
SHEFF-lite 0.24 0.27
Baseline SVM 0.21 0.25
SHEFF-lite-sparse 0.14 0.17

Table 11: Official results for the ranking variant of the WMT14 Quality Evaluation Task 1.1. The winning submissions
are indicated by a e. These are the top-scoring submission and those that are not significantly worse according to bootstrap
resampling (1M times) with 95% confidence intervals. The systems in the gray area are not different from the baseline system
at a statistically significant level according to the same test.
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System ID | MAE | RMSE

English-Spanish
¢ RTM-DCU/RTM-PLS-TREE | 0.49 0.61
e SHEFF-lite | 0.49 0.63
¢ USHEFF | 0.49 0.63
o SHEFF-lite/sparse | 0.49 0.69
e RTM-DCU/RTM-TREE | 0.49 0.61
Baseline SVM | 0.52 0.66
YANDEX/SHAD _BOOSTEDTREES2 | 0.56 0.68
YANDEX/SHAD_SVRI1 | 0.64 0.81
DCU-Chris/SVR | 0.66 0.88
DCU-Chris/MIXED | 0.94 1.14

Spanish-English
e RTM-DCU/RTM-FS-RR | 0.53 0.64

o SHEFF-lite/sparse | 0.54 0.69

e RTM-DCU/RTM-PLS-RR | 0.55 0.71

USHEFF | 0.57 0.67

Baseline SVM | 0.57 0.68

SHEFF-lite | 0.62 0.77

DCU-Chris/MIXED | 0.65 0.91

English-German
e RTM-DCU/RTM-TREE | 0.58 0.68
RTM-DCU/RTM-PLS-TREE | 0.60 0.71
SHEFF-lite | 0.63 0.74

USHEFF | 0.64 0.75

SHEFF-lite/sparse | 0.64 0.75

Baseline SVM | 0.64 0.76

DCU-Chris/MIXED | 0.69 0.98

German-English
e RTM-DCU/RTM-RR | 0.55 0.67

e RTM-DCU/RTM-PLS-RR | 0.57 0.74

USHEFF | 0.63 0.76

SHEFF-lite | 0.65 0.77

Baseline SVM | 0.65 0.78

Table 12: Official results for the scoring variant of the WMT14 Quality Evaluation Task 1.1. The winning submissions
are indicated by a e. These are the top-scoring submission and those that are not significantly worse according to bootstrap
resampling (1M times) with 95% confidence intervals. The systems in the gray area are not different from the baseline system
at a statistically significant level according to the same test.
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metric scores as primary key and the RMSE metric
scores as secondary key.

The winning submissions for the scoring variant
of Task 1.1 are as follows: for English-Spanish it
is RTM-DCU/RTM-TREE with a MAE of 0.49;
for Spanish-English it is RTM-DCU/RTM-FS-
RR with a MAE of 0.53; for English-German
it is again RTM-DCU/RTM-TREE, with a MAE
of 0.58; and for German-English it is RTM-
DCU/RTM-RR with a MAE of 0.55. These sub-
missions are again much better than the baseline
system, which under the scoring variant seems
to perform at a middle-of-the-pack level or lower
compared to the overall pool of submissions.
Overall, more systems are able to outperform the
baseline according to the scoring metric.

The top system for most language pairs are
essentially based on the same core techniques
(RTM-DCU) according to both the DeltaAvg and
MAE metrics. The ranking of other systems, how-
ever, can be substantially different according to the
two metrics.

Task 1.2 Predicting percentage of edits

Table 13 summarises the results for the ranking
variant of Task 1.2. For readability purposes we
have used a multiplication-factor of 100 in the
scoring script, which makes the HTER numbers
(both predicted and gold) to be in the [0, 100]
range. They are sorted from best to worst using
the DeltaAvg metric scores as primary key and the
Spearman’s rank correlation scores as secondary
key.

The winning submission for the ranking vari-
ant of Task 1.2 is RTM-DCU/RTM-SVR, with a
DeltaAvg score of 9.31. There is a large mar-
gin between this score and the baseline score of
DeltaAvg 5.08, which indicates again that current
best performance has reached levels that are much
beyond what this baseline system can produce.
The vast majority of the submissions perform bet-
ter than the baseline (the only exception is the sub-
mission from SHEFF-lite, for which the authors
report a major issue with the learning algorithm).

The results for the scoring variant are presented
in Table 14, sorted from best to worst by using the
MAE metric scores as primary key and the RMSE
metric scores as secondary key.

The winning submission for the scoring variant
of Task 1.2 is FBK-UPV-UEDIN/WP with a MAE
of 12.89, while the baseline system has a MAE
of 15.23. Most of the submissions perform better
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than the baseline.

Task 1.3 Predicting post-editing time

Table 15 summarises the results for the ranking
variant of Task 1.3. For readability purposes, we
have used a multiplication-factor of 0.001 in the
scoring script, which makes the time (both pre-
dicted and gold) to be measured in seconds. They
are sorted from best to worst using the DeltaAvg
metric scores as primary key and the Spearman’s
rank correlation scores as secondary key.

The winning submission for the ranking vari-
ant of Task 1.3 is RTM-DCU/RTM-RR, with a
DeltaAvg score of 17.02 (when predicting sec-
onds). The interesting aspect of these results is
that the DeltaAvg numbers have a direct real-
world interpretation, in terms of time spent (or
saved, depending on one’s view-point) for post-
editing machine-produced translations. A more
elaborate discussion on this point can be found in
Section 4.5.

The winning submission for the scoring variant
of Task 1.3 is RTM-DCU/RTM-SVR, with a MAE
of 16.77. Note that all of the submissions perform
significantly better than the baseline, which has a
MAE of 21.49, and that the majority is not signif-
icantly worse than the top scoring submission.

Task 2 Predicting word-level edits

The results for Task 2 are summarised in Tables
17-19. The results are ordered by F} score for
the Error (BAD) class. For comparison, two triv-
ial baselines are included, one that marks every
word as correct and that marks every word with
the most common error class found in the training
data. Both baselines are clearly useless for any ap-
plication, but help put the results in perspective.
Most teams submitted systems for a single lan-
guage pair: English-Spanish; only a single team
produced predictions for all four pairs.

Table 17 gives the results of the binary (OK vs.
BAD) classification variant of Task 2. The win-
ning submissions for this variant are as follows:
for English-Spanish it is FBK-UPV-UEDIN/RNN
with a weighted F; of 48.73; for Spanish-
English it is RTM-DCU/RTM-GLMd with a
weighted F) of 29.14; for English-German it is
RTM-DCU/RTM-GLM with a weighted F} of
45.30; and for German-English it is again RTM-
DCU/RTM-GLM with a weighted F} of 26.13.

Remarkably, for three out of four language
pairs, the systems fail to beat our trivial baseline of



System ID | DeltaAvg | Spearman Corr
English-Spanish

¢ RTM-DCU/RTM-SVR 9.31 0.53
e RTM-DCU/RTM-TREE 8.57 0.48
e USHEFF 7.93 0.45
SHEFF-lite/sparse 7.69 0.43
Baseline 5.08 0.31

SHEFF-lite 0.72 0.09

Table 13: Official results for the ranking variant of the WMT14 Quality Evaluation Task 1.2. The winning submissions
are indicated by a e. These are the top-scoring submission and those that are not significantly worse according to bootstrap
resampling (100k times) with 95% confidence intervals. The systems in the gray area are not different from the baseline system
at a statistically significant level according to the same test.

System ID | MAE | RMSE
English-Spanish

e FBK-UPV-UEDIN/WP | 12.89 | 16.74

e RTM-DCU/RTM-SVR | 13.40 | 16.69

e USHEFF | 13.61 | 17.84
RTM-DCU/RTM-TREE | 14.03 | 17.48
DFKI/SVR | 14.32 | 17.74
FBK-UPV-UEDIN/NOWP | 14.38 | 18.10
SHEFF-lite/sparse | 15.04 | 18.38
MULTILIZER | 15.04 | 20.86

Baseline | 15.23 | 19.48

DFKI/SVRxdata | 16.01 | 19.52
SHEFF-lite | 18.15 | 23.41

Table 14: Official results for the scoring variant of the WMT14 Quality Evaluation Task 1.2. The winning submissions
are indicated by a e. They are statistically indistinguishable from the top submission according to bootstrap resampling (1M
times) with 95% confidence intervals. The systems in the gray area are not different from the baseline system at a statistically
significant level according to the same test.

System ID | DeltaAvg | Spearman Corr
English-Spanish

¢ RTM-DCU/RTM-RR 17.02 0.68
¢ RTM-DCU/RTM-SVR 16.60 0.67
SHEFF-lite/sparse 16.33 0.63
SHEFF-lite 16.08 0.64

USHEFF 14.98 0.59

Baseline 14.71 0.57

Table 15: Official results for the ranking variant of the WMT14 Quality Evaluation Task 1.3. The winning submissions
are indicated by a e. They are statistically indistinguishable from the top submission according to bootstrap resampling (1M
times) with a 95% confidence interval. The systems in the gray area are not different from the baseline system at a statistically
significant level according to the same test.
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System ID | MAE | RMSE
English-Spanish

¢ RTM-DCU/RTM-SVR | 16.77 | 26.17

e MULTILIZER/MLZ2 | 17.07 | 25.83

e SHEFF-lite | 17.13 | 27.33

e MULTILIZER/MLZ1 | 17.31 | 25.51

e SHEFF-lite/sparse | 17.42 | 27.35

e FBK-UPV-UEDIN/WP | 17.48 | 25.31
RTM-DCU/RTM-RR | 17.50 | 25.97
FBK-UPV-UEDIN/NOWP | 18.69 | 26.58
USHEFF | 21.48 | 34.28

Baseline | 21.49 | 34.28

Table 16: Official results for the scoring variant of the WMT14 Quality Evaluation Task 1.3. The winning submissions
are indicated by a e. They are statistically indistinguishable from the top submission according to bootstrap resampling (1M
times) with a 95% confidence interval. The systems in the gray area are not different from the baseline system at a statistically
significant level according to the same test.

weighted F} I

System ID All | Bad T | MCC | ACC
English-Spanish

Baseline (always OK) 50.43 0.00 | 0.00 | 64.38

Baseline (always Bad) 18.71 | 52.53 | 0.00 | 35.62

e FBK-UPV-UEDIN/RNN 62.00 | 48.73 | 18.23 | 61.62

LIMSI/RF 60.55 | 47.32 | 1544 | 60.09

LIG/FS 63.55 | 44.47 | 19.41 | 64.67

LIG/BL ALL 63.77 | 44.11 | 1991 | 65.12

FBK-UPV-UEDIN/RNN-+tandem-+crf 62.17 | 42.63 | 16.32 | 63.26

RTM-DCU/RTM-GLM 60.68 | 35.08 | 13.45 | 63.74

RTM-DCU/RTM-GLMd 60.24 | 32.89 | 12.98 | 63.97
Spanish-English

Baseline (always OK) 74.41 0.00 | 0.00 | 82.37

Baseline (always Bad) 5.28 | 29.98 | 0.00 | 17.63

¢ RTM-DCU/RTM-GLMd 79.54 | 29.14 | 25.47 | 82.98

RTM-DCU/RTM-GLM 79.42 | 2691 | 25.93 | 83.43
English-German

Baseline (always OK) 59.39 | 0.00 | 0.00 | 71.33

Baseline (always Bad) 12.78 | 44.57 | 0.00 | 28.67

¢ RTM-DCU/RTM-GLM 71.51 | 45.30 | 28.61 | 72.97

RTM-DCU/RTM-GLMd 68.73 | 36.91 | 21.32 | 71.41
German-English

Baseline (always OK) 67.82 | 0.00 | 0.00 | 77.60

Baseline (always Bad) 8.20 | 36.60 | 0.00 | 22.40

¢ RTM-DCU/RTM-GLM 72.41 | 26.13 | 16.08 | 76.14

RTM-DCU/RTM-GLMd 71.42 | 2297 | 12.63 | 75.46

Table 17: Official results for the binary part of the WMT14 Quality Evaluation Task 2. The winning submissions are indicated
by a e. All values are given as percentages.
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marking all the words as wrong. This may either
indicate that the predictions themselves are of low
quality or the chosen evaluation approach is mis-
leading. On the other hand Fj scores are a com-
mon measure of binary classification performance
and no averaging is performed here.

Table 18 gives the results of the Level 1
classification (OK, Fluency, Accuracy) variant
of Task 2. Here the second baseline is to
always predict Fluency errors, as this is the
most common error category in the training
data. The winning submissions of this vari-
ant are as follows: for English-Spanish it
is FBK-UPV-UEDIN/RNN+tandem+crf with a
weighted F; of 23.94 and for Spanish-English,
English-German, and German-English it is RTM-
DCU/RTM-GLMd with weighted F; scores of
23.94,21.94, and 8.57 respectively.

As before, all systems fail to outperform the
single-class baseline for the Spanish-English lan-
guage pair according to our primary metric. How-
ever, for Spanish-English and English-German
both submissions are able to beat the baseline by
large margin. We also observe that the absolute
numbers vary greatly between language pairs.

Table 19 gives the results of the Multi-class
classification variant of Task 2. Again, the sec-
ond baseline is to always predict the most common
error category in the training data, which varies
depending on language pair and produces and in-
creasingly weak baseline as the number of classes
rises.

The winning submissions of this variant are
as follows: for English-Spanish, Spanish-English,
and English-German it is RTM-DCU/RTM-GLM
with weighted F} scores of 26.84, 8.75, and 15.02
respectively and and for German-English it is
RTM-DCU/RTM-GLMd with a weighted F} of
3.08. Not only do these systems perform above
our baselines for all but the German-English lan-
guage pair, they also outperform all other sub-
missions for English-Spanish. Remarkably, RTM-
DCU/RTM-GLM wins English-Spanish for all of
the proposed metrics by a sizeable margin.

4.5 Discussion

In what follows, we discuss the main accomplish-
ments of this year’s shared task starting from the
goals we had previously identified for it.
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Investigating the effectiveness of different
quality labels

For the sentence-level tasks, the results of this
year’s shared task allow us to investigate the ef-
fectiveness of predicting translation quality using
three very different quality labels: perceived post-
editing effort on a scale of [1-3] (Task 1.1); HTER
scores (Task 1.2); and the time that a translator
takes to post-edit the translation (Task 1.3). One of
the ways one can compare the effectiveness across
all these different labels is to look at how well
the models can produce predictions that correlate
with the gold label that we have at our disposal.
A measure of correlation that does not depend
on the value of the labels is Spearman’s ranking
correlation. From this perspective, the label that
seems the most effective appears to be post-editing
time (Task 1.3), with the best system (RTM-
DCU/RTM-RR) producing a Spearman’s p of 0.68
(English-Spanish translations, see Table 15). In
comparison, when perceived post-editing effort la-
bels are used (Task 1.1), the best systems achieve
a Spearman’s p of 0.38 and 0.30 for English-
Spanish and Spanish-English translations, respec-
tively, and p of 0.54 and 0.51 for English-German
and German-English, respectively (Table 11); for
HTER scores (Task 1.2) the best systems achieve
a Spearman’s p of 0.53 for English-Spanish trans-
lations (Table 13).

This comparison across tasks seems to indicate
that, among the three labels we have proposed,
post-editing time seems to be the most learnable,
in the sense that automatic predictions can vest
match the gold labels (in this case, with respect
to the rankings they induce). A possible reason
for this is that post-editing time correlates with the
length of the source sentence whereas HTER is a
normalised measure.

Compared to the results regarding time predic-
tion in the Quality Evaluation shared task from
2013 (Bojar et al., 2013), we note that this time
all submissions were able to beat the baseline sys-
tem (compared to only 1/3 of the submissions in
2013). In addition, better handling of the data
acquisition reduced the number of outliers in this
year’s dataset allowing for numbers that are more
reliably interpretable. As an example of its in-
terpretability, consider the following: the winning
submission for the ranking variant of Task 1.3 is
RTM-DCU/RTM-RR, with a a Spearman’s p of
0.68 and a DeltaAvg score of 17.02 (when predict-



weighted F} weighted MCC
System ID All ‘ Errors T All | Errors | ACC

English-Spanish

Baseline (always OK) | 50.43 0.00 | 0.00 0.00 | 64.38

Baseline (always fluency) | 14.39 40.41 | 0.00 0.00 | 30.67

e FBK-UPV-UEDIN/RNN+tandem+crf | 58.36 38.54 | 16.63 | 13.89 | 57.98
FBK-UPV-UEDIN/RNN | 60.32 37.25 | 1822 | 15.51 | 61.75

LIG/BL ALL | 58.97 3179 | 1495 | 1148 | 61.13

LIG/FS | 58.95 3178 | 1492 | 11.46 | 61.10

RTM-DCU/RTM-GLMd | 58.23 26.62 | 12.60 | 12.76 | 62.94
RTM-DCU/RTM-GLM | 56.47 2991 | 8.11 7.96 | 58.56
Spanish-English

Baseline (always OK) | 74.41 0.00 | 0.00 0.00 | 82.37

Baseline (always fluency) | 2.67 15.13 | 0.00 0.00 | 12.24

¢ RTM-DCU/RTM-GLMd | 78.89 23.94 | 2541 | 2545 | 83.17
RTM-DCU/RTM-GLM | 78.78 21.96 | 26.31 | 26.99 | 83.69
English-German

Baseline (always OK) | 59.39 0.00 | 0.00 0.00 | 71.33

Baseline (always fluency) | 3.83 13.35 | 0.00 0.00 | 14.82

e RTM-DCU/RTM-GLMd | 64.58 21.94 | 17.69 | 1592 | 69.26
RTM-DCU/RTM-GLM | 64.43 21.10 | 16.99 | 14.93 | 69.34
German-English

Baseline (always OK) | 67.82 0.00 | 0.00 0.00 | 77.60
Baseline (always fluency) | 3.34 14.92 | 0.00 0.00 | 13.79
e RTM-DCU/RTM-GLMd | 69.17 8.57 | 10.61 5.76 | 7591
RTM-DCU/RTM-GLM | 69.09 8.26 | 9.95 5.76 | 75.97

Table 18: Official results for the Level 1 classification part of the WMT14 Quality Evaluation Task 2. The winning submissions
are indicated by a e. All values are given as percentages.
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weighted F} weighted MCC
System ID All ‘ Errors T All | Errors | ACC

English-Spanish
Baseline (always OK) | 50.43 0.00 | 0.00 0.00 | 64.38

Baseline (always unintelligible) | 7.93 22.26 | 0.00 0.00 | 21.99

e RTM-DCU/RTM-GLM | 60.52 26.84 | 23.77 | 21.45 | 66.83
FBK-UPV-UEDIN/RNN-+tandem+crf | 52.96 23.07 | 15.17 | 10.74 | 52.13
LIG/BL ALL | 56.66 20.50 | 18.56 | 13.39 | 60.39

LIG/FS | 56.66 20.50 | 18.56 | 13.39 | 60.39

FBK-UPV-UEDIN/RNN | 52.84 17.09 | 7.66 4.24 | 57.18
RTM-DCU/RTM-GLMd | 51.87 3.22 | 10.16 4.04 | 64.42
Spanish-English

Baseline (always OK) | 74.41 0.00 | 0.00 0.00 | 82.37
Baseline (always word order) | 0.34 1.96 | 0.00 0.00 | 4.24
e RTM-DCU/RTM-GLM | 76.34 8.75 | 19.82 | 13.43 | 83.27
RTM-DCU/RTM-GLMd | 76.21 8.19 | 1935 | 15.32 | 83.17

English-German
Baseline (always OK) | 59.39 0.00 | 0.00 0.00 | 71.33

Baseline (always mistranslation) | 2.48 8.66 | 0.00 0.00 | 11.78

¢ RTM-DCU/RTM-GLM | 63.57 15.02 | 17.57 15.08 | 70.82
RTM-DCU/RTM-GLMd | 63.33 12.48 | 18.70 | 13.20 | 71.45
German-English
Baseline (always OK) | 67.82 0.00 0.00 0.00 | 77.60

Baseline (always word order) | 1.56 6.96 | 0.00 0.00 | 9.23

e RTM-DCU/RTM-GLMA | 67.62 3.08 | 7.19 1.48 | 74.73
RTM-DCU/RTM-GLM | 67.86 2.36 | 7.55 1.79 | 75.75

Table 19: Official results for the Multi-class classification part of the WMT14 Quality Evaluation Task 2. The winning
submissions are indicated by a e. All values are given as percentages.
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ing seconds). This number has a direct real-world
interpretation: using the order proposed by this
system, a human translator would spend, on av-
erage, about 17 seconds less on a sentence taken
from the top of the ranking compared to a sen-
tence picked randomly from the set.!* To put this
number into perspective, for this dataset the av-
erage time to complete a sentence post-editing is
39 seconds. As such, one has an immediate inter-
pretation for the usefulness of using such a rank-
ing: translating around 100 sentences taken from
the top of the rankings would take around 36min
(at about 22 seconds/sentence), while translating
the same number of sentences extracted randomly
from the same dataset would take around 1hSmin
(at about 39 seconds/sentence). It is in this sense
that we consider post-editing time an interpretable
label.

Another desirable property of label predictions
is usefulness; this property, however, it highly
task-dependent and therefore cannot be judged in
the absence of a specific task. For instance, an in-
terpretable label like post-editing time may not be
that useful in a task the requires one to place the
machine translations into “ready to publish” and
“not ready to publish” bins. For such an appli-
cation, labels such as the ones used by Task 1.1
are clearly more useful, and also very much inter-
pretable within the scope of the task. Our attempt
at presenting the Quality Prediction task with a va-
riety of prediction labels illustrates a good range
of properties for the proposed labels and enables
one to draw certain conclusions depending on the
needs of the specific task at hand.

For the word-level tasks, different quality labels
equate with using different levels of granularity for
the predictions, which we discuss next.

Exploring word-level quality prediction at
different levels of granularity

Previous work on word-level predictions, e.g. (Bo-
jar et al., 2013) has focused on prediction of auto-
matically derived labels, generally due to practical
considerations as the manual annotation is labour
intensive. While easily applicable, automatic an-
notations, using for example TER alignment be-
tween the machine translation and reference (or
post-edition), face the same problems as automatic

“Note that the 17.02 seconds figure is a difference in real-
time, not predicted time; what is considered in this variant of
Task 1.3 is only the predicted ranking of data points, not the
absolute values of the predictions.
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MT evaluation metrics as they fail to account for
different word choices and lack the ability to re-
liably distinguish meaning preserving reorderings
from those that change the semantics of the out-
put. Furthermore, previous automatic annotation
for word-level quality estimation has focused on
binary labels: correct / incorrect, or at most, the
main edit operations that can be captured by align-
ment metrics like TER: correct, insertion, dele-
tion, substitution.

In this year’s task we were able to provide
manual fine-grained annotations at the word-level
produced by humans irrespective of references or
post-editions. Error categories range from fre-
quent ones, such as unintelligible, mistranslation,
and terminology, to rare ones such as additions or
omissions. For example, only 10 out of more than
3,400 errors in the English-Spanish test set fall
into the latter categories, while over 2,000 words
are marked as unintelligible. By hierarchically
grouping errors into coarser categories we aimed
to find a compromise between data sparsity and
the expressiveness of the labels. What marks a
good compromise depends on the use case, which
we do not specify here, and the quality of the finer
grained predictions: if a system is able to predict
even rare errors these may be grouped later if nec-
essary.

Overall, word-level error prediction seems to re-
main a challenging task as evidenced by the fact
that many submissions were unable to beat a triv-
ial baseline. We hypothesise that this is at least
partially due to a mismatch in loss-functions used
in training and testing. We know from the sys-
tem descriptions that some systems were tuned to
optimise squared error or accuracy, while evalua-
tion was performed using weighted F; scores. On
the other hand, even a comparison of just accuracy
shows that systems struggle to obtain a lower error
rates than the “all-OK” baseline.

Such performance problems are consistent over
the three levels of granularity, contrary to the in-
tuition that binary classification would be easier.
A notable exception is the RTM-DCU/RTM-GLM
system, which is able to beat both the baseline and
all other systems on the Multi-Class variant of the
English-Spanish task — cf. Table 19 — with regard
to all metrics. For this and most other submis-
sions we observe that labels are not consistent for
different granularities, i.e. at token marked with a
specific error in the multi-class variant may still



carry an “OK” label in binary annotation. Thus,
additional coarse grained annotations may be de-
rived by automatic means. For example, mapping
the multi-class predictions of the above system to
coarser categories improves the Fi prpr score in
Table 17 from 35.08 to 37.02 but does not change
the rank with respect to the other entries.

The fact that coarse grained predictions seem
not to be derived from the fine-grained ones leads
us to believe that most participants treated the
different granularities as independent classifica-
tion tasks. The FBK-UPV-UEDIN team trans-
fers information in the opposite direction by using
their binary predictions as features for Level-1 and
multi-class.

Given the current quality of word-level predic-
tion it remains unclear if these systems can already
be employed in a practical setting, e.g. to focus the
attention of post-editors.

Studying the effects of training and test
datasets with mixed domains, language pairs
and MT systems

This year’s shared task made available datasets for
more than one language pair with the same or dif-
ferent types of annotation, 2-3 multiple MT sys-
tems (plus a human translation) per language pair,
and out-of-domain test data (Tasks 1.1 and 2). In-
stances for each language pair were kept in sep-
arate datasets and thus the “language pair” vari-
able can be analysed independently. However, for
a given language pair, datasets mix translation sys-
tems (and humans) in Task 1.1, and also text do-
mains in Task 2.

Directly comparing the performance across lan-
guage pairs is not possible, given that their
datasets have different numbers of instances (pro-
duced by 3 or 4 systems) and/or different true
score distributions (see Figure 3). For a relative
comparison (although not all systems submitted
results for all language pairs, which is especially
true in Task 2), we observe in Task 1.1 that for all
language pairs generally at least half of the sys-
tems did better than the baseline. To our surprise,
only one submission combined data for multiple
languages together for Task 1.1: SHEF-lite, treat-
ing each language pair data as a different task in
a multi-task learning setting. However, only for
the ’sparse’ variant of the submission significant
gains were reported over modelling each task in-
dependently (with the tasks still sharing the same
data kernel and the same hyperparameters).
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The interpretation of the results for Task 2 is
very dependent on the evaluation metric used,
but generally speaking a large variation in per-
formance was found between different languages,
with English-Spanish performing the best, possi-
bly given the much larger number of training in-
stances. Data for Task 2 also presented varied true
score distributions (as shown by the performance
of the baseline (e.g. always “OK”) in Tables 17-
19.

One of the main goals with Task 1.1 (and Task 2
to some extent) was to test the robustness of mod-
els in a blind setting where multiple MT systems
(and human translations) are put together and their
identifiers are now known. All submissions for
these tasks were therefore translation system ag-
nostic, with no submission attempting to perform
meta-identification of the origins of the transla-
tions. For Task 1.1, data from multiple MT sys-
tems was explicitly used by USHEFF though the
idea of consensus translations. Translations from
all but the system of interest for the same source
segment were used as pseudo-references. The
submission significantly outperformed the base-
line for all language pairs and did particularly well
for Spanish-English and English-Spanish.

An in depth analysis of Task 1.1°s datasets on
the difference in prediction performance between
models built and applied for individual transla-
tion systems and models built and tested for all
translations pooled together is presented in (Shah
and Specia, 2014). Not surprisingly, the former
models perform significantly better, with MAE
scores ranging between 0.35 and 0.5 for differ-
ent language pairs and MT systems, and signifi-
cantly lower scores for models trained and tested
on human translations only (MAE scores between
0.2 and 0.35 for different language pairs), against
MAE scores ranging between 0.5 and 0.65 for
models with pooled data.

For Tasks 1.2 and 1.3, two submissions included
English-Spanish data which had been produced by
yet different MT systems (SHEF-lite and DFKI).
While using these additional instances seemed at-
tractive given the small number of instances avail-
able for these tasks, it is not clear what their contri-
bution was. For example, with a reduced set of in-
stances (only 400) from the combined sets, SHEF-
lite/sparse performed significantly better than its
variant SHEF-lite.

Finally, with respect to out-of-domain (different



text domain and MT system) test data, for Task
1.1, none of the papers submitted included experi-
ments. (Shah and Specia, 2014) applied the mod-
els trained on pooled datasets (as explained above)
for each language pair to the out-of-domain test
sets. The results were surprisingly positive, with
average MAE score of 0.5, compared to the 0.5-
0.65 range for in-domain data (see above). Further
analysis is necessary to understand the reasons for
that.

In Task 2, the official training and test sets al-
ready include out-of-domain data because of the
very small amount of in-domain data available,
and thus is is hard to isolate the effect of this data
on the results.

Examining the effectiveness of quality
prediction methods on human translations

Datasets for Tasks 1.1 and 2 contain human trans-
lations, in addition to the automatic translations
from various MT systems. Predicting human
translation quality is an area that has been largely
unexplored. Previous work has looked into dis-
tinguishing human from machine translations (e.g.
(Gamon et al., 2005)), but this problem setting is
somehow artificial, and moreover arguably harder
to solve nowadays given the higher general qual-
ity of current MT systems (Shah and Specia,
2014). Although human translations are obviously
of higher quality in general, many segments are
translated by MT systems with the same or similar
levels of quality as human translation. This is par-
ticularly true for Task 2, since data had been pre-
viously categorised and only “near misses” were
selected for the word-level annotation, i.e., human
and machine translations that were both nearly
perfect in this case.

While no distinction was made between human
and machine translations in our tasks, we believe
the mix of these two types of translations has had
a negative impact in prediction performance. Intu-
itively, one can expect errors in human translation
to be more subtle, and hence more difficult to cap-
ture via standard quality estimation features. For
example, an incorrect lexical choice (due to, e.g.,
ambiguity) which still fits the context and does not
make the translation ungrammatical is unlikely to
be captured. We hoped that participants would de-
sign features for this particular type of translation,
but although linguistically motivated features have
been exploited, they did not seem appropriate for
human translations.

42

It is interesting to mention the indirect use of
human translations by USHEFF for Tasks 1.1-1.3:
given a translation for a source segment, all other
translations for the same segment were used as
pseudo-references. Apart from when this transla-
tion was actually the human translation, the hu-
man translation was effectively used as a refer-
ence. While this reference was mixed with 2-
3 other pseudo-references (other machine transla-
tions) for the feature computations, these features
led to significant gains in performance over the
baseline features Scarton and Specia (2014).

We believe that more investigation is needed for
human translation quality prediction. Tasks ded-
icated to this type of data at both sentence- and
word-level in the next editions of this shared task
would be a possible starting point. The acquisi-
tion of such data is however much more costly, as
it is arguably hard to find examples of low quality
human translation, unless specific settings, such as
translation learner corpora, are considered.

5 Medical Translation Task

The Medical Translation Task addresses the prob-
lem of domain-specific and genre-specific ma-
chine translation. The task is split into two sub-
tasks: summary translation, focused on transla-
tion of sentences from summaries of medical ar-
ticles, and query translation, focused on transla-
tion of queries entered by users into medical infor-
mation search engines.

In general, texts of specific domains and gen-
res are characterized by the occurrence of special
vocabulary and syntactic constructions which are
rare or even absent in traditional (general-domain)
training data and therefore difficult for MT. Spe-
cific training data (containing such vocabulary and
syntactic constructions) is usually scarce or not
available at all. Medicine, however, is an exam-
ple of a domain for which in-domain training data
(both parallel and monolingual) is publicly avail-
able in amounts which allow to train a complete
SMT system or to adapt an existing one.

5.1 Task Description

In the Medical Translation Task, we provided links
to various medical-domain training resources and
asked participants to use the data to train or adapt
their systems to translate unseen test sets for both
subtasks between English and Czech (CS), Ger-
man (DE), and French (FR), in both directions.



The summary translation test data is domain-
specific, but otherwise can be considered as ordi-
nary sentences. On the other hand, the query trans-
lation test data is also specific for its genre (gen-
eral style) — it contains short sequences of (more
or less) of independent terms rather than complete
and grammatical sentences, the usual target of cur-
rent MT systems.

Similarly to the standard Translation Task, the
participants of the Medical Translation Task were
allowed to use only the provided resources in the
constrained task (in addition to data allowed in
the constrained standard Translation Task), but
could exploit any additional resources in the un-
constrained task. The submissions were expected
with true letter casing and detokenized. The trans-
lation quality was measured using automatic eval-
uation metrics, manual evaluation was not per-
formed.

5.2 Test and Development Data

The test and development data sets for this task
were provided by the EU FP7 project Khres-
moi.”>  This projects develops a multi-lingual
multi-modal search and access system for biomed-
ical information and documents and its MT com-
ponent allows users to use non-English queries to
search in English documents and see summaries
of retrieved documents in their preferred language
(Czech, German, or French). The statistics of the
data sets are presented in Tables 20 and 21.

For the summary translation subtask, 1,000
and 500 sentences were provided for test devel-
opment purposes, respectively. The sentences
were randomly sampled from automatically gen-
erated summaries (extracts) of English documents
(web pages) containing medical information rel-
evant to 50 topics provided for the CLEF 2013
eHealth Task 3.'® Out-of-domain and ungram-
matical sentences were manually removed. The
sentences were then translated by medical experts
into Czech, German and French, and the transla-
tions were reviewed. Each sentence was provided
with the corresponding document ID and topic ID.
The set also included a description for each of the
50 topics. The data package (Khresmoi Summary
Translation Test Data 1.1) is now available from
the LINDAT/CLARIN repository!” and more de-

15http://khresmoi.eu/

Yhttps://sites.google.com/site/
shareclefehealth/

"http://hdl.handle.net/11858/
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tails can be found in Zderika UreSova and Pecina
(2014).

For the query translation subtask, the main
test set contains 1,000 queries for test and 508
queries for development purposes. The original
English queries were extracted at random from
real user query logs provided by the Health on the
Net foundation!'® (queries by general public) and
the Trip database'® (queries by medical experts).
Each query was translated into Czech, German,
and French by medical experts and the transla-
tions were reviewed. The data package (Khresmoi
Query Translation Test Data 1.0) is available from
the LINDAT/CLARIN repository.2?

An additional test set for the query translation
subtask was adopted from the CLEF 2013 eHealth
Task 3 (Pecina et al., 2014). It contains 50 queries
constructed from titles of the test topics (originally
in English) translated into Czech, German, and
French by medical experts. The participants were
asked to translate the queries back to English and
the resulting translations were used in an informa-
tion retrieval (IR) experiment for extrinsic evalua-
tion.

5.3 Training Data

This section reviews the in-domain resources
which were allowed for the constrained Medical
Translation Task in addition to resources for the
constrained standard Translation Task (see Section
2). Most of the corpora are available for direct
download, others can be obtained upon registra-
tion. The corpora usually employ their own, more
or less complex data format. To lower the entry
barrier, we provided a set of easy-to-use scripts to
convert the data to a plain text format suitable for
MT training.

5.3.1 Parallel Training Data

The medical-domain parallel data includes the fol-
lowing corpora (see Table 22 for statistics): The
EMEA corpus (Tiedemann, 2009) contains doc-
uments from the European Medicines Agency,
automatically processed and aligned on sentence
level. It is available for many language pairs, in-
cluding those relevant to this task. UMLS is a
multilingual metathesaurus of health and biomed-

00-097C-0000-0023-866E- 1
Bhttp://www.hon.ch/
Yhttp://www.tripdatabase. com/
Pnttp://hdl.handle.net/11858/

00-097C-0000-0022-DIBF-5



sents tokens queries tokens

total | Czech | German | French | English total | general | expert | Czech | German | French | English
dev| 500( 9,209 9,924 | 12,369 | 10,350 dev| 508 249 259 | 1,128 1,041 ] 1,335 1,084
test | 1,000 | 19,191 | 20,831 | 26,183 | 21,423 test | 1,000 500 500 | 2,121 1,951 2,490 | 2,067

Table 20: Statistics of summary test data. Table 21: Statistics of query test data.

L1-L2 Czech-English DE-EN FR-EN
data set sents | L1 tokens | L2 tokens | sents | L1 tokens | L2 tokens | sents | L1 tokens | L2 tokens
EMEA 1,053 13,872 14,378 | 1,108 13,946 14,953 | 1,092 17,605 14,786
UMLS 1,441 4,248 5,579 | 2,001 6,613 8,153 | 2,171 8,505 8,524
Wiki 3 5 6 10 19 22 8 19 17
MuchMore 29 688 740
PatTr 1,848 102,418 106,727 | 2,201 127,098 108,665
COPPA 664 49,016 39,933

Table 22: Statistics of the in-domain parallel training data allowed for the constrained task (in thousands).

data set English | Czech | German | French
PatTR 121,592 53,242 | 54,608
UMLS 7,991 63 24 37
Wiki 26,945 | 1,784 10,232 8,376
AACT 13,341
DrugBank 953
FMA 884
GENIA 557
GREC 62
PIL 662

Table 23: Sizes of monolingual training data allowed for the
constrained tasks (in thousands of tokens).

ical vocabularies and standards (U.S. National Li-
brary of Medicine, 2009). The UMLS dataset
was constructed by selecting the concepts which
have translations in the respective languages. The
Wiki dataset contains bilingual pairs of titles of
Wikipedia articles belonging to the categories
identified to be medical-domain within the Khres-
moi project. It is available for all three lan-
guage pairs. The MuchMore Springer Corpus
is a German—-English parallel corpus of medical
journals abstracts published by Springer (Buitelaar
et al., 2003). PatTR is a parallel corpus extracted
from the MAREC patent collection (Wéschle and
Riezler, 2012). It is available for German—English
and French-English. For the medical domain,
we only consider text from patents indicated to
be from the medicine-related categories (A61,
CI12N, C12P). COPPA (Corpus of Parallel Patent
Applications (Pouliquen and Mazenc, 2011) is a
French—English parallel corpus extracted from the
MAREC patent collection (Wischle and Riezler,
2012). The medical-domain subset is identified by
the same categories as in PatTR.

5.3.2 Monolingual Training Data

The medical-domain monolingual data consists of
the following corpora (statistics are presented in
Table 23): The monolingual UMLS dataset con-
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tains concept descriptions in CS, DE, and FR ex-
tracted from the UMLS Metathesaurus (see Sec-
tion 5.3.1). The monolingual Wiki dataset con-
sists of articles belonging to the categories iden-
tified to be medical-domain within the Khresmoi
project. The PatTR dataset contains non-parallel
data extracted from the medical patents included
in the PatTR corpus (see Section 5.3.1). AACT is a
collection of restructured and reformatted English
texts publicly available and downloadable from
ClinicalTrials.gov, containing clinical studies con-
ducted around the world. DrugBank is a bioin-
formatics and cheminformatics resource contain-
ing drug descriptions (Knox et al., 2011). GENIA
is a corpus of biomedical literature compiled and
annotated within the GENIA project (Kim et al.,
2003). FMA stands for the Foundational Model
of Anatomy Ontology, a knowledge source for
biomedical informatics concerned with symbolic
representation of the phenotypic structure of the
human body (Rosse and Mejino Jr., 2008). GREC
(Gene Regulation Event Corpus) is a semantically
annotated English corpus of abstracts of biomedi-
cal papers (Thompson et al., 2009). The PIL cor-
pus is a collection of documents giving instruc-
tions to patients about their medication (Bouayad-
Agha et al., 2000).

5.4 Participants

A total of eight teams participated in the Medical
Translation Task by submitting their systems to at
least one subtask for one or more translation direc-
tions. A list of the participants is given in Table 24;
we provide short descriptions of their systems in
the following.

CUNI was involved in the organization of the task,
and their primary goal was to set up a baseline for
both the subtasks and for all translation directions.



ID Participating team

CUNI Charles University in Prague (Dusek et al., 2014)

DCU-Q Dublin City University (Okita et al., 2014)

DCU-S Dublin City University (Zhang et al., 2014)

LIMSI Laboratoire dInformatique pour la Mecanique et les Sciences de lIngénieur (Pécheux et al., 2014)
POSTECH Pohang University of Science and Technology (Li et al., 2014a)

UEDIN University of Edinburgh (Durrani et al., 2014a)

UM-DA University of Macau (Wang et al., 2014)

UM-WDA University of Macau (Lu et al., 2014)

Table 24: Participants in the WMT14 Medical Translation Task.

Their systems are based on the Moses phrase-
based toolkit and linear interpolation of in-domain
and out-of-domain language models and phrase ta-
bles. The constrained/unconstrained systems dif-
fer in the training data only. The constrained
ones are built using all allowed training data; the
unconstrained ones take advantage of additional
web-crawled monolingual data used for training of
the language models, and additional parallel non-
medical data from the PatTr and COPPA patent
collections.

DCU-Q submitted a system designed specifically
for terminology translation in the query translation
task for EN-FR and FR-EN. This system supports
six terminology extraction methods and is able to
detect rare word pairs including zero-appearance
word pairs. It uses monotonic decoding with lat-
tice inputs, avoiding unnecessary hypothesis ex-
pansions by the reordering model.

DCU-S submitted a system to the FR-EN sum-
mary translation subtask only. The system is
similar to DCU’s system for patent translation
(phrased-based using Moses) but adapted to trans-
late medical summaries and reports.

LIMSI took part in the summary translation sub-
task for English to French.Their primary submis-
sion uses a combination of two translation sys-
tems: NCODE, based on bilingual n-gram trans-
lation models; and an on-the-fly estimation of
the parameters of Moses along with a vector
space model to perform domain adaptation. A
continuous-space language model is also used in
a post-processing step for each system.
POSTECH submitted a phrase-based SMT sys-
tem and query translation system for the DE-EN
language pair in both subtasks. They analysed
three types of query formation, generated query
translation candidates using term-to-term dictio-
naries and a phrase-based system, and then scored
them using a co-occurrence word frequency mea-
sure to select the best candidate.

UEDIN applied the Moses phrase-based system to
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all language pairs and both subtasks. They used
the hierarchical reordering model and the OSM
feature, same as in UEDIN’s news translation sys-
tem, and applied compound splitting to German
input. They used separate language models built
on in-domain and out-of-domain data with linear
interpolation. For all language pairs except CS-
EN and DE-EN, they selected data for the transla-
tion model using modified Moore-Lewis filtering.
For DE-EN and CS-EN, they concatenated all the
supplied parallel training data.

UM-DA submitted systems for all language pairs
in the summary translation subtask based on a
combination of different adaptation steps, namely
domain-specific pre-processing, language model
adaptation, translation model adaptation, numeric
adaptation, and hyphenated word adaptation. Data
for the domain-adapted language and translation
models were selected using various data selection
techniques.

UM-WDA submitted systems for all language
pairs in the summary translation subtask. Their
systems are domain-adapted using web-crawled
in-domain resources: bilingual dictionaries and
monolingual data. The translation model and lan-
guage model trained on the crawled data were in-
terpolated with the best-performing language and
translation model employed in the UM-DA sys-
tems.

5.5 Results

MT quality in the Medical Translation Task
is evaluated using automatic evaluation metrics:
BLEU (Papineni et al., 2002), TER (Snover et al.,
2006), PER (Tillmann et al., 1997), and CDER
(Leusch et al., 2006). BLEU scores are reported as
percentage and all error rates are reported as one
minus the original value, also as percentage, so
that all metrics are in the 0-100 range, and higher
scores indicate better translations.

The main reason for not conducting human
evaluation, as it happens in the standard Trans-



original

normalized truecased

normalized lowercased

ID

BLEU

BLEU

1-TER

1-PER

1-CDER

BLEU

1-TER

1-PER

1-CDER

Czech—English

CUNI
CUNI
UEDIN
UM-DA
CUNI
CUNI
UM-WDA

29.64
22.44
36.65
37.62
22.92
22.69
37.35

29.79+1.07
22.57+0.95
36.87+1.23
37.79+1.26
23.06+0.97
22.84+0.98
37.53+1.26

47.45+1.15
41.43+1.16
54.35+1.19
54.55+1.20
42.49+1.10
42.21+1.14
54.39+1.19

61.64+1.06
55.46+1.09
67.16+1.00
68.29+0.88
56.10+1.12
56.01+1.11
68.21+0.83

52.18+0.98
46.42+0.96
57.61+1.01
57.28+1.03
47.13+0.95
46.79+0.94
57.16£1.07

31.68+1.14
32.34+1.12
38.02+1.24
38.81+1.28
33.18+1.15
32.84+1.13
38.61+1.27

49.84+1.10
50.24+1.20
56.14+1.17
56.04+1.20
51.48+1.15
51.10£1.11
55.92+1.17

64.38+1.06
65.07+1.10
69.24+1.01
70.06+0.82
66.00+1.03
65.79£1.07
70.02+0.81

54.10+0.96
54.424+0.96
58.96+0.96
58.45+1.05
55.30+0.96
54.81+0.96
58.36+1.07

ONLINE |

[39.57%1.21

58.24+1.14

70.16+0.78

60.04+1.02 |

40.62+1.23

59.72+1.11

71.94+0.74

61.26+1.01

German— English

CUNI
CUNI
POSTECH
UEDIN
UM-DA
CUNI
CUNI
UM-WDA

28.20
28.85
25.92
37.31
35.71
30.58
30.22
32.70

28.34+1.12
28.99+1.15
25.99+1.06
37.53+1.19
35.81+1.23
30.71£1.10
30.32+1.12
32.88+1.19

46.66+1.13
47.12+1.15
43.66+1.14
55.72+1.14
53.08+1.16
48.68+1.09
47.71+1.18
49.60+1.18

61.53+1.03
61.98+1.07
59.62+0.92
68.82+0.99
66.82+0.98
63.19+1.08
62.20+1.10
63.74+1.01

50.57+£0.93
50.72+0.98
47.13+0.90
58.35+0.95
55.91+0.96
52.72+0.94
52.17+0.91
53.50+0.96

30.69+1.19
31.37£1.21
26.97+1.06
38.60+1.25
36.55+1.27
33.14+1.19
32.75+1.20
33.95+1.23

48.91+1.16
49.29+1.13
45.13+1.12
57.18+1.12
54.01£1.13
50.98+1.06
50.00£1.14
51.05+1.19

64.12+1.04
64.53%1.05
61.53+0.89
70.46+0.98
68.05+0.97
65.88+1.04
64.87+1.06
65.54+0.98

52.524+0.95
52.64+0.98
48.37+0.88
59.53+0.94
56.78+0.95
54.74+0.94
54.19+0.92
54.734+0.96

ONLINE |

[41.18+1.24

59.33+1.09

70.95+0.92

61.92+1.01 |

42.29+1.23

60.76+1.08

72.51+0.88

63.06+0.96

French—English

CUNI
CUNI
DCU-B
UEDIN
UM-DA
CUNI
CUNI
UM-WDA

3442
33.67
44.85
46.44
47.08
34.74
35.04
43.84

34.55+1.20
33.59+1.16
45.01£1.24
46.68+1.26
47.22+1.33
34.89+1.12
34.99+1.18
44.06+1.32

52.24+1.17
50.39+1.23
62.57+1.12
64.12+1.16
64.08+1.16
52.39+1.16
52.11+1.24
61.14+1.18

64.52+1.03
61.75+1.16
74.11£0.78
74.47+0.87
75.41+0.88
63.76+1.09
63.24+1.09
73.13+0.87

56.48+0.91
56.74+0.97
64.33+0.99
66.40+0.96
66.15+0.96
57.29+0.94
57.51+£0.97
63.09+1.00

36.52+1.23
35.55+1.21
46.12+1.26
48.01+1.29
48.23+1.31
36.84+1.17
37.04+1.18
45.17+1.36

54.35+1.12
52.55+1.26
64.04+1.06
65.70+1.15
65.36+1.10
54.56+1.13
54.38+1.17
62.63+1.15

67.07+1.00
64.45+1.13
75.84+0.74
76.30+0.86
76.95+0.89
66.43+1.07
66.02+1.05
74.94+0.84

58.34+0.91
58.63+0.91
65.55+0.94
67.76+0.91
67.18+0.93
59.1440.90
59.55+0.93
64.37+0.99

ONLINE |

[46.9951.35

64.31+1.12

76.07+0.78

66.09+1.00 |

47.99+1.33

65.65+1.07

77.65+0.75

67.20+0.96

English—Czech

CUNI
CUNI
UEDIN
UM-DA
CUNI
CUNI
UM-WDA

17.36
16.64
2345
22.61
20.56
19.50
22.14

17.65+0.96
16.89+0.93
23.74+1.00
22.72+0.98
20.84+1.01
19.724+0.97
22.33+0.96

37.17+1.02
36.57£1.05
44.20+1.10
42.73+1.16
39.98+1.09
38.09£1.10
42.30+1.11

49.13+0.98
48.79+0.98
55.38+0.88
54.12+0.93
51.98+0.99
50.12+1.06
53.89+0.92

40.31£0.95
39.46+0.90
46.23+0.99
44.73+1.01
42.86+1.00
41.50+0.96
44.48+1.01

18.75+0.96
17.94+0.96
24.20+1.00
23.12+1.01
22.03+1.05
20.91+1.02
22.72+0.97

38.32+1.02
37.74+1.03
44.92+1.08
43.41<+1.14
41.19+1.08
39.26+1.12
43.02+1.09

50.82+0.91
50.50+0.97
56.38+0.90
55.11+0.93
53.66+0.97
51.79£1.04
54.89+0.95

41.39+0.94
40.59+0.91
46.78+1.00
45.324+1.02
43.93+1.01
42.59+0.96
45.08+0.99

ONLINE |

[33.45+1.28

51.64+1.28

61.82+1.10

53.97=L.18

34.02+1.31

52.35+1.22

62.84+1.08

54.52+1.18

English—German

CUNI
CUNI
POSTECH
UEDIN
UM-DA
CUNI
CUNI
UM-WDA

12.52
12.42
15.46
20.88
20.89
14.29
13.44
18.77

12.64+0.77
12.53+0.77
15.59+0.91
21.01£1.03
21.09+1.07
14.42+0.81
13.58+0.75
18.91£1.00

29.84+0.99
29.02+1.05
34.41£1.01
40.03+1.08
40.76+1.03
31.82+1.03
30.37£1.03
37.92+1.02

45.38+1.14
44.27+1.16
49.00+0.83
55.54+0.91
55.45+0.89
47.01£1.13
45.80+1.14
53.59+0.85

34.69+0.81
34.62+0.78
37.11£0.90
42.95+0.90
43.02+0.93
36.81+0.79
35.80+0.76
40.90+0.86

16.63+0.91
16.41+0.91
15.98+0.92
21.40+1.03
21.52+1.08
18.87+0.90
17.84+0.89
19.30+1.02

33.63+1.07
32.87+1.08
34.98+1.00
40.55+1.08
41.31+1.01
35.76+1.11
34.41+1.13
38.42+1.01

50.03+1.24
48.99+1.21
49.94+0.81
56.33+0.92
56.38+0.90
51.76+1.17
50.75+1.18
54.40+0.85

38.43+0.87
38.37+£0.86
37.60+0.87
43.41+£0.90
43.58+0.91
40.65+0.87
39.85+0.78
41.34+0.86

