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Introduction to *SEM 2013

Building on the momentum generated by the spectacular success of the Joint Conference on Lexical and
Computational Semantics (*SEM) in 2012, bringing together the ACL SIGLEX and ACL SIGSEM
communities, we are delighted to bring to you the second edition of the conference, as a top-tier
showcase of the latest research in computational semantics. We accepted 14 papers (11 long and 3
short) for publication at the conference, out of a possible 45 submissions (a 31% acceptance rate).
This is on par with some of the most competitive conferences in computational linguistics, and we are
confident will set the stage for a scintillating conference.

This year, we started a tradition that we intend to maintain in all future iterations of the conference in
integrating a shared task into the conference. The shared task was selected by an independent committee
comprising members from SIGLEX and SIGSEM, based on an open call for proposals, and revolved
around Semantic Textual Similarity (STS). The task turned out to be a huge success with 34 teams
participating, submitting a total of 103 system runs.

*SEM 2013 features a number of highlight events:

Day One, June 13th:

e A timely and impressive panel on Towards Deep Natural Language Understanding,
featuring the following panelists:

Kevin Knight (USC/Information Sciences Institute)

Chris Manning (Stanford University)

Martha Palmer (University of Colorado at Boulder)

Owen Rambow (Columbia University)

Dan Roth (University of Illinois at Urbana-Champaign)

e A Reception and Shared Task Poster Session in the evening, thanks to the generous
sponsorship of the DARPA Deft program.

Day Two, June 14th:

e In the morning, a keynote address by David Forsyth from the Computer Science Department
at the University of Illinois at Urbana Champagne on issues of Vision and Language. It
promises to be an extremely stimulating speech, and is not to be missed.

e In the early afternoon, a panel on the relation between and future of *SEM, the *SEM
Shared Task, SemEval and other events on computational semantics. In this panel, we will
attempt to clarify and explain as well as devise plans for these different entities.

e Finally, at the end of the day, an award ceremony for the Best Long Paper and Best Short
Paper.
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As always, *SEM 2013 would not have been possible without the considerable efforts of our area chairs
and an impressive assortment of reviewers, drawn from the ranks of SIGLEX and SIGSEM, and the
computational semantics community at large. We would also like to acknowledge the generous support
for the STS Task from the DARPA Deft Program.

We hope you enjoy *SEM 2013, and look forward to engaging with all of you,

Mona Diab (The George Washington University, General Chair)
Timothy Baldwin (The University of Mebourne, Program Committee Co-Chair)
Marco Baroni (University of Trento, Program Committee Co-Chair)
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Introduction to SemEval

The Semantic Evaluation (SemEval) series of workshops focus on the evaluation and comparison
of systems that can analyse diverse semantic phenomena in text with the aim of extending the
current state-of-the-art in semantic analysis and creating high quality annotated datasets in a range of
increasingly challenging problems in natural language semantics. SemEval provides an exciting forum
for researchers to propose challenging research problems in semantics and to build systems/techniques
to address such research problems.

SemEval-2013 is the seventh workshop in the series. The first three workshops, SensEval-1 (1998),
SensEval-2 (2001), and SensEval-3 (2004), were focused on word sense disambiguation, each time
growing in the number of languages offered in the tasks and in the number of participating teams. In
2007 the workshop was renamed SemEval and in the next three workshops SemEval-2007, SemEval-
2010 and SemEval-2012 the nature of the tasks evolved to include semantic analysis tasks outside of
word sense disambiguation. Starting in 2012 SemEval turned into a yearly event associated with *SEM.

This volume contains papers accepted for presentation at the SemEval-2013 International Workshop
on Semantic Evaluation Exercises. SemEval-2013 is co-organized with the *SEM-2013 The Second
Joint Conference on Lexical and Computational Semantics and co-located with The 2013 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL HLT).

SemEval-2013 included the following 12 tasks for evaluation:

e TempEval-3 Temporal Annotation

e Sentiment Analysis in Twitter

e Spatial Role Labeling

e Free Paraphrases of Noun Compounds

e Evaluating Phrasal Semantics

e The Joint Student Response Analysis and 8th Recognizing Textual Entailment Challenge
e Cross-lingual Textual Entailment for Content Synchronization

e Extraction of Drug-Drug Interactions from BioMedical Texts

e Cross-lingual Word Sense Disambiguation

e Evaluating Word Sense Induction & Disambiguation within An End-User Application
e Multilingual Word Sense Disambiguation

e Word Sense Induction for Graded and Non-Graded Senses



About 100 teams submitted more than 300 systems for the 12 tasks of SemEval-2013. This volume
contains both Task Description papers that describe each of the above tasks and System Description
papers that describe the systems that participated in the above tasks. A total of 12 task description
papers and 101 system description papers are included in this volume.

We are indebted to all program committee members for their high quality, elaborate and thoughtful
reviews. The papers in this proceedings have surely benefited from this feedback. We are grateful
to *SEM 2013 and NAACL-HLT 2013 conference organizers for local organization and the forum.
We most gratefully acknowledge the support of our sponsors, the ACL Special Interest Group on the
Lexicon (SIGLEX) and the ACL Special Interest Group on Computational Semantics (SIGSEM).

Welcome to SemEval-2013!

Suresh Manandhar and Deniz Yuret
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Towards a Formal Distributional Semantics:
Simulating Logical Calculi with Tensors

Edward Grefenstette
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Abstract

The development of compositional distribu-
tional models of semantics reconciling the em-
pirical aspects of distributional semantics with
the compositional aspects of formal seman-
tics is a popular topic in the contemporary lit-
erature. This paper seeks to bring this rec-
onciliation one step further by showing how
the mathematical constructs commonly used
in compositional distributional models, such
as tensors and matrices, can be used to sim-
ulate different aspects of predicate logic.

This paper discusses how the canonical iso-
morphism between tensors and multilinear
maps can be exploited to simulate a full-blown
quantifier-free predicate calculus using ten-
sors. It provides tensor interpretations of the
set of logical connectives required to model
propositional calculi. It suggests a variant
of these tensor calculi capable of modelling
quantifiers, using few non-linear operations.
It finally discusses the relation between these
variants, and how this relation should consti-
tute the subject of future work.

1 Introduction

The topic of compositional distributional semantics
has been growing in popularity over the past few
years. This emerging sub-field of natural language
semantic modelling seeks to combine two seemingly
orthogonal approaches to modelling the meaning of
words and sentences, namely formal semantics and
distributional semantics.

These approaches, summarised in Section 2, dif-
fer in that formal semantics, on the one hand, pro-

vides a neatly compositional picture of natural lan-
guage meaning, reducing sentences to logical rep-
resentations; one the other hand, distributional se-
mantics accounts for the ever-present ambiguity and
polysemy of words of natural language, and pro-
vides tractable ways of learning and comparing
word meanings based on corpus data.

Recent efforts, some of which are briefly re-
ported below, have been made to unify both of
these approaches to language modelling to pro-
duce compositional distributional models of seman-
tics, leveraging the learning mechanisms of distri-
butional semantics, and providing syntax-sensitive
operations for the production of representations of
sentence meaning obtained through combination of
corpus-inferred word meanings. These efforts have
been met with some success in evaluations such
as phrase similarity tasks (Mitchell and Lapata,
2008; Mitchell and Lapata, 2009; Grefenstette and
Sadrzadeh, 2011; Kartsaklis et al., 2012), sentiment
prediction (Socher et al., 2012), and paraphrase de-
tection (Blacoe and Lapata, 2012).

While these developments are promising with
regard to the goal of obtaining learnable-yet-
structured sentence-level representations of lan-
guage meaning, part of the motivation for unifying
formal and distributional models of semantics has
been lost. The compositional aspects of formal se-
mantics are combined with the corpus-based empir-
ical aspects of distributional semantics in such mod-
els, yet the logical aspects are not. But it is these
logical aspects which are so appealing in formal se-
mantic models, and therefore it would be desirable
to replicate the inferential powers of logic within
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compositional distributional models of semantics.

In this paper, I make steps towards addressing this
lost connection with logic in compositional distri-
butional semantics. In Section 2, I provide a brief
overview of formal and distributional semantic mod-
els of meaning. In Section 3, I give mathemati-
cal foundations for the rest of the paper by intro-
ducing tensors and tensor contraction as a way of
modelling multilinear functions. In Section 4, I dis-
cuss how predicates, relations, and logical atoms
of a quantifier-free predicate calculus can be mod-
elled with tensors. In Section 5, I present tenso-
rial representations of logical operations for a com-
plete propositional calculus. In Section 6, I discuss
a variant of the predicate calculus from Section 4
aimed at modelling quantifiers within such tensor-
based logics, and the limits of compositional for-
malisms based only on multilinear maps. I con-
clude, in Section 7, by suggesting directions for fur-
ther work based on the contents of this paper.

This paper does not seek to address the question
of how to determine how words should be trans-
lated into predicates and relations in the first place,
but rather shows how such predicates and relations
can be modelled using multilinear algebra. As such,
it can be seen as a general theoretical contribution
which is independent from the approaches to com-
positional distributional semantics it can be applied
to. It is directly compatible with the efforts of Co-
ecke et al. (2010) and Grefenstette et al. (2013), dis-
cussed below, but is also relevant to any other ap-
proach making use of tensors or matrices to encode
semantic relations.

2 Related work

Formal semantics, from the Montagovian school of
thought (Montague, 1974; Dowty et al., 1981), treats
natural languages as programming languages which
compile down to some formal language such as a
predicate calculus. The syntax of natural languages,
in the form of a grammar, is augmented by seman-
tic interpretations, in the form of expressions from
a higher order logic such as the lambda-beta calcu-
lus. The parse of a sentence then determines the
combinations of lambda-expressions, the reduction
of which yields a well-formed formula of a predi-
cate calculus, corresponding to the semantic repre-

sentation of the sentence. A simple formal semantic
model is illustrated in Figure 1.

Syntactic Analysis ‘ Semantic Interpretation

S = NP VP [VPI(INPT)
NP = cats, milk, etc. | [cats]], [milk], ...
VP = Vt NP [V(INPT)

Vt = like, hug, etc. Ayx.[like]l(x, y), ...

[ikell([cats], [milk])

TN

[cats]] Ax.[[like]l(x, [milk])

TN

Ayx.[likel|(x,y)  [milk]]
Figure 1: A simple formal semantic model.

Formal semantic models are incredibly powerful,
in that the resulting logical representations of sen-
tences can be fed to automated theorem provers to
perform textual inference, consistency verification,
question answering, and a host of other tasks which
are well developed in the literature (e.g. see (Love-
land, 1978) and (Fitting, 1996)). However, the so-
phistication of such formal semantic models comes
at a cost: the complex set of rules allowing for
the logical interpretation of text must either be pro-
vided a priori, or learned. Learning such represen-
tations is a complex task, the difficulty of which is
compounded by issues of ambiguity and polysemy
which are pervasive in natural languages.

In contrast, distributional semantic models, best
summarised by the dictum of Firth (1957) that “You
shall know a word by the company it keeps,” pro-
vide an elegant and tractable way of learning se-
mantic representations of words from text. Word
meanings are modelled as high-dimensional vectors
in large semantic vector spaces, the basis elements
of which correspond to contextual features such as
other words from a lexicon. Semantic vectors for
words are built by counting how many time a target
word occurs within a context (e.g. within k& words
of select words from the lexicon). These context
counts are then normalised by a term frequency-
inverse document frequency-like measure (e.g. TF-
IDF, pointwise mutual information, ratio of proba-
bilities), and are set as the basis weights of the vec-
tor representation of the word’s meaning. Word vec-
tors can then be compared using geometric distance



furry

cat

dog

pet

snake
stroke

Figure 2: A simple distributional semantic model.

metrics such as cosine similarity, allowing us to de-
termine the similarity of words, cluster semantically
related words, and so on. Excellent overviews of dis-
tributional semantic models are provided by Curran
(2004) and Mitchell (2011). A simple distributional
semantic model showing the spacial representation
of words ‘dog’, ‘cat’ and ‘snake’ within the context
of feature words ‘pet’, ‘furry’, and ‘stroke’ is shown
in Figure 2.

Distributional semantic models have been suc-
cessfully applied to tasks such as word-sense
discrimination (Schiitze, 1998), thesaurus extrac-
tion (Grefenstette, 1994), and automated essay
marking (Landauer and Dumais, 1997). However,
while such models provide tractable ways of learn-
ing and comparing word meanings, they do not natu-
rally scale beyond word length. As recently pointed
out by Turney (2012), treating larger segments of
texts as lexical units and learning their representa-
tions distributionally (the ‘holistic approach’) vio-
lates the principle of linguistic creativity, according
to which we can formulate and understand phrases
which we’ve never observed before, provided we
know the meaning of their parts and how they are
combined. As such, distributional semantics makes
no effort to account for the compositional nature of
language like formal semantics does, and ignores is-
sues relating to syntactic and relational aspects of
language.

Several proposals have been put forth over the
last few years to provide vector composition func-
tions for distributional models in order to introduce
compositionality, thereby replicating some of the as-

pects of formal semantics while preserving learn-
ability. Simple operations such as vector addition
and multiplication, with or without scalar or matrix
weights (to take word order or basic relational as-
pects into account), have been suggested (Zanzotto
et al., 2010; Mitchell and Lapata, 2008; Mitchell and
Lapata, 2009).

Smolensky (1990) suggests using the tensor prod-
uct of word vectors to produce representations that
grow with sentence complexity. Clark and Pulman
(2006) extend this approach by including basis vec-
tors standing for dependency relations into tensor
product-based representations. Both of these ten-
sor product-based approaches run into dimensional-
ity problems as representations of sentence mean-
ing for sentences of different lengths or grammati-
cal structure do not live in the same space, and thus
cannot directly be compared. Coecke et al. (2010)
develop a framework using category theory, solving
this dimensionality problem of tensor-based models
by projecting tensored vectors for sentences into a
unique vector space for sentences, using functions
dynamically generated by the syntactic structure of
the sentences. In presenting their framework, which
partly inspired this paper, they describe how a verb
can be treated as a logical relation using tensors in
order to evaluate the truth value of a simple sentence,
as well as how negation can be modelled using ma-
trices.

A related approach, by Baroni and Zamparelli
(2010), represents unary relations such as adjectives
as matrices learned by linear regression from cor-
pus data, and models adjective-noun composition
as matrix-vector multiplication. Grefenstette et al.
(2013) generalise this approach to relations of any
arity and relate it to the framework of Coecke et al.
(2010) using a tensor-based approach to formal se-
mantic modelling similar to that presented in this pa-
per.

Finally, Socher et al. (2012) apply deep learning
techniques to model syntax-sensitive vector compo-
sition using non-linear operations, effectively turn-
ing parse trees into multi-stage neural networks.
Socher shows that the non-linear activation func-
tion used in such a neural network can be tailored to
replicate the behaviour of basic logical connectives
such as conjunction and negation.



3 Tensors and multilinear maps

Tensors are the mathematical objects dealt with in
multilinear algebra just as vectors and matrices are
the objects dealt with in linear algebra. In fact, ten-
sors can be seen as generalisations of vectors and
matrices by introducing the notion of fensor rank.
Let the rank of a tensor be the number of indices re-
quired to describe a vector/matrix-like object in sum
notation. A vector v in a space V with basis {b}/}i can
be written as the weighted sum of the basis vectors:

V= Z c’b)
i

where the ¢! elements are the scalar basis weights
of the vector. Being fully described with one index,
vectors are rank 1 tensors. Similarly, a matrix M is
an element of a space V ® W with basis {(b}/, b}y)}i :
(such pairs of basis vectors of V and W are com-
monly written as {biv ®b}v} ij in multilinear algebra).
Such matrices are rank 2 tensors, as they can be fully
described using two indices (one for rows, one for

columns):
M=) clib/ @b
ij

where the scalar weights cf‘J’.I are just the ijth ele-
ments of the matrix.

A tensor T of rank £ is just a geometric object with
a higher rank. Let 7 be a member of V| ®...®V; we
can express T as follows, using k indices a ... @:

T V Vi
T= ) b . ble. . eb

ay..ak

In this paper, we will be dealing with tensors of rank
1 (vectors), rank 2 (matrices) and rank 3, which can
be pictured as cuboids (or a matrix of matrices).

Tensor contraction is an operation which allows
us to take two tensors and produce a third. It is a
generalisation of inner products and matrix multipli-
cation to tensors of higher ranks. Let T be a tensor in
V1®...®V;®V, and U be a tensor in V;,®V,,®...®V,,.
The contraction of these tensors, written T X U, cor-
responds to the following calculation:

TxU-=

T U
Z cmmak cark“.

ay...ay

\4
Wby ®... @b, ®@b"®... @by

Tensor contraction takes a tensor of rank k and a
tensor of rank n — k + 1 and produces a tensor of

rank n — 1, corresponding to the sum of the ranks of
the input tensors minus 2. The tensors must satisfy
the following restriction: the left tensor must have
a rightmost index spanning the same number of di-
mensions as the leftmost index of the right tensor.
This is similar to the restriction that a m by n matrix
can only be multiplied with a p by ¢ matrix if n = p,
i.e. if the index spanning the columns of the first ma-
trix covers the same number of columns as the index
spanning the rows of the second matrix covers rows.
Similarly to how the columns of one matrix ‘merge’
with the rows of another to produce a third matrix,
the part of the first tensor spanned by the index k
merges with the part of the second tensor spanned by
k by ‘summing through’ the shared basis elements
b(‘,/: of each tensor. Each tensor therefore loses a
rank while being joined, explaining how the tensor
produced by TxUis of rank k+(n—k+1)-2 = n—1.

There exists an isomorphism between tensors and
multilinear maps (Bourbaki, 1989; Lee, 1997), such
that any curried multilinear map

fVis ..oV, =V

can be represented as a tensor T/ e V;® Vi®...eV;
(note the reversed order of the vector spaces), with
tensor contraction acting as function application.
This isomorphism guarantees that there exists such a
tensor T/ for every f, such that the following equal-
ity holds for any vi € Vi, ..., v; € V}

fvl...vj=vk=Tf><v1><...><vj

4 Tensor-based predicate calculi

In this section, I discuss how the isomorphism be-
tween multilinear maps and tensors described above
can be used to model predicates, relations, and log-
ical atoms of a predicate calculus. The four aspects
of a predicate calculus we must replicate here us-
ing tensors are as follows: truth values, the logical
domain and its elements (logical atoms), predicates,
and relations. I will discuss logical connectives in
the next section.

Both truth values and domain objects are the ba-
sic elements of a predicate calculus, and therefore
it makes sense to model them as vectors rather than
higher rank tensors, which I will reserve for rela-
tions. We first must consider the vector space used



to model the boolean truth values of B. Coecke et al.
(2010) suggest, as boolean vector space, the space B
with the basis {T, 1}, where T = [1 0] is inter-
preted as ‘true’, and L = [0 1]7 as ‘false’.

I assign to the domain D, the set of objects in
our logic, a vector space D on R?! with basis vec-
tors {d;}; which are in bijective correspondence with
elements of 9. An element of D is therefore rep-
resented as a one-hot vector in D, the single non-
null value of which is the weight for the basis vector
mapped to that element of O. Similarly, a subset of
D is a vector of D where those elements of D in the
subset have 1 as their corresponding basis weights in
the vector, and those not in the subset have 0. There-
fore there is a one-to-one correspondence between
the vectors in D and the elements of the power set
P(D), provided the basis weights of the vectors are
restricted to one of O or 1.

Each unary predicate P in the logic is represented
in the logical model as a set Mp C D containing the
elements of the domain for which the predicate is
true. Predicates can be viewed as a unary function
fp: D — B where

T ifxeMp
1L otherwise

Sp(x) = {

These predicate functions can be modelled as rank 2
tensors in B® D, i.e. matrices. Such a matrix M? is
expressed in sum notation as follows:

M? = (Z C%PT ®d,’) + {Z C%PJ_ ®d,‘]
i i

The basis weights are defined in terms of the set Mp
as follows: cjl"{P = 1 if the logical atom x; associ-
ated with basis weight d; is in Mp, and O otherwise;
MP . . .

conversely, ¢;; = 1 if the logical atom x; associated
with basis weight d; is not in Mp, and O otherwise.

To give a simple example, let’s consider a do-
main with three individuals, represented as the fol-
lowing one-hot vectors in D: john = [1 0 0]7,
chris = [0 1 0]", and tom = [0 O 1]". Let’s
imagine that Chris and John are mathematicians, but
Tom is not. The predicate P for ‘is a mathemati-
cian’ therefore is represented model-theoretically as
the set Mp = {chris, john}. Translating this into a
matrix gives the following tensor for P:

110
P _
M‘[001]

To compute the truth value of ‘John is a mathemati-
cian’, we perform predicate-argument application as
tensor contraction (matrix-vector multiplication, in

this case):
L OH?\_[I]_T
0 0 1 0 0

Likewise for “Tom is a mathematician’:
5N
0 |= L= 1
1

Model theory for predicate calculus represents
any n-ary relation R, such as a verb, as the set Mg
of n-tuples of elements from D for which R holds.

Therefore such relations can be viewed as functions
fr : D" — B where:

M’ x john =

M‘D><t0m:[1 ! O}

0 0 1

T if(xq,...,x,) € Mg
1 otherwise

fR(xl""’xn) = {

We can represent the boolean function for such a re-
lation R as a tensor TR in B® D®...® D:
———

n

T = [Z o T @ day ®...®dan]

aj...ap

R
+[ > l®dy @@ dan]

ay...ay

As was the case for predicates, the weights for re-
lational tensors are defined in terms of the set mod-
elling the relation: clT(I:l._ﬂn is 1 if the tuple (x, ..., 2)
associated with the basis vectors d, ...d,, (again,

note the reverse order) is in My and O otherwise; and

ngl...a is 1 if the tuple (x, ..., z) associated with
the basis vectors d, .. .d,, is not in Mg and O oth-
erwise.

To give an example involving relations, let our
domain be the individuals John (j) and Mary (m).
Mary loves John and herself, but John only loves
himself. The logical model for this scenario is as
follows:

D={jm}  Mioves = {(J ), (m,m), (m, j)}

Distributionally speaking, the elements of the do-
main will be mapped to the following one-hot vec-
tors in some two-dimensional space D as follows:



j=1010]" and m = [0 1]". The tensor for ‘loves’
can be written as follows, ignoring basis elements
with null-valued basis weights, and using the dis-
tributivity of the tensor product over addition:

T = T @ ((d; ®d)) + (dr ® dy) + (d; @ do))
+(Ledy®d))

Computing “Mary loves John” would correspond to
the following calculation:

(Tloves x m) Xj —

(Ted)+(Td)Xj=T

whereas “John loves Mary” would correspond to the
following calculation:

(Tloves % ,]) X m =

(Ted)+(Led))xm= 1

5 Logical connectives with tensors

In this section, I discuss how the boolean connec-
tives of a propositional calculus can be modelled us-
ing tensors. Combined with the predicate and rela-
tion representations discussed above, these form a
complete quantifier-free predicate calculus based on
tensors and tensor contraction.

Negation has already been shown to be modelled
in the boolean space described earlier by Coecke et
al. (2010) as the swap matrix:

- 101
eVl

This can easily be verified:
1 1| [0
0 0 |1
1 0] |1
0 L |0

All other logical operators are binary, and hence
modelled as rank 3 tensors. To make talking about
rank 3 tensors used to model binary operations eas-

ier, I will use the following block matrix notation for
2 X 2 % 2 rank 3 tensors T:

| a1 b
T_[cl dy

T XxT= =1

T "x L= =T

_o = O

[75) bz
2 d

which allows us to express tensor contractions as

follows:
ay b1 an bz [07
Txv=
[Cl di | &2 dzHﬁ]
_ a-a1+f-ay a-by+p-b
| a-c1+Bcy a-di+B-do

or more concretely:

_ ap b] a bz 1 _ aj bl
TxT= Cl dl C d2 ][0]_[61 dl :|

_ | a1 bl ar bz 0 | @ b2
Tx1= C1 d1 (&) d2 ][ 1 ]_|: C d2 :|

Using this notation, we can define tensors for the
following operations:

v_ |1 110
MeT =10 00 1
A~ [1 0lo o0
WeT=1y 1]
L |1 oof1 1
=T =10 110 0

I leave the trivial proof by exhaustion that these fit
the bill to the reader.

It is worth noting here that these tensors pre-
serve normalised probabilities of truth. Let us con-
sider a model such at that described in Coecke et
al. (2010) which, in lieu of boolean truth values,
represents truth value vectors of the form [a B]T
where @ + 8 = 1. Applying the above logical op-
erations to such vectors produces vectors with the
same normalisation property. This is due to the fact
that the columns of the component matrices are all
normalised (i.e. each column sums to 1). To give
an example with conjunction, let v = [a; 8] and
W = [(lz,@z]T with ) + 81 = a2 + 8> = 1. The con-
junction of these vectors is calculated as follows:

(T xv)xw

Lo e ]
o 1|1 1| s |l B
_701 0 (0%)

B ar+ B [,32}

_> a1ar

| Braa + (a1 + BB ]




To check that the probabilities are normalised we
calculate:

ajaz + Brag + (a1 + B1)B2
= (a1 +fraz + (a1 +B1)B2
=( +B1)ax+pr) =1

We can observe that the resulting probability distri-
bution for truth is still normalised. The same prop-
erty can be verified for the other connectives, which
I leave as an exercise for the reader.

6 Quantifiers and non-linearity

The predicate calculus described up until this point
has repeatedly been qualified as ‘quantifier-free’,
for the simple reason that quantification cannot be
modelled if each application of a predicate or rela-
tion immediately yields a truth value. In perform-
ing such reductions, we throw away the informa-
tion required for quantification, namely the infor-
mation which indicates which elements of a domain
the predicate holds true or false for. In this sec-
tion, I present a variant of the predicate calculus
developed earlier in this paper which allows us to
model simple quantification (i.e. excluding embed-
ded quantifiers) alongside a tensor-based approach
to predicates. However, I will prove that this ap-
proach to quantifier modelling relies on non-linear
functions, rendering them non-suitable for compo-
sitional distributional models relying solely on mul-
tilinear maps for composition (or alternatively, ren-
dering such models unsuitable for the modelling of
quantifiers by this method).

We saw, in Section 4, that vectors in the seman-
tic space D standing for the logical domain could
model logical atoms as well as sets of atoms. With
this in mind, instead of modelling a predicate P as
a truth-function, let us now view it as standing for
some function fp : P(D) — P(D), defined as:

SpX) =X N Mp

where X is a set of domain objects, and Mp is the set
modelling the predicate. The tensor form of such a
function will be some T/7in D ® D. Let this square
matrix be a diagonal matrix such that basis weights
c;f” = 1 if the atom x corresponding to d; is in Mp
and O otherwise. Through tensor contraction, this

tensor maps subsets of D (elements of D) to subsets
of D containing only those objects of the original
subset for which P holds (i.e. yielding another vector
in D).

To give an example: let us consider a domain with
two dogs (a and b) and a cat (c¢). One of the dogs (b)
is brown, as is the cat. Let S be the set of dogs, and P
the predicate “brown”. I represent these statements
in the model as follows:

D={a,b,c} S={a, b} Mp=1{b,c}

The set of dogs is represented as a vector S =
[1 1 0]" and the predicate ‘brown’ as a tensor in
D® D:

0 0 0
™=10 1 0
0 0 1

The set of brown dogs is obtained by computing
f8(S), which distributionally corresponds to apply-
ing the tensor T” to the vector representation of S
via tensor contraction, as follows:

0 0 0 1 0
T™PxS=|0 1 0 1]=]11]=b
0 0 1 0 0

The result of this computation shows that the set of
brown dogs is the singleton set containing the only
brown dog, b. As for how logical connectives fit
into this picture, in both approaches discussed be-
low, conjunction and disjunction are modelled using
set-theoretic intersection and union, which are sim-
ply the component-wise min and max functions over
vectors, respectively.

Using this new way of modelling predicates as
tensors, I turn to the problem of modelling quantifi-
cation. We begin by putting all predicates in vector
form by replacing each instance of the bound vari-
able with a vector 1 filled with ones, which extracts
the diagonal from the predicate matrix.

An intuitive way of modelling universal quantifi-
cation is as follows: expressions of the form “All Xs
are Ys” are true if and only if My = MxN My, where
My and My are the set of Xs and the set of Ys, re-
spectively. Using this, we can define the map forall
for distributional universal quantification modelling
expressions of the form “All Xs are Ys” as follows:

T if X = min(X,Y)
1 otherwise

Sforall X,Y) = {



To give a short example, the sentence ‘All Greeks are
human’ is verified by computing X = (Mg x 1),
Y = (MMM x 1), and verifying the equality X =
min(X,Y).

Existential statements of the form “There exists
X can be modelled using the function exists, which
tests whether or not My is empty, and is defined as
follows:

T if I X] >0
1L otherwise

exists(X) = {

To give a short example, the sentence ‘there exists a
brown dog’ is verified by computing X = (MP™"" x
1) N (M2 x 1) and verifying whether or not X is of
strictly positive length.

An important point to note here is that neither of
these quantification functions are multi-linear maps,
since a multilinear map must be linear in all argu-
ments. A counter example for forall is to consider
the case where My and My are empty, and multi-
ply their vector representations by non-zero scalar
weights @ and S.

aX =X

BY =Y

forall(@X,BY) = forall X, Y) =T
forall(@X,BY) # afT

I observe that the equations above demonstrate that
forall is not a multilinear map.

The proof that exists is not a multilinear map is
equally trivial. Assume My is an empty set and « is
a non-zero scalar weight:

aX =X
exists(aX) = exists(X) = L
exists(aX) # alL

It follows that exists is not a multi-linear function.

7 Conclusions and future work

In this paper, I set out to demonstrate that it was
possible to replicate most aspects of predicate logic
using tensor-based models. I showed that tensors
can be constructed from logical models to represent
predicates and relations, with vectors encoding ele-
ments or sets of elements from the logical domain.

I discussed how tensor contraction allows for evalu-
ation of logical expressions encoded as tensors, and
that logical connectives can be defined as tensors to
form a full quantifier-free predicate calculus. I ex-
posed some of the limitations of this approach when
dealing with variables under the scope of quantifiers,
and proposed a variant for the tensor representation
of predicates which allows us to deal with quantifi-
cation. Further work on tensor-based modelling of
quantifiers should ideally seek to reconcile this work
with that of Barwise and Cooper (1981). In this sec-
tion, I discuss how both of these approaches to pred-
icate modelling can be put into relation, and suggest
further work that might be done on this topic, and on
the topic of integrating this work into compositional
distributional models of semantics.

The first approach to predicate modelling treats
predicates as truth functions represented as tensors,
while the second treats them as functions from sub-
sets of the domain to subsets of the domain. Yet both
representations of predicates contain the same infor-
mation. Let M” and M’” be the tensor represen-
tations of a predicate P under the first and second
approach, respectively. The relation between these
representations lies in the equality diag(pM’) =
M'?, where p is the covector [1 0] (and hence pM”
yields the first row of M’). The second row of M”
being defined in terms of the first, one can also re-
cover M” from the diagonal of M'?.

Furthermore, both approaches deal with separate
aspects of predicate logic, namely applying predi-
cates to logical atoms, and applying them to bound
variables. With this in mind, it is possible to see how
both approaches can be used sequentially by noting
that tensor contraction allows for partial application
of relations to logical atoms. For example, apply-
ing a binary relation to its first argument under the
first tensor-based model yields a predicate. Translat-
ing this predicate into the second model’s form using
the equality defined above then permits us to use it
in quantified expressions. Using this, we can eval-
uate expressions of the form “There exists someone
who John loves”. Future work in this area should
therefore focus on developing a version of this ten-
sor calculus which permits seamless transition be-
tween both tensor formulations of logical predicates.

Finally, this paper aims to provide a starting point
for the integration of logical aspects into composi-



tional distributional semantic models. The work pre-
sented here serves to illustrate how tensors can sim-
ulate logical elements and operations, but does not
address (or seek to address) the fact that the vectors
and matrices in most compositional distributional
semantic models do not cleanly represent elements
of a logical domain. However, such distributional
representations can arguably be seen as represent-
ing the properties objects of a logical domain hold
in a corpus: for example the similar distributions of
‘car’ and ‘automobile’ could serve to indicate that
these concepts are co-extensive. This suggests two
directions research based on this paper could take.
One could use the hypothesis that similar vectors in-
dicate co-extensive concepts to infer a (probabilis-
tic) logical domain and set of predicates, and use the
methods described above without modification; al-
ternatively one could use the form of the logical op-
erations and predicate tensors described in this pa-
per as a basis for a higher-dimensional predicate cal-
culus, and investigate how such higher-dimensional
‘logical’ operations and elements could be defined
or learned. Either way, the problem of reconciling
the fuzzy ‘messiness’ of distributional models with
the sharp ‘cleanliness’ of logic is a difficult problem,
but I hope to have demonstrated in this paper that a
small step has been made in the right direction.
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Abstract

We combine logical and distributional rep-
resentations of natural language meaning by
transforming distributional similarity judg-
ments into weighted inference rules using
Markov Logic Networks (MLNs). We show
that this framework supports both judg-
ing sentence similarity and recognizing tex-
tual entailment by appropriately adapting the
MLN implementation of logical connectives.
We also show that distributional phrase simi-
larity, used as textual inference rules created
on the fly, improves its performance.

1 Introduction

Tasks in natural language semantics are very diverse
and pose different requirements on the underlying
formalism for representing meaning. Some tasks
require a detailed representation of the structure of
complex sentences. Some tasks require the ability to
recognize near-paraphrases or degrees of similarity
between sentences. Some tasks require logical infer-
ence, either exact or approximate. Often it is neces-
sary to handle ambiguity and vagueness in meaning.
Finally, we frequently want to be able to learn rele-
vant knowledge automatically from corpus data.
There is no single representation for natural lan-
guage meaning at this time that fulfills all require-
ments. But there are representations that meet some
of the criteria. Logic-based representations (Mon-
tague, 1970; Kamp and Reyle, 1993) provide an
expressive and flexible formalism to express even
complex propositions, and they come with standard-
ized inference mechanisms. Distributional mod-
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sim(hamster, gerbil) = w

gerbi
hamster

Va (hamster(z) — gerbil(z)) | f(w)

Figure 1: Turning distributional similarity into a
weighted inference rule

els (Turney and Pantel, 2010) use contextual sim-
ilarity to predict semantic similarity of words and
phrases (Landauer and Dumais, 1997; Mitchell and
Lapata, 2010), and to model polysemy (Schiitze,
1998; Erk and Padé, 2008; Thater et al., 2010).
This suggests that distributional models and logic-
based representations of natural language meaning
are complementary in their strengths (Grefenstette
and Sadrzadeh, 2011; Garrette et al., 2011), which
encourages developing new techniques to combine
them.

Garrette et al. (2011; 2013) propose a framework
for combining logic and distributional models in
which logical form is the primary meaning repre-
sentation. Distributional similarity between pairs of
words is converted into weighted inference rules that
are added to the logical form, as illustrated in Fig-
ure 1. Finally, Markov Logic Networks (Richardson
and Domingos, 2006) (MLNs) are used to perform
weighted inference on the resulting knowledge base.
However, they only employed single-word distribu-
tional similarity rules, and only evaluated on a small

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 11-21, Atlanta, Georgia, June 13-14, 2013. (©2013 Association for Computational Linguistics



set of short, hand-crafted test sentences.

In this paper, we extend Garrette et al.’s approach
and adapt it to handle two existing semantic tasks:
recognizing textual entailment (RTE) and seman-
tic textual similarity (STS). We show how this sin-
gle semantic framework using probabilistic logical
form in Markov logic can be adapted to support both
of these important tasks. This is possible because
MLNSs constitute a flexible programming language
based on probabilistic logic (Domingos and Lowd,
2009) that can be easily adapted to support multiple
types of linguistically useful inference.

At the word and short phrase level, our approach
model entailment through “distributional” similarity
(Figure 1). If X and Y occur in similar contexts, we
assume that they describe similar entities and thus
there is some degree of entailment between them. At
the sentence level, however, we hold that a stricter,
logic-based view of entailment is beneficial, and we
even model sentence similarity (in STS) as entail-
ment.

There are two main innovations in the formalism
that make it possible for us to work with naturally
occurring corpus data. First, we use more expres-
sive distributional inference rules based on the sim-
ilarity of phrases rather than just individual words.
In comparison to existing methods for creating tex-
tual inference rules (Lin and Pantel, 2001b; Szpek-
tor and Dagan, 2008), these rules are computed on
the fly as needed, rather than pre-compiled. Second,
we use more flexible probabilistic combinations of
evidence in order to compute degrees of sentence
similarity for STS and to help compensate for parser
errors. We replace deterministic conjunction by an
average combiner, which encodes causal indepen-
dence (Natarajan et al., 2010).

We show that our framework is able to han-
dle both sentence similarity (STS) and textual en-
tailment (RTE) by making some simple adapta-
tions to the MLN when switching between tasks.
The framework achieves reasonable results on both
tasks. On STS, we obtain a correlation of » = 0.66
with full logic, » = 0.73 in a system with weak-
ened variable binding, and » = 0.85 in an ensemble
model. On RTE-1 we obtain an accuracy of 0.57.
We show that the distributional inference rules ben-
efit both tasks and that more flexible probabilistic
combinations of evidence are crucial for STS. Al-
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though other approaches could be adapted to handle
both RTE and STS, we do not know of any other
methods that have been explicitly tested on both
problems.

2 Related work

Distributional semantics Distributional models
define the semantic relatedness of words as the
similarity of vectors representing the contexts in
which they occur (Landauer and Dumais, 1997;
Lund and Burgess, 1996). Recently, such mod-
els have also been used to represent the meaning
of larger phrases. The simplest models compute
a phrase vector by adding the vectors for the indi-
vidual words (Landauer and Dumais, 1997) or by a
component-wise product of word vectors (Mitchell
and Lapata, 2008; Mitchell and Lapata, 2010).
Other approaches, in the emerging area of distribu-
tional compositional semantics, use more complex
methods that compute phrase vectors from word
vectors and tensors (Baroni and Zamparelli, 2010;
Grefenstette and Sadrzadeh, 2011).

Wide-coverage logic-based semantics Boxer
(Bos, 2008) is a software package for wide-coverage
semantic analysis that produces logical forms using
Discourse Representation Structures (Kamp and
Reyle, 1993). It builds on the C&C CCG parser
(Clark and Curran, 2004).

Markov Logic In order to combine logical and
probabilistic information, we draw on existing work
in Statistical Relational AI (Getoor and Taskar,
2007). Specifically, we utilize Markov Logic Net-
works (MLNs) (Domingos and Lowd, 2009), which
employ weighted formulas in first-order logic to
compactly encode complex undirected probabilistic
graphical models. MLNSs are well suited for our ap-
proach since they provide an elegant framework for
assigning weights to first-order logical rules, com-
bining a diverse set of inference rules and perform-
ing sound probabilistic inference.

An MLN consists of a set of weighted first-order
clauses. It provides a way of softening first-order
logic by allowing situations in which not all clauses
are satisfied. More specifically, they provide a
well-founded probability distribution across possi-
ble worlds by specifying that the probability of a



world increases exponentially with the total weight
of the logical clauses that it satisfies. While methods
exist for learning MLN weights directly from train-
ing data, since the appropriate training data is lack-
ing, our approach uses weights computed using dis-
tributional semantics. We use the open-source soft-
ware package Alchemy (Kok et al., 2005) for MLN
inference, which allows computing the probability
of a query literal given a set of weighted clauses as
background knowledge and evidence.

Tasks: RTE and STS Recognizing Textual En-
tailment (RTE) is the task of determining whether
one natural language text, the premise, implies an-
other, the hypothesis. Consider (1) below.

e)) p: Oracle had fought to keep the forms from
being released

h: Oracle released a confidential document

Here, h is not entailed. RTE directly tests whether
a system can construct semantic representations that
allow it to draw correct inferences. Of existing RTE
approaches, the closest to ours is by Bos and Mark-
ert (2005), who employ a purely logical approach
that uses Boxer to convert both the premise and hy-
pothesis into first-order logic and then checks for
entailment using a theorem prover. By contrast, our
approach uses Markov logic with probabilistic infer-
ence.

Semantic Textual Similarity (STS) is the task of
judging the similarity of two sentences on a scale
from O to 5 (Agirre et al., 2012). Gold standard
scores are averaged over multiple human annota-
tions. The best performer in 2012’s competition was
by Bir et al. (2012), an ensemble system that inte-
grates many techniques including string similarity,
n-gram overlap, WordNet similarity, vector space
similarity and MT evaluation metrics.

Weighted inference, and combined structural-
distributional representations One approach to
weighted inference in NLP is that of Hobbs et al.
(1993), who proposed viewing natural language in-
terpretation as abductive inference. In this frame-
work, problems like reference resolution and syntac-
tic ambiguity resolution become inferences to best
explanations that are associated with costs. How-
ever, this leaves open the question of how costs are
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assigned. Raina et al. (2005) use this framework for
RTE, deriving inference costs from WordNet simi-
larity and properties of the syntactic parse.

Garrette et al. (2011; 2013) proposed an approach
to RTE that uses MLNSs to combine traditional log-
ical representations with distributional information
in order to support probabilistic textual inference.
This approach can be viewed as a bridge between
Bos and Markert (2005)’s purely logical approach,
which relies purely on hard logical rules and the-
orem proving, and distributional approaches, which
support graded similarity between concepts but have
no notion of logical operators or entailment.

There are also other methods that combine dis-
tributional and structured representations. Stern et
al. (2011) conceptualize textual entailment as tree
rewriting of syntactic graphs, where some rewrit-
ing rules are distributional inference rules. Socher
et al. (2011) recognize paraphrases using a “tree of
vectors,” a phrase structure tree in which each con-
stituent is associated with a vector, and overall sen-
tence similarity is computed by a classifier that inte-
grates all pairwise similarities. (This is in contrast to
approaches like Baroni and Zamparelli (2010) and
Grefenstette and Sadrzadeh (2011), who do not of-
fer a proposal for using vectors at multiple levels in
a syntactic tree simultaneously.)

3 MLN system

Our system extends that of Garrette et al. (2011;
2013) to support larger-scale evaluation on standard
benchmarks for both RTE and STS. We conceptual-
ize both tasks as probabilistic entailment in Markov
logic, where STS is judged as the average degree of
mutual entailment, i.e. we compute the probability
of both S; = S3 and S2 = S; and average the re-
sults. Below are some sentence pairs that we use as
examples in the discussion below:

2) S1: A man is slicing a cucumber.
So: A man is slicing a zucchini.
3) S1: A boy is riding a bicycle.
Sa: A little boy is riding a bike.
(@) S1: A man is driving.

So: A man is driving a car.



System overview. To compute the probability of
an entailment S; = Sy, the system first constructs
logical forms for each sentence using Boxer and
then translates them into MLN clauses. In example
(2) above, the logical form for .Sy:

Jxo, €1, w2 (man(xzo) A slice(er) A Agent(er, zo)A

cucumber(x2) A Patient(ey, xg))

is used as evidence, and the logical form for S5 is
turned into the following formula (by default, vari-
ables are assumed to be universally quantified):

man(x) A slice(e) N Agent(e, x)A
zucchini(y) A Patient(e,y) — result()

where result() is the query for which we have
Alchemy compute the probability.

However, S; is not strictly entailed by .S because
of the mismatch between “cucumber” and ‘“zuc-
chini”, so with just the strict logical-form transla-
tions of S; and S, the probability of result() will
be zero. This is where we introduce distributional
similarity, in this case the similarity of “cucumber”
and “zucchini”, cos(cucumber, zucchini). We cre-
ate inference rules from such similarities as a form
of background knowledge. We then treat similarity
as degree of entailment, a move that has a long tradi-
tion (e.g., (Lin and Pantel, 2001b; Raina et al., 2005;
Szpektor and Dagan, 2008)). In general, given two
words a and b, we transform their cosine similarity
into an inference-rule weight wt(a, b) using:

cos(a, 77))

1—cos(a, b)

wt(a,b) = log( ) — prior  (5)
Where prior is a negative weight used to initialize
all predicates, so that by default facts are assumed
to have very low probability. In our experiments,
we use prior = —3. In the case of sentence pair

(2), we generate the inference rule:
cucumber(x) — zucchini(x) | wt(cuc., zuc.)

Such inference rules are generated for all pairs of
words (w1, we) where wy € Sp and wy € So.!

"We omit inference rules for words (a, b) where cos(a, b) <
0 for a threshold 6 set to maximize performance on the training
data. Low-similarity pairs usually indicate dissimilar words.
This removes a sizeable number of rules for STS, while for RTE
the tuned threshold was near zero.
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The distributional model we use contains all lem-
mas occurring at least 50 times in the Gigaword cor-
pus (Graff et al., 2007) except a list of stop words.
The dimensions are the 2,000 most frequent of these
words, and cell values are weighted with point-wise
mutual information. 2

Phrase-based inference rules. Garrette et al. only
considered distributional inference rules for pairs of
individual words. We extend their approach to dis-
tributional inference rules for pairs of phrases in or-
der to handle cases like (3). To properly estimate
the similarity between S and S5 in (3), we not only
need an inference rule linking “bike” to “bicycle”,
but also a rule estimating how similar “boy” is to
“little boy”. To do so, we make use of existing ap-
proaches that compute distributional representations
for phrases. In particular, we compute the vector for
a phrase from the vectors of the words in that phrase,
using either vector addition (Landauer and Dumais,
1997) or component-wise multiplication (Mitchell
and Lapata, 2008; Mitchell and Lapata, 2010). The
inference-rule weight, wt(p1,p2), for two phrases
p1 and po is then determined using Eq. (5) in the
same way as for words.

Existing approaches that derive phrasal inference
rules from distributional similarity (Lin and Pantel,
2001a; Szpektor and Dagan, 2008; Berant et al.,
2011) precompile large lists of inference rules. By
comparison, distributional phrase similarity can be
seen as a generator of inference rules “on the fly”,
as it is possible to compute distributional phrase
vectors for arbitrary phrases on demand as they are
needed for particular examples.

Inference rules are generated for all pairs of con-
stituents (cq,co) where ¢; € S7 and ¢ € So, a
constituent is a single word or a phrase. The log-
ical form provides a handy way to extract phrases,
as they are generally mapped to one of two logical
constructs. Either we have multiple single-variable
predicates operating on the same variable. For ex-
ample the phrase “a little boy” has the logical form
boy(x) A little(z). Or we have two unary predi-
cates connected with a relation. For example, “pizza
slice” and “slice of pizza” are both mapped to the

1t is customary to transform raw counts in a way that cap-
tures association between target words and dimensions, for ex-
ample through point-wise mutual information (Lowe, 2001).



logical form, slice(zo) A of (xo,x1) A pizza(xy).
We consider all binary predicates as relations.

Average Combiner to determine similarity in the
presence of missing phrases. The logical forms
for the sentences in (4): are

Si: Tz, e (man(xo) Aagent(xo, e1) Adrive(er)

So: Elxg,el,xg(man(xo) A agent(xo,e1) A
drive(e1) A patient(e1, z2) A car(z2))

If we try to prove S; | Ss, the probability of
the result() will be zero: There is no evidence for
a car, and the hypothesis predicates are conjoined
using a deterministic AND. For RTE, this makes
sense: If one of the hypothesis predicates is False,
the probability of entailment should be zero. For the
STS task, this should in principle be the same, at
least if the omitted facts are vital, but it seems that
annotators rated the data points in this task more for
overall similarity than for degrees of entailment. So
in STS, we want the similarity to be a function of
the number of elements in the hypothesis that are
inferable. Therefore, we need to replace the deter-
ministic AND with a different way of combining
evidence. We chose to use the average evidence
combiner for MLNs introduced by Natarajan et al.
(2010). To use the average combiner, the full logi-
cal form is divided into smaller clauses (which we
call mini-clauses), then the combiner averages their
probabilities. In case the formula is a list of con-
juncted predicates, a mini-clause is a conjunction
of a single-variable predicate with a relation predi-
cate(as in the example below). In case the logical
form contains a negated sub-formula, the negated
sub-formula is also a mini-clause. The hypothesis
above after dividing clauses for the average com-
biner looks like this:

man(xg) A agent(xzg, e1) — result(xo,e1,x2) | w
drive(er) A agent(zg, e1) — result(xg, e1,x2) | w
drive(er) A patient(ey,xa) — result(xo, er,x2) | w

car(xa) A patient(eq, xa2) — result(zg, e1,z2) | w

where result is again the query predicate. Here,
result has all of the variables in the clause as argu-
ments in order to maintain the binding of variables
across all of the mini-clauses. The weights w are the
following function of n, the number of mini-clauses
(4 in the above example):

_1 Py i
w= X (log( p) prior) (6)

1—
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where p is a value close to 1 that is set to maximize
performance on the training data, and prior is the
same negative weight as before. Setting w this way
produces a probability of p for the result() in cases
that satisfy the antecedents of all mini-clauses. For
the example above, the antecedents of the first two
mini-clauses are satisfied, while the antecedents of
the last two are not since the premise provides no
evidence for an object of the verb drive. The simi-
larity is then computed to be the maximum probabil-
ity of any grounding of the result predicate, which
in this case is around £.3

An interesting variation of the average combiner
is to omit variable bindings between the mini-
clauses. In this case, the hypothesis clauses look
like this for our example:

man(x) A agent(x,e) — result() | w

drive(e) A agent(z,e) — result() | w
drive(e) A patient(e,x) — result() | w
)

car(x) A patient(e,x) — result() | w

This implementation loses a lot of information,
for example it does not differentiate between “A
man is walking and a woman is driving” and “A
man is driving and a woman is walking”. In fact,
logical form without variable binding degrades to a
representation similar to a set of independent syn-
tactic dependencies, 4 while the average combiner
with variable binding retains all of the information
in the original logical form. Still, omitting variable
binding turns out to be useful for the STS task.

It is also worth commenting on the efficiency of
the inference algorithm when run on the three dif-
ferent approaches to combining evidence. The aver-
age combiner without variable binding is the fastest
and has the least memory requirements because all
cliques in the ground network are of limited size
(just 3 or 4 nodes). Deterministic AND is much
slower than the average combiner without variable
binding, because the maximum clique size depends
on the sentence. The average combiner with vari-
able binding is the most memory intensive since the

3One could also give mini-clauses different weights depend-
ing on their importance, but we have not experimented with this
so far.

“However, it is not completely the same since we do not
divide up formulas under negation into mini-clauses.



number of arguments of the result() predicate can
become large (there is an argument for each individ-
ual and event in the sentence). Consequently, the
inference algorithm needs to consider a combinato-
rial number of possible groundings of the result()
predicate, making inference very slow.

Adaptation of the logical form. As discussed by
Garrette et al. (2011), Boxer’s output is mapped to
logical form and augmented with additional infor-
mation to handle a variety of semantic phenomena.
However, we do not use their additional rules for
handling implicatives and factives, as we wanted to
test the system without background knowledge be-
yond that supplied by the vector space.

Unfortunately, current MLN inference algorithms
are not able to efficiently handle complex formu-
las with nested quantifiers. For that reason, we re-
placed universal quantifiers in Boxer’s output with
existentials since they caused serious problems for
Alchemy. Although this is a radical change to the
semantics of the logical form, due to the nature of
the STS and RTE data, it only effects about 5% of
the sentences, and we found that most of the uni-
versal quantifiers in these cases were actually due
to parsing errors. We are currently exploring more
effective ways of dealing with this issue.

4 Task 1: Recognizing Textual Entailment

4.1 Dataset

In order to compare directly to the logic-based sys-
tem of Bos and Markert (2005), we focus on the
RTE-1 dataset (Dagan et al., 2005), which includes
567 Text-Hypothesis (T-H) pairs in the development
set and 800 pairs in the test set. The data covers a
wide range of issues in entailment, including lexical,
syntactic, logical, world knowledge, and combina-
tions of these at different levels of difficulty. In both
development and test sets, 50% of sentence pairs are
true entailments and 50% are not.

4.2 Method

We run our system for different configurations of in-
ference rules and evidence combiners. For distri-
butional inference rules (DIR), three different lev-
els are tested: without inference rules (no DIR),
inference rules for individual words (word DIR),
and inference rules for words and phrases (phrase
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DIR). Phrase vectors were built using vector addi-
tion, as point-wise multiplication performed slightly
worse. To combine evidence for the result() query,
three different options are available: without av-
erage combiner which is just using Deterministic
AND (Deterministic AND), average combiner with
variable binding (AvgComb) and average combiner
without variable binding (AvgComb w/o VarBind).
Different combinations of configurations are tested
according to its suitability for the task; RTE and
STS.

We also tested several “distributional only” sys-
tems. The first such system builds a vector represen-
tation for each sentence by adding its word vectors,
then computes the cosine similarity between the sen-
tence vectors for S7 and Sy (VS-Add). The second
uses point-wise multiplication instead of vector ad-
dition (VS-Mul). The third scales pairwise words
similarities to the sentence level using weighted av-
erage where weights are inverse document frequen-
cies ¢df as suggested by Mihalcea et al. (2006) (VS-
Pairwise).

For the RTE task, systems were evaluated using
both accuracy and confidence-weighted score (cws)
as used by Bos and Markert (2005) and the RTE-
1 challenge (Dagan et al., 2005). In order to map
a probability of entailment to a strict prediction of
True or False, we determined a threshold that op-
timizes performance on the development set. The
cws score rewards a system’s ability to assign higher
confidence scores to correct predictions than incor-
rect ones. For cws, a system’s predictions are sorted
in decreasing order of confidence and the score is
computed as:

1 <~ #correct-up-to-rank-i
cws = —
D

i=1 !

where n is the number of the items in the test set,
and i ranges over the sorted items. In our systems,
we defined the confidence value for a T-H pair as
the distance between the computed probability for
the result() predicate and the threshold.

4.3 Results

The results are shown in Table 1. They show
that the distributional only baselines perform very
poorly. In particular, they perform worse than strict



Method acc | cws
Chance 0.50 | 0.50
Bos & Markert, strict 0.52 | 0.55
Best system in RTE-1 challenge | 0.59 | 0.62
(Bayer et al., 2005)

VS-Add 0.49 | 0.53
VS-Mul 0.51 | 0.52
VS-Pairwise 0.50 | 0.50
AvgComb w/o VarBind + phrase | 0.52 | 0.53
DIR

Deterministic AND + phrase DIR | 0.57 | 0.57

Table 1: Results on the RTE-1 Test Set.

entailment from Bos and Markert (2005), a system
that uses only logic. This illustrates the important
role of logic-based representations for the entail-
ment task. Due to intractable memory demands of
Alchemy inference, our current system with deter-
ministic AND fails to execute on 118 of the 800 test
pairs, so, by default, the system classifies these cases
as False (non-entailing) with very low confidence.
Comparing the two configurations of our system,
using deterministic AND vs. the average combiner
without variable binding (last two lines in Table 1),
we see that for RTE, it is essential to retain the full
logical form.

Our system with deterministic AND obtains both
an accuracy and cws of 0.57. The best result in
the RTE-1 challenge by Bayer et al. (2005) ob-
tained an accuracy of 0.59 and cws of 0.62. > In
terms of both accuracy and cws, our system outper-
forms both “distributional only” systems and strict
logical entailment, showing again that integrating
both logical form and distributional inference rules
using MLNSs is beneficial. Interestingly, the strict
entailment system of Bos and Markert incorporated
generic knowledge, lexical knowledge (from Word-
Net) and geographical knowledge that we do not
utilize. This demonstrates the advantage of us-
ing a model that operationalizes entailment between
words and phrases as distributional similarity.

50n other RTE datasets there are higher previous results.
Hickl (2008) achieves 0.89 accuracy and 0.88 cws on the com-
bined RTE-2 and RTE-3 dataset.
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S Task 2: Semantic Textual Similarity

5.1 Dataset

The dataset we use in our experiments is the MSR
Video Paraphrase Corpus (MSR-Vid) subset of the
STS 2012 task, consisting of 1,500 sentence pairs.
The corpus itself was built by asking annotators
from Amazon Mechanical Turk to describe very
short video fragments (Chen and Dolan, 2011). The
organizers of the STS 2012 task (Agirre et al., 2012)
sampled video descriptions and asked Turkers to as-
sign similarity scores (ranging from 0O to 5) to pairs
of sentences, without access to the video. The gold
standard score is the average of the Turkers’ annota-
tions. In addition to the MSR Video Paraphrase Cor-
pus subset, the STS 2012 task involved data from
machine translation and sense descriptions. We do
not use these because they do not consist of full
grammatical sentences, which the parser does not
handle well. In addition, the STS 2012 data included
sentences from the MSR Paraphrase Corpus, which
we also do not currently use because some sentences
are long and create intractable MLN inference prob-
lems. This issue is discussed further in section 6.
Following STS standards, our evaluation compares
a system’s similarity judgments to the gold standard
scores using Pearson’s correlation coefficient r.