ONLINE |

[23.92+1.06

44.33+0.97

57.47+0.80

46.35+0.91 |

24.29+1.07

44.83+0.98

58.20+0.80

46.71+0.92

English—French

CUNI
CUNI
LIMSI
LIMSI
UEDIN
UM-DA
CUNI
CUNI
UM-WDA

30.30
29.35
40.14
38.83
40.74
41.24
3223
3245
40.78

30.67+1.11
29.71£1.10
43.54+1.22
42.21+1.13
44.24+1.16
41.68+1.12
32.61£1.09
32.84+1.06
41.16+1.13

46.59+1.09
45.84+1.07
59.70+1.04
58.88+1.01
60.66+1.07
58.72+1.06
48.48+1.08
48.68+1.06
58.20+0.99

59.83+1.04
58.81+1.04
69.45+0.86
68.70+0.81
70.35+0.82
69.37+0.78
61.13+1.01
61.32+0.98
68.93+0.84

50.51+0.93
50.00+0.96
61.35+0.96
60.59+0.93
62.28+0.95
60.12+0.95
52.24+0.93
52.35+0.94
59.64+0.94

32.06+1.12
31.02+1.10
44.04+1.22
42.69+1.12
44.85+1.17
42.16+1.11
34.08+1.10
34.22+1.07
41.79+1.12

48.01+1.09
47.24+1.09
60.32+1.03
59.53+0.98
61.43+1.05
59.39+1.05
49.93+1.11
50.09+1.04
59.10+0.96

61.66+1.00
60.57+1.02
70.20+0.85
69.50+0.80
71.27+0.81
70.21+0.77
62.92+0.99
63.04+0.96
70.01+0.84

51.83+0.94
51.31+0.94
61.90+0.94
61.17+0.91
62.94+0.91
60.71+0.92
53.65+0.92
53.67+0.91
60.39+0.91

ONLINE |

[58.63+1.26

70.70+1.12

78.22+0.81

71.89%0.96 |

59.27+1.26

71.50+1.10

79.16+0.81

72.63+0.94

Table 25: Official results of translation quality evaluation in the medical summary translation subtask.
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original

normalized truecased

normalized lowercased

ID | BLEU

BLEU

1-TER 1-PER

1-CDER BLEU

1-TER 1-PER

1-CDER

Czech—English

10.71
9.92
24.66
12.00
10.54

CUNI
CUNI
UEDIN
CUNI
CUNI

10.57+3.42
9.78+3.04
24.68+4.52
11.86+3.42
10.394+3.48

15.72+2.77
16.84+2.84
39.88+3.05
18.49+2.74
18.86+2.48

23.37+£3.03
23.80+3.08
49.97+3.29
24.67+2.85
26.65+2.05

18.68+2.42
19.85+2.40
41.81+2.80
21.08+2.29
20.534+2.08

30.13+4.85
28.21+4.56
28.25+4.94
31.91+4.81
32.39+5.45

53.38+3.01
54.15+3.04
45.31+3.14
57.61+3.13
56.79+3.02

62.53+2.84
62.56+2.99
55.66+3.06
65.02+2.99
65.52+2.26

55.44+2.87
55.91+2.79
46.67+2.77
59.24+2.69
57.96+2.56

ONLINE |

[28.88+4.96

47.31+3.35 55.19+3.21

49.88+2.89 | 35.33+5.20

55.80£3.20 64.05+2.97

57.94+2.85

German— English

10.90
10.71
18.06
17.99
23.33
10.54
8.75

CUNI
CUNI
POSTECH
POSTECH
UEDIN
CUNI
CUNI

10.74+3.41
10.55+3.47
17.97+4.38
17.88+4.72
23.39+4.37
10.39+3.48
8.49+3.60

18.89+2.39
18.40+2.35
28.57+3.30
29.79+3.04
38.55+3.65
18.86+2.48
19.10+2.27

26.09+2.00
25.45+2.04
40.38+2.77
41.15+2.48
48.21+3.43
26.65+2.05
24.98+1.95

20.29+2.07
19.8442.07
31.79+2.80
32.49+2.63
40.75+3.05
20.534+2.08
19.95+2.02

32.15+5.23
32.06£5.19
21.99+4.65
24.41+4.83
27.17+4.63
32.39+5.45
30.00£5.59

55.56+2.90
54.85+2.91
35.76+3.35
41.72+3.19
43.87+3.52
56.79+3.02
56.07+2.92

63.68+2.34
62.87+2.39
47.84+2.82
53.334£2.55
53.76+3.48
65.52+2.26
62.92+2.32

56.45+2.62
55.52+2.61
38.84+2.92
44.06+2.88
45.72+3.03
57.96+2.56
56.27+2.56

ONLINE [

[19.97+4.46

37.03£3.26 43.91+3.22

40.95+2.93 | 33.86+4.87

53.28+3.28 60.86+3.22

56.334+2.98

French—English

13.90
12.10
30.85
26.51
27.20
14.03
13.38

CUNI
CUNI
DCU-Q
DCU-Q
UEDIN
CUNI
CUNI

13.79+£3.61
11.95+3.41
31.24+5.08
26.16+4.40
27.60+3.98
14.00£3.30
13.16+3.52

18.49+2.55
17.23+2.57
58.88+2.97
48.02+3.72
38.54+£3.22
20.11+£2.38
17.79+2.56

28.35+2.81
27.12+2.88
67.94+2.62
57.34+3.24
48.81+3.26
29.00+2.71
28.84+2.81

20.36+2.20
19.15+2.28
59.19+2.62
53.56+2.79
39.77£2.95
21.62+2.22
19.17+2.23

34.97+5.34
33.74+5.01
36.88+5.07
28.61+4.52
32.23+4.27
38.98+5.08
35.00£5.20

59.54+2.94
58.95+2.96
66.38+2.85
53.65+3.73
43.66+3.20
62.90+2.87
59.52+2.98

72.30+2.63
71.25€2.76
75.86+2.37
63.51+£3.21
54.314£3.17
74.49+2.45
73.08+2.57

58.86+2.76
58.20+2.81
66.29+2.55
59.07+2.79
44.534+2.79
62.12+2.64
58.414+2.68

ONLINE |

[32.96+5.04

53.68+3.21 64.27+2.80

54.40+2.66 [ 38.09+5.52

61.44£3.08 72.59+2.61

61.60+2.78

English—Czech

8.37
9.04
12.57
6.64
9.06
8.49

CUNI
CUNI
UEDIN
UEDIN
CUNI
CUNI

8.00+3.65
8.75+3.64
12.40+3.61
6.21+4.73
8.64+3.82
8.01+6.05

17.74+2.23
18.25+2.27
21.15+2.96
-2.35+3.06
19.92+2.24
18.13+2.28

26.46+1.96
26.97+1.92
33.56+2.80
5.95+£3.48
26.97+1.94
25.19+1.86

19.48+2.10
19.69+2.11
22.30+2.67
-0.97+3.12
20.82+2.06
19.19+2.01

19.49+4.60
21.46+5.05
14.06+3.80
14.35+3.52
22.42+5.24
21.04+4.80

41.53+2.94
42.36+3.09
24.92+2.90
14.51+3.19
44.89+2.94
42.66+2.87

51.34+2.51
51.99+2.40
37.85+2.72
24.96+3.50
52.89+2.40
50.34+2.47

42.54+2.74
43.18+2.68
25.58+2.70
15.11£3.10
45.36+2.78
43.304+2.74

ONLINE |

[ 21.09+4.60

48.56+2.82 54.72+2.51

48.30+2.83 [ 24.37+4.80

51.93+£2.74 58.10+2.50

51.62+2.80

English—German

10.17
9.98
13.43
13.41
10.45
8.91
9.14

CUNI
CUNI
POSTECH
POSTECH
UEDIN
CUNI
CUNI

10.01£3.92
9.69+3.94
13.01£5.91
13.15+5.21
10.14+3.86
7.72+6.48
8.69+6.44

26.48+3.24
26.16£3.19
26.38+3.09
22.18+3.09
23.44+3.43
30.05+3.22
27.66+3.31

36.71+£3.37
35.50+3.23
35.75%3.16
30.89+3.31
34.55+3.34
40.65+2.71
37.95+3.45

29.26+2.96
28.86+2.94
27.86+2.82
24.17+3.06
25.46+3.17
31.91+2.88
31.00+2.82

13.02+4.17
12.90+4.28
15.05+5.71
14.96+5.15
11.91+4.42
13.66+5.37
14.03£5.92

31.96+3.41
31.75+£3.33
30.45+3.10
26.13+£3.19
27.91+3.45
35.51+3.28
33.53+£3.45

42.39+3.21
41.24+3.21
39.89+3.14
34.92+3.40
39.08+3.42
46.12+2.74
44.03+3.53

34.61+2.95
34.38+3.05
31.79£3.00
27.984+3.12
29.63+3.31
37.27+3.01
36.73+3.00

ONLINE |

[20.07£6.06

41.07+3.23 47.41+2.86

41.61%3.02 ] 21.67+6.23

43.78+3.23 50.18+2.95

44.26+3.06

English—French

13.12
12.80
27.69
20.16
13.78
15.27

CUNI
CUNI
DCU-Q
UEDIN
CUNI
CUNI

12.92+2.84
12.65+2.81
27.84+4.11
21.76+3.42
13.57£3.00
15.24+3.12

21.95+2.41
19.16+2.61
48.97+3.06
31.66+4.23
21.92+2.51
23.58+2.54

33.19+2.09
31.61+2.21
60.90+2.55
44.37+4.13
33.47+2.03
34.39+2.54

23.704+2.24
21.91+2.32
51.84+2.83
44.29+2.73
24.1642.32 | 30.07+4.10
25.79+2.32 | 31.40+4.15

28.42+3.98
27.52+4.05
28.98+4.16
23.25+3.49

51.43+£2.90
47.47+3.08
51.73+3.10
35.38+4.19
51.12+3.08
53.60+2.96

63.74+2.35
61.43+2.37
63.84+2.47
48.52+4.07
63.61+2.45
65.39+2.57

52.6442.58
49.82+2.72
54.43+2.76
47.94%2.75
52.96+2.67
55.47+2.69

ONLINE |

[28.93+3.66

49.20+3.08 60.85+2.69

51.68+2.78 | 30.88+3.66

52.25+3.08 64.06+2.62

54.594+2.68

Table 26: Official results of translation quality evaluation in the medical query translation subtask.

source lang.

ID | P@5 P@10

NDCG@5 NDCG@10

MAP | Rprec | bpref

rel

Czech—English

CUNI

0.3280 0.3340

0.2873 0.2936

0.2217 | 0.2362 | 0.3473

1461

German— English

CUNI

0.2800  0.3000

0.2467 0.2630

0.2057 | 0.2077 | 0.3310

1426

French—English

CUNI
DCU-Q
UEDIN

0.3280
0.3480
0.4440

0.3380
0.3460
0.4300

0.2811
0.3060
0.3793

0.2882
0.3072
0.3826

0.2206
0.2252
0.2843

0.2284
0.2358
0.2935

0.3504
0.3659
0.3936

1481
1524
1544

English (monolingual)

0.4600 0.4700

0.4091 0.4205

0.3035 | 0.3198 | 0.3858

1638

Table 27: Official results of retrieval evaluation in the query translation subtask.
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lation Task, was the lack of domain expertise of
prospective raters. While in the standard task, the
only requirement for the raters was to be a na-
tive speaker of the target language, in the Med-
ical Translation Task, a very good knowledge of
the domain would be necessary to provide reli-
able judgements and the raters with such an ex-
pertise (medical doctors and native speakers) were
not available.

The complete results of the task are presented
in Table 25 (for summary translation) and Ta-
bles 26 and 27 (for query translation). Partici-
pant IDs given in bold indicate primary submis-
sions, IDs in normal font refer to contrastive sub-
missions. The first section for each translation di-
rection (white background) refers to constrained
submissions and the second one (light-gray back-
ground) to unconstrained submissions. The col-
umn denoted as “original” contains BLEU scores
as reported by the Matrix submission system ob-
tained on the original submitted translations. Due
to punctuation inconsistency in the original refer-
ence translations, we decided to perform punctu-
ation normalization before calculating the official
scores. The columns denoted as “normalized true-
cased” contain scores obtained on the submitted
translations after punctuation normalization and
the columns denoted as “normalized lowercased”
contain scores obtained after punctuation normal-
ization and lowercasing. The normalization script
is available in the package with summary transla-
tion test data. The confidence intervals were ob-
tained by bootstrap resampling with a confidence
level of 95%. Figures in bold denote the best con-
strained system and, if its score is higher, the best
unconstrained system for each translation direc-
tion and each metric. For comparison, we also
present results of a major on-line translation sys-
tem (denoted as ONLINE).

The results of the extrinsic evaluation of query
translation submissions are given in 27. We used
the CLEF 2013 eHealth Task 3 test collection con-
taining about 1 million web pages (in English),
50 test queries (originally in English and trans-
lated to Czech, German, and French), and their
relevance assessments. Some of the participants
of the WMT Medical Task (three teams with five
submissions in total) submitted translations of the
queries (from Czech, German, and French) into
English and these translations were used to query
the CLEF 2013 eHealth Task 3 test collection us-
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ing a state-of-the-art system based on a BM25
model, described in Pecina et al. (2014). Origi-
nally, we asked for 10 best translations for each
query, but only the best one were used for the
evaluation. The results are provided in terms of
standard IR evaluation measures: precision at a
cut-off of 5 and 10 documents (P@5, P@10),
normalized discounted cumulative gain (Jarvelin
and Kekildinen, 2002) at 5 and 10 documents
(NDCG@5, NDCG@10), mean average precision
(MAP) (Voorhees and Harman, 2005), precision
reached after R documents retrieved, where R in-
dicates the number of the relevant documents for
each query in the entire collection (Rprec), binary
preference (bpref) (Buckley and Voorhees, 2004),
and number or relevant documents retrieved (rel).
The cross-lingual results are also compared with
the monolingual one (obtained by using the refer-
ence (English) translations of the test topics) to see
how the system would perform if the queries were
translated perfectly.

5.6 Discussion and Conclusion

Both the subtasks turned out to be quite challeng-
ing not only because of the specific domain — in
summary sentences, we can observe much higher
density of terminology than in ordinary sentences;
the queries, which are also rich in terminology, do
not form sentences at all.

Most submissions were based on systems par-
ticipating in the standard Translation Task and
trained on the provided data or its subsets CUNI
provided baseline systems for all language pairs in
both subtasks, which turned to be relatively strong
for the query translation task, especially in trans-
lation to English, but only in terms of scores ob-
tained on normalized and lowercased translations
since their truecasing component did not perform
well.

In the summary translation subtask, the best
overall results were achieved by the UEDIN team
which won for DE-EN, EN-CS, and EN-FR, fol-
lowed by the UM-DA team, which performed on
par with UEDIN in all other translation.

The unconstrained submissions in almost all
cases did not outperform the results of the con-
strained submissions. Some improvements were
observed in the query translations subtasks by the
CUNTI’s unconstrained system with language mod-
els trained on larger in-domain data.

The ONLINE system outperforms all other sub-



missions with only two exceptions — the UM-DA’s
and UEDIN’s systems for the summary translation
in the FR-EN direction, though the score differ-
ences are within the 95% confidence interval.

In the query translation subtask, DCU-Q built
a system designed specifically for terminology
translation between French and English and out-
performed all other participants in translation into
English; however, the confidence intervals in the
query translation task are much wider and most of
the differences in scores of the automatic metrics
are not statistically significant.

The extrinsic evaluation in the cross-lingual in-
formation retrieval was conducted for translations
into English only. CUNI provided the baselines
for all directions, but other submissions were done
for FR-EN only. Here, the winner is UEDIN, who
outperformed both CUNI and DCU-Q, and their
scores are very close to those obtained using the
reference English translations.
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A Pairwise System Comparisons by Human Judges

Tables 28-37 show pairwise comparisons between systems for each language pair. The numbers in each
of the tables’ cells indicate the percentage of times that the system in that column was judged to be better
than the system in that row, ignoring ties. Bolding indicates the winner of the two systems.

Because there were so many systems and data conditions the significance of each pairwise compar-
ison needs to be quantified. We applied the Sign Test to measure which comparisons indicate genuine
differences (rather than differences that are attributable to chance). In the following tables % indicates sta-
tistical significance at p < 0.10, T indicates statistical significance at p < 0.05, and I indicates statistical
significance at p < 0.01, according to the Sign Test.

Each table contains final rows showing how likely a system would win when paired against a randomly
selected system (the expected win ratio score) and the rank range according the official method used in
Table 8. Gray lines separate clusters based on non-overlapping rank ranges.
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Table 28: Head to head comparison, ignoring ties, for Czech-English systems
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Table 29: Head to head comparison, ignoring ties, for English-Czech systems
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PROMT-RULE |.54% .50 48 .55« — .51 47 47 .45« 38} 42% .40f 431 .41t 431 .38t .35% .29%
UEDIN-STANFORD|.56T .53 .50 .53 49 - 48 50 47 447 46 361 .36% .36% .36f .35% .30f .32%
EU-BRIDGE|.59%1 .57 .55« .53 .53 .52 - 46 431 .52 421 42% 45% .35% 361 41f .38f .30%f
RBMT4|.557 .54x 571 .54% .53 .50 .54x - .53 49 447 49 50 47  40f 42% .38 .40%
UEDIN-PHRASE |.571 591 .57f .50 .55 .53 .57f 47 - 50 .55%x 47 45« 447 431 42% 37F .34%
RBMTI |.59f .55} .58%1 .567 .621 .567 .48 .51 50 - 47 47 451 47 A43f 427 381 41%
KIT|.621 .61f .611 .58} .58f .54 .58f .56T .45x .53 - 47 49 46 43t 48  34f 37%
STANFORD-UNC|.621 .611 .59% .60% .601 .64 .58 .51 .53 .53 .53 - 48 47 451 45x 391 Ali
CIMS |.641 .631 .58% .59% .57t .64 .55x .50 .55« .55 .51 .52 - 53 421 52 47 42

STANFORD |.671 .681 .58f .62} .591 .64} .65f .53 .561 .53 .54 .53 47 - .53 42f 391 48
UU|.621 .65% .621 .61 .571 .64% .641 .60f .57t 571 .57f .55t .58% .47 - A46% 451 .38%

ONLINE-C|.70% .661 .567 .61} .621 .65% .591 .58f .58 .58% .52 .55x 48 .58f .54x - 48 47

IMS-TTT|.70% .70f .621 .671 .65 .70% .62 .62 .631 .621 .66% .61% .53 .61% .55t .52 - 49
UU-DOCENT|.751 .71} .67 .661 .71} .681 .701 .601 .661 .59 .63% .59f .58% .52 .62 .53 .51 -
score| .60 .59 .56 56 .56 .56 54 51 51 50 48 47 46 44 43 42 38 37
rank| 1-2 12 3-6 3-6 36 36 7 8-10 8-10 8-10 11-12 11-13 12-14 13-15 14-16 15-16 17-18 17-18

Table 31: Head to head comparison, ignoring ties, for English-German systems
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KIT|.52 - 541 48 441 311 291 21%f
ONLINE-B (.52 46f - .51 .47 .31% .30f .24%
STANFORD |.551 .52 49 - 46t 341 301 .23%
ONLINE-A |.571 561 .53 .54t — .32% 291 .21%
RBMTI [.721 .691 .691 .661 .68f — 421 .33%
RBMT4|.721 711 .70% .70 711 .58% - .39%
ONLINE-C |.81% .79% .76% .771 .791 .671 .611 -
score| .63 .60 .59 .58 .57 40 .35 .25
rank| 1 24 24 24 5 6 7 8

Table 32: Head to head comparison, ignoring ties, for French-English systems

ONLINE-A

<
A~ =}

ROMT-HYBRID

PROMT-RULE

ONLINE-B| —
UEDIN-PHRASE |.54%
KIT|.52 .50

MATRAN |.54% .53
MATRAN-RULES |.50 .54
ONLINE-A |.591 .54%
UU-DOCENT |.61% .581
PROMT-HYBRID |.611 .591
UA .63 .54
PROMT-RULE |.621 .58%
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score| .59 .57

rank| 1 24

| &| UEDIN-PHRASE

* .

1 & &l kT

47
49
50
571 57¢
51
591 .621
581 .52
651 .60
631 .661
1% .67%

.55

.50

57¢

.55

2-5 2-5

B 2 & & MATRAN-RULES

47
601 .
S55+% .
545
58t
56t
.60%
661

54
4-6

.53

S5«
581
631
661

53
4-6

£ 855 S 8 uu-DocENT
urspie it id

S57%
48

54
.61%
56t
.67t

49
7-9

391 371
AlE A46%
49 Ali
431 .38%
A5t 46%
49 47
431 .52
- .50
S50 -
591 51
Sd4x Sdx
561 .57
651 .66%
49 48
7-10 7-10

381 .
421 .
421 .
48
421 .
A5 .
A6% .
A1t
49
.53
611
631
47
8-10

46% |
A46x .
47

545
55¢

43
11

46 .

S5«

40
12

Table 33: Head to head comparison, ignoring ties, for English-French systems
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Table 34: Head to head comparison, ignoring ties, for Hindi-English systems
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ONLINE-B| — .49 .28f .29f .27f .23f .22 .20f .17f .12f .13} .13%
ONLINE-A|.51 - .31 .29 .27f .25 .20f .20% .21f .19% .161 .15%
UEDIN-UNCNSTR [.721 .69% - 441 49 391 401 .341 39%f 291 .30f .27%
UEDIN-PHRASE|.711 711 .561 - .48 .45f 441 391 371 31 .31f .32%
CU-MOSES |.73f 731 .51 .52 - 47 421 40f 45« 36f .35 .33%
IIT-BOMBAY |.771 .75f .611 5571 .53 - 50 .47 .45t 41f .40f 361
IPN-UPV-CNTXT|.781 .801 .601 .567 .58% .50 - .51 411 40f .40f .37%
DCU-LINGO24|.80f .801 .661 .61 .60% .53 49 - .52 41t 411 .39%
IPN-UPV-NODEV |.831 .791 .611 .631 .55« .55f .59% 48 - 46x .44f .38%
MANAWI-HI1 |.88% .81 .71 .691 .641 .59 .601 .591 .54« — .35 .34%
MANAWI |.871 .841 .701 .69% .651 .60% .601 .59% .56} .65 - 391
MANAWI-RMOOV | .87 .85f .73} .681 .671 .641 .631 .61} .621 .66% .61%1 -
score| .77 715 57 54 52 47 46 43 42 38 35 31

rank| 1 2 3 45 45 6-7 6-7 89 89 10-11 10-11 12

Table 35: Head to head comparison, ignoring ties, for English-Hindi systems
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Table 36: Head to head comparison, ignoring ties, for Russian-English systems
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Table 37: Head to head comparison, ignoring ties, for English-Russian systems
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Abstract

We use parallel FDAS, an efficiently pa-
rameterized and optimized parallel im-
plementation of feature decay algorithms
for fast deployment of accurate statistical
machine translation systems, taking only
about half a day for each translation di-
rection. We build Parallel FDAS Moses
SMT systems for all language pairs in
the WMT14 translation task and obtain
SMT performance close to the top Moses
systems with an average of 3.49 BLEU
points difference using significantly less
resources for training and development.

1 Introduction

Parallel FDAS is developed for fast deployment
of accurate statistical machine translation systems
using an efficiently parameterized and optimized
parallel implementation of feature decay algo-
rithms (Bigici and Yuret, 2014). Parallel FDAS
takes about half a day for each translation direc-
tion. We achieve SMT performance that is on par
with the top constrained Moses SMT systems.

Statistical machine translation (SMT) is a data
intensive problem. If you have the translations for
the source sentences you are translating in your
training set or even portions of it, then the trans-
lation task becomes easier. If some tokens are not
found in the training data then you cannot trans-
late them and if some translated word do not ap-
pear in your language model (LM) corpus, then it
becomes harder for the SMT engine to find its cor-
rect position in the translation. The importance of
parallel FDAS increases with the proliferation of
training material available for building SMT sys-
tems. Table 2 presents the statistics of the avail-
able training and LM corpora for the constrained
(C) systems as well as the statistics of the Parallel
FDAS selected training and LM corpora.

gliu@computing.dcu.ie
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Parallel FDAS runs separate FDAS5 models on
randomized subsets of the training data and com-
bines the selections afterwards. We run parallel
FDAS5 SMT experiments using Moses (Koehn et
al., 2007) in all language pairs in WMT14 (Bojar
et al., 2014) and obtain SMT performance close to
the top constrained Moses systems training using
all of the training material. Parallel FDAS allows
rapid prototyping of SMT systems for a given tar-
get domain or task and can be very useful for MT
in target domains with limited resources or in dis-
aster and crisis situations (Lewis et al., 2011).

2 Parallel FDAS for Instance Selection

2.1 FDAS

FDA is developed mainly for building high per-
formance SMT systems using fewer yet relevant
data that is selected for increasing the coverage of
the test set features while maximizing their diver-
sity (Bicici and Yuret, 2011; Bigici, 2011). Par-
allel FDA parallelize instance selection and sig-
nificantly reduces the time to deploy accurate MT
systems in the presence of large training data from
weeks to half a day and still achieve state-of-
the-art SMT performance (Bigici, 2013). FDAS5
is developed for efficient parameterization, opti-
mization, and implementation of FDA (Bicici and
Yuret, 2014). FDAS can be used in both trans-
ductive learning scenarios where test set is used to
select the training data or in active learning sce-
narios where training set itself is used to obtain a
sorting of the training data and select.

We run transductive learning experiments in
this work such that the instance selection is per-
formed for the given test set. According to
SMT experiments performed on the 2 million sen-
tence English-German section of the Europarl cor-
pus (Bigici and Yuret, 2014), FDAS can increase
the performance by 0.41 BLEU points compared
to using all of the available training data and by

Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 59-65,
Baltimore, Maryland USA, June 26-27, 2014. (©2014 Association for Computational Linguistics



Algorithm 1: Parallel FDAS5
Input: Parallel training sentences U, test set
features F, and desired number of
training instances V.
Output: Subset of the parallel sentences to be
used as the training data £ C U.
1 U — shuffle(ld)
U, M — split(U,N)
3 L—{}
4 foreach U; € U do
(L;,s;) «— FDAS(U;, F, M)
L—LU <,CZ, SZ')
7 L «— merge(L)

5
6

3.22 BLEU points compared to random selection.
FDAS is also used for selecting the training set
in the WMT14 medical translation task (Calixto
et al., 2014) and the tuning set in the WMT14
German-English translation task (Li et al., 2014).

FDAS has 5 parameters that effect the instance
scores based on the three formulas used:

o Initialization:

init(f) =log([Ul/Cu(f))IFIF (D)

e Decay:

decay(f) = init(f)(1+Cz(f))d%)
()

e Sentence score:

> falue(f)
JEF(S)
3)

Cr(f) returns the count of feature f in £. d
is the feature score polynomial decay factor, c is
the feature score exponential decay factor, s is
the sentence score length exponent, i is the initial
feature score idf exponent, and 1 is the initial
feature score n-gram length exponent. FDAS5 is
available at http://github.com/bicici/FDA
and the FDAS5 optimizer is available at
http://github.com/bicici/FDAOptimization.

1
sentScore(S) = E

|S

2.2 Parallel FDA5

Parallel FDAS (ParFDAS) is presented in Algo-
rithm 1, which first shuffies the training sentences,
U and runs individual FDAS models on the multi-
ple splits from which equal number of sentences,
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M, are selected. We use ParFDAS for select-
ing parallel training data and LM data for build-
ing SMT systems. merge combines k sorted ar-
rays, L;, into one sorted array in O(Mk log k) us-
ing their scores, s;, where Mk is the total number
of elements in all of the input arrays. ! ParFDAS
makes FDAS more scalable to domains with large
training corpora and allows rapid deployment of
SMT systems. By selecting from random splits of
the original corpus, we work with different n-gram
feature distributions in each split and prevent fea-
ture values from becoming negligible, which can
enhance the diversity.

2.3 Language Model Data Selection

We select the LM training data with ParFDAS
based on the following observation (Bicici, 2013):

No word not appearing in the training
set can appear in the translation.

It is impossible for an SMT system to translate a
word unseen in the training corpus nor can it trans-
late it with a word not found in the target side of
the training set 2. Thus we are only interested
in correctly ordering the words appearing in the
training corpus and collecting the sentences that
contain them for building the LM. At the same
time, a compact and more relevant LM corpus is
also useful for modeling longer range dependen-
cies with higher order n-gram models. We use
1-gram features for LM corpus selection since we
don’t know which phrases will be generated by the
translation model. After the LM corpus selection,
the target side of the parallel training data is added
to the LM corpus.

3 Results

We run ParFDAS SMT experiments for all lan-
guage pairs in both directions in the WMT14
translation task (Bojar et al., 2014), which include
English-Czech (en-cs), English-German (en-de),
English-French (en-fr), English-Hindi (en-hi), and
English-Russian (en-ru). We true-case all of the
corpora, use 150-best lists during tuning, set the
LM order to a value between 7 and 10 for all lan-
guage pairs, and train the LM using SRILM (Stol-
cke, 2002). We set the maximum sentence length
filter to 126 and for GIZA++ (Och and Ney, 2003),

! (Cormen et al., 2009), question 6.5-9. Merging k sorted
lists into one sorted list using a min-heap for k-way merging.
2Unless the translation is a verbatim copy of the source.



ST Training Data LM Data

Data #word S M) #word T (M) #sent (K) | SCOV  TCOV | #word M) TCOV

en-cs C 253.5 2234 16068 | 0.8282 0.7046 717.0  0.8539
en-cs ParFDAS 22.0 19.6 1205 | 0.8161  0.6062 325.8 0.8238
cs-en C 2234 253.5 16068 | 0.7046 0.8282 55419 0.9552
cs-en  ParFDAS 19.3 22.0 1205 | 0.7046  0.7581 351.0 0.9132
en-de C 116.0 109.5 4511 0.812 0.7101 1573.8  0.8921
en-de  ParFDAS 16.7 16.8 845 | 0.8033 0.6316 206.9 0.8184
de-en C 109.5 116.0 4511 | 0.7101 0.812 5446.8 0.9525
de-en  ParFDAS 17.8 19.6 845 | 0.7087 0.753 339.5  0.9082
en-fr C 1096.1 1287.8 40344 | 0.8885 0.9163 25345 0.9611
en-fr  ParFDAS 22.6 26.6 1008 | 0.8735 0.8412 7374  0.9491
fr-en C 1287.8 1096.1 40344 | 09163 0.8885 6255.8 0.9675
fr-en ParFDAS 20.9 19.3 1008 | 0.8963 0.7845 463.4  0.9282
en-hi C 34 5.0 306 | 0.5467 0.5986 363  0.7972
en-hi  ParFDAS 3.3 4.9 254 | 0.5467 0.5976 412 0.8115
hi-en C 5.0 3.4 306 | 0.5986 0.5467 5350.4  0.9473
hi-en  ParFDAS 5.0 3.3 284 | 0.5985 0.5466 966.8  0.9209
en-ru C 49.6 46.1 2531 | 0.7992  0.6823 590.8 0.8679
en-ru  ParFDAS 19.6 18.6 1107 | 0.7991 0.6388 282.1 0.8447
ru-en C 46.1 49.6 2531 | 0.6823  0.7992 5380.6  0.9567
ru-en  ParFDAS 16.6 19.4 1107 | 0.6821 0.7586 225.1  0.9009

Table 2: The data statistics for the available training and LM corpora for the constrained (C) submissions
compared with the ParFDAS selected training and LM corpora statistics. #words is in millions (M) and

#sents is in thousands (K).

S—T d c s i 1
en-de 1.0 0.5817 1.4176 5.0001 -3.154
de-en 1.0 1.0924 1.3604 5.0001 -4.341
' en-cs 1.0 0.0676 0.8299 5.0001 -0.8788
g cs-en 1.0 1.5063 0.7777 3.223 -2.3824
o enru 1.0 0.6519 1.6877 5.0001 -1.1888
£ ru-en 1.0 1.607 3.0001 0.0 -1.8247
~§ en-hi 1.0 3.0001 3.0001 1.5701 -1.5699
£ hi-en 1.0 0.0 1.1001 5.0001 -0.8264
en-fr 1.0 0.8143 0.801 3.5996 -1.3394
fr-en 1.0 0.19 1.0106 5.0001 1.238
en-de 1.0 0.1924 1.0487 5.0001 4.9404
de-en 1.0 1.7877 3.0001 3.1213 -0.4147
en-cs 1.0 0.4988 1.1586 5.0001 -5.0001
T cs-en [0.9255 0.2787 0.7439 3.7264 -2.0564
o enru 1.0 1.4419 2.239 1.5543 -0.5097
s ru-en 1.0 2.4844 3.0001 4.6669 3.7978
3 en-hi 1.0 0.0 0.0 5.0001 -4.944
hi-en 1.0 0.3053 3.0001 5.0001 4.1216
en-fr 1.0 3.0001 2.0452 3.0229 3.4364
fr-en 1.0 0.7467 0.7641 5.0001 5.0001

Table 1: Optimized ParFDAS parameters for se-
lecting the training set using 2-grams or the LM
corpus using 1-grams.

max-fertility is set to 10, with the number of itera-
tions set to 7,3,5,5,7 for IBM models 1,2,3,4, and
the HMM model and 70 word classes are learned
over 3 iterations with the mkcls tool during train-
ing. The development set contains 5000 sentences,
2000 of which are randomly sampled from pre-
vious years’ development sets (2008-2012) and
3000 come from the development set for WMT14.
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3.1 Optimized ParFDAS Parameters

Table 1 presents the optimized ParFDAS parame-
ters obtained using the development set. Transla-
tion direction specific differences are visible. A
negative value for 1 shows that FDAS prefers
shorter features, which we observe mainly when
the target language is English. We also observe
higher exponential decay rates when the target lan-
guage is mainly English. For optimizing the pa-
rameters for selecting LM corpus instances, we
still use a parallel corpus and instead of optimiz-
ing for TCOV, we optimize for SCOV such that
we select instances that are relevant for the target
training corpus but still maximize the coverage of
source features and be able to represent the source
sentences within a translation task. The selected
LM corpus is prepared for a translation task.

3.2 Data Selection

We select the same number of sentences with Par-
allel FDA (Bigici, 2013), which is roughly 15%
of the training corpus for en-de, 35% for ru-en,
6% for cs-en, and 2% for en-fr. After the training
set selection, we select the LM data using the tar-
get side of the training set as the target domain to
select LM instances for. For en and fr, we have
access to the LDC Gigaword corpora (Parker et
al., 2011; Graff et al., 2011), from which we ex-
tract only the story type news. We select 15 mil-
lion sentences for each LM not including the se-



Time (Min) Space (MB)
S—T ParFDAS Moses Overall Moses

Train LM Total | Train Tune Total PT LM ALL

en-cs 5 28 34 375 702 1162 1196 | 1871 5865 19746
cs-en 7 65 72 358 448 867 939 | 1808 4906 18650
en-de 8 29 38 302 1059 1459 1497 | 1676 2923 18313
de-en 8 85 93 358 474 924 1017 | 1854 5219 19247
en-fr 23 60 84 | 488 781 1372 1456 | 2309 9577 24362
fr-en 21 99 120 315 490 897 1017 | 1845 4888 17466
en-hi 2 9 11 91 366 511 522 | 269 817 4292
hi-en 1 36 37 91 330 467 504 | 285 9697 3845
en-ru 11 25 35 358 369 837 872 | 2174 4770 21283
ru-en 10 62 71 309 510 895 966 | 1939 2735 19537

Table 3: The space and time required for building the ParFDAS Moses SMT systems. The sizes are in
MB and time in minutes. PT stands for the phrase table. ALL does not contain the size of the LM.

S —en en — T
BLEUc cs-en de-en fr-en hi-en ru-en | en-cs en-de en-fr en-hi en-ru
WMT14C | 0288 028 035 0.139 0.318 | 0.21 0.201 0.358 0.111 0.287
ParFDAS5 | 0.256 0.239 0.319 0.105 0.282 | 0.172 0.168 0.325 0.07 0.257
diff 0.032 0.041 0.031 0.034 0.036 | 0.038 0.033 0.033 0.041 0.03
LM order 9 9 9 9 9 9 9 7 10 9

Table 4: BLEUc for the top constrained result in WMT14 (WMT14C) and for ParFDAS results, their
difference to WMT14C, and the LM order used are presented. Average difference is 3.49 BLEU points.

lected training set, which is added later. The statis-
tics of the ParFDAS selected training data and the
available training data for the constrained transla-
tion task is given in Table 2. The size of the LM
corpora includes both the LDC and the monolin-
gual LM corpora provided by WMT14. Table 2
shows the significant size differences between the
constrained dataset (C) and the ParFDAS selected
data. Table 2 also present the source and target
coverage (SCOV and TCOV) in terms of the 2-
grams of the test set observed in the training data
or the LM data. The quality of the training cor-
pus can be measured by TCOV, which is found to
correlate well with the BLEU performance achiev-
able (Big¢ici and Yuret, 2011; Bigici, 2011).

3.3 Computing Statistics

We quantify the time and space requirements for
running ParFDA5 SMT systems for each trans-
lation direction. The space and time required
for building the ParFDAS Moses SMT systems
are given in Table 3 where the sizes are in MB
and the time in minutes. PT stands for the
phrase table. We used Moses version 2.1.1, from
Building a ParFDAS

www.statmt .org/moses.
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Moses SMT system takes about half a day.

3.4 Translation Results

The results of our two ParFDAS SMT experiments
for each language pair and their tokenized BLEU
performance, BLEUc, together with the LM order
used and the top constrained submissions to the
WMT14 are given in Table 4 3, which use phrase-
based Moses for comparison *. We observed sig-
nificant gains (+0.23 BLEU points) using higher
order LMs last year (Bigici, 2013) and therefore
we use LMs of order 7 to 10. The test set con-
tains 10,000 sentences and only 3000 of which are
used for evaluation, which can make the transduc-
tive learning application of ParFDAS harder. In
the transductive learning setting, ParFDAS is se-
lecting target test task specific SMT resources and
therefore, having irrelevant instances in the test set
may decrease the performance by causing FDAS
to select more domain specific data and less task
specific. ParFDAS significantly reduces the time
required for training, development, and deploy-
ment of an SMT system for a given translation

3We use the results from matrix.statmt.org.
*Phrase-based Moses systems usually rank in the top 3.



ppl
00V log OOV = —19 log OOV = —11

Translation T order | train FDAS5 FDAS LM % red.| train FDAS5 FDASLM %red.| train FDAS FDA5SLM % red.
3 1764 1731 938 047 | 1370 1218 805 041

4 1788 1746 877 051 | 1389 1229 753 046

en-es o en g 866 1205 525 039 | 799 1752 868 052 | 1398 1233 745 047
6 1802 1753 867 052 | 1400 1234 744 047

3 480 419 333 031 | 408 342 307 025

4 487 422 292 04 415 344 269 035

csencs g | 557 706 276 0.5 | 495 4o 285 042 | 421 346 263 038
6 497 425 284 043 | 423 346 262 038

3 1323 1605 747 044 | 831 890 607 027

4 1307 1596 689 047 | 821 885 560 0.32

en-de en g | 1666 2116 744 055 | 1307 596 680 048 | 822 885 553 033
6 1308 1596 679 048 | 822 885 552 033

3 482 498 394 018 | 386 379 345 0.11

4 470 490 344 027 | 376 373 301 02

de-en  de g 691 849 417 04 470 490 336 029 | 377 373 293 0.22
6 471 490 334 029 | 377 373 292 023

3 185 167 173 007 | 173 151 166 0.04

enfr  en 4 270 411 153 043 | 170 160 135 021 | 159 144 130 0.19
5 171 160 126 027 | 160 145 121 024

3 349 325 275 021 | 320 275 261 0.19

fren fr 4 306 604 179 042 | 338 321 235 03 310 271 24 028
5 342 322 228 033 | 314 272 217 031

3 242 246 114 053 | 168 168 9 043

. 4 237 241 87 0.63 | 164 165 73055
en-hi en & | 2035 2123 950 053 | 530 5y 78 067 | 165 165 6 06
6 239 242 75 068 | 165 165 64 0.62

3 1804 1898 482 05 | 915 o1l 377 059

. .4 1910 1914 398 079 | 923 919 312 0.66
hi-en — hi g 1842 1860 623 0.66 | 155 1919 378 0.8 925 921 296 0.68
6 1915 1919 378 0.8 926 921 296 0.68

3 1067 1171 668 037 | 814 840 566 03

4 1053 1159 603 043 | 803 831 511 036

en-ru en 5 | 959 1176 585 039 | 4 159 501 044 | 802 831 501 038
6 1052 1159 588 044 | 802 831 498 038

3 385 398 363 006 | 334 334 333 00

4 377 391 325 014 | 327 328 298 0.09

fuen T g 358 689 340039 1 358 30 318 0.16 | 328 329 292 0.11
6 378 392 318 016 | 328 329 291 0.11

Table 5: Perplexity comparison of the LM built from the training corpus (train), ParFDAS selected
training corpus (FDAS), and the ParFDAS5 selected LM corpus (FDA5 LM). % red. column lists the

percentage of reduction.

task. The average difference to the top constrained
submission in WMT14 is 3.49 BLEU points. For
en-ru and en-cs, true-casing the LM using a true-
caser trained on all of the available training data
decreased the performance by 0.5 and 0.9 BLEU
points respectively and for cs-en and fr-en, in-
creased the performance by 0.2 and 0.5 BLEU
points. We use the true-cased LM results using
a true-caser trained on all of the available train-
ing data for all language pairs where for hi-en,
the true-caser is trained on the ParFDAS selected
training data.

3.5 LM Data Quality

A LM training data selected for a given transla-
tion task allows us to train higher order language
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models, model longer range dependencies better,
and at the same time, achieve lower perplexity
as given in Table 5. We compare the perplexity
of the ParFDAS selected LM with a LM trained
on the ParFDAS selected training data and a LM
trained using all of the available training corpora.
To be able to compare the perplexities, we take
the OOV tokens into consideration during calcu-
lations (Bicici, 2013). We present results for the
cases when we handle OOV words with a cost
of —19 or —11 each in Table 5. We are able to
achieve significant reductions in the number of
OOV tokens and the perplexity, reaching up to
66% reduction in the number of OOV tokens and
up to 80% reduction in the perplexity.



BLEUc S —en en — T

cs-en  de-en fr-en ru-en | en-cs en-de en-fr en-ru
ParFDAS5 | 0.256 0.239 0.319 0.282 | 0.172 0.168 0.325 0.257
ParFDA | 0.243 0.241 0.254 0.223 | 0.171 0.179 0.238 0.173
diff 0.013 -0.002 0.065 0.059 | 0.001 -0.011 0.087 0.084

Table 7: Parallel FDAS WMT 14 results compared with parallel FDA WMT13 results. Training set sizes
are given in millions (M) of words on the target side. Average difference is 3.7 BLEU points.

BLEUc S —en en — T
cs-en  fr-en | en-cs en-fr
ParFDAS5 0.256 0.319 | 0.172 0.325
ParFDAS5 15% | 0.248 0.321 | 0.178 0.333
diff -0.008 0.002 | 0.006 0.008

Table 6: ParFDAS results, ParFDAS results using
15% of the training set, and their difference.

3.6 Using 15% of the Available Training Set

In the FDAS results (Bicici and Yuret, 2014),
we found that selecting 15% of the best train-
ing set size maximizes the performance for the
English-German out-of-domain translation task
and achieves 0.41 BLEU points improvement over
a baseline system using all of the available train-
ing data. We run additional experiments select-
ing 15% of the training data for fr-en and cs-en
language pairs to see the effect of increased train-
ing sets selected with ParFDAS. The results are
given in Table 6 where most of the results improve.
The slight performance decrease for cs-en may be
due to using a true-caser trained on only the se-
lected training data. We observe larger gains in
the en — T translations.

3.7 ParFDAS versus Parallel FDA

We compare this year’s results with the results
we obtained last year (Bigici, 2013) in Table 7.
The task setting is different in WMT14 since the
test set contains 10,000 sentences but only 3000
of these are used as the actual test set, which
can make the transductive learning application of
ParFDAS harder. We select the same number of
instances for the training sets but 5 million more
instances for the LM corpus this year. The aver-
age difference to the top constrained submission
in WMT13 was 2.88 BLEU points (Bicici, 2013)
and this has increased to 3.49 BLEU points in
WMT14. On average, the performance improved
3.7 BLEU points when compared with ParFDA re-
sults last year. For the fr-en, en-fr, and en-ru trans-
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lation directions, we observe increases in the per-
formance. This may be due to better modeling of
the target domain by better parameterization and
optimization that FDAS is providing. We observe
some decrease in the performance in en-de and de-
en results. Since the training material remained
the same for WMT13 and WMT14 and the mod-
eling power of FDAS increased, building a domain
specific rather than a task specific ParFDAS model
may be the reason for the decrease.

4 Conclusion

We use parallel FDAS for solving computational
scalability problems caused by the abundance of
training data for SMT models and LMs and still
achieve SMT performance that is on par with
the top performing SMT systems. Parallel FDAS5
raises the bar of expectations from SMT with
highly accurate translations and lower the bar to
entry for SMT into new domains and tasks by al-
lowing fast deployment of SMT systems in about
half a day. Parallel FDAS enables a shift from gen-
eral purpose SMT systems towards task adaptive
SMT solutions.
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Abstract

This paper describes the Yandex School
of Data Analysis Russian-English system
submitted to the ACL 2014 Ninth Work-
shop on Statistical Machine Translation
shared translation task. We start with the
system that we developed last year and in-
vestigate a few methods that were success-
ful at the previous translation task includ-
ing unpruned language model, operation
sequence model and the new reparameter-
ization of IBM Model 2. Next we propose
a {simple yet practical } algorithm to trans-
form Russian sentence into a more easily
translatable form before decoding. The al-
gorithm is based on the linguistic intuition
of native Russian speakers, also fluent in
English.

1 Introduction

The annual shared translation task organized
within the ACL Workshop on Statistical Machine
Translation (WMT) aims to evaluate the state of
the art in machine translation for a variety of lan-
guages. We participate in the Russian to English
translation direction.

The rest of the paper is organized as follows.
Our baseline system as well as the experiments
concerning the methods already discussed in lit-
erature are described in Section 2. In Section 3 we
present an algorithm we use to transform the Rus-
sian sentence before translation. In Section 4 we
discuss the results and conclude.

2 Initial System Development

We use all the Russian-English parallel data avail-
able in the constraint track and the Common Crawl
English monolingual corpus.
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2.1 Baseline

We use the phrase-based Moses statistical ma-
chine translation system (Koehn et al., 2007) with
mostly default settings and a few changes (Borisov
et al., 2013) made in the following steps.

Data Preprocessing includes filtering out non
Russian-English sentence pairs and correction of
spelling errors.

Phrase Table Smoothing uses Good-Turing
scheme (Foster et al., 2006).

Consensus Decoding selects the translation
with minimum Bayes risk (Kumar and Byrne,
2004).

Handling of Unknown Words comprises incor-
poration of proper names from Wiki Headlines
parallel data provided by CMU! and translitera-
tion. We improve the transliteration algorithm in
Section 2.4.

Note that unlike last year we do not use word
alignments computed for the lemmatized word
forms.

2.2 Language Model

We use 5-gram unpruned language model with
modified Kneser-Ney discount estimated with
KenLLM toolkit (Heafield et al., 2013).

2.3 Word alignment

Word alignments are generated using the
fast_align tool (Dyer et al., 2013), which is much
faster than IBM Model 4 from MGIZA++ (Gao
and Vogel, 2008) and outperforms the latter in
terms of BLEU. Results are given in Table 1.

2.4 Transliteration

We employ machine transliteration to generate ad-
ditional translation options for out-of-vocabulary

'nttp://www.statmt .org/wmt14/
wiki-titles.tgz

Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 6670,
Baltimore, Maryland USA, June 26-27, 2014. (©2014 Association for Computational Linguistics



MGIZA++ | fast_align
Run Time 22h 14 m 2h49 m
Perplexity
—ru—en 97.00 90.37
—en—ru 209.36 216.71
BLEU
- WMT13 25.27 25.49
- WMT14 31.76 31.92

Table 1: Comparison of word alignment tools:
MGIZA++ vs. fast_align. fast_align runs ten
times as fast and outperforms the IBM Model 4
from MGIZA++ in terms of BLEU scores.

words. The transformation model we use is a
transfeme based model (Duan and Hsu, 2011),
which is analogous to translation model in phrase-
based machine translation. Transformation units,
or transfemes, are trained with Moses using the
default settings. Decoding is very similar to beam
search. We build a trie from the words in English
monolingual corpus, and search in it, based on the
transformation model.

2.5 Operation Sequence Model

The Operation Sequence N-gram Model (OSM)
(Durrani et al., 2011) integrates reordering opera-
tions and lexical translations into a heterogeneous
sequence of minimal translation units (MTUs) and
learns a Markov model over it. Reordering deci-
sions influence lexical selections and vice versa
thus improving the translation model. We use
OSM as a feature function in phrase-based SMT.
Please, refer to (Durrani et al., 2013) for imple-
mentation details.

3 Morphological Transformations

Russian is a fusional synthetic language, mean-
ing that the relations between words are redundant
and encoded inside the words. Adjectives alter
their form to reflect the gender, case, number and
in some cases, animacy of the nouns, resulting in
dozens of different word forms matching a single
English word. An example is given in Table 2.
Verbs in Russian are typically constructed from
the morphemes corresponding to functional words
in English (to, shall, will, was, were, has, have,
had, been, etc.). This Russian phenomenon leads
to two problems: data sparsity and high number of
one-to-many alignments, which both may result in
translation quality degradation.
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Number
SG PL

Case Gender
NOM MASC JIETHU
NOM FEM JICTHSISI JIeTHHE
NOM NEUT JIeTHee
GEN MASC JIETHErO
GEN FEM JIeTHei JIETHUX
GEN NEUT JIETHErO

DAT MASC JIETHEMY

DAT FEM JIeTHe JIETHUM
DAT NEUT JIETHEMY

ACC MASC, AN JIETHETO

ACC | MASC, INAN | nrerumit JIETHUM
ACC FEM JIETHIOIO

ACC NEUT JIeTHee

INS MASC JIETHIM

INS FEM JIeTHel JIETHAM

INS FEM JIETHEIO

INS NEUT JIETHUM

ABL MASC JIeTHEM

ABL FEM JIeTHe JIETHUX
ABL NEUT JIeTHEM

Table 2: Russian word forms corresponding to the
English word "summer" (adj.).

Hereafter, we propose an algorithm to transform
the original Russian sentence into a more easily
translatable form. The algorithm is based on the
linguistic intuition of native Russian speakers, also
fluent in English.

3.1 Approach

Based on the output from Russian morphological
analyzer we rewrite the input sentence based on
the following principles:

1. the original sentence is restorable
(by a Russian native speaker)

2. redundant information is omitted
3. word alignment is less ambiguous

3.2 Algorithm

The algorithm consists of two steps.