5.2 Method

Our system can be tested for different configuration
of inference rules and evidence combiners which
are explained in section 4.2. The tested systems on
the STS task are listed in table 2. Out experiments
showed that using average combiner (AvgComb) is
very memory intensive and MLN inference for 28 of
the 1,500 pairs either ran out of memory or did not
finish in reasonable time. In such cases, we back off
to AvgComb w/o VarBind.

We compare to several baselines; our MLN
system without distributional inference rules
(AvgComb + no DIR), and distributional-only
systems (VS-Add, VS-Mul, VS-Pairwise). These
are the natural baselines for our system, since they
use only one of the two types of information that
we combine (i.e. logical form and distributional
representations).

Finally, we built an ensemble that combines the
output of multiple systems using regression trained



Method r
AvgComb + no DIR 0.58
AvgComb + word DIR 0.60
AvgComb + phrase DIR 0.66
AvgComb w/o VarBind + no DIR 0.58
AvgComb w/o VarBind + word DIR 0.60
AvgComb w/o VarBind + phrase DIR 0.73
VS-Add 0.78
VS-Mul 0.58
VS-Pairwise 0.77
Ensemble (VS-Add + VS-Mul + VS- | 0.83
Pairwise)

Ensemble ([AvgComb + phrase DIR] + | 0.85
VS-Add + VS-Mul + VS-Pairwise)

Best MSR-Vid score in STS 2012 (Bar | 0.87
etal., 2012)

Table 2: Results on the STS video dataset.

on the training data. We then compare the perfor-
mance of an ensemble with and without our sys-
tem. This is the same technique used by Bir et al.
(2012) except we used additive regression (Fried-
man, 2002) instead of linear regression since it gave
better results.

5.3 Results

Table 2 summarizes the results of our experiments.
They show that adding distributional information
improves results, as expected, and also that adding
phrase rules gives further improvement: Using only
word distributional inference rules improves results
from 0.58 to 0.6, and adding phrase inference rules
further improves them to 0.66. As for variable bind-
ing, note that although it provides more precise in-
formation, the STS scores actually improve when it
is dropped, from 0.66 to 0.73. We offer two expla-
nations for this result: First, this information is very
sensitive to parsing errors, and the C&C parser, on
which Boxer is based, produces many errors on this
dataset, even for simple sentences. When the C&C
CCG parse is wrong, the resulting logical form is
wrong, and the resulting similarity score is greatly
affected. Dropping variable binding makes the sys-
tems more robust to parsing errors. Second, in con-
trast to RTE, the STS dataset does not really test the
important role of syntax and logical form in deter-
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mining meaning. This also explains why the “dis-
tributional only” baselines are actually doing better
than the MLN systems.

Although the MLN system on its own does not
perform better than the distributional compositional
models, it does provide complementary information,
as shown by the fact that ensembling it with the rest
of the models improves performance (0.85 with the
MLN system, compared to 0.83 without it). The per-
formance of this ensemble is close to the current best
result for this dataset (0.87).

6 Future Work

The approach presented in this paper constitutes a
step towards achieving the challenging goal of effec-
tively combining logical representations with dis-
tributional information automatically acquired from
text. In this section, we discuss some of limita-
tions of the current work and directions for future
research.

As noted before, parse errors are currently a sig-
nificant problem. We use Boxer to obtain a logi-
cal representation for a sentence, which in turn re-
lies on the C&C parser. Unfortunately, C&C mis-
parses many sentences, which leads to inaccurate
logical forms. To reduce the impact of misparsing,
we plan to use a version of C&C that can produce
the top-n parses together with parse re-ranking (Ng
and Curran, 2012). As an alternative to re-ranking,
one could obtain logical forms for each of the top-
n parses, and create an MLN that integrates all of
them (together with their certainty) as an underspec-
ified meaning representation that could then be used
to directly support inferences such as STS and RTE.

We also plan to exploit a greater variety of dis-
tributional inference rules. First, we intend to in-
corporate logical form translations of existing dis-
tributional inference rule collections (e.g., (Berant
et al., 2011; Chan et al., 2011)). Another issue
is obtaining improved rule weights based on dis-
tributional phrase vectors. We plan to experiment
with more sophisticated approaches to computing
phrase vectors such as those recently presented by
Baroni and Zamparelli (2010) and Grefenstette and
Sadrzadeh (2011). Furthermore, we are currently
deriving symmetric similarity ratings between word
pairs or phrase pairs, when really what we need is di-



rectional similarity. We plan to incorporate directed
similarity measures such as those of Kotlerman et al.
(2010) and Clarke (2012).

A primary problem for our approach is the limita-
tions of existing MLN inference algorithms, which
do not effectively scale to large and complex MLNs.
We plan to explore “coarser” logical representa-
tions such as Minimal Recursion Semantics (MRS)
(Copestake et al., 2005). Another potential approach
to this problem is to trade expressivity for efficiency.
Domingos and Webb (2012) introduced a tractable
subset of Markov Logic (TML) for which a future
software release is planned. Formulating the infer-
ence problem in TML could potentially allow us to
run our system on longer and more complex sen-
tences.

7 Conclusion

In this paper we have used an approach that com-
bines logic-based and distributional representations
for natural language meaning. It uses logic as
the primary representation, transforms distributional
similarity judgments to weighted inference rules,
and uses Markov Logic Networks to perform in-
ferences over the weighted clauses. This approach
views textual entailment and sentence similarity as
degrees of “logical” entailment, while at the same
time using distributional similarity as an indicator
of entailment at the word and short phrase level. We
have evaluated the framework on two different tasks,
RTE and STS, finding that it is able to handle both
tasks given that we adapt the way evidence is com-
bined in the MLN. Even though other entailment
models could be applied to STS, given that similar-
ity can obviously be operationalized as a degree of
mutual entailment, this has not been done before to
our best knowledge. Our framework achieves rea-
sonable results on both tasks. On RTE-1 we obtain
an accuracy of 0.57. On STS, we obtain a correla-
tion of » = 0.66 with full logic, » = 0.73 in a system
with weakened variable binding, and » = 0.85 in an
ensemble model. We find that distributional word
and phrase similarity, used as textual inference rules
on the fly, leads to sizeable improvements on both
tasks. We also find that using more flexible proba-
bilistic combinations of evidence is crucial for STS.
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Abstract

Wikipedia articles are annotated by volunteer
contributors with numerous links that connect
words and phrases to relevant titles. Links
to general senses of a word are used concur-
rently with links to more specific senses, with-
out being distinguished explicitly. We present
an approach to training coarse to fine grained
sense disambiguation systems in the presence
of such annotation inconsistencies. Experi-
mental results show that accounting for anno-
tation ambiguity in Wikipedia links leads to
significant improvements in disambiguation.

1 Introduction and Motivation

The vast amount of world knowledge available in
Wikipedia has been shown to benefit many types
of text processing tasks, such as coreference res-
olution (Ponzetto and Strube, 2006; Haghighi and
Klein, 2009; Bryl et al., 2010; Rahman and Ng,
2011), information retrieval (Milne, 2007; Li et al.,
2007; Potthast et al., 2008; Cimiano et al., 2009),
or question answering (Ahn et al., 2004; Kaisser,
2008; Ferrucci et al., 2010). In particular, the user
contributed link structure of Wikipedia has been
shown to provide useful supervision for training
named entity disambiguation (Bunescu and Pasca,
2006; Cucerzan, 2007) and word sense disambigua-
tion (Mihalcea, 2007; Ponzetto and Navigli, 2010)
systems. Articles in Wikipedia often contain men-
tions of concepts or entities that already have a cor-
responding article. When contributing authors men-
tion an existing Wikipedia entity inside an article,
they are required to link at least its first mention to
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the corresponding article, by using links or piped
links. Consider, for example, the following Wiki
source annotations: The [[capital city | capital]] of
Georgia is [[Atlanta]]. The bracketed strings iden-
tify the title of the Wikipedia articles that describe
the corresponding named entities. If the editor wants
a different string displayed in the rendered text, then
the alternative string is included in a piped link, af-
ter the title string. Based on these Wiki processing
rules, the text that is rendered for the aforementioned
example is: The capital of Georgia is Atlanta.

Since many words and names mentioned in
Wikipedia articles are inherently ambiguous, their
corresponding links can be seen as a useful source
of supervision for training named entity and word
sense disambiguation systems. For example,
Wikipedia contains articles that describe possible
senses of the word “capital”, such as CAPITAL CITY,
CAPITAL (ECONOMICS), FINANCIAL CAPITAL, or
HUMAN CAPITAL, to name only a few. When dis-
ambiguating a word or a phrase in Wikipedia, a con-
tributor uses the context to determine the appropriate
Wikipedia title to include in the link. In the exam-
ple above, the editor of the article determined that
the word “capital” was mentioned with the political
center meaning, consequently it was mapped to the
article CAPITAL CITY through a piped link.

In order to use Wikipedia links for training a WSD
system for a given word, one needs first to define a
sense repository that specifies the possible meanings
for that word, and then use the Wikipedia links to
create training examples for each sense in the repos-
itory. This approach might be implemented using
the following sequence of steps:
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In global climate models, the state and properties of the [[atmosphere]] are specified at a number of discrete locations
General = ATMOSPHERE; Specific = ATMOSPHERE OF EARTH; Label = A — A(S) — AE

The principal natural phenomena that contribute gases to the [[Atmosphere of Earth|atmosphere]] are emissions from volcanoes
General = ATMOSPHERE; Specific = ATMOSPHERE OF EARTH; Label = A — A(S) — AE

An aerogravity assist is a spacecraft maneuver designed to change velocity when arriving at a body with an [[atmosphere]]
General = ATMOSPHERE; Specific = ATMOSPHERE 1> generic; Label = A — A(G)

Assuming the planet’s [[atmosphere]] is close to equilibrium, it is predicted that 55 Cancri d is covered with water clouds
General = ATMOSPHERE; Specific = ATMOSPHERE OF CANCRI > missing; A — A(G)

Figure 1: Coarse and fine grained sense annotations in Wikipedia (bold). The proposed hierarchical Label (right).
A(S) = ATMOSPHERE (S), A(G) = ATMOSPHERE (G), A = ATMOSPHERE, AE = ATMOSPHERE OF EARTH.

1. Collect all Wikipedia titles that are linked from
the ambiguous anchor word.

2. Create a repository of senses from all titles that
have sufficient support in Wikipedia i.e., titles
that are referenced at least a predefined min-
imum number of times using the ambiguous
word as anchor.

3. Use the links extracted for each sense in the
repository as labeled examples for that sense
and train a WSD model to distinguish between
alternative senses of the ambiguous word.

Taking the word “atmosphere” as an example, the
first step would result in a wide array of titles,
ranging from the general ATMOSPHERE and its in-
stantiations ATMOSPHERE OF EARTH or ATMO-
SPHERE OF MARS, to titles as diverse as ATMO-
SPHERE (UNIT), MOOD (PSYCHOLOGY), or AT-
MOSPHERE (MUSIC GROUP). In the second step,
the most frequent titles for the anchor word “at-
mosphere” would be assembled into a repository R
= { ATMOSPHERE, ATMOSPHERE OF EARTH, AT-
MOSPHERE OF MARS, ATMOSPHERE OF VENUS,
STELLAR ATMOSPHERE, ATMOSPHERE (UNIT),
ATMOSPHERE (MUSIC GROUP)}. The classifier
trained in the third step would use features ex-
tracted from the context to discriminate between
word senses.

This Wikipedia-based approach to creating train-
ing data for word sense disambiguation has a ma-
jor shortcoming. Many of the training examples ex-
tracted for the title ATMOSPHERE could very well
belong to more specific titles such as ATMOSPHERE
OF EARTH or ATMOSPHERE OF MARS. Whenever
the word “atmosphere” is used in a context with the
sense of “a layer of gases that may surround a ma-
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terial body of sufficient mass, and that is held in
place by the gravity of the body,” the contributor
has the option of adding a link either to the title AT-
MOSPHERE that describes this general sense of the
word, or to the title of an article that describes the
atmosphere of the actual celestial body that is re-
ferred in that particular context, as shown in the first
2 examples in Figure 1. As shown in bold in Fig-
ure 1, different occurrences of the same word may
be tagged with either a general or a specific link, an
ambiguity that is pervasive in Wikipedia for words
like “atmosphere” that have general senses that sub-
sume multiple, popular specific senses. There does
not seem to be a clear, general rule underlying the
decision to tag a word or a phrase with a general
or specific sense link in Wikipedia. We hypothesize
that, in some cases, editors may be unaware that an
article exists in Wikipedia for the actual reference
of a word or for a more specific sense of the word,
and therefore they end up using a link to an article
describing the general sense of the word. There is
also the possibility that more specific articles are in-
troduced only in newer versions of Wikipedia, and
thus earlier annotations were not aware of these re-
cent articles. Furthermore, since annotating words
with the most specific sense available in Wikipedia
may require substantial cognitive effort, editors may
often choose to link to a general sense of the word, a
choice that is still correct, yet less informative than
the more specific sense.

2 Annotation Inconsistencies in Wikipedia

In order to get a sense of the potential magnitude
of the general vs. specific sense annotation ambi-
guity, we extracted all Wikipedia link annotations



for the words “atmosphere”, “president”, “game”,
“dollar”, “diamond” and “Corinth”, and created
a special subset from those that were labeled by
Wikipedia editors with the general sense links AT-
MOSPHERE, PRESIDENT, GAME, DOLLAR, DIA-
MOND, and CORINTH, respectively. Then, for each
of the 7,079 links in this set, we used the context
to manually determine the corresponding more spe-
cific title, whenever such a title exists in Wikipedia.
The statistics in Tables 1 and 2 show a significant
overlap between the general and specific sense cate-
gories. For example, out of the 932 links from “at-
mosphere” to ATMOSPHERE that were extracted in
total, 518 were actually about the ATMOSPHERE OF
EARTH, but the user linked them to the more general
sense category ATMOSPHERE. On the other hand,
there are 345 links to ATMOSPHERE OF EARTH that
were explicitly made by the user. We manually as-
signed general links (G) whenever the word is used
with a generic sense, or when the reference is not
available in the repository of titles collected for that
word because either the more specific title does not
exist in Wikipedia or the specific title exists, but it
does not have sufficient support — at least 20 linked
anchors — in Wikipedia. We grouped the more spe-
cific links for any given sense into a special cate-
gory suffixed with (S), to distinguish them from the
general links (generic use, or missing reference) that
were grouped into the category suffixed with (G).

For many ambiguous words, the annotation in-
consistencies appear when the word has senses
that are in a subsumption relationship: the ATMO-
SPHERE OF EARTH is an instance of ATMOSPHERE,
whereas a STELLAR ATMOSPHERE is a particular
type of ATMOSPHERE. Subsumed senses can be
identified automatically using the category graph in
Wikipedia. The word “Corinth” is an interesting
case: the subsumption relationship between AN-
CIENT CORINTH and CORINTH appears because of
a temporal constraint. Furthermore, in the case of
the word “diamond”, the annotation inconsistencies
are not caused by a subsumption relation between
senses. Instead of linking to the DIAMOND (GEM-
STONE) sense, Wikipedia contributors often link to
the related DIAMOND sense indicating the mineral
used in the gemstone.

A supervised learning algorithm that uses the ex-
tracted links for training a WSD classification model

24

atmosphere Size
ATMOSPHERE 932
Atmosphere (S) 559
Atmosphere of Earth 518
Atmosphere of Mars 19
Atmosphere of Venus 9
Stellar Atmosphere 13
Atmosphere (G) 373
ATMOSPHERE OF EARTH 345
ATMOSPHERE OF MARS 37
ATMOSPHERE OF VENUS 26
STELLAR ATMOSPHERE 29
ATMOSPHERE (UNIT) 96
ATMOSPHERE (MUSIC GROUP) 104
president Size
PRESIDENT 3534
President (S) 989
Chancellor (education) 326
President of the United States 534
President of the Philippines 42
President of Pakistan 27
President of France 22
President of India 21
President of Russia 17
President (G) 2545
CHANCELLOR (EDUCATION) 210
PRESIDENT OF THE UNITED STATES 5941
PRESIDENT OF THE PHILIPPINES 549
PRESIDENT OF PAKISTAN 192
PRESIDENT OF FRANCE 151
PRESIDENT OF INDIA 86
PRESIDENT OF RUSSIA 101

Table 1: Wiki (CAPS) and manual (italics) annotations.

to distinguish between categories in the sense repos-
itory assumes implicitly that the categories, and
hence their training examples, are mutually disjoint.
This assumption is clearly violated for words like
“atmosphere,” consequently the learned model will
have a poor performance on distinguishing between
the overlapping categories. Alternatively, we can
say that sense categories like ATMOSPHERE are ill
defined, since their supporting dataset contains ex-
amples that could also belong to more specific sense
categories such as ATMOSPHERE OF EARTH.

We see two possible solutions to the problem of
inconsistent link annotations. In one solution, spe-
cific senses are grouped together with the subsuming
general sense, such that all categories in the result-
ing repository become disjoint. For “atmosphere”,
the general category ATMOSPHERE would be aug-
mented to contain all the links previously annotated



dollar Size
DOLLAR 379
Dollar (S) 231
United States dollar 228
Canadian dollar
Australian dollar 1
Dollar (G) 147
UNITED STATES DOLLAR 3516
CANADIAN DOLLAR 420
AUSTRALIAN DOLLAR 124
DOLLAR SIGN 290
DOLLAR (BAND) 30
DOLLAR, CLACKMANNANSHIRE 30
game Size
GAME 819
Game (S) 99
Video game 55
PC game 44
Game (G) 720
VIDEO GAME 312
PC GAME 24
GAME (FOOD) 232
GAME (RAPPER) 154
diamond Size
DIAMOND 716
Diamond (S) 221
Diamond (gemstone) 221
Diamond (G) 495
DIAMOND (GEMSTONE) 71
BASEBALL FIELD 36
MUSIC RECORDING SALES CERT. 36
Corinth Size
CORINTH 699
Corinth (S) 409
Ancient Corinth 409
Corinth (G) 290
ANCIENT CORINTH 92
CORINTH, MISSISSIPPI 72

Table 2: Wiki (CAPS) and manual (italics) annotations.

as ATMOSPHERE, ATMOSPHERE OF EARTH, AT-
MOSPHERE OF MARS, ATMOSPHERE OF VENUS,
or STELLAR ATMOSPHERE. This solution is
straightforward to implement, however it has the
disadvantage that the resulting WSD model will
never link words to more specific titles in Wikipedia
like ATMOSPHERE OF MARS.

Another solution is to reorganize the original
sense repository into a hierarchical classification
scheme such that sense categories at each classifi-
cation level become mutually disjoint. The resulting
WSD system has the advantage that it can make fine
grained sense distinctions for an ambiguous word,
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despite the annotation inconsistencies present in the
training data. The rest of this paper describes a feasi-
ble implementation for this second solution that does
not require any manual annotation beyond the links
that are already provided by Wikipedia volunteers.

3 Learning for Coarse to Fine Grained
Sense Disambiguation

Figure 2 shows our proposed hierarchical classifica-
tion scheme for disambiguation, using “atmosphere”
as the ambiguous word. Shaded leaf nodes show
the final categories in the sense repository for each
word, whereas the doted elliptical frames on the
second level in the hierarchy denote artificial cate-
gories introduced to enable a finer grained classifi-
cation into more specific senses. Thick dotted ar-
rows illustrate the classification decisions that are
made in order to obtain a fine grained disambigua-
tion of the word. Thus, the word “atmosphere”
is first classified to have the general sense ATMO-
SPHERE, i.e. “a layer of gases that may surround a
material body of sufficient mass, and that is held in
place by the gravity of the body”. In the first so-
lution, the disambiguation process would stop here
and output the general sense ATMOSPHERE. In the
second solution, the disambiguation process contin-
ues and further classifies the word to be a reference
to ATMOSPHERE OF EARTH. To get to this final
classification, the process passes through an inter-
mediate binary classification level where it deter-
mines whether the word has a more specific sense
covered in Wikipedia, corresponding to the artificial
category ATMOSPHERE (S). If the answer is no, the
system stops the disambiguation process and out-
puts the general sense category ATMOSPHERE. This
basic sense hierarchy can be replicated depending
on the existence of even finer sense distinctions in
Wikipedia. For example, Wikipedia articles describ-
ing atmospheres of particular stars could be used to
further refine STELLAR ATMOSPHERE with two ad-
ditional levels of the type Level 2 and Level 3. Over-
all, the proposed disambiguation scheme could be
used to relabel the ATMOSPHERE links in Wikipedia
with more specific, and therefore more informative,
senses such as ATMOSPHERE OF EARTH. In gen-
eral, the Wikipedia category graph could be used
to automatically create hierarchical structures for re-



“In global climate models, the properties of the atmosphere are specified at a number of discrete locations.”

PP

Level 1 Aumosphere (unit) Atmosphere }—‘ Atmosphere (music group)

Level 2

Level 3

A.Stellar

‘ A.Mars

A.Venus

Figure 2: Hierarchical disambiguation scheme, from coarse to fine grained senses.

lated senses of the same word.

Training word sense classifiers for Levels 1 and 3
is straightforward. For Level 1, Wikipedia links that
are annotated by users as ATMOSPHERE, ATMO-
SPHERE OF EARTH, ATMOSPHERE OF MARS, AT-
MOSPHERE OF VENUS, or STELLAR ATMOSPHERE
are collected as training examples for the general
sense category ATMOSPHERE. Similarly, links that
are annotated as ATMOSPHERE (UNIT) and ATMO-
SPHERE (MUSIC GROUP) will be used as training
examples for the two categories, respectively. A
multiclass classifier is then trained to distinguish be-
tween the three categories at this level. For Level 3,
a multiclass classifiers is trained on Wikipedia links
collected for each of the 4 specific senses.

For the binary classifier at Level 2, we could
use as training examples for the category ATMO-
SPHERE (G) all Wikipedia links that were anno-
tated as ATMOSPHERE, whereas for the category
ATMOSPHERE (S) we could use as training exam-
ples all Wikipedia links that were annotated specif-
ically as ATMOSPHERE OF EARTH, ATMOSPHERE
OF MARS, ATMOSPHERE OF VENUS, or STELLAR
ATMOSPHERE. A traditional binary classification
SVM could be trained on this dataset to distinguish
between the two categories. We call this approach
Naive SVM, since it does not account for the fact that
a significant number of the links that are annotated
by Wikipedia contributors as ATMOSPHERE should
actually belong to the ATMOSPHERE (S) category —
about 60% of them, according to Table 1. Instead,
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we propose treating all ATMOSPHERE links as unla-
beled examples. If we consider the specific links in
ATMOSPHERE (S) to be positive examples, then the
problem becomes one of learning with positive and
unlabeled examples.

3.1 Learning with positive and unlabeled
examples

This general type of semi-supervised learning has
been studied before in the context of tasks such
as text classification and information retrieval (Lee
and Liu, 2003; Liu et al., 2003), or bioinformat-
ics (Elkan and Noto, 2008; Noto et al., 2008). In
this setting, the training data consists of positive ex-
amples z € P and unlabeled examples x € U.
Following the notation of Elkan and Noto (2008),
we define s(z) = 1 if the example is positive and
s(z) = —1 if the example is unlabeled. The true
label of an example is y(x) = 1 if the example
is positive and y(x) = —1 if the example is neg-
ative. Thus, x € P = s(z) = y(z) = 1 and
x € U = s(z) = —1 i.e., the true label y(z) of an
unlabeled example is unknown. For the experiments
reported in this paper, we use our implementation
of two state-of-the-art approaches to Learning with
Positive and Unlabeled (LPU) examples: the Biased
SVM formulation of Lee and Liu (2003) and the
Weighted Samples SVM formulation of Elkan and
Noto (2008). The original version of Biased SVM
was designed to maximize the product between pre-
cision and recall. In the next section we describe a



modification to the Biased SVM approach that can
be used to maximize accuracy, a measure that is of-
ten used to evaluate WSD performance.

3.1.1 The Biased SVM

In the Biased SVM formulation (Lee and Liu,
2003; Liu et al., 2003), all unlabeled examples are
considered to be negative and the decision function
f(z) = wlé(z) + b is learned using the standard
soft-margin SVM formulation shown in Figure 3.

minimize:

1

SIWIP+Cp Y &+ Cu ) &
TEP zeU

s(z) (who(z) +b) >1-&

& >0, Yee PUU

subject to:

Figure 3: Biased SVM optimization problem.

The capacity parameters C'p and C; control how
much we penalize errors on positive examples vs. er-
rors on unlabeled examples. Since not all unlabeled
examples are negative, one would want to select ca-
pacity parameters satisfying C'p > Cp, such that
false negative errors are penalized more than false
positive errors. In order to find the best capacity pa-
rameters to use during training, the Biased SVM ap-
proach runs a grid search on a separate development
dataset. This search is aimed at finding values for
the parameters C'p and Cy; that maximize pr, the
product between precision p = p(y = 1|f = 1) and
recall r = p(f = 1lly = 1). Lee and Liu (2003)
show that maximizing the pr criterion is equivalent
with maximizing the objective 72 /p(f = 1), where
both r = p(f = 1ly = 1) and p(f = 1) can be es-
timated using the trained decision function f(z) on
the development dataset.

Maximizing the pr criterion in the original Biased
SVM formulation was motivated by the need to opti-
mize the F’ measure in information retrieval settings,
where F' = 2pr(p+ 7). In the rest of this section we
show that classification accuracy can be maximized
using only positive and unlabeled examples, an im-
portant result for problems where classification ac-
curacy is the target performance measure.

The accuracy of a binary decision function f(x)
is, by definition, acc = p(f = 1ly = 1) + p(f =
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—1ly = —1). Since the recall is r = p(f = 1|y =
1), the accuracy can be re-written as:

acc=r+1—p(f=1y=-1) (1)

Using Bayes’ rule twice, the false positive term
p(f = 1]y = —1) can be re-written as:

ply=—1)
_pf=1 e 11f —
_p(f=1) p(f=1) ply=Dp(f=1y=1)
ply=-1) ply=-1) p(f=1)
_p(f=D)-ply=1) xr
a ply =—1) @
Plugging identity 2 in Equation 1 leads to:
acc-1+7‘+ X ply (::) f)( =D
=1+ (()1) 3)
Since p(y = —1) can be assimilated with a con-

stant, Equation 3 implies that maximizing accu-
racy is equivalent with maximizing the criterion
r — p(f = 1), where both the recall r and p(f = 1)
can be estimated on the positive and unlabeled ex-
amples from a separate development dataset.

In conclusion, one can use the original Biased
SVM formulation to maximize r2/p(f = 1), which
has been shown by Lee and Liu (2003) to maximize
pr, a criterion that has a similar behavior with the
F-measure used in retrieval applications. Alterna-
tively, if the target performance measure is accuracy,
we can choose instead to maximize r — p(f = 1),
which we have shown above to correspond to accu-
racy maximization.

3.1.2 The Weighted Samples SVM

Elkan and Noto (2008) introduced two ap-
proaches for learning with positive and unlabeled
data. Both approaches are based on the assumption
that labeled examples {z|s(x) = 1} are selected at
random from the positive examples {z|y(z) = 1}
ie, p(s = 1llz,y = 1) = p(s = 1|y = 1). Their
best performing approach uses the positive and unla-
beled examples to train two distinct classifiers. First,
the dataset P U U is split into a training set and a
validation set, and a classifier g() is trained on the



labeling s to approximate the label distribution i.e.
g(z) = p(s = 1|x). The validation set is then used
to estimate p(s = 1|y = 1) as follows:

1
pls=1ly=1) = pls=1l.y=1) = 75 3~ g(z) &
zeP

The second and final classifier f(x) is trained on a
dataset of weighted examples that are sampled from
the original training set as follows:

— Each positive example x € P is copied as a
positive example in the new training set with
weight p(y = 1|z, s = 1) = 1.

— Each unlabeled example x € U is duplicated
into two training examples in the new dataset:
a positive example with weight p(y = 1|z, s =
0) and a negative example with weight p(y =
—1llz,s =0)=1—-p(y = 1|z,s =0).