On the first step we employ in-house Rus-
sian morphological analyzer similar to Mys-
tem (Segalovich, 2003) to convert each word
(WORD) into a tuple containing its canonical form
(LEMMA), part of speech tag (POS) and a set



Category Abbr. Values
Animacy ANIM AN, INAN
Aspect ASP IMPERF, PERF
Case CASE | NOM, GEN, DAT, ACC, INS, ABL
Comparison Type | COMP COMP, SURP
Gender GEND MASC, FEM, NEUT
Mood MOOD IND, IMP, COND, SBJV
Number NUM SG, PL
Participle Type PART ACT, PASS
Person PERS PERS1, PERS2, PERS3
Tense TNS PRES, NPST, PST

Table 3: Morphological Categories

of other grammemes associated with the word
(GRAMMEMES). The tuple is later referred to as
LPG. If the canonical form or part of speech are
ambiguous, we set LEMMA to WORD; POS to
"undefined"; and GRAMMEMES to &. Gram-
memes are grouped into grammatical categories
listed in Table 3.

WORD — LEMMA + POS + GRAMMEMES

On the second step, the LPGs are converted into
tokens that, we hope, will better match English
structure. Some grammemes result in separate to-
kens, others stay with the lemma, and the rest get
dropped. The full set of morphological transfor-
mations we use is given in Table 4.

An example of applying the algorithm to a Rus-
sian sentence is given in Figure 1.

3.3 Results

The translation has been improved in several
ways:

Incorrect Use of Tenses happens quite often in
statistical machine translation, which is especially
vexing in simple cases such as asks instead of
asked, explains instead of explain along with more
difficult ones e.g. has increased instead of would
increase. The proposed algorithm achieves con-
siderable improvement, since it explicitly models
tenses and all its relevant properties.

Missing Articles is a common problem of
most Russian-English translation systems, be-
cause there are no articles in Russian. Our model
creates an auxiliary token for each noun, which re-
flects its case and motivates an article.

Use of Simple Vocabulary is not desirable
when the source text is a vocabulary-flourished
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JI€THUM JTHEM

NeTHUH, adj,
{inan, dat|ins, @, male[neut, sg|pl}

4 -~

4 - N

/ -
4 - N
K¢ Phe AN

neruuit.adj+o ins ,ZleHB n+sg

>

summer

JEHb, noun,
{inan, ins, male, sg}

day

Figure 1: An illustration of the proposed algorithm
to transform Russian sentence jieraum aHéM (let-
nim dnem), meaning on a summer day, into a more
easily translatable form. First, for each word we
extract its canonical form, part of speech tag and a
set of associated morphological properties (gram-
memes). Then we apply hand-crafted rules (Ta-
ble 4) to transform them into separate tokens.

one. News are full of academic, bookish, inkhorn,
and other rare words. Phrase Table smoothing
methods discount the translation probabilities for
rare phrase pairs, preventing them from appearing
in English translation, while many of these rare
phrase pairs are correct. The good thing is that the
phrase pairs containing the transformed Russian
words may not be rare themselves, and thereby are
not discounted so heavily. A more effective use of
English vocabulary has been observed on WMT13
test dataset (see Table 5).

We have demonstrated the improvements on a
qualitative level. The quantitative results are sum-
marized in Table 6 (baseline — without morpholog-
ical transformations; proposed — with morpholog-
ical transformations).



] LPG = tokens \
LEMMA, adj,

{ANIM, CASE, COMP, GEND, NUM}
\
LEMMA.adj+COMP
LEMMA, noun,

{ANIM, CASE, GEND, NUM}

\

CASE LEMMA.n+NUM
LEMMA, verb (ger), {ASP, TNS}

\

LEMMA .vg+ASP+TNS
LEMMA, verb (inf), {ASP}

4
LEMMA.vi+ASP
LEMMA, verb (part), {PART, ASP, TNS}

\
LEMMA . .vp+PART+ASP+TNS
LEMMA, verb (-),
{PART, ASP, MOOD, TENSE,
NUM, PERS}

4

1. TNS={PRES} | TNS={NPST} & ASP={IMPERF}

a. PERS3 € PERS & SG € NUM
LEMMA .v+pres+MOOD+PERS+NUM

b. otherwise

LEMMA.v+pres+MOOD

TNS={PST}
ASP LEMMA.v+pst+MOOD

TNS={NPST} & ASP={IMPERF}
fut LEMMA.v+MOOD

if ambiguous
LEMMA.v+PART+ASP+MOOD
+TNS+NUM+PERS

LEMMA, OTHER, GRAMMEMES

4
LEMMA .POS+GRAMMEMES

Table 4: A set of rules we use to transform
the LPGs (LEMMA, POS, GRAMMEMEYS), ex-
tracted on the first step, into individual tokens.

4 Discussion and Conclusion

We described the Yandex School of Data Anal-
ysis Russian-English system submitted to the
ACL 2014 Ninth Workshop on Statistical Machine
Translation shared translation task. The main con-
tribution of this work is an algorithm to transform
the Russian sentence into a more easily translat-
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Input Translation
pasHorIacus (a) differences
(raznoglasiya) (b) disputes
IIPOIIATaHINCTOM (a) promoter
(propagandistom) (b) propagandist
IpenMyInecTBeHHo | (a) mainly
(preimuschestvenno) | (b) predominantly

Table 5: Morphological Transformations lead to
more effective use of English vocabulary. Trans-
lations marked with "a"” were produced using the
baseline system; with "b" also use Morphological
Transformations.

Baseline | Proposed

Distinct Words | 899,992 564,354
OO0V Words

- WMT13 829 590

- WMT14 884 660
Perplexity

—ru—en 90.37 99.81

—en—ru 216.71 128.15
BLEU

- WMT13 25.49 25.63

- WMT14 31.92 32.56

Table 6: Results of Morphological Transforma-
tions. We improved the statistical characteristics
of our models by reducing the number of distinct
words by 37% and managed to translate 25% of
previously untranslated words. BLEU scores were
improved by 0.14 and 0.64 points for WMT13 and
WMT14 test sets respectively.

able form before decoding. Significant improve-
ments in human satisfaction and BLEU scores
have been demonstrated from applying this algo-
rithm.

One limitation of the proposed algorithm is that
it does not take into account the relations between
words sharing the same root. E.g. the word aucru-
HBIX (aistinyh) meaning stork (adj.) is handled in-
dependently from the word auct (aist) meaning
stork (n.). Our system as well as the major online
services (Bing, Google, Yandex) transliterated this
word, but the word aistinyh does not make much
sense to a non-Russian reader. It might be worth-
while to study this problem in more detail.

Another direction for future work is to apply
the proposed algorithm in reverse direction. We
suggest the following two-step procedure. English



sentence is first translated into Russian® (Russian
after applying the morphological transformations),
and at the next step it is translated again with an
auxiliary SMT system trained on the (Russian*,
Russian) parallel corpus created from the Russian
monolingual corpus.
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Abstract

We present the CimS submissions to the
2014 Shared Task for the language pair
EN—DE. We address the major problems
that arise when translating into German:
complex nominal and verbal morphol-
ogy, productive compounding and flex-
ible word ordering. Our morphology-
aware translation systems handle word
formation issues on different levels of
morpho-syntactic modeling.

1 Introduction

In our shared task submissions, we focus on the
English to German translation direction: we ad-
dress different levels of productivity of the Ger-
man language, i.e., nominal and verbal inflec-
tion and productive word formation, which lead
to data sparsity and thus confuse classical SMT
systems.

Our basic goal is to make the two languages
as morphosyntactically similar as possible. We
use a parser and a morphological analyser to re-
move linguistic features from German that are
not present in English and reorder the English
input to make it more similar to the German sen-
tence structure. Prior to training, all words are
lemmatised and compounds are split into single
words. This is not only beneficial for word align-
ment, but it also allows us to generalise over in-
flectional variants of the same lexemes and over
single words which could occur in one place as a
standalone word and in another place as part of
a compound. Translation happens in two steps:
first, we translate from English into split, lemma-
tised German and then, we perform compound
merging and generation of inflection as a post-
processing step. This way, we are able to cre-
ate German compounds and inflectional vari-
ants that have not been seen in the parallel train-
ing data.
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In this paper, we investigate the performance of
well-established source-side reordering, nomi-
nal re-inflection and compound processing sys-
tems on an up-to-date shared task. In addition,
we present experimental results on a verbal in-
flection component and a syntax-based variant
including source-side reordering.

2 Related Work

Re-Inflection The two-step translation ap-
proach we use was described by e.g. Toutanova
et al. (2008) and Jeong et al. (2010), who use
a number of morphological and syntactic
features derived from both source and target
language. More recently, Fraser et al. (2012)
describe a similar approach for German using
different CrRE-based feature prediction models,
one for each of the four grammatical features
to be predicted for German words in noun
phrases, namely number, gender, case and
definiteness. This approach also handles word-
formation issues such as portmanteau splitting
and compounding. Weller et al. (2013) added
subcategorization information in combination
with source-side syntactic features in order to
improve the prediction of case.

De Gispert and Marifio (2008) generate verbal
inflection for translation from English into Span-
ish. They use classifiers trained not only on tar-
get language but also on source language fea-
tures, which is even more crucial for the predic-
tion of verbs than it is for nominal inflection.

More recently, Williams and Koehn (2011)
translate directly into target language surface
forms. Agreement within NPs and PPs, and also
between subject and verb is considered during
the decoding process: they use string-to-tree
translation, where the target language (German)
morphology is expressed as a set of unification
constraints automatically learned from a mor-
phologically annotated German corpus.

Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 71-78,
Baltimore, Maryland USA, June 26-27, 2014. (©2014 Association for Computational Linguistics



Compound Processing Compound splitting
for SMT has been addressed by numerous dif-
ferent groups, for translation from German
to English, e.g. using corpus-based frequen-
cies (Koehn and Knight, 2003), using POS-
constraints (Stymne et al., 2008), a lattice-based
approach propagating the splitting decision to
the decoder (Dyer, 2009), a rule-based morpho-
logical analyser (Fritzinger and Fraser, 2010) or
unsupervised, language-independent segmen-
tation (Macherey et al., 2011).

Compound processing in the other translation
direction, however, has been much less investi-
gated. Popovic et al. (2006) describe a list-based
approach, in which words are only re-combined
if they have been seen as compounds in a huge
corpus. However this approach is limited to
the list’s coverage. The approach of Stymne
(2009) overcomes this coverage issue by mak-
ing use of a POS-markup which distinguishes
former compound modifiers from former heads
and thus allows for their adequate recombina-
tion after translation. An extension of this ap-
proach is reported in Stymne and Cancedda
(2011) where a CRF-model is used for compound
prediction. In Cap et al. (2014) their approach
is extended through using source-language fea-
tures and lemmatisation, allowing for maximal
generalisation over compound parts.

Source-side Reordering One major problem in
English to German translation is the divergent
clausal ordering: in particular, German verbs
tend to occur at the very end of clauses, whereas
English sticks to a rigid SVO order in most cases.
Collins et al. (2005), Fraser (2009) and Gojun
and Fraser (2012) showed that restructuring the
source language so that it corresponds to the ex-
pected structure of the target language is helpful
for SMT.

3 Inflection Prediction

German has a rich morphology, both for nom-
inal and verbal inflection. It requires differ-
ent forms of agreement, e.g., for adjectives and
nouns or verbs and their subjects. Traditional
phrase-based SMT systems often get such agree-
ments wrong. In our systems, we explicitly
model agreement using a two-step approach:
first we translate from English into lemmatised
German and then generate fully inflected forms
in a second step. In this section, we describe our

72

nominal inflection component and first experi-
mental steps towards verbal re-inflection.

3.1 Noun Phrase Inflection

Prior to training, the German data is re-
duced to a lemmatised representation contain-
ing translation-relevant morphological features.
For nominal inflection, the lemmas are marked
with number and gender: gender is considered
as part of the lemma, whereas number is indi-
rectly determined by the source-side, as we ex-
pect nouns to be translated with their appro-
priate number value. We use a linear chain
CrF (Lafferty et al., 2001) to predict the mor-
phological features (number, gender, case and
strong/weak). The features that are part of the
lemma of nouns (number, gender) are propa-
gated over the rest of the linguistic phrase. In
contrast, case depends on the role of the NP in
the sentence (e.g. subject or direct/indirect ob-
ject) and is thus to be determined entirely from
the respective context in the sentence. The value
for strong/weak depends on the combination of
the other features. Based on the lemma and the
predicted features, inflected forms are then gen-
erated using the rule-based morphological anal-
yser SMOR (Schmid et al., 2004). This system is
described in more detail in Fraser et al. (2012).

3.2 Verbal Inflection

German verbs agree in number and person with
their subjects. We thus have to derive this in-
formation from a noun phrase in nominative
case (= the subject) near the verb. This informa-
tion comes from the nominal inflection predic-
tion described in section 3.1. We predict tense
and mode of the verb using a maximume-entropy
classifier which is trained on English and Ger-
man contextual information. After deriving all
information needed for the generation of the
verbs, the inflected forms are generated with
SMOR.

4 Compound Processing

In English to German translation, compound
processing is more difficult than in the oppo-
site direction. Not only do compounds have to
be split accurately, but they also have to be put
together correctly after decoding. The disflu-
ency of MT output and the difficulty of deciding
which single words should be merged into com-
pounds make this task even more challenging.
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Figure 1: Pipeline overview of our primary CimS-CoRI system.

We combine compound processing with in-
flection prediction (see Section 3) and thus ex-
tend the two-step approach respectively: com-
pounds are split and lemmatised simultane-
ously, again using SMOR. This allows for maxi-
mal generalisation over former compound parts
and independently occurring simple words. We
use this split representation for training. Af-
ter decoding, we re-combine words into com-
pounds again, using our extended CRF-based
approach, which is based on Stymne and Can-
cedda (2011), but includes source-language fea-
tures and allows for maximal generalisation
through lemmatisation. More details can be
found in Cap et al. (2014). We then use SMOR
to generate sound German compounds (includ-
ing morphological transformations such as in-
troduction or deletion of filler letters). Finally,
the whole text including the newly-created com-
pounds, is re-inflected using the nominal in-
flection prediction models as described in Sec-
tion 3.1 above. This procedure allows us to create
compounds that have not been seen in the par-
allel training data, and also inflectional variants
of seen compounds. See Figure 1 for an overview
of our compound processing pipeline.

4.1 Portmanteaus

Portmanteaus are a special kind of compound.
They are a fusion of a preposition and a defi-
nite article (thus not productive) and their case
must agree with the case of the noun. For ex-
ample, “zum” can be split into “zu” + ‘dem” =
to+thepgtiye. They introduce additional spar-
sity to the training data: imagine a noun oc-
curred with its definite article in the training
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data, but not with the portemanteau required at
testing time. Splitting portemanteaus allows a
phrase-based SMT system to access phrases cov-
ering nouns and their corresponding definite ar-
ticles. In a post-processing step, definite articles
are then re-merged with their preceding prepo-
sitions to restore the original portmanteau, see
(Fraser et al., 2012) for details. This generalisa-
tion effect is even larger as we not only split port-
manteaus, but also lemmatise the articles.

5 System descriptions

Our shared task submissions include different
combinations of the inflection and compound
processing procedures as described in the pre-
vious two sections. We give an overview of all
our systems in Table 1. Note that we did not
re-train the compound processing CRFs on the
new dataset, but used our models trained on the
2009 training data instead. However, this does
not hurt performance, as the CRF we use is not
trained on surface forms, but only frequencies
and source-side features instead. See (Fraser et
al., 2012) and (Cap et al., 2014) for more details
on how we trained the respective CRFs. In con-
trast, the verbal classifier has been trained on
WMT 2014 data.

6 Experimental Settings

In all our systems, we only used data distributed
for the shared task. All available German data
was morphologically analysed with SMOR. For
lemmatisation of the German training data, we
disambiguated SMOR using POS tags we ob-
tained through parsing the German section of
the parallel training data with BitPar (Schmid,



No apprart nominal | compound verbal source-side
’ splitting | inflection | processing | inflection | reordering

CimS-RI X X

CimS-CoRI” X X X

CimS-RIVe X X X

CimS-CoRIVe X X X X

CimS-Syntax-RORI X X X

Table 1: Overview of our submission systems.RI = nominal Re-Inflection, Co = Compound process-
ing, Ve = Verbal inflection, RO = source-side Re-Ordering. Syntax = syntax-based SMT ¥ = primary

submission.

2004) and tagging the big monolingual training
data using RFTagger (Schmid and Laws, 2008)!.
Note that we did not normalise German lan-
guage e.g. with respect to old vs. new writing
convention etc. as we did in previous submis-
sions (e.g. (Fraser, 2009)).

For the compound prediction CRFs using syn-
tactic features derived from the source language,
we parsed the English section of the parallel
data using EGRET, a re-implementation of the
Berkeley-Parser by Hui Zhang?. Before training
our models on the English data, we normalised
all occurrences of British vs. American English
variants to British English. We did so for train-
ing, tuning and testing input.

Language Model We trained 5-gram language
models based on all available German monolin-
gual training data from the shared task (roughly
1.5 billion words) using the SRILM toolkit (Stol-
cke, 2002) with Kneser-Ney smoothing. We then
used KenlLM (Heafield, 2011) for faster process-
ing. For each of our experiments, we trained
a separate language model on the whole data
set, corresponding to the different underspeci-
fied representations of German used in our ex-
periments, e.g. lemmatised for CimS-RI, lemma-
tised with split compounds for CimS-CoR], etc.

Phrase-based Translation model We per-
formed word alignment using the multithreaded
GIZA++ toolkit (Och and Ney, 2003; Gao and
Vogel, 2008). For translation model training and
decoding, we used the Moses toolkit (Koehn
et al.,, 2007) to build phrase-based statistical
machine translation systems, following the
instructions for the baseline system for the
shared task, using only default settings.

1We could not parse the whole monolingual dataset due
to time-constraints and thus used RFTagger as a substitute.

2available from https://sites.google.com/
site/zhanghl982/egret.
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Syntax-based Translation model As a variant
to the phrase-based systems, we applied the in-
flection prediction system to a string-to-tree sys-
tem with GHKM extraction (Galley et al. (2004),
Williams and Koehn (2012)). We used the same
data-sets as for the phrase-based systems, and
applied BitPar (Schmid, 2004) to obtain target-
side trees. For this system, we used source-side
reordering according to Gojun and Fraser (2012)
relying on parses obtained with EGRET?.

Tuning For tuning of feature weights, we used
batch-mira with —safe-hope’ (Cherry and Foster,
2012) until convergence (or maximal 25 runs).
We used the 3,000 sentences of newstest2012 for
tuning. Each experiment was tuned separately,
optimising Bleu scores (Papineni et al., 2002)
against a lemmatised version of the tuning ref-
erence. In the compound processing systems we
integrated the CRF-based prediction and merg-
ing procedure into each tuning iteration and
scored each output against the same unsplit and
lemmatised reference as the other systems.

Testing After decoding, the underspecified
representation has to be retransformed into
fluent German text, i.e., compounds need to
be re-combined and all words have to be re-
inflected. The whole procedure can be divided
into the following steps:

la) translation into lemmatised German
representation (RI, RIVe)

1b) translation into split and lemmatised
German (CoRi, CoRIVe)

2)  compound merging (CoRI, CoRIVe):

3) nominal inflection prediction and gen-
eration of full forms using SMOR (all)

4) verbal re-inflection (RIVe, CoRIVe)

5)  merging of portmanteaus (all)

3Note that we observed some data-related issues on the
Syntax-RORI experiments that we hope to resolve in the
near future.



Experiment mert.log Bleu ci Bleu cs Bleu ci Bleu cs
news2012 || news2013 | news2013 || news2014 | news2014
raw | 1652 [ 1862 1761 || 17.80 17.25
CimS-RI 18.51 19.23 18.38 18.33 17.75
CimS-CoRI” 18.36 19.13 18.25 18.51 17.87
CimS-RIVe 19.08 18.89 18.06 17.86 17.31
CimS-CoRIVe 18.69 18.60 17.77 17.38 16.78
CimS-Syntax-RORI | 18.26 [ 19.04 1817 || 1815 17.59

Table 2:
sensitive; P primary submission.

After these post-processing steps, the text was
automatically recapitalised and detokenised, us-
ing the tools provided by the shared task, which
we trained on the whole German dataset. We cal-
culated Bleu (Papineni et al., 2002) scores using
the NIST script version 13a.

7 Results

We evaluated our systems with the 3,000 sen-
tences of last year’s newstest2013 and also the
2,737 sentences of the 2014 blind test set for the
German-English language pair. The Bleu scores
of our systems are given in Table 2, where raw
denotes our baseline system which we ran with-
out any pre- or postprocessing whatsoever. Note
that the big gap in mert.log scores between raw
and the CimS-systems comes from the fact that
raw is scored against the original (i.e. fully in-
flected) version of the tuning reference, while the
CimS-systems are scored against the stemmed
tuning reference.

As for the Bleu scores of the test sets, we ob-
serve similar improvements for the CimS-RI and
CimS-CoRI systems of +0.5/0.6 with respect to
the raw baseline as we did in previous experi-
ments (Cap et al., 2014)%. In contrast, our sys-
tems incorporating verbal prediction inflection
(CimS-RIVe/CoRIVe) cannot yet catch up with
the performance of the well-investigated nom-
inal inflection and compound processing sys-
tems (CimS-RI/CoRI). We attribute this partly to
the positive influence we assume fully inflected
verbs to have in nominal inflection prediction
models, but as the verb processing systems are
still under development, there might be other is-
sues we have not discovered yet. We plan to re-

4We will have a closer look at the data from a compound
processing view in Section 7.1 below.
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Bleu scores for all CimS-submissions of the 2014 shared task. ci = case-insensitive, cs = case-

visit these systems and improve them.

Finally, the syntax-based reordering system
yields scores that are competitive to those of
CimS-RI/CoRI. While Syntax-RORI so far only in-
corporates source-side reordering and nominal
re-inflection, we plan to investigate further ex-
tensions of this approach in the future.

7.1 Additional Evaluation

We manually screened the filtered 2014 test set
and identified 3,456 German compound tokens,
whereof 862 did not occur in the parallel training
data and thereof, 244 did not even occur in the
monolingual training data. For each of our sys-
tems, we calculated the number of compound
reference matches they produced. The results
are given in Table 3.

system ref | new
raw 827 0
CimS-RI. 864 5
CimS-CoRIP 1,064 | 109
CimS-RIVe 853 5
CimS-CoRIVe 1,070 122
CimS-Syntax-RORI 900 20

Table 3: Numbers of compounds produced by
the systems that matched the reference (ref) and
did not occur in the parallel training data (new).

The compound processing systems (with Co
in the name) generate many more correct com-
pounds than comparable systems without com-
pound handling. Compared to the raw base-
line, CoRI/CoRIVe did not only produce 237/243
more reference matches, but also 109/122 com-
pounds that matched the reference but did not
occur in the parallel training data. A lookup of
those 109/122 compounds in the monolingual
training data (consisting of roughly 1.5 billion
words) revealed, that 8/6 of them did not oc-



cur there either’. These were thus not accessi-
ble to a list-based compound merging approach
either. This result also shows that despite the
fact that CoRIVe does not yield a competitive
translation quality performance yet, the com-
pound processing component seems to bene-
fit from the verbal inflection and it is definitely
worth more investigation in the future.

Moreover, it can be seen from Table 3 that
the re-inflection systems (*RI*) produce more
reference matches than the raw baseline. In-
terestingly, they even produce some reference
matches that have not been seen in the par-
allel training data due to inflectional variation,
and in the case of the syntax-based system due
to a naive list-based compound merging: even
though it has not been trained on a split repre-
sentation of German text, it might occasionally
occur that two German nouns occur next to each
other in the MT output. If so, these two words are
merged into a compound, using a list-based ap-
proach, similar to Popovi¢ et al. (2006).

8 Reordering

For the system CimS-Syntax-RORI, English data
parsed with EGRET was reordered using scripts
written for parse trees produced by the con-
stituent parser (Charniak and Johnson, 2005),
using a model we trained on the standard Penn
Treebank sections. Unfortunately, the reorder-
ing scripts could not be straightforwardly ap-
plied to EGRET parses and require more signifi-
cant modifications than we first expected.

We thus decided to parse the Europarl data
(v7) with (Charniak and Johnson, 2005) instead
and run our reordering scripts on it (CimS-RO).
For evaluation purposes, we build a baseline sys-
tem raw’ which has been trained only on Eu-
roparl. Tuning and testing setup is the same as
for the systems described in Section 6 with the
difference that the weights have been tuned on
newstest2013. The evaluation results are shown
in Table 4. Similarly to previous results reported
in (Gojun and Fraser, 2012), the CimS-RO system
shows an improvement of 0.5 Bleu points when
compared to the raw’baseline .

SNamely: Testflugzeugen (test airplanes), Medientri-
bunal (media tribunal), RBS-Mitarbeiter (RBS worker),
Schulmauersanierung (school wall renovation), Anti-
Terror-Organisationen (anti-terror organisations), and
Tabakimpfstoffe (tobacco-plant-created vaccines) in both

and in CoRI also Hand-gepdickgebiihr (hand luggage fee)
and Haftungsstreitigkeiten (liability litigation).
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Experiment mert.log Bleu ci Bleu cs
perime news2013 news2014 | news2014
[ raw’ [ 1687 | 1625 [ 1531 |
[ CimS-RO [ 1776 ]| 1681 [ 1581

Table 4: Evaluation of the reordering system
trained on Europarl v7.

9 Summary

We presented the CimS systems, a set of
morphology-aware translation systems cus-
tomised for translation from English to German.
Each system operates on a different level of
morphological description, be it nominal inflec-
tion, verbal inflection, compound processing
or source-side reordering. Some of the systems
are well-established (RI, CoRI and RO), others
are still under developement (RIVe, CoRIVe and
Syntax-RORI). However, all of them, with the ex-
ception of CoRIVe, lead to improved translation
quality when evaluated against a contrastive
baseline without linguistic processing. In an
additional evaluation, we could show that the
compound processing systems are able to create
a considerable number of compounds unseen
in the parallel training data.

In the future, we will investigate further com-
binations and extensions of our morphological
components, including reordering, compound
processing and verbal inflection. There are still
many many interesting challenges to be solved
in all of these areas, and this is especially true for
verbal inflection.
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Abstract

This paper describes the IPN-UPV partici-
pation on the English-to-Hindi translation
task from WMT 2014 International Evalu-
ation Campaign. The system presented is
based on Moses and enhanced with deep
learning by means of a source-context fea-
ture function. This feature depends on the
input sentence to translate, which makes
it more challenging to adapt it into the
Moses framework. This work reports the
experimental details of the system putting
special emphasis on: how the feature func-
tion is integrated in Moses and how the
deep learning representations are trained
and used.

1 Introduction

This paper describes the joint participation of the
Instituto Politécnico Nacional (IPN) and the Uni-
versitat Politécnica de Valencia (UPV) in cooper-
ation with Institute for Infocomm Research (I2R)
on the 9th Workshop on Statistical Machine Trans-
lation (WMT 2014). In particular, our participa-
tion was in the English-to-Hindi translation task.
Our baseline system is an standard phrase-
based SMT system built with Moses (Koehn et al.,
2007). Starting from this system we propose to in-
troduce a source-context feature function inspired
by previous works (R. Costa-jussa and Banchs,
2011; Banchs and Costa-jussa, 2011). The main
novelty of this work is that the source-context fea-
ture is computed in a new deep representation.
The rest of the paper is organized as follows.
Section 2 presents the motivation of this seman-
tic feature and the description of how the source
context feature function is added to Moses. Sec-
tion 3 explains how both the latent semantic in-
dexing and deep representation of sentences are
used to better compute similarities among source
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contexts. Section 4 details the WMT experimental
framework and results, which proves the relevance
of the technique proposed. Finally, section 5 re-
ports the main conclusions of this system descrip-
tion paper.

2 Integration of a deep source-context
feature function in Moses

This section reports the motivation and descrip-
tion of the source-context feature function, to-
gether with the explanation of how it is integrated
in Moses.

2.1 Motivation and description

Source context information in the phrase-based
system is limited to the length of the translation
units (phrases). Also, all training sentences con-
tribute equally to the final translation.

We propose a source-context feature func-
tion which measures the similarity between
the input sentence and all training sen-
tences. In this way, the translation unit
should be extended from sourcel||target to
sourcel||target|||trainingsentence, with the
trainingsentence the sentence from which
the source and target phrases were extracted.
The measured similarity is used to favour those
translation units that have been extracted from
training sentences that are similar to the current
sentence to be translated and to penalize those
translation units that have been extracted from
unrelated or dissimilar training sentences as
shown in Figure 2.1.

In the proposed feature, sentence similarity is
measured by means of the cosine distance in a
reduced dimension vector-space model, which is
constructed either by means of standard latent se-
mantic analysis or using deep representation as de-
cribed in section 3.
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S1: we could not book the room in time

T1: 57 999 ¥ fese ofewa T80 ¢ 9&

S2: I want to write the book in time

T2: & qug § faare fower sar &

Input: i am reading a nice book

S2
_..w Input

book : faare \/

S1

Figure 1: Illustration of the method

2.2 Integration in Moses

As defined in the section above and, previously,
in (R. Costa-jussa and Banchs, 2011; Banchs
and Costa-jussa, 2011), the value of the proposed
source context similarity feature depends on each
individual input sentence to be translated by the
system. We are computing the similarity between
the source input sentence and all the source train-
ing sentences.

This definition implies the feature function de-
pends on the input sentence to be translated. To
implement this requirement, we followed our pre-
vious implementation of an off-line version of the
proposed methodology, which, although very in-
efficient in the practice, allows us to evaluate the
impact of the source-context feature on a state-of-
the-art phrase-based translation system. This prac-
tical implementation follows the next procedure:

1. Two sentence similarity matrices are com-
puted: one between sentences in the develop-
ment and training sets, and the other between
sentences in the test and training datasets.

2. Each matrix entry m;; should contain the
similarity score between the i*" sentence in
the training set and the j* sentence in the de-
velopment (or test) set.

. For each sentence s in the test and develop-
ment sets, a phrase pair list Lg of all poten-
tial phrases that can be used during decoding
is extracted from the aligned training set.

The corresponding source-context similarity
values are assigned to each phrase in lists Lg
according to values in the corresponding sim-
ilarity matrices.

book : ATTfRIT FTAT X
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. Each phrase list Lg is collapsed into a phrase
table T's by removing repetitions (when re-
moving repeated entries in the list, the largest
value of the source-context similarity feature
is retained).

. Each phrase table is completed by adding
standard feature values (which are computed
in the standard manner).

. Moses is used on a sentence-per-sentence ba-
sis, using a different translation table for each
development (or test) sentence.

3 Representation of Sentences

We represent the sentences of the source language
in the latent space by means of linear and non-
linear dimensionality reduction techniques. Such
models can be seen as topic models where the low-
dimensional embedding of the sentences represent
conditional latent topics.

3.1 Deep Autoencoders

The non-linear dimensionality reduction tech-
nique we employ is based on the concept of deep
learning, specifically deep autoencoders. Autoen-
coders are three-layer networks (input layer, hid-
den layer and output layer) which try to learn an
identity function. In the neural network represen-
tation of autoencoder (Rumelhart et al., 1986), the
visible layer corresponds to the input layer and
hidden layer corresponds to the latent features.
The autoencoder tries to learn an abstract repre-
sentation of the data in the hidden layer in such
a way that minimizes reconstruction error. When
the dimension of the hidden layer is sufficiently
small, autoencoder is able to generalise and derive
powerful low-dimensional representation of data.
We consider bag-of-words representation of text
sentences where the visible layer is binary feature
vector (v) where v; corresponds to the presence
or absence of i" word. We use binary restricted
Boltzmann machines to construct an autoencoder
as shown in (Hinton et al., 2006). Latent repre-
sentation of the input sentence can be obtained as
shown below:

pth|v) = (W xv+b) (1)

where W is the symmetric weight matrix between
visible and hidden layer and b is hidden layer
bias vector and o(z) is sigmoid logistic function

1/(1 + exp(—x)).



Autoencoders with single hidden layer do not
have any advantage over linear methods like
PCA (Bourlard and Kamp, 1988), hence we
consider deep autoencoder by stacking multiple
RBMs on top of each other (Hinton and Salakhut-
dinov, 2006). The autoencoders have always been
difficult to train through back-propagation until
greedy layerwise pre-training was found (Hinton
and Salakhutdinov, 2006; Hinton et al., 2006; Ben-
gio et al., 2006). The pre-training initialises the
network parameters in such a way that fine-tuning
them through back-propagation becomes very ef-
fective and efficient (Erhan et al., 2010).

3.2 Latent Semantic Indexing

Linear dimensionality reduction technique, latent
semantic indexing (LSI) is used to represent sen-
tences in abstract space (Deerwester et al., 1990).
The term-sentence matrix (X) is created where x;;
denotes the occurrence of i term in 5 sentence.
Matrix X is factorized using singular value decom-
position (SVD) method to obtain top m principle
components and the sentences are represented in
this m dimensional latent space.

4 Experiments

This section describes the experiments carried out
in the context of WMT 2014. For English-Hindi
the parallel training data was collected by Charles
University and consisted of 3.6M English words
and 3.97M Hindi words. There was a monolingual
corpus for Hindi comming from different sources
which consisted of 790.8M Hindi words. In ad-
dition, there was a development corpus of news
data translated specifically for the task which con-
sisted of 10.3m English words and 10.1m Hindi
words. For internal experimentation we built a
test set extracted from the training set. We se-
lected randomly 429 sentences from the training
corpus which appeared only once, removed them
from training and used them as internal test set.
Monolingual Hindi corpus was used to build a
larger language model. The language model was
computed doing an interpolation of the language
model trained on the Hindi part of the bilingual
corpus (3.97M words) and the language model
trained on the monolingual Hindi corpus (790.8M
words). Interpolation was optimised in the de-
velopment set provided by the organizers. Both
language models interpolated were 5-grams using
Kneser-Ney smoothing.
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The preprocessing of the corpus was done with
the standard tools from Moses. English was low-
ercased and tokenized. Hindi was tokenized with
the simple tokenizer provided by the organizers.
We cleaned the corpus using standard parameters
(i.e. we keep sentences between 1 and 80 words
of length).

For training, we used the default Moses op-
tions, which include: the grow-diag-final and
word alignment symmetrization, the lexicalized
reordering, relative frequencies (conditional and
posterior probabilities) with phrase discounting,
lexical weights and phrase bonus for the trans-
lation model (with phrases up to length 10), a
language model (see details below) and a word
bonus model. Optimisation was done using the
MERT algorithm available in Moses. Optimisa-
tion is slow because of the way integration of the
feature function is done that it requires one phrase
table for each input sentence.

During translation, we dropped unknown words
and used the option of minimum bayes risk de-
coding. Postprocessing consisted in de-tokenizing
Hindi using the standard detokenizer of Moses
(the English version).

4.1 Autoencoder training

The architecture of autoencoder we consider was
n-500-128-500-n where n is the vocabulary size.
The training sentences were stemmed, stopwords
were removed and also the terms with sentences
frequency' less than 20 were also removed. This
resulted in vocabulary size n=7299.

The RBMs were pretrained using Contrastive
Divergence (CD) with step size 1 (Hinton, 2002).
After pretraining, the RBMs were stacked on top
of each other and unrolled to create deep autoen-
coder (Hinton and Salakhutdinov, 2006). During
the fine-tuning stage, we backpropagated the re-
construction error to update network parameters.
The size of mini-batches during pretraining and
fine-tuning were 25 and 100 respectively. Weight
decay was used to prevent overfitting. Addition-
ally, in order to encourage sparsity in the hid-
den units, Kullback-Leibler sparsity regularization
was used. We used GPU? based implementation of
autoencoder to train the models which took around
4.5 hours for full training.

'total number of training sentences in which the term ap-
pears

2NVIDIA GeForce GTX Titan with Memory 5 GiB and
2688 CUDA cores



4.2 Results

Table 1 shows the improvements in terms of
BLEU of adding deep context over the baseline
system for English-to-Hindi (En2Hi) over devel-
opment and test sets. Adding source-context infor-
mation using deep learning outperforms the latent
semantic analysis methodology.

En2Hi
Dev Test
baseline 9.42 14.99
+1si 9.83 15.12
+deep context | 10.407 | 15.43f

Table 1: BLEU scores for En2Hi translation task..
T depicts statistical significance (p-value<0.05).

Our source-context feature function may be
more discriminative in a task like English-to-Hindi
where the target language has a larger vocabulary
than the source one.

Table 2 shows an example of how the translation
is improving in terms of lexical semantics which is
the goal of the methodology presented in the pa-
per. The most frequent sense of word cry is I,
which literally means “to cry” while the example
in Table 2 refers to the sense of cry as I, which
means to scream. Our method could identify the
context and hence the source context feature (scf)
of the unit cry||[&T¥ is higher than for the unit
scf(cry||[TTET) as shown in Table 3 and for this
particular input sentence.

5 Conclusion

This paper reports the IPN-UPV participation in
the WMT 2014 Evaluation Campaign. The system
is Moses-based with an additional feature function
based on deep learning. This feature function in-
troduces source-context information in the stan-
dard Moses system by adding the information of
how similar is the input sentence to the different
training sentences. Significant improvements over

System Translation

Source soft cry from the depth

Baseline TEITSAT & JATIH U 7rd
+deep context | TEXTEAT T HATIH E1ESH
Reference TETEAT § ®IHA 9

Table 2: Manual analysis of a translation output.
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| e | pp | scf |
0.23 | 0.06 | 0.85
0.15 | 0.04 | 0.90

cry|||XT=T

cryl| |“=ﬂ'@‘

Table 3: Probability values (conditional, cp, and
posterior, pp, as standard features in a phrase-
based system) for the word cry and two Hindi
translations.

the baseline system are reported in the task from
English to Hindi.

As further work, we will implement our feature
function in Moses using suffix arrays in order to
make it more efficient.
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Abstract

This paper describes the joined submis-
sion of LIMSI and KIT to the Shared
Translation Task for the German-to-
English direction. The system consists
of a phrase-based translation system us-
ing a pre-reordering approach. The base-
line system already includes several mod-
els like conventional language models on
different word factors and a discriminative
word lexicon. This system is used to gen-
erate a k-best list. In a second step, the
list is reranked using SOUL language and
translation models (Le et al., 2011).

Originally, SOUL translation models were
applied to n-gram-based translation sys-
tems that use tuples as translation units
instead of phrase pairs. In this article,
we describe their integration into the KIT
phrase-based system. Experimental re-
sults show that their use can yield sig-
nificant improvements in terms of BLEU
score.

1 Introduction

This paper describes the KIT-LIMSI system for
the Shared Task of the ACL 2014 Ninth Work-
shop on Statistical Machine Translation. The sys-
tem participates in the German-to-English trans-
lation task. It consists of two main components.
First, a k-best list is generated using a phrase-
based machine translation system. This system
will be described in Section 2. Afterwards, the k-
best list is reranked using SOUL (Structured OUt-
put Layer) models. Thereby, a neural network lan-
guage model (Le et al., 2011), as well as several
translation models (Le et al., 2012a) are used. A
detailed description of these models can be found
in Section 3. While the translation system uses
phrase pairs, the SOUL translation model uses tu-
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ples as described in the n-gram approach (Marifio
et al., 2006). We describe the integration of the
SOUL models into the translation system in Sec-
tion 3.2. Section 4 summarizes the experimen-
tal results and compares two different tuning al-
gorithms: Minimum Error Rate Training (Och,
2003) and k-best Batch Margin Infused Relaxed
Algorithm (Cherry and Foster, 2012).

2 Baseline system

The KIT translation system is an in-house imple-
mentation of the phrase-based approach and in-
cludes a pre-ordering step. This system is fully
described in Vogel (2003).

To train translation models, the provided Eu-
roparl, NC and Common Crawl parallel corpora
are used. The target side of those parallel corpora,
the News Shuffle corpus and the GigaWord cor-
pus are used as monolingual training data for the
different language models. Optimization is done
with Minimum Error Rate Training as described
in Venugopal et al. (2005), using newstest2012
and newstest2013 as development and test data,
respectively.

Compound splitting (Koehn and Knight, 2003)
is performed on the source side (German) of the
corpus before training. Since the web-crawled
Common Crawl corpus is noisy, this corpus is
first filtered using an SVM classifier as described
in Mediani et al. (2011).

The word alignment is generated using the
GIZA++ Toolkit (Och and Ney, 2003). Phrase
extraction and scoring is done using the Moses
toolkit (Koehn et al., 2007). Phrase pair proba-
bilities are computed using modified Kneser-Ney
smoothing (Foster et al., 2006).

We apply short-range reorderings (Rottmann
and Vogel, 2007) and long-range reorder-
ings (Niehues and Kolss, 2009) based on part-of-
speech tags. The POS tags are generated using
the TreeTagger (Schmid, 1994). Rewriting rules
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based on POS sequences are learnt automatically
to perform source sentence reordering according
to the target language word order. The long-range
reordering rules are further applied to the training
corpus to create reordering lattices to extract the
phrases for the translation model. In addition,
a tree-based reordering model (Herrmann et al.,
2013) trained on syntactic parse trees (Rafferty
and Manning, 2008; Klein and Manning, 2003)
is applied to the source sentence. In addition
to these pre-reordering models, a lexicalized
reordering model (Koehn et al., 2005) is applied
during decoding.

Language models are trained with the SRILM
toolkit (Stolcke, 2002) using modified Kneser-Ney
smoothing (Chen and Goodman, 1996). The sys-
tem uses a 4-gram word-based language model
trained on all monolingual data and an additional
language model trained on automatically selected
data (Moore and Lewis, 2010). The system fur-
ther applies a language model based on 1000 auto-
matically learned word classes using the MKCLS
algorithm (Och, 1999). In addition, a bilingual
language model (Niehues et al., 2011) is used as
well as a discriminative word lexicon (DWL) us-
ing source context to guide the word choices in the
target sentence.

3 SOUL models for statistical machine
translation

Neural networks, working on top of conventional
n-gram back-off language models (BOLMs), have
been introduced in (Bengio et al., 2003; Schwenk,
2007) as a potential means to improve discrete
language models. The SOUL model (Le et al.,
2011) is a specific neural network architecture that
allows us to estimate n-gram models using large
vocabularies, thereby making the training of large
neural network models feasible both for target lan-
guage models and translation models (Le et al.,
2012a).

3.1 SOUL translation models

While the integration of SOUL target language
models is straightforward, SOUL translation mod-
els rely on a specific decomposition of the joint
probability P(s,t) of a sentence pair, where s is a
sequence of [ reordered source words (sq, ..., S 1ok

'In the context of the n- gram translation model, (s, t) thus
denotes an aligned sentence pair, where the source words are
reordered.
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and t contains J target words (1, ...,t7). In the
n-gram approach (Marifio et al., 2006; Crego et
al., 2011), this segmentation is a by-product of
source reordering, and ultimately derives from ini-
tial word and phrase alignments. In this frame-
work, the basic translation units are fuples, which
are analogous to phrase pairs, and represent a
matching u = (5,¢) between a source phrase s
and a target phrase ¢.

Using the n-gram assumption, the joint proba-
bility of a segmented sentence pair using L tupels
decomposes as:

L

P(s,t) = H P(uilui—1, ..., Ui—ny1)
i=1

)

A first issue with this decomposition is that the
elementary units are bilingual pairs. Therefore,
the underlying vocabulary and hence the number
of parameters can be quite large, even for small
translation tasks. Due to data sparsity issues, such
models are bound to face severe estimation prob-
lems. Another problem with Equation (1) is that
the source and target sides play symmetric roles,
whereas the source side is known, and the tar-
get side must be predicted. To overcome some
of these issues, the n-gram probability in Equa-
tion (1) can be factored by first decomposing tu-
ples in two (source and target) parts, and then de-
composing the source and target parts at the word
level.

Let s¥ denote the k™ word of source part of the
tuple 5;. Let us consider the example of Figure 1,
s}, corresponds to the source word nobel, s}; to
the source word paix, and similarly 7, is the tar-
get word peace. We finally define A"~ (t¥) as the
sequence of the n—1 words preceding ti-“ in the tar-
get sentence, and h"~1(s¥) as the n— 1 words pre-
ceding sf in the reordered source sentence: in Fig-
ure 1, h3(#2,) thus refers to the three word context
receive the nobel associated with the target word
peace. Using these notations, Equation 1 can be
rewritten as:

L |t

P(s,t) = [T [ TT Pt~ ), i (k)
i=1 k=1
[55]

B 1 B Ot
k=1

This decomposition relies on the n-gram assump-
tion, this time at the word level. Therefore, this



org: ... a recevoir le prix nobel de la paix
St .. Sg:a {59: recevoir} [ S0 le} [511: nobel de la paix} [512: prix}
t: .. {fs: to} {fgz receive} {fm: the} {fl ,: nobel peace} [flzz prize}

u u

11 12

Figure 1: Extract of a French-English sentence pair segmented into bilingual units. The original (org)
French sentence appears at the top of the figure, just above the reordered source s and the target t. The
pair (s, t) decomposes into a sequence of L bilingual units (fuples) uy, ..., ur. Each tuple u; contains a

source and a target phrase: 5; and ;.

model estimates the joint probability of a sentence
pair using two sliding windows of length n, one
for each language; however, the moves of these
windows remain synchronized by the tuple seg-
mentation. Moreover, the context is not limited
to the current phrase, and continues to include
words in adjacent phrases. Equation (2) involves
two terms that will be further denoted as TrgSrc
and Src, respectively P (t¥|h"=1(tF), A"~ 1(sl,,))
and P (sF|n"~1(t}), "1 (sF)). It is worth notic-
ing that the joint probability of a sentence pair
can also be decomposed by considering the fol-
lowing two terms: P (s¥|n"=1(sF), nn=1(th,,))
and P (t¥|n"=1(s}),h"~1(tF)). These two terms
will be further denoted by SrcTrg and Trg. There-
fore, adding SOUL translation models means that
4 scores are added to the phrase-based systems.

3.2 Integration

During the training step, the SOUL translation
models are trained as described in (Le et al.,
2012a). The main changes concern the inference
step. Given the computational cost of computing
n-gram probabilities with neural network models,
a solution is to resort to a two-pass approach: the
first pass uses a conventional system to produce
a k-best list (the k£ most likely hypotheses); in
the second pass, probabilities are computed by the
SOUL models for each hypothesis and added as
new features. Then the k-best list is reordered ac-
cording to a combination of all features including
these new features. In the following experiments,
we use 10-gram SOUL models to rescore 300-
best lists. Since the phrase-based system described
in Section 2 uses source reordering, the decoder
was modified in order to generate k-best lists that
contain necessary word alignment information be-
tween the reordered source sentence and its asso-
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ciated target hypothesis. The goal is to recover
the information that is illustrated in Figure 1 and
to apply the n-gram decomposition of a sentence
pair.

These (target and bilingual) neural network
models produce scores for each hypothesis in the
k-best list; these new features, along with the fea-
tures from the baseline system, are then provided
to a new phase which runs the traditional Mini-
mum Error Rate Training (MERT) (Och, 2003), or
a recently proposed k-best Batch Margin Infused
Relaxed Algorithm (KBMIRA) (Cherry and Fos-
ter, 2012) for tuning purpose. The SOUL mod-
els used for this year’s evaluation are similar to
those described in Allauzen et al. (2013) and Le
et al. (2012b). However, since compared to these
evaluations less parallel data is available for the
German-to-English task, we use smaller vocabu-
laries of about 100K words.

4 Results

We evaluated the SOUL models on the German-
to-English translation task using two systems to
generate the k-best lists. The first system used
all models of the baseline system except the DWL
model and the other one used all models.

Table 1 summarizes experimental results in
terms of BLEU scores when the tuning is per-
formed using KBMIRA. As described in Section
3, the probability of a phrase pair can be decom-
posed into products of words’ probabilities in 2
different ways: we can first estimate the probabil-
ity of words in the source phrase given the context,
and then the probability of the target phrase given
its associated source phrase and context words
(see Equation (2)); or inversely we can generate
the target side before the source side. The for-
mer proceeds by adding Src and TrgSrc scores as



No DWL DWL
Soul models Dev Test Dev Test
No 26.02 27.02 26.27 27.46
Target 26.30 2742 2643 27.85
Translation st 26.46 27.70 26.66 28.04
Translation ts 2648 27.41 26.61 28.00
All Translation 26.50 27.86 26.70 28.08
All SOUL models 26.62 27.84 26.75 28.10

Table 1: Results using KBMIRA

No DWL DWL
Soul models Dev Test Dev Test
No 26.02 27.02 26.27 27.46
Target 26.18 27.09 2644 27.54
Translation st 26.36 27.59 26.66 27.80
Translation ts 2644 27.69 26.63 27.94
All Translation 26.53 27.65 26.69 27.99
All SOUL models 2647 27.68 26.66 28.01

Table 2: Results using MERT. Results in bold correpond to the submitted system.

2 new features into the k-best list, and the latter by
adding Trg and SrcTrg scores. These 2 methods
correspond respectively to the Translation ts and
Translation st lines in the Table 1. The 4 trans-
lation models may also be added simultaneously
(All Translations). The first line gives baseline
results without SOUL models, while the Target
line shows results in adding only SOUL language
model. The last line (All SOUL models) shows
the results for adding all neural network models
into the baseline systems.

As evident in Table 1, using the SOUL trans-
lation models yields generally better results than
using the SOUL target language model, yielding
about 0.2 BLEU point differences on dev and test
sets. We can therefore assume that the SOUL
translation models provide richer information that,
to some extent, covers that contained in the neural
network language model. Indeed, these 4 trans-
lation models take into account not only lexi-
cal probabilities of translating target words given
source words (or in the inverse order), but also the
probabilities of generating words in the target side
(Trg model) as does a language model, with the
same context length over both source and target
sides. It is therefore not surprising that adding the
SOUL language model along with all translation
models (the last line in the table) does not give sig-
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nificant improvement compared to the other con-
figurations. The different ways of using the SOUL
translation models perform very similarly.

Table 2 summarizes the results using MERT in-
stead of KBMIRA. We can observe that using KB-
MIRA results in 0.1 to 0.2 BLEU point improve-
ments compared to MERT. Moreover, this impact
becomes more important when more features are
considered (the last line when all 5 neural net-
work models are added into the baseline systems).
In short, the use of neural network models yields
up to 0.6 BLEU improvement on the DWL sys-
tem, and a 0.8 BLEU gain on the system without
DWL. Unfortunately, the experiments with KB-
MIRA were carried out after the the submission
date. Therefore the submitted system corresponds
to the last line of table 2 indicated in bold.

5 Conclusion

We presented a system with two main features: a
phrase-based translation system which uses pre-
reordering and the integration of SOUL target lan-
guage and translation models. Although the trans-
lation performance of the baseline system is al-
ready very competitive, the rescoring by SOUL
models improve the performance significantly. In
the rescoring step, we used a continuous language
model as well as four continuous translation mod-



els. When combining the different SOUL models,
the translation models are observed to be more im-
portant in increasing the translation performance
than the language model. Moreover, we observe a
slight benefit to use KBMIRA instead of the stan-
dard MERT tuning algorithm. It is worth noticing
that using KBMIRA improves the performance
but also reduces the variance of the final results.