Elkan and Noto (2008) show that the weights above
can be derived as:

_ o lp(s=1ly=1)_ p(s=1x)
ply=1z,5=0) = = T T = 1)

The output of the first classifier g(x) is used to
approximate the probability p(s = 1|z), whereas
p(s = 1|y = 1) is estimated using Equation 4.

The two classifiers g and f are trained using
SVMs and a linear kernel. Platt scaling is used with
the first classifier to obtain the probability estimates
g(z) = p(s = 1|x), which are then converted into
weights following Equations 4 and 5, and used dur-
ing the training of the second classifier.

&)

4 Experimental Evaluation

We ran disambiguation experiments on the 6 am-
biguous words atmosphere, president, dollar, game,
diamond and Corinth. The corresponding Wikipedia
sense repositories have been summarized in Tables 1
and 2. All WSD classifiers used the same set of stan-
dard WSD features (Ng and Lee, 1996; Stevenson
and Wilks, 2001), such as words and their part-of-
speech tags in a window of 3 words around the am-
biguous keyword, the unigram and bigram content
words that are within 2 sentences of the current sen-
tence, the syntactic governor of the keyword, and
its chains of syntactic dependencies of lengths up to
two. Furthermore, for each example, a Wikipedia
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specific feature was computed as the cosine similar-
ity between the context of the ambiguous word and
the text of the article for the target sense or reference.

The Level; and Levels classifiers were trained us-
ing the SVM™4 component of the SVM!“9"* pack-
age.! The WSD classifiers were evaluated in a 4-fold
cross validation scenario in which 50% of the data
was used for training, 25% for tuning the capacity
parameter C, and 25% for testing. The final accu-
racy numbers, shown in Table 3, were computed by
averaging the results over the 4 folds. Since the word
president has only one sense on Level;, no classifier
needed to be trained for this case. Similarly, words
diamond and Corinth have only one sense on Levels.

atmosphere | president dollar
Levely 93.1% — 94.1%
Level; 85.6% 82.2% 90.8%
game diamond Corinth
Levely 82.9% 95.5% 92.7%
Levels 92.9% — —

Table 3: Disambiguation accuracy at Levels 1 & 3.

The evaluation of the binary classifiers at the sec-
ond level follows the same 4-fold cross validation
scheme that was used for Level; and Levels. The
manual labels for specific senses and references in
the unlabeled datasets are always ignored during
training and tuning and used only during testing.

We compare the Naive SVM, Biased SVM, and
Weighted SVM in the two evaluation settings, using
for all of them the same train/development/test splits
of the data and the same features. We emphasize
that our manual labels are used only for testing pur-
poses — the manual labels are ignored during train-
ing and tuning, when the data is assumed to contain
only positive and unlabeled examples. We imple-
mented the Biased SVM approach on top of the bi-
nary SVM"9"* package. The Cp and Cy; parameters
of the Biased SVM were tuned through the c and j
parameters of SVM'9"* (¢ = Cyy and j = Cp/Cy).
Eventually, all three methods use the development
data for tuning the c and j parameters of the SVM.
However, whereas the Naive SVM tunes these pa-
rameters to optimize the accuracy with respect to the
noisy label s(z), the Biased SVM tunes the same pa-
rameters to maximize an estimate of the accuracy or

"http://svmlight.joachims.org



F-measure with respect to the true label y(z). The
Weighted SVM approach was implemented on top
of the LibSVM? package. Even though the original
Weighted SVM method of Elkan and Noto (2008)
does not specify tuning any parameters, we noticed
it gave better results when the capacity c and weight
Jj parameters were tuned for the first classifier g(x).
Table 4 shows the accuracy results of the three
methods for Levely, whereas Table 5 shows the F-
measure results. The Biased SVM outperforms the
Naive SVM on all the words, in terms of both ac-
curacy and F-measure. The most dramatic increases
are seen for the words atmosphere, game, diamond,
and Corinth. For these words, the number of pos-
itive examples is significantly smaller compared to
the total number of positive and unlabeled examples.
Thus, the percentage of positive examples relative to
the total number of positive and unlabeled examples
is 31.9% for atmosphere, 29.1% for game, 9.0% for
diamond, and 11.6% for Corinth. The positive to to-
tal ratio is however significantly larger for the other
two words: 67.2% for president and 91.5% for dol-
lar. When the number of positive examples is large,
the false negative noise from the unlabeled dataset
in the Naive SVM approach will be relatively small,
hence the good performance of Naive SVM in these
cases. To check whether this is the case, we have
also run experiments where we used only half of
the available positive examples for the word presi-
dent and one tenth of the positive examples for the
word dollar, such that the positive datasets became
comparable in size with the unlabeled datasets. The
results for these experiments are shown in Tables 4
and 5 in the rows labeled presidentg and dollarg. As
expected, the difference between the performance of
Naive SVM and Biased SVM gets larger on these
smaller datasets, especially for the word dollar.
The Weighted SVM outperforms the Naive SVM
on five out of the six words, the exception being the
word president. Comparatively, the Biased SVM
has a more stable behavior and overall results in a
more substantial improvement over the Naive SVM.
Based on these initial results, we see the Biased
SVM as the method of choice for learning with pos-
itive and unlabeled examples in the task of coarse to
fine grained sense disambiguation in Wikipedia.

Zhttp://www.csie.ntu.edu.tw/~ cjlin/libsvm
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Word NaiveSVM  BiasedSVM  WeightedSVM
atmosphere 39.9% 79.6% 75.0%
president 91.9% 92.5% 89.5%
dollar 96.0% 97.0% 97.1%
game 83.8% 87.1% 84.6%
diamond 70.2% 74.5% 75.1%
Corinth 46.2% 75.1% 51.9%

“presidents | 88.1%  90.6% 87.4%
dollarg 70.3% 84.9% 70.6%

Table 4: Disambiguation accuracy at Levels.

Word NaiveSVM  BiasedSVM  WeightedSVM
atmosphere 30.5% 86.0% 83.2%
president 94.4% 95.0% 92.8%
dollar 97.9% 98.4% 98.5%
game 75.1% 81.8% 77.5%
diamond 8.6% 53.5% 46.3%
Corinth 15.3% 81.2% 68.0%
“presidents | 90.0%  924% 89.5%
dollars 77.9% 91.2% 78.2%

Table 5: Disambiguation F-measure at Level,.

In a final set of experiments, we compared the
traditional flat classification approach and our pro-
posed hierarchical classifier in terms of their over-
all disambiguation accuracy. In these experiments,
the sense repository contains all the leaf nodes as
distinct sense categories. For example, the word
atmosphere would correspond to the sense repos-
itory R = {ATMOSPHERE (G), ATMOSPHERE OF
EARTH, ATMOSPHERE OF MARS, ATMOSPHERE
OF VENUS, STELLAR ATMOSPHERE, ATMO-
SPHERE (UNIT), ATMOSPHERE (MUSIC GROUP)}.
The overall accuracy results are shown in Table 6
and confirm the utility of using the LPU framework
in the hierarchical model, which outperforms the tra-
ditional flat model, especially on words with low ra-
tio of positive to unlabeled examples.

atmosphere | president dollar

Flat 52.4% 89.4% 90.0%
Hierarchical 79.7% 91.0% 90.1%
game diamond Corinth

Flat 83.6% 65.7% 42.6%
Hierarchical 87.2% 76.8% 72.1%

Table 6: Flat vs. Hierarchical disambiguation accuracy.



5 Future Work

Annotation inconsistencies in Wikipedia were cir-
cumvented by adapting two existing approaches that
use only positive and unlabeled data to train binary
classifiers. This binary classification constraint led
to the introduction of the artificial specific (S) cat-
egory on Levely in our disambiguation framework.
In future work, we plan to investigate a direct exten-
sion of learning with positive and unlabeled data to
the case of multiclass classification, which will re-
duce the number of classification levels from 3 to 2.
We also plan to investigate the use of unsupervised
techniques in order to incorporate less popular refer-
ences of a word in the hierarchical classification.

Conclusion

We presented an approach to training coarse to fine
grained sense disambiguation systems that treats
annotation inconsistencies in Wikipedia under the
framework of learning with positive and unlabeled
examples. Furthermore, we showed that the true ac-
curacy of a decision function can be optimized us-
ing only positive and unlabeled examples. For test-
ing purposes, we manually annotated 7,079 links be-
longing to six ambiguous words °. Experimental
results demonstrate that accounting for annotation
ambiguity in Wikipedia links leads to consistent im-
provements in disambiguation accuracy. The man-
ual annotations were only used for testing and were
ignored during training and development. Conse-
quently, the proposed framework of learning with
positive and unlabeled examples for sense disam-
biguation could be applied on the entire Wikipedia
without any manual annotations. By augmenting
general sense links with links to more specific ar-
ticles, such an application could have a significant
impact on Wikipedia itself.

Acknowledgments

This work was supported in part by the Na-
tional Science Foundation IIS awards #1018613 and
#1018590, and an allocation of computing time from
the Ohio Supercomputer Center.

*Data and code will be made publicly available.

30

References

D. Ahn, V. Jijkoun, G. Mishne, K. Muller, M. de Ri-
jke, and S. Schlobach. 2004. Using Wikipedia at the
TREC QA track. In Proceedings of the 13th Text Re-
trieval Conference (TREC 2004).

Volha Bryl, Claudio Giuliano, Luciano Serafini, and
Kateryna Tymoshenko. 2010. Using background
knowledge to support coreference resolution. In Pro-
ceedings of the 2010 conference on ECAI 2010: 19th
European Conference on Artificial Intelligence, pages
759-764, Amsterdam, The Netherlands.

Razvan Bunescu and Marius Pasca. 2006. Using ency-
clopedic knowledge for named entity disambiguation.
In Proceesings of the 11th Conference of the European
Chapter of the Association for Computational Linguis-
tics (EACL-06), pages 9-16, Trento, Italy.

Philipp Cimiano, Antje Schultz, Sergej Sizov, Philipp
Sorg, and Steffen Staab. 2009. Explicit versus la-
tent concept models for cross-language information re-
trieval. In International Joint Conference on Artificial
Intelligence (IJCAI-09, pages 1513-1518, Pasadena,
CA, july.

S. Cucerzan. 2007. Large-scale named entity disam-
biguation based on Wikipedia data. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing, pages 708-716.

Charles Elkan and Keith Noto. 2008. Learning clas-
sifiers from only positive and unlabeled data. In
Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining,
KDD 08, pages 213-220.

David A. Ferrucci, Eric W. Brown, Jennifer Chu-Carroll,
James Fan, David Gondek, Aditya Kalyanpur, Adam
Lally, J. William Murdock, Eric Nyberg, John M.
Prager, Nico Schlaefer, and Christopher A. Welty.
2010. Building watson: An overview of the deepqa
project. AI Magazine, 31(3):59-79.

Aria Haghighi and Dan Klein. 2009. Simple coreference
resolution with rich syntactic and semantic features.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1152-1161, Singapore, August.

M. Kaisser. 2008. The QuALiM question answering
demo: Supplementing answers with paragraphs drawn
from Wikipedia. In Proceedings of the ACL-08 Hu-
man Language Technology Demo Session, pages 32—
35, Columbus, Ohio.

Wee Sun Lee and Bing Liu. 2003. Learning with pos-
itive and unlabeled examples using weighted logistic
regression. In Proceedings of the Twentieth Interna-

tional Conference on Machine Learning (ICML, pages
448-455, Washington, DC, August.



Y. Li, R. Luk, E. Ho, and K. Chung. 2007. Improv-
ing weak ad-hoc queries using Wikipedia as external
corpus. In Proceedings of the 30th Annual Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 797-798,
Amsterdam, Netherlands.

Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, and
Philip S. Yu. 2003. Building text classifiers using pos-
itive and unlabeled examples. In Proceedings of the
Third IEEE International Conference on Data Mining,
ICDM 03, pages 179-186, Washington, DC, USA.

R. Mihalcea. 2007. Using Wikipedia for automatic word
sense disambiguation. In Human Language Technolo-
gies 2007: The Conference of the North American
Chapter of the Association for Computational Linguis-
tics, pages 196203, Rochester, New York, April.

D. Milne. 2007. Computing semantic relatedness using
Wikipedia link structure. In Proceedings of the New
Zealand Computer Science Research Student Confer-
ence, Hamilton, New Zealand.

Hwee Tou Ng and H. B. Lee. 1996. Integrating multiple
knowledge sources to disambiguate word sense: An
exemplar-based approach. In Proceedings of the 34th
Annual Meeting of the Association for Computational
Linguistics (ACL-96), pages 40—47, Santa Cruz, CA.

Keith Noto, Milton H. Saier, Jr., and Charles Elkan.
2008. Learning to find relevant biological articles
without negative training examples. In Proceedings of
the 21st Australasian Joint Conference on Artificial In-
telligence: Advances in Artificial Intelligence, Al °08,
pages 202-213.

Simone Paolo Ponzetto and Roberto Navigli. 2010.
Knowledge-rich word sense disambiguation rivaling
supervised systems. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguis-
tics, pages 1522—1531, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Simone Paolo Ponzetto and Michael Strube. 2006. Ex-
ploiting semantic role labeling, wordnet and wikipedia
for coreference resolution. In Proceedings of the Hu-
man Language Technology Conference of the North
American Chapter of the Association of Computa-
tional Linguistics, pages 192—199.

M. Potthast, B. Stein, and M. A. Anderka. 2008.
Wikipedia-based multilingual retrieval model. In Pro-
ceedings of the 30th European Conference on IR Re-
search, Glasgow.

Altaf Rahman and Vincent Ng. 2011. Coreference res-
olution with world knowledge. In Proceedings of the
49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies -
Volume 1, pages 814-824, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

31

Mark Stevenson and Yorick Wilks. 2001. The interaction
of knowledge sources in word sense disambiguation.
Computational Linguistics, 27(3):321-349, Septem-
ber.



*SEM 2013 shared task: Semantic Textual Similarity

Eneko Agirre
University of the Basque Country

e.agirrelehu.es

Mona Diab
George Washington University
mtdiab@gwu.edu

Abstract

In Semantic Textual Similarity (STS), sys-
tems rate the degree of semantic equivalence,
on a graded scale from 0 to 5, with 5 be-
ing the most similar. This year we set up
two tasks: (i) a core task (CORE), and (ii)
a typed-similarity task (TYPED). CORE is
similar in set up to SemEval STS 2012 task
with pairs of sentences from sources related
to those of 2012, yet different in genre from
the 2012 set, namely, this year we included
newswire headlines, machine translation eval-
uation datasets and multiple lexical resource
glossed sets. TYPED, on the other hand, is
novel and tries to characterize why two items
are deemed similar, using cultural heritage
items which are described with metadata such
as title, author or description. Several types of
similarity have been defined, including simi-
lar author, similar time period or similar lo-
cation. The annotation for both tasks lever-
ages crowdsourcing, with relative high inter-
annotator correlation, ranging from 62% to
87%. The CORE task attracted 34 participants
with 89 runs, and the TYPED task attracted 6
teams with 14 runs.

1 Introduction

Given two snippets of text, Semantic Textual Simi-
larity (STS) captures the notion that some texts are
more similar than others, measuring the degree of
semantic equivalence. Textual similarity can range
from exact semantic equivalence to complete un-
relatedness, corresponding to quantified values be-
tween 5 and 0. The graded similarity intuitively cap-
tures the notion of intermediate shades of similarity
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such as pairs of text differ only in some minor nu-
anced aspects of meaning only, to relatively impor-
tant differences in meaning, to sharing only some
details, or to simply being related to the same topic,
as shown in Figure 1.

One of the goals of the STS task is to create a
unified framework for combining several semantic
components that otherwise have historically tended
to be evaluated independently and without character-
ization of impact on NLP applications. By providing
such a framework, STS will allow for an extrinsic
evaluation for these modules. Moreover, this STS
framework itself could in turn be evaluated intrin-
sically and extrinsically as a grey/black box within
various NLP applications such as Machine Trans-
lation (MT), Summarization, Generation, Question
Answering (QA), etc.

STS is related to both Textual Entailment (TE)
and Paraphrasing, but differs in a number of ways
and it is more directly applicable to a number of NLP
tasks. STS is different from TE inasmuch as it as-
sumes bidirectional graded equivalence between the
pair of textual snippets. In the case of TE the equiv-
alence is directional, e.g. a car is a vehicle, but a ve-
hicle is not necessarily a car. STS also differs from
both TE and Paraphrasing (in as far as both tasks
have been defined to date in the literature) in that,
rather than being a binary yes/no decision (e.g. a ve-
hicle is not a car), we define STS to be a graded sim-
ilarity notion (e.g. a vehicle and a car are more sim-
ilar than a wave and a car). A quantifiable graded
bidirectional notion of textual similarity is useful for
a myriad of NLP tasks such as MT evaluation, infor-
mation extraction, question answering, summariza-
tion, etc.

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 32-43, Atlanta, Georgia, June 13-14, 2013. (©2013 Association for Computational Linguistics



e (5) The two sentences are completely equivalent, as they mean the same thing.

The bird is bathing in the sink.
Birdie is washing itself in the water basin.

e (4) The two sentences are mostly equivalent, but some unimportant details differ.
In May 2010, the troops attempted to invade Kabul.
The US army invaded Kabul on May 7th last year, 2010.

e (3) The two sentences are roughly equivalent, but some important information differs/missing.
John said he is considered a witness but not a suspect.

”He is not a suspect anymore.” John said.

e (2) The two sentences are not equivalent, but share some details.

They flew out of the nest in groups.
They flew into the nest together.

e (1) The two sentences are not equivalent, but are on the same topic.

The woman is playing the violin.
The young lady enjoys listening to the guitar.
e (0) The two sentences are on different topics.

John went horse back riding at dawn with a whole group of friends.
Sunrise at dawn is a magnificent view to take in if you wake up early enough for it.

Figure 1: Annotation values with explanations and examples for the core STS task.

In 2012 we held the first pilot task at SemEval
2012, as part of the *SEM 2012 conference, with
great success: 35 teams participated with 88 sys-
tem runs (Agirre et al., 2012). In addition, we held
a DARPA sponsored workshop at Columbia Uni-
versity!. In 2013, STS was selected as the official
Shared Task of the *SEM 2013 conference. Ac-
cordingly, in STS 2013, we set up two tasks: The
core task CORE, which is similar to the 2012 task;
and a pilot task on typed-similarity TYPED between
semi-structured records.

For CORE, we provided all the STS 2012 data
as training data, and the test data was drawn from
related but different datasets. This is in contrast
to the STS 2012 task where the train/test data
were drawn from the same datasets. The 2012
datasets comprised the following: pairs of sentences
from paraphrase datasets from news and video elic-
itation (MSRpar and MSRvid), machine transla-
tion evaluation data (SMTeuroparl, SMTnews) and
pairs of glosses (OnWN). The current STS 2013
dataset comprises the following: pairs of news head-
lines, SMT evaluation sentences (SMT) and pairs of
glosses (OnWN and FNWN).

The typed-similarity pilot task TYPED attempts

"http://www.cs.columbia.edu/~weiwei/
workshop/
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to characterize, for the first time, the reason and/or
type of similarity. STS reduces the problem of judg-
ing similarity to a single number, but, in some appli-
cations, it is important to characterize why and how
two items are deemed similar, hence the added nu-
ance. The dataset comprises pairs of Cultural Her-
itage items from Europeana,’ a single access point
to millions of books, paintings, films, museum ob-
jects and archival records that have been digitized
throughout Europe. It is an authoritative source of
information coming from European cultural and sci-
entific institutions. Typically, the items comprise
meta-data describing a cultural heritage item and,
sometimes, a thumbnail of the item itself.

Participating systems in the TYPED task need to
compute the similarity between items, using the tex-
tual meta-data. In addition to general similarity, par-
ticipants need to score specific kinds of similarity,
like similar author, similar time period, etc. (cf. Fig-
ure 3).

The paper is structured as follows. Section 2 re-
ports the sources of the texts used in the two tasks.
Section 3 details the annotation procedure. Section
4 presents the evaluation of the systems, followed
by the results of CORE and TYPED tasks. Section 6
draws on some conclusions and forward projections.

ttp://www.europeana.eu/



Compare the Meaning of Two Statements (v.2.5)

Instructions

Two statements can mean the same thing even if they use very different words and phrases. Conversely, two statements that are

superficially very similar in their word choice, phrasing and overall composition can have very different meanings.

Your job is to compare two statements and decide the type of relationship that holds between their underlying meanings or messages

(i.e., what they say about or refer to in the world).

To do this task successfully, picture what is being described and contrast exactly what is conveyed by one statement versus what is

being conveyed by the other.

Do the statements refer to the exact same person, action, event, idea or thing? Or, are they similar but differ according to either large or

small details?

Tips:

+ Be precise in your assignments and try to avoid overusing any one of the category labels (e.g., don’t just label most of the pairs

as "mostly equivalent” or "roughly equivalent”).

+ Be careful of subtle differences between the pairs that have an important impact on what is being said or described.

+ Ignore grammatical errors and awkward wordings within the statements as long as they do not obscure what a statement is suppose

Figure 2: Annotation instructions for CORE task

to convey.
year | dataset pairs | source
2012 | MSRpar 1500 | news
2012 | MSRvid 1500 | videos
2012 | OnWN 750 | glosses
2012 | SMTnews 750 | MT eval.
2012 | SMTeuroparl | 750 | MT eval.
2013 | HDL 750 | news
2013 | FNWN 189 | glosses
2013 | OnWN 561 | glosses
2013 | SMT 750 | MT eval.
2013 | TYPED 1500 | Cultural Heritage items

Table 1: Summary of STS 2012 and 2013 datasets.

2 Source Datasets

Table 1 summarizes the 2012 and 2013 datasets.

2.1 CORE task

The CORE dataset comprises pairs of news head-
lines (HDL), MT evaluation sentences (SMT) and
pairs of glosses (OnWN and FNWN).

For HDL, we used naturally occurring news head-
lines gathered by the Europe Media Monitor (EMM)
engine (Best et al., 2005) from several different news
sources. EMM clusters together related news. Our
goal was to generate a balanced data set across the
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different similarity ranges, hence we built two sets
of headline pairs: (i) a set where the pairs come
from the same EMM cluster, (ii) and another set
where the headlines come from a different EMM
cluster, then we computed the string similarity be-
tween those pairs. Accordingly, we sampled 375
headline pairs of headlines that occur in the same
EMM cluster, aiming for pairs equally distributed
between minimal and maximal similarity using sim-
ple string similarity. We sample another 375 pairs
from the different EMM cluster in the same manner.

The SMT dataset comprises pairs of sentences
used in machine translation evaluation. We have two
different sets based on the evaluation metric used:
an HTER set, and a HYTER set. Both metrics use
the TER metric (Snover et al., 2006) to measure the
similarity of pairs. HTER typically relies on several
(1-4) reference translations. HYTER, on the other
hand, leverages millions of translations. The HTER
set comprises 150 pairs, where one sentence is ma-
chine translation output and the corresponding sen-
tence is a human post-edited translation. We sam-
ple the data from the dataset used in the DARPA
GALE project with an HTER score ranging from 0
to 120. The HYTER set has 600 pairs from 3 sub-
sets (each subset contains 200 pairs): a. reference



Estimate the Similarity between Cultural Heritage Items

Instructions

Hide

The aim of this survey is to collect information about how people judge the relatedness of cultural heritage items in an online
collection. You will be presented with pairs of cultural heritage items, including an image and additional textual information, and
asked to judge how similar you think they are on the following scale:

- Identical

- Strongly Related

- Related

- Somewhat Related

- Unrelated

- Completely Unrelated

QM WRO

For each pair you will be asked to provide a general similarity score, plus an additional score for each of the types of similarity

considered, as follows:

» similar author

(e.g. two items with the same creator should be rated 5 while two items with similar creators should be rated 4-3, etc)

» similar people involved

(e.g. two items showing the same people should be rated 5, two items showing children should be rated 4, showing

similar people 4-3, etc.)
« similar time period

(e.g. two items from 1914 should be rated 5, from the World War 1l should be rated 4, etc.)

» similar location

(e.g. two items that showing scenes of the same street should be rated 5, of London should be rated 4, etc.)

« similar event or action involved

(e.g. two items showing weddings or people eating an ice-cream should be rated 5, etc.)

» similar subject

(e.g. two items about cars or cats should be rated 5, etc.)
« similar description (e.g. two items with identical description should be rated 5, etc.)

Mote that if you think that a particular similarity type is not relevant to a pair of items then you should select the “Not
Applicable” choice. For example, this would be the correct option for the “Author Similarity” if there is no information about the

items’ authors or creators.

Figure 3: Annotation instructions for TYPED task

vs. machine translation. b. reference vs. Finite State
Transducer (FST) generated translation (Dreyer and
Marcu, 2012). c. machine translation vs. FST gen-
erated translation. The HYTER data set is used in
(Dreyer and Marcu, 2012).

The OnWN/FnWN dataset contains gloss pairs
from two sources: OntoNotes-WordNet (OnWN)
and FrameNet-WordNet (FnWN). These pairs are
sampled based on the string similarity ranging from
0.4 to 0.9. String similarity is used to measure the
similarity between a pair of glosses. The OnWN
subset comprises 561 gloss pairs from OntoNotes
4.0 (Hovy et al., 2006) and WordNet 3.0 (Fellbaum,
1998). 370 out of the 561 pairs are sampled from the
110K sense-mapped pairs as made available from
the authors. The rest, 291 pairs, are sampled from
unmapped sense pairs with a string similarity rang-
ing from 0.5 to 0.9. The FnWN subset has 189
manually mapped pairs of senses from FrameNet 1.5
(Baker et al., 1998) to WordNet 3.1. They are ran-
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domly selected from 426 mapped pairs. In combi-
nation, both datasets comprise 750 pairs of glosses.

2.2 Typed-similarity TYPED task

This task is devised in the context of the PATHS
project,> which aims to assist users in accessing
digital libraries looking for items. The project
tests methods that offer suggestions about items that
might be useful to recommend, to assist in the inter-
pretation of the items, and to support the user in the
discovery and exploration of the collections. Hence
the task is about comparing pairs of items. The pairs
are generated in the Europeana project.

A study in the PATHS project suggested that users
would be interested in knowing why the system is
suggesting related items. The study suggested seven
similarity types: similar author or creator, similar
people involved, similar time period, similar loca-

Shttp://www.paths-project.eu



Item 1

Title

Seulpturad slabs of Aditva and Buddha, photographad at the
Bihar Mussum.
Creator
Photographer - Beglar, Joseph David
Subject
Bihar Bihar Sharif India Archaeological Survey of India
Collections Archasological Survey of India Collections (Indian
Museum Series) Indian sculpture Indian sculpture (Buddhist)
South Asia — History 934
Description I
This photegraph showing sculpturs frapments was taken by
Jozeph David Beglar in the 1870s. The sculptures were located
in the Bihar mussum and the photograph is part of the
Archazological Survey of India Cellections. A nete written by
Bloch reads, "The sculptures photographed while exhibited in
the Bihar Mussum were collected from various places in Bihar,
and are now in the Indian Museum.
Date T
[1870]
Source
General Similarity (required)

Completely Unrelated

Author Similarity (required)
Not Applicable 0

Completely Unrelated

Item 2

Title
Buddhist sculpturs pizeas from Jamal-Garhi. 1003993

Creator
Photographer - Craddock, James
Subject
Morth-West Frontier Provincs Palistan Buddha images

Gandharan art Indian sculpturs Indian sculpturs (Buddhist)
museum objects South Asia — History 934

Description
Photograph of Buddhist sculpturs pizces from Jamal-Garhi. This
print shows boxed sculpture frapments. A note with Jamal-Garhi
prints rzads: The plates enterad here also includs photographs
taken from sculpturss coming from Talkht-1-Bahl and Shahr-i-
Buhlul. No separate arrangement was possible. Nearly all the
sculpturss coming from these places are now in the Indian
Niussum, Caleutta)

Date
[1880]
Source
1 2 3 4 5
Identical
1 2 3 4 5
Identical

Figure 4: TYPED pair on our survey. Only general and author similarity types are shown.

tion, similar event or action, similar subject and sim-
ilar description. In addition, we also include general
similarity. Figure 3 shows the definition of each sim-
ilarity type as provided to the annotators.