As future work, the integration of the SOUL
translation models could be improved in differ-
ent ways. For SOUL translation models, there
is a mismatch between translation units used dur-
ing the training step and those used by the de-
coder. The former are derived using the n-gram-
based approach, while the latter use the conven-
tional phrase extraction heuristic. We assume that
reducing this mismatch could improve the overall
performance. This can be achieved for instance
using forced decoding to infer a segmentation of
the training data into translation units. Then the
SOUL translation models can be trained using
this segmentation. For the SOUL target language
model, in these experiments we only used the En-
glish part of the parallel data for training. Results
may be improved by including all the monolingual
data.
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Abstract

In this paper, we describe our English-
Hindi and Hindi-English statistical sys-
tems submitted to the WMT 14 shared task.
The core components of our translation
systems are phrase based (Hindi-English)
and factored (English-Hindi) SMT sys-
tems. We show that the use of num-
ber, case and Tree Adjoining Grammar
information as factors helps to improve
English-Hindi translation, primarily by
generating morphological inflections cor-
rectly. We show improvements to the
translation systems using pre-procesing
and post-processing components. To over-
come the structural divergence between
English and Hindi, we preorder the source
side sentence to conform to the target lan-
guage word order. Since parallel cor-
pus is limited, many words are not trans-
lated. = We translate out-of-vocabulary
words and transliterate named entities in
a post-processing stage. We also investi-
gate ranking of translations from multiple
systems to select the best translation.

1 Introduction

India is a multilingual country with Hindi be-
ing the most widely spoken language. Hindi and
English act as link languages across the coun-
try and languages of official communication for
the Union Government. Thus, the importance of
English<Hindi translation is obvious. Over the
last decade, several rule based (Sinha, 1995) , in-
terlingua based (Dave et. al., 2001) and statistical
methods (Ramanathan et. al., 2008) have been ex-
plored for English-Hindi translation.

In the WMT 2014 shared task, we undertake
the challenge of improving translation between the
English and Hindi language pair using Statisti-
cal Machine Translation (SMT) techniques. The
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WMT 2014 shared task has provided a standard-
ized test set to evaluate multiple approaches and
avails the largest publicly downloadable English-
Hindi parallel corpus. Using these resources,
we have developed a phrase-based and a factored
based system for Hindi-English and English-Hindi
translation respectively, with pre-processing and
post-processing components to handle structural
divergence and morphlogical richness of Hindi.
Section 2 describes the issues in Hindi<—English
translation.

The rest of the paper is organized as follows.
Section 3 describes corpus preparation and exper-
imental setup. Section 4 and Section 5 describe
our English-Hindi and Hindi-English translation
systems respectively. Section 6 describes the post-
processing operations on the output from the core
translation system for handling OOV and named
entities, and for reranking outputs from multiple
systems. Section 7 mentions the details regarding
our systems submitted to WMT shared task. Sec-
tion 8 concludes the paper.

2 Problems in Hindi< English
Translation

Languages can be differentiated in terms of
structural divergences and morphological mani-
festations. English is structurally classified as
a Subject-Verb-Object (SVO) language with a
poor morphology whereas Hindi is a morpho-
logically rich, Subject-Object-Verb (SOV) lan-
guage. Largely, these divergences are responsi-
ble for the difficulties in translation using a phrase
based/factored model, which we summarize in this
section.

2.1 English-to-Hindi

The fundamental structural differences described
earlier result in large distance verb and modi-
fier movements across English-Hindi. Local re-
ordering models prove to be inadequate to over-

Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 90-96,
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come the problem; hence, we transformed the
source side sentence using pre-ordering rules to
conform to the target word order. Availability of
robust parsers for English makes this approach for
English-Hindi translation effective.

As far as morphology is concerned, Hindi is
more richer in terms of case-markers, inflection-
rich surface forms including verb forms etc. Hindi
exhibits gender agreement and syncretism in in-
flections, which are not observed in English. We
attempt to enrich the source side English corpus
with linguistic factors in order to overcome the
morphological disparity.

2.2 Hindi-to-English

The lack of accurate linguistic parsers makes it dif-
ficult to overcome the structural divergence using
preordering rules. In order to preorder Hindi sen-
tences, we build rules using shallow parsing infor-
mation. The source side reordering helps to reduce
the decoder’s search complexity and learn better
phrase tables. Some of the other challenges in gen-
eration of English output are: (1) generation of ar-
ticles, which Hindi lacks, (2) heavy overloading of
English prepositions, making it difficult to predict
them.

3 Experimental Setup

We process the corpus through appropriate filters
for normalization and then create a train-test split.

3.1 English Corpus Normalization

To begin with, the English data was tokenized us-
ing the Stanford tokenizer (Klein and Manning,
2003) and then true-cased using truecase.perl pro-
vided in MOSES toolkit.

3.2 Hindi Corpus Normalization

For Hindi data, we first normalize the corpus us-
ing NLP Indic Library (Kunchukuttan et. al.,
2014)'. Normalization is followed by tokeniza-
tion, wherein we make use of the trivtokenizer.pl>
provided with WMT 14 shared task. In Table 1, we
highlight some of the post normalization statistics
for en-hi parallel corpora.

'nttps://bitbucket.org/anocopk/indic_
nlp_library

http://ufallab.ms.mff.cuni.cz/~bojar/
hindencorp/
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English Hindi
Token 2,898,810 3,092,555
Types 95,551 118,285
Total Characters 18,513,761 17,961,357
Total sentences 289.832 289,832
Sentences (word 188,993 182,777
count < 10)
Sentences (word 100,839 107,055
count > 10)

Table 1: en-hi corpora statistics, post normalisa-
tion.

3.3 Data Split

Before splitting the data, we first randomize the
parallel corpus. We filter out English sentences
longer than 50 words along with their parallel
Hindi translations. After filtering, we select 5000
sentences which are 10 to 20 words long as the test
data, while remaining 284,832 sentences are used
for training.

4 English-to-Hindi (en-hi) translation

We use the MOSES toolkit (Koehn et. al., 2007a)
for carrying out various experiments. Starting with
Phrase Based Statistical Machine Translation (PB-
SMT)(Koehn et. al., 2003) as baseline system we
go ahead with pre-order PBSMT described in Sec-
tion 4.1. After pre-ordering, we train a Factor
Based SMT(Koehn, 2007b) model, where we add
factors on the pre-ordered source corpus. In Fac-
tor Based SMT we have two variations- (a) using
Supertag as factor described in Section 4.2 and (b)
using number; case as factors described in Section
4.3.

4.1 Pre-ordering source corpus

Research has shown that pre-ordering source lan-
guage to conform to target language word order
significantly improves translation quality (Collins
et. al, 2005). There are many variations of pre-
ordering systems primarily emerging from either
rule based or statistical methods. We use rule
based pre-ordering approach developed by (Pa-
tel et. al., 2013), which uses the Stanford parser
(Klein and Manning, 2003) for parsing English
sentences. This approach is an extension to an ear-
lier approach developed by (Ramanathan et. al.,
2008). The existing source reordering system re-
quires the input text to contain only surface form,
however, we extended it to support surface form



along with its factors like POS, lemma etc.. An
example of improvement in translation after pre-
ordering is shown below:

Example: trying to replace bad ideas with good
ideas .

Phr: replace I+ fq=er &r =g fq=mi &
SIRN

(replace bure vichaaron ko acche vichaaron ke
saath)

Gloss: replace bad ideas good ideas with

Pre-order PBSMT: 37=g;, fa=mer & ¥ fa=rer
FT FIAT &I RIT & 78 &

(acche vichaaron se bure vichaaron ko badalane
ki koshish kara rahe hain)

Gloss: good ideas with bad ideas to replace trying

4.2 Supertag as Factor

The notion of Supertag was first proposed by
Joshi and Srinivas (1994). Supertags are elemen-
tary trees of Lexicalized Tree Adjoining Grammar
(LTAG) (Joshi and Schabes, 1991). They provide
syntactic as well as dependency information at the
word level by imposing complex constraints in a
local context. These elementary trees are com-
bined in some manner to form a parse tree, due
to which, supertagging is also known as “An ap-
proach to almost parsing”’(Bangalore and Joshi,
1999). A supertag can also be viewed as frag-
ments of parse trees associated with each lexi-
cal item. Figure 1 shows an example of su-
pertagged sentence “The purchase price includes
taxes”described in (Hassan et. al., 2007). It clearly
shows the sub-categorization information avail-
able in the verb include, which takes subject NP
to its left and an object NP to its right.

NP
NP i NP 5 NP
e M o | e~ |
0 NP w NP VP N
| e e | ._,.;-'""'"'\-\.\_\_ I
e price "I" NP e
e des

Figure 1: LTAG supertag sequence obtained using
MICA Parser.

Use of supertags as factors has already been
studied by Hassan (2007) in context of Arabic-
English SMT. They use supertag language model
along with supertagged English corpus. Ours
is the first study in using supertag as factor
for English-to-Hindi translation on a pre-ordered
source corpus.
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We use MICA Parser (Bangalore et. al., 2009)
for obtaining supertags. After supertagging we run
pre-ordering system preserving the supertags in it.
For translation, we create mapping from source-
word|supertag to target-word. An example of im-
provement in translation by using supertag as fac-
tor is shown below:

Example: trying to understand what your child is
saying to you

Phr: STY&T 9T ATIH T 5 &7 & I8
(aapkaa bacchaa aapse kya kaha rahaa hai yaha)
Gloss: your child you what saying is this
Supertag Fact: TTTHT T9T ATTH T §5 &T
&, 39 U & S99 FLAT

(aapkaa bacchaa aapse kya kaha rahaa hai, use
samajhane kii koshish karnaa)

Gloss: your child to you what saying is , that un-
derstand try

4.3 Number, Case as Factor

In this section, we discuss how to generate correct
noun inflections while translating from English to
Hindi. There has been previous work done in order
to solve the problem of data sparsity due to com-
plex verb morphology for English to Hindi trans-
lation (Gandhe, 2011). Noun inflections in Hindi
are affected by the number and case of the noun
only. Number can be singular or plural, whereas,
case can be direct or oblique. We use the factored
SMT model to incorporate this linguistic informa-
tion during training of the translation models. We
attach root-word, number and case as factors to
English nouns. On the other hand, to Hindi nouns
we attach root-word and suffix as factors. We de-
fine the translation and generation step as follows:

e Translation step (T0): Translates English
root|number|case to Hindi root|suf fix

e Generation step (GO): Generates Hindi sur-
face word from Hindi root|suf fix

An example of improvement in translation by
using number and case as factors is shown below:
Example: Two sets of statistics
Phr: 3T & AT&s
(do ke aankade)

Gloss: two of statistics

Num-Case Fact: 2TT&si & &I d¢
(aankadon ke do set)

Gloss: statistics of two sets



4.3.1 Generating number and case factors

With the help of syntactic and morphological
tools, we extract the number and case of the En-
glish nouns as follows:

e Number factor: We use Stanford POS tag-
ger’ to identify the English noun entities
(Toutanova, 2003). The POS tagger itself dif-
ferentiates between singular and plural nouns
by using different tags.

Case factor: It is difficult to find the
direct/oblique case of the nouns as En-
glish nouns do not contain this information.
Hence, to get the case information, we need
to find out features of an English sentence
that correspond to direct/oblique case of the
parallel nouns in Hindi sentence. We use
object of preposition, subject, direct object,
tense as our features. These features are
extracted using semantic relations provided
by Stanford’s typed dependencies (Marneffe,
2008).

4.4 Results

Listed below are different statistical systems
trained using Moses:

e Phrase Based model (Phr)

e Phrase Based model with pre-ordered source
corpus (PhrReord)

e Factor Based Model with factors on pre-
ordered source corpus

— Supertag as factor (PhrReord+STag)
— Number, Case as factor (PhrReord+NC)

We evaluated translation systems with BLEU and
TER as shown in Table 2. Evaluation on the devel-
opment set shows that factor based models achieve
competitive scores as compared to the baseline
system, whereas, evaluation on the WMT14 test
set shows significant improvement in the perfor-
mance of factor based models.

5 Hindi-to-English (hi-en) translation

As English follows SVO word order and Hindi fol-
lows SOV word order, simple distortion penalty in
phrase-based models can not handle the reordering
well. For the shared task, we follow the approach

3http://nlp.stanford.edu/software/tagger.shtml
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Development WMT14
Model BLEU TER BLEU TER
Phr 27.62 0.63 8.0 0.84
PhrReord 28.64 0.62 8.6 0.86
PhrReord+STag 27.05 0.64 9.8 0.83
PhrReord+NC 27.50 0.64 10.1 0.83

Table 2: English-to-Hindi automatic evaluation on
development set and on WMT 14 test set.

that pre-orders the source sentence to conform to
target word order.

A substantial volume of work has been done
in the field of source-side reordering for machine
translation. Most of the experiments are based on
applying reordering rules at the nodes of the parse
tree of the source sentence. These reordering rules
can be automatically learnt (Genzel, 2010). But,
many source languages do not have a good robust
parser. Hence, instead we can use shallow pars-
ing techniques to get chunks of words and then
reorder them. Reordering rules can be learned au-
tomatically from chunked data (Zhang, 2007).

Hindi does not have a functional constituency
or dependency parser available, as of now. But,
a shallow parser* is available for Hindi. Hence,
we follow a chunk-based pre-ordering approach,
wherein, we develop a set of rules to reorder
the chunks in a source sentence. The follow-
ing are the chunks tags generated by this shallow
parser: Noun chunks (NP), Verb chunks (VGF,
VGNEF, VGNN), Adjectival chunks (JJP), Ad-
verb chunks (RBP), Negatives (NEGP), Conjuncts
(CCP), Chunk fragments (FRAGP), and miscella-
neous entities (BLK) (Bharati, 2006).

5.1 Development of rules

After chunking an input sentence, we apply hand-
crafted reordering rules on these chunks. Follow-
ing sections describe these rules. Note that we ap-
ply rules in the same order they are listed below.

5.1.1 Merging of chunks

After chunking, we merge the adjacent chunks, if
they follow same order in target language.

1. Merge {JJP VGF} chunks (Consider this
chunk as a single VGF chunk)
e.g., gfore %‘ (varnit hai), ferer %‘ (sthit hai)

*http://ltrc.iiit.ac.in/showfile.php?
filename=downloads/shallow_parser.php



2. Merge adjacent verb chunks (Consider this
chunk as a single verb chunk)
e.g., iTLd %‘ (girataa hai), THTAT %‘ (lub-

haataa hai)

Merge NP and JJP chunks separated by com-
mas and CCP (Consider this chunk as a single
NP chunk)

e.g., ST AT AEHA (badaa aur aham)

5.1.2 Preposition chunk reordering

Next we find sequence of contiguous chunks sep-
arated by prepositions (Can end in verb chunks).
We apply following reordering rules on these con-
tiguous chunks:

1. Reorder multi-word preposition locally by re-
versing the order of words in that chunk
e.g., & TATAT (ke alaawaa) — 3AATAT &,
F (ke saamane) — qmET &

. Reorder contiguous preposition chunk by re-
versing the order of chunks (Consider this
chunk as a single noun chunk)

e.g.,%@‘ g 7 T & ST Hgd (hinduu
dharma me tirtha ka badaa mahatva) — ST

TR &7 a7 B 99

5.1.3 Verb chunk reordering

We find contiguous verb chunks and apply follow-
ing reordering rules:

1. Reorder chunks locally by reversing the order
of the chunks
e.g., afOT %‘ (varnit hai) — 2‘ gfvre

Verb chunk placement: We place the new
verb chunk after first NP chunk. Same rule
applies for all verb chunks in a sentence, i.e.,
we place each verb chunk after first NP chunk
of the clause to which the verb belongs.

Note that, even though placing verb chunk af-
ter first NP chunk may be wrong reordering.
But we also use distortion window of 6 to 20
while using phrase-based model. Hence, fur-
ther reordering of verb chunks can be some-
what handled by phrase-based model itself.

Thus, using chunker and reordering rules, we
get a source-reordered Hindi sentence.

5.2 Results

‘We trained two different translation models:
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e Phrase-based model without source reorder-
ing (Phr)

e Phrase-based model with chunk-based source
reordering (PhrReord)

Development WMT14
Model BLEU TER BLEU TER
Phr 27.53  0.59 13,5  0.87
PhrReord  25.06  0.62 13.7  0.90

Table 3: Hindi-to-English automatic evaluation on
development set and on WMT14 test set.

Table 3 shows evaluation scores for develop-
ment set and WMT 14 test set. Even though we do
not see significant improvement in automatic eval-
uation of PhrReord, but this model contributes in
improving translation quality after ranking, as dis-
cussed in Section 5. In subjective evaluation we
found many translation to be better in PhrReord
model as shown in the following examples:

Example 1: T 2004 & T &% 7T Ieued
w® E
(sana 2004 se ve kaii baar chotagrasta rahe hain.)
Phr: since 2004 he is injured sometimes .
PhrReord: he was injured many times since 2004

Example 2: JTEMHT & LT 92 & FATT
TITT &g aATAT ATTEHRTd ATAeT
(obama ka rashtrapti pad ke chunaav prachaar
hetu banaayaa aadhikarik jaalsthal)

Phr: of Obama for election campaign

PhrReord: official website of Obama created for
President campaign

6 Post processing

All experimental results reported in this paper are
after post processing the translation output. In post
processing, we remove some Out-of-Vocabulary
(OOV) words as described in subsection 6.1, after
which we transliterate the remaining OOV words.

6.1 Removing OOV

We noticed, there are many words in the training
corpus which were not present in the phrase ta-
ble, but, were present in the lexical tranlsation ta-
ble. So we used the lexical table as a dictionary
to lookup bilingual translations. Table 4 gives the
statistics of number of OOV reduced.



Model Before After
Phrased Based 2313 1354
Phrase Based (pre-order) 2256 1334
Supertag as factor 4361 1611
Num-Case as factor 2628 1341

Table 4: Statistics showing number of OOV be-
fore and after post processing the English-to-Hindi
translation output of Development set.

6.2 Transliteration of Untranslated Words

OOV words which were not present in the lexi-
cal translation table were then transliterated using
a naive transliteration system. The transliteration
step was applied on Hindi-to-English translation
outputs only. After transliteration we noticed frac-
tional improvements in BLEU score varying from
0.1t00.5.

6.3 Ranking of Ensemble MT Output

We propose a ranking framework to select the best
translation output from an ensemble of multiple
MT systems. In order to exploit the strength of
each system, we augment the translation pipeline
with a ranking module as a post processing step.
For English-to-Hindi ranking we combine the
output of both factor based models, whereas,
for Hindi-to-English ranking we combine phrase
based and phrase based with pre-ordering outputs.

For most of the systems, the output translations
are adequate but not fluent enough. So, based on
their fluency scores, we decided to rank the candi-
date translations. Fluency is well quantified by LM
log probability score and Perplexity. For a given
translation , we compute these scores by querying
the 5-gram language model built using SRILM.
Table 5 shows more than 4% relative improvement
in BLEU score for en-hi as well as hi-en transla-
tion system after applying ranking module.

Model BLEU METEOR TER
Phr(en-hi) 27.62 0.41 0.63
After Ranking (en-hi) 28.82 0.42 0.63
Phr(hi-en) 27.53 0.27 0.59
After Ranking (hi-en) 28.69 0.27 0.59

Table 5: Comparision of ranking score with base-
line
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7 Primary Systems in WMT14

For English-to-Hindi, we submitted the ranked
output of factored models trained on pre-ordered
source corpus. For Hindi-to-English, we submit-
ted the ranked output of phrase based and pre-
ordered phrase based models. Table 6 shows eval-
uation scores of these systems on WMT14 test set.

Lang. pair BLEU TER
en-hi 104  0.83
hi-en 145  0.89

Table 6: WMT14 evaluation for en-hi and hi-en.

8 Conclusion

We conclude that the difficulties in English-Hindi
MT can be tackled by the use of factor based SMT
and various pre-processing and post processing
techniques. Following are our primary contribu-
tions towards English-Hindi machine translation:

e Use of supertag factors for better translation
of structurally complex sentences

e Use of number-case factors for accurately
generating noun inflections in Hindi

e Use of shallow parsing for pre-ordering Hindi
source corpus

We also observed that simple ranking strategy ben-
efits in getting the best translation from an ensem-
ble of translation systems.
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Abstract

This paper describes the University of Ed-
inburgh’s (UEDIN) phrase-based submis-
sions to the translation and medical trans-
lation shared tasks of the 2014 Work-
shop on Statistical Machine Translation
(WMT). We participated in all language
pairs. We have improved upon our 2013
system by i) using generalized represen-
tations, specifically automatic word clus-
ters for translations out of English, ii) us-
ing unsupervised character-based models
to translate unknown words in Russian-
English and Hindi-English pairs, iii) syn-
thesizing Hindi data from closely-related
Urdu data, and iv) building huge language
on the common crawl corpus.

1 Translation Task

Our baseline systems are based on the setup de-
scribed in (Durrani et al., 2013b) that we used
for the Eighth Workshop on Statistical Machine
Translation (Bojar et al., 2013). The notable fea-
tures of these systems are described in the follow-
ing section. The experiments that we carried out
for this year’s translation task are described in the
following sections.

1.1 Baseline

We trained our systems with the following set-
tings: a maximum sentence length of 80, grow-
diag-final-and symmetrization of GIZA++ align-
ments, an interpolated Kneser-Ney smoothed 5-
gram language model with KenLM (Heafield,
2011) used at runtime, hierarchical lexicalized re-
ordering (Galley and Manning, 2008), a lexically-
driven 5-gram operation sequence model (OSM)
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(Durrani et al., 2013a) with 4 count-based sup-
portive features, sparse domain indicator, phrase
length, and count bin features (Blunsom and Os-
borne, 2008; Chiang et al., 2009), a distortion limit
of 6, maximum phrase-length of 5, 100-best trans-
lation options, Minimum Bayes Risk decoding
(Kumar and Byrne, 2004), Cube Pruning (Huang
and Chiang, 2007), with a stack-size of 1000
during tuning and 5000 during test and the no-
reordering-over-punctuation heuristic (Koehn and
Haddow, 2009). We used POS and morphologi-
cal tags as additional factors in phrase translation
models (Koehn and Hoang, 2007) for German-
English language pairs. We also trained target se-
quence models on the in-domain subset of the par-
allel corpus using Kneser-Ney smoothed 7-gram
models. We used syntactic-preordering (Collins
et al., 2005) and compound splitting (Koehn and
Knight, 2003) for German-to-English systems.
We used trivia tokenizer for tokenizing Hindi.

The systems were tuned on a very large tun-
ing set consisting of the test sets from 2008-2012,
with a total of 13,071 sentences. We used news-
test 2013 for the dev experiments. For Russian-
English pairs news-test 2012 was used for tuning
and for Hindi-English pairs, we divided the news-
dev 2014 into two halves, used the first half for
tuning and second for dev experiments.

1.2 Using Generalized Word Representations

We explored the use of automatic word clusters
in phrase-based models (Durrani et al., 2014a).
We computed the clusters with GIZA++’s mkcls
(Och, 1999) on the source and target side of the
parallel training corpus. Clusters are word classes
that are optimized to reduce n-gram perplexity.
By generating a cluster identifier for each out-
put word, we are able to add an n-gram model
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over these identifiers as an additional scoring func-
tion. The inclusion of such an additional factor
is trivial given the factored model implementation
(Koehn and Hoang, 2007) of Moses (Koehn et al.,
2007). The n-gram model is trained in the similar
way as the regular language model. We trained
domain-specific language models separately and
then linearly interpolated them using SRILM with
weights optimized on the tuning set (Schwenk and
Koehn, 2008).

We also trained OSM models over cluster-ids
(?). The lexically driven OSM model falls back to
very small context sizes of two to three operations
due to data sparsity. Learning operation sequences
over cluster-ids enables us to learn richer trans-
lation and reordering patterns that can generalize
better in sparse data conditions. Table 1 shows
gains from adding target LM and OSM models
over cluster-ids. Using word clusters was found
more useful translating from English-to-*.

| from English I into English
Lang | Bo | +Cid | A | Bo | +Cid | A
de 20.60 | 20.85 | +0.25 2744 | 27.34 | -0.10
cs 18.84 | 19.39 | +0.55 || 26.42 | 26.42 | +0.00
fr 30.73 | 30.82 | +0.09 31.64 | 31.76 | +0.12
ru 18.78 | 19.67 | +0.89 || 24.45 | 24.63 | +0.18
hi 10.39 | 10.52 | +0.13 1548 | 15.26 | -0.22

Table 1: Using Word Clusters in Phrase-based and
OSM models — Bg = System without Clusters,
+Cid = with Cluster

We also trained OSM models over POS and
morph tags. For the English-to-German sys-
tem we added an OSM model over [pos, morph]
(source:pos, target:morph) and for the German-
to-English system we added an OSM model over
[morph,pos] (source:morph, target:pos), a config-
uration that was found to work best in our previous
experiments (Birch et al., 2013). Table 2 shows
gains from additionally using OSM models over
POS/morph tags.

Lang ‘ Bo ‘ +OSMp m ‘ A
en-de | 20.44 20.60 +0.16
de-en | 27.24 27.44 +0.20
Table 2: Using POS and Morph Tags in

OSM models — Bg = Baseline, +OSM , =
POS/Morph-based OSM
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1.3 Unsupervised Transliteration Model

Last year, our Russian-English systems performed
badly on the human evaluation. In comparison
other participants that used transliteration did well.
We could not train a transliteration system due
to unavailability of a transliteration training data.
This year we used an EM-based method to in-
duce unsupervised transliteration models (Durrani
et al., 2014b). We extracted transliteration pairs
automatically from the word-aligned parallel data
and used it to learn a transliteration system. We
then built transliteration phrase-tables for trans-
lating OOV words and used the post-decoding
method (Method 2 as described in the paper) to
translate these.

Pair \ Training \ (e]0)% \ Bo \ +T, \ A
ru-en 232K 1356 | 24.63 | 25.06 | +0.41
en-ru 232K 681 19.67 | 1991 | +0.24
hi-en 38K 503 14.67 | 15.48 | +0.81
en-hi 38K 394 11.76 | 12.83 | +1.07
Table 3: Using Unsupervised Transliteration

Model — Training = Extracted Transliteration Cor-
pus (types), OOV = Out-of-vocabulary words (to-
kens) Bg = System without Transliteration, +T';
= Transliterating OOVs

Table 3 shows the number (types) of translit-
eration pairs extracted using unsupervised min-
ing, number of OOV words (tokens) in each pair
and the gains achieved by transliterating unknown
words.

1.4 Synthesizing Hindi Data from Urdu

Hindi and Urdu are closely related language pairs
that share grammatical structure and have a large
overlap in vocabulary. This provides a strong
motivation to transform any Urdu-English paral-
lel data into Hindi-English by translating the Urdu
part into Hindi. We made use of the Urdu-English
segment of the Indic multi-parallel corpus (Post
et al., 2012) which contains roughly 87K sentence
pairs. The Hindi-English segment of this corpus
is a subset of parallel data made available for the
translation task but is completely disjoint from the
Urdu-English segment.

We initially trained a Urdu-to-Hindi SMT sys-
tem using a very tiny EMILLE' corpus (Baker

"EMILLE corpus contains roughly 12000 sentences of
Hindi and Urdu comparable data. From these we were able

to sentence align 7000 sentences to build an Urdu-to-Hindi
system.



et al., 2002). But we found this system to be use-
less for translating the Urdu part of Indic data due
to domain mismatch and huge number of OOV
words (approximately 310K tokens). To reduce
sparsity we synthesized additional phrase-tables
using interpolation and transliteration.

Interpolation: We trained two phrase transla-
tion tables p(w;|é;) and p(é;|h;), from Urdu-
English (Indic corpus) and Hindi-English (Hin-
dEnCorp (Bojar et al., 2014)) bilingual cor-
pora. Given the phrase-table for Urdu-English
p(u;l€;) and the phrase-table for English-Hindi
p(&;|h;), we estimated a Urdu-Hindi phrase-table
p(w;|h;) using the well-known convolution model
(Utiyama and Isahara, 2007; Wu and Wang, 2007):

p(ailhi) = Zp(ﬂiléi)p(éz‘\ﬁi)

The number of entries in the baseline Urdu-to-
Hindi phrase-table were approximately 254K. Us-
ing interpolation we were able to build a phrase-
table containing roughly 10M phrases. This re-
duced the number of OOV tokens from 310K to
approximately 50K.

Transliteration: Urdu and Hindi are written in
different scripts (Arabic and Devanagri respec-
tively). We added a transliteration component
to our Urdu-to-Hindi system. An unsupervised
transliteration model is learned from the word-
alignments of Urdu-Hindi parallel data. We were
able to extract around 2800 transliteration pairs.
To learn a richer transliteration model, we addi-
tionally fed the interpolated phrase-table, as de-
scribed above, to the transliteration miner. We
were able to mine additional 21000 translitera-
tion pairs and built a Urdu-Hindi character-based
model from it. The transliteration module can
be used to translate the SOK OOV words but
previous research (Durrani et al., 2010; Nakov
and Tiedemann, 2012) has shown that translit-
eration is useful for more than just translating
OOV words when translating closely related lan-
guage pairs. To fully capitalize on the large over-
lap in Hindi-Urdu vocabulary, we transliterated
each word in the Urdu test-data into Hindi and
produced a phrase-table with 100-best transliter-
ations. The two synthesized (triangulated and
transliterated) phrase-tables are then used along
with the baseline Urdu-to-Hindi phrase-table in
a log-linear model. Detailed results on Urdu-to-
Hindi baseline and improvements obtained from
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using transliteration and triangulated phrase-tables
are presented in Durrani and Koehn (2014). Using
our best Urdu-to-Hindi system, we translated the
Urdu part of the multi-indic corpus to form Hindi-
English parallel data. Table 4 shows results from
using the synthesized Hindi-English corpus in iso-
lation (Syn) and on top of the baseline system
(Bo + Syn).

Pair | Bo | Syn | A | Bo+Syn | A
hi-en | 14.28 | 1049 | -3.79 14.72 +0.44
en-hi | 10.59 | 9.01 | -1.58 11.76 +1.17

Table 4: Evaluating Synthesized (Syn) Hindi-
English Parallel Data, Bg = System without Syn-
thesized Data

1.5 Huge Language Models

Our unconstrained submissions use an additional
language model trained on web pages from the
2012, 2013, and winter 2013 CommonCrawl.?
The additional language model is the only differ-
ence between the constrained and unconstrained
submissions; we did not use additional parallel
data. These language models were trained on text
provided by the CommonCrawl foundation, which
they converted to UTF-8 after stripping HTML.
Languages were detected using the Compact Lan-
guage Detection 2° and, except for Hindi where
we lack tools, sentences were split with the Eu-
roparl sentence splitter (Koehn, 2005). All text
was then deduplicated, minimizing the impact of
boilerplate, such as social media sharing buttons.
We then tokenized and truecased the text as usual.
Statistics are shown in Table 5. A full description
of the pipeline, including a public data release, ap-
pears in Buck et al. (2014).

Lang Lines (B) Tokens (B) Bytes
en 59.13 975.63 5.14TiB
de 3.87 51.93 317.46 GiB
fr 3.04 49.31 273.96 GiB
ru 1.79 21.41 220.62 GiB
cs 0.47 5.79 34.67GiB
hi 0.01 0.28 3.39GiB

Table 5: Size of huge language model training data

We built unpruned modified Kneser-Ney lan-
guage models using Implz (Heafield et al., 2013).

http://commoncrawl.org
*https://code.google.com/p/cld2/



Pair | Bo | +L

newstest | 2013 | 2014 | 2013 | 2014
en-de 20.85 | 20.10 - 20.61 +0.51
en-cs 19.39 | 21.00 | 20.03 +0.64 | 21.60 +0.60
en-ru 19.90 | 28.70 | 20.80 +0.90 | 29.90 +1.20
en-hi 11.43 | 11.10 | 12.83 +1.40 | 12.50 +1.40
hi-en 15.48 | 13.90 - 14.80 +0.90

Table 6: Gains obtained by using huge language
models — Bo = Baseline, +L = Adding Huge LM

While the Hindi and Czech models are small
enough to run directly, models for other languages
are quite large. We therefore created a filter that op-
erates directly on files in KenLLM trie binary for-
mat, preserving only n-grams whose words all ap-
pear in the target side vocabulary of at least one
source sentence. For example, an English lan-
guage model trained on just the 2012 and 2013
crawls takes 3.5 TB without any quantization. Af-
ter filtering to the Hindi-English tuning set, the
model fit in 908 GB, again without quantization.
We were then able to tune the system on a machine
with 1 TB RAM. Results are shown in Table 6; we
did not submit to English-French because the sys-
tem takes too long to tune.

1.6 Miscellaneous

Hindi-English: 1) A large number of Hindi sen-
tences in the Hindi-English parallel corpus were
ending with a full-stop “.”, although the end-of-
the-sentence marker in Hindi is “Danda” (|). Re-
placing full-stops with Danda gave improvement
of +0.20 for hi-en and +0.40 in en-hi. 2) Using
Wiki subtitles did not give any improvement in
BLEU and were in fact harmful for the en-hi di-
rection.

Russian-English: We tried to improve word-
alignments by integrating a transliteration sub-
model into GIZA++ word aligner. The probabil-
ity of a word pair is calculated as an interpola-
tion of the transliteration probability and transla-
tion probability stored in the t-table of the differ-
ent alignment models used by the GIZA++ aligner.
This interpolation is done for all iterations of all
alignment models (See Sajjad et al. (2013) for de-
tails). Due to shortage of time we could only run it
for Russian-to-English. The improved alignments
gave a gain of +0.21 on news-test 2013 and +0.40
on news-test 2014.
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Pair | GIZA++ | FastAlign | A

de-en 24.02 23.89 -13
fr-en 30.78 30.66 -12
es-en 34.07 34.24 +.17
cs-en 22.63 22.44 -.19
ru-en 31.68 32.03 +.35
en-de 18.04 17.88 -.16
en-fr 28.96 28.83 -13
en-es 34.15 34.32 +.17
en-cs 15.70 16.02 +.32
avg | | | +.03

Table 7: Comparison of fast word alignment
method (Dyer et al, 2013) against GIZA++
(WMT 2013 data condition, test on new-
stest2012). The method was not used in the official
submission.

Pair | Baseline MSD | Hier. MSD | Hier. MSLR

de-en 27.04 27.10 +.06 27.17 +.13
fr-en 31.63 - 31.65 +.02
es-en 31.20 31.14 -.06 31.25 +.05
cs-en 26.11 26.32 +.21 26.26 +.15
ru-en 24.09 24.01 -.08 24.19 +.11
en-de 20.43 20.34 -.09 20.32 -.11
en-fr 30.54 - 30.52-.02
en-es 30.36 30.44 +.08 30.51 +.15
en-cs 18.53 18.59 +.06 18.66 +.13
en-ru 18.37 18.47 +.10 18.19 -.18
avg | |  +.035 | +.045

Table 8: Hierarchical lexicalized reordering model
(Galley and Manning, 2008).

Fast align: In preliminary experiments, we
compared the fast word alignment method by
Dyer et al. (2013) against our traditional use of
GIZA++. Results are quite mixed (Table 7), rang-
ing from a gain of +.35 for Russian-English to a
loss of —.19 for Czech-English. We stayed with
GIZA++ for all of our other experiments.

Hierarchical lexicalized reordering model:
We explored the use of the hierarchical lexicalized
reordering model (Galley and Manning, 2008)
in two variants: using the same orientations as
our traditional model (monotone, discontinuous,
swap), and one that distinguishes the discontin-
uous orientations to the left and right. Table 8
shows slight improvements with these models, so
we used them in our baseline.

Threshold filtering of phrase table: We exper-
imented with discarding some phrase table entry
due to their low probability. We found that phrase
translations with the phrase translation probability



#(f|e)<10~* can be safely discarded with almost
no change in translations. However, discarding
phrase translations with the inverse phrase transla-
tion probability ¢(e|f)<10~* is more risky, espe-
cially with morphologically rich target languages,
so we kept those.

1.7 Summary

Table 9 shows cumulative gains obtained from us-
ing word classes, transliteration and big language
models* over the baseline system. Our German-
English constrained systems were used for EU-
Bridge system combination, a collaborative effort
to improve the state-of-the-art in machine transla-
tion (See Freitag et al. (2014) for details).

| from English I into English
Lang ‘ Bo ‘ B 1 ‘ A ‘ ‘ Bo ‘ B 1 ‘ A
de 20.44 | 20.85 | +0.41 2724 | 27.44 | +0.20
cs 18.84 | 20.03 | +1.19 2642 | 26.42 | +0.00
fr 30.73 | 30.82 | +0.09 || 31.64 | 31.76 | +0.12
ru 18.78 | 20.81 | +2.03 2445 | 25.21 | +0.76
hi 9.27 12.83 | +3.56 14.08 | 1548 | +1.40

Table 9: Cumulative gains obtained for each lan-
guage — Bg = Baseline, B; = Best System

2 Medical Translation Task

For the medical translation task, the organisers
supplied several medical domain corpora (detailed
on the task website), as well some out-of-domain
patent data, and also all the data available for the
constrained track of the news translation task was
permitted. In general, we attempted to use all of
this data, except for the LDC Gigaword language
model data (for reasons of time) and we divided
the data into “in-domain” and “out-of-domain”
corpora. The data sets are summarised in Tables
10 and 11.

In order to create systems for the medical trans-
lation tasks, we used phrase-based Moses with ex-
actly the same settings as for the news translation
task, including the OSM (Durrani et al., 2011),
and compound splitting Koehn and Knight (2003)
for German source. We did not use word clusters
(Section 1.2), as they did not give good results on
this task, but we have yet to find a reason for this.
For language model training, we decided not to
build separate models on each corpus as there was

*Cumulative gains do not include gains obtain from big
language models for hi-en and en-de.
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Data Set de-en | fr-en
coppa-in
PatTR-in-claims
PatTR-in-abstract
PatTR-in-titles
UMLS
MuchMore
EMEA
WikiTitles
PatTR-out
coppa-out
MultiUN

czeng

europarl
news-comm
commoncrawl
FrEnGiga

Ccs-én

=
=

SW<Y<Y<Y pPppBbBW<YpBb<pBpBB
BY<YY PP iBoYWY<Y<Y<Y<«w
WYY Y DY <YK¥Y“Y DY Y<Y<«x

Table 10: Parallel data sets used in the medical
translation task. The sets above the line were clas-
sified as “in-domain” and those below as “out-of-
domain”.

Data Set cs | de | en | fr
PIL n n y | n
DrugBank n | n y | n
WikiArticles y |y y |y
PatTR-in-description n|y y |y
GENIA n n y | n
FMA n n y | n
AACT n n y | n
PatTR-out-description n y y |y

Table 11: Additional monolingual data used in
the medical translation task. Those above the line
were classified as “in-domain” and the one below
as “out-of-domain”. We also used the target sides
of all the parallel corpora for language modelling.

a large variation in corpus sizes. Instead we con-
catenated the in-domain target sides with the in-
domain extra monolingual data to create training
data for an in-domain language model, and simi-
larly for the out-of-domain data. The two language
models were interpolated using SRILM, minimis-
ing perplexity on the Khresmoi summary develop-
ment data.

During system development, we only had 500
sentences of development data (SUMMARY-DEV)
from the Khresmoi project, so we decided to se-
lect further development and devtest data from the
EMEA corpus, reasoning that it was fairly close
in domain to SUMMARY-DEV. We selected a tun-
ing set (5000 sentence pairs, which were added to
SUMMARY-DEV) and a devtest set (3000 sentence
pairs) from EMEA after first de-duplicating it, and
ignoring sentence pairs which were too short, or



contained too many capital letters or numbers. The
EMEA contains many duplicated sentences, and
we removed all sentence pairs where either side
was a duplicate, reducing the size of the corpus
to about 25% of the original. We also removed
EMEA from Czeng, since otherwise it would over-
lap with our selected development sets.

We also experimented with modified Moore-
Lewis (Moore and Lewis, 2010; Axelrod et al.,
2011) data selection, using the EMEA corpus as
the in-domain corpus (for the language model re-
quired in MML) and selecting from all the out-of-
domain data.

When running on the final test set (SUMMARY-
TEST) we found that it was better to tune just on
SUMMARY-DEYV, even though it was much smaller
than the EMEA dev set we had selected. All but
two (cs-en, de-en) of our submitted systems used
the MML selection, because it worked better on
our EMEA devtest set. However, as can be seen
from Table 12, systems built with all the data gen-
erally perform better. We concluded that EMEA
was not a good representative of the Khresmoi
data, perhaps because of domain differences, or
perhaps just because of the alignment noise that
appears (from informal inspection) to be present
in EMEA.

| from English I into English

| in | in+20 | intout || in | in+20 | in+out
de | 18.59 | 20.88 - 36.17 - 38.57
cs | 18.78 | 2345 | 23.77 30.12 - 36.32
fr | 35.24 | 40.74 | 41.04 45.15 | 46.44 | 46.58

Table 12: Results (cased BLEU) on the khresmoi
summary test set. The “in” systems include all
in-domain data, the “in+20” systems also include
20% of the out-of-domain data and the “out” sys-
tems include all data. The submitted systems are
shown in italics, except for de-en and cs-en where
we submitted a “in+out” systems. For de-en, this
was tuned on SUMMARY-DEV plus the EMEA dev
set and scored 37.31, whilst for cs-en we included
LDC Giga in the LM, and scored 36.65.

For translating the Khresmoi queries, we used
the same systems as for the summaries, except that
generally we did not retune on the SUMMARY-DEV
data. We added a post-processing script to strip
out extraneous stop words, which improved BLEU,
but we would not expect it to matter in a real CLIR
system as it would do its own stop-word removal.
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Abstract

This paper describes one of the col-
laborative efforts within EU-BRIDGE to
further advance the state of the art in
machine translation between two Euro-
pean language pairs, German—English
and English—German. Three research
institutes involved in the EU-BRIDGE
project combined their individual machine
translation systems and participated with a
joint setup in the shared translation task of
the evaluation campaign at the ACL 2014
Eighth Workshop on Statistical Machine
Translation (WMT 2014).

We combined up to nine different machine
translation engines via system combina-
tion. RWTH Aachen University, the Uni-
versity of Edinburgh, and Karlsruhe In-
stitute of Technology developed several
individual systems which serve as sys-
tem combination input. We devoted spe-
cial attention to building syntax-based sys-
tems and combining them with the phrase-
based ones. The joint setups yield em-
pirical gains of up to 1.6 points in BLEU
and 1.0 points in TER on the WMT news-
test2013 test set compared to the best sin-
gle systems.

1 Introduction

EU-BRIDGE! is a European research project
which is aimed at developing innovative speech
translation technology. This paper describes a

http://www.eu-bridge.eu
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joint WMT submission of three EU-BRIDGE
project partners. RWTH Aachen University
(RWTH), the University of Edinburgh (UEDIN)
and Karlsruhe Institute of Technology (KIT) all
provided several individual systems which were
combined by means of the RWTH Aachen system
combination approach (Freitag et al., 2014). As
distinguished from our EU-BRIDGE joint submis-
sion to the IWSLT 2013 evaluation campaign (Fre-
itag et al., 2013), we particularly focused on trans-
lation of news text (instead of talks) for WMT. Be-
sides, we put an emphasis on engineering syntax-
based systems in order to combine them with our
more established phrase-based engines. We built
combined system setups for translation from Ger-
man to English as well as from English to Ger-
man. This paper gives some insight into the tech-
nology behind the system combination framework
and the combined engines which have been used
to produce the joint EU-BRIDGE submission to
the WMT 2014 translation task.

The remainder of the paper is structured as fol-
lows: We first describe the individual systems by
RWTH Aachen University (Section 2), the Uni-
versity of Edinburgh (Section 3), and Karlsruhe
Institute of Technology (Section 4). We then
present the techniques for machine translation sys-
tem combination in Section 5. Experimental re-
sults are given in Section 6. We finally conclude
the paper with Section 7.

2 RWTH Aachen University

RWTH (Peitz et al., 2014) employs both the
phrase-based (RWTH scss) and the hierarchical
(RWTH hiero) decoder implemented in RWTH’s
publicly available translation toolkit Jane (Vilar

Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 105-113,
Baltimore, Maryland USA, June 26-27, 2014. (©2014 Association for Computational Linguistics



et al., 2010; Wuebker et al., 2012). The model
weights of all systems have been tuned with stan-
dard Minimum Error Rate Training (Och, 2003)
on a concatenation of the newstest2011 and news-
test2012 sets. RWTH used BLEU as optimiza-
tion objective. Both for language model estima-
tion and querying at decoding, the KenLLM toolkit
(Heafield et al., 2013) is used. All RWTH sys-
tems include the standard set of models provided
by Jane. Both systems have been augmented with
a hierarchical orientation model (Galley and Man-
ning, 2008; Huck et al., 2013) and a cluster lan-
guage model (Wuebker et al., 2013). The phrase-
based system (RWTH scss) has been further im-
proved by maximum expected BLEU training sim-
ilar to (He and Deng, 2012). The latter has been
performed on a selection from the News Commen-
tary, Europarl and Common Crawl corpora based
on language and translation model cross-entropies
(Mansour et al., 2011).

3 University of Edinburgh

UEDIN contributed phrase-based and syntax-
based systems to both the German—English and
the English—German joint submission.

3.1 Phrase-based Systems

UEDIN’s phrase-based systems (Durrani et al.,
2014) have been trained using the Moses toolkit
(Koehn et al., 2007), replicating the settings de-
scribed in (Durrani et al., 2013b). The features
include: a maximum sentence length of 80, grow-
diag-final-and symmetrization of GIZA++ align-
ments, an interpolated Kneser-Ney smoothed 5-
gram language model with KenLM (Heafield,
2011) used at runtime, a lexically-driven 5-gram
operation sequence model (OSM) (Durrani et al.,
2013a), msd-bidirectional-fe lexicalized reorder-
ing, sparse lexical and domain features (Hasler
et al., 2012), a distortion limit of 6, a maxi-
mum phrase length of 5, 100-best translation op-
tions, Minimum Bayes Risk decoding (Kumar and
Byrne, 2004), cube pruning (Huang and Chiang,
2007), with a stack size of 1000 during tuning and
5000 during testing and the no-reordering-over-
punctuation heuristic. UEDIN uses POS and mor-
phological target sequence models built on the in-
domain subset of the parallel corpus using Kneser-
Ney smoothed 7-gram models as additional factors
in phrase translation models (Koehn and Hoang,
2007). UEDIN has furthermore built OSM mod-

els over POS and morph sequences following
Durrani et al. (2013c). The English—German
system additionally comprises a target-side LM
over automatically built word classes (Birch et
al.,, 2013). UEDIN has applied syntactic pre-
reordering (Collins et al., 2005) and compound
splitting (Koehn and Knight, 2003) of the source
side for the German—English system. The sys-
tems have been tuned on a very large tuning set
consisting of the test sets from 2008-2012, with
a total of 13,071 sentences. UEDIN used news-
test2013 as held-out test set. On top of UEDIN
phrase-based 1 system, UEDIN phrase-based 2
augments word classes as additional factor and
learns an interpolated target sequence model over
cluster IDs. Furthermore, it learns OSM models
over POS, morph and word classes.

3.2 Syntax-based Systems

UEDIN’s syntax-based systems (Williams et al.,
2014) follow the GHKM syntax approach as pro-
posed by Galley, Hopkins, Knight, and Marcu
(Galley et al., 2004). The open source Moses
implementation has been employed to extract
GHKM rules (Williams and Koehn, 2012). Com-
posed rules (Galley et al., 2006) are extracted in
addition to minimal rules, but only up to the fol-
lowing limits: at most twenty tree nodes per rule,
a maximum depth of five, and a maximum size of
five. Singleton hierarchical rules are dropped.

The features for the syntax-based systems com-
prise Good-Turing-smoothed phrase translation
probabilities, lexical translation probabilities in
both directions, word and phrase penalty, a rule
rareness penalty, a monolingual PCFG probability,
and a 5-gram language model. UEDIN has used
the SRILM toolkit (Stolcke, 2002) to train the lan-
guage model and relies on KenLM for language
model scoring during decoding. Model weights
are optimized to maximize BLEU. 2000 sentences
from the newstest2008-2012 sets have been se-
lected as a development set. The selected sen-
tences obtained high sentence-level BLEU scores
when being translated with a baseline phrase-
based system, and each contain less than 30 words
for more rapid tuning. Decoding for the syntax-
based systems is carried out with cube pruning
using Moses’ hierarchical decoder (Hoang et al.,
2009).

UEDIN’s German— English syntax-based setup
is a string-to-tree system with compound splitting

106



on the German source-language side and syntactic
annotation from the Berkeley Parser (Petrov et al.,
2006) on the English target-language side.

For English—German, UEDIN has trained var-
ious string-to-tree GHKM syntax systems which
differ with respect to the syntactic annotation. A
tree-to-string system and a string-to-string system
(with rules that are not syntactically decorated)
have been trained as well. The English—German
UEDIN GHKM system names in Table 3 denote:

UEDIN GHKM S2T (ParZu): A string-to-tree
system trained with target-side syntactic an-
notation obtained with ParZu (Sennrich et
al., 2013). It uses a modified syntactic label
set, target-side compound splitting, and addi-
tional syntactic constraints.

UEDIN GHKM S2T (BitPar): A string-to-tree
system trained with target-side syntactic
annotation obtained with BitPar (Schmid,
2004).

UEDIN GHKM S2T (Stanford): A string-to-
tree system trained with target-side syntactic
annotation obtained with the German Stan-
ford Parser (Rafferty and Manning, 2008a).

UEDIN GHKM S2T (Berkeley): A string-to-
tree system trained with target-side syntactic
annotation obtained with the German Berke-
ley Parser (Petrov and Klein, 2007; Petrov
and Klein, 2008).

UEDIN GHKM T2S (Berkeley): A tree-to-
string system trained with source-side syn-
tactic annotation obtained with the English
Berkeley Parser (Petrov et al., 2006).

UEDIN GHKM S2S (Berkeley): A string-to-
string system. The extraction is GHKM-
based with syntactic target-side annotation
from the German Berkeley Parser, but we
strip off the syntactic labels. The final gram-
mar contains rules with a single generic non-
terminal instead of syntactic ones, plus rules
that have been added from plain phrase-based
extraction (Huck et al., 2014).

4 Karlsruhe Institute of Technology

The KIT translations (Herrmann et al., 2014) are
generated by an in-house phrase-based transla-
tions system (Vogel, 2003). The provided News
Commentary, Europarl, and Common Crawl par-
allel corpora are used for training the translation
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model. The monolingual part of those parallel
corpora, the News Shuffle corpus for both direc-
tions and additionally the Gigaword corpus for
German—English are used as monolingual train-
ing data for the different language models. Opti-
mization is done with Minimum Error Rate Train-
ing as described in (Venugopal et al., 2005), using
newstest2012 and newstest2013 as development
and test data respectively.

Compound splitting (Koehn and Knight, 2003)
is performed on the source side of the corpus for
German—English translation before training. In
order to improve the quality of the web-crawled
Common Crawl corpus, noisy sentence pairs are
filtered out using an SVM classifier as described
by Mediani et al. (2011).

The word alignment for German—English is
generated using the GIZA++ toolkit (Och and Ney,
2003). For English—German, KIT uses discrimi-
native word alignment (Niehues and Vogel, 2008).
Phrase extraction and scoring is done using the
Moses toolkit (Koehn et al., 2007). Phrase pair
probabilities are computed using modified Kneser-
Ney smoothing as in (Foster et al., 2006).

In both systems KIT applies short-range re-
orderings (Rottmann and Vogel, 2007) and long-
range reorderings (Niehues and Kolss, 2009)
based on POS tags (Schmid, 1994) to perform
source sentence reordering according to the target
language word order. The long-range reordering
rules are applied to the training corpus to create
reordering lattices to extract the phrases for the
translation model. In addition, a tree-based re-
ordering model (Herrmann et al., 2013) trained
on syntactic parse trees (Rafferty and Manning,
2008b; Klein and Manning, 2003) as well as a lex-
icalized reordering model (Koehn et al., 2005) are
applied.

Language models are trained with the SRILM
toolkit (Stolcke, 2002) and use modified Kneser-
Ney smoothing. Both systems utilize a lan-
guage model based on automatically learned
word classes using the MKCLS algorithm (Och,
1999). The English—German system comprises
language models based on fine-grained part-of-
speech tags (Schmid and Laws, 2008). In addi-
tion, a bilingual language model (Niehues et al.,
2011) is used as well as a discriminative word lex-
icon (Mauser et al., 2009) using source context to
guide the word choices in the target sentence.



In total, the English—German system uses the
following language models: two 4-gram word-
based language models trained on the parallel data
and the filtered Common Crawl data separately,
two 5-gram POS-based language models trained
on the same data as the word-based language mod-
els, and a 4-gram cluster-based language model
trained on 1,000 MKCLS word classes.

The German—-English system uses a 4-gram
word-based language model trained on all mono-
lingual data and an additional language model
trained on automatically selected data (Moore and
Lewis, 2010). Again, a 4-gram cluster-based
language model trained on 1000 MKCLS word
classes is applied.

5 System Combination

System combination is used to produce consen-
sus translations from multiple hypotheses which
are outputs of different translation engines. The
consensus translations can be better in terms of
translation quality than any of the individual hy-
potheses. To combine the engines of the project
partners for the EU-BRIDGE joint setups, we ap-
ply a system combination implementation that has
been developed at RWTH Aachen University.

The implementation of RWTH’s approach to
machine translation system combination is de-
scribed in (Freitag et al., 2014). This approach
includes an enhanced alignment and reordering
framework. Alignments between the system out-
puts are learned using METEOR (Banerjee and
Lavie, 2005). A confusion network is then built
using one of the hypotheses as “primary” hypoth-
esis. We do not make a hard decision on which
of the hypotheses to use for that, but instead com-
bine all possible confusion networks into a single
lattice. Majority voting on the generated lattice
is performed using the prior probabilities for each
system as well as other statistical models, e.g. a
special n-gram language model which is learned
on the input hypotheses. Scaling factors of the
models are optimized using the Minimum Error
Rate Training algorithm. The translation with the
best total score within the lattice is selected as con-
sensus translation.

6 Results

In this section, we present our experimental results
on the two translation tasks, German—English
and English—German. The weights of the in-
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dividual system engines have been optimized on
different test sets which partially or fully include
newstest2011 or newstest2012. System combina-
tion weights are either optimized on newstest2011
or newstest2012. We kept newstest2013 as an un-
seen test set which has not been used for tuning
the system combination or any of the individual
systems.

6.1 German—English

The automatic scores of all individual systems
as well as of our final system combination sub-
mission are given in Table 1. KIT, UEDIN and
RWTH are each providing one individual phrase-
based system output. RWTH (hiero) and UEDIN
(GHKM) are providing additional systems based
on the hierarchical translation model and a string-
to-tree syntax model. The pairwise difference
of the single system performances is up to 1.3
points in BLEU and 2.5 points in TER. For
German—English, our system combination pa-
rameters are optimized on newstest2012. System
combination gives us a gain of 1.6 points in BLEU
and 1.0 points in TER for newstest2013 compared
to the best single system.

In Table 2 the pairwise BLEU scores for all in-
dividual systems as well as for the system combi-
nation output are given. The pairwise BLEU score
of both RWTH systems (taking one as hypothesis
and the other one as reference) is the highest for all
pairs of individual system outputs. A high BLEU
score means similar hypotheses. The syntax-based
system of UEDIN and RWTH scss differ mostly,
which can be observed from the fact of the low-
est pairwise BLEU score. Furthermore, we can
see that better performing individual systems have
higher BLEU scores when evaluating against the
system combination output.

In Figure 1 system combination output is com-
pared to the best single system KIT. We distribute
the sentence-level BLEU scores of all sentences of
newstest2013. To allow for sentence-wise evalu-
ation, all bi-, tri-, and four-gram counts are ini-
tialized with 1 instead of 0. Many sentences have
been improved by system combination. Neverthe-
less, some sentences fall off in quality compared
to the individual system output of KIT.

6.2 English—German

The results of all English—German system setups
are given in Table 3. For the English—German
translation task, only UEDIN and KIT are con-



system newstest2011 | newstest2012 | newstest2013

BLEU | TER | BLEU | TER | BLEU | TER
KIT 250 | 576 | 252 | 574 | 275 | 544
UEDIN 239 | 59.2 | 247 | 58.3 274 | 55.0
RWTH scss 23.6 | 59.5 242 | 58.5 27.0 | 55.0
RWTH hiero 23.3 | 59.9 24.1 | 59.0 | 26.7| 559
UEDIN GHKM S2T (Berkeley) 23.0 | 60.1 23.2 | 60.8 26.2 | 56.9
syscom 25.6 | 57.1 264 | 56.5| 29.1 | 534

Table 1: Results for the German—English translation task. The system combination is tuned on news-
test2012, newstest2013 is used as held-out test set for all individual systems and system combination.
Bold font indicates system combination results that are significantly better than the best single system
with p < 0.05.

KIT | UEDIN | RWTH scss | RWTH hiero | UEDIN S2T | syscom
KIT 59.07 57.60 5791 55.62 77.68
UEDIN 59.17 56.96 57.84 59.89 72.89
RWTH scss | 57.64 | 56.90 64.94 53.10 71.16
RWTH hiero | 57.98 | 57.80 64.97 55.73 70.87
UEDIN S2T | 55.75 | 59.95 53.19 55.82 65.35
syscom 77.76 | 72.83 71.17 70.85 65.24

Table 2: Cross BLEU scores for the German—English newstest2013 test set. (Pairwise BLEU scores:
each entry is taking the horizontal system as hypothesis and the other one as reference.)

system newstest2011 | newstest2012 | newstest2013

BLEU | TER | BLEU | TER | BLEU \ TER
UEDIN phrase-based 1 175 | 67.3 182 | 65.0| 205| 62.7
UEDIN phrase-based 2 17.8 | 66.9 185 | 64.6 | 20.8| 623
UEDIN GHKM S2T (ParZu) 172 | 67.6 18.0 | 655 | 202 | 628
UEDIN GHKM S2T (BitPar) 16.3 | 69.0 17.3 | 66.6 19.5 | 63.9
UEDIN GHKM S2T (Stanford) 16.1 | 69.2 172 | 67.0 19.0 | 64.2
UEDIN GHKM S2T (Berkeley) 16.3 | 68.9 172 | 66.7 193 | 63.8
UEDIN GHKM T2S (Berkeley) 16.7 | 68.9 17.5 | 66.9 19.5 | 63.8
UEDIN GHKM S2S (Berkeley) 16.3 | 69.2 17.3 | 66.8 19.1 | 643
KIT 17.1 | 67.0 178 | 648 | 202 | 62.2
syscom 18.4 | 65.0 187 | 634 | 21.3| 60.6

Table 3: Results for the English—German translation task. The system combination is tuned on news-
test2011, newstest2013 is used as held-out test set for all individual systems and system combination.
Bold font indicates system combination results that are significantly (Bisani and Ney, 2004) better than
the best single system with p < 0.05. Italic font indicates system combination results that are significantly
better than the best single system with p < 0.1.

tributing individual systems. KIT is providing a In Table 4 the cross BLEU scores for all

phrase-based system output, UEDIN is providing
two phrase-based system outputs and six syntax-
based ones (GHKM). For English—German, our
system combination parameters are optimized on
newstest2011. Combining all nine different sys-
tem outputs yields an improvement of 0.5 points
in BLEU and 1.7 points in TER over the best sin-
gle system performance.
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English—German systems are given. The individ-
ual system of KIT and the syntax-based ParZu sys-
tem of UEDIN have the lowest BLEU score when
scored against each other. Both approaches are
quite different and both are coming from differ-
ent institutes. In contrast, both phrase-based sys-
tems pbt 1 and pbt 2 from UEDIN are very sim-
ilar and hence have a high pairwise BLEU score.



pbt1 | pbt2 | ParZu | BitPar | Stanford | S2T | T2S | S2S | KIT | syscom

pbt 1 75.84 | 51.61 | 53.93 55.32 54.79 | 54.52 | 60.92 | 54.80 | 70.12
pbt 2 75.84 51.96 | 53.39 53.93 53.97 | 53.10 | 57.32 | 54.04 | 73.75
ParZu 51.57 | 5191 56.67 55.11 56.05 | 52.13 | 51.22 | 48.14 | 68.39
BitPar 54.00 | 53.45 | 56.78 64.59 65.67 | 56.33 | 56.62 | 49.23 | 62.08
Stanford | 55.37 | 53.98 | 55.19 | 64.56 69.22 | 58.81 | 61.19 | 50.50 | 61.51
S2T 54.83 | 54.02 | 56.14 | 65.64 69.21 59.32 | 60.16 | 50.07 | 62.81
T2S 54.57 | 53.15 | 52.21 | 56.30 58.81 59.32 59.34 | 50.01 | 63.13
S28 60.96 | 57.36 | 51.29 | 56.59 61.18 60.15 | 59.33 53.68 | 60.46
KIT 54.75 | 5398 | 48.13 | 49.13 50.41 49.98 | 49.93 | 53.59 63.33
syscom | 70.01 | 73.63 | 68.32 | 61.92 61.37 62.67 | 62.99 | 60.32 | 63.27

Table 4: Cross BLEU scores for the German—English newstest2013 test set. (Pairwise BLEU scores:
each entry is taking the horizontal system as reference and the other one as hypothesis.)

400

350

300

250

200 ~

9.0.0.¢
RS
RRARAANRS

150 -

amount sentences

100 |

Love)
|
00040200, 920. 9.9
QR
8 009,990,900,

50

0
0

sBLEU

Figure 1: Sentence distribution for the
German—English newstest2013 test set compar-
ing system combination output against the best
individual system.

As for the German—English translation direction,
the best performing individual system outputs are
also having the highest BLEU scores when evalu-
ated against the final system combination output.

In Figure 2 system combination output is com-
pared to the best single system pbt 2. We distribute
the sentence-level BLEU scores of all sentences
of newstest2013. Many sentences have been im-
proved by system combination. But there is still
room for improvement as some sentences are still
better in terms of sentence-level BLEU in the indi-
vidual best system pbt 2.

7 Conclusion

We achieved significantly better translation perfor-
mance with gains of up to +1.6 points in BLEU
and -1.0 points in TER by combining up to nine
different machine translation systems. Three dif-
ferent research institutes (RWTH Aachen Univer-
sity, University of Edinburgh, Karlsruhe Institute
of Technology) provided machine translation en-
gines based on different approaches like phrase-
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Figure 2: Sentence distribution for the
English—German newstest2013 test set compar-
ing system combination output against the best
individual system.

based, hierarchical phrase-based, and syntax-
based. For English—German, we included six
different syntax-based systems, which were com-
bined to our final combined translation. The au-
tomatic scores of all submitted system outputs for
the actual 2014 evaluation set are presented on the
WMT submission page.” Our joint submission is
the best submission in terms of BLEU and TER for
both translation directions German—English and
English—German without adding any new data.
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Abstract

We present a new version of Phrasal, an
open-source toolkit for statistical phrase-
based machine translation. This revision
includes features that support emerging re-
search trends such as (a) tuning with large
feature sets, (b) tuning on large datasets like
the bitext, and (c) web-based interactive ma-
chine translation. A direct comparison with
Moses shows favorable results in terms of
decoding speed and tuning time.

1 Introduction

In the early part of the last decade, phrase-based ma-
chine translation (MT) (Koehn et al., 2003) emerged
as the preeminent design of statistical MT systems.
However, most systems were proprietary or closed-
source, so progress was initially constrained by
the high engineering barrier to entry into the field.
Then Moses (Koehn et al., 2007) was released.
What followed was a flowering of work on all as-
pects of the translation problem, from rule extrac-
tion to deployment issues. Other toolkits appeared
including Joshua (Post et al., 2013), Jane (Wuebker
et al., 2012), cdec (Dyer et al., 2010) and the first
version of our package, Phrasal (Cer et al., 2010), a
Java-based, open source package.

This paper presents a completely re-designed
release of Phrasal that lowers the barrier to entry
into several exciting areas of MT research. First,
Phrasal exposes a simple yet flexible feature API for
building large-scale, feature-rich systems. Second,
Phrasal provides multi-threaded decoding and on-
line tuning for learning feature-rich models on very
large datasets, including the bitext. Third, Phrasal
supplies the key ingredients for web-based, inter-
active MT: an asynchronous RESTful JSON web
service implemented as a J2EE servlet, integrated
pre- and post-processing, and fast search.

Revisions to Phrasal were guided by several de-
sign choices. First, we optimized the system for
multi-core architectures, eschewing distributed in-
frastructure like Hadoop and MapReduce. While

“scaling-out” with distributed infrastructure is the
conventional industry and academic choice, we find
that “scaling-up” on a single large-node is an at-
tractive yet overlooked alternative (Appuswamy et
al., 2013). A single “scale-up” node is usually
competitive in terms of cost and performance, and
multi-core code has fewer dependencies in terms
of software and expertise. Second, Phrasal makes
extensive use of Java interfaces and reflection. This
is especially helpful in the feature API. A feature
function can be added to the system by simply im-
plementing an interface and specifying the class
name on the decoder command line. There is no
need to modify or recompile anything other than
the new feature function.

This paper presents a direct comparison of
Phrasal and Moses that shows favorable results
in terms of decoding speed and tuning time. An
indirect comparison via the WMT2014 shared
task (Neidert et al., 2014) showed that Phrasal
compares favorably to Moses in an evaluation
setting. The source code is freely available at:
http://nlp.stanford.edu/software/phrasal/

2 Standard System Pipeline

This section describes the steps required to build
a phrase-based MT system from raw text. Each
step is implemented as a stand-alone executable.
For convenience, the Phrasal distribution includes
a script that coordinates the steps.

2.1 Prerequisites

Phrasal assumes offline preparation of word align-
ments and at least one target-side language model.

Word Alignment The rule extractor can accom-
modate either unsymmetrized or symmetrized
alignments. Unsymmetrized alignments can be
produced with either GIZA++ or the Berkeley
Aligner (Liang et al., 2006). Phrasal then applies
symmetrization on-the-fly using heuristics such as
grow-diag or grow-diag-final. If the alignments are
symmetrized separately, then Phrasal accepts align-
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ments in the ¢-j Pharaoh format, which indicates
that source token 7 is aligned to target token j.

Language Modeling Phrasal can load any n-
gram language model saved in the ARPA format.
There are two LM loaders. The Java-based loader is
used by default and is appropriate for small-scale ex-
periments and pure-Java environments. The C++
KenLLM (Heafield, 2011) loader! is best for large-
scale LMs such as the unfiltered models produced
by Implz (Heafield et al., 2013). Profiling shows
that LM queries often account for more than 50% of
the CPU time in a Phrasal decoding run, so we de-
signed the Phrasal KenLM loader to execute queries
mostly in C++ for efficiency. The KenLLM bind-
ing efficiently passes full strings to C++ via JNI.
KenlLM then iterates over the string, returning a
score and a state length. Phrasal can load multiple
language models, and includes native support for
the class-based language models that have become
popular in recent evaluations (Wuebker et al., 2012;
Ammar et al., 2013; Durrani et al., 2013).

2.2 Rule Extraction

The next step in the pipeline is extraction of a phrase
table. Phrasal includes a multi-threaded version
of the rule extraction algorithm of Och and Ney
(2004). Phrase tables can be filtered to a specific
data set—as is common in research environments.
When filtering, the rule extractor lowers memory
utilization by splitting the data into arbitrary-sized
chunks and extracting rules from each chunk.

The rule extractor includes a feature API that is
independent of the decoder feature API. This al-
lows for storage of static rule feature values in the
phrase table. Static rule features are useful in two
cases. First, if a feature value depends on bitext
statistics, which are not accessible during tuning
or decoding, then that feature should be stored in
the phrase table. Examples are the standard phrase
translation probabilities, and the dense rule count
and rule uniqueness indicators described by Green
et al. (2013). Second, if a feature depends only
on the rule and is unlikely to change, then it may
be more efficient to store that feature value in the
phrase table. An example is a feature template that
indicates inclusion in a specific data domain (Dur-
rani et al., 2013). Rule extractor feature templates
must implement the FeatureExtractor inter-
face and are loaded via reflection.

"Tnvoked by prefixing the LM path with the “kenlm:”.
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The rule extractor can also create lexicalized re-
ordering tables. The standard phrase orientation
model (Tillmann, 2004) and the hierarchical model
of Galley and Manning (2008) are available.

2.3 Tuning

Once a language model has been estimated and a
phrase table has been extracted, the next step is to
estimate model weights. Phrasal supports tuning
over n-best lists, which permits rapid experimenta-
tion with different error metrics and loss functions.
Lattice-based tuning, while in principle more pow-
erful, requires metrics and losses that factor over
lattices, and in practice works no better than n-best
tuning (Cherry and Foster, 2012).

Tuning requires a parallel set {(f;, es)}2_; of
source sentences f; and target references e;.
Phrasal follows the log-linear approach to phrase-
based translation (Och and Ney, 2004) in which
the predictive translation distribution p(e|f; w) is
modeled directly as

plelfiw) = ey

o oot )]
where w € R? is the vector of model parameters,
¢(-) € R? is a feature map, and Z( f) is an appro-
priate normalizing constant.

MT differs from other machine learning settings
in that it is not common to tune to log-likelihood
under (1). Instead, a gold error metric G(€’, e) is
chosen that specifies the similarity between a hy-
pothesis ¢’ and a reference e, and that error is min-
imized over the tuning set. Phrasal includes Java
implementations of BLEU (Papineni et al., 2002),
NIST, and WER, and bindings for TER (Snover et
al., 2006) and METEOR (Denkowski and Lavie,
2011). The error metric is incorporated into a loss
function ¢ that returns the loss at either the sentence-
or corpus- level.

For conventional corpus-level (batch) tuning,
Phrasal includes multi-threaded implementations
of MERT (Och, 2003) and PRO (Hopkins and
May, 2011). The MERT implementation uses the
line search of Cer et al. (2008) to directly min-
imize corpus-level error. The PRO implementa-
tion uses a pairwise logistic loss to minimize the
number of inversions in the ranked n-best lists.
These batch implementations accumulate n-best
lists across epochs.

%For simplicity, we assume one reference, but the multi-
reference case is analogous.



Online tuning is faster and more scalable than
batch tuning, and sometimes leads to better solu-
tions for non-convex settings like MT (Bottou and
Bousquet, 2011). Weight updates are performed
after each tuning example is decoded, and n-best
lists are not accumulated. Consequently, online tun-
ing is preferable for large tuning sets, or for rapid
iteration during development. Phrasal includes the
AdaGrad-based (Duchi et al., 2011) tuner of Green
et al. (2013). The regularization options are Lo,
efficient L; for feature selection (Duchi and Singer,
2009), or L1 + Lo (elastic net). There are two on-
line loss functions: a pairwise (PRO) objective and
a listwise minimum expected error objective (Och,
2003). These online loss functions require sentence-
level error metrics, several of which are available in
the toolkit: BLEU+1 (Lin and Och, 2004), Nakov
BLEU (Nakov et al., 2012), and TER.

2.4 Decoding

The Phrasal decoder can be invoked either program-
matically as a Java object or as a standalone appli-
cation. In both cases the decoder is configured via
options that specify the language model, phrase
table, weight vector w, etc. The decoder is multi-
threaded, with one decoding instance per thread.
Each decoding instance has its own weight vector,
so in the programmatic case, it is possible to decode
simultaneously under different weight vectors.

Two search procedures are included. The default
is the phrase-based variant of cube pruning (Huang
and Chiang, 2007). The standard multi-stack beam
search (Och and Ney, 2004) is also an option. Ei-
ther procedure can be configured in one of several
recombination modes. The “Pharaoh” mode only
considers linear distortion, source coverage, and
target LM history. The “Exact” mode considers
these states in addition to any feature that declares
recombination state (see section 3.3).

The decoder includes several options for deploy-
ment environments such as an unknown word API,
pre-/post-processing APIs, and both full and prefix-
based force decoding.

2.5 Evaluation and Post-processing

All of the error metrics available for tuning can
also be invoked for evaluation. For significance
testing, the toolkit includes an implementation of
the permutation test of Riezler and Maxwell (2005),
which was shown to be less susceptible to Type-I
error than bootstrap re-sampling (Koehn, 2004).
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r:s(rw) reR axiom
d: wcgfi? 8(5/:;)(7“’1”) r ¢ cov(d)  item
lcov(d)| = |s] goal

Table 1: Phrase-based MT as deductive inference.
This notation can be read as follows: if the an-
tecedents on the top are true, then the consequent
on the bottom is true subject to the conditions on
the right. The new item d’ is creating by appending
r to the ordered sequence of rules that define d.

Phrasal also includes two truecasing packages.
The LM-based truecaser (Lita et al., 2003) requires
an LM estimated from cased, tokenized text. A
subsequent detokenization step is thus necessary. A
more convenient alternative is the CRF-based post-
processor that can be trained to invert an arbitrary
pre-processor. This post-processor can perform
truecasing and detokenization in one pass.

3 Feature API

Phrasal supports dynamic feature extraction dur-
ing tuning and decoding. In the API, feature tem-
plates are called featurizers. There are two types
with associated interfaces: RuleFeaturizer
and DerivationFeaturizer. One way to il-
lustrate these two featurizers is to consider phrase-
based decoding as a deductive system. Let r
(f,e) be arule in a set R, which is conventionally
called the phrase table. Letd = {r;}}, be an
ordered sequence of derivation N rules called a
derivation, which specifies a translation for some
source input sequence s (which, by some abuse of
notation, is equivalent to f in Eq. (1)). Finally,
define functions cov(d) as the source coverage set
of d as a bit vector and s(-, w) as the score of a rule
or derivation under w.? The expression r ¢ cov(d)
means that r maps to an empty/uncovered span in
cov(d). Table 1 shows the deductive system.

3.1 Dynamic Rule Features

RuleFeaturizers are invoked when scoring axioms,
which do not require any derivation context. The
static rule features described in section 2.2 also
contribute to axiom scoring, and differ only from
RuleFeaturizers in that they are stored permanently
in the phrase table. In contrast, RuleFeaturizers

3Note that s(d, w) = w " ¢(d) in the log-linear formulation
of MT (see Eq. (1)).



Listing 1: A RuleFeaturizer, which depends
only on a translation rule.

public class WordPenaltyFeaturizer
implements RuleFeaturizer {

@Override
public List<FeatureValue>
ruleFeaturize(Featurizable f) {

List<FeatureValue> features =
Generics.newLinkedList();

// Extract single feature
features.add(new FeatureValue(
"WordPenalty", f.targetPhrase.size()));

return features;
}
}

are extracted during decoding. An example feature
template is the word penalty, which is simply the
dimension of the target side of r (Listing 1).

Featurizable wraps decoder state from
which features can be extracted. RuleFeaturizers
are extracted during each phrase table query and
cached, so they can be simply efficiently retrieved
during decoding.

Once the feature is compiled, it is simply speci-
fied on the command-line when the decoder is exe-
cuted. No other configuration is required.

3.2 Derivation Features

DerivationFeaturizers are invoked when scoring
items, and thus depend on some derivation context.
An example is the LM, which requires the n-gram
context from d to score r when creating the new
hypothesis d’ (Listing 2).

The LM featurizer first looks up the recombi-
nation state of the derivation, which contains the
n-gram context. Then it queries the LM by passing
the rule and context, and sets the new state as the
result of the LM query. Finally, it returns a feature
“LM” with the value of the LM query.

3.3 Recombination State

Listing 2 shows a state lookup during feature ex-
traction. Phrase-based MT feature design differs
significantly from that of convex classifiers in terms
of the interaction with inference. For example, in
a maximum entropy classifier inference is exact,
so a good optimizer can simply nullify bad fea-
tures to retain baseline accuracy. In contrast, MT
feature templates affect search through both future
cost heuristics and recombination state. Bad fea-
tures can introduce search errors and thus decrease
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Listing 2: A DerivationFeaturizer, which
must lookup and save recombination state for ex-
traction.

public class NGramLanguageModelFeaturizer

extends DerivationFeaturizer {

@Override

public List<FeatureValue> featurize(
Featurizable f) {

// Get recombination state
LMState priorState = f.prior.getState(this);

// LM query
LMState state = lm.score(f.targetPhrase, priorState);

List<FeatureValue> features =
Generics.newLinkedList();

// Extract single feature
features.add(
new FeatureValue("LM", state.getScore()));

// Set new recombination state
f.setState(this, state);

return features;
}
}

accuracy, sometimes catastrophically.

t

The feature API allows DerivationFeaturizers
o explicitly declare recombination state via the

FeaturizerState interface.* The interface re-
quires a state equality operator and a hash code
function. Then the search procedure will only re-
combine derivations with equal states. For example,
the state of the n-gram LM DerivationFeaturizer

(

Listing 2) is the n-1 gram context, and the hash-

code is a hash of that context string. Only deriva-
tions for which the equality operator of LMState

Y

eturns true can be recombined.

4 Web Service

Machine translation output is increasingly uti-
lized in computer-assisted translation (CAT) work-
benches. To support deployment, Phrasal includes
a lightweight J2EE servlet that exposes a REST-
ful JSON API for querying a trained system. The
toolkit includes a standalone servlet container, but
the servlet may also be incorporated into a J2EE

S

erver. The servlet requires just one input param-

eter: the Phrasal configuration file, which is also
used for tuning and decoding. Consequently, after

Iy

unning the standard pipeline, the trained system

can be deployed with one command.

“To control future cost estimation, the designer would need

to write a new heuristic that considers perhaps a subset of
the full feature map. There is a separate API for future cost
heuristics.



4.1 Standard Web Service

The standard web service supports two types of
requests. The first is TranslationRequest,
which performs full decoding on a source input.
The JSON message structure is:

Listing 3: TranslationRequest message.

TranslationRequest {

srcLang :(string),
tgtLang :(string),
srcText :(string),
tgtText :(string),
limit :(integer),
properties :(object)

The srcLang and tgtLang fields are ignored by
the servlet, but can be used by a middleware proxy
to route requests to Phrasal servlet instances, one
per language pair. The SrcText field is the source
input, and properties is a Javascript associa-
tive array that can contain key/value pairs to pass
to the feature API. For example, we often use the
properties field to pass domain information
with each request.

Phrasal will perform full decoding and respond
with the message:

Listing 4: TranslationReply message,
which is returned upon successful processing of
TranslationRequest.

TranslationReply {
resultList :[
{tgtText :(string),
align :(string),
score :(float)

Yoo

}

resultlList is a ranked n-best list of transla-
tions, each with target tokens, word alignments,
and a score.

The second request type is RuleRequest,
which enables phrase table queries. These requests
are processed very quickly since decoding is not
required. The JSON message structure is:

Listing 5: RuleRequest message, which
prompts a direct lookup into the phrase table.

RuleRequest {
srcLang :(string),
tgtLang :(string),
srcText :(string),
limit :(integer),
properties :(object)

limit is the maximum number of translations to
return. The response message is analogous to that
for TranslationRequest, so we omit it.
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4.2 Interactive Machine Translation

Interactive machine translation (Bisbey and Kay,
1972) pairs human and machine translators in hopes
of increasing the throughput of high quality trans-
lation. It is an old idea that is again in focus. One
challenge is to present relevant machine suggestions
to humans. To that end, Phrasal supports context-
sensitive translation queries via prefix decod-
ing. Consider againthe TranslationRequest
message. When the tgtText field is empty, the
source input is decoded from scratch. But when
this field contains a prefix, Phrasal returns transla-
tions that begin with the prefix. The search proce-
dure force decodes the prefix, and then completes
the translation via conventional decoding. Conse-
quently, if the user has typed a partial translation,
Phrasal can suggest completions conditioned on
that prefix. The longer the prefix, the faster the de-
coding, since the user prefix constrains the search
space. This feature allows Phrasal to produce in-
creasingly precise suggestions as the user works.

S Experiments

We compare Phrasal and Moses by restricting an
existing large-scale system to a set of common fea-
tures. We start with the Arabic—English system of
Green et al. (2014), which is built from 6.6M paral-
lel segments. The system includes a 5-gram English
LM estimated from the target-side of the bitext and
990M English monolingual tokens. The feature set
is their dense baseline, but without lexicalized re-
ordering and the two extended phrase table features.
This leaves the nine baseline features also imple-
mented by Moses. We use the same phrase table,
phrase table query limit (20), and distortion limit
(5) for both decoders. The tuning set (mt023568)
contains 5,604 segments, and the development set
(mt04) contains 1,075 segments.

We ran all experiments on a dedicated server with
16 physical cores and 128GB of memory.

Figure 1 shows single-threaded decoding time
of the dev set as a function of the cube pruning
pop limit. At very low limits Moses is faster than
Phrasal, but then slows sharply. In contrast, Phrasal
scales linearly and is thus faster at higher pop limits.

Figure 2 shows multi-threaded decoding time of
the dev set with the cube pruning pop limit fixed
at 1,200. Here Phrasal is initially faster, but Moses
becomes more efficient at four threads. There are
two possible explanations. First, profiling shows
that LM queries account for approximately 75%
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Figure 1: Development set decoding time as a

function of the cube pruning pop limit.

of the Phrasal CPU-time. KenLM is written in
C-++, and Phrasal queries it via JNI. It appears
as though multi-threading across this boundary is
a source of inefficiency. Second, we observe that
the Java parallel garbage collector (GC) runs up to
seven threads, which become increasingly active
as the number of decoder threads increases. These
and other Java overhead threads must be scheduled,
limiting gains as the number of decoding threads
approaches the number of physical cores.

Finally, Figure 3 shows tuning BLEU as a func-
tion of wallclock time. For Moses we chose the
batch MIRA implementation of Cherry and Fos-
ter (2012), which is popular for tuning feature-rich
systems. Phrasal uses the online tuner with the ex-
pected BLEU objective (Green et al., 2014). Moses
achieves a maximum BLEU score of 47.63 after
143 minutes of tuning, while Phrasal reaches this
level after just 17 minutes, later reaching a maxi-
mum BLEU of 47.75 after 42 minutes. Much of
the speedup can be attributed to phrase table and
LM loading time: the Phrasal tuner loads these data
structures just once, while the Moses tuner loads
them every epoch. Of course, this loading time be-
comes more significant with larger-scale systems.

6 Conclusion

We presented a revised version of Phrasal, an open-
source, phrase-based MT toolkit. The revisions
support new directions in MT research including
feature-rich models, large-scale tuning, and web-
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Figure 3: Approximate BLEU-4 during tuning
as a function of time over 25 tuning epochs. The
horizontal axis is accumulated time, while each
point indicates BLEU at the end of an epoch.

based interactive MT. A direct comparison with
Moses showed favorable performance on a large-
scale translation system.
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Abstract

We describe the Uppsala University sys-
tems for WMT14. We look at the integra-
tion of a model for translating pronomi-
nal anaphora and a syntactic dependency
projection model for English—French. Fur-
thermore, we investigate post-ordering and
tunable POS distortion models for English—
German.

1 Introduction

In this paper we describe the Uppsala University
systems for WMT14. We present three different
systems. Two of them are based on the document-
level decoder Docent (Hardmeier et al., 2012; Hard-
meier et al., 2013a). In our English-French sys-
tem we extend Docent to handle pronoun anaphora,
and in our English—-German system we add part-
of-speech phrase-distortion models to Docent. For
German—English we also have a system based on
Moses (Koehn et al., 2007). Again the focus is
on word order, this time by using pre- and post-
reordering.

2 Document-Level Decoding

Traditional SMT decoders translate texts as bags
of sentences, assuming independence between sen-
tences. This assumption allows efficient algorithms
for exploring a large search space based on dy-
namic programming (Och et al., 2001). Because of
the dynamic programming assumptions it is hard to
directly include discourse-level and long-distance
features into a traditional SMT decoder.

In contrast to this very popular stack decoding
approach, our decoder Docent (Hardmeier et al.,
2012; Hardmeier et al., 2013a) implements a search
procedure based on local search. At any stage of
the search process, its search state consists of a
complete document translation, making it easy for
feature models to access the complete document
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with its current translation at any point in time. The
search algorithm is a stochastic variant of standard
hill climbing. At each step, it generates a successor
of the current search state by randomly applying
one of a set of state changing operations to a ran-
dom location in the document, and accepts the new
state if it has a better score than the previous state.
The operations are to change the translation of a
phrase, to change the word order by swapping the
positions of two phrases or moving a sequence of
phrases, and to resegment phrases. The initial state
can either be initialized randomly, or be based on
an initial run from Moses. This setup is not limited
by dynamic programming constraints, and enables
the use of the full translated target document to
extract features.

3 English-French

Our English-French system is a phrase-based SMT
system with a combination of two decoders, Moses
(Koehn et al., 2007) and Docent (Hardmeier et al.,
2013a). The fundamental setup is loosely based
on the system submitted by Cho et al. (2013) to
the WMT 2013 shared task. Our phrase table is
trained on data taken from the News commentary,
Europarl, UN, Common crawl and 10° corpora.
The first three of these corpora were included in-
tegrally into the training set after filtering out sen-
tences of more than 80 words. The Common crawl
and 10° data sets were run through an additional
filtering step with an SVM classifier, closely fol-
lowing Mediani et al. (2011). The system includes
three language models, a regular 6-gram model
with modified Kneser-Ney smoothing (Chen and
Goodman, 1998) trained with KenLM (Heafield,
2011), a 4-gram bilingual language model (Niechues
et al., 2011) with Kneser-Ney smoothing trained
with KenLM and a 9-gram model over Brown clus-
ters (Brown et al., 1992) with Witten-Bell smooth-
ing (Witten and Bell, 1991) trained with SRILM
(Stolcke, 2002).
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Figure 1: Pronominal Anaphora Model

Our baseline system achieved a cased BLEU
score of 33.2 points on the newstest2014 data set.
Since the anaphora model used in our submission
suffered from a serious bug, we do not discuss the
results of the primary submission in more detail.

3.1 Pronominal Anaphora Model

Our pronominal anaphora model is an adaptation
of the pronoun prediction model described by Hard-
meier et al. (2013b) to SMT. The model consists
of a neural network that discriminatively predicts
the translation of a source language pronoun from
a short list of possible target language pronouns us-
ing features from the context of the source language
pronouns and from the translations of possibly re-
mote antecedents. The objective of this model is to
handle situations like the one depicted in Figure 1,
where the correct choice of a target-language pro-
noun is subject to morphosyntactic agreement with
its antecedent. This problem consists of several
steps. To score a pronoun, the system must decide
if a pronoun is anaphoric and, if so, find potential
antecedents. Then, it can predict what pronouns
are likely to occur in the translation. Our pronoun
prediction model is trained on both tasks jointly,
including anaphora resolution as a set of latent vari-
ables. At test time, we split the network in two
parts. The anaphora resolution part is run sepa-
rately as a preprocessing step, whereas the pronoun
prediction part is integrated into the document-level
decoder with two additional feature models.

The features correspond to two copies of the neu-
ral network, one to handle the singular pronoun it
and one to handle the plural pronoun they. Each net-
work just predicts a binary distinction between two
cases, il and elle for the singular network and ils
and elles for the plural network. Unlike Hardmeier
et al. (2013b), we do not use an OTHER category to
capture cases that should not be translated with any
of these options. Instead, we treat all other cases in
the phrase table and activate the anaphora models
only if one of their target pronouns actually occurs
in the output.

To achieve this, we generate pronouns in two
steps. In the phrase table training corpus, we re-

issoldat...

place all pronouns that should be handled by the
classifier, i.e. instances of il and elle aligned to it
and instances of ils and elles aligned to they, with
special placeholders. At decoding time, if a place-
holder is encountered in a target language phrase,
the applicable pronouns are generated with equal
translation model probability, and the anaphora
model adds a score to discriminate between them.

To reduce the influence of the language model
on pronoun choice and give full control to the
anaphora model, our primary language model is
trained on text containing placeholders instead of
pronouns. Since all output pronouns can also be
generated without the interaction of the anaphora
model if they are not aligned to a source language
pronoun, we must make sure that the language
model sees training data for both placeholders and
actual pronouns. However, for the monolingual
training corpora we have no word alignments to
decide whether or not to replace a pronoun by a
placeholder. To get around this problem, we train a
6-gram placeholder language model on the target
language side of the Europarl and News commen-
tary corpora. Then, we use the Viterbi n-gram
model decoder of SRILM (Stolcke, 2002) to map
pronouns in the entire language model training set
to placeholders where appropriate. No substitu-
tions are made in the bilingual language model or
the Brown cluster language model.

3.2 Dependency Projection Model

Our English—French system also includes a depen-
dency projection model, which uses source-side
dependency structure to model target-side relations
between words. This model assigns a score to each
dependency arc in the source language by consider-
ing the target words aligned to the head and the de-
pendent. In Figure 2, for instance, there is an nsub-
Jjpass arc connecting dominated to production. The
head is aligned to the target word dominée, while
the dependent is aligned to the set {production,de}.
The score is computed by a neural network taking
as features the head and dependent words and their
part-of-speech tags in the source language, the tar-
get word sets aligned to the head and dependent,
the label of the dependency arc, the distance be-
tween the head and dependent word in the source
language as well as the shortest distance between
any pair of words in the aligned sets. The network
is a binary classifier trained to discriminate positive
examples extracted from human-made reference
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Domestic meat production is dominated by chicken .
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La prodﬁbtion intérieure de viande est dominée par le poulet .

Figure 2: Dependency projection model

translations from negative examples extracted from
n-best lists generated by a baseline SMT system.

4 English-German

For English—-German we have two systems, one
based on Moses, and one based on Docent. In both
cases we have focused on word order, particularly
for verbs and particles.

Both our systems are trained on the same data
made available by WMT. The Common crawl data
was filtered using the method of Stymne et al.
(2013). We use factored models with POS tags
as a second output factor for German. The possi-
bility to use language models for different factors
has been added to our Docent decoder. Language
models include an in-domain news language model,
an out-of-domain model trained on the target side
of the parallel training data and a POS language
model trained on tagged news data. The LMs are
trained in the same way as for English—French.
All systems are tuned using MERT (Och, 2003).
Phrase-tables are filtered using entropy-based prun-
ing (Johnson et al., 2007) as implemented in Moses.
All BLEU scores are given for uncased data.

4.1 Pre-Ordered Alignment and
Post-Ordered Translation

The use of syntactic reordering as a separate pre-
processing step has already a long tradition in sta-
tistical MT. Handcrafted rules (Collins et al., 2005;
Popovié¢ and Ney, 2006) or data-driven models (Xia
and McCord, 2004; Genzel, 2010; Rottmann and
Vogel, 2007; Niehues and Kolss, 2009) for pre-
ordering training data and system input have been
explored in numerous publications. For certain
language pairs, such as German and English, this
method can be very effective and often improves
the quality of standard SMT systems significantly.
Typically, the source language is reordered to better
match the syntax of the target language when trans-
lating between languages that exhibit consistent
word order differences, which are difficult to handle

by SMT systems with limited reordering capabil-
ities such as phrase-based models. Preordering is
often done on the entire training data as well to op-
timize translation models for the pre-ordered input.
Less common is the idea of post-ordering, which
refers to a separate step after translating source lan-
guage input to an intermediate target language with
corrupted (source-language like) word order (Na et
al., 2009; Sudoh et al., 2011).

In our experiments, we focus on the translation
from English to German. Post-ordering becomes
attractive for several reasons: One reason is the
common split of verb-particle constructions that
can lead to long distance dependencies in German
clauses. Phrase-based systems and n-gram lan-
guage models are not able to handle such relations
beyond a certain distance and it is desirable to keep
them as connected units in the phrase translation
tables. Another reason is the possible distance of
finite and infinitival verbs in German verb phrases
that can lead to the same problems described above
with verb-particle constructions. The auxiliary or
modal verb is placed at the second position but
the main verb appears at the end of the associated
verb phrase. The distances can be arbitrarily long
and long-range dependencies are quite frequent.
Similarly, negation particles and adverbials move
away from the inflected verb forms in certain con-
structions. For more details on specific phenomena
in German, we refer to (Collins et al., 2005; Go-
jun and Fraser, 2012). Pre-ordering, i.e. moving
English words into German word order does not
seem to be a good option as we loose the con-
nection between related items when moving par-
ticles and main verbs away from their associated
elements. Hence, we are interested in reordering
the target language German into English word or-
der which can be beneficial in two ways: (i) Re-
ordering the German part of the parallel training
data makes it possible to improve word alignment
(which tends to prefer monotonic mappings) and
subsequent phrase extraction which leads to better
translation models. (ii) We can explore a two-step
procedure in which we train a phrase-based SMT
model for translating English into German with
English word order first (which covers many long-
distance relations locally) and then apply a second
system that moves words into place according to
correct German syntax (which may involve long-
range distortion).

For simplicity, we base our experiments on hand-
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crafted rules for some of the special cases discussed
above. For efficiency reasons, we define our rules
over POS tag patterns rather than on full syntac-
tic parse trees. We rely on TreeTagger and apply
rules to join verbs in discontinuous verb phrases
and to move verb-finals in subordinate clauses, to
move verb particles, adverbials and negation par-
ticles. Table 1 shows two examples of reordered
sentences together with the original sentences in
English and German. Our rules implement rough
heuristics to identify clause boundaries and word
positions. We do not properly evaluate these rules
but focus on the down-stream evaluation of the MT
system instead.

It is therefore dangerous to extrapolate from short-term trends.

Dabher ist es gefihrlich, aus kurzfristigen Trends Prognosen abzuleiten.
Daher ist gefdhrlich es, abzuleiten aus kurzfristigen Trends Prognosen.

The fall of Saddam ushers in the right circumstances.
Der Sturz von Saddam leitet solche richtigen Umstidnde ein.
Der Sturz von Saddam ein leitet solche richtigen Umstidnde.

Table 1: Two examples of pre-ordering outputs.
The first two lines are the original English and
German sentences and the third line shows the re-
ordered sentence.

We use three systems based on Moses to com-
pare the effect of reordering on alignment and trans-
lation. All systems are case-sensitive phrase-based
systems with lexicalized reordering trained on data
provided by WMT. Word alignment is performed
using fast_align (Dyer et al., 2013). For tuning we
use newstest2011. Additionally, we also test paral-
lel data from OPUS (Tiedemann, 2012) filtered by
a method adopted from Mediani et al. (2011).

To contrast our baseline system, we trained a
phrase-based model on parallel data that has been
aligned on data pre-ordered using the reordering
rules for German, which has been restored to the
original word order after word alignment and be-
fore phrase extraction (similar to (Carpuat et al.,
2010; Stymne et al., 2010)). We expect that the
word alignment is improved by reducing crossings
and long-distance links. However, the translation
model as such has the same limitations as the base-
line system in terms of long-range distortions. The
final system is a two-step model in which we apply
translation and language models trained on pre-
ordered target language data to perform the first
step, which also includes a reordered POS language
model. The second step is also treated as a transla-
tion problem as in Sudoh et al. (2011), and in our

case we use a phrase-based model here with lexical-
ized reordering and a rather large distortion limit
of 12 words. Another possibility would be to apply
another rule set that reverts the misplaced words
to the grammatically correct positions. This, how-
ever, would require deeper syntactic information
about the target language to, for example, distin-
guish main from subordinate clauses. Instead, our
model is trained on parallel target language data
with the pre-ordered version as input and the orig-
inal version as output language. For this model,
both sides are tagged and a POS language model
is used again as one of the target language factors
in decoding. Table 2 shows the results in terms of
BLEU scores on the newstest sets from 2013 and
2014.

newstest2013  newstest2014
baseline 19.3 19.1
pre 19.4 19.3
post 18.6 18.7
baseline+OPUS 19.5 19.3
pre+OPUS 19.5 19.3
post+OPUS 19.7 18.8

Table 2: BLEU4 scores for English-German sys-
tems (w/o OPUS): Standard phrase-based (base-
line); phrase-based with pre-ordered parallel cor-
pus used for word alignment (pre); two-step phrase-
based with post-reordering (post)

The results show that pre-ordering has some ef-
fect on word alignment quality in terms of support-
ing better phrase extractions in subsequent steps.
Our experiments show a consistent but small im-
provement for models trained on data that have
been prepared in this way. In contrast, the two-step
procedure is more difficult to judge in terms of au-
tomatic metrics. On the 2013 newstest data we can
see another small improvement in the setup that
includes OPUS data but in most cases the BLEU
scores go down, even below the baseline. The
short-comings of the two-step procedure are ob-
vious. Separating translation and reordering in a
pipeline adds the risk of error propagation. Fur-
thermore, reducing the second step to single-best
translations is a strong limitation and using phrase-
based models for the final reordering procedure is
probably not the wisest decision. However, manual
inspections reveals that many interesting phenom-
ena can be handled even with this simplistic setup.

Table 3 illustrates this with a few selected out-
comes of our three systems. They show how verb-
particle constructions with long-range distortion
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reference
baseline
pre-ordering
post-ordering

Schauspieler Orlando Bloom hat sich zur Trennung von seiner Frau , Topmodel Miranda Kerr , geduBert .
Schauspieler Orlando Bloom hat die Trennung von seiner Frau , Supermodel Miranda Kerr .

Schauspieler Orlando Bloom hat angekiindigt , die Trennung von seiner Frau , Supermodel Miranda Kerr .
Schauspieler Orlando Bloom hat seine Trennung von seiner Frau angekiindigt , Supermodel Miranda Kerr .

reference
baseline
pre-ordering
post-ordering

Er gab bei einer fritheren Befragung den Kokainbesitz zu .

Er gab den Besitz von Kokain in einer friiheren Anhorung .

Er rdumte den Besitz von Kokain in einer fritheren Anhorung .

Er rdumte den Besitz von Kokain in einer friiheren Anhorung ein .

reference
baseline
pre-ordering
post-ordering

Borussia Dortmund kiindigte daraufhin harte Konsequenzen an .

Borussia Dortmund kiindigte an , es werde schwere Folgen .

Borussia Dortmund hat angekiindigt , dass es schwerwiegende Konsequenzen .
Borussia Dortmund kiindigte an , dass es schwere Folgen geben werde .

Table 3: Selected translation examples from the newstest 2014 data; the human reference translation; the
baseline system, pre-ordering for word alignment and two-step translation with post-ordering.

such as “rdumte ... ein” can be created and how
discontinuous verb phrases can be handled (“hat ...
angekiindigt”) with the two-step procedure. The
model is also often better in producing verb finals
in subordinate clauses (see the final example with
“geben werde”). Note that many of these improve-
ments do not get any credit by metrics like BLEU.
For example the acceptable expression “rdumte ein”
which is synonymous to “gab zu” obtains less credit
then the incomplete baseline translation. Interest-
ing is also to see the effect of pre-ordering when
used for alignment only in the second system. The
first example in Table 3, for example, includes a
correct main verb which is omitted in the baseline
translation, probably because it is not extracted as
a valid translation option.

4.2 Part-of-Speech Phrase-Distortion Models

Traditional SMT distortion models consist of two
parts. A distance-based distortion cost is based
on the position of the last word in a phrase, com-
pared to the first word in the next phrase, given the
source phrase order. A hard distortion limit blocks
translations where the distortion is too large. The
distortion limit serves to decrease the complexity
of the decoder, thus increasing its speed.

In the Docent decoder, the distortion limit is not
implemented as a hard limit, but as a feature, which
could be seen as a soft constraint. We showed in
previous work (Stymne et al., 2013) that it was
useful to relax the hard distortion limit by either
using a soft constraint, which could be tuned, or
removing the limit completely. In that work we
still used the standard parametrization of distortion,
based on the positions of the first and last words in
phrases.

Our Docent decoder, however, always provides
us with a full target translation that is step-wise im-
proved, which means that we can apply distortion
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measures on the phrase-level without resorting to
heuristics, which, for instance, are needed in the
case of the lexicalized reordering models in Moses
(Koehn et al., 2005). Because of this it is possible
to use phrase-based distortion, where we calculate
distortion based on the order of phrases, not on the
order of some words. It is possible to parametrize
phrase-distortion in different ways. In this work we
use the phrase-distortion distance and a soft limit
on the distortion distance, to mimic the word-based
distortion. In our experiments we always set the
soft limit to a distance of four phrases. In addition
we use a measure based on how many crossings
a phrase order gives rise to. We thus have three
phrase-distortion features.

As captured by lexicalized reordering models,
different phrases have different tendencies to move.
To capture this to some extent, we also decided
to add part-of-speech (POS) classes to our mod-
els. POS has previously successfully been used
in pre-reordering approaches (Popovi¢ and Ney,
2006; Niehues and Kolss, 2009). The word types
that are most likely to move long distances in
English—German translation are verbs and parti-
cles. Based on this observation we split phrases
into two classes, phrases that only contains verbs
and particles, and all other phrases. For these two
groups we use separate phrase-distortion features,
thus having a total of six part-of-speech phrase-
distortion features. All of these features are soft,
and are optimized during tuning.

In our system we initialize Docent by running
Moses with a standard distortion model and lexi-
calized reordering, and then continuing the search
with Docent including our part-of-speech phrase-
distortion features. Tuning was done separately for
the two components, first for the Moses component,
and then for the Docent component initialized by



reference

Laut Dmitrij Kislow von der Organisation “Pravo na oryzhie” kann man eine Pistole vom Typ Makarow fiir 100 bis 300 Dollar kaufen.

baseline Laut Dmitry Kislov aus der Rechten zu Waffen, eine Makarov Gun-spiele erworben werden kénnen fiir 100-300 Dollar.
POS+phrase  Laut Dmitry Kislov von die Rechte an Waffen, eine Pistole Makarov fiir 100-300 Dollar erworben werden konnen.
reference Die Waffen gelangen iiber mehrere Kanile auf den Schwarzmarkt.

baseline Der ”Schwarze” Markt der Waffen ist wieder aufgefiillt iiber mehrere Kaniile.