The dataset is generated in semi-automatically.
First, members of the project manually select 25
pairs of items for each of the 7 similarity types (ex-
cluding general similarity), totalling 175 manually
selected pairs. After removing duplicates and clean-
ing the dataset, we got 163 pairs. Second, we use
these manually selected pairs as seeds to automat-
ically select new pairs as follows: Starting from
those seeds, we use the Europeana API to get similar
items, and we repeat this process 5 times in order to
diverge from the original items (we stored the vis-
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ited items to avoid looping). Once removed from
the seed set, we select the new pairs following two
approaches:

e Distance 1: Current item and similar item.

e Distance 2: Current item and an item that is
similar to a similar item (twice removed dis-
tance wise)

This yields 892 pairs for Distance 1 and 445 of
Distance 2. We then divide the data into train and
test, preserving the ratios. The train data contains
82 manually selected pairs, 446 pairs with similarity
distance 1 and 222 pairs with similarity distance 2.
The test data follows a similar distribution.

Europeana items cannot be redistributed, so we
provide their urls and a script which uses the official



Europeana API to access and extract the correspond-
ing metadata in JSON format and a thumbnail. In
addition, the textual fields which are relevant for the
task are made accessible in text files, as follows:

e dcTitle: title of the item

e dcSubject: list of subject terms (from some vo-
cabulary)
dcDescription: textual description of the item
dcCreator: creator(s) of the item
dcDate: date(s) of the item
dcSource: source of the item

3 Annotation

3.1 CORE task

Figure 1 shows the explanations and values for
each score between 5 and 0. We use the Crowd-
Flower crowd-sourcing service to annotate the
CORE dataset. Annotators are presented with the
detailed instructions given in Figure 2 and are asked
to label each STS sentence pair on our 6 point scale
using a dropdown box. Five sentence pairs at a time
are presented to annotators. Annotators are paid
0.20 cents per set of 5 annotations and we collect
5 separate annotations per sentence pair. Annota-
tors are restricted to people from the following coun-
tries: Australia, Canada, India, New Zealand, UK,
and US.

To obtain high quality annotations, we create a
representative gold dataset of 105 pairs that are man-
ually annotated by the task organizers. During an-
notation, one gold pair is included in each set of 5
sentence pairs. Crowd annotators are required to
rate 4 of the gold pairs correct to qualify to work
on the task. Gold pairs are not distinguished in any
way from the non-gold pairs. If the gold pairs are
annotated incorrectly, annotators are told what the
correct annotation is and they are given an explana-
tion of why. CrowdFlower automatically stops low
performing annotators — those with too many incor-
rectly labeled gold pairs — from working on the task.

The distribution of scores in the headlines HDL
dataset is uniform, as in FNWN and OnWN, al-
though the scores are slightly lower in FNWN and
slightly higher in OnWN. The scores for SMT are
not uniform, with most of the scores uniformly dis-
tributed between 3.5 and 5, a few pairs between 2
and 3.5, and nearly no pairs with values below 2.
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3.2 TYPED task

The dataset is annotated using crowdsourcing. The
survey contains the 1500 pairs of the dataset (750 for
train and 750 for test), plus 20 gold pairs for quality
control. Each participant is shown 4 training gold
questions at the beginning, and then one gold every
2 or 4 questions depending on the accuracy. If accu-
racy dropped to less than 66.7% percent the survey
is stopped and the answers from that particular an-
notator are discarded. Each annotator is allowed to
rate a maximum of 20 pairs to avoid getting answers
from people that are either tired or bored. To ensure
a good comprehension of the items, the task is re-
stricted to only accept annotators from some English
speaking countries: UK, USA, Australia, Canada
and New Zealand.

Participants are asked to rate the similarity be-
tween pairs of cultural heritage items from rang-
ing from 5 to 0, following the instructions shown
in Figure 3. We also add a ”Not Applicable” choice
for cases in which annotators are not sure or didn’t
know. For those cases, we calculate the similarity
score using the values of the rest of the annotators (if
none, we convert it to 0). The instructions given to
the annotators are the ones shown in Figure 3. Fig-
ure 4 shows a pair from the dataset, as presented to
annotators.

The similarity scores for the pairs follow a similar
distribution in all types. Most of the pairs have a
score between 4 and 5, which can amount to as much
as 50% of all pairs in some types.

3.3 Quality of annotation

In order to assess the annotation quality, we measure
the correlation of each annotator with the average of
the rest of the annotators. We then averaged all the
correlations. This method to estimate the quality is
identical to the method used for evaluation (see Sec-
tion 4.1) and it can be thus used as the upper bound
for the systems. The inter-tagger correlation in the
CORE dataset for each of dataset is as follows:

e HDL: 85.0%

e FNWN: 69.9%

e OnWN: 87.2%

e SMT: 65.8%

For the TYPED dataset, the inter-tagger correla-
tion values for each type of similarity is as follows:

e General: 77.0%



Author: 73.1%

People Involved: 62.5%

Time period: 72.0%

Location: 74.3%

Event or Action: 63.9%

Subject: 74.5%

Description: 74.9%

In both datasets, the correlation figures are high,
confirming that the task is well designed. The weak-
est correlations in the CORE task are SMT and
FNWN. The first might reflect the fact that some
automatically produced translations are confusing
or difficult to understand, and the second could be
caused by the special style used to gloss FrameNet
concepts. In the TYPED task the weakest correla-
tions are for the People Involved and Event or Action
types, as they might be the most difficult to spot.

4 Systems Evaluation

4.1 Evaluation metrics

Evaluation of STS is still an open issue. STS ex-
periments have traditionally used Pearson product-
moment correlation, or, alternatively, Spearman
rank order correlation. In addition, we also need a
method to aggregate the results from each dataset
into an overall score. The analysis performed in
(Agirre and Amigé, In prep) shows that Pearson and
averaging across datasets are the best suited com-
bination in general. In particular, Pearson is more
informative than Spearman, in that Spearman only
takes the rank differences into account, while Pear-
son does account for value differences as well. The
study also showed that other alternatives need to be
considered, depending on the requirements of the
target application.

We leave application-dependent evaluations for
future work, and focus on average weighted Pear-
son correlation. When averaging, we weight each
individual correlation by the size of the dataset.
In addition, participants in the CORE task are al-
lowed to provide a confidence score between 1 and
100 for each of their scores. The evaluation script
down-weights the pairs with low confidence, follow-
ing weighted Pearson.* In order to compute sta-
tistical significance among system results, we use

*http://en.wikipedia.org/wiki/Pearson_

product-moment_correlation_coefficient#
Calculating_a_weighted_correlation
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a one-tailed parametric test based on Fisher’s z-
transformation (Press et al., 2002, equation 14.5.10).

4.2 The Baseline Systems

For the CORE dataset, we produce scores using a
simple word overlap baseline system. We tokenize
the input sentences splitting at white spaces, and
then represent each sentence as a vector in the mul-
tidimensional token space. Each dimension has 1
if the token is present in the sentence, O otherwise.
Vector similarity is computed using the cosine sim-
ilarity metric. We also run two freely available sys-
tems, DKPro (Bar et al., 2012) and TakeLab (garic’ et
al., 2012) from STS 2012, and evaluate them on the
CORE dataset. They serve as two strong contenders
since they ranked 1st (DKPro) and 2nd (TakeLab) in
last year’s STS task.

For the TYPED dataset, we first produce XML
files for each of the items, using the fields as pro-
vided to participants. Then we run named entity
recognition and classification (NERC) and date de-
tection using Stanford CoreNLP. This is followed by
calculating the similarity score for each of the types
as follows.

e General: cosine similarity of TF-IDF vectors of

tokens from all fields.

e Author: cosine similarity of TF-IDF vectors for
dc:Creator field.

e People involved, time period and location:
cosine similarity of TF-IDF vectors of loca-
tion/date/people recognized by NERC in all
fields.

e Events: cosine similarity of TF-IDF vectors of
verbs in all fields.

e Subject and description: cosine similarity of
TF-IDF vectors of respective fields.

IDF values are calculated from a subset of the
Europeana collection (Culture Grid collection). We
also run a random baseline several times, yielding
close to O correlations in all datasets, as expected.

4.3 Participation

Participants could send a maximum of three system
runs. After downloading the test datasets, they had
a maximum of 120 hours to upload the results. 34
teams participated in the CORE task, submitting 89

3Code is available at http://www-nlp.stanford.
edu/wiki/STS



Team and run Head. OnWN FNWN SMT [Mean #| [Team and run Head. OnWN FNWN SMT |[Mean #
baseline-tokencos .5399 2828 2146 .2861[.3639 73| [KnCe2013-all 3475 3505 .1073 .1551(.2639 86
DKPro 7347 7345 3405 .3256[.5652 -| |KnCe2013-diff 4028 3537 .1284 .1804|.2934 84
TakeLab-best .6559 .6334 4052 .3389|.5221 -| |KnCe2013-set .0462 -.1526 .0376 -.0605(-.0397 90
TakeLab-sts12 4858 .6334 .2693 .2787|.4340 -| |LCL_Sapienza-ADW1 .6943 4661 3571 .3311|.4880 43
aolney-w3c3 5248 4701 1777 274413986 67| |LCL_Sapienza-ADW2 .6520 .5280 .3598 .3681.5019 32
BGU-1 5075 3252 .0768 .1843|.3181 81| |LCL_Sapienza-ADW3 .6205 5108 .4462 .3838|.4996 34
BGU-2 .3608 3777 -.0173 .0698|.2363 88| [LIPN-tAll 7063 .6937 .4037 .3005|.5425 16
BGU-3 3591 3360 .0072 .2122|.2748 85| |LIPN-tSp 5791 7199 3522 .3721(.5261 24
BUAP-RUN1 5005 2579 .1766 .2322|.3234 78| |MayoClinicNLP-r1wtCDT .6584 7775 3735 .3605|.5649 6
BUAP-RUN2 4860 2872 .2082 .2117|.3216 79| |[MayoClinicNLP-r2CDT .6827 .6612 .3960 .3946(.5572 8
BUAP-RUN3 4817 2711 2511 .1990[.3156 82| |[MayoClinicNLP-r3wtCD .6440 .8295 .3202 .3561|.5671 5
CFILT-1 5336 .2381 .2261 .2906(.3531 75| |NTNU-RUNI 7279 5952 3215 .4015|.5519 9
CLaC-RUN1 6774 7667 3793 .3068|.5511 10| |NTNU-RUN2 5909 .1634 3650 .3786|.3946 68
CLaC-RUN2 6921 7366 .3793 .3375|.5587 7| |NTNU-RUN3 7274 5882 3115 .4035|.5498 12
CLaC-RUN3 5276 .6495 4158 .3082(.475547| |PolyUCOMP-RUNI1 5176 1517 2496 .2914.3284 77
CNGL-LPSSVR .6510 .6971 .1180 .2861[.4961 36| |SOFTCARDINALITY-runl 6410 .7360 .3442 .3035|.5273 23
CNGL-LPSSVRTL 6385 .6756 .1823 .3098|.4998 33| [SOFTCARDINALITY-run2 .6713 7412 .3838 .2981(.5402 18
CNGL-LSSVR .6552 .6943 2016 .3005|.5086 30| |SOFTCARDINALITY-run3 .6603 7401 .3347 .2900|.5294 22
CPN-combined.RandSubSpace |.6771 .5135 .3314 .3369|.4939 39| |sriubc-System!1t .6083 2915 .2790 .3065|.4011 66
CPN-combined.SVM 6685 5096 .3621 .3408|.4939 38| [sriubc-System2t .6359 3664 2713 .3476|.4420 57
CPN-individual.RandSubSpace|.6771 .5484 .3314 .2769|.4826 45| |sriubc-System3t 5443 2843 2705 .3275|.3842 70
DeepPurple-length 6542 .5105 .2507 .2803[.4598 56| |SXUCFN-runl .6806 .5355 .3181 .3980(.5198 27
DeepPurple-linear .6878 .5105 .2693 .2787(.4721 50| |SXUCFN-run2 4881 .6146 .4237 .3844|.4797 46
DeepPurple-lineara .6227 5105 .3265 .2952(.4607 55| |SXUCFN-run3 .6761 .6481 .3025 .4003|.5458 14
deft-baseline 6532 .8431 .5083 .3265(.5795 3| |SXULLL-1 4840 7146 .0415 .1543.3944 69
deft-baseline2 5706 .8111 .5503 .3325[.5495 13| |UCam-A 5510 .3099 .2385 .1171.3200 80
DLS@CU-char 3867 2386 .3726 .3337|.3309 76| [UCam-B .6399 4440 .3995 .3400|.4709 53
DLS @CU-charSemantic 4669 4165 3859 .3411/|.4056 64| [UCam-C 4962 .5639 .1724 .3006 |.4207 62
DLS@CU-charWordSemantic |.4921 .3769 .4647 .3492|.4135 63| |UCSP-NCi 1736 .0853 .1151 .1658|.1441 89
ECNUCS-Runl .5656 .2083 .1725 .2949|.3533 74| |UMBC_EBIQUITY-galactus 7428 7053 .5444 .3705|.5927 2
ECNUCS-Run2 7120 .5388 .2013 .2504|.4720 51| |UMBC_EBIQUITY-ParingWords|.7642 .7529 .5818 .3804|.6181 1
ECNUCS-Run3 6799 5284 2203 .3595|.4967 35| |UMBC_EBIQUITY-saiyan 7838 5593 5815 .3563|.5683 4
HENRY-runl 7601 4631 .3516 .2801[.4917 41| |UMCC_DLSI-1 5841 .4847 2917 .2855|.4352 58
HENRY-run2 7645 4631 .3905 .3593|.5229 26| |UMCC_DLSI-2 .6168 .5557 .3045 .3407|.4833 44
HENRY-run3 7103 .3934 3364 .3308|.4734 48| |[UMCC_DLSI-3 3846 .1342 -.0065 .2736|.2523 87
IBM_EG-run2 7217 .6110 .3364 .3460(.5365 19| |UNIBA-2STEPSML 4255 4801 .1832 .2710(.3673 71
IBM_EG-run5 7410 .5987 .4133 .3426|.5452 15| |UNIBA-DSM_PERM .6319 4910 .2717 .3155|.4610 54
IBM_EG-run6 7447 6257 4381 .3275/.5502 11| |UNIBA-STACKING .6275 4658 2111 .2588(.4293 61
ikernels-sys1 7352 .5432 .3842 .3180[.5188 28| |Unimelb_NLP-bahar 7119 .3490 3813 .3507|.4733 49
ikernels-sys2 7465 5572 3875 .3409|.5339 21| |Unimelb_NLP-concat 7085 .6790 .3374 .3230|.5415 17
ikernels-sys3 7395 4228 3596 .3294|.4919 40| |Unimelb_NLP-stacking 7064 .6140 .1865 .3144(.5091 29
INAOE-UPV-runl 6392 .3249 2711 .3491[.4332 59| |Unitor-SVRegressor_runl .6353 .5744 3521 .3285|.4941 37
INAOE-UPV-run2 .6390 3260 .2662 .3457|.4319 60| |Unitor-SVRegressor_run2 6511 .5610 .3580 .3096|.4902 42
INAOE-UPV-run3 .6468 .6295 .4090 .3047|.5085 31| |Unitor-SVRegressor_run3 .6027 .5489 .3269 .3192|.4716 52
KLUE-approach_1 .6521 .6507 .3996 .3367|.5254 25| |UPC-AE .6092 .5679 -.1268 .2090 |.4037 65
KLUE-approach_2 .6510 .6869 .4189 .3360(.535520| |UPC-AED 4136 4770 -.0852 .1662|.3050 83

UPC-AED_T 5119 .6386 -.0464 .1235|.3671 72

Table 2: Results on the CORE task. The first rows on the left correspond to the baseline and to two publicly available
systems, see text for details. Note: T signals team involving one of the organizers, { for systems submitting past the

120 hour window.

system runs. For the TYPED task, 6 teams partici-
pated, submitting 14 system runs.®

Some submissions had minor issues: one team
had a confidence score of 0 for all items (we re-
placed them by 100), and another team had a few
Not-a-Number scores for the SMT dataset, which
we replaced by 5. One team submitted the results
past the 120 hours. This team, and the teams that in-

Due to lack of space we can’t detail the full names of au-
thors and institutions that participated.The interested reader can
use the name of the runs in Tables 2 and 3 to find the relevant
paper in these proceedings.
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cluded one of the organizers, are explicitly marked.
We want to stress that in these teams the organizers
did not allow the developers of the system to access
any data or information which was not available for
the rest of participants. After the submission dead-
line expired, the organizers published the gold stan-
dard in the task website, in order to ensure a trans-
parent evaluation process.

4.4 CORE Task Results

Table 2 shows the results of the CORE task, with
runs listed in alphabetical order. The correlation in




Team and run General Author People_involved Time Location Event Subject DescriptionMean #
baseline .6691 4278 4460 5002 4835 .3062 .5015 5810 [.4894 8
BUAP-RUNI1 6798 .6166 .0670 2761 .0163 .1612 .5167 5283|3577 14
BUAP-RUN2 .6745 .6093 .1285 3721 .0163 .1660 .5094 5546 |.3788 13
BUAP-RUN3 6992 .6345 .1055 .1461 .0000 -.0668 .3729 5120 1.3004 15
BUT-1 3686 .7468 .3920 5725 3604 2906 .2270 5882 14433 9
ECNUCS-Runl .6040 7362 .3663 4685 3844 4057 .5229 6027 5113 5
ECNUCS-Run2 .6064 .5684 .3663 4685 3844 4057 .5563 6027 .4948 7
PolyUCOMP-RUN1 4888 .6940 3223 3820 3621 .1625 .3962 4816 411212
PolyUCOMP-RUN2 4893 .6940 3253 3777 3628 1968 .3962 4816 415511
PolyUCOMP-RUN3 4915 .6940 3254 3737 3667 2207 .3962 4816 |.4187 10
UBC_UOS-RUNI17 7256 .4568 4467 5762 4858 3090 .5015 5810 [.5103 6
UBC_UOS-RUN27 7457 6618 .6518 7466 7244 6533 .7404 7751|7124 4
UBC_UOS-RUN37 7461 .6656 .6544 7411 77257 6545 7417 7763 17132 3
Unitor-SVRegressor_lin| .7564 .8076 .6758 7090 7351 .6623 .7520 1745|7341 2
Unitor-SVRegressor_rbf| .7981 .8158 16922 7471 7723 6835 7875 7996 |.7620 1

Table 3: Results on TYPED task. The first row corresponds to the baseline. Note:  signals team involving one of the

organizers.

each dataset is given, followed by the mean cor-
relation (the official measure), and the rank of the
run. The baseline ranks 73. The highest correla-
tions are for OnWN (84%, by deft) and HDL (78%,
by UMBC), followed by FNWN (58%, by UMBC)
and SMT (40%, by NTNU). This fits nicely with the
inter-tagger correlations (respectively 87, 85, 70 and
65, cf. Section 3). It also shows that the systems get
close to the human correlations in the OnWN and
HDL dataset, with bigger differences for FNWN and
SMT.

The result of the best run (by UMBC) is signif-
icantly different (p-value < 0.05) than all runs ex-
cept the second best. The second best run is only
significantly different to the runs ranking 7th and
below, and the third best to the 14th run and be-
low. The difference between consecutive runs was
not significant. This indicates that many system runs
performed very close to each other.

Only 13 runs included non-uniform confidence
scores. In 10 cases the confidence value allowed
to improve performance, sometimes as much as .11
absolute points. For instance, SXUCFN-run3 im-
proves from .4773 to .5458. The most notable ex-
ception is MayoClinicNLP-r2CDT, which achieves
a mean correlation of .5879 instead of .5572 if they
provide uniform confidence values.

The Table also shows the results of TakeLab
and DKPro. We train the DKPro and TakeLab-
sts12 models on all the training and test STS 2012
data. We additionally train another variant sys-
tem of TakeLab, TakeLab-best, where we use tar-
geted training where the model yields the best per-
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formance for each test subset as follows: (1) HDL
is trained on MSRpar 2012 data; (2) OnWN is
trained on all 2012 data; (3) FnWN is trained on
2012 OnWN data; (4) SMT is trained on 2012 SM-
Teuroparl data. Note that Takelab-best is an upper
bound, as the best combination is selected on the
test dataset. TakeLab-sts12, TakeLLab-best, DKPro
rank as 58th, 27th and 6th in this year’s system sub-
missions, respectively. The different results yielded
from TakeLab depending on the training data sug-
gests that some STS systems are quite sensitive to
the source of the sentence pairs, indicating that do-
main adaptation techniques could have a role in this
task. On the other hand, DKPro performed ex-
tremely well when trained on all available training,
with no special tweaking for each dataset.

4.5 TYPED Task Results

Table 3 shows the results of TYPED task. The
columns show the correlation for each type of sim-
ilarity, followed by the mean correlation (the offi-
cial measure), and the rank of the run. The best sys-
tem (from Unitor) is best in all types. The baseline
ranked 8th, but the performance difference with the
best system is quite significant. The best result is
significantly different (p-value < 0.02) to all runs.
The second and third best runs are only significantly
different from the run ranking 5th and below. Note
that in this dataset the correlations of the best system
are higher than the inter-tagger correlations. This
might indicate that the task has been solved, in the
sense that the features used by the top systems are
enough to characterize the problem and reach hu-
man performance, although the correlations of some



Named Entity recognition
‘Word Sense Disambiguation

POS tagger
Time and date resolution

Metaphor or Metonymy
Multiword recognition
Semantic Role Labeling
String similarity

Tree kernels

Opinion and Sentiment
Syntax

Tables of paraphrases

Distributional thesaurus
» | Wikipedia

Distributional memory
Monolingual corpora
Multilingual corpora
‘Word embeddings
Lexical Substitution
Logical inference
Textual entailment

WordNet
ROUGE package

Dependency parse
Scoping

Acronyms

Wiktionary

Correference
> | Distributional similarity
»| KB Similarity

LDA

Lemmatizer

Search engine

aolney-w3c3
BGU-1
BGU-2
BGU-3
CFILT-APPROACH
CLaC-Runl X X
CLaC-Run2
CLaC-Run3 X X
CNGL-LPSSVR X
CNGL-LPSSVRTL
CNGL-LSSVR X
CPN-combined.RandSubSpace X X X
CPN-combined.SVM
CPN-individual.RandSubSpace X X X
DeepPurple-length
DeepPurple-linear
DeepPurple-lineara
deft-baseline
deft-baseline
DLS @CU-charSemantic
DLS @CU-charWordSemantic
DLS @CU-charWordSemantic
ECNUCS-Runl
ECNUCS-Run2
ECNUCS-Run3
HENRY-runl X
HENRY-run2
IBM_EG-run2
IBM_EG-run5
IBM_EG-run6
ikernels-sys
ikernels-sys2
ikernels-sys3
INAOE-UPV-runl X X
INAOE-UPV-run2
INAOE-UPV-run3 X X
KLUE-approach_1 X
KLUE-approach.2 X
KnCe2013-all x| x
KnCe2013-div
KnCe2013-div ES
LCL_Sapienza-ADW1
LCL_Sapienza-ADW2
LCL_Sapienza-ADW3
LIPN-tAll
LIPN-tSp
MayoClinicNLP-rIwtCDT
MayoClinicNLP-r2CDT
MayoClinicNLP-r3wtCD
NTNU-RUNT X X
NTNU-RUN2 X
NTNU-RUN3 X X
PolyUCOMP-RUNI1
SOFTCARDINALITY-runl
SOFTCARDINALIT Y-run2 X X
SOFTCARDINALITY-run3 X X
SXUCFN-runl
SXUCFN-run2
SXUCFN-run3
SXULLL-1
UCam-A X X
UCam-B
UCam-C X X
UCSP-NC
UMBC_EBIQUITY-galactus X
UMBC_EBIQUITY-ParingWords
UMBC_EBIQUIT Y-saiyan X
UMCC_DLSI-1 X
UMCC_DLSI-2 X X
UMCC_DLSI-3
UNIBA-2STEPSML X
UNIBA-DSM_PERM
UNIBA-STACKING X
Unimelb_NLP-bahar
Unimelb_NLP-concat
Unimelb_NLP-stacking
Unitor-SVRegressor_run |
Unitor-SVRegressor_run2
Unitor-SVRegressor_run3
Total 11{2 12
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Table 4: CORE task: Resources and tools used by the systems that submitted a description file. Leftmost columns
correspond to the resources, and rightmost to tools, in alphabetic order.
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types could be too low for practical use.

5 Tools and resources used

The organizers asked participants to submit a de-
scription file, making special emphasis on the tools
and resources that were used. Tables 4 and 5 show
schematically the tools and resources as reported by
some of the participants for the CORE and TYPED
tasks (respectively). In the last row, the totals show
that WordNet and monolingual corpora were the
most used resources for both tasks, followed by
Wikipedia and the use of acronyms (for CORE and
TYPED tasks respectively). Dictionaries, multilin-
gual corpora, opinion and sentiment analysis, and
lists and tables of paraphrases are also used.

For CORE, generic NLP tools such as lemmati-
zation and PoS tagging are widely used, and to a
lesser extent, distributional similarity, knowledge-
based similarity, syntactic analysis, named entity
recognition, lexical substitution and time and date
resolution (in this order). Other popular tools are
Semantic Role Labeling, Textual Entailment, String
Similarity, Tree Kernels and Word Sense Disam-
biguation. Machine learning is widely used to com-
bine and tune components (and so, it is not men-
tioned in the tables). Several less used tools are
also listed but are used by three or less systems.
The top scoring systems use most of the resources
and tools listed (UMBC_EBIQUITY-ParingWords,
MayoClinicNLP-r3wtCD). Other well ranked sys-
tems like deft-baseline are only based on distribu-
tional similarity. Although not mentioned in the
descriptions files, some systems used the publicly
available DKPro and Takelab systems.

For the TYPED task, the most used tools are lem-
matizers, Named Entity Recognizers, and PoS tag-
gers. Distributional and Knowledge-base similarity
is also used, and at least four systems used syntactic
analysis and time and date resolution.’

6 Conclusions and Future Work

We presented the 2013 *SEM shared task on Seman-
tic Textual Similarity.® Two tasks were defined: a

"For a more detailed analysis, the reader is directed to the
papers in this volume.