POS+phrase  Der ”Schwarze” Markt der Waffen durch mehrere Kanile wieder aufgefiillt ist.

reference Mehr Kameras konnten moglicherweise das Problem losen...

baseline Moglicherweise konnte das Problem ldsen, eine grofle Anzahl von Kameras...

POS+phrase  Moglicherweise, eine grole Anzahl von Kameras konnte das Problem losen...

Table 4: Selected translation examples from the newstest2013 data; the human reference translation; the
baseline system (Moses with lexicalized reordering) and the system with a POS+phrase distortion model.

Moses with lexicalized reordering with its tuned
weights. We used newstest2009 for tuning. The
training data was lowercased for training and de-
coding, and recasing was performed using a sec-
ond Moses run trained on News data. As baselines
we present two Moses systems, without and with
lexicalized reordering, in addition to standard dis-
tortion features.

Table 5 shows results with our different distor-
tion models. Overall the differences are quite small.
The clearest difference is between the two Moses
baselines, where the lexicalized reordering model
leads to an improvement. With Docent, both the
word distortion and phrase distortion without POS
do not help to improve on Moses, with a small de-
crease in scores on one dataset. This is not very
surprising, since lexical distortion is currently not
supported by Docent, and the distortion models are
thus weaker than the ones implemented in Moses.
For our POS phrase distortion, however, we see a
small improvement compared to Moses, despite the
lack of lexicalized distortion. This shows that this
distortion model is actually useful, and can even
successfully replace lexicalized reordering. In fu-
ture work, we plan to combine this method with a
lexicalized reordering model, to see if the two mod-
els have complementary strengths. Our submitted
system uses the POS phrase-distortion model.

System  Distortion newstest2013  newstest2014
Moses  word 19.4 19.3
Moses ~ word+LexReo 19.6 19.6
Docent  word 19.5 19.6
Docent  phrase 19.5 19.6
Docent  POS+phrase 19.7 19.7

Table 5: BLEU4 scores for English—German sys-
tems with different distortion models.

If we inspect the translations, most of the differ-
ences between the Moses baseline and the system
with POS+phrase distortion are actually due to lex-
ical choice. Table 4 shows some examples where

127

there are word order differences. The result is quite
mixed with respect to the placement of verbs. In
the first example, both systems put the verbs to-
gether but in different positions, instead of splitting
them like the reference suggests. In the second
example, our system erroneously put the verbs at
the end, which would be fine if the sentence had
been a subordinate clause. In the third example,
the baseline system has the correct placement of
the auxiliary “konnte”, while our system is bet-
ter at placing the main verb “lésen”. In general,
this indicates that our system is able to support
long-distance distortion as it is needed in certain
cases but sometimes overuses this flexibility. A
better model would certainly need to incorporate
syntactic information to distinguish main from sub-
ordinate clauses. However, this would add a lot of
complexity to the model.

5 Conclusion

We have described the three Uppsala University
systems for WMT14. In the English-French sys-
tem we extend our document-level decoder Do-
cent (Hardmeier et al., 2013a) to handle pronoun
anaphora and introduced a dependency projection
model. In our two English—German system we
explore different methods for handling reordering,
based on Docent and Moses. In particular, we look
at post-ordering as a separate step and tunable POS
phrase distortion.
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Abstract

In this paper, we present the KIT
systems participating in the Shared
Translation Task translating between
English—~German and English—French.
All translations are generated using
phrase-based translation systems, using
different kinds of word-based, part-of-
speech-based and cluster-based language
models trained on the provided data.
Additional models include bilingual lan-
guage models, reordering models based
on part-of-speech tags and syntactic parse
trees, as well as a lexicalized reordering
model. In order to make use of noisy
web-crawled data, we apply filtering
and data selection methods for language
modeling. A discriminative word lexicon
using source context information proved
beneficial for all translation directions.

1 Introduction

We describe the KIT systems for the Shared Trans-
lation Task of the ACL 2014 Ninth Workshop on
Statistical Machine Translation. We participated
in the English—~German and English—French
translation directions, using a phrase-based de-
coder with lattice input.

The paper is organized as follows: the next sec-
tion describes the data used for each translation
direction. Section 3 gives a detailed description of
our systems including all the models. The trans-
lation results for all directions are presented after-
wards and we close with a conclusion.

2 Data

We utilize the provided EPPS, NC and Common
Crawl parallel corpora for English—German and
German—English, plus Giga for English—French
and French—English. The monolingual part
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of those parallel corpora, the News Shuffle
corpus for all four directions and additionally
the Gigaword corpus for English—French and
German—English are used as monolingual train-
ing data for the different language models. For
optimizing the system parameters, newstest2012
and newstest2013 are used as development and
test data respectively.

3 System Description

Before training we perform a common preprocess-
ing of the raw data, which includes removing long
sentences and sentences with a length mismatch
exceeding a certain threshold. Afterwards, we nor-
malize special symbols, dates, and numbers. Then
we perform smart-casing of the first letter of every
sentence. Compound splitting (Koehn and Knight,
2003) is performed on the source side of the cor-
pus for German—ZEnglish translation. In order to
improve the quality of the web-crawled Common
Crawl corpus, we filter out noisy sentence pairs us-
ing an SVM classifier for all four translation tasks
as described in Mediani et al. (2011).

Unless stated otherwise, we use 4-gram lan-
guage models (LM) with modified Kneser-Ney
smoothing, trained with the SRILM toolkit (Stol-
cke, 2002). All translations are generated by
an in-house phrase-based translation system (Vo-
gel, 2003), and we use Minimum Error Rate
Training (MERT) as described in Venugopal et
al. (2005) for optimization. The word align-
ment of the parallel corpora is generated using
the GIZA++ Toolkit (Och and Ney, 2003) for
both directions. Afterwards, the alignments are
combined using the grow-diag-final-and heuris-
tic. For English—German, we use discrimi-
native word alignment trained on hand-aligned
data as described in Niehues and Vogel (2008).
The phrase table (PT) is built using the Moses
toolkit (Koehn et al., 2007). The phrase scoring
for the small data sets (German«English) is also
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done by the Moses toolkit, whereas the bigger sets
(French<English) are scored by our in-house par-
allel phrase scorer (Mediani et al., 2012a). The
phrase pair probabilities are computed using mod-
ified Kneser-Ney smoothing as described in Foster
et al. (2006).

Since German is a highly inflected language,
we try to alleviate the out-of-vocabulary prob-
lem through quasi-morphological operations that
change the lexical entry of a known word form to
an unknown word form as described in Niehues
and Waibel (2011).

3.1 Word Reordering Models

We apply automatically learned reordering rules
based on part-of-speech (POS) sequences and syn-
tactic parse tree constituents to perform source
sentence reordering according to the target lan-
guage word order. The rules are learned
from a parallel corpus with POS tags (Schmid,
1994) for the source side and a word align-
ment to learn reordering rules that cover short
range (Rottmann and Vogel, 2007) and long
range reorderings (Niehues and Kolss, 2009).
In addition, we apply a tree-based reordering
model (Herrmann et al., 2013) to better address
the differences in word order between German and
English. Here, a word alignment and syntactic
parse trees (Rafferty and Manning, 2008; Klein
and Manning, 2003) for the source side of the
training corpus are required to learn rules on how
to reorder the constituents in the source sentence.
The POS-based and tree-based reordering rules
are applied to each input sentence before transla-
tion. The resulting reordered sentence variants as
well as the original sentence are encoded in a re-
ordering lattice. The lattice, which also includes
the original position of each word, is used as input
to the decoder.

In order to acquire phrase pairs matching the
reordered sentence variants, we perform lattice
phrase extraction (LPE) on the training corpus
where phrase are extracted from the reordered
word lattices instead of the original sentences.

In addition, we use a lexicalized reordering
model (Koehn et al., 2005) which stores reorder-
ing probabilities for each phrase pair. During
decoding the lexicalized reordering model deter-
mines the reordering orientation of each phrase
pair at the phrase boundaries. The probability for
the respective orientation with respect to the orig-
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inal position of the words is included as an addi-
tional score in the log-linear model of the transla-
tion system.

3.2 Adaptation

In the French—English and English—French sys-
tems, we perform adaptation for translation mod-
els as well as for language models. The EPPS and
NC corpora are used as in-domain data for the di-
rection English—French, while NC corpus is the
in-domain data for French—English.

Two phrase tables are built: one is the out-
of-domain phrase table, which is trained on all
corpora; the other is the in-domain phrase table,
which is trained on in-domain data. We adapt the
translation model by using the scores from the two
phrase tables with the backoftf approach described
in Niehues and Waibel (2012). This results in a
phrase table with six scores, the four scores from
the general phrase table as well as the two condi-
tional probabilities from the in-domain phrase ta-
ble. In addition, we take the union of the candidate
phrase pairs collected from both phrase tables A
detailed description of the union method can be
found in Mediani et al. (2012b).

The language model is adapted by log-linearly
combining the general language model and an in-
domain language model. We train a separate lan-
guage model using only the in-domain data. Then
it is used as an additional language model during
decoding. Optimal weights are set during tuning
by MERT.

3.3 Special Language Models

In addition to word-based language models, we
use different types of non-word language models
for each of the systems. With the help of a bilin-
gual language model (Niehues et al., 2011) we
are able to increase the bilingual context between
source and target words beyond phrase bound-
aries. This language model is trained on bilin-
gual tokens created from a target word and all its
aligned source words. The tokens are ordered ac-
cording to the target language word order.
Furthermore, we use language models based
on fine-grained part-of-speech tags (Schmid and
Laws, 2008) as well as word classes to allevi-
ate the sparsity problem for surface words. The
word classes are automatically learned by clus-
tering the words of the corpus using the MKCLS
algorithm (Och, 1999). These n-gram language
models are trained on the target language corpus,



where the words have been replaced either by their
corresponding POS tag or cluster ID. During de-
coding, these language models are used as addi-
tional models in the log-linear combination.

The data selection language model is trained
on data automatically selected using cross-entropy
differences between development sets from pre-
vious WMT workshops and the noisy crawled
data (Moore and Lewis, 2010). We selected the
top 10M sentences to train this language model.

3.4 Discriminative Word Lexicon

A discriminative word lexicon (DWL) models the
probability of a target word appearing in the trans-
lation given the words of the source sentence.
DWLs were first introduced by Mauser et al.
(2009). For every target word, they train a maxi-
mum entropy model to determine whether this tar-
get word should be in the translated sentence or
not using one feature per source word.

We use two simplifications of this model that
have shown beneficial to translation quality and
training time in the past (Mediani et al., 2011).
Firstly, we calculate the score for every phrase pair
before translating. Secondly, we restrict the nega-
tive training examples to words that occur within
matching phrase pairs.

In this evaluation, we extended the DWL
with n-gram source context features proposed
by Niehues and Waibel (2013). Instead of rep-
resenting the source sentence as a bag-of-words,
we model it as a bag-of-n-grams. This allows us
to include information about source word order in
the model. We used one feature per n-gram up to
the order of three and applied count filtering for
bigrams and trigrams.

4 Results

This section presents the participating systems
used for the submissions in the four translation
directions of the evaluation. We describe the in-
dividual components that form part of each of
the systems and report the translation qualities
achieved during system development. The scores
are reported in case-sensitive BLEU (Papineni et
al., 2002).

4.1 English-French

The development of our English—French system
is shown in Table 1.
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It is noteworthy that, for this direction, we chose
to tune on a subset of 1,000 pairs from news-
test2012, due to the long time the whole set takes
to be decoded. In a preliminary set of experiments
(not reported here), we found no significant differ-
ences between tuning on the small or the big devel-
opment sets. The translation model of the baseline
system is trained on the whole parallel data after
filtering (EPPS, NC, Common Crawl, Giga). The
same data was also used for language modeling.
We also use POS-based reordering.

The biggest improvement was due to using two
additional language models. One consists of a log-
linear interpolation of individual language models
trained on the target side of the parallel data, the
News shuffle, Gigaword and NC corpora. In ad-
dition, an in-domain language model trained only
on NC data is used. This improves the score by
more than 1.4 points. Adaptation of the translation
model towards a smaller model trained on EPPS
and NC brings an additional 0.3 points.

Another 0.3 BLEU points could be gained by
using other special language models: a bilingual
language model together with a 4-gram cluster
language model (trained on all monolingual data
using the MKCLS tool and 500 clusters). Incor-
porating a lexicalized reordering model into the
system had a very noticeable effect on test namely
more than half a BLEU point.

Finally, using a discriminative word lexicon
with source context has a very small positive ef-
fect on the test score, however more than 0.3 on
dev. This final configuration was the basis of our
submitted official translation.

System Dev  Test
Baseline 15.63 27.61
+ Big LMs 16.56  29.02
+ PT Adaptation 16.77 29.32
+ Bilingual + Cluster LM 16.87 29.64
+ Lexicalized Reordering 16.92 30.17
+ Source DWL 17.28 30.19

Table 1: Experiments for English—French

4.2 French-English

Several experiments were conducted for the
French—English translation system. They are
summarized in Table 2.

The baseline system is essentially a phrase-
based translation system with some preprocess-



ing steps on the source side and utilizing the
short-range POS-based reordering on all parallel
data and fine-grained monolingual corpora such as
EPPS and NC.

Adapting the translation model using a small in-
domain phrase table trained on NC data only helps
us gain more than 0.4 BLEU points.

Using non-word language models including a
bilingual language model and a 4-gram 50-cluster
language model trained on the whole parallel data
attains 0.24 BLEU points on the test set.

Lexicalized reordering improves our system on
the development set by 0.3 BLEU points but has
less effect on the test set with a minor improve-
ment of around 0.1 BLEU points.

We achieve our best system, which is used for
the evaluation, by adding a DWL with source con-
text yielding 31.54 BLEU points on the test set.

System Dev  Test
Baseline 30.16 30.70
+ LM Adaptation 30.58 30.94
+ PT Adaptation 30.69 31.14
+ Bilingual + Cluster LM 30.85 31.38
+ Lexicalized Reordering 31.14 31.46
+ Source DWL 31.19 31.54

Table 2: Experiments for French—English

4.3 English-German

Table 3 presents how the English-German transla-
tion system is improved step by step.

In the baseline system, we used parallel data
which consists of the EPPS and NC corpora. The
phrase table is built using discriminative word
alignment. For word reordering, we use word lat-
tices with long range reordering rules. Five lan-
guage models are used in the baseline system; two
word-based language models, a bilingual language
model, and two 9-gram POS-based language mod-
els. The two word-based language models use 4-
gram context and are trained on the parallel data
and the filtered Common Crawl data separately,
while the bilingual language model is built only
on the Common Crawl corpus. The two POS-
based language models are also based on the paral-
lel data and the filtered crawled data, respectively.

When using a 9-gram cluster language model,
we get a slight improvement. The cluster is trained
with 1,000 classes using EPPS, NC, and Common
Crawl data.
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We use the filtered crawled data in addition to
the parallel data in order to build the phrase table;
this gave us 1 BLEU point of improvement.

The system is improved by 0.1 BLEU points
when we use lattice phrase extraction along with
lexicalized reordering rules.

Tree-based reordering rules improved the sys-
tem performance further by another 0.1 BLEU
points.

By reducing the context of the two POS-based
language models from 9-grams to 5-grams and
shortening the context of the language model
trained on word classes to 4-grams, the score on
the development set hardly changes but we can see
a slightly improvement for the test case.

Finally, we use the DWL with source context
and build a big bilingual language model using
both the crawled and parallel data. By doing so,
we improved the translation performance by an-
other 0.3 BLEU points. This system was used for
the translation of the official test set.

System Dev  Test
Baseline 16.64 18.60
+ Cluster LM 16.76  18.66
+ Common Crawl Data 17.27 19.66
+ LPE + Lexicalized Reordering 17.45 19.75
+ Tree Rules 17.53 19.85
+ Shorter n-grams 17.55 19.92
+ Source DWL + Big BiLM 17.82  20.21

Table 3: Experiments for English—German

4.4 German-English

Table 4 shows the development steps of the
German-English translation system.

For the baseline system, the training data of the
translation model consists of EPPS, NC and the
filtered parallel crawled data. The phrase table
is built using GIZA++ word alignment and lattice
phrase extraction. All language models are trained
with SRILM and scored in the decoding process
with KenLM (Heafield, 2011). We use word lat-
tices generated by short and long range reordering
rules as input to the decoder. In addition, a bilin-
gual language model and a target language model
trained on word clusters with 1,000 classes are in-
cluded in the system.

Enhancing the word reordering with tree-based
reordering rules and a lexicalized reordering



model improved the system performance by 0.6
BLEU points.

Adding a language model trained on selected
data from the monolingual corpora gave another
small improvement.

The DWL with source context increased the
score on the test set by another 0.5 BLEU points
and applying morphological operations to un-
known words reduced the out-of-vocabulary rate,
even though no improvement in BLEU can be ob-
served. This system was used to generate the
translation submitted to the evaluation.

System Dev  Test
Baseline 2440 26.34
+ Tree Rules 2471 26.86
+ Lexicalized Reordering 24.89 26.93
+ LM Data Selection 2496 27.03
+ Source DWL 2532 27.53
+ Morphological Operations - 27.53

Table 4: Experiments for German— English

5 Conclusion

In this paper, we have described the systems
developed for our participation in the Shared
Translation Task of the WMT 2014 evaluation
for English<~German and English«French. All
translations were generated using a phrase-based
translation system which was extended by addi-
tional models such as bilingual and fine-grained
part-of-speech language models. Discriminative
word lexica with source context proved beneficial
in all four language directions.

For English-French translation using a smaller
development set performed reasonably well and
reduced development time. The most noticeable
gain comes from log-linear interpolation of multi-
ple language models.

Due to the large amounts and diversity of
the data available for French-English, adapta-
tion methods and non-word language models con-
tribute the major improvements to the system.

For English-German translation, the crawled
data and a DWL using source context to guide
word choice brought most of the improvements.

Enhanced word reordering models, namely
tree-based reordering rules and a lexicalized re-
ordering model as well as the source-side fea-
tures for the discriminative word lexicon helped
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improve the system performance for German-
English translation.

In average we achieved an improvement of over
1.5 BLEU over the respective baselines for all our
systems.
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Abstract

This paper describes the DCU submis-
sion to WMT 2014 on German-English
translation task. Our system uses phrase-
based translation model with several pop-
ular techniques, including Lexicalized
Reordering Model, Operation Sequence
Model and Language Model interpolation.
Our final submission is the result of sys-
tem combination on several systems which
have different pre-processing and align-
ments.

1 Introduction

On the German-English translation task of WMT
2014, we submitted a system which is built with
Moses phrase-based model (Koehn et al., 2007).

For system training, we use all provided
German-English parallel data, and conducted sev-
eral pre-processing steps to clean the data. In ad-
dition, in order to improve the translation quali-
ty, we adopted some popular techniques, includ-
ing three Lexicalized Reordering Models (Axel-
rod et al., 2005; Galley and Manning, 2008), a 9-
gram Operation Sequence Model (Durrani et al.,
2011) and Language Model interpolation on sev-
eral datasets. And then we use system combina-
tion on several systems with different settings to
produce the final outputs.

Our phrase-based systems are tuned with k-best
MIRA (Cherry and Foster, 2012) on development
set. We set the maximum iteration to be 25.

The Language Models in our systems are
trained with SRILM (Stolcke, 2002). We trained

136

Corpus Filtered Out (%)
Bilingual 7.17
Monolingual (English) 1.05

Table 1: Results of language detection: percentage
of filtered out sentences

a 5-gram model with Kneser-Ney discounting
(Chen and Goodman, 1996).

In the next sections, we will describe our system
in detail. In section 2, we will explain our pre-
processing steps on corpus. Then in section 3, we
will describe some techniques we have tried for
this task and the experiment results. In section 4,
our final configuration for submitted system will
be presented. And we conclude in the last section.

2 Pre-processing

We use all the training data for German-English
translation, including Europarl, News Commen-
tary and Common Crawl. The first thing we no-
ticed is that some Non-German and Non-English
sentences are included in our training data. So we
apply Language Detection (Shuyo, 2010) for both
monolingual and bilingual corpora. For mono-
lingual data (only including English sentences in
our task), we filter out sentences which are detect-
ed as other language with probability more than
0.999995. And for bilingual data, A sentence
pair is filtered out if the language detector detect-
s a different language with probability more than
0.999995 on either the source or the target. The
filtering results are given in Table 1.

In our experiment, German compound word-
s are splitted based on frequency (Koehn and
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Knight, 2003). In addition, for both monolingual
and bilingual data, we apply tokenization, nor-
malizing punctuation and truecasing using Moses
scripts. For parallel training data, we also filter out
sentence pairs containing more than 80 tokens on
either side and sentence pairs whose length ratio
between source and target side is larger than 3.

3 Techniques

In our preliminary experiments, we take newstest
2013 as our test data and newstest 2008-2012 as
our development data. In total, we have more
than 10,000 sentences for tuning. The tuning step
would be very time-consuming if we use them al-
. So in this section, we use Feature Decay Al-
gorithm (FDA) (Bicici and Yuret, 2014) to select
2000 sentences as our development set. Table 2
shows that system performance does not increase
with larger tuning set and the system using only
2K sentences selected by FDA is better than the
baseline tuned with all the development data.

In this section, alignment model is trained
by MGIZA++ (Gao and Vogel, 2008) with
grow—-diag-final-and heuristic function.
And other settings are mostly default values in
Moses.

3.1 Lexicalized Reordering Model

German and English have different word order
which brings a challenge in German-English ma-
chine translation. In our system, we adopt three
Lexicalized Reordering Models (LRMs) for ad-
dressing this problem. They are word-based LRM
(WLRM), phrase-based LRM (pLRM) and hierar-
chal LRM (hLRM).

These three models have different effect on the
translation. Word-based and phrase-based LRMs
are focus on local reordering phenomenon, while
hierarchical LRM could be applied into longer re-
ordering problem. Figure 1 shows the differences
(Galley and Manning, 2008). And Table 3 shows
effectiveness of different LRMs.

In our system based on Moses, we
use wbe-msd-bidirectional-fe,
phrase-msd-bidirectional-fe and
hier-mslr-bidirectional-fe to specify
these three LRMs. From Table 2, we could see

that LRMs significantly improves the translation.
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Figure 1: Occurrence of a swap according to
the three orientation models: word-based, phrase-
based, and hierarchical. Black squares represen-
t word alignments, and gray squares represen-
t blocks identified by phrase-extract. In (a), block
bi = (ei, fa;) is recognized as a swap according to
all three models. In (b), b; is not recognized as a
swap by the word-based model. In (c), b; is rec-
ognized as a swap only by the hierarchical model.
(Galley and Manning, 2008)

3.2 Operation Sequence Model

The Operation Sequence Model (OSM) (Durrani
et al., 2011) explains the translation procedure as
a linear sequence of operations which generates
source and target sentences in parallel. Durrani
et al. (2011) defined four translation operations:
Generate(X,Y), Continue Source Concept, Gener-
ate Source Only (X) and Generate Identical, as
well as three reordering operations: Insert Gap,
Jump Back(W) and Jump Forward. These oper-
ations are described as follows.

Generate(X,Y) make the words in Y and the
first word in X added to target and source
string respectively.

Continue Source Concept adds the word in
the queue from Generate(X,Y) to the source
string.

Generate Source Only (X) puts X in the
source string at the current position.

Generate Identical generates the same word
for both sides.

Insert Gap inserts a gap in the source side for
future use.

Jump Back (W) makes the position for trans-
lation be the Wth closest gap to the current
position.

Jump Forward moves the position to the in-
dex after the right-most source word.



Systems Tuning Set | newstest 2013
Baseline - 24.1
+FDA - 24.2
+LRMs 24.0 25.4
+0OSM 244 26.2
+LM Interpolation 24.6 26.4
+Factored Model - 259
+Sparse Feature 25.6 259
+TM Combination 24.1 254
+OSM Interpolation 24.4 26.0

Table 2: Preliminary results on tuning set and test set (newstest 2013). All scores on test set are case-
sensitive BLEU[%] scores. And scores on tuning set are case-insensitive BLEU[%] directly from tuning
result. Baseline uses all the data from newstest 2008-2012 for tuning.

Systems Tuning Set (uncased) | newstest 2013
Baseline+FDA - 242
+wLRM 23.8 25.1
+pLRM 23.9 25.2
+hLRM 24.0 254
+pLRM 23.8 25.1
+hLRM 23.7 25.2

Table 3: System BLEU[%] scores when different LRMs are adopted.

The probability of an operation sequence O =
(0102+--0y) is:

J

1 p(0jl05—ns1---0j-1)
j=1

p(0) )

where n indicates the number of previous opera-
tions used.

In this paper we train a 9-gram OSM on train-
ing data and integrate this model directly into log-
linear framework (OSM is now available to use
in Moses). Our experiment shows OSM improves
our system by about 0.8 BLEU (see Table 2).

3.3 Language Model Interpolation

In our baseline, Language Model (LM) is trained
on all the monolingual data provided. In this sec-
tion, we try to build a large language model by in-
cluding data from English Gigaword fifth edition
(only taking partial data with size of 1.6G), En-
glish side of UN corpus and English side of 10°
French-English corpus. Instead of training a s-
ingle model on all data, we interpolate language
models trained on each subset (monolingual data
provided is splitted into three parts: News 2007-
2013, Europarl and News Commentary) by tuning
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weights to minimize perplexity of language model
measured on the target side of development set.

In our experiment, after interpolation, the lan-
guage model doesn’t get a much lower perplexity,
but it slightly improves the system, as shown in
Table 2.

3.4 Other Tries

In addition to the techniques mentioned above, we
also try some other approaches. Unfortunately al-
I of these methods described in this section are
non-effective in our experiments. The results are
shown in Table 2.

e Factored Model (Koehn and Hoang, 2007):
We tried to integrate a target POS factored
model into our system with a 9-gram POS
language model to address the problem of
word selection and word order. But ex-
periment doesn’t show improvement. The
English POS is from Stanford POS Tagger
(Toutanova et al., 2003).

Translation Model Combination: In this ex-
periment, we try to use the method of (Sen-
nrich, 2012) to combine phrase tables or re-
ordering tables from different subsets of data



to minimize perplexity measured on develop-
ment set. We try to split the training data in
two ways. One is according to data source,
resulting in three subsets: Europarl, News
Commentary and Common Crawl. Another
one is to use data selection. We use FDA to
select 200K sentence pairs as in-domain data
and the rest as out-domain data. Unfortunate-
ly both experiments failed. In Table 2, we on-
ly report results of phrase table combination
on FDA-based data sets.

OSM Interpolation: Since OSM in our sys-
tem could be taken as a special language
model, we try to use the idea of interpolation
similar with language model to make OSM
adapted to some data. Training data are s-
plitted into two subsets with FDA. We train
9-gram OSM on each subsets and interpolate
them according to OSM trained on the devel-
opment set.

Sparse Features: For each source phrase,
there is usually more than one corresponding
translation option. Each different translation
may be optimal in different contexts. Thus
in our systems, similar to (He et al., 2008)
which proposed a Maximum Entropy-based
rule selection for the hierarchical phrase-
based model, features which describe the
context of phrases, are designed to select the
right translation. But different with (He et
al., 2008), we use sparse features to mod-
el the context. And instead of using syn-
tactic POS, we adopt independent POS-like
features: cluster ID of word. In our experi-
ment mkcls was used to cluster words into 50
groups. And all features are generalized to
cluster ID.

4 Submission

Based on our preliminary experiments in the sec-
tion above, we use LRMs, OSM and LM inter-
polation in our final system for newstest 2014.
But as we find that Language Models trained on
UN corpus and 10 French-English corpus have
a very high perplexity and in order to speed up
the translation by reducing the model size, in this
section, we interpolate only three language model-
s from monolingual data provided, English Giga-
word fifth edition and target side of training data.
In addition, we also try some different methods for
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final submission. And the results are shown in Ta-
ble 4.

o Development Set Selection: Instead of using
FDA which is dependent on test set, we use
the method of (Nadejde et al., 2013) to se-
lect tuning set from newstest 2008-2013 for
the final system. We only keep 2K sentences
which have more than 30 words and higher
BLEU score. The experiment result is shown
in Table 4 ( The system is indicated as Base-
line).

e Pre-processing: In our preliminary exper-
iments, sentences are tokenized without
changing hyphen. Thus we build another sys-
tem where all the hyphens are tokenized ag-
gressively.

SyMGIZA ++: Better alignment could lead to
better translation. So we carry out some ex-
periments on SYMGIZA++ aligner (Junczys-
Dowmunt and Sza, 2012), which modifies the
original IBM/GIZA++ word alignment mod-
els to allow to update the symmetrized mod-
els between chosen iterations of the original
training algorithms. Experiment shows this
new alignment improves translation quality.

o Multi-alignment Selection: We also try to use
multi-alignment selection (Tu et al., 2012)
to generate a “better” alignment from three
alignmens: MGIZA++ with function grow-
diag-final-and, SyMGIZA++ with function
grow-diag-final-and and fast alignment (Dy-
er et al., 2013). Although this method show
comparable or better result on development
set, it fails on test set.

Since we build a few systems with different
setting on Moses phrase-based model, a straight-
forward thinking is to obtain the better transla-
tion from several different translation systems. So
we use system combination (Heafield and Lavie,
2010) on the 1-best outputs of three systems (in-
dicated with * in table 4). And this results in our
best system so far, as shown in Table 4. In our final
submission, this result is taken as primary.

5 Conclusion

This paper describes our submitted system to
WMT 2014 in detail. This system is based on



Systems Tuning Set | newstest 2014
Baseline* 34.2 25.6
+SyMGIZA++* 34.3 26.0
+Multi-Alignment Selection 344 25.6
+Hyphen-Splitted 33.9 25.9
+SyMGIZA++* 34.0 26.0
+Multi-Alignment Selection 34.0 25.7
System Combination - 26.5

Table 4: Experiment results on newstest 2014. We report case-sensitive BLEU[%] score on test set and
case-insensitive BLEU[%] on tuning set which is directly from tuning result. Baseline is the phrase-based
system with LRMs, OSM and LM interpolation on smaller datasets, tuned with selected development set.
Systems indicated with * are used for system combination.

Moses phrase-based model, and integrates Lexi-
calized Reordering Models, Operation Sequence
Model and Language Model interpolation. Al-
so system combination is used on several system-
s which have different pre-processing and align-
ment.
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Abstract

We describe the CMU systems submitted
to the 2014 WMT shared translation task.
We participated in two language pairs,
German—English and Hindi-English. Our
innovations include: a label coarsening
scheme for syntactic tree-to-tree transla-
tion, a host of new discriminative features,
several modules to create “synthetic trans-
lation options” that can generalize beyond
what is directly observed in the training
data, and a method of combining the out-
put of multiple word aligners to uncover
extra phrase pairs and grammar rules.

1 Introduction

The MT research group at Carnegie Mellon Uni-
versity’s Language Technologies Institute partici-
pated in two language pairs for the 2014 Workshop
on Machine Translation shared translation task:
German—English and Hindi—English. Our systems
showcase our multi-phase approach to translation,
in which synthetic translation options supple-
ment the default translation rule inventory that is
extracted from word-aligned training data.

In the German—-English system, we used our
compound splitter (Dyer, 2009) to reduce data
sparsity, and we allowed the translator to back
off to translating lemmas when it detected case-
inflected OOVs. We also demonstrate our group’s
syntactic system with coarsened nonterminal types
(Hanneman and Lavie, 2011) as a contrastive
German—English submission.

In both the German—English and Hindi—-English
systems, we used an array of supplemental ideas to
enhance translation quality, ranging from lemma-
tization and synthesis of inflected phrase pairs to
novel reordering and rule preference features.
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2 Core System Components

The decoder infrastructure we used was cdec
(Dyer et al., 2010). For our primary systems,
all data was tokenized using cdec’s tokenization
tool. Only the constrained data resources pro-
vided for the shared task were used for training
both the translation and language models. Word
alignments were generated using both FastAlign
(Dyer et al., 2013) and GIZA++ (Och and Ney,
2003). All our language models were estimated
using KenLM (Heafield, 2011). Translation model
parameters were chosen using MIRA (Eidelman,
2012) to optimize BLEU (Papineni et al., 2002)
on a held-out development set.

Our data was (filtered
(Denkowski et al., 2012), with a cutoff of
two standard deviations from the mean. All
data was left in fully cased form, save the first
letter of each segment, which was changed to
whichever form the first token more commonly
used throughout the data. As such, words like The
were lowercased at the beginning of segments,
while words like Obama remained capitalized.

using ge-clean

Our primary German-English and Hindi—
English systems were Hiero-based (Chiang,
2007), while our contrastive German—English sys-
tem used cdec’s tree-to-tree SCFG formalism.

Before submitting, we ran cdec’s implementa-
tion of MBR on 500-best lists from each of our
systems. For both language pairs, we used the
Nelder—-Mead method to optimize the MBR pa-
rameters. In the German—English system, we ran
MBR on 500 hypotheses, combining the output of
the Hiero and tree-to-tree systems.

The remainder of the paper will focus on our
primary innovations in the two language pairs.

Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 142—149,
Baltimore, Maryland USA, June 26-27, 2014. (©2014 Association for Computational Linguistics



3 Common System Improvements

A number of our techniques were used for both our
German—English and Hindi—English primary sub-
missions. These techniques each fall into one of
three categories: those that create translation rules,
those involving language models, or those that add
translation features. A comparison of these tech-
niques and their performance across the two lan-
guage pairs can be found in Section 6.

3.1 Rule-Centric Enhancements

While many of our methods of enhancing the
translation model with extra rules are language-
specific, three were shared between language
pairs.

First, we added sentence-boundary tokens <s>
and </s> to the beginning and end of each line in
the data, on both the source and target sides.

Second, we aligned all of our training data us-
ing both FastAlign and GIZA++ and simply con-
catenated two copies of the training corpus, one
aligned with each aligner, and extracted rules from
the resulting double corpus.

Third, we hand-wrote a list of rules that trans-
form numbers, dates, times, and currencies into
well-formed English equivalents, handling differ-
ences such as the month and day reversal in dates
or conversion from 24-hour time to 12-hour time.

3.2 Employed Language Models

Each of our primary systems uses a total of three
language models.

The first is a traditional 4-gram model gen-
erated by interoplating LMs built from each of
the available monolingual corpora. Interpolation
weights were calculated used the SRILM toolkit
(Stolcke, 2002) and 1000 dev sentences from the
Hindi—English system.

The second is a model trained on word clus-
ters instead of surface forms. For this we mapped
the LM vocabulary into 600 clusters based on the
algorithm of Brown et al. (1992) and then con-
structed a 7-gram LM over the resulting clusters,
allowing us to capture more context than our tra-
ditional surface-form language model.

The third is a bigram model over the source side
of each language’s respective bitext. However, at
run time this LM operates on the target-side out-
put of the translator, just like the other two. The
intuition here is that if a source-side LM likes our
output, then we are probably passing through more
than we ought to.
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Both source and target surface-form LM used
modified Kneser-Ney smoothing (Kneser and Ney,
1995), while the model over Brown clusters
(Brown et al., 1992) used subtract-0.5 smoothing.

3.3 New Translation Features

In addition to the standard array of features, we
added four new indicator feature templates, lead-
ing to a total of nearly 150,000 total features.

The first set consists of target-side n-gram fea-
tures. For each bigram of Brown clusters in the
output string generated by our translator, we fire
an indicator feature. For example, if we have the
sentence, Nato will ihren Einfluss im Osten stdrken
translating as NATO intends to strengthen its influ-
ence in the East, we will fire an indicator features
NGF_C367_C128=1, NGF_C128_C31=l1, etc.

The second set is source-language n-gram fea-
tures. Similar to the previous feature set, we fire
an indicator feature for each ngram of Brown clus-
ters in the output. Here, however, we use n = 1,
and we use the map of source language words to
Brown clusters, rather than the target language’s,
despite the fact that this is examining target lan-
guage output. The intuition here is to allow this
feature to penalize passthroughs differently de-
pending on their source language Brown cluster.
For example, passing through the German word
zeitung (“newspaper”) is probably a bad idea, but
passing through the German word Obama proba-
bly should not be punished as severely.

The third type of feature is source path features.
We can imagine translation as a two-step process
in which we first permute the source words into
some order, then translate them phrase by phrase.
This set of features examines that intermediate
string in which the source words have been per-
muted. Again, we fire an indicator feature for each
bigram in this intermediate string, this time using
surface lexical forms directly instead of first map-
ping them to Brown clusters.

Lastly, we create a new type of rule shape fea-
ture. Traditionally, rule shape features have indi-
cated, for each rule, the sequence of terminal and
non-terminal items on the right-hand side. For ex-
ample, the rule [X] — der [X] :: the [X] might
have an indicator feature Shape TN_TN, where
T represents a terminal and N represents a non-
terminal. One can also imagine lexicalizing such
rules by replacing each T with its surface form.
We believe such features would be too sparse, so
instead of replacing each terminal by its surface
form, we instead replace it with its Brown cluster,



creating a feature like Shape_C37_N_C271_N.

4 Hindi-English Specific Improvements

In addition to the enhancements common to the
two primary systems, our Hindi—English system
includes improved data cleaning of development
data, a sophisticated linguistically-informed tok-
enization scheme, a transliteration module, a syn-
thetic phrase generator that improves handling of
function words, and a synthetic phrase generator
that leverages source-side paraphrases. We will
discuss each of these five in turn.

4.1 Development Data Cleaning

Due to a scarcity of clean development data, we
augmented the 520 segments provided with 480
segments randomly drawn from the training data
to form our development set, and drew another
random 1000 segments to serve as a dev test set.
After observing large discrepencies between the
types of segments in our development data and the
well-formed news domain sentences we expected
to be tested on, we made the decision to prune our
tuning set by removing any segment that did not
appear to be a full sentence on both the Hindi and
English sides. While this reduced our tuning set
from 1000 segments back down to 572 segments,
we believe it to be the single largest contributor to
our success on the Hindi—English translation task.

4.2 Nominal Normalization

Another facet of our system was normalization of
Hindi nominals. The Hindi nominal system shows
much more morphological variation than English.
There are two genders (masculine and feminine)
and at least six noun stem endings in pronuncia-
tion and 10 in writing.

The pronominal system also is much richer than
English with many variants depending on whether
pronouns appear with case markers or other post-
positions.

Before normalizing the nouns and pronouns, we
first split these case markers / postpositions from
the nouns / pronouns to result in two words in-
stead of the original combined form. If the case
marker was T (ne), the ergative case marker in
Hindi, we deleted it as it did not have any trans-
lation in English. All the other postpositions were
left intact while splitting from and normalizing the
nouns and pronouns.

These changes in stem forms contribute to the
sparsity in data; hence, to reduce this sparsity, we
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construct for each input segment an input lattice
that allows the decoder to use the split or original
forms of all nouns or pronouns, as well as allowing
it to keep or delete the case marker ne.

4.3 Transliteration

We used the 12,000 Hindi—English transliteration
pairs from the ACL 2012 NEWS workshop on
transliteration to train a linear-chained CRF tag-
ger! that labels each character in the Hindi token
with a sequence of zero or more English characters
(Ammar et al., 2012). At decoding, unseen Hindi
tokens are fed to the transliterator, which produces
the 100 most probable transliterations. We add
a synthetic translation option for each candidate
transliteration.

In addition to this sophisticated transliteration
scheme, we also employ a rule-based translitera-
tor that specifically targets acronyms. In Hindi,
many acronyms are spelled out phonetically, such
as NSA being rendered as TAUHT (en.es.e). We
detected such words in the input segments and
generated synthetic translation options both with
and without periods (e.g. N.S.A. and NSA).

4.4 Synthetic Handling of Function Words

In different language pairs, individual source
words may have many different possible trans-
lations, e.g., when the target language word has
many different morphological inflections or is sur-
rounded by different function words that have no
direct counterpart in the source language. There-
fore, when very large quantities of parallel data
are not available, we can expect our phrasal inven-
tory to be incomplete. Synthetic translation option
generation seeks to fill these gaps using secondary
generation processes that exploit existing phrase
pairs to produce plausible phrase translation alter-
natives that are not directly extractable from the
training data (Tsvetkov et al., 2013; Chahuneau et
al., 2013).

To generate synthetic phrases, we first remove
function words from the source and target sides
of existing non-gappy phrase pairs. We manually
constructed English and Hindi lists of common
function words, including articles, auxiliaries, pro-
nouns, and adpositions. We then employ the
SRILM hidden-ngram utility (Stolcke, 2002) to re-
store missing function words according to an n-
gram language model probability, and add the re-
sulting synthetic phrases to our phrase table.

'https://github.com/wammar/transliterator



4.5 Paraphrase-Based Synthetic Phrases

We used a graph-based method to obtain transla-
tion distributions for source phrases that are not
present in the phrase table extracted from the par-
allel corpus. Monolingual data is used to construct
separate similarity graphs over phrases (word se-
quences or n-grams), using distributional features
extracted from the corpora. The source similar-
ity graph consists of phrase nodes representing se-
quences of words in the source language. In our
instance, we restricted the phrases to bigrams, and
the bigrams come from both the phrase table (the
labeled phrases) and from the evaluation set but
not present in the phrase table (unlabeled phrases).
The labels for these source phrases, namely the
target phrasal inventory, can also be represented
in a graph form, where the distributional features
can also be computed from the target monolingual
data. Translation information is then propagated
from the labeled phrases to the unlabeled phrases
in the source graph, proportional to how similar
the phrases are to each other on the source side,
as well as how similar the translation candidates
are to each other on the target side. The newly
acquired translation distributions for the unlabeled
phrases are written out to a secondary phrase table.
For more information, see Saluja et al. (2014).

5 German-English Specific
Improvements

Our German—English system also had its own
suite of tricks, including the use of “pseudo-
references” and special handling of morphologi-
cally inflected OOVs.

5.1 Pseudo-References

The development sets provided have only a sin-
gle reference, which is known to be sub-optimal
for tuning of discriminative models. As such,
we use the output of one or more of last year’s
top performing systems as pseudo-references dur-
ing tuning. We experimented with using just one
pseudo-reference, taken from last year’s Spanish—
English winner (Durrani et al., 2013), and with
using four pseudo-references, including the out-
put of last year’s winning Czech—English, French—
English, and Russian—English systems (Pino et al.,
2013).

5.2 Morphological OOVs

Examination of the output of our baseline sys-
tems lead us to conclude that the majority of our
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system’s OOVs were due to morphologically in-
flected nouns in the input data, particularly those
in genitive case. As such, for each OOV in the
input, we attempt to remove the German genitive
case marker -s or -es. We then run the resulting
form f through our baseline translator to obtain a
translation e of the lemma. Finally, we add two
translation rules to our translation table: f — e,
and f — e’s.

6 Results

As we added each feature to our systems, we
first ran a one-off experiment comparing our base-
line system with and without each individual fea-
ture. The results of that set of experiments are
shown in Table 1 for Hindi—English and Table 2
for German—English. Features marked with a *
were not included in our final system submission.

The most surprising result is the strength of
our Hindi—English baseline system. With no extra
bells or whistles, it is already half a BLEU point
ahead of the second best system submitted to this
shared task. We believe this is due to our filter-
ing of the tuning set, which allowed our system to
generate translations more similar in length to the
final test set.

Another interesting result is that only one fea-
ture set, namely our rule shape features based on
Brown clusters, helped on the test set in both lan-
guage pairs. No feature hurt the BLEU score on
the test set in both language pairs, meaning the
majority of features helped in one language and
hurt in the other.

If we compare results on the tuning sets, how-
ever, some clearer patterns arise. Brown cluster
language models, n-gram features, and our new
rule shape features all helped.

Furthermore, there were a few features, such as
the Brown cluster language model and tuning to
Meteor (Denkowski and Lavie, 2011), that helped
substantially in one language pair while just barely
hurting the other. In particular, the fact that tuning
to Meteor instead of BLEU can actually help both
BLEU and Meteor scores was rather unexpected.

7 German-English Syntax System

In addition to our primary German—English sys-
tem, we also submitted a contrastive German—
English system showcasing our group’s tree-to-
tree syntax-based translation formalism.



Test (2014) Dev Test (2012)

System BLEU Met TER | BLEU Met TER
Baseline 157 253 68.0 114 229 703
*Meteor Tuning 152 258 713 128 237 713
Sentence Boundaries 152 254 69.1 12.1 234 70.0
Double Aligners 16.1 255 66.6 11.9 23.1 69.2
Manual Number Rules 157 254 68.5 11.6  23.0 70.3
Brown Cluster LM 15.6 25.1 67.3 11.5 227 69.8
*Source LM 142 25.1 72.1 11.3 23.0 723
N-Gram Features 156 252 67.9 122 232 69.2
Src N-Gram Features 153 252 68.9 12.0 234 69.5
Src Path Features 15.8 25.6 68.8 119 233 704
Brown Rule Shape 159 254 672 11.8 229 69.6
Lattice Input 152 258 713 114 229 703
CREF Transliterator 157 257 694 12.1 23,5 70.1
Acronym Translit. 158 258 68.8 124 234 702
Synth. Func. Words 157 253 67.8 114 228 704
Source Paraphrases 156 252 67.7 115 227 699
Final Submission 16.7

Table 1: BLEU, Meteor, and TER results for one-off experiments conducted on the primary Hiero Hindi—

English system. Each line is the baseline plus that
were not included in our final WMT submission.

one feature, non-cumulatively. Lines marked with a *

Test (2014) Dev Test (2012)

System BLEU Met TER | BLEU Met TER
Baseline 253 304 526 262 313 53.6
*Meteor Tuning 26.2 313 531 269 322 544
Sentence Boundaries 254 305 52.2 26.1 314 533
Double Aligners 252 304 525 26.0 313 53.6
Manual Number Rules 253 303 52.5 26.1 314 534
Brown Cluster LM 264 310 519 27.0 31.8 532
*Source LM 25.8 306 524 264 315 534
N-Gram Features 254 304 52.6 26.7 31.6 53.0
Src N-Gram Features 253 305 52.5 26.2 315 534
Src Path Features 25.0 30.1 52.6 260 312 533
Brown Rule Shape 255 305 524 263 315 532
One Pseudo Ref 255 304 526 344 327 493
*Four Psuedo Refs 22.6 292 52.6 498 350 46.1
OOV Morphology 25.5 305 524 26.3 315 53.3
Final Submission 27.1

Table 2: BLEU, Meteor, and TER results for one-off experiments conducted on the primary Hiero

German-English system. Each line is the baseline

plus that one feature, non-cumulatively.

Dev (2013) Dev Test (2012)
System BLEU Met TER | BLEU Met TER
Baseline 2098 29.81 5847 18.65 28.72 61.80
+ Label coarsening 23.07 30.71 56.46 20.43 29.34 60.16
+ Meteor tuning 2348 30.90 56.18 2096 29.60 59.87
+ Brown LM + Lattice + Synthetic 2446 3141 56.66 21.50 30.28 60.51
+ Span limit 15 2420 3125 5548 21.75 2997 59.18
+ Pseudo-references 2455 3130 56.22 22.10 30.12 59.73

Table 3: BLEU, Meteor, and TER results for experiments conducted in the tree-to-tree German—English
system. The system in the bottom line was submitted to WMT as a contrastive entry.

7.1 Basic System Construction

Since all training data for the tree-to-tree system
must be parsed in addition to being word-aligned,
we prepared separate copies of the training, tun-
ing, and testing data that are more suitable for in-
put into constituency parsing. Importantly, we left

the data in its original mixed-case format. We used
the Stanford tokenizer to replicate Penn Treebank
tokenization on the English side. On the German
side, we developed new in-house normalization
and tokenization script.

We filtered tokenized training sentences by sen-
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tence length, token length, and sentence length ra-
tio. The final corpus for parsing and word align-
ment contained 3,897,805 lines, or approximately
86 percent of the total training resources released
under the WMT constrained track. Word align-
ment was carried out using FastAlign (Dyer et
al., 2013), while for parsing we used the Berke-
ley parser (Petrov et al., 2000).

Given the parsed and aligned corpus, we ex-
tracted synchronous context-free grammar rules
using the method of Hanneman et al. (2011).

In addition to aligning subtrees that natively ex-
ist in the input trees, our grammar extractor also
introduces “virtual nodes.” These are new and
possibly overlapping constituents that subdivide
regions of flat structure by combining two adja-
cent sibling nodes into a single nonterminal for
the purposes of rule extraction. Virtual nodes
are similar in spirit to the “A+B” extended cate-
gories of SAMT (Zollmann and Venugopal, 2006),
and their nonterminal labels are constructed in the
same way, but with the added restriction that they
do not violate any existing syntactic structure in
the parse tree.

7.2 Improvements

Nonterminals in our tree-to-tree grammar are
made up of pairs of symbols: one from the source
side and one from the target side. With virtual
nodes included, this led to an initial German—
English grammar containing 153,219 distinct non-
terminals — a far larger set than is used in SAMT,
tree-to-string, string-to-tree, or Hiero systems. To
combat the sparsity introduce by this large nonter-
minal set, we coarsened the label set with an ag-
glomerative label-clustering technique(Hanneman
and Lavie, 2011; Hanneman and Lavie, 2013).
The stopping point was somewhat arbitrarily cho-
sen to be a grammar of 916 labels.

Table 3 shows a significant improvement in
translation quality due to coarsening the label set:
approximately +1.8 BLEU, +0.6 Meteor, and —1.6
TER on our dev test set, newtest2012.2

In the MERT runs, however, we noticed that the
length of the MT output can be highly variable,
ranging on the tuning set from a low of 92.8% of
the reference length to a high of 99.1% in another.
We were able to limit this instability by tuning to
Meteor instead of BLEU. Aside from a modest

2We follow the advice of Clark et al. (2011) and eval-
uate our tree-to-tree experiments over multiple independent
MERT runs. All scores in Table 3 are averages of two or
three runs, depending on the row.
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score improvement, we note that the variability in
length ratio is reduced from 6.3% to 2.8%.

Specific difficulties of the German—English lan-
guage pair led to three additional system compo-
nents to try to combat them.

First, we introduced a second language model
trained on Brown clusters instead of surface forms.

Next we attempted to overcome the sparsity
of German input by making use of cdec’s lattice
input functionality introduce compound-split ver-
sions of dev and test sentences.

Finally, we attempted to improve our grammar’s
coverage of new German words by introducing
synthetic rules for otherwise out-of-vocabulary
items. Each token in a test sentence that the gram-
mar cannot translate generates a synthetic rule al-
lowing the token to be translated as itself. The left-
hand-side label is decided heuristically: a (coars-
ened) “noun” label if the German OOV starts with
a capital letter, a “number” label if the OOV con-
tains only digits and select punctuation characters,
an “adjective” label if the OOV otherwise starts
with a lowercase letter or a number, or a “symbol”
label for anything left over.

The effect of all three of these improvements
combined is shown in the fourth row of Table 3.

By default our previous experiments were per-
formed with a span limit of 12 tokens. Increasing
this limit to 15 has a mixed effect on metric scores,
as shown in the fifth row of Table 3. Since two out
of three metrics report improvement, we left the
longer span limit in effect in our final system.

Our final improvement was to augment our tun-
ing set with the same set of pseudo-references
as our Hiero systems. We found that using one
pseudo-reference versus four pseudo-references
had negligible effect on the (single-reference) tun-
ing scores, but four produced a better improve-
ment on the test set.

The best MERT run of this final system (bottom
line of Table 3) was submitted to the WMT 2014
evaluation as a contrastive entry.
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Abstract

We describe Stanford’s participation in
the French-English and English-German
tracks of the 2014 Workshop on Statisti-
cal Machine Translation (WMT). Our sys-
tems used large feature sets, word classes,
and an optional unconstrained language
model. Among constrained systems, ours
performed the best according to uncased
BLEU: 36.0% for French-English and
20.9% for English-German.

1 Introduction

Phrasal (Green et al., 2014b) is a phrase-based ma-
chine translation system (Och and Ney, 2004) with
an online, adaptive tuning algorithm (Green et al.,
2013c) which allows efficient tuning of feature-
rich translation models. We improved upon the
basic Phrasal system with sparse features over word
classes, class-based language models, and a web-
scale language model.

We submitted one constrained French-English
(Fr-En) system, one unconstrained English-German
(En-De) system with a huge language model, and
one constrained English-German system without it.
Each system was built using over 100,000 features
and was tuned on over 10,000 sentences. This paper
describes our submitted systems and discusses how
the improvements affect translation quality.

2 Data Preparation & Post-Processing

We used all relevant data allowed by the con-
strained condition, with the exception of HindEn-
Corp and Wiki Headlines, which we deemed too
noisy. Specifically, our parallel data consists of the
Europarl version 7 (Koehn, 2005), parallel Com-
monCrawl (Smith et al., 2013), French-English UN,
Giga-FrEn, and News Commentary corpora pro-
vided by the evaluation. For monolingual data, we

*These authors contributed equally.

Sentences Tokens
En-De 4.5M 222M
Fr-En 36.3M 2.1B

Table 1: Gross parallel corpus statistics after pre-
processing.

Constrained LM Unconstrained LM

1.7B 389B
7.2B -

German
English

Table 2: Number of tokens in pre-processed mono-
lingual corpora used to estimate the language mod-
els. We split the constrained English data into two
models: 3.7 billion tokens from Gigaword and 3.5
billion tokens from all other sources.

used the provided news crawl data from all years,
English Gigaword version 5 (Parker et al., 2011),
and target sides of the parallel data. This includes
English from the Yandex, CzEng, and parallel Com-
monCrawl corpora. For parallel CommonCrawl,
we concatenated the English halves for various lan-
guage pairs and then deduplicated at the sentence
level.

In addition, our unconstrained English-German
system used German text extracted from the en-
tire 2012, 2013, and winter 2013 CommonCrawl'
corpora by Buck et al. (2014).

Tables 1 and 2 show the sizes of the pre-
processed corpora of parallel text and monolingual
text from which our systems were built.

2.1 Pre-Processing

We used Stanford CoreNLP to tokenize the English
and German data according to the Penn Treebank
standard (Marcus et al., 1993). The French source
data was tokenized similarly to the French Treebank

"http://commoncrawl.org
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(Abeillé et al., 2003) using the Stanford French
tokenizer (Green et al., 2013b).

We also lowercased the data and removed any
control characters. Further, we filtered out all lines
that consisted mainly of punctuation marks, re-
moved characters that are frequently used as bullet
points and standardized white spaces and newlines.
We additionally filtered out sentences longer than
100 tokens from the parallel corpora in order to
speed up model learning.

2.2 Alignment

For both systems, we used the Berkeley Aligner
(Liang et al., 2006) with default settings to align
the parallel data. We symmetrized the alignments
using the grow-diag heuristic.

2.3 Language Models

Our systems used up to three language models.

2.3.1 Constrained Language Models

For En-De, we used Implz (Heafield et al., 2013)
to estimate a 5-gram language model on all WMT
German monolingual data and the German side of
the parallel Common Crawl corpus. To query the
model, we used KenLM (Heafield, 2011).

For the Fr-En system, we also estimated a 5-gram
language model from all the monolingual English
data and the English side of the parallel Common
Crawl, UN, Giga-FrEn, CzEng and Yandex corpora
using the same procedure as above. Additionally,
we estimated a second language model from the
English Gigaword corpus.

All of these language models used interpolated
modified Kneser-Ney smoothing (Kneser and Ney,
1995; Chen and Goodman, 1998).

2.3.2 Unconstrained Language Model

Our unconstrained En-De submission used an ad-
ditional language model trained on German web
text gathered by the Common Crawl Foundation
and processed by Buck et al. (2014). This cor-
pus was formed from the 2012, 2013, and winter
2013 Common Crawl releases, which consist of web
pages converted to UTF-8 encoding with HTML
stripped. Applying the Compact Language Detec-
tor 2,2 2.89% of the data was identified as German,
amounting to 1 TB of uncompressed text. After
splitting sentences with the Europarl sentence split-
ter (Koehn, 2005), the text was deduplicated at the
sentence level to reduce the impact of boilerplate

https://code.google.com/p/cld2/
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Order 1 2 3 4 5
226 1916 6,883 13,292 17,576

Count

Table 3: Number of unique n-grams, in millions,
appearing in the Common Crawl German language
model.

and pages that appeared in multiple crawls, discard-
ing 78% of the data. We treated the resulting data
as normal text, pre-processing it as described in
Section 2.1 to yield 38.9 billion tokens. We built
an unpruned interpolated modified Kneser-Ney lan-
guage model with this corpus (Table 3) and added
it as an additional feature alongside the constrained
language models. At 38.9 billion tokens after dedu-
plication, this monolingual data is almost 23 times
as large as the rest of the German monolingual cor-
pus. Since the test data was also collected from the
web, we cannot be sure that the test sentences were
not in the language model. However, substantial
portions of the test set are translations from other
languages, which were not posted online until after
2013.

2.3.3 Word-Class Language Model

We also built a word-class language model for the
En-De system. We trained 512 word classes on
the constrained German data using the predictive
one-sided class model of Whittaker and Woodland
(2001) with the parallelized clustering algorithm of
Uszkoreit and Brants (2008) by Green et al. (2014a).
All tokens were mapped to their word class; infre-
quent tokens appearing fewer than 5 times were
mapped to a special cluster for unknown tokens.
Finally, we estimated a 7-gram language model on
the mapped corpus with SRILM (Stolcke, 2002)
using Witten-Bell smoothing (Bell et al., 1990).

2.4 Tuning and Test Data

For development, we tuned our systems on all
13,573 sentences contained in the newstest2008-
2012 data sets and tested on the 3,000 sentences of
the newstest2013 data set. The final system weights
were chosen among all tuning iterations using per-
formance on the newstest2013 data set.

2.5 Post-Processing

Our post-processor recases and detokenizes sys-
tem output. For the English-German system, we
combined both tasks by using a Conditional Ran-
dom Field (CRF) model (Lafferty et al., 2001) to



learn transformations between the raw output char-
acters and the post-processed versions. For each
test dataset, we trained a separate model on 500,000
sentences selected using the Feature Decay Algo-
rithm for bitext selection (Bicici and Yuret, 2011).
Features used include the character type of the cur-
rent and surrounding characters, the token type of
the current and surrounding tokens, and the position
of the character within its token.

The English output was recased using a language
model based recaser (Lita et al., 2003). The lan-
guage model was trained on the English side of the
Fr-En parallel data using Implz.

3 Translation System
We built our translation systems using Phrasal.

3.1 Features

Our translation model has 19 dense features that
were computed for all translation hypotheses: the
nine Moses (Koehn et al., 2007) baseline features,
the eight hierarchical lexicalized reordering model
features by Galley and Manning (2008), the log
count of each rule, and an indicator for unique rules.
On top of that, the model uses the following addi-
tional features of Green et al. (2014a).

Rule indicator features: An indicator feature for
each translation rule. To combat overfitting, this
feature fires only for rules that occur more than
50 times in the parallel data. Additional indicator
features were constructed by mapping the words in
each rule to their corresponding word classes.

Target unigram class: An indicator feature for
the class of each target word.

Alignments: An indicator feature for each align-
ment in a translation rule, including multi-word
alignments. Again, class-based translation rules
were used to extract additional indicator features.

Source class deletion: An indicator feature for
the class of each unaligned source word in a trans-
lation rule.

Punctuation count ratio: The ratio of target
punctuation tokens to source punctuation tokens
for each derivation.

Function word ratio: The ratio of target function
words to source function words. The function words
for each language are the 35 most frequent words
on each side of the parallel data. Numbers and
punctuation marks are not included in this list.

152

Target-class bigram boundary: An indicator
feature for the concatenation of the word class of
the rightmost word in the left rule and the word
class of the leftmost word in the right rule in each
adjacent rule pair in a derivation.

Length features: Indicator features for the length
of the source side and for the length of the target
side of the translation rule and an indicator feature
for the concatenation of the two lengths.

Rule orientation features: An indicator feature
for each translation rule combined with its orienta-
tion class (monotone, swap, or discontinuous). This
feature also fires only for rules that occur more than
50 times in the parallel data. Again, class-based
translation rules were used to extract additional fea-
tures.

Signed linear distortion: The signed linear dis-
tortion § for two rules a and bis 6 = r(a)—1(b)+1,
where 7 () is the rightmost source index of rule z
and () is the leftmost source index of rule z. Each
adjacent rule pair in a derivation has an indicator
feature for the signed linear distortion of this pair.

Many of these features consider word classes
instead of the actual tokens. For the target side, we
used the same word classes as we used to train the
class-based language model. For the source side,
we trained word classes on all available data using
the same method.

3.2 Tuning

We used an online, adaptive tuning algorithm
(Green et al., 2013c) to learn the feature weights.
The loss function is an online variant of expected
BLEU (Green et al., 2014a). As a sentence-level
metric, we used the extended BLEU+1 metric that
smooths the unigram precision as well as the refer-
ence length (Nakov et al., 2012). For feature selec-
tion, we used L; regularization. Each tuning epoch
produces a different set of weights; we tried all of
them on newstest2013, which was held out from the
tuning set, then picked the weights that produced
the best uncased BLEU score.

3.3 System Parameters

We started off with the parameters of our systems
for the WMT 2013 Translation Task (Green et
al., 2013a) and optimized the Li-regularization
strength. Both systems used the following tuning
parameters: a 200-best list, a learning rate of 0.02
and a mini-batch size of 20. The En-De system



Track Stanford Best Rank Track Stanford Best Rank
En-De constrained 19.9 20.1 3 En-De constrained 20.7 20.7 1
En-De unconstrained 20.0 20.6 5 En-De unconstrained 20.9 21.0 3
Fr-En constrained 34.5 35.0 3 Fr-En constrained 36.0 36.0 1

(a) cased BLEU (%)

(b) uncased BLEU (%)

Table 4: Official results in terms of cased and uncased BLEU of our submitted systems compared to the
best systems for each track. The ranks for the unconstrained system are calculated relative to all primary
submissions for the language pair, whereas the ranks for the constrained systems are relative to only the

constrained systems submitted.

used a phrase length limit of 8, a distortion limit of
6 and a Li-regularization strength of 0.0002. The
Fr-En system used a phrase length limit of 9, a dis-
tortion limit of 5 and a L;-regularization strength
of 0.0001.

During tuning, we set the stack size for cube prun-
ing to Phrasal’s default value of 1200. To decode
the test set, we increased the stack size to 3000.

4 Results

Table 4 shows the official results of our systems
compared to other submissions to the WMT shared
task. Both our En-De and Fr-En systems achieved
the highest uncased BLEU scores among all con-
strained submissions. However, our recaser evi-
dently performed quite poorly compared to other
systems, so our constrained systems ranked third by
cased BLEU score. Our unconstrained En-De sub-
mission ranked third among all systems by uncased
BLEU and fifth by cased BLEU.

To demonstrate the effectiveness of the individ-
ual improvements, we show results for four differ-
ent En-De systems: (1) A baseline that contains
only the 19 dense features, (2) a feature-rich trans-
lation system with the additional rich features, (3)
a feature-rich translation system with an additional
word class LM, and (4) a feature-rich translation
system with an additional wordclass LM and a huge
language model. For Fr-En we only built systems
(1)-(3). Results for all systems can be seen in Table
5 and Table 6. From these results, we can see that
both language pairs benefitted from adding rich fea-
tures (+0.4 BLEU for En-De and +0.5 BLEU for
Fr-En). However, we only see improvements from
the class-based language model in the case of the
En-De system (+0.4 BLEU). For this reason our Fr-
En submission did not use a class-based language
model. Using additional data in the form of a huge
language model further improved our En-De sys-
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tem by almost 1% BLEU on the newstest2013 data
set. However, we only saw 0.2 BLEU improvement
on the newstest2014 data set.

4.1 Analysis

Gains from rich features are in line with the gains
we saw in the WMT 2013 translation task (Green
et al., 2013a). We suspect that rich features would
improve the translation quality a lot more if we had
several reference translations to tune on.

The word class language model seemed to im-
prove only translations in our En-De system while
it had no effect on BLEU in our Fr-En system. One
of the main reasons seems to be that the 7-gram
word class language model helped particularly with
long range reordering, which happens far more fre-
quently in the En-De language pair compared to the
Fr-En pair. For example, in the following transla-
tion, we can see that the system with the class-based
language model successfully translated the verb in
the second clause (set in ifalic) while the system
without the class-based language model did not
translate the verb.

Source: It became clear to me that this is my path.

Feature-rich: Es wurde mir klar, dass das mein
Weg.

Word class LM: Es wurde mir klar, dass das mein
Weg ist.

We can also see that the long range of the word
class language model improved grammaticality as
shown in the following example:

Source: Meanwhile, more than 40 percent of the
population are HIV positive.

Feature-rich: Inzwischen sind mehr als 40
Prozent der Bevolkerung sind HIV positiv.



#iterations tune 2013 2013 cased 2014 2014 cased
Dense 8 16.9 19.6 18.7 20.0 19.2
Feature-rich 10 20.1 20.0 19.0 20.0 19.2
+ Word class LM 15 21.1 204 19.5 20.7 19.9
+ Huge LM 9 21.0 21.3 20.3 20.9 20.1

Table 5: En-De BLEU results. The tuning set is newstest2008—-2012. Scores on newstest2014 were
computed after the system submission deadline using the released references.

#iterations tune 2013 2013 cased 2014 2014 cased
Dense 1 29.1 32.0 30.4 35.6 34.0
Feature-rich 12 37.2 32.5 30.9 36.0 34.5
+ Word class LM 14 35.7 32.3 30.7 - -

Table 6: Fr-En BLEU results. The tuning set is newstest2008—-2012. Scores on newstest2014 were
computed after the system submission deadline using the released references.

Word class LM: Unterdessen mehr als 40 Prozent
der Bevolkerung sind HIV positiv.

In this example, the system without the class-
based language model translated the verb twice. In
the second translation, the class-based language
model prevented this long range disagreement. An
analysis of the differences in the translation output
of our Fr-En systems showed that the word class
language model mainly led to different word choices
but does not seem to help grammatically.

4.2 Casing

Our system performed comparatively poorly at cas-
ing, as shown in Table 4. In analysis after the eval-
uation, we found many of these errors related to
words with internal capitals, such as “McCaskill”,
because the limited recaser we used, which is based
on a language model, considered only all lowercase,
an initial capital, or all uppercase words. We ad-
dressed this issue by allowing any casing seen in the
monolingual data. Some words were not seen at all
in the monolingual data but, since the target side of
the parallel data was included in monolingual data,
these words must have come from the source sen-
tence. In such situations, we preserved the word’s
original case. Table 7 shows the results with the re-
vised casing model. We gained about 0.24% BLEU
for German recasing and 0.15% BLEU for English
recasing over our submitted systems. In future work,
we plan to compare with a truecased system.

En-De Fr-En

Uncased Oracle 20.71 36.05
Conditional Random Field 19.85 -

Limited Recaser 19.82 34.51

Revised Recaser 20.09 34.66

Table 7: Casing results on newstest2014 performed
after the evaluation. The oracle scores are uncased
BLEU (%) while all other scores are cased. Sub-
mitted systems are shown in italic.

5 Negative Results

We experimented with several additions that did not
make it into the final submissions.

5.1 Preordering

One of the key challenges when translating from
English to German is the long-range reordering of
verbs. For this reason, we implemented a depen-
dency tree based reordering system (Lerner and
Petrov, 2013). We parsed all source side sentences
using the Stanford Dependency Parser (De Marn-
effe et al., 2006) and trained the preordering system
on the entire bitext. Then we preordered the source
side of the bitext and the tuning and development
data sets using our preordering system, realigned
the bitext and tuned a machine translation system
using the preordered data. While preordering im-
proved verb reordering in many cases, many other
parts of the sentences were often also reordered
which led to an overall decrease in translation qual-
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ity. Therefore, we concluded that this system will re-
quire further development before it is useful within
our translation system.

5.2 Minimum Bayes Risk Decoding

We further attempted to improve our output by re-
ordering the best 1000 translations for each sentence
using Minimum Bayes Risk decoding (Kumar and
Byrne, 2004) with BLEU as the distance measure.
This in effect increases the score of candidates that
are “closer” to the other likely translations, where
“closeness” is measured by the BLEU score for the
candidate when the other translations are used as the
reference. Choosing the best translation following
this reordering improved overall performance when
tuned on the first half of the newstest2013 test set by
only 0.03 BLEU points for the English-German sys-
tem and 0.005 BLEU points for the French-English
system, so we abandoned this approach.

6 Conclusion

We submitted three systems: one constrained Fr-En
system, one constrained En-De system, and one un-
constrained En-De system. Among all constrained
systems, ours performed the best according to un-
cased BLEU. The key differentiating components
of our systems are class-based features, word class
language models, and a huge web-scale language
model. In ongoing work, we are investigating pre-
ordering for En-De translation as well as improved
recasing.
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Abstract

This paper describes the statistical ma-
chine translation (SMT) systems devel-
oped at RWTH Aachen University for the
German—English translation task of the
ACL 2014 Eighth Workshop on Statisti-
cal Machine Translation (WMT 2014).
Both hierarchical and phrase-based SMT
systems are applied employing hierarchi-
cal phrase reordering and word class lan-
guage models. For the phrase-based sys-
tem, we run discriminative phrase training.
In addition, we describe our preprocessing
pipeline for German—English.

1 Introduction

For the WMT 2014 shared translation task'
RWTH utilized state-of-the-art phrase-based and
hierarchical translation systems. First, we describe
our preprocessing pipeline for the language pair
German—English in Section 2. Furthermore, we
utilize morpho-syntactic analysis to preprocess the
data (Section 2.3). In Section 3, we give a survey
of the employed systems and the basic methods
they implement. More details are given about the
discriminative phrase training (Section 3.4) and
the hierarchical reordering model for hierarchical
machine translation (Section 3.5). Experimental
results are discussed in Section 4.

2 Preprocessing

In this section we will describe the modification of
our preprocessing pipeline compared to our 2013
WMT German—English setup.

2.1 Categorization

We put some effort in building better categories for
digits and written numbers. All written numbers

"nttp://www.statmt.org/wmt14/
translation—-task.html
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were categorized. In 2013 they were just handled
as normal words which leads to a higher number of
out-of-vocabulary words. For German—English,
in most cases for numbers like 3,000’ or ’2.34
the decimal mark ’, and the thousands separator
> has to be inverted. As the training data and also
the test sets contain several errors for numbers in
the source as well as in the target part, we put more
effort into producing correct English numbers.

2.2 Remove Foreign Languages

The WMT German—English corpus contains
some bilingual sentence pairs with non-German
source or/and non-English target sentences. For
this WMT translation task, we filtered all non-
matching language pairs (in terms of source lan-
guage German and target language English) from
our bilingual training set.

First, we filtered languages which contain non-
ascii characters. For example Chinese, Arabic or
Russian can be easily filtered when deleting sen-
tences which contain more than 70 percent non-
ascii words. The first examples of Table 1 was
filtered due to the fact, that the source sentence
contains too many non-ascii characters.

In a second step, we filtered European lan-
guages containing ascii characters. We used the
WMT monolingual corpora in Czech, French,
Spanish, English and German to filter these lan-
guages from our bilingual data. We could both
delete a sentence pair if it contains a wrong source
language or a wrong target language. That is the
reason why we even search for English sentences
in the source part and for German sentences in
the target part. For each language, we built a
word count of all words in the monolingual data
for each language separately. We removed punc-
tuation which are no indicator of a language. In
our experiments, we only considered words with
frequency higher than 20 (e.g. to ignore names).
Given the word frequency, we removed a bilingual

Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 157-162,
Baltimore, Maryland USA, June 26-27, 2014. (©2014 Association for Computational Linguistics



Table 1: Examples of sentences removed in preprocessing.

Example

remove non-ascii symbols

=R S DI R

zum Bericht Afoveros Trias de Bes

remove wrong languages from target

Honni soit qui mal y pense !
as you yourself have said : travailler plus pour gagner plus

remove wrong languages from source

je déclare interrompue la session du Parlement européen .
Quelle der Tabelle : “ what Does the European Union do ?

sentence pair from our training data if more than
70 percent of the words had a higher count in a
different language then the one we expected. In
Table 1 some example sentences, which were re-
moved, are illustrated.

In Table 2 the amount of sentences and the cor-
responding vocabulary sizes of partial and totally
cleaned data sets are given. Further we provide the
number of out-of-vocabulary words (OOVs) for
newstest2012. The vocabulary size could be re-
duced by ~130k words for both source and target
side of our bilingual training data while the OOV
rate kept the same. Our experiments showed, that
the translation quality is the same with or with-
out removing wrong sentences. Nevertheless, we
reduced the training data size and also the vocabu-
lary size without any degradation in terms of trans-
lation quality.

2.3 Morpho-syntactic Analysis

In order to reduce the source vocabulary size for
the German—English translation further, the Ger-
man text is preprocessed by splitting German com-
pound words with the frequency-based method de-
scribed in (Koehn and Knight, 2003). To reduce
translation complexity, we employ the long-range
part-of-speech based reordering rules proposed by
Popovi¢ and Ney (20006).

3 Translation Systems

In this evaluation, we employ phrase-based trans-
lation and hierarchical phrase-based translation.
Both approaches are implemented in Jane (Vilar et
al., 2012; Wuebker et al., 2012), a statistical ma-
chine translation toolkit which has been developed
at RWTH Aachen University and is freely avail-
able for non-commercial use.? In the newest inter-
nal version, we use the KenLM Language Model
Interface provided by (Heafield, 2011) for both de-
coders.

http://www.hltpr.rwth-aachen.de/jane/

158

3.1 Phrase-based System

In the phrase-based decoder (source cardinality
synchronous search, SCSS, Wuebker et al. (2012)),
we use the standard set of models with phrase
translation probabilities and lexical smoothing in
both directions, word and phrase penalty, distance-
based distortion model, an n-gram target language
model and three binary count features. Additional
models used in this evaluation are the hierarchical
reordering model (HRM) (Galley and Manning,
2008) and a word class language model (wcLM)
(Wuebker et al., 2013). The parameter weights
are optimized with minimum error rate training
(MERT) (Och, 2003). The optimization criterion
is BLEU (Papineni et al., 2002).

3.2 Hierarchical Phrase-based System

In hierarchical phrase-based translation (Chiang,
2007), a weighted synchronous context-free gram-
mar is induced from parallel text. In addition to
contiguous lexical phrases, hierarchical phrases
with up to two gaps are extracted. The search is
carried out with a parsing-based procedure. The
standard models integrated into our Jane hierar-
chical systems (Vilar et al., 2010; Huck et al.,
2012) are: Phrase translation probabilities and lex-
ical smoothing probabilities in both translation di-
rections, word and phrase penalty, binary features
marking hierarchical phrases, glue rule, and rules
with non-terminals at the boundaries, three binary
count features, and an n-gram language model.
We utilize the cube pruning algorithm for decod-
ing (Huck et al., 2013a) and optimize the model
weights with MERT. The optimization criterion is
BLEU.

3.3 Other Tools and Techniques

We employ GIZA++ (Och and Ney, 2003) to train
word alignments. The two trained alignments
are heuristically merged to obtain a symmetrized
word alignment for phrase extraction. All lan-



Table 2: Corpus statistics after each filtering step and compound splitting.

Vocabulary OOVs
Sentences | German | English || newstest2012
Preprocessing 2013 4.19M 1.43M 784K 1019
Preprocessing 2014 4.19M 1.42M 773K 1018
+ remove non-ascii symbols 4.17TM 1.36M 713K 1021
+ remove wrong languages from target 4.15M 1.34M 675K 1027
+ remove wrong languages from source 4.08M 1.30M 655K 1039
+ compound splitting 4.08M 652K 655K 441

guage models (LMs) are created with the SRILM
toolkit (Stolcke, 2002) or with the KenLM lan-
guage model toolkit (Heafield et al., 2013) and are
standard 4-gram LMs with interpolated modified
Kneser-Ney smoothing (Kneser and Ney, 1995;
Chen and Goodman, 1998). We evaluate in true-
case with BLEU and TER (Snover et al., 2006).

3.4 Discriminative Phrase Training

In our baseline translation systems the phrase ta-
bles are created by a heuristic extraction from
word alignments and the probabilities are esti-
mated as relative frequencies, which is still the
state-of-the-art for many standard SMT systems.
Here, we applied a more sophisticated discrimi-
native phrase training method for the WMT 2014
German—English task. Similar to (He and Deng,
2012), a gradient-based method is used to opti-
mize a maximum expected BLEU objective, for
which we define BLEU on the sentence level with
smoothed 3-gram and 4-gram precisions. To that
end, the training data is decoded to generate 100-
best lists. We apply a leave-one-out heuristic
(Wuebker et al., 2010) to make better use of the
training data. Using these n-best lists, we itera-
tively perform updates on the phrasal translation
scores of the phrase table. After each iteration,
we run MERT, evaluate on the development set
and select the best performing iteration. In this
work, we perform two rounds of discriminative
training on two separate data sets. In the first
round, training is performed on the concatenation
of newstest2008 through newstest2010 and an au-
tomatic selection from the News-commentary, Eu-
roparl and Common Crawl corpora. The selec-
tion is based on cross-entropy difference of lan-
guage models and IBM-1 models as described by
Mansour et al. (2011) and contains 258K sentence
pairs. The training took 4.5 hours for 30 iterations.
On top of the final phrase-based systems, a second

round of discriminative training is run on the full
news-commentary corpus concatenated with new-
stest2008 through newstest2010.

3.5 A Phrase Orientation Model for
Hierarchical Machine Translation

In Huck et al. (2013b) a lexicalized reorder-
ing model for hierarchical phrase-based machine
translation was introduced. The model scores
monotone, swap, and discontinuous phrase ori-
entations in the manner of the one presented by
(Tillmann, 2004). Since improvements were re-
ported on a Chinese—English translation task, we
investigate the impact of this model on a European
language pair. As in German the word order is
more flexible compared with the target language
English, we expect that an additional reordering
model could improve the translation quality. In
our experiments we use the same settings which
worked best in (Huck et al., 2013b).

4 Setup

We trained the phrase-based and the hierarchical
translation system on all available bilingual train-
ing data. Corpus statistics can be found in the
last row of Table 2. The language model are
4-grams trained on the respective target side of
the bilingual data, % of the Shuffled News Crawl
corpus, % of the 10° French-English corpus and
3 of the LDC Gigaword Fifth Edition corpus.
The monolingual data selection is based on cross-
entropy difference as described in (Moore and
Lewis, 2010). For the baseline language model,
we trained separate models for each corpus, which
were then interpolated. For our final experiments,
we also trained a single unpruned language model
on the concatenation of all monolingual data with
KenLM.
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Table 3: Results (truecase) for the German—English translation task. BLEU and TER are given in
percentage. All HPBT setups are tuned on the concatenation of newstest2012 and newstest2013. The
very first SCSS setups are optimized on newstest2012 only.

newstest2011 | newstest2012 | newstest2013

BLEU | TER | BLEU | TER | BLEU | TER

SCSS +HRM 224 | 60.1 | 2377 | 59.0 | 259 | 55.7
+wcL.M 22.8 | 59.6 | 24.0 | 586 | 263 | 554
+1st round discr. 230 | 59.5 | 242 | 582 | 26.8 | 55.1
+tunel 1+12. 234 | 59.5 | 242 | 586 | 26.8 | 552
+unprunedLM 236 | 595 | 242 | 58.6 | 27.1 | 55.0

+2nd round discr. | 23.7 | 59.5 | 244 | 585 | 27.2 | 55.0

HPBT baseline 233 | 599 | 242 | 589 | 26.7 | 55.6
+wcL.M 234 | 59.8 | 24.1 | 589 | 26.8 | 55.6
+HRM 233 | 60.0 | 242 | 589 | 269 | 55.5
+HRM +wcLM 233 | 599 | 241 | 59.1 | 26.7 | 559

4.1 Experimental Results

The results of the phrase-based system (SCSS)
as well as the hierarchical phrase-based system
(HPBT) are summarized in Table 3.

The phrase-based baseline system, which in-
cludes the hierarchical reordering model by (Gal-
ley and Manning, 2008) and is tuned on new-
stest2012, reaches a performance of 25.9% BLEU
on newstest2013. Adding the word class language
model improves performance by 0.4% BLEU ab-
solute and the first round of discriminative phrase
training by 0.5% BLEU absolute. Next, we
switched to tuning on a concatenation of new-
stest2011 and newstest2012, which we expect to
be more reliable with respect to unseen data. Al-
though the BLEU score does not improve and TER
goes up slightly, we kept this tuning set in the sub-
sequent setups, as it yielded longer translations,
which in our experience will usually be preferred
by human evaluators. Switching from the inter-
polated language model to the unpruned language
model trained with KenLM on the full concate-
nated monolingual training data in a single pass
gained us another 0.3% BLEU. For the final sys-
tem, we ran a second round of discriminative train-
ing on different training data (cf. Section 3.4),
which increased performance by 0.1% BLEU to
the final score 27.2.

For the phrase-based system, we also exper-
imented with weighted phrase extraction (Man-
sour and Ney, 2012), but did not observe improve-
ments.

The hierarchical phrase-based baseline without
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any additional model is on the same level as the
phrase-based system including the word class lan-
guage model, hierarchical reordering model and
discriminative phrase training in terms of BLEU.
However, extending the system with a word class
language model or the additional reordering mod-
els does not seem to help. Even the combination
of both models does not improve the translation
quality. Note, that the hierarchical system was
tuned on the concatenation newstest2011 and new-
stest2012. The final system employs both word
class language model and hierarchical reordering
model.

Both phrase-based and hierarchical phrase-
based final systems are used in the EU-Bridge sys-
tem combination (Freitag et al., 2014).

5 Conclusion

For the participation in the WMT 2014 shared
translation task, RWTH experimented with both
phrase-based and hierarchical translation systems.
For both approaches, we applied a hierarchical
phrase reordering model and a word class lan-
guage model. For the phrase-based system we em-
ployed discriminative phrase training. Addition-
ally, improvements of our preprocessing pipeline
compared to our WMT 2013 setup were described.
New introduced categories lead to a lower amount
of out-of-vocabulary words. Filtering the corpus
for wrong languages gives us lower vocabulary
sizes for source and target without loosing any per-
formance.
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Abstract

We present the IMS-TTT submission to
WMT14, an experimental statistical tree-
to-tree machine translation system based
on the multi-bottom up tree transducer in-
cluding rule extraction, tuning and decod-
ing. Thanks to input parse forests and
a “no pruning” strategy during decoding,
the obtained translations are competitive.
The drawbacks are a restricted coverage
of 70% on test data, in part due to ex-
act input parse tree matching, and a rela-
tively high runtime. Advantages include
easy redecoding with a different weight
vector, since the full translation forests can
be stored after the first decoding pass.

1 Introduction

In this contribution, we present an implementation
of a translation model that is based on {MBOT
(the multi bottom-up tree transducer of Arnold and
Dauchet (1982) and Lilin (1978)). Intuitively, an
MBOT is a synchronous tree sequence substitution
grammar (STSSG, Zhang et al. (2008a); Zhang et
al. (2008b); Sun et al. (2009)) that has discon-
tiguities only on the target side (Maletti, 2011).
From an algorithmic point of view, this makes the
MBOT more appealing than STSSG as demon-
strated by Maletti (2010). Formally, MBOT is
expressive enough to express all sensible trans-
lations (Maletti, 2012)'. Figure 2 displays sam-
ple rules of the MBOT variant, called /MBOT,

This work was supported by Deutsche Forschungsge-
meinschaft grants Models of Morphosyntax for Statistical
Machine Translation (Phase 2) and MA/4959/1-1.

'A translation is sensible if it is of linear size increase
and can be computed by some (potentially copying) top-down
tree transducer.
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that we use (in a graphical representation of the
trees and the alignment). Recently, a shallow ver-
sion of MBOT has been integrated into the popular
Moses toolkit (Braune et al., 2013). Our imple-
mentation is exact in the sense that it does abso-
lutely no pruning during decoding and thus pre-
serves all translation candidates, while having no
mechanism to handle unknown structures. (We
added dummy rules that leave unseen lexical ma-
terial untranslated.) The coverage is thus limited,
but still considerably high. Source-side and target-
side syntax restrict the search space so that decod-
ing stays tractable. Only the language model scor-
ing is implemented as a separate reranker”. This
has several advantages: (1) We can use input parse
forests (Liu et al., 2009). (2) Not only is the out-
put optimal with regard to the theoretical model,
also the space of translation candidates can be ef-
ficiently stored as a weighted regular tree gram-
mar. The best translations can then be extracted
using the k-best algorithm by Huang and Chiang
(2005). Rule weights can be changed without the
need for explicit redecoding, the parameters of the
log-linear model can be changed, and even new
features can be added. These properties are espe-
cially helpful in tuning, where only the k-best al-
gorithm has to be re-run in each iteration. A model
in similar spirit has been described by Huang et al.
(2006); however, it used target syntax only (using
a top-down tree-to-string transducer backwards),
and was restricted to sentences of length at most
25. We do not make such restrictions.

The theoretical aspects of /MBOT and their use
in our translation model are presented in Section 2.
Based on this, we implemented a machine transla-
tion system that we are going to make available to

2Strictly speaking, this does introduce pruning into the
pipeline.
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the public. Section 4 presents the most important
components of our /MBOT implementation, and
Section 5 presents our submission to the WMT14
shared translation task.

2 Theoretical Model

In this section, we present the theoretical genera-
tive model that is used in our approach to syntax-
based machine translation: the multi bottom-up
tree transducer (Maletti, 2011). We omit the tech-
nical details and give graphical examples only to
illustrate how the device works, but refer to the lit-
erature for the theoretical background. Roughly
speaking, a local multi bottom-up tree transducer
(/MBOT) has rules that replace one nonterminal
symbol NV on the source side by a tree, and a se-
quence of nonterminal symbols on the target side
linked to NV by one tree each. These trees again
have linked nonterminals, thus allowing further
rule applications.

Our /MBOT rules are obtained automatically
from data like that in Figure 1. Thus, we (word)
align the bilingual text and parse it in both the
source and the target language. In this manner we
obtain sentence pairs like the one shown in Fig-
ure 1. To these sentence pairs we apply the rule
extraction method of Maletti (2011). The rules
extracted from the sentence pair of Figure 1 are
shown in Figure 2. Note the discontiguous align-
ment of went to ist and gegangen, resulting in dis-
contiguous rules.

The application of those rules is illustrated in
Figure 3 (a pre-translation is a pair consisting of a
source tree and a sequence of target trees). While
it shows a synchronous derivation, our main use
case of /MBOT rules is forward application or in-
put restriction, that is the calculation of all target
trees that can be derived given a source tree. For
a given synchronous derivation d, the source tree
generated by d is s(d), and the target tree is ¢(d).
The yield of a tree is the string obtained by con-
catenating its leaves.

Apart from /MBOT application to input trees,
we can even apply /MBOT to parse forests and
even weighted regular tree grammars (RTGs)
(Fiilop and Vogler, 2009). RTGs offer an ef-
ficient representation of weighted forests, which
are sets of trees such that each individual tree is
equipped with a weight. This representation is
even more efficient than packed forests (Mi et al.,
2008) and moreover can represent an infinite num-
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ber of weighted trees. The most important prop-
erty that we utilize is that the output tree language
is regular, so we can represent it by an RTG (cf.
preservation of regularity (Maletti, 2011)). In-
deed, every input tree can only be transformed into
finitely many output trees by our model, so for a
given finite input forest (which the output of the
parser is) the computed output forest will also be
finite and thus regular.

3 Translation Model

Given a source language sentence e and corre-
sponding weighted parse forest F'(e), our trans-
lation model aims to find the best corresponding
target language translation §;’ i.e.,

g = argmax, p(gle)

We estimate the probability p(g|e) through a log-
linear combination of component models with pa-
rameters )\, scored on the derivations d such that
the source tree of d is in the parse forest of e and
the yield of the target tree reads g. With

D(e,g) = {d] s(d) € F() and yield(t(d)) = g},

we thus have: 4

11
plgle)oc Y [ hm(d)

deD(e,g) m=1

Our model uses the following features h,,(-) for a

derivation:

(1) Translation weight normalized by source root
symbol

(2) Translation weight normalized by all root
symbols

(3) Translation weight normalized by leaves on
the source side

(4) Lexical translation weight source — target

(5) Lexical translation weight target — source

(6) Target side language model: p(g)

(7) Number of words in g

(8) Number of rules used in the derivation

(9) Number of gaps in the target side sequences

(10) Penalty for rules that have more lexical ma-
terial on the source side than on the target side
or vice versa (absolute value)

3Our main translation direction is English to German.

“While this is the clean theoretical formulation, we make
two approximations to D(e, g): (1) The parser we use returns
a pruned parse forest. (2) We only sum over derivations with
the same target sentence that actually appear in the k-best list.
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Figure 1: Aligned parsed sentences.

NP PN-SB-Nom.Sg.Masc NP PP-MO/V
\ \ VBD VAFIN-HD-Sg  VVPP-HD | PR
NNP — ( NE-HD-NomSgMase ) | — | ] ") NN = ((APPRAC ADIDHD-PosN )
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VBD NP PP-MO/V  VVPP-HD NP VP PN-SB-Nom.Sg.Masc  VAFIN-HD-Sg VP-OC/pp

Figure 2: Extracted rules.

(11) Input parse tree probability assigned to s(t)
by the parser of e

The rule weights required for (1) are relative
frequencies normalized over all extracted rules
with the same root symbol on the left-hand side. In
the same fashion the rule weights required for (2)
are relative frequencies normalized over all rules
with the same root symbols on both sides. The
lexical weights for (4) and (5) are obtained by mul-
tiplying the word translations w(g;|e;) [respec-
tively, w(e;|g;)] of lexically aligned words (g;, €;)
across (possibly discontiguous) target side se-
quences.”> Whenever a source word e; 1is aligned
to multiple target words, we average over the word
translations:®

hy(d)

I1

lexical item
e occurs in s(d)

average {w(gle) | g aligned to e}

4 Implementation

Our implementation is very close to the theoretical
model and consists of several independent compo-

>The lexical alignments are different from the links used
to link nonterminals.

SIf the word e; has no alignment to a target word, then
it is assumed to be aligned to a special NULL word and this
alignment is scored.
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nents, most of which are implemented in Python.
The system does not have any dependencies other
than the need for parsers for the source and tar-
get language, a word alignment tool and option-
ally an implementation of some tuning algorithm.
A schematic depiction of the training and decod-
ing pipeline can be seen in Figure 4.

Rule extraction From a parallel corpus of
which both halves have been parsed and word
aligned, multi bottom-up tree transducer rules are
extracted according to the procedure laid out in
(Maletti, 2011). In order to handle unknown
words, we add dummy identity translation rules
for lexical material that was not present in the
training data.

Translation model building Given a set of
rules, translation weights (see above) are com-
puted for each unique rule. The translation model
is then converted into a source, a weight and a tar-
get model. The source model (an RTG represented
in an efficient binary format) is used for decod-
ing and maps input trees to trees over rule iden-
tifiers representing derivations. The weight model
and the target model can be used to reconstruct the
weight and the target realization of a given deriva-
tion.



Composing 3 rules:

VP VP-OC/pp
/N = (VAFIN-HD-sg - N )
vBD NP PP-MO/V  VVPP-HD

NP PP-MO/V
VBD VAFIN-HD-Sg  VVPP-HD \
| H( | o ) NN H(APPR»AC ADJD-HD»Pos/N)
went ist gegangen | | ‘
home nach hause
Obtained pre-translation:
VP VP-OC/pp
7/ \ — .
VBD NP VAFIN-HD-Sg PP-MO/V VVPP-HD
‘ | — ( ‘ ) e A | )
went N‘N ist APPl‘(fAC ADJDfH‘DfPos/N gegangen
home nach hause

Figure 3: Synchronous rule application.
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Figure 4: Our machine translation system.
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Decoder The decoder transforms a forest of in-
put sentence parse trees to a forest of transla-
tion derivations by means of forward application.
These derivations are trees over the set of rules
(represented by rule identifiers). One of the most
useful aspects of our model is the fact that decod-
ing is completely independent of the weights, as
no pruning is performed and all translation candi-
dates are preserved in the translation forest. Thus,
even after decoding, the weight model can be
changed, augmented by new features, etc.; even
the target model can be changed, e.g. to support
parse tree output instead of string output. In all
of our experiments, we used string output, but it is
conceivable to use other realizations. For instance,
a syntactic language model could be used for out-
put tree scoring. Also, recasing is extremely easy
when we have part-of-speech tags to base our de-
cision on (proper names are typically uppercase,
as are all nouns in German).

Another benefit of having a packed representa-
tion of all candidates is that we can easily check
whether the reference translation is included in the
candidate set (“force decoding”). The freedom to
allow arbitrary target models that rewrite deriva-
tions is related to current work on interpreted reg-
ular tree grammars (Koller and Kuhlmann, 2011),
where arbitrary algebras can be used to compute a
realization of the output tree.

k-best extractor From the translation derivation
RTGs, a k-best list of derivations can be extracted
(Huang and Chiang, 2005) very efficiently. This
is the only step that has to be repeated if the rule
weights or the parameters of the log-linear model
change. The derivations are then mapped to tar-
get language sentences (if several derivations re-
alize the same target sentence, their weights are
summed) and reranked according to a language
model (as was done in Huang et al. (2006)). This
is the only part of the pipeline where we deviate
from the theoretical log-linear model, and this is
where we might make search errors. In principle,
one could integrate the language model by inter-
section with the translation model (as the stateful
MBOT model is closed under intersection with fi-
nite automata), but this is (currently) not computa-
tionally feasible due to the size of models.

Tuning Minimum error rate training (Och,
2003) is implemented using Z-MERT’ (Zaidan,

"http://cs.jhu.edu/-ozaidan/zmert/
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2009). A set of source sentences has to be (forest-
)parsed and decoded; the translation forests are
stored on disk. Then, in each iteration of Z-MERT,
it suffices to extract k-best lists from the transla-
tion forests according to the current weight vector.

S WMT14 Experimental setup

We used the training data that was made avail-
able for the WMT14 shared translation task on
English-German®. It consists of three parallel cor-
pora (1.9M sentences of European parliament pro-
ceedings, 201K sentences of newswire text, and
2M sentences of web text) and additional mono-
lingual news data for language model training.

The English half of the parallel data was parsed
using Egret® which is a re-implementation of the
Berkeley parser (Petrov et al., 2006). For the Ger-
man parse, we used the BitPar parser (Schmid,
2004; Schmid, 2006). The BitPar German gram-
mar is highly detailed, which makes the syntac-
tic information contained in the parses extremely
useful. Part-of-speech tags and category label are
augmented by case, number and gender informa-
tion, as can be seen in the German parse tree in
Figure 1. We only kept the best parse for each
sentence during training. After parsing, we pre-
pared three versions of the German corpus: a)
RAW, with no morphological post-processing; b)
UNSPLIT, using SMOR, a rule-based morpho-
logical analyser (Schmid et al., 2004), to reduce
words to their base form; c) SPLIT, using SMOR
to reduce words to their base form and split com-
pound nouns. After translation, compounds were
merged again, and words were re-inflected. Pre-
vious experiments using SMOR to lemmatise and
split compounds in phrase-based SMT showed im-
proved translation performances, see (Cap et al.,
2014a) for details.

We then trained three 5-gram language models
on monolingual data using KenLM!® (Heafield,
2011; Heafield et al., 2013 to appear) for the
three setups. For SPLIT and UNSPLIT, we were
only able to use the German side of the parallel
data, since parsing is a prerequisite for our mor-
phological post-processing and we did not have
the resources to parse more data. For RAW, we
additionally used the monolingual German data

dhttp://www.statmt.org/wmt14/
translation—-task.html

‘https://sites.google.com/site/
zhanghl1982/egret

Yhttp://kheafield.com/code/kenlm/



system | BLEU | BLEU-cased | TER |
RAW 17.0 16.4 | .770
UNSPLIT | 16.4 158 | 773
SPLIT 16.3 1571 .73

Table 1: BLEU and TER scores of the submitted
systems.

that was distributed for the shared task. Word
alignment for all three setups was achieved using
GIZA++'". As usual, we discarded sentence pairs
where one sentence was significantly longer than
the other, as well as those that were too long or too
short.

For tuning, we chose the WMT12 test set (3,003
sentences of newswire text), available as part
of the development data for the WMT13 shared
translation task. Since our system had limited cov-
erage on this tuning set, we limited ourselves to
the first a subset of sentences we could translate.

When translating the test set, our models used
parse trees delivered by the Egret parser. After
translation, recasing was done by examining the
output syntax tree, using a simple heuristics look-
ing for nouns and sentence boundaries. Since cov-
erage on the test set was also limited, we used the
systems as described in (Cap et al., 2014b)!? as a
fallback to translate sentences that our system was
not able to translate.

6 Results

We report the overall translation quality, as listed
on http://matrix.statmt.org/, mea-
sured using BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006), in Table 1.

We assume that the poor performance of UN-
SPLIT and SPLIT compared to RAW is due to the
fact that we use a significantly smaller language
model (as explained above) for these two settings.
A detailed analysis will follow after the end of the
manual evaluation period.

7 Conclusion and further work

We presented our submission to the WMTI14
shared translation task based on a novel, promising
“full syntax, no pruning” tree-to-tree approach to
statistical machine translation, inspired by Huang

"https://code.google.com/p/giza-pp/
2We use raw as described in (Cap et al., 2014b) as a fall-
back for RAW, RI for UNSPLIT and CoRI for SPLIT.
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et al. (2006). There are, however, still major draw-
backs and open problems associated with our ap-
proach. Firstly, the coverage can still be signifi-
cantly improved. In these experiments, our model
was able to translate only 70% of the test sen-
tences. To some extent, this number can be im-
proved by providing more training data. Also,
more rules can be extracted if we not only use the
best parse for rule extraction, but multiple parse
trees, or even switch to forest-based rule extrac-
tion (Mi and Huang, 2008). Finally, the size of the
input parse forest plays a role. For instance, if we
only supply the best parse to our model, transla-
tion will fail for approximately half of the input.

However, there are inherent coverage limits.
Since our model is extremely strict, it will never
be able to translate sentences whose parse trees
contain structures it has never seen before, since
it has to match at least one input parse tree ex-
actly. While we implemented a simple solution to
handle unknown words, the issue with unknown
structures is not so easy to solve without breaking
the otherwise theoretically sound approach. Pos-
sibly, glue rules can help.

The second drawback is runtime. We were
able to translate about 15 sentences per hour on
one processor. Distributing the translation task
on different machines, we were able to translate
the WMT14 test set (10k sentences) in roughly
four days. Given that the trend goes towards par-
allel programming, and considering the fact that
our decoder is written in the rather slow language
Python, we are confident that this is not a major
problem. We were able to run the whole pipeline
of training, tuning and evaluation on the WMT14
shared task data in less than one week. We are cur-
rently investigating whether A* k-best algorithms
(Pauls and Klein, 2009; Pauls et al., 2010) can help
to guide the translation process while maintaining
optimality.

Thirdly, currently the language model is not in-
tegrated, but implemented as a separate rerank-
ing component. We are aware that this might in-
troduce search errors, and that an integrated lan-
guage model might improve translation quality
(see e.g. Chiang (2007) where 3—4 BLEU points
are gained by LM integration). Some research on
this topic already exists, e.g. (Rush and Collins,
2011) who use dual decomposition, and (Aziz et
al., 2013) who replace intersection with an upper
bound which is easier to compute.



References

André Arnold and Max Dauchet. 1982. Morphismes
et bimorphismes d’arbres. Theoret. Comput. Sci.,
20(1):33-93.

Wilker Aziz, Marc Dymetman, and Sriram Venkatap-
athy. 2013. Investigations in exact inference for
hierarchical translation. In Proc. 8th WMT, pages
472-483.

Fabienne Braune, Nina Seemann, Daniel Quernheim,
and Andreas Maletti. 2013. Shallow local multi-
bottom-up tree transducers in statistical machine
translation. In Proc. 51th ACL, pages 811-821.

Fabienne Cap, Alexander Fraser, Marion Weller, and
Aoife Cahill. 2014a. How to Produce Unseen
Teddy Bears: Improved Morphological Processing
of Compounds in SMT. In Proc. 14th EACL.

Fabienne Cap, Marion Weller, Anita Ramm, and
Alexander Fraser. 2014b. CimS — The CIS and IMS
joint submission to WMT 2014 translating from En-
glish into German. In Proc. 9th WMT.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Computat. Linguist., 33(2):201-228.

Zoltan Filop and Heiko Vogler. 2009. Weighted tree
automata and tree transducers. In Manfred Droste,
Werner Kuich, and Heiko Vogler, editors, Hand-
book of Weighted Automata, EATCS Monographs
on Theoret. Comput. Sci., chapter 9, pages 313—403.
Springer.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013 (to appear). Scal-
able modified Kneser-Ney language model estima-
tion. In Proc. 51st ACL.

Kenneth Heafield. 2011. KenLM: faster and smaller
language model queries. In Proc. 6th WMT, pages
187-197.

Liang Huang and David Chiang. 2005. Better k-best
parsing. In Proc. IWPT, pages 53-64.

Liang Huang, Kevin Knight, and Aravind Joshi. 2006.
Statistical syntax-directed translation with extended
domain of locality. In Proc. 7th Conf. AMTA, pages
66-73.

Alexander Koller and Marco Kuhlmann. 2011. A gen-
eralized view on parsing and translation. In Proc.
IWPT, pages 2—-13.

Eric Lilin. 1978. Une généralisation des transducteurs
d’états finis d’arbres: les S-transducteurs. These
3éme cycle, Université de Lille.