8 All annotations, evaluation scripts and system outputs are
available in the website for the task®. In addition, a collabora-
tively maintained site'”, open to the STS community, contains
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> | Time and date resolution

Multiword recognition
Tree kernels

» | Distributional similarity
|| [ | =[] ||| ]| Named Entity recognition

KB Similarity

» | Monolingual corpora
[ o || > [ | | ¢ ¢ | | | % | Lemmatizer

» | Acronyms
Wikipedia
WordNet
Syntax

BUT-1
PolyUCOMP-RUN2
ECNUCS-RunI

>

ECNUCS-Run2
PolyUCOMP-RUNT
PolyUCOMP-RUN3

UBC.UOS-RUNI X
UBC_UOS-RUN2
UBC_UOS-RUN3 X
Unitor-SVRegressor_lin
Unitor-SVRegressor_rbf]
Total 4

>

>
>
MEIEIEIEIE

>
>

|| [ [ [ | = [ | | % | POS tagger

NEIRIEIE]

NI

NI
>

N
W

Table 5: TYPED task: Resources and tools used by
the systems that submitted a description file. Leftmost
columns correspond to the resources, and rightmost to
tools, in alphabetic order.

core task CORE similar to the STS 2012 task, and
a new pilot on typed-similarity TYPED. We had 34
teams participate in both tasks submitting 89 system
runs for CORE and 14 system runs for TYPED, in
total amounting to a 103 system evaluations. CORE
uses datasets which are related to but different from
those used in 2012: news headlines, MT evalua-
tion data, gloss pairs. The best systems attained
correlations close to the human inter tagger corre-
lations. The TYPED task characterizes, for the first
time, the reasons why two items are deemed simi-
lar. The results on TYPED show that the training
data provided allowed systems to yield high corre-
lation scores, demonstrating the practical viability
of this new task. In the future, we are planning on
adding more nuanced evaluation data sets that in-
clude modality (belief, negation, permission, etc.)
and sentiment. Also given the success rate of the
TYPED task, however, the data in this pilot is rel-
atively structured, hence in the future we are inter-
ested in investigating identifying reasons why two
pairs of unstructured texts as those present in CORE
are deemed similar.
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Abstract and represented using a vector. The similarity be-
tween two texts is then computed as the cosine
We describe three semantic text similarity similarity of the vectors. A variation on this ap-
systems developed for the *SEM 2013 STS proach leverages web search results (e.g., ship-
shared task and the results of the correspond-  pets) to provide context for the short texts and en-
ing three runs. All of them shared a word sim- rich their vectors using the words in the snippets
llarity feature that combined LSA word sim- (Sahami and Heilman, 2006). The second approach
ilarity and WordNet knowledge. The first, ) . .
which achieved the best mean score of the 89 1S based on the assumption that if two _sentences_ or
submitted runs, used a simple term alignment ~ Other short text sequences are semantically equiva-
algorithm augmented with penalty terms. The lent, we should be able to align their words or ex-
other two runs, ranked second and fourth,used  pressions. The alignment quality can serve as a
support vector regression models to combine  similarity measure. This technique typically pairs
larger sets of features. words from the two texts by maximizing the sum-
mation of the word similarity of the resulting pairs
, (Mihalcea et al., 2006). The third approach com-
1 Introduction bines different measures and features using machine

Measuring semantic text similarity has been a ré_earnlng models. ~ Lexical, semantic and syntactic

search subject in natural language processing, infof|Qatures are computed for the texts using a variety

mation retrieval and artificial intelligence for manyOf resources and supplied to a classifier, which then

years. Previous efforts have focused on COmp(,;ﬁa_ssigns weights to the features by fitting the model
, 2012).

ing two long texts (e.g., for document classification)to training data (Saric et al.
or a short text with a long text (e.g., Web search), For evaluating different approaches, the 2013 Se-
but there are a growing number of tasks requiringnantic Textual Similarity (STS) task asked auto-
computing the semantic similarity between two senhatic systems to compute sentence similarity ac-
tences or other short text sequences. They inclug@rding to a scale definition ranging from O to 5,
paraphrase recognition (Dolan et al., 2004), Twittewith 0 meaning unrelated and 5 semantically equiv-
tweets search (Sriram et al., 2010), image retrieva@lent (Agirre etal., 2012; Agirre et al., 2013). The
by captions (Coelho et al., 2004), query reformula€xample sentence pair “The woman is playing the
tion (Metzler et al., 2007), automatic machine transviolin” and “The young lady enjoys listening to the
lation evaluation (Kauchak and Barzilay, 2006) anduitar” is scored as onlg and the pair “The bird is
schema matching (Han etal., 2012) bathing in the sink” and “Birdie is washing itself in
There are three predominant approaches to corifle water basin” is given a score &f
puting short text similarity. The first uses informa- The vector-space approach tends to be too shallow
tion retrieval’s vector space model (Meadow, 1992for the task, since solving it well requires discrimi-
in which each text is modeled as a “bag of words’hating word-level semantic differences and goes be-
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yond simply comparing sentence topics or contextgigawords, we selected the Web corpus from the
Our first run uses aalign-and-penalizealgorithm, Stanford WebBase project (Stanford, 2001). We
which extends the second approach by giving penaltsed the February 2007 crawl, which is one of the
ties to the words that are poorly aligned. Our othelargest collections and contains 100 million web
two runs use a support vector regression model fmages from more than 50,000 websites. The Web-
combine a large number of general and domain spBase project did an excellent job in extracting tex-
cific features. Animportant and fundamental featuréual content from HTML tags but still has abun-
used by all three runs is a powerful semantic wordant text duplications, truncated text, non-English
similarity model based on a combination of Latentext and strange characters. We processed the collec-
Semantic Analysis (LSA) (Deerwester et al., 1990tion to remove undesired sections and produce high
Landauer and Dumais, 1997) and knowledge fromguality English paragraphs. We detected paragraphs
WordNet (Miller, 1995). using heuristic rules and only retrained those whose
The remainder of the paper proceeds as followsength was at least two hundred characters. We elim-
Section 2 presents the hybrid word similarity modelinated non-English text by checking the first twenty
Section 3 describes the align-and-penalize approaglords of a paragraph to see if they were valid En-
used for thePairingWordsrun. In Section 4 we de- glish words. We used the percentage of punctuation
scribe the SVM approach used for tBalactusand characters in a paragraph as a simple check for typi-
Saiyanruns. Section 5 discusses the results and @l text. We removed duplicated paragraphs using a

followed by a short conclusion. hash table. Finally, we obtained a three billion words
. o corpus of good quality English, which is available at
2 Semantic Word Similarity Model (Han and Finin, 2013).

Our word similarity model was originally developeds 1 2 \Word Co-Occurrence Generation

for the Graph of Relations project (UMBC, 2013a)We performed POS tagging and lemmatization on
which maps informal queries with English words

: .. the WebBase cor ing the Stanford POS tagger
and phrases for an RDF linked data collection int S PuS using 99

SPAROL For thi ed ; _?Toutanova et al., 2000). Word/term co-occurrences
a . QL query. For IS, we wanted a metre, o counted in a moving window of a fixed size
in which only the semantics of a word is consid-

. : that scans the entire corgusiVe generated two co-
ered and not its lexical category. For example, th

u i ; O Sccurrence models using window siz€$ and +4
verb “marry” should be semantically similar to the

wife” Another desiderat that th tbecause we observed different natures of the models.
noun “wite”. Another desiderata was that the met-,_, i gy produces a context similar to the depen-
ric should give highest scores and lowest scores

. o L I(51ency context used in (Lin, 1998a). It provides a
Itti\s/erlanglen t?hissms"(la?:t[ic?:dvr\:gnéz;?:lrlietl)revfc:\?vsi/vfsc:%iﬁmore precise context but only works for comparing
y: ' . -~ . words within the same POS. In contrast, a context
str_ucted the model by combining LSA word SIMEwindow of +-4 words allows us to compute semantic
larity and WordNet knowledge. similarity between words with different POS.
2.1 LSA Word Similarity Our word co-occurrence models were based on
a predefined vocabulary of more than 22,000 com-
{Qon English words and noun phrases. We also
added to it more than 2,000 verb phrases extracted
from WordNet. The final dimensions of our word

2.1.1 Corpus Selection and Processing co-occurrence matrices are 29,00029,000 when

In order to produce a reliable word co-occurrencd/ords are POS tagged. Our vocabulary includes
statistics, a very large and balanced text corpus ®ly open-class words (i.e. nouns, verbs, adjectives
required. After experimenting with several cor-2nd adverbs). There are no proper nouns in the vo-
pus choices including Wikipedia, Project Gutenbergabulary with the only exception of country names.
e-Books (Hart, 1997), ukWacC (Baroni et al., 2009), i\e ysed a stop-word list consisting of only the three arti-
Reuters News stories (Rose et al., 2002) and LD€es “a”, “an” and “the”.

LSA Word Similarity relies on the distributional hy-
pothesis that words occurring in the same contex
tend to have similar meanings (Harris, 1968).
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Word Pair +4 model | +1 model words, such as “marry to” and “is the wife of”.

1. doctorNN, physicianNN 0.775 0.726

2. carNN, vehicleNN 0.748 0.802 2.2 Combining with WordNet Knowledge

3. persooNN, carNN 0.038 0.024 Statistical word similarity measures have limita-
4. carNN, country NN 0.000 0.016 tions. Related words can have similarity scores as
5. persooNN, country NN 0.031 0.069 high as what similar words get, as illustrated by
6. child NN, marry.VB 0.098 0.000 “doctor” and “hospital” in Table 1. Word similar-

7. wife NN, marry VB 0.548 0.274 ity is typically low for synonyms having many word

8. authorNN, write-VB 0.364 0.128 senses since information about different senses are
9. doctorNN, hospitalNN 0.473 0.347 mashed together (Han et al., 2013). By using Word-
10. carNN, driver.NN 0.497 0.281 Net, we can reduce the above issues.

Table 1: Ten examples from the LSA similarity model 2 2 1 Boosting LSA similarity using WordNet
We increase the similarity between two words if any
2.1.3 SVD Transformation of the following relations hold.

Singular Value Decomposition (SVD) has been )
found to be effective in improving word similar- * They are n the same WordNet synset.
ity measures (Landauer and Dumais, 1997). SVD * One word is the direct hypernym of the other.

is typically applied to aword by documenma- * One word is the two-link indirect hypernym of
trix, yielding the familiar LSA technique. In the other.

our case we apply it to ouword by word ma- « One adjective has a diresimilar to relation
trix. In literature, this variation of LSA is some- with the other.

times called HAL (Hyperspace Analog to Lan-
guage) (Burgess et al., 1998).

Before performing SVD, we transform the raw
word co-occurrence cournf;; to its log frequency
log(fij +1). We select the 300 largest singular val- _
ues and reduce the 29K word vectors to 300 dimen- * One word is the head of the gloss of the other
sions. The LSA similarity between two words is de- ~ OF its direct hypernym or one of its direct hy-
fined as the cosine similarity of their corresponding ~ PONYymMS.
word vectors after the SVD transformation. One word appears frequently in the glosses of
the other and its direct hypernym and its direct
hyponyms.

» One adjective has a two-link indiresimilar to
relation with the other.

» One word is a derivationally related form of the
other.

2.1.4 LSA Similarity Examples

Ten examples obtained using LSA similarity are

given in Table 1. Examples 1 to 6 illustrate that théVe use the algorithm described in (Collins, 1999)
metric has a good property of differentiating simi-to find a word gloss header. We require a minimum
lar words from non-similar words. Examples 7 and_SA similarity of 0.1 between the two words to filter
8 show that thet4 model can detect semantically out noisy data when extracting WordNet relations.
similar words even with different POS while thel We define a word’s “significant senses” to deal
model yields much worse performance. Example @ith the problem of WordNet trivial senses. The
and 10 show that highly related but not substitutablevord “year”, for example, has a sense “a body of
words can also have a strong similarity but thé students who graduate together” which makes it a
model has a better performance in discriminatingynonym of the word “class”. This causes problems
them. We call thex1 model and thet4 model because “year” and “class” are not similar, in gen-
asconcept similarityandrelation similarityrespec- eral. A sense is significant, if any of the following
tively since thex1 model has a good performanceconditions are met: (i) it is the first sense; (ii) its
on nouns and the-4 model is good at computing WordNet frequency count is not less than five; or
similarity between relations regardless of POS ofiii) its word form appears first in its synset’s word
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form list and it has a WordNet sense number les3.1 Aligning terms in two sentences

than eight. . We start by applying the Stanford POS tagger to tag

We assign path distance of zero to the category,g lemmatize the input sentences. We use our pre-
1, path distance of one to the category 2, 4 and @efined vocabulary, POS tagging data and simple
and path distance of two to the other categories. Thggyiar expressions to recognize multi-word terms
new similarity between word x and y by Combiningincluding noun and verb phrases, proper nouns,
LSA similarity and WordNet relations is shown in ,umbers and time. We ignore adverbs with fre-
the following equation quency count larger thas00, 000 in our corpus and
stop words with general meaning.

Equation 4 shows our aligning functianwhich

whereD(z, y) is the minimal path distance betweenfinds the counterpart of terme S in sentences”.

x and y. Using thee=*P(=¥) to transform simple g(t) = argmaz sim/(t,t') (4)
shortest path length has been demonstrated to be ves’

very effective according to (Li et al., 2003). The pa-sim/(¢,t') is a wrapper function ovesim(z,y) in
rametera is set to be 0.25, following their experi- Equation 2 that uses thelation similarity model.
mental results. The ceiling ofimg(z,y) remains It compares numerical and time terms by their val-
1.0 and we simply cut the excess. ues. If they are equall is returned; otherwise.
sim!(t, ') provides limited comparison over pro-
nouns. It returnd between subject pronouthswe,
For a wordw with many WordNet senses (currentlytheM he sheand their corresponding object pro-
ten or more), we use its synonyms with fewer senseguns. sim/(¢, ') also outputsl if one term is the
(at most one third of that ab) as its substitutions in acronym of the other term, or if one term is the head
computing similarity with another word. Lét; and  of the other term, or if two consecutive terms in a
Sy be the sets of all such substitutions of the wordgentence match a single term in the other sentence
x andy respectively. The new similarity is obtained(e_g. “long term” and “long-term”).sim’(t, t') fur-

sima(z,y) = simpsa(z,y) + 0.5e P (1)

2.2.2 Dealing with words of many senses

using Equation 2. ther adds support for matching wofd®t presented
. ) in our vocabulary using a simple string similarity al-
sim(z,y) = maw(swgﬁfﬁ{{x}szm@(s” v): gorithm. It computes character bigram sets for each
max  sime(z,s,))  (2) of the two words without using padding characters.
sy€SyU{y} Dice coefficient is then applied to get the degree of

, _ o overlap between the two sets. If it is larger than two
An online demonstration  of ‘f" swmlar mOdelthirds,sz’m’(t,t’) returns a score af; otherwise).
developed for the _ GOR ' project IS aval!ab!e g(t) is direction-dependent and does not achieve
(UMBC, 2013b), but it lacks some of this version Sone-to-one mapping. This property is useful in mea-
features. suring STS similarity because two sentences are of-
3 Align-and-Penalize Approach ten not exact paraphrases of one another. Moreover,
it is often necessary to align multiple terms in one
First we hypothesize that STS similarity betweemsentence to a single term in the other sentence, such
two sentences can be computed using as when dealing with repetitions and anaphora or,
e.g., mapping “people writing books” to “writers”.
Let S; and S, be the sets of terms in two input
sentences. We define term alignments s@oas the
following equation shows.

STS=T—P —P" (3)

where T' is the term alignments scord?’ is the
penalty for bad term alignments ané” is the - ',
penalty for syntactic contradictions led by the align- Dotes, ST/ (L, g(t))  Dies, stm'(t, g(1)) 5)

ments. HoweveP” had not been fully implemented 2 15| 2 |Ss|
and was not used in our STS submissions. We ShOW 2\ye yse the regular expression “[A-Za-z][A-Za-z]" to
it here just for completeness. identify them.
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3.2 Penalizing bad term alignments  Abbreviations were expanded using a compiled

We currently treat two kinds of alignments as “bad”,  liSt of commonly used abbreviations.
as described in Equation 6. For the &t we have  * About 80 stopwords were removed.
an additional restriction that neither of the sentencesg 1 Ngram Matching

has the form of a negation. In definidg, we used The sentence similarities are derived as a function of

a collection of antonyms extracted from WordNet[he similarity scores of their corresponding paired

(Mohammad et al., 2008). Antonym pairs are a SP&Yord ngrams. These features closely resemble the

cial case of disjoint sets. The terms “piano” and Vi-ihes used in (Saric et al., 2012). For our system, we

olin” are also disjoint but they are not antonyms. lnused uniarams. biarams. triarams and skip-biarams
order to broaden the sét; we will need to develop g » D19 » (N9 P-Dg ’

. a special form of bigrams which allow for arbitra
a model that can determine when two terms belon&i P 9 Y
. stance between two tokens.
to disjoint sets.

An ngram from the first sentence is exclusively
A; = {(t,g(t)> it € S; A sim!(t,g(t)) < 0.05} pgired wit_h gn ngram from the seco.nd. which has.the
B; = {{t,g(t)) |t € S; At is an antonym of g(t)} highest similarity score. Several similarity m_etrlcs
) are used to generate different features. For bigrams,
i€ {1,2} (6) trigrams and skip-bigrams, the similarity score for
We show how we comput®’ in Equation 7. two ngrams is computed as the arithmetic mean of
the similarity scores of the individual words they
2 tg(yea, (sim'(t,g(t)) +ws(t) - wp(t))  contain. For example, for the bigrams “he ate” and

P = L .
! 215 “she spoke”, the similarity score is the average of the
B 2irgyen 1L g(1)) +0.5) similarity scores between the words “he” and “she”
P~ = 5. 15]] and the words “ate” and “spoke”.
(2 . .
The ngram overlap of two sentences is defined
P =P+ PP+ P+ PP (7)
=41 1 2 2

as ‘the harmonic mean of the degree to which

Thew(t) andw,(t) terms are two weighting func- the second sentence covers the first and the de-
tions on the ternt. w;(t) inversely weights the log gree to which the first sentence covers the setond
frequency of ternt andw, (¢) weightst by its partof  (Saric et al., 2012). Given sef§ and.S; containing
speech tag, assigning 1.0 to verbs, nouns, pronoufigrams from sentences 1 and 2, and g&tand P

and numbers, and 0.5 to terms with other POS tag$ontaining their paired ngrams along with their sim-
ilarity scores, the ngram overlap score for a given

4 SVM approach ngram type is computed using the following equa-

We used the scores from the align-and-penalize aBQn'

proach along with several other features to learn & > nep, w(n).sim(n) >, p, w(n).sim(n)

support vector regression model. We started by ap- > nes; w(n) ’ D nes, W(n)

plying the following preprocessing steps. (8)
» The sentences were tokenized and POS-tagg this formula, 1M is the harmonic meany (n) is

using NLTK’s (Bird, 2006) default Penn Tree—_t € We'_gh_t as_S|gned for the given ngram andh(n)
is the similarity score of the paired word.

bank based tagger.

. By default, all the ngrams are assigned a uniform
» Punctuation characters were removed from the . . .
weight of 1. But since different words carry differ-

tokens except for the decimal point in numbers. . . . oo
ent amount of information, e.g. “acclimatize” vs.

o i . . .
Altl numbersI ertten;szwo_rlf_ls erre Con\llerte;‘take", scardiologist” vs. “person”, we also use in-
INto numerals, €.g., 2.2 milllon” was replaceds, ., ation content as weights. The information con-

by “2200_000" anq fifty six” by “56". _ _ tent of aword is as defined in (Saric et al., 2012).
* All mentions of time were converted into mil-

itary time, e.g., “5:40pm” was replaced by ie(w) = In S oo freq(w’) o
“1740” and “1h30am” by “0130". Freq(w)
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HereC' is the set of words in the corpus afigleq(w) .
is the frequency of a word in the corpus. The
weight of an ngram is the sum of its constituent word
weights. We use refined versions of Google ngram
frequencies (Michel et al., 2011) from (Mem, 2008)
and (Saric et al., 2012) to get the information con-

We used the LSA boosted similarity metric in

three modes: concept similarity, relation simi-

larity and mixed mode, which used the concept
model for nouns and relation model for verbs,
adverbs and adjectives. A total of 24 features
were extracted4(x 2 * 3).

tent of the words. Words not in this list are assigned
the average weight.

We used several word similarity metrics for
ngram matching apart from the similarity metric de-
scribed in section 2. Our baseline similarity metric
was an exact string match which assigned a score
of 1 if two tokens contained the same sequence of
characters and 0 otherwise. We also used NLTK'’s
library to compute WordNet based similarity mea-
sures such as Path Distance Similarity, Wu-Palmer
Similarity (Wu and Palmer, 1994) and Lin Similar-
ity (Lin, 1998b). For Lin Similarity, the Semcor cor- 4.4 Support Vector Regression

pus was used for the information content of words. ) ] o
The features described in 4.3 were used in dif-

ferent combinations to train several support vec-
tor regression (SVR) models. We used LIBSVM
We computed contrast scores between two Sefshang and Lin, 2011) to learn the SVR models and
tences using three different lists of antonym pairs,, a grid search provided by (Saric et al., 2012) to

(Mohammad et al., 2008). We used a large list COMknd the optimal values for the parametefs g and

taining 3.5 million antonym pairs, a list of about, these models were then used to predict the scores
22,000 antonym pairs from Wordnet and a list Ofor the test sets

50,000 pairs of words with their degree of contrast. The Galactussvstem was trained on all of STS
Contrast scores between two sentences were deriv& 15 data and uged the full set of 52 features. The

as a function of the number of antonym pairs k.)el_:nWN dataset was handled slightly differently from

She others. We observed that terms like “frame” and
“entity” were used frequently in the five sample sen-
tence pairs and treated them as stopwords. To ac-
commodate the vast difference in sentence lengths,
We constructed 52 features from different combinagquation 8 was modified to compute the arithmetic
tions of similarity metrics, their parameters, ngranmean instead of the harmonic mean.
types (unigram, bigram, trigram and skip-bigram) The saiyansystem employed data-specific train-
and ngram weights (equal weight vs. information,g and features. The training sets were subsets of
content) for all sentence pairs in the training data. o supplied STS 2012 dataset. More specifically,
the model for headlines was trained on 3000 sen-
+ We used scores from the align-and-penalize agapce pairs from MSRvid and MSRpar, SMT used
proach directly as a feature. 1500 sentence pairs from SMT europarl and SMT
» Using exact string match over different ngrannews, while OnWN used only the 750 OnWN sen-
types and ngram weights, we extracted eighence pairs from last year. The FnWN scores were
features 4 x 4). We also developed four addi- directly used from the Align-and-Penalize approach.
tional featuresZ « 2) by includin stopwords in None of the models foSaiyanused contrast fea-
bigrams and trigrams, motivated by the naturéures and the model for SMT also ignored similarity
of MSRvid dataset. scores from exact string match metric.

* For Wordnet-based similarity measures, we
used uniform weights for Path and Wu-Palmer
similarity and used the information content of
words (derived from the Semcor corpus) for
Lin similarity. Skip bigrams were ignored and
a total of nine features were produced«(3).

e Contrast scores used three different lists of
antonym pairs. A total of six features were ex-
tracted using different weight values £ 2).

4.2 Contrast Scores

values to indicate contrast scores.

4.3 Features
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5 Results and discussion Dataset Pairing Galactus Saiyan
Headlines (750 pairs) 0.7642 (3) | 0.7428 (7) | 0.7838 (1)
Table 2 presents the official results of our three runSonwn (s61 pairs) | 0.7529 (5) | 0.7053 (12)| 0.5593 (36)
inthe 2013 STS task. Each entry gives a run’s Pegr+nwn (189 pairs) | 0.5818 (1) | 0.5444 (3) | 0.5815 (2)

son correlation on a dataset as well as the rank of theur (750 pairs) 0.3804 (8) | 0.3705 (11)| 0.3563 (16)

run among all 89 runs submitted by the 35 teams.weighted mean 0.6181 (1) | 0.5927 (2) | 0.5683 (4)

The last row shows the mean of the correlations and

the overall ranks of our three runs. Table 2: Performance of our three systems on the four
test sets.

We tested performance of the align-and-penalize
approach on all of the 2012 STS datasets. It ob-

tained correlation values 6819 on MSRVId,0669 MSRpar) while OnWN was trained on|y on OnWN
on MSRparf.553 on SMTeuroparl).567 on SMT-  from STS 2012. When the model for headlines
news and).722 on OnWN for the test datasets, andjataset was used to predict the scores for OnWN,
correlation values of).814 on MSRvid, 0.707 on  the correlation jumped frorfi.55 to 0.71 indicating
MSRpar and).646 on SMTeuroparl for the training that the earlier model suffered from overfitting.
datasets. The performance of the approach without Overfitting is not evident in the performance of

using the antonym penalty is also tested, producingyjring\wordsand Galactus which have more con-
correlation scores 00.795 on MSRvid, 0.667 on  gjstent performance over all datasets. The relatively
MSRpar,0.554 on SMTeuroparl).566 on SMTNew i 16 pairingWordssystem has two advantages: it
and0.727 on ONWN, for the test datasets, an@94 s taster, since the curreftalactusrequires comput-

on MSRuvid, 0.707 on MSRpar and).651 on SM- g 5 |arge number of features; and its performance
Teuroparl for the training datasets. The average @f yore predictable, since training is not needed thus

the correlation scores on all eight datasets with angjiminating noise induced from diverse training sets.
without the antonym penalty i%.6871 and0.6826,

respectively. Since the approach’s performance was
only slightly improved when the antonym penalty

was used, we decided to not include this penalty iUv q ibed th . imilari
our PairingWordsrun in the hope that its simplicity q N Iescr:j ? threfssemz;%tlztgxtglrr# a“g sysktemg
would make it more robust. eveloped for the *SEM 2013 STS shared task an

During development, our SVM approachthe results of the corresponding three runs we sub-

achieved correlations df.875 for MSRvid, 0.699 g;';i?é tﬁ!toégri:]ebi?]):aséeg OSSU,[Saed i?] Ie?gr;l zgll(;asr:%
for MSRpar, 0.559 for SMTeuroparl, 0.625 for 9ging,

SMTnews and).729 for OnWN on the 2012 STS llarity ar]d WordNet[ knowlgdge.

test data. Models were trained on their respective ' N€ first run, which achieved the best mean score
training sets while SMTnews used SMTeuroparl an§ut Of all 89 submissions, used a simple term align-
OnWN used all the training sets. We experimentef'€nt @lgorithm augmented with two penalty met-
with different features and training data to studyicS: The other two runs, ranked second and fourth
their influence on the performance of the modelUt Of all submissions, used support vector regres-
We found that the unigram overlap feature, based ofo" Models based on a set of more than 50 addi-
boosted LSA similarity and weighted by informa-tional fez_nltgres. The runs differed in their feature
tion content, could independently achieve very higf€tS: training data and procedures, and parameter
correlations. Including more features improved th&€ttings.

accuracy slightly and in some cases added noise.

The difficulty in selecting data specific features and\cknowledgments

training for novel datasets is indicated Bgiyan’s

contrasting performance on headlines and OnWHNhis research was supported by AFOSR award
datasets. The model used for Headlines was train€d9550-08-1-0265 and a gift from Microsoft.

on data from seemingly different domains (MSRuvid,

Conclusion
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Abstract

This paper describes the participation of iKer-
nels system in the Semantic Textual Similar-
ity (STS) shared task at *SEM 2013. Different
from the majority of approaches, where a large
number of pairwise similarity features are
used to learn a regression model, our model
directly encodes the input texts into syntac-
tic/semantic structures. Our systems rely on
tree kernels to automatically extract a rich set
of syntactic patterns to learn a similarity score
correlated with human judgements. We ex-
periment with different structural representa-
tions derived from constituency and depen-
dency trees. While showing large improve-
ments over the top results from the previous
year task (STS-2012), our best system ranks
21st out of total 88 participated in the STS-
2013 task. Nevertheless, a slight refinement to
our model makes it rank 4th.

1 Introduction

Comparing textual data to establish the degree of se-
mantic similarity is of key importance in many Nat-
ural Language Processing (NLP) tasks ranging from
document categorization to textual entailment and
summarization. The key aspect of having an accu-
rate STS framework is the design of features that can
adequately represent various aspects of the similar-
ity between texts, e.g. using lexical, syntactic and
semantic similarity metrics.

The majority of approaches to semantic textual
similarity treat the input text pairs as feature vec-
tors where each feature is a score corresponding to a
certain type of similarity. This approach is concep-
tually easy to implement and STS-2012 (Agirre et
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al., 2012) has shown that the best systems were built
following this idea, i.e. a number of features encod-
ing similarity of an input text pair were combined in
a single scoring model, such as Linear Regression
or Support Vector Regression (SVR). One potential
limitation of using only similarity features to repre-
sent a text pair is that of low representation power.

The novelty of our approach is that we encode the
input text pairs directly into structural objects, e.g.
trees, and rely on the power of kernel learning to ex-
tract relevant structures. This completely different
from (Croce et al., ), where tree kernels where used
to establish syntactic similarity and then plugged as
similarity features. To link the documents in a pair
we mark the nodes in the related structures with a
special relational tag. In this way effective struc-
tural relational patterns are implicitly encoded in the
trees and can be automatically learned by the kernel-
based machine learning methods. We build our sys-
tems on top of the features used by two best systems
from STS-2012 and combine them with the tree ker-
nel models within the Support Vector Regression to
derive a single scoring model. Since the test data
used for evaluation in STS-2013 (Agirre et al., 2013)
is different from the 2012 data provided for the sys-
tem development, domain adaptation represents an
additional challenge. To address this problem we
augment our feature vector representation with fea-
tures extracted from a text pair as a whole to capture
individual properties of each dataset. Additionally,
we experiment with a corpus type classifier and in-
clude its prediction score as additional features. Fi-
nally, we use stacking to combine several structural
models into the feature vector representation.

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 53-58, Atlanta, Georgia, June 13-14, 2013. (©2013 Association for Computational Linguistics



In the following sections we describe our ap-
proach to combine structural representations with
the pairwise similarity features in a single SVR
learning framework. We then report results on both
STS-2012 and 2013 tasks.

2 Structural Relational Similarity

In this section we first describe the kernel framework
to combine structural and vector models, then we
explain how to construct the tree models and briefly
describe tree kernels we use to automatically extract
the features.

2.1 Structural Kernel Learning

In supervised learning, given the labeled data
{(xs,y:)}!,. the goal is to estimate a decision func-
tion h(x) = y that maps input examples to the tar-
get variables. A conventional approach is to rep-
resent a pair of texts as a set of similarity features
{fi}, s.t. the predictions are computed as h(z) =
w-Tr = ZZ w; f;, where w is the model weight vec-
tor. Hence, the learning problem boils down to es-
timating the individual weight of each of the sim-
ilarity feature f;. One downside of such approach
is that a great deal of similarity information carried
by a given text pair is lost when modeled by single
real-valued scores.

A more versatile approach in terms of the input
representation relies on kernels. In a typical ker-
nel machine, e.g. SVM, the prediction function for
a test input z takes on the following form h(x) =
> iy K (x,2;), where «; are the model parame-
ters estimated from the training data, y; - target vari-
ables, x; are support vectors, and K (-, ) is a kernel
function.

To encode both structural representation and sim-
ilarity feature vectors of input text pairs &; in a sin-
gle model, we treat it as the following tuple: z; =
(x¢,x?) = ((t¢,v9), (2, v?)), where z¢ z? are the
first and the second document of x;, and £ and v de-
note tree and vector representations respectively.

To compute a kernel between two text pairs z;
and z; we define the following all-vs-all kernel,
where all possible combinations of documents from
each pair are considered: K (z;,z;) = K(z{,z}) +
K(m;‘,mg) + K(mf,m?) + K(mf,mlj’) Each of the
kernel computations K between two documents x®
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and z” can be broken down into the following:
Kz x%) = Kkt t°) + Kpyec(v?,v%), where
Ktk computes a tree kernel and K is a kernel
over feature vectors, e.g. linear, polynomial or RBF,
etc. Further in the text we refer to structural tree
kernel models as TK and explicit feature vector rep-
resentation as fvec.

Having defined a way to jointly model text pairs
using structural TK representations along with the
similarity features fvec, we next briefly review tree
kernels and our relational structures derived from
constituency and dependency trees.

2.2 Tree Kernels

We use tree structures as our base representation
since they provide sufficient flexibility in represen-
tation and allow for easier feature extraction than,
for example, graph structures. We use a Partial Tree
Kernel (PTK) (Moschitti, 2006) to take care of auto-
matic feature extraction and compute Kk (-, ).

PTK is a tree kernel function that can be ef-
fectively applied to both constituency and depen-
dency parse trees. It generalizes a subset tree ker-
nel (STK) (Collins and Duffy, 2002) that maps a
tree into the space of all possible tree fragments con-
strained by the rule that the sibling nodes from their
parents cannot be separated. Different from STK
where the nodes in the generated tree fragments are
constrained to include none or all of their direct chil-
dren, PTK fragments can contain any subset of the
features, i.e. PTK allows for breaking the production
rules. Consequently, PTK generalizes STK generat-
ing an extremely rich feature space, which results in
higher generalization ability.

2.3 Relational Structures

The idea of using relational structures to jointly
model text pairs was previously proposed in (Sev-
eryn and Moschitti, 2012), where shallow syntactic
structures derived from chunks and part-of-speech
tags were used to represent question/answer pairs.
In this paper, we define novel relational structures
based on: (i) constituency and (ii) dependency trees.
Constituency tree. Each document in a given text
pair is represented by its constituency parse tree.
If a document contains multiple sentences they are
merged in a single tree with a common root. To
encode the structural relationships between docu-
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Figure 1: A dependency-based structural representation of a text pair. REL tag links related fragments.

ments in a pair a special REL tag is used to link
the related structures. We adopt a simple strategy
to establish such links: words from two documents
that have a common lemma get their parents (POS
tags) and grandparents, non-terminals, marked with
a REL tag.

Dependency tree. We propose to use dependency
relations between words to derive an alternative
structural representation. In particular, dependency
relations are used to link words in a way that words
are always at the leaf level. This reordering of the
nodes helps to avoid the situation where nodes with
words tend to form long chains. This is essential
for PTK to extract meaningful fragments. We also
plug part-of-speech tags between the word nodes
and nodes carrying their grammatical role. Again
a special REL tag is used to establish relations be-
tween tree fragments. Fig. 1 gives an example of
a dependency-based structure taken from STS-2013
headlines dataset.

3 Pairwise similarity features.

Along with the direct representation of input text
pairs as structural objects our framework also en-
codes feature vectors (base), which we describe
below.

3.1 Baseline features

We adopt similarity features from two best perform-
ing systems of STS-2012, which were publicly re-
leased: namely, the Takelab! system (Sari¢ et al.,
2012) and the UKP Lab’s sys'[em2 (Baretal., 2012).
Both systems represent input texts with similar-

"http://takelab.fer.hr/sts/

Zhttps://code.google.com/p/dkpro-similarity-
asl/wiki/SemEval2013
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ity features which combine multiple text similarity
measures of varying complexity.

UKP provides metrics based on matching of char-
acter, word n-grams and common subsequences. It
also includes features derived from Explicit Seman-
tic Analysis vector comparisons and aggregation of
word similarity based on lexical-semantic resources,
e.g. WordNet. In total it provides 18 features.
Takelab includes n-gram matching of varying size,
weighted word matching, length difference, Word-
Net similarity and vector space similarity where
pairs of input sentences are mapped into Latent Se-
mantic Analysis (LSA) space (Turney and Pantel,
2010). The features are computed over several sen-
tence representations where stop words are removed
and/or lemmas are used in place of raw tokens.
The total number of Takelab’s features is 21. Even
though some of the UKP and Takelab features over-
lap we include all of them in a combined system with
the total of 39 features.

3.2

Here we describe our additional features added to
the fvec representation. First, we note that word
frequencies used to compute weighted word match-
ings and the word-vector mappings to compute LSA
similarities required by Takelab features are pro-
vided only for the vocabulary extracted from 2012
data. Hence, we use both STS-2012 and 2013 data to
obtain the word counts and re-estimate LSA vector
representations. For the former we extract unigram
counts from Google Books Ngrams?, while for the
latter we use additional corpora as described below.
LSA similarity. To construct LSA word-vector
mappings we use the following three sources: (i)

iKernels features

3http://storage.googleapis.com/books/ngrams/books/datasetsv2.html



Aquaint*, which consists of more than 1 million
newswire documents, (ii) ukWaC (Baroni et al.,
2009) - a 2 billion word corpus constructed from
the Web, and (iii) and a collection of documents
extracted from Wikipedia dump’. To extract LSA
topics we use GenSim® software. We preprocess
the data by lowercasing, removing stopwords and
words with frequency lower than 5. Finally, we ap-
ply tf-idf weighting. For all representations we fix
the number of dimensions to 250. For all corpora
we use document-level representation, except for
Wikipedia we also experimented with a sentence-
level document representation, which typically pro-
vides a more restricted context for estimating word-
document distributions.

Brown Clusters. In addition to vector represen-
tations derived from LSA, we extract word-vector
mappings using Brown word clusters’ (Turian et al.,
2010), where words are organized into a hierarchy
and each word is represented as a bit-string. We
encode each word by a feature vector where each
entry corresponds to a prefix extracted from its bit-
string. We use prefix lengths in the following range:
k = {4,8,12,16,20}. Finally, the document is rep-
resented as a feature vector composed by the indi-
vidual word vectors.

Term-overlap features. In addition to the word
overlap features computed by UKP and Takelab
systems we also compute a cosine similarity over
the following representations: (i) n-grams of part-
of-speech tags (up to 4-grams), (ii) SuperSense
tags (Ciaramita and Altun, 2006), (iii) named enti-
ties, and (iv) dependency triplets.

PTK similarity. We use PTK to provide a syn-
tactic similarity score between documents in a pair:
PTK(a,b) = PTK(a,b), where as input represen-
tations we use dependency and constituency trees.
Explicit Semantic Analysis (ESA) similarity.
ESA (Gabrilovich and Markovitch, 2007) represents
input documents as vectors of Wikipedia concepts.
To compute ESA features we use Lucene® to in-
dex documents extracted from a Wikipedia dump.
Given a text pair we retrieve k top documents (i.e.

*http://www.ldc.upenn.edu/Catalog/docs/LDC2002T31/
Shttp://dumps.wikimedia.org/
®http://radimrehurek.com/gensim/
"http://metaoptimize.com/projects/wordreprs/
8http://lucene.apache.org/
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Wikipedia concepts) and compute the metric by
looking at the overlap of the concepts between the
documents: esag(a,b) = W, where W, is
the set of concepts retrieved for document a. We

compute esa features with & € {10, 25,50, 100}.

3.3 Corpus type features

Here we describe two complementary approaches
(corpus) in an attempt to alleviate the problem of
domain adaptation, where the datasets used for train-
ing and testing are drawn from different sources.
Pair representation. We treat each pair of texts as a
whole and extract the following sets of corpus fea-
tures: plain bag-of-words, dependency triplets, pro-
duction rules of the syntactic parse tree and a length
feature, i.e. a log-normalized length of the combined
text. Each feature set is normalized and added to the
fvec model.

Corpus classifier. We use the above set of features
to train a multi-class classifier to predict for each in-
stance its most likely corpus type. Our categories
correspond to five dataset types of STS-2012. Pre-
diction scores for each of the dataset categories are
then plugged as features into the final fvec repre-
sentation. Our multi-class classifier is a one-vs-all
binary SVM trained on the merged data from STS-
2012. We apply 5-fold cross-validation scheme, s.t.
for each of the held-out folds we obtain independent
predictions. The accuracy (averaged over 5-folds)
on the STS-2012 data is 92.0%.

3.4 Stacking

To integrate multiple TK models into a single model
we apply a classifier stacking approach (Fast and
Jensen, 2008). Each of the learned TK models is
used to generate predictions which are then plugged
as features into the final fvec representation, s.t.
the final model uses only explicit feature vector
representation. We apply a 5-fold cross-validation
scheme to obtain prediction scores in the same man-
ner as described above.

4 Experimental Evaluation

4.1 Experimental setup

To encode TK models along with the similarity fea-
ture vectors into a single regression scoring model,



base corpus TK

U T 1| B O M| C D| ALL Mean MSRp MSRv SMTe OnWN  SMTn

° 0.7060 | 0.6087 | 0.6080 0.8390 0.2540  0.6820 0.4470

. 0.7589 | 0.6863 | 0.6814 0.8637 0.4950 0.7091 0.5395

o o 0.8079 | 0.7161 | 0.7134 0.8837 0.5519  0.7343 0.5607

e o o 0.8187 | 0.7137 | 0.7157 0.8833 0.5131 0.7355 0.5809

o o o . 0.8458 | 0.7047 | 0.6935 0.8953 0.5080 0.7101 0.5834

o o o e | 0.8468 | 0.6954 | 0.6717 0.8902 0.4652  0.7089 0.6133

o o o o . 0.8539 | 0.7132 | 0.6993  0.9005 0.4772  0.7189 0.6481

o o o o e | 0.8529 | 0.7249 | 0.7080 0.8984 0.5142  0.7263 0.6700

Sys; e o o | o e o | 08546 | 0.7156 | 0.6989 0.8979  0.4884  0.7181 0.6609
Syss e o o . e o | 08810 | 0.7416 | 0.7210 0.8971 0.5912  0.7328 0.6778
Sys, e o o e | o o | 0.8705 | 0.7339 | 0.7039 0.9012 0.5629  0.7376 0.6656
UKPpest 0.8239 | 0.6773 | 0.6830 0.8739 0.5280  0.6641 0.4937

Table 1: System configurations and results on STS-2012. Column set base lists 3 feature sets : UKP (U), Takelab
(T) and iKernels (I); corpus type features (corpus) include plain features (B), corpus classifier (O), and manually
encoded dataset category (M); TK contains constituency (C) and dependency-based (D) models. UKPy is the best
system of STS-2012. First column shows configuration of our three system runs submitted to STS-2013.

we use an SVR framework implemented in SVM-
Light-TK®. We use the following parameter settings
-t 5 -F 3 -W A -C +, which specifies to use
a combination of trees and feature vectors (-C +),
PTK over trees (-F 3) computed in all-vs-all mode
(=W A) and using polynomial kernel of degree 3 for
the feature vector (active by default).

We report the following metrics employed in the
final evaluation: Pearson correlation for individual
test sets'? and Mean — an average score weighted by
the test set size.

4.2 STS-2012

For STS-2013 task the entire data from STS-2012
was provided for the system development. To com-
pare with the best systems of the previous year we
followed the same setup, where 3 datasets (MSRp,
MSRyv and SMTe) are used for training and 5 for test-
ing (two “surprise” datasets were added: OnWN and
SMTn). We use the entire training data to obtain a
single model.

Table 1 summarizes the results using structural
models (TK), pairwise similarity (base) and corpus
type features (corpus). We first note, that com-
bining all three features sets (U, T and I) provides
a good match to the best system UKPpese. Next,
adding TK models results in a large improvement
beating the top results in STS-2012. Furthermore,
using corpus features results in even greater im-

“http://disi.unitn.it/moschitti/Tree-Kernel.htm

10for STS-2012 we also report the results for a concatenation
of all five test sets (ALL)
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provement with the Mean = 0.7416 and Pearson
ALL = 0.8810.

4.3 STS-2013

Below we specify the configuration for each of the
submitted runs (also shown in Table 1) and report the
results on the STS-2013 test sets: headlines (head),
OnWN, FNWN, and SMT:

Sys,: combines base features (U, T and I), TK
models (C and D) and plain corpus type features (B).
We use STS-2012 data to train a single model.
Sys,: different from Sys; where a single model
trained on the entire data is used to make predictions,
we adopt a different training/test setup to account for
the different nature of the data used for training and
testing. After performing manual analysis of the test
data we came up with the following strategy to split
the training data into two sets to learn two differ-
ent models: STMe and OnWN (model;) and MSRp,
SMTn and STMe (models); model; is then used to
get predictions for OnWN, FNWN, while models is
used for SMT and headlines.

Syss: same as Sys; + a corpus type classifier O as
described in Sec. 3.3.

Table 2 shows the resulting performance of our
systems and the best UMBC system published in the
final ranking. Sys, appears the most accurate among
our systems, which ranked 21st out of 88. Compar-
ing to the best system across four datasets we ob-
serve that it performs reasonably well on the head-
lines dataset (it is Sth best), while completely fails
on the OnWN and FNWN test sets. After performing



error analysis, we found that TK models underper-
form on FNWN and OnWN sets, which appear un-
derrepresented in the training data from STS-2012.
We build a new system (Sys3), which is based on
Sys,, by making two adjustments in the setup: (i)
we exclude SMTe from training to obtain predictions
on SMT and head and (i1) we remove all TK features
to train a model for FNWN and OnWN. This is mo-
tivated by the observation that text pairs from STS-
2012 yield a paraphrase model, since the texts are
syntactically very similar. Yet, two datasets from
STS-2013 FNWN, and OnWN contain text pairs
where documents exhibit completely different struc-
tures. This is misleading for our syntactic similarity
model learned on the STS-2012.

System | head OnWN FNWN SMT Mean Rank
UMBC | 0.7642 0.7529  0.5818  0.3804 | 0.6181 | 1
Sys2 0.7465 0.5572  0.3875  0.3409 | 0.5339 | 21
Sys1 0.7352  0.5432 03842  0.3180 | 0.5188 | 28
Syss 0.7395 0.4228 03596  0.3294 | 0.4919 | 40
Sys3 0.7538  0.6872  0.4478  0.3391 | 0.5732 | 4*

Table 2: Results on STS-2013.

5 Conclusions and Future Work

We have described our participation in STS-2013
task. Our approach treats text pairs as structural
objects which provides much richer representation
for the learning algorithm to extract useful patterns.
We experiment with structures derived from con-
stituency and dependency trees where related frag-
ments are linked with a special tag. Such struc-
tures are then used to learn tree kernel models which
can be efficiently combined with the a feature vector
representation in a single scoring model. Our ap-
proach ranks 1st with a large margin w.r.t. to the
best systems in STS-2012 task, while it is 21st ac-
cording to the final rankings of STS-2013. Never-
theless, a small change in the system setup makes
it rank 4th. Clearly, domain adaptation represents a
big challenge in STS-2013 task. We plan to address
this issue in our future work.
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Abstract

This paper presents the UNITOR system that
participated in the *SEM 2013 shared task on
Semantic Textual Similarity (STS). The task is
modeled as a Support Vector (SV) regression
problem, where a similarity scoring function
between text pairs is acquired from examples.
The proposed approach has been implemented
in a system that aims at providing high ap-
plicability and robustness, in order to reduce
the risk of over-fitting over a specific datasets.
Moreover, the approach does not require any
manually coded resource (e.g. WordNet), but
mainly exploits distributional analysis of un-
labeled corpora. A good level of accuracy is
achieved over the shared task: in the Typed
STS task the proposed system ranks in 1st and
2nd position.

1 Introduction

Semantic Textual Similarity (STS) measures the de-
gree of semantic equivalence between two phrases
or texts. An effective method to compute similarity
between sentences or semi-structured material has
many applications in Natural Language Processing
(Mihalcea et al., 2006) and related areas such as
Information Retrieval, improving the effectiveness
of semantic search engines (Sahami and Heilman,
2006), or databases, using text similarity in schema
matching to solve semantic heterogeneity (Islam and
Inkpen, 2008).

This paper describes the UNITOR system partic-
ipating in both tasks of the *SEM 2013 shared task
on Semantic Textual Similarity (STS), described in
(Agirre et al., 2013):

o the Core STS tasks: given two sentences, s

and s, participants are asked to provide a score
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reflecting the corresponding text similarity. Itis
the same task proposed in (Agirre et al., 2012).
o the Typed-similarity STS task: given two
semi-structured records #; and f2, containing
several typed fields with textual values, partic-
ipants are asked to provide multiple similarity
scores: the types of similarity to be studied in-
clude location, author, people involved, time,
events or actions, subject and description.
In line with several participants of the STS 2012
challenge, such as (Banea et al., 2012; Croce et al.,
2012a; Sari¢ et al., 2012), STS is here modeled as
a Support Vector (SV) regression problem, where a
SV regressor learns the similarity function over text
pairs. The semantic relatedness between two sen-
tences is first modeled in an unsupervised fashion
by several similarity functions, each describing the
analogy between the two texts according to a spe-
cific semantic perspective. We aim at capturing sep-
arately syntactic and lexical equivalences between
sentences and exploiting either topical relatedness or
paradigmatic similarity between individual words.
Such information is then combined in a supervised
schema through a scoring function y = f(Z) over
individual measures from labeled data through SV
regression: y is the gold similarity score (provided
by human annotators), while Z is the vector of the
different individual scores, provided by the chosen
similarity functions.

For the Typed STS task, given the specificity of
the involved information and the heterogeneity of
target scores, individual measures are not applied to
entire texts. Specific phrases are filtered according
to linguistic policies, e.g. words characterized by
specific Part-of-Speech (POS), such as nouns and
verbs, or Named Entity (NE) Category, i.e. men-

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 5965, Atlanta, Georgia, June 13-14, 2013. (©2013 Association for Computational Linguistics



tions to specific name classes, such as of a PER-
SON, LOCATION or DATE. The former allows to
focus the similarity functions over entities (nouns)
or actions (verbs), while the latter allows to focus on
some aspects connected with the targeted similarity
functions, such as person_involved, location or time.

The proposed approach has been implemented in
a system that aims at providing high applicability
and robustness. This objective is pursued by adopt-
ing four similarity measures designed to avoid the
risk of over-fitting over each specific dataset. More-
over, the approach does not require any manually
coded resource (e.g. WordNet), but mainly exploits
distributional analysis of unlabeled corpora. Despite
of its simplicity, a good level of accuracy is achieved
over the 2013 STS challenge: in the Typed STS task
the proposed system ranks 1°¢ and 2"? position (out
of 18); in the Core STS task, it ranks around the 37th
position (out of 90) and a simple refinement to our
model makes it 19"

In the rest of the paper, in Section 2, the employed
similarity functions are described and the applica-
tion of SV regression is presented. Finally, Section
3 discusses results on the *SEM 2013 shared task.

2 Similarity functions, regression and
linguistic filtering

This section describes the approach behind the UN-
ITOR system. The basic similarity functions and
their combination via SV regressor are discussed in
Section 2.1, while the linguistic filters are presented
in Section 2.2.

2.1 STS functions

Each STS function depends on a variety of linguistic
aspects in data, e.g. syntactic or lexical information.
While their supervised combination can be derived
through SV regression, different unsupervised esti-
mators of STS exist.

Lexical Overlap. A basic similarity function is
modeled as the Lexical Overlap (LLO) between sen-
tences. Given the sets W, and W} of words oc-
curring in two generic texts ¢, and ¢, LO is esti-
mated as the Jaccard Similarity between the sets, i.e.
LO:%. In order to reduce data sparseness,
lemmatization is applied and each word is enriched
with its POS to avoid the confusion between words
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from different grammatical classes.

Compositional Distributional Semantics. Other
similarity functions are obtained by accounting for
the syntactic composition of the lexical information
involved in the sentences. Basic lexical information
is obtained by a co-occurrence Word Space that is
built according to (Sahlgren, 2006; Croce and Pre-
vitali, 2010). Every word appearing in a sentence is
then projected in such space. A sentence can be thus
represented neglecting its syntactic structure, by ap-
plying an additive linear combination, i.e. the so-
called SUM operator. The similarity function be-
tween two sentences is then the cosine similarity be-
tween their corresponding vectors.

A second function is obtained by applying a Dis-
tributional Compositional Semantics operator, in
line with the approaches introduced in (Mitchell and
Lapata, 2010), and it is adopted to account for se-
mantic composition. In particular, the approach de-
scribed in (Croce et al., 2012¢) has been applied.
It is based on space projection operations over ba-
sic geometric lexical representations: syntactic bi-
grams are projected in the so called Support Sub-
space (Annesi et al., 2012), aimed at emphasiz-
ing the semantic features shared by the compound
words. The aim is to model semantics of syntac-
tic bi-grams as projections in lexically-driven sub-
spaces. In order to extend this approach to handle
entire sentences, we need to convert them in syn-
tactic representations compatible with the compo-
sitional operators proposed. A dependency gram-
mar based formalism captures binary syntactic re-
lations between the words, expressed as nodes in
a dependency graph. Given a sentence, the parse
structure is acquired and different triples (w1, wa, )
are generated, where w; is the relation governor, ws
is the dependent and r is the grammatical type. In
(Croce et al., 2012c) a simple approach is defined,
and it is inspired by the notion of Soft Cardinal-
ity, (Jimenez et al., 2012). Given a triple set T' =
{t1,...,tn} extracted from a sentence S and a sim-
ilarity sim(t;,t;), the Soft Cardinality is estimated
as |S|L,, = g'( |th| sim(t;,t;)P) 1, where pa-
rameter p controls the “softness” of the cardinality:
with p = 1 element similarities are unchanged while
higher value will tend to the Classical Cardinality
measure. Notice that differently from the previous



usage of the Soft Cardinality notion, we did not ap-
ply it to sets of individual words, but to the sets of
dependencies (i.e. triples) derived from the two sen-
tences. The sim function here can be thus replaced
by any compositional operator among the ones dis-
cussed in (Annesi et al.,, 2012). Given two sen-
tences, higher Soft Cardinality values mean that the
elements in both sentences (i.e. triples) are different,
while the lower values mean that common triples are
identical or very similar, suggesting that sentences
contain the same kind of information. Given the sets
of triples A and B extracted from the two candidate
sentences, our approach estimates a syntactically re-
stricted soft cardinality operator, the Syntactic Soft

Cardinality (SSC) as SSC(A, B) = ZH2EL as

a “soft approximation” of Dice’s coefficient calcu-
lated on both sets'.

capture::v
/N
lord::n marine::n ROOT VBN
/N /N
drug::n NSUBJ NN mexico::n PREP-BY NNS
AN PN
NN NN PREP-IN NNP

Figure 1: Lexical Centered Tree (LCT)

Convolution kernel-based similarity. The similar-
ity function is here the Smoothed Partial Tree Ker-
nel (SPTK) proposed in (Croce et al., 2011). SPTK
is a generalized formulation of a Convolution Ker-
nel function (Haussler, 1999), i.e. the Tree Kernel
(TK), by extending the similarity between tree struc-
tures with a function of node similarity. The main
characteristic of SPTK is its ability to measure the
similarity between syntactic tree structures, which
are partially similar and whose nodes can differ but
are semantically related. One of the most important
outcomes is that SPTK allows “embedding” exter-
nal lexical information in the kernel function only
through a similarity function among lexical nodes,
namely words. Moreover, SPTK only requires this
similarity to be a valid kernel itself. This means that
such lexical information can be derived from lexical
resources or it can be automatically acquired by a
Word Space. The SPTK is applied to a specific tree
representation that allowed to achieve state-of-the-

"Notice that, since the intersection | A N B|” tends to be too
strict, we approximate it from the union cardinality estimation
|A|" +|B|' — |Au B/
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art results on several complex semantic tasks, such
as Question Classification (Croce et al., 2011) or
Verb Classification (Croce et al., 2012b): each sen-
tence is represented through the Lexical Centered
Tree (LCT), as shown in Figure 1 for the sentence
“Drug lord captured by Marines in Mexico”. Itis de-
rived from the dependency parse tree: nodes reflect
lexemes and edges encode their syntactic dependen-
cies; then, we add to each lexical node two leftmost
children, encoding the grammatical function and the
POS-Tag respectively.

Combining STSs with SV Regression The similar-
ity functions described above provide scores captur-
ing different linguistic aspects and an effective way
to combine such information is made available by
Support Vector (SV) regression, described in (Smola
and Scholkopf, 2004). The idea is to learn a higher
level model by weighting scores according to spe-
cific needs implicit in training data. Given similar-
ity scores Z; for the i-th sentence pair, the regressor
learns a function y; = f(Z;), where y; is the score
provided by human annotators. Moreover, since the
combination of kernel is still a kernel, we can ap-
ply polynomial and RBF kernels (Shawe-Taylor and
Cristianini, 2004) to the regressor.

2.2 Semantic constraints for the Typed STS

Typed STS insists on records, i.e. sequence of typed
textual fields, rather than on individual sentences.
Our aim is to model the typed task with the same
spirit as the core one, through a combination of
different linguistic evidences, which are modeled
through independent kernels. The overall similarity
model described in 2.1 has been thus applied also to
the typed task according to two main model changes:

e Semantic Modeling. Although SV regression
is still applied to model one similarity type,
each type depends on a subset of the multiple
evidences originating from individual fields:
one similarity type acts as a filter on the set of
fields, on which kernels will be then applied.

o Learning Constraints. The selected fields pro-
vide different evidences to the regression steps.
Correspondingly, each similarity type corre-
sponds to specific kernels and features for its
fields. These constraints are applied by select-
ing features and kernels for each field.



dcTitle dcSubject dcDescription dcCreator dcDate dcSource
author - - PER * - -
people_inv.  PER PER PER - - -
time DATE DATE DATE - * -
location Loc Loc Loc - - -
event N, V,NUV N, V,NUV N, V,NUV - - -
subject N,V,J,NUJUV N,V,J,NUJUV - - - -
description - - N, V,J,NUJUV - - -
general + + + * * *

Table 1: Filtering Schema adopted for the Typed STS task.

Notice how some kernels loose significance in the
typed STS task. Syntactic information is no useful
so that no tree kernel and compositional kernel is
applied here. Most of the fields are non-sentential®.
Moreover, not all morpho-syntactic information are
extracted as feature from some fields. Filters usu-
ally specify some syntactic categories or Named En-
tities (NEs): they are textual mentions to specific
real-world categories, such as of PERSONS (PER),
LocATIONS (LoC) or DATES. They are detected
in a field and made available as feature to the cor-
responding kernel: this introduces a bias on typed
measures and emphasizes specific semantic aspects
(e.g. places LOC or persons PER, in location or au-
thor measures, respectively). For example, in the
sentence “The chemist R.S. Hudson began manufac-
turing soap in the back of his small shop in West
Bomich in 18377, when POS tag filters are applied,
only verbs (V), nouns (N) or adjectives (J) can be
selected as features. This allows to focus on spe-
cific actions, e.g. the verb “manufacture”, entities,
e.g. nouns “soap” and “shop”, or some properties,
e.g. the adjective “small”. When Named Entity cat-
egories are used, a mention to a person like “R.S.
Hudson” or to a location, e.g. “West Bomich’, or
date, e.g. “I1837”, can be useful to model the the
person_involved, the location or time similarity mea-
sures, respectively.

The Semantic Modeling and the Learning Con-
straints system adopted to model the Typed STS
task are defined in Table 1. There rows are the
different target similarities, while columns indicate
document fields, such as dcTitle, dcSubject,
dcDate and

dcDescription, dcCreator,

>The dcDescription is also made of multiple sen-
tences and it reduces the applicability of SPTK and SSC: parse
trees have no clear alignment.
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dcSource, as described in the *SEM 2013 shared
task description. Each entry in the Table represents
the feature set for that fields, i.e. POS tags (i.e. V,
N, J) or Named Entity classes. The “x” symbol
corresponds to all features, i.e. no restriction is
applied to any POS tag or NE class. Finally, the
general similarity function makes use of every NE
class and POS tags adopted for that field in any
measure, as expressed by the special notation +, i.e.
“all of the above features”.

Every feature set denoted in the Table 1 sup-
ports the application of a lexical kernel, such as
the LO described in Section 2.1. When different
POS tags are requested (such as N and V) mul-
tiple feature sets and kernels are made available.
The “-” symbol means that the source field is fully
neglected from the SV regression. As an exam-
ple, the SV regressor for the location similarity
has been acquired considering the fields dcTitle,
dcSubject, dcDescription. Only features used
for the kernel correspond to LOCATIONSs (LOC). For
each of the three feature, the LO and SUM simi-
larity function has been applied, giving rise to an
input 6-dimensional feature space for the regressor.
Differently, in the subject similarity, nouns, adjec-
tives and verbs are the only features adopted from
the fields dcSubiject, dcTitle, so that 8 feature
sets are used to model these fields, giving rise to a
16-dimensional feature space.

3 Results and discussion

This section describes results obtained in the *SEM
2013 shared task. The experimental setup of differ-
ent similarity functions is described in Section 3.1.
Results obtained over the Core STS task and Typed
STS task are described in Section 3.2 and 3.3.



3.1 Experimental setup

In all experiments, sentences are processed with the
Stanford CoreNLP? system, for Part-of-Speech tag-
ging, lemmatization, named entity recognition* and
dependency parsing.

In order to estimate the basic lexical similarity
function employed in the SUM, SSC and SPTK
operators, a co-occurrence Word Space is acquired
through the distributional analysis of the UkWaC
corpus (Baroni et al., 2009), a Web document col-
lection made of about 2 billion tokens. The same
setting of (Croce et al., 2012a) has been adopted
for the space acquisition. The same setup described
in (Croce et al., 2012c¢) is applied to estimate the
SSC function. The similarity between pairs of syn-
tactically restricted word compound is evaluated
through a Symmetric model: it selects the best 200
dimensions of the space, selected by maximizing the
component-wise product of each compound as in
(Annesi et al., 2012), and combines the similarity
scores measured in each couple subspace with the
product function. The similarity score in each sub-
space is obtained by summing the cosine similarity
of the corresponding projected words. The “soft car-
dinality” is estimated with the parameter p = 2.

The estimation of the semantically Smoothed Par-
tial Tree Kernel (SPTK) is made available by an ex-
tended version of SVM-LightTK software® (Mos-
chitti, 2006) implementing the smooth matching
between tree nodes. Similarity between lexical
nodes is estimated as the cosine similarity in the
co-occurrence Word Space described above, as in
(Croce et al., 2011). Finally, SVM-LightTK is em-
ployed for the SV regression learning to combine
specific similarity functions.

3.2 Results over the Core STS

In the Core STS task, the resulting text similarity
score is measured by the regressor: each sentence
pair from all datasets is modeled according to a 13
dimensional feature space derived from the different
functions introduced in Section 2.1, as follows.

The first 5 dimensions are derived by applying

3http://nlp.stanford.edu/software/corenlp.shtml

“The TIME and DURATION classes are collapsed with
DATE, while the PERSON and LOCATION classes are consid-
ered without any modification.

5
http://disi.unitn.it/moschitti/Tree-Kernel.htm
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Run; Runs Runs Runj
headlines .635(50) .651(39) .603(58) | .671 (30)
OnWN 574 (33) .561 (36) .549 (40) | .637 (25)
FNWN 352(35) .358(32) .327(44) | 459 ( 7)
SMT 328(39) 310(49) 319 (44) | 348 (21)
Mean 494 (37) 490 (42) 472 (52) ‘ .537 (19)

Table 2: Results over the Core STS task

the LO operator over lemmatized words in the noun,
verb, adjective and adverb POS categories: 4 ker-
nels look at individual categories, while a fifth ker-
nel insists on the union of all POS. A second set of
5 dimensions is derived by the same application of
the SUM operator to the same syntactic selection of
features. The SPTK is then applied to estimate the
similarity between the LCT structures derived from
the dependency parse trees of sentences. Then, the
SPTK is applied to derive an additional score with-
out considering any specific similarity function be-
tween lexical nodes; in this setting, the SPTK can be
considered as a traditional Partial Tree Kernel (Mos-
chitti, 2006), in order to capture a more strict syn-
tactical similarity between texts. The last score is
generated by applying the SSC operator.

We participated in the *SEM challenge with three
different runs. The main difference between each
run is the dataset employed in the training phase
and the employed kernel within the regressor. With-
out any specific information about the test datasets,
a strategy to prevent the regressor to over-fit train-
ing material has been applied. We decided to use
a training dataset that achieved the best results over
datasets radically different from the training material
in the STS challenge of Semeval 2012. In particular,
for the FNWN and OnWN datasets, we arbitrarily
selected the training material achieving best results
over the 2012 surprise.OnWN; for the headlines and
SMT datasets we maximized performance training
over surprise.SMTnews. In Run; the SVM regres-
sor is trained using dataset combinations providing
best results according to the above criteria: MSR-
par, MSRvid, SMTeuroparl and surprise.OnWN are
employed against FNWN and OnWN; MSRpar,
SMTeuroparl and surprise.SMTnews are employed
against headline and SMT. A linear kernel is ap-
plied when training the regressor. In Run,, differ-
ently from the previous one, the SVM regressor is



‘ rank ‘ general ‘ author people_inv. time location event subject description ‘ mean
Run; | 1 7981 | .8158 16922 7471 7723 6835 7875 7996 7620
Runy | 2 7564 | .8076 .6758 7090 7351 6623 7520 7745 7341

Table 3: Results over the Typed STS task

trained using all examples from the training datasets.
A linear kernel is applied when training the regres-
sor. Finally, in Runz the same training dataset selec-
tion schema of Run; is applied and a gaussian kernel
is employed in the regressor.

Table 2 reports the general outcome for the UN-
ITOR systems in term of Pearson Correlation. The
best system, based on the linear kernel, ranks around
the 35" position (out of 90 systems), that reflects
the mean rank of all the systems in the ranking of
the different datasets. The gaussian kernel, em-
ployed for the Runs does not provide any contri-
bution, as it ranks 50", We think that the main
reason of these results is due to the intrinsic dif-
ferences between training and testing datasets that
have been heuristically coupled. This is first mo-
tivated by lower rank achieved by Runs. More-
over, it is in line with the experimental findings of
(Croce et al., 2012a), where a performance drop is
shown when the regressor is trained over data that
is not constrained over the corresponding source.
In Runj we thus optimized the system by manu-
ally selecting the training material that does provides
best performance on the test dataset: MSRvid, SM-
Teuroparl and surprise.OnWN are employed against
OnWN; surprise.OnWN against FNWN, SMTeu-
roparl against headlines; SMTeuroparl and sur-
prise.SMTnews against SMT. A linear kernel within
the regressor allow to reach the 19" position, even
reducing the complexity of the representation to a
five dimensional feature space: LO and SUM with-
out any specific filter, SPTK, PTK and SSC.

3.3 Results over the Typed STS

SV regression has been also applied to the Typed
STS task through seven type-specific regressors plus
a general one. Each SV regressor insists on the LO
and SUM kernel as applied to the features in Table
1. Notice that it was mainly due to the lack of rich
syntactic structures in almost all fields.

As described in Section 2.2, a specific modeling
strategy has been applied to derive the feature space
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of each target similarity. For example, the regres-
sor associated with the event similarity score is fed
with 18 scores. Each of the 3 fields, , i.e. dcTitle,
dcSubject and dcDescription, provides the 2
kernels (LO and SUM) with 3 feature sets (i.e. IV,
V and N U V). In particular, the general simi-
larity function considers all extracted features for
each field, giving rise to a space of 51 dimensions.
We participated in the task with two different runs,
whose main difference is the adopted kernel within
the SV regressor. In Runy, a linear kernel is used,
while in Runy a RBF kernel is applied.

Table 3 reports the general outcome for the UN-
ITOR system. The adopted semantic modeling, as
well as the selection of the proper information, e.g.
the proper named entity, allows the system to rank
in the 1% and 2" positions (out of 18 systems). The
proposed selection schema in Table 1 is very effec-
tive, as confirmed by the results for almost all typed
similarity scores. Again, the RBF kernel does not
improve result over the linear kernel. The impact
of the proposed approach can be noticed for very
specific scores, such as time and location, especially
for text pairs where structured information is absent,
such as in the dcDate field. Moreover, the regres-
sor is not affected by the differences between train-
ing and test dataset as for the previous Core STS
task. A deep result analysis showed that some simi-
larity scores are not correctly estimated within pairs
showing partial similarities. For example, the events
or actions typed similarity is overestimated for the
texts pairs “The Octagon and Pavilions, Pavilion
Garden, Buxton, ¢ 1875 and “The Beatles, The Oc-
tagon, Pavillion Gardens, St John’s Road, Buxton,
1963” because they mention the same location (i.e.
“Pavillion Gardens”).
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Abstract

The paper outlines the work carried out at
NTNU as part of the *SEM’13 shared task
on Semantic Textual Similarity, using an ap-
proach which combines shallow textual, dis-
tributional and knowledge-based features by
a support vector regression model. Feature
sets include (1) aggregated similarity based
on named entity recognition with WordNet
and Levenshtein distance through the calcula-
tion of maximum weighted bipartite graphs;
(2) higher order word co-occurrence simi-
larity using a novel method called ‘“Multi-
sense Random Indexing”; (3) deeper seman-
tic relations based on the RelEx semantic
dependency relationship extraction system;
(4) graph edit-distance on dependency trees;
(5) reused features of the TakeLab and DKPro
systems from the STS’12 shared task. The
NTNU systems obtained 9th place overall (5th
best team) and 1st place on the SMT data set.

1 Introduction

Intuitively, two texts are semantically similar if they
roughly mean the same thing. The task of formally
establishing semantic textual similarity clearly is
more complex. For a start, it implies that we have
a way to formally represent the intended meaning of
all texts in all possible contexts, and furthermore a
way to measure the degree of equivalence between
two such representations. This goes far beyond the
state-of-the-art for arbitrary sentence pairs, and sev-
eral restrictions must be imposed. The Semantic
Textual Similarity (STS) task (Agirre et al., 2012,
2013) limits the comparison to isolated sentences
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only (rather than complete texts), and defines sim-
ilarity of a pair of sentences as the one assigned by
human judges on a 0-5 scale (with 0 implying no
relation and 5 complete semantic equivalence). It is
unclear, however, to what extent two judges would
agree on the level of similarity between sentences;
Agirre et al. (2012) report figures on the agreement
between the authors themselves of about 87-89%.

As in most language processing tasks, there are
two overall ways to measure sentence similarity, ei-
ther by data-driven (distributional) methods or by
knowledge-driven methods; in the STS’12 task the
two approaches were used nearly equally much.
Distributional models normally measure similarity
in terms of word or word co-occurrence statistics, or
through concept relations extracted from a corpus.
The basic strategy taken by NTNU in the STS 13
task was to use something of a “feature carpet bomb-
ing approach” in the way of first automatically ex-
tracting as many potentially useful features as possi-
ble, using both knowledge and data-driven methods,
and then evaluating feature combinations on the data
sets provided by the organisers of the shared task.

To this end, four different types of features were
extracted. The first (Section 2) aggregates similar-
ity based on named entity recognition with WordNet
and Levenshtein distance by calculating maximum
weighted bipartite graphs. The second set of features
(Section 3) models higher order co-occurrence sim-
ilarity relations using Random Indexing (Kanerva
et al., 2000), both in the form of a (standard) sliding
window approach and through a novel method called
“Multi-sense Random Indexing” which aims to sep-
arate the representation of different senses of a term

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 6673, Atlanta, Georgia, June 13-14, 2013. (©2013 Association for Computational Linguistics



from each other. The third feature set (Section 4)
aims to capture deeper semantic relations using ei-
ther the output of the RelEx semantic dependency
relationship extraction system (Fundel et al., 2007)
or an in-house graph edit-distance matching system.
The final set (Section 5) is a straight-forward gath-
ering of features from the systems that fared best in
STS’12: TakeLab from University of Zagreb (Sari¢
et al., 2012) and DKPro from Darmstadt’s Ubiqui-
tous Knowledge Processing Lab (Bér et al., 2012).

As described in Section 6, Support Vector Regres-
sion (Vapnik et al., 1997) was used for solving the
multi-dimensional regression problem of combining
all the extracted feature values. Three different sys-
tems were created based on feature performance on
the supplied development data. Section 7 discusses
scores on the STS’12 and STS 13 test data.

2 Compositional Word Matching

Compositional word matching similarity is based
on a one-to-one alignment of words from the two
sentences. The alignment is obtained by maximal
weighted bipartite matching using several word sim-
ilarity measures. In addition, we utilise named entity
recognition and matching tools. In general, the ap-
proach is similar to the one described by Karnick
et al. (2012), with a different set of tools used. Our
implementation relies on the ANNIE components in
GATE (Cunningham et al., 2002) and will thus be
referred to as GateWordMatch.

The processing pipeline for GateWordMatch
is: (1) tokenization by ANNIE English Tokeniser,
(2) part-of-speech tagging by ANNIE POS Tagger,
(3) lemmatization by GATE Morphological Anal-
yser, (4) stopword removal, (5) named entity recog-
nition based on lists by ANNIE Gazetteer, (6) named
entity recognition based on the JAPE grammar by
the ANNIE NE Transducer, (7) matching of named
entities by ANNIE Ortho Matcher, (8) computing
WordNet and Levenstein similarity between words,
(9) calculation of a maximum weighted bipartite
graph matching based on similarities from 7 and 8.

Steps 1-4 are standard preprocessing routines.
In step 5, named entities are recognised based on
lists that contain locations, organisations, compa-
nies, newspapers, and person names, as well as date,
time and currency units. In step 6, JAPE grammar
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rules are applied to recognise entities such as ad-
dresses, emails, dates, job titles, and person names
based on basic syntactic and morphological features.
Matching of named entities in step 7 is based on
matching rules that check the type of named entity,
and lists with aliases to identify entities as “US”,
“United State”, and “USA” as the same entity.

In step 8, similarity is computed for each pair
of words from the two sentences. Words that are
matched as entities in step 7 get a similarity value
of 1.0. For the rest of the entities and non-entity
words we use LCH (Leacock and Chodorow, 1998)
similarity, which is based on a shortest path between
the corresponding senses in WordNet. Since word
sense disambiguation is not used, we take the simi-
larity between the nearest senses of two words. For
cases when the WordNet-based similarity cannot be
obtained, a similarity based on the Levenshtein dis-
tance (Levenshtein, 1966) is used instead. It is nor-
malised by the length of the longest word in the pair.
For the STS’13 test data set, named entity matching
contributed to 4% of all matched word pairs; LCH
similarity to 61%, and Levenshtein distance to 35%.

In step 9, maximum weighted bipartite matching
is computed using the Hungarian Algorithm (Kuhn,
1955). Nodes in the bipartite graph represent words
from the sentences, and edges have weights that cor-
respond to similarities between tokens obtained in
step 8. Weighted bipartite matching finds the one-to-
one alignment that maximizes the sum of similarities
between aligned tokens. Total similarity normalised
by the number of words in both sentences is used as
the final sentence similarity measure.

3 Distributional Similarity

Our distributional similarity features use Random
Indexing (RI; Kanerva et al., 2000; Sahlgren, 2005),
also employed in STS’12 by Tovar et al. (2012);
Sokolov (2012); Semeraro et al. (2012). It is an
efficient method for modelling higher order co-
occurrence similarities among terms, comparable to
Latent Semantic Analysis (LSA; Deerwester et al.,
1990). It incrementally builds a term co-occurrence
matrix of reduced dimensionality through the use of
a sliding window and fixed size index vectors used
for training context vectors, one per unique term.

A novel variant, which we have called “Multi-



sense Random Indexing” (MSRI), inspired by
Reisinger and Mooney (2010), attempts to capture
one or more “senses” per unique term in an unsu-
pervised manner, each sense represented as an indi-
vidual vector in the model. The method is similar to
classical sliding window RI, but each term can have
multiple context vectors (referred to as “sense vec-
tors” here) which are updated individually. When
updating a term vector, instead of directly adding the
index vectors of the neighbouring terms in the win-
dow to its context vector, the system first computes a
separate window vector consisting of the sum of the
index vectors. Then cosine similarity is calculated
between the window vector and each of the term’s
sense vectors. Each similarity score is in turn com-
pared to a set similarity threshold: if no score ex-
ceeds the threshold, the sentence vector is added as
a new separate sense vector for the term; if exactly
one score is above the threshold, the window vector
is added to that sense vector; and if multiple scores
are above the threshold, all the involved senses are
merged into one sense vector, together with the win-
dow vector. This accomplishes an incremental clus-
tering of senses in an unsupervised manner while re-
taining the efficiency of classical RI.

As data for training the models we used the
CLEF 2004-2008 English corpus (approx. 130M
words). Our implementation of RI and MSRI is
based on JavaSDM (Hassel, 2004). For classical
RI, we used stopword removal (using a customised
versions of the English stoplist from the Lucene
project), window size of 4+4, dimensionality set to
1800, 4 non-zeros, and unweighted index vector in
the sliding window. For MSRI, we used a simi-
larity threshold of 0.2, a vector dimensionality of
800, a non-zero count of 4, and window size of
5+5. The index vectors in the sliding window were
shifted to create direction vectors (Sahlgren et al.,
2008), and weighted by distance to the target term.
Rare senses with a frequency below 10 were ex-
cluded. Other sliding-window schemes, including
unweighted non-shifted vectors and Random Permu-
tation (Sahlgren et al., 2008), were tested, but none
outperformed the sliding-window schemes used.

Similarity between sentence pairs was calcu-
lated as the normalised maximal bipartite similar-
ity between term pairs in each sentence, resulting
in the following features: (1) MSRI-Centroid:
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each term is represented as the sum of its sense
vectors; (2) MSRI-MaxSense: for each term
pair, the sense-pair with max similarity is used;
(3) MSRI-Context: for each term, its neigh-
bouring terms within a window of 242 is used as
context for picking a single, max similar, sense
from the target term to be used as its represen-
tation; (4) MSRI-HASenses: similarity between
two terms is computed by applying the Hungarian
Algorithm to all their possible sense pair mappings;
(5) RI-Avg: classical RI, each term is represented
as a single context vector; (6) RI-Hungarian:
similarity between two sentences is calculated us-
ing the Hungarian Algorithm. Alternatively, sen-
tence level similarity was computed as the cosine
similarity between sentence vectors composed of
their terms’ vectors. The corresponding features
are (1) RI-SentVectors—Norm: sentence vec-
tors are created by summing their constituent terms
(i.e., context vectors), which have first been normal-
ized; (2) RI-SentVectors—-TFIDF: same as be-
fore, but TF*IDF weights are added.

4 Deeper Semantic Relations

Two deep strategies were employed to accompany
the shallow-processed feature sets. Two existing
systems were used to provide the basis for these fea-
tures, namely the RelEx system (Fundel et al., 2007)
from the OpenCog initiative (Hart and Goertzel,
2008), and an in-house graph-edit distance system

developed for plagiarism detection (Rgkenes, 2013).
RelEx outputs syntactic trees, dependency graphs,

and semantic frames as this one for the sentence

“Indian air force to buy 126 Rafale fighter jets’:

Commerce_buy:Goods (buy, jet)
Entity:Entity (jet, jet)

Entity:Name (jet,Rafale)
Entity:Name (jet, fighter)
Possibilities:Event (hyp, buy)

Request :Addressee (air, you)
Request:Message (air,air)
Transitive_action:Beneficiary (buy, jet)

Three features were extracted from this: first, if
there was an exact match of the frame found in s;
with s9; second, if there was a partial match until the
first argument (Commerce_buy:Goods (buy);
and third if there was a match of the frame category



(Commerce_buy:Goods).

In STS’12, Singh et al. (2012) matched Universal
Networking Language (UNL) graphs against each
other by counting matches of relations and univer-
sal words, while Bhagwani et al. (2012) calculated
WordNet-based word-level similarities and created
a weighted bipartite graph (see Section 2). The
method employed here instead looked at the graph
edit distance between dependency graphs obtained
with the Maltparser dependency parser (Nivre et al.,
2006). Edit distance is the defined as the minimum
of the sum of the costs of the edit operations (in-
sertion, deletion and substitution of nodes) required
to transform one graph into the other. It is approx-
imated with a fast but suboptimal algorithm based
on bipartite graph matching through the Hungarian
algorithm (Riesen and Bunke, 2009).

5 Reused Features

The TakeLab ‘simple’ system (§arié etal., 2012) ob-
tained 3rd place in overall Pearson correlation and
Ist for normalized Pearson in STS’12. The source
code! was used to generate all its features, that is,
n-gram overlap, WordNet-augmented word overlap,
vector space sentence similarity, normalized differ-
ence, shallow NE similarity, numbers overlap, and
stock index features.”> This required the full LSA
vector space models, which were kindly provided
by the TakeLab team. The word counts required for
computing Information Content were obtained from
Google Books Ngrams.?

The DKPro system (Bir et al., 2012) obtained first
place in STS’12 with the second run. We used the
source code* to generate features for the STS’12
and STS’13 data. Of the string-similarity features,
we reused the Longest Common Substring, Longest
Common Subsequence (with and without normaliza-
tion), and Greedy String Tiling measures. From the
character/word n-grams features, we used Charac-
ter n-grams (n = 2,3,4), Word n-grams by Con-
tainment w/o Stopwords (n = 1,2), Word n-grams

'nttp://takelab.fer.hr/sts/

2We did not use content n-gram overlap or skip n-grams.

*http://storage.googleapis.com/books/
ngrams/books/datasetsv2.html, version 20120701,
with 468,491,999,592 words

‘nttp://code.google.com/p/
dkpro-similarity-asl/
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by Jaccard (n = 1, 3,4), and Word n-grams by Jac-
card w/o Stopwords (n = 2,4). Semantic similarity
measures include WordNet Similarity based on the
Resnik measure (two variants) and Explicit Seman-
tic Similarity based on WordNet, Wikipedia or Wik-
tionary. This means that we reused all features from
DKPro run 1 except for Distributional Thesaurus.

6 Systems

Our systems follow previous submissions to the STS
task (e.g., Sari¢ et al., 2012; Banea et al., 2012) in
that feature values are extracted for each sentence
pair and combined with a gold standard score in or-
der to train a Support Vector Regressor on the result-
ing regression task. A postprocessing step guaran-
tees that all scores are in the [0, 5] range and equal 5
if the two sentences are identical. SVR has been
shown to be a powerful technique for predictive data
analysis when the primary goal is to approximate a
function, since the learning algorithm is applicable
to continuous classes. Hence support vector regres-
sion differs from support vector machine classifica-
tion where the goal rather is to take a binary deci-
sion. The key idea in SVR is to use a cost function
for building the model which tries to ignore noise in
training data (i.e., data which is too close to the pre-
diction), so that the produced model in essence only
depends on a more robust subset of the extracted fea-
tures.

Three systems were created using the supplied
annotated data based on Microsoft Research Para-
phrase and Video description corpora (MSRpar and
MSvid), statistical machine translation system out-
put (SMTeuroparl and SMTnews), and sense map-
pings between OntoNotes and WordNet (OnWN).
The first system (NTNU1) includes all TakeLab and
DKPro features plus the GateWordMatch feature
with the SVR in its default setting.’ The training
material consisted of all annotated data available,
except for the SMT test set, where it was limited to
SMTeuroparl and SMTnews. The NTNU2 system is
similar to NTNUI1, except that the training material
for OnWN and FNWN excluded MSRvid and that
the SVR parameter C' was set to 200. NTNU3 is
similar to NTNUT1 except that all features available
are included.

SRBF kernel, € = 0.1, C' = #samples, v = 1

# features



Data NTNUI ~ NTNU2  NTNU3 NTNU1 NTNU2 NTNU3

MSRpar 0.7262 0.7507 0.7221 Data " " " n " "
MSRvid 0.8660 0.8882 0.8662 Head 07279 11 05909 59 07274 12
SMTeuroparl 0.5843 0.3386 0.5503 OnWN 05952 31 0.1634 86 0.5882 32
SMThnews 0.5840 0.5592 0.5306 FNWN 03215 45 03650 27 03115 49
OnWN 0.7503 0.6365 0.7200 SMT 04015 2 0378 9 04035 1
mean 0.7022 0.6346 0.6779 mean 05519 9 03946 68 05498 12

Table 1: Correlation score on 2012 test data

7 Results

System performance is evaluated using the Pearson
product-moment correlation coefficient (r) between
the system scores and the human scores. Results on
the 2012 test data (i.e., 2013 development data) are
listed in Table 1. This basically shows that except
for the GateWordMatch, adding our other fea-
tures tends to give slightly lower scores (cf. NTNU1
vs NTNU3). In addition, the table illustrates that op-
timizing the SVR according to cross-validated grid
search on 2012 training data (here C' = 200), rarely
pays off when testing on unseen data (cf. NTNUI1
vs NTNU2).

Table 2 shows the official results on the test data.
These are generally in agreement with the scores on
the development data, although substantially lower.
Our systems did particularly well on SMT, holding
first and second position, reasonably good on head-
lines, but not so well on the ontology alignment data,
resulting in overall 9th (NTNU1) and 12th (NTNU3)
system positions (Sth best team). Table 3 lists the
correlation score and rank of the ten best individual
features per STS 13 test data set, and those among
the top-20 overall, resulting from linear regression
on a single feature. Features in boldface are gen-
uinely new (i.e., described in Sections 2—4).

Overall the character n-gram features are the most
informative, particularly for HeadLine and SMT.
The reason may be that these not only capture word
overlap (Ahn, 2011), but also inflectional forms and
spelling variants.

The (weighted) distributional similarity features
based on NYT are important for HeadLine and SMT,
which obviously contain sentence pairs from the
news genre, whereas the Wikipedia based feature is
more important for OnWN and FNWN. WordNet-
based measures are highly relevant too, with variants
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Table 2: Correlation score and rank on 2013 test data

relying on path length outperforming those based on
Resnik similarity, except for SMT.

As is to be expected, basic word and lemma uni-
gram overlap prove to be informative, with overall
unweighted variants resulting in higher correlation.
Somewhat surprisingly, higher order n-gram over-
laps (n > 1) seem to be less relevant. Longest com-
mon subsequence and substring appear to work par-
ticularly well for OnWN and FNWN, respectively.

GateWordMatch is highly relevant too, in
agreement with earlier results on the development
data. Although treated as a single feature, it is ac-
tually a combination of similarity features where an
appropriate feature is selected for each word pair.
This “vertical” way of combining features can po-
tentially provide a more fine-grained feature selec-
tion, resulting in less noise. Indeed, if two words are
matching as named entities or as close synonyms,
less precise types of features such as character-based
and data-driven similarity should not dominate the
overall similarity score.

It is interesting to find that MSRI outper-
forms both classical RI and ESA (Gabrilovich and
Markovitch, 2007) on this task. Still, the more ad-
vanced features, such as MSRI-Context, gave in-
ferior results compared to MSRI-Centroid. This
suggests that more research on MSRI is needed
to understand how both training and retrieval can
be optimised.  Also, LSA-based features (see
tl.weight-dist-sim-wiki) achieve better
results than both MSRI, RI and ESA. Then again,
larger corpora were used for training the LSA mod-
els. RI has been shown to be comparable to LSA
(Karlgren and Sahlgren, 2001), and since a relatively
small corpus was used for training the RI/MSRI
models, there are reasons to believe that better
scores can be achieved by both RI- and MSRI-based
features by using more training data.



HeadLine OnWN FNWN SMT Mean