Yang Liu, Yajuan Lii, and Qun Liu. 2009. Improving
tree-to-tree translation with packed forests. In Proc.
47th ACL, pages 558-566.

Andreas Maletti. 2010. Why synchronous tree sub-
stitution grammars? In Proc. HLT-NAACL, pages
876-884.

169

Andreas Maletti. 2011. How to train your multi
bottom-up tree transducer. In Proc. 49th ACL, pages
825-834.

Andreas Maletti. 2012. Every sensible extended top-
down tree transducer is a multi bottom-up tree trans-
ducer. In Proc. HLT-NAACL, pages 263-273.

Haitao Mi and Liang Huang. 2008. Forest-based trans-
lation rule extraction. In Proc. EMNLP, pages 206—
214.

Haitao Mi, Liang Huang, and Qun Liu. 2008. Forest-
based translation. In Proc. 46th ACL, pages 192—
199. ACL.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proc. 41st ACL,
pages 160-167.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei
jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proc. 40th
ACL, pages 311-318.

Adam Pauls and Dan Klein. 2009. K-best A* parsing.
In Proc. 47th ACL, pages 958-966.

Adam Pauls, Dan Klein, and Chris Quirk. 2010. Top-
down k-best A* parsing. In Proc. 48th ACL, pages
200-204.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and in-
terpretable tree annotation. In Proc. COLING-ACL,
pages 433-440.

Alexander M. Rush and Michael Collins. 2011. Ex-
act decoding of syntactic translation models through
lagrangian relaxation. In Proc. 49th ACL, pages 72—
82.

Helmut Schmid, Arne Fitschen, and Ulrich Heid.
2004. SMOR: A German Computational Morphol-
ogy Covering Derivation, Composition and Inflec-
tion. In Proc. 4th LREC.

Helmut Schmid. 2004. Efficient parsing of highly am-
biguous context-free grammars with bit vectors. In
Proc. 20th COLING, pages 162-168.

Helmut Schmid. 2006. Trace prediction and recov-
ery with unlexicalized PCFGs and slash features. In
Proc. 44th ACL.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proc. AMTA.

Jun Sun, Min Zhang, and Chew Lim Tan. 2009. A non-
contiguous tree sequence alignment-based model for
statistical machine translation. In Proc. 47th ACL,
pages 914-922.



Omar F. Zaidan. 2009. Z-MERT: A fully configurable
open source tool for minimum error rate training of
machine translation systems. The Prague Bulletin of
Mathematical Linguistics, 91:79-88.

Min Zhang, Hongfei Jiang, Aiti Aw, Haizhou Li,
Chew Lim Tan, and Sheng Li. 2008a. A tree
sequence alignment-based tree-to-tree translation
model. In Proc. 46th ACL, pages 559-567.

Min Zhang, Hongfei Jiang, Haizhou Li, Aiti Aw, and
Sheng Li. 2008b. Grammar comparison study
for translational equivalence modeling and statistical
machine translation. In Proc. 22nd COLING, pages
1097-1104.

170



Abu-MaTran at WMT 2014 Translation Task:
Two-step Data Selection and RBMT-Style Synthetic Rules

Raphael Rubino*, Antonio Toral’, Victor M. Sanchez-Cartagena*,
Jorge Ferrandez-Tordera*, Sergio Ortiz-Rojas*, Gema Ramirez-Sanchez*,
Felipe Sanchez-Martinez!, Andy Way'

* Prompsit Language Engineering, S.L., Elche, Spain
{rrubino, vmsanchez, jferrandez, sortiz,gramirez}@prompsit.com
T NCLT, School of Computing, Dublin City University, Ireland
{atoral, away}@computing.dcu.ie
' Dep. Llenguatges i Sistemes Informatics, Universitat d’ Alacant, Spain
fsanchez@dlsi.ua.es

Abstract

This paper presents the machine trans-
lation systems submitted by the Abu-
MaTran project to the WMT 2014 trans-
lation task. The language pair concerned
is English—French with a focus on French
as the target language. The French to En-
glish translation direction is also consid-
ered, based on the word alignment com-
puted in the other direction. Large lan-
guage and translation models are built us-
ing all the datasets provided by the shared
task organisers, as well as the monolin-
gual data from LDC. To build the trans-
lation models, we apply a two-step data
selection method based on bilingual cross-
entropy difference and vocabulary satura-
tion, considering each parallel corpus in-
dividually. Synthetic translation rules are
extracted from the development sets and
used to train another translation model.
We then interpolate the translation mod-
els, minimising the perplexity on the de-
velopment sets, to obtain our final SMT
system. Our submission for the English to
French translation task was ranked second
amongst nine teams and a total of twenty
submissions.

1 Introduction

This paper presents the systems submitted by the
Abu-MaTran project (runs named DCU-Prompsit-
UA) to the WMT 2014 translation task for the
English-French language pair. Phrase-based sta-
tistical machine translation (SMT) systems were
submitted, considering the two translation direc-
tions, with the focus on the English to French di-
rection. Language models (LMs) and translation
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models (TMs) are trained using all the data pro-
vided by the shared task organisers, as well as
the Gigaword monolingual corpora distributed by
LDC.

To train the LMs, monolingual corpora and the
target side of the parallel corpora are first used
individually to train models. Then the individ-
ual models are interpolated according to perplex-
ity minimisation on the development sets.

To train the TMs, first a baseline is built us-
ing the News Commentary parallel corpus. Sec-
ond, each remaining parallel corpus is processed
individually using bilingual cross-entropy differ-
ence (Axelrod et al., 2011) in order to sepa-
rate pseudo in-domain and out-of-domain sen-
tence pairs, and filtering the pseudo out-of-
domain instances with the vocabulary saturation
approach (Lewis and Eetemadi, 2013). Third,
synthetic translation rules are automatically ex-
tracted from the development set and used to train
another translation model following a novel ap-
proach (Sanchez-Cartagena et al., 2014). Finally,
we interpolate the four translation models (base-
line, in-domain, filtered out-of-domain and rules)
by minimising the perplexity obtained on the de-
velopment sets and investigate the best tuning and
decoding parameters.

The reminder of this paper is organised as fol-
lows: the datasets and tools used in our experi-
ments are described in Section 2. Then, details
about the LMs and TMs are given in Section 3 and
Section 4 respectively. Finally, we evaluate the
performance of the final SMT system according to
different tuning and decoding parameters in Sec-
tion 5 before presenting conclusions in Section 6.

Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 171-177,
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2 Datasets and Tools

We use all the monolingual and parallel datasets
in English and French provided by the shared task
organisers, as well as the LDC Gigaword for the
same languages!. For each language, a true-case
model is trained using all the data, using the train-
truecaser.perl script included in the MOSES tool-
kit (Koehn et al., 2007).

Punctuation marks of all the monolingual and
parallel corpora are then normalised using the
script normalize-punctuation.perl provided by the
organisers, before being tokenised and true-cased
using the scripts distributed with the MOSES tool-
kit. The same pre-processing steps are applied to
the development and test sets. As development
sets, we used all the test sets from previous years
of WMT, from 2008 to 2013 (newstest2008-2013).

Finally, the training parallel corpora are cleaned
using the script clean-corpus-n.perl, keeping the
sentences longer than 1 word, shorter than 80
words, and with a length ratio between sentence
pairs lower than 4.> The statistics about the cor-
pora used in our experiments after pre-processing
are presented in Table 1.

For training LMs we use KENLM (Heafield et
al., 2013) and the SRILM tool-kit (Stolcke et al.,
2011). For training TMs, we use MOSES (Koehn
et al., 2007) version 2.1 with MGIZA++ (Och and
Ney, 2003; Gao and Vogel, 2008). These tools are
used with default parameters for our experiments
except when explicitly said.

The decoder used to generate translations is
MOSES using features weights optimised with
MERT (Och, 2003). As our approach relies on
training individual TMs, one for each parallel cor-
pus, our final TM is obtained by linearly interpo-
lating the individual ones. The interpolation of
TMs is performed using the script tmcombine.py,
minimising the cross-entropy between the TM
and the concatenated development sets from 2008
to 2012 (noted newstest2008-2012), as described
in Sennrich (2012). Finally, we make use of the
findings from WMT 2013 brought by the win-
ning team (Durrani et al., 2013) and decide to use
the Operation Sequence Model (OSM), based on
minimal translation units and Markov chains over
sequences of operations, implemented in MOSES

'LDC2011T07 English Gigaword Fifth Edition,
LDC2011T10 French Gigaword Third Edition

2This ratio was empirically chosen based on words fertil-
ity between English and French.
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Corpus Sentences (k)  Words (M)
Monolingual Data — English
Europarl v7 2,218.2 59.9
News Commentary v8 304.2 7.4
News Shuffled 2007 3,782.5 90.2
News Shuffled 2008 12,954.5 308.1
News Shuffled 2009 14,680.0 347.0
News Shuffled 2010 6,797.2 157.8
News Shuffled 2011 15,437.7 358.1
News Shuffled 2012 14,869.7 345.5
News Shuffled 2013 21,688.4 495.2
LDC afp 7,184.9 869.5
LDC apw 8,829.4 1,426.7
LDC cna 618.4 45.7
LDC Itw 986.9 321.1
LDC nyt 5,327.7 1,723.9
LDC wpb 108.8 20.8
LDC xin 5,121.9 423.7
Monolingual Data — French
Europarl v7 2,190.6 63.5
News Commentary v8 227.0 6.5
News Shuffled 2007 119.0 2.7
News Shuffled 2008 4,718.8 110.3
News Shuffled 2009 4,366.7 105.3
News Shuffled 2010 1,846.5 44.8
News Shuffled 2011 6,030.1 146.1
News Shuffled 2012 4,114.4 100.8
News Shuffled 2013 9,256.3 220.2
LDC afp 6,793.5 784.5
LDC apw 2,525.1 271.3
Parallel Data

10° Corpus 23271 00 ((lligg
Common Crawl 3,168.5 ;62(; (gg
Europarl v7 1,965.5 552657 ((]i:':g;
News Commentary v9 181.3 4;2 ((]i:':g;

313.4 (EN)
UN 12,354.7 356.5 (FR)

Table 1: Data statistics after pre-processing of the
monolingual and parallel corpora used in our ex-
periments.

and introduced by Durrani et al. (2011).

3 Language Models

The LMs are trained in the same way for both
languages. First, each monolingual and parallel
corpus is considered individually (except the par-
allel version of Europarl and News Commentary)
and used to train a 5-gram LM with the modified
Kneser-Ney smoothing method. We then interpo-
late the individual LMs using the script compute-
best-mix available with the SRILM tool-kit (Stol-
cke et al., 2011), based on their perplexity scores
on the concatenation of the development sets from
2008 to 2012 (the 2013 version is held-out for the
tuning of the TMs).



The final LM for French contains all the word
sequences from 1 to 5-grams contained in the
training corpora without any pruning. However,
with the computing resources at our disposal, the
English LMs could not be interpolated without
pruning non-frequent n-grams. Thus, n-grams
with n € [3; 5] with a frequency lower than 2 were
removed. Details about the final LMs are given in
Table 2.

l-gram  2-gram 3-gram 4-gram  5-gram
English 134 198.6 381.2 7763  1,068.7
French 6.0 75.5 353.2 850.8 1,354.0

Table 2: Statistics, in millions of n-grams, of the
interpolated LMs.

4 Translation Models

In this Section, we describe the TMs trained for
the shared task. First, we present the two-step data
selection process which aims to (i) separate in and
out-of-domain parallel sentences and (ii) reduce
the total amount of out-of-domain data. Second,
a novel approach for the automatic extraction of
translation rules and their use to enrich the phrase
table is detailed.

4.1 Parallel Data Filtering and Vocabulary
Saturation

Amongst the parallel corpora provided by the
shared task organisers, only News Commentary
can be considered as in-domain regarding the de-
velopment and test sets. We use this training
corpus to build our baseline SMT system. The
other parallel corpora are individually filtered us-
ing bilingual cross-entropy difference (Moore and
Lewis, 2010; Axelrod et al., 2011). This data
filtering method relies on four LMs, two in the
source and two in the target language, which
aim to model particular features of in and out-of-
domain sentences.

We build the in-domain LMs using the source
and target sides of the News Commentary paral-
lel corpus. Out-of-domain LMs are trained on a
vocabulary-constrained subset of each remaining
parallel corpus individually using the SRILM tool-
kit, which leads to eight models (four in the source
language and four in the target language).?

3The subsets contain the same number of sentences and
the same vocabulary as News Commentary.
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Then, for each out-of-domain parallel corpus,
we compute the bilingual cross-entropy difference
of each sentence pair as:

[Hin (Ssre) — Hout (Ssrc)] + [Hin(Strg) — Hout (Strg)] (1)

where Sgc and Sy, are the source and the tar-
get sides of a sentence pair, H;, and H,y; are
the cross-entropies of the in and out-of-domain
LMs given a sentence pair. The sentence pairs are
then ranked and the lowest-scoring ones are taken
to train the pseudo in-domain TMs. However,
the cross-entropy difference threshold required to
split a corpus in two parts (pseudo in and out-of-
domain) is usually set empirically by testing sev-
eral subset sizes of the top-ranked sentence pairs.
This method is costly in our setup as it would lead
to training and evaluating multiple SMT systems
for each of the pseudo in-domain parallel corpora.
In order to save time and computing power,
we consider only pseudo in-domain sentence pairs
those with a bilingual cross-entropy difference be-
low 0, i.e. those deemed more similar to the
in-domain LMs than to the out-of-domain LMs
(Hin < Hgyt). A sample of the distribution of
scores for the out-of-domain corpora is shown in
Figure 1. The resulting pseudo in-domain corpora
are used to train individual TMs, as detailed in Ta-
ble 3.

10
@
5 8
3
5 6
>
g 4
5
2
O
g 5 f/ Common Craw| -
e - Europarl ——
= 1009
o -4 D
0 2k 4k 6k 8k 10k
Sentence Pairs

Figure 1: Sample of ranked sentence-pairs (10k)
of each of the out-of-domain parallel corpora with
bilingual cross-entropy difference

The results obtained using the pseudo in-
domain data show BLEU (Papineni et al., 2002)
scores superior or equal to the baseline score.
Only the Europarl subset is slightly lower than
the baseline, while the subset taken from the 10°
corpus reaches the highest BLEU compared to the
other systems (30.29). This is mainly due to the



size of this subset which is ten times larger than
the one taken from Europarl. The last row of Ta-
ble 3 shows the BLEU score obtained after interpo-
lating the four pseudo in-domain translation mod-
els. This system outperforms the best pseudo in-
domain one by 0.5 absolute points.

Corpus Sentences (k) BLEU ges
Baseline 181.3 27.76
Common Crawl 208.3 27.73
Europarl 142.0 27.63
10° Corpus 1,442.4 30.29
UN 642.4 28.91
Interpolation - 30.78

Table 3: Number of sentence pairs and BLEU
scores reported by MERT on English-French new-
stest2013 for the pseudo in-domain corpora ob-
tained by filtering the out-of-domain corpora with
bilingual cross-entropy difference. The interpola-
tion of pseudo in-domain models is evaluated in
the last row.

After evaluating the pseudo in-domain parallel
data, the remaining sentence pairs for each cor-
pora are considered out-of-domain according to
our filtering approach. However, they may still
contain useful information, thus we make use of
these corpora by building individual TMs for each
corpus (in a similar way we built the pseudo in-
domain models). The total amount of remaining
data (more than 33 million sentence pairs) makes
the training process costly in terms of time and
computing power. In order to reduce these costs,
sentence pairs with a bilingual cross-entropy dif-
ference higher than 10 were filtered out, as we no-
ticed that most of the sentences above this thresh-
old contain noise (non-alphanumeric characters,
foreign languages, etc.).

We also limit the size of the remaining data by
applying the vocabulary saturation method (Lewis
and Eetemadi, 2013). For the out-of-domain sub-
set of each corpus, we traverse the sentence pairs
in the order they are ranked by perplexity differ-
ence and filter out those sentence pairs for which
we have seen already each 1-gram at least 10
times. Each out-of-domain subset from each par-
allel corpus is then used to train a TM before inter-
polating them to create the pseudo out-of-domain
TM. The results reported by MERT obtained on
the newstest2013 development set are detailed in
Table 4.

Mainly due to the sizes of the pseudo out-of-

Corpus Sentences (k) BLEU ey
Baseline 181.3 27.76
Common Crawl 1,598.7 29.84
Europarl 461.9 28.87
10° Corpus 5,153.0 30.50
UN 1,707.3 29.03
Interpolation - 31.37

Table 4: Number of sentence pairs and BLEU
scores reported by MERT on English-French
newstest2013 for the pseudo out-of-domain cor-
pora obtained by filtering the out-of-domain cor-
pora with bilingual cross-entropy difference, keep-
ing sentence pairs below an entropy score of 10
and applying vocabulary saturation. The interpo-
lation of pseudo out-of-domain models is evalu-
ated in the last row.

domain subsets, the reported BLEU scores are
higher than the baseline for the four individual
SMT systems and the interpolated one. This latter
system outperforms the baseline by 3.61 absolute
points. Compared to the results obtained with the
pseudo in-domain data, we observe a slight im-
provement of the BLEU scores using the pseudo
out-of-domain data. However, despite the com-
paratively larger sizes of the latter datasets, the
BLEU scores reached are not that higher. For in-
stance with the 10° corpus, the pseudo in and out-
of-domain subsets contain 1.4 and 5.1 million sen-
tence pairs respectively, and the two systems reach
30.3 and 30.5 BLEU. These scores indicate that
the pseudo in-domain SMT systems are more ef-
ficient on the English—French newstest2013 devel-
opment set.

4.2 Extraction of Translation Rules

A synthetic phrase-table based on shallow-transfer
MT rules and dictionaries is built as follows. First,
a set of shallow-transfer rules is inferred from the
concatenation of the newstest2008-2012 develop-
ment corpora exactly in the same way as in the
UA-Prompsit submission to this translation shared
task (Sanchez-Cartagena et al., 2014). In sum-
mary, rules are obtained from a set of bilingual
phrases extracted from the parallel corpus after
its morphological analysis and part-of-speech dis-
ambiguation with the tools in the Apertium rule-
based MT platform (Forcada et al., 2011).

The extraction algorithm commonly used in
phrase-based SMT is followed with some added
heuristics which ensure that the bilingual phrases
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extracted are compatible with the bilingual dic-
tionary. Then, many different rules are generated
from each bilingual phrase; each of them encodes
a different degree of generalisation over the partic-
ular example it has been extracted from. Finally,
the minimum set of rules which correctly repro-
duces all the bilingual phrases is found based on
integer linear programming search (Garfinkel and
Nembhauser, 1972).

Once the rules have been inferred, the phrase
table is built from them and the original rule-
based MT dictionaries, following the method
by Séanchez-Cartagena et al. (2011), which was
one of winning systems* (together with two on-
line SMT systems) in the pairwise manual evalu-
ation of the WMT11 English—Spanish translation
task (Callison-Burch et al., 2011). This phrase-
table is then interpolated with the baseline TM and
the results are presented in Table 5. A slight im-
provement over the baseline is observed, which
motivates the use of synthetic rules in our final MT
system. This small improvement may be related
to the small coverage of the Apertium dictionar-
ies: the English-French bilingual dictionary has a
low number of entries compared to more mature
language pairs in Apertium which have around 20
times more bilingual entries.

System BLEUgey
Baseline 27.76
Baseline+Rules 28.06

Table 5: BLEU scores reported by MERT on
English-French newstest2013 for the baseline
SMT system standalone and with automatically
extracted translation rules.

S Tuning and Decoding

We present in this Section a short selection of our
experiments, amongst 15+ different configura-
tions, conducted on the interpolation of TMs, tun-
ing and decoding parameters. We first interpolate
the four TMs: the baseline, the pseudo in and out-
of-domain, and the translation rules, minimising
the perplexity obtained on the concatenated de-
velopment sets from 2008 to 2012 (newstest2008-
2012). We investigate the use of OSM trained on
pseudo in-domain data only or using all the paral-
lel data available. Finally, we make variations of

“No other system was found statistically significantly bet-
ter using the sign test at p < 0.1.
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the number of n-bests used by MERT.

Results obtained on the development set new-
stest2013 are reported in Table 6. These scores
show that adding OSM to the interpolated trans-
lation models slightly degrades BLEU. However,
by increasing the number of n-bests considered by
MERT to 200-bests, the SMT system with OSM
outperforms the systems evaluated previously in
our experiments. Adding the synthetic translation
rules degrades BLEU (as indicated by the last row
in the Table), thus we decide to submit two sys-
tems to the shared task: one without and one with
synthetic rules. By submitting a system without
synthetic rules, we also ensure that our SMT sys-
tem is constrained according to the shared task
guidelines.

System BLEUgey
Baseline 27.76
+ pseudo in + pseudo out 31.93
+ OSM 31.90
+ MERT 200-best 32.21
+ Rules 32.10

Table 6: BLEU scores reported by MERT on
English-French newstest2013 development set.

As MERT is not suitable when a large number
of features are used (our system uses 19 fetures),
we switch to the Margin Infused Relaxed Algo-
rithm (MIRA) for our submitted systems (Watan-
abe et al., 2007). The development set used is
newstest2012, as we aim to select the best decod-
ing parameters according to the scores obtained
when decoding the newstest2013 corpus, after de-
truecasing and de-tokenising using the scripts dis-
tributed with MOSES. This setup allowed us to
compare our results with the participants of the
translation shared task last year. We pick the de-
coding parameters leading to the best results in
terms of BLEU and decode the official test set of
WMT14 newstest2014. The results are reported in
Table 7. Results on newstest2013 show that the de-
coding parameters investigation leads to an over-
all improvement of 0.1 BLEU absolute. The re-
sults on newstest2014 show that adding synthetic
rules did not help improving BLEU and degraded
slightly TER (Snover et al., 2006) scores.

In addition to our English—French submission,
we submitted a French—English translation. Our
French—English MT system is built on the align-
ments obtained from the English—French direc-
tion. The training processes between the two sys-



System BLEU13A TER
newstest2013

Best tuning 31.02  60.77

cube-pruning (pop-limit 10000) 31.04 60.71

increased table-limit (100) 31.06 60.77

monotonic reordering 31.07 60.69

Best decoding 31.14  60.66
newstest2014

Best decoding 3490 54.70

Best decoding + Rules 3490 54.80

Table 7: Case sensitive results obtained with
our final English-French SMT system on new-
stest2013 when experimenting with different de-
coding parameters. The best parameters are kept
to translate the WMT14 test set (newstest2014)
and official results are reported in the last two
rows.

tems are identical, except for the synthetic rules
which are not extracted for the French—English
direction. Tuning and decoding parameters for
this latter translation direction are the best ones
obtained in our previous experiments on this
shared task. The case-sensitive scores obtained
for French—English on newstest2014 are 35.0
BLEU13A and 53.1 TER, which ranks us at the
fifth position for this translation direction.

6 Conclusion

We have presented the MT systems developed by
the Abu-MaTran project for the WMT14 trans-
lation shared task. We focused on the French—
English language pair and particularly on the
English—French direction. We have used a two-
step data selection process based on bilingual
cross-entropy difference and vocabulary satura-
tion, as well as a novel approach for the extraction
of synthetic translation rules and their use to en-
rich the phrase table. For the LMs and the TMs,
we rely on training individual models per corpus
before interpolating them by minimising perplex-
ity according to the development set. Finally, we
made use of the findings of WMT13 by including
an OSM model.

Our English—French translation system was
ranked second amongst nine teams and a total of
twenty submissions, while our French—English
submission was ranked fifth. As future work,
we plan to investigate the effect of adding to the
phrase table synthetic translation rules based on
larger dictionaries. We also would like to study the
link between OSM and the different decoding pa-
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rameters implemented in MOSES, as we observed
inconsistent results in our experiments.
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Abstract

This paper describes the system jointly de-
veloped by members of the Departament
de Llenguatges i Sistemes Informatics
at Universitat d’Alacant and the Promp-
sit Language Engineering company for
the shared translation task of the 2014
Workshop on Statistical Machine Trans-
lation. We present a phrase-based sta-
tistical machine translation system whose
phrase table is enriched with information
obtained from dictionaries and shallow-
transfer rules like those used in rule-based
machine translation. The novelty of our
approach lies in the fact that the transfer
rules used were not written by humans, but
automatically inferred from a parallel cor-
pus.

1 Introduction

This paper describes the system jointly submitted
by the Departament de Llenguatges i Sistemes In-
formatics at Universitat d’ Alacant and the Promp-
sit Language Engineering company to the shared
translation task of the ACL 2014 Ninth Workshop
on Statistical Machine Translation (WMT 2014).
We participated in the English—French translation
task with a hybrid system that combines, in a
phrase-based statistical machine translation (PB-
SMT) system, bilingual phrases obtained from par-
allel corpora in the usual way (Koehn, 2010, ch.
5), and also bilingual phrases obtained from the
existing dictionaries in the Apertium rule-based
machine translation (RBMT) platform (Forcada et
al., 2011) and a number of shallow-transfer ma-
chine translation rules automatically inferred from
a small subset of the training corpus.

Among the different approaches for adding lin-
guistic information to SMT systems (Costa-Jussa
and Farrts, 2014), we followed the path we started
with our submission to the Spanish-English WMT
2011 shared translation task (Sdnchez-Cartagena
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et al., 2011b) which consisted of enriching the
phrase table of a PBSMT system with phrase pairs
generated using the dictionaries and rules in the
Apertium (Forcada et al., 2011) Spanish—English
RBMT system; our approach was one of the win-
ners! (together with two online SMT systems that
were not submitted for the task but were included
in the evaluation by the organisers and a system by
Systran) in the pairwise manual evaluation of the
English—Spanish translation task (Callison-Burch
et al., 2011). In this submission, however, we
only borrow the dictionaries from the Apertium
English—French RBMT system and use them to au-
tomatically infer the rules from a parallel corpus.
We therefore avoid the need for human-written
rules, which are usually written by trained experts,
and explore a novel way to add morphological
information to PBSMT. The rules inferred from
corpora and used to enlarge the phrase table are
shallow-transfer rules that build their output with
the help of the bilingual dictionary and work on
flat intermediate representations (see section 3.1);
no syntactic parsing is consequently required.

The rest of the paper is organised as follows.
The following section outlines related hybrid ap-
proaches. Section 3 formally defines the RBMT
paradigm and summarises the method followed
to automatically infer the shallow-transfer rules,
whereas the enrichment of the phrase table is de-
scribed in section 4. Sections 5 and 6 describe, re-
spectively, the resources we used to build our sub-
mission and the results achieved for the English—
French language pair. The paper ends with some
concluding remarks.

2 Related work

Linguistic data from RBMT systems have already
been used to enrich SMT systems (Tyers, 2009;
Schwenk et al., 2009; Eisele et al., 2008; Sanchez-
Cartagena et al., 2011a). We have already proved

'No other system was found statistically significantly bet-
ter using the sign test at p < 0.10.

Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 178—185,
Baltimore, Maryland USA, June 26-27, 2014. (©2014 Association for Computational Linguistics



that using hand-written rules and dictionaries from
RBMT yields better results than using only dictio-
naries (Sanchez-Cartagena et al., 2011a).

However, in the approach we present in this pa-
per, rules are automatically inferred from a paral-
lel corpus after converting it into the intermedi-
ate representation used by the Apertium RBMT
platform (see section 3.3). It can be therefore
seen as a novel method to add morphological in-
formation to SMT, as factored translation models
do (Koehn and Hoang, 2007; Graham and van
Genabith, 2010). Unlike factored models, we do
not estimate independent statistical models for the
translation of the different factors (lemmas, lexi-
cal categories, morphological inflection attributes,
etc.) and for the generation of the final surface
forms. Instead, we first infer a set of rules that deal
with the grammatical divergences between the lan-
guages involved by performing operations such as
reorderings, gender and number agreements, etc.
Afterwards, we add synthetic phrase pairs gener-
ated from these rules and the Apertium dictionar-
ies to the data from which the well-known, classi-
cal PBSMT models (Koehn, 2010) are estimated.
The rules in our approach operate on the source-
language (SL) morphological attributes of the in-
put words and on the target-language (TL) mor-
phological attributes of their translation according
to a bilingual dictionary. In addition, they do no
contain probabilities or scores, thus they increase
the predictability of the output and can be easily
corrected by humans. This fact also represents a
significant difference with the probabilistic rules
used by certain approaches that aim at improving
the grammaticality of the SMT output (Riezler and
Maxwell 111, 2006; Bojar and Hajic, 2008).

With respect to the rule inference approach,
other approaches such as those by Sanchez-
Martinez and Forcada (2009) and Caseli et al.
(2006) can be found in literature; however, our ap-
proach is the first strategy for shallow-transfer rule
inference which generalises to unseen combina-
tions of morphological inflection attributes in the
training corpus (Sdnchez-Cartagena et al., 2014).

3 Inferring shallow-transfer rules from
parallel corpora

3.1 Shallow-transfer rule-based machine
translation

The RBMT process can be split into three different
steps (Hutchins and Somers, 1992): (i) analysis of
the SL text to build an SL intermediate represen-
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tation; (ii) transfer from that SL intermediate rep-
resentation into a TL intermediate representation;
and (iii) generation of the final translation from the
TL intermediate representation.

Shallow-transfer RBMT systems use relatively
simple intermediate representations, which are
based on lexical forms consisting of lemma, part
of speech and morphological inflection informa-
tion of the words, and apply simple shallow-
transfer rules that operate on sequences of lexical
forms: this kind of systems do not perform full
parsing. For instance, for translating the English
sentence [ like Pierre’s house into French with
the Apertium shallow-transfer RBMT platform we
have used to build our submission, the following
steps are carried out. First, the sentence is anal-
ysed as the following sequence of lexical forms:

I PRN-p:1.num:sg

like VB—t :pres.p:€e:num:e

Pierre PN

’s POS

house N—gen:e€.num: sg
This sequence is made up of a personal pronoun
(PRN) in first person (p:1) singular (num: sq)
with lemma I, the verb (VB) like in present tense
(t : pres), a proper noun (PN) with lemma Pierre,
the possessive ending (POS), and a noun (N) in sin-
gular with lemma house. Some morphological in-
flection attributes have an empty value e because
they do not apply to the corresponding language.

Then, structural transfer rules are applied to ob-
tain the TL intermediate representation with the
help of the bilingual dictionary, which provides
the individual translation of each SL lexical form
(including its morphological information). In this
case, two rules are applied: the first one makes the
verb to agree with the personal pronoun, while the
second one translates the English possessive con-
struction into French. The resulting sequence of
TL lexical forms is:

Je PRN-p:1.num:sg

aime VB-t :pres.p:1l:num:sg

le DT-gen: f.num:sg

maison N—gen: f.num:sg

de PR

Pierre PN
Note that a preposition (PR) with lemma de and a
determiner (DT) with lemma /e and the same gen-
der and number as the common noun have been
added by the rule. Finally, the translation into TL
is generated from the TL lexical forms: J’aime la
maison de Pierre.



S1 : PN

|83 :N—gen:*.num:*|

t1 :leDT-gen:$}.num:$>

ty : N-gen:$}.num:$3

Figure 1: Shallow-transfer rule for the translation of the English Saxon genitive construction into French.

3.2 A rule formalism suitable for rule
inference

Figure 1 shows the second rule applied in the
example from the previous section encoded with
the formalism we have defined for rule infer-
ence (Sanchez-Cartagena et al., 2014). Each rule
contains a sequence of SL word classes (depicted
as the sequence of boxes at the top of the figure)
and TL word classes (the sequence of boxes be-
low them). The sequence of SL word classes de-
fines the set of sequences of lexical forms which
will match the rule. Each SL word class s; defines
the conditions that must be met by the ¢-th lexical
form matching the rule and contains an optional
lemma (no lemma means that any SL lemma is al-
lowed), a lexical category and a set of morpholog-
ical inflection attributes and their expected values.
A wildcard (asterisk) as the value of a morpholog-
ical inflection attribute means that it matches any
possible value. Thus, the rule from the example
matches any proper noun followed by a possessive
ending and a noun, regardless of its gender and
number.

As regards the TL word classes, they contain
the same elements as the SL word classes and de-
fine the output of the rule. An empty lemma in a
TL word class means that it is obtained by looking
up in the bilingual dictionary the SL lexical form
matching the aligned SL word class (alignments
are represented as lines connecting SL and TL
word classes). The reference value $ means that
the value of a morphological inflection attribute is
copied from the SL lexical form matching the i-th
SL word class, while the reference value $; means
that the value is taken from the TL lexical form ob-
tained after looking up in the bilingual dictionary
the aforementioned SL lexical form. The rule de-
picted in Figure 1 generates a sequence of four TL
lexical forms. The first one is a determiner whose
lemma is /e, its gender is obtained from the gender
of the TL lexical form resulting after looking up in
the bilingual dictionary the third matching SL lex-
ical form ($3), that is, the common noun, while its
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number is directly obtained from the same SL lexi-
cal form before dictionary look-up ($2). Although
they have not been used in this example, explicit
values can be used in the morphological inflection
attributes of the SL and TL word classes, thus re-
stricting the SL lexical forms to which the rule can
be applied to those having the values in the corre-
sponding SL word classes,” and explicitly stating
the value that the TL lexical forms produced by
the rule will have, respectively.

3.3 Rule inference algorithm

The set of rules that will be used to generate the
phrase pairs that will be integrated into the PB-
SMT system’s phrase table, encoded with the for-
malism presented in the previous section, are ob-
tained from the parallel corpus by applying the
steps described in this section. They are a subset
of the steps followed by Sanchez-Cartagena et al.
(2014) to infer shallow-transfer rules to be used in
Apertium from small parallel corpora.

First, both sides of the parallel corpus are mor-
phologically analysed and converted into the inter-
mediate representations used by Apertium. Word
alignments are then obtained by symmetrising
(using the refined intersection method proposed
by Och and Ney (2003)) the set of alignments
provided by GIZA++ (Och and Ney, 2003) when
it is run on both translations directions. After-
wards, the bilingual phrase pairs compatible with
the alignments are extracted as it is usually done
in SMT (Koehn, 2010, Sec. 5.2.3), and those that
are not compatible with the bilingual dictionary of
the Apertium English-French RBMT system® or

*In addition to that criterion, our formalism also permits
restricting the application of a rule to the SL lexical forms
that, after being looked up in the bilingual dictionary, the
TL lexical forms obtained from them have specific morpho-
logical inflection attribute values (Sanchez-Cartagena et al.,
2014) although no restrictions of this type are imposed in the
rule depicted in Figure 1.

31f the words that belong to open lexical categories (those
that carry the meaning of the sentence: nouns, verbs, adjec-
tives, etc.) are aligned with other words that do not match
the translation present in the bilingual dictionary, the rule in-



contain punctuation marks or unknown words are
discarded. Finally, from each bilingual phrase pair,
all the possible rules which correctly reproduce it
—when the rule is applied to the SL side of the
phrase pair, its TL side is obtained— are gener-
ated as follows. First, a very specific rule, which
matches only the SL phrase in the bilingual phrase
pair is generated; more general rules are then cre-
ated by modifying this initial rule. The modifica-
tions to the initial rule consist of removing lem-
mas from the SL and TL word classes, introduc-
ing wildcard values in the morphological inflec-
tion attributes of the SL word classes and adding
reference values in the morphological inflection at-
tributes of the TL word classes. The result of this
process is a huge set of rules with different levels
of generalisation. Obviously, not all the rules in
this set will be used: the best ones are automati-
cally selected by considering all the rules obtained
from the different bilingual phrase pairs extracted
from the corpus and finding the minimum set of
rules that meets the following two conditions:

1. Each bilingual phrase pair is correctly repro-
duced by at least one rule.

2. If a rule matches the SL side of bilingual
phrase pair but does not correctly reproduce
its TL side, there is another rule that is more
specific (i.e. less general) than it, and cor-
rectly reproduces its TL side.

This minimisation problem is formulated as an in-
teger linear programming® problem (Garfinkel and
Nemhauser, 1972) and solved using the branch
and cut algorithm (Xu et al., 2009).

From the small subset of the huge initial rules
obtained by solving the minimisation problem, the
rules whose effect can be achieved by combining
shorter rules or by translating all or some of the
words in isolation (i.e. word for word) are re-
moved. In this way, the number of rules is further
reduced and long rules, which are more prone to
overgeneralisation because they are inferred from
fewer bilingual phrase pairs, are discarded.’
ference algorithm is likely to infer many very specific rules
that try to correct that lexical mismatch. Since the aim of
our approach is learning general rules that deal with the
grammatical divergences between languages, the bilingual
phrases that contain the aforementioned alignments are dis-
carded. Words from closed lexical categories, that usually
suffer deeper changes when the sentence is translated to a dif-
ferent language, are not subject to this restriction.

*An integer linear programming problem involves the op-
timisation (maximisation or minimisation) of a linear objec-
tive function subject to linear inequality constraints.

3 Although longer rules contain more context information,
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4 Enhancing phrase-based SMT with
shallow-transfer linguistic resources

The set of shallow-transfer rules inferred from the
parallel corpus are integrated in the PBSMT sys-
tem, together with the RBMT dictionaries, using
the same method we used for our WMT 2011
shared translation task subsmission (Sdnchez-
Cartagena et al., 2011b). However, it is important
to stress that, until now, this strategy had only been
tested when the rules to be integrated were hand-
written and not automatically obtained from cor-
pora.

Our strategy involves adding to the phrase ta-
ble of the PBSMT system all the bilingual phrase
pairs which either match a shallow-transfer rule or
an entry in the bilingual dictionary. Generating the
set of bilingual phrase pairs which match bilingual
dictionary entries is straightforward. First, all the
SL surface forms that are recognised by Apertium
and their corresponding lexical forms are gener-
ated. Then, these SL lexical forms are translated
using the bilingual dictionary, and finally their TL
surface forms are generated.

Bilingual phrase pairs which match structural
transfer rules are generated in a similar way. First,
the SL sentences to be translated are analysed with
Apertium to get their SL lexical forms, and then
the sequences of lexical forms that match a struc-
tural transfer rule are translated with that rule and
passed through the rest of the Apertium pipeline
in order to get their translations. If a sequence
of SL lexical forms is matched by more than one
structural transfer rule, it will be used to generate
as many bilingual phrase pairs as different rules
it matches. This differs from the way in which
Apertium translates, as it only applies the longest
rule. Note also that the test set is used to guide the
phrase extraction in order to avoid the generation
of an unmanageable set of phrase pairs.

We add these bilingual phrase pairs directly to
the phrase table, rather than adding them to the
training corpus and relying on the phrase extrac-
tion algorithm (Koehn, 2010, sec. 5.2.3), in order
to avoid splitting the multi-word expressions pro-
vided by Apertium into smaller phrases (Schwenk
et al., 2009, sec. 2). The bilingual phrase pairs
are added only once to the list of corpus-extracted
phrase pairs, and then the phrase translation prob-
abilities are computed by relative frequency as
usual (Koehn, 2010, sec. 5.2.5). A boolean feature

for our rule inferring algorithm there are fewer bilingual
phrases from which to infer them, and consequently fewer
evidence from which to extract the right reference attributes.



function to flag bilingual phrase pairs obtained
from the RBMT resources is added to the phrase
table in order to conveniently weight the synthetic
RBMT phrase pairs.

5 System training

We built a baseline PBSMT Moses (Koehn et
al., 2007) system® from a subset of the paral-
lel corpora distributed as part of the WMT 2014
shared translation task, namely Europarl (Koehn,
2005), News Commentary and Common Crawl,
and a subset of the French monolingual corpora,
namely Common Crawl, Europarl, News Com-
mentary and News Crawl. The language model
was built with the KenLM language modelling
toolkit (Heafield et al., 2013), which was used
to train a 5-gram language model using inter-
polated Kneser-Ney discounting (Goodman and
Chen, 1998). Word alignments were computed
by means of GIZA++ (Och and Ney, 2003). The
weights of the different feature functions were op-
timised by means of minimum error rate train-
ing (Och, 2003) on the 2013 WMT test set.”

The phrase table of this baseline system was
then enriched with phrase pairs generated from
rules automatically inferred from the concatena-
tion of the test corpora distributed for the WMT
2008-2012 shared translation tasks, and from the
English-French bilingual dictionary in the Aper-
tium platform.® Since the minimisation problem
which needs to be solved in order to obtain the
rules is very time-consuming, we chose a small
rule inference corpus similar to this year’s test set.
The bilingual dictionary, which contains mappings
between SL and TL lemmas, consists of 13 088 en-
tries and is quite small compared to the Spanish—
English bilingual dictionary we used in our sub-
mission to WMT 2011 (Sanchez-Cartagena et al.,
2011b), which consisted of 326 228 bilingual en-
tries. This is because the English—French Aper-
tium linguistic resources were automatically built
by crossing data from other existing language
pairs.

Table 1 summarises the data about the corpora
used to build our submission, both for the PBSMT
baseline system and for the rules used to enrich its
phrase table.

The corpus used to automatically infer the rules

®No factored models were used.
"The corpora can be downloaded from http://www.
statmt.org/wmtl4/translation-task.html.

Shttps://svn.code.sf.net/p/apertium/
svn/incubator/apertium-en-fr

Task Corpus Sentences
Europarl 2007723
News Commentary 183251
Translation model | Common Crawl 3244152
Total 5435126
Total clean 4196 987
Common Crawl 3244152
Language model Europarl 2190579
News Commentary 227013
News Crawl 30451749
Total 36113493
Rule inference newstest 2008—2012 13071
Tuning newstest2013 3000
Test newstest2014 3003

Table 1: Size of the corpora used in the experi-
ments. The bilingual training corpora was cleaned
up to remove empty parallel sentences and those
containing more than 40 tokens.

was split into two parts: the larger one (4/5 of
the corpus) was used for actual rule inference as
described in section 3.3; the remaining corpus
was used as a development corpus as explained
next. For each rule z, first the proportion 7(z) of
bilingual phrase pairs correctly reproduced by the
rule divided by the number of bilingual phrases
it matches is computed. Rules whose proportion
r(z) is lower than a threshold value 0 are then
discarded before solving the minimisation prob-
lem. The value of ¢ is chosen so that it maximises,
on the development corpus, the BLEU score (Pap-
ineni et al., 2002) obtained by an Apertium-based
system which uses the inferred rules; in our sub-
mission 6 = 0.15. In addition, rules that do not
correctly reproduce at least 100 bilingual phrase
pairs were also discarded in order to make the min-
imisation problem computationally feasible.

6 Results and discussion

Table 2 reports the translation performance as
measured by BLEU (Papineni et al., 2002),
TER (Snover et al., 2006) and METEOR (Baner-
jee and Lavie, 2005) achieved by the baseline PB-
SMT, our submission (UA-Prompsit), Apertium
when it uses the set of inferred rules, and Aper-
tium when it uses no rules at all (word-for-word
translation). The size of the phrase table and the
amount of unknown words in the test set are also
reported when applicable.

According to the three evaluation metrics, the
translation performance of our submission is very
close to that of the PBSMT baseline (slightly bet-
ter according to BLEU and TER, and slightly
worse according to METEOR). The difference be-
tween both systems computed by paired bootstrap
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system BLEU TER | METEOR | # of unknown words | phrase table size
baseline 0.3232 | 0.5807 0.5441 870 100530734
UA-Prompsit 0.3258 | 0.5781 0.5432 861 100585182
Apertium-rules 0.0995 | 0.7767 0.3168 4743 -
Apertium-word-for-word | 0.0631 | 0.8368 0.2617 4743 -

Table 2:

Case-insensitive BLEU, TER, and METEOR scores obtained, on the newstest2014 test set, by

the baseline PBSMT system (baseline), the hybrid system submitted to the WMT 2014 shared translation
task (UA-Prompsit), Apertium when it uses the set of inferred rules (Apertium-rules), and Apertium
when it uses no rules at all (Apertium-word-for-word). The number of unknown words and the size of

the phrase table are also reported when applicable.

resampling (Koehn, 2004) is not statistically sig-
nificant for any of the three evaluation metrics
(1000 iterations, p = 0.05).

An inspection of the 86 rules inferred shows
that they encode some of the transformations that
one would expect from a set of English-French
rules, such as gender and number agreements be-
tween nouns, determiners and adjectives, prepo-
sition changes, and the introduction of the aux-
iliary verb avoir for the past tense. In addition,
the improvement over word-for-word translation
achieved when they are used by Apertium is statis-
tically significant for the three evaluation metrics.

One of the reasons for not improving the base-
line PBMT system might be the small coverage
of the Apertium dictionaries. As already men-
tioned in the previous section, the English—French
bilingual dictionary has a low number of entries
compared to more mature language pairs in Aper-
tium which have around 20 times more bilingual
entries. Table 1 shows some effects of such a
small dictionary: the number of unknown words
for the Apertium-based system is really high, and
with regards to UA-Prompsit, its coverage barely
increases when compared to the PBSMT baseline.
We plan to test the approach presented in this paper
with language pairs for which more mature dictio-
naries are available in the Apertium project.

In addition to this, due to the tight schedule, we
had to remove the rules not reproducing at least
100 bilingual phrase pairs in order to solve the min-
imisation problem in a short amount of time. This
has clearly reduced the amount of rules inferred
and prevented some useful information present in
the parallel corpus from being incorporated in the
form of rules. For instance, no rule matching a
sequence longer than 3 lexical forms has been ex-
tracted (long bilingual phrases are less frequent
than short ones). Future research directions for
alleviating this problem include setting the mini-
mum number of reproduced bilingual phrases in-
dependently for each sequence of SL lexical cate-
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gories (Sanchez-Cartagena et al., 2014).

7 Concluding remarks

We have presented the MT system submitted
jointly by the Departament de Llenguatges i Sis-
temes Informatics at Universitat d’Alacant and
Prompsit Language Engineering to the WMT
2014 shared translation task. We developed a
hybrid system for the English-French language
pair which enriches the phrase table of a stan-
dard PBSMT system with phrase pairs generated
from the Apertium RBMT dictionaries and a set of
shallow-transfer rules automatically inferred from
a parallel corpus, also with the help of the dic-
tionaries. This submission aims at solving one
strong limitation of a previous submission of our
team (Sanchez-Cartagena et al., 2011b): the need
for a hand-crafted set of shallow-transfer rules,
which can only be written by people with a deep
knowledge of the languages involved. Our ap-
proach outperforms a standard PBSMT system
built from the same data by a small, non statisti-
cally significant margin, according to two of the
three evaluation metrics used. The low coverage
of the dictionaries used and the aggressive pruning
carried out when solving the minimisation prob-
lem needed to infer the rules are probably the rea-
sons behind such a small improvement over the
baseline.
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Abstract

This paper describes the AFRL sta-
tistical MT system and the improve-
ments that were developed during the
WMT14 evaluation campaign. As part
of these efforts we experimented with
a number of extensions to the stan-
dard phrase-based model that improve
performance on Russian to English
and Hindi to English translation tasks.
In addition, we describe our efforts
to make use of monolingual English
speakers to correct the output of ma-
chine translation, and present the re-
sults of monolingual postediting of the
entire 3003 sentences of the WMT14
Russian-English test set.

1 Introduction

As part of the 2014 Workshop on Machine
Translation (WMT14) shared translation task,
the human language technology team at the
Air Force Research Laboratory participated
in two language pairs: Russian-English and
Hindi-English. Our machine translation sys-
tem represents enhancements to our system
from TIWSLT 2013 (Kazi et al., 2013). In this
paper, we focus on enhancements to our pro-
cedures with regard to data processing and the
handling of unknown words.

In addition, we describe our efforts to make
use of monolingual English speakers to correct
the output of machine translation, and present
the results of monolingual postediting of the
entire 3003 sentences of the WMT14 Russian-
English test set. Using a binary adequacy clas-
sification, we evaluate the entire postedited
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test set for correctness against the reference
translations. Using bilingual judges, we fur-
ther evaluate a substantial subset of the post-
edited test set using a more fine-grained ade-
quacy metric; using this metric, we show that
monolingual posteditors can successfully pro-
duce postedited translations that convey all or
most of the meaning of the original source sen-
tence in up to 87.8% of sentences.

2 System Description

We submitted systems for the Russian-to-
English and Hindi-to-English MT shared
tasks. In all submitted systems, we use the
phrase-based moses decoder (Koehn et al.,
2007). We used only the constrained data sup-
plied by the evaluation for each language pair
for training our systems.

2.1 Data Preparation

Before training our systems, a cleaning pass
was performed on all data. Unicode charac-
ters in the unallocated and private use ranges
were all removed, along with C0O and C1 con-
trol characters, zero-width and non-breaking
spaces and joiners, directionality and para-
graph markers.

2.1.1 Hindi Processing

The HindEnCorp corpus (Bojar et al., 2014)
is distributed in tokenized form; in order to
ensure a uniform tokenization standard across
all of our data, we began by detokenized this
data using the Moses detokenization scripts.
In addition to normalizing various extended
Latin punctuation marks to their Basic Latin
equivalents, following Bojar et al. (2010) we
normalized DEVANAGARI DANDA (U40964),
DouBLE DANDA (U+0965), and ABBREVIA-
TION SIGN (U+0970) punctuation marks to
Latin FuLL Stop (U+002E), any DEVANA-
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GARI DIGIT to the equivalent ASCII DiciT,
and decomposed all Hindi data into Unicode
Normalization Form D (Davis and Whistler,
2013) using charlint.! In addition, we per-
formed Hindi diacritic and vowel normaliza-
tion, following Larkey et al. (2003).

Since no Hindi-English development test
set was provided in WMT14, we randomly
sampled 1500 sentence pairs from the Hindi-
English parallel training data to serve this pur-
pose. Upon discovering duplicate sentences in
the corpus, 552 sentences that overlapped with
the training portion were removed from the
sample, leaving a development test set of 948
sentences.

2.1.2 Russian Processing

The Russian sentences contained many exam-
ples of mixed-character spelling, in which both
Latin and Cyrillic characters are used in a sin-
gle word, relying on the visual similarity of the
characters. For example, although the first
letter and last letter in the word ceituac ap-
pear visually indistinguishable, we find that
the former is U+0063 LATIN SMALL LETTER
C and the latter is U4-0441 CYRILLIC SMALL
LETTER ES. We created a spelling normal-
ization program to convert these words to all
Cyrillic or all Latin characters, with a pref-
erence for all-Cyrillic conversion if possible.
Normalization also removes U+-0301 COMBIN-
ING ACUTE ACCENT () and converts U+00F2
LATIN SMALL LETTER O WITH GRAVE (0)
and U400F3 LATIN SMALL LETTER O WITH
AcCUTE (6) to the unaccented U+043E CYRIL-
LIC SMALL LETTER O (o).

The Russian-English Common Crawl par-
allel corpus (Smith et al., 2013) is relatively
noisy. A number of Russian source sentences
are incorrectly encoded using characters in the
Latin-1 supplement block; we correct these
sentences by shifting these characters ahead
by 350phex code points into the correct Cyrillic
character range.?

We examine the Common Crawl parallel
sentences and mark for removal any non-
Russian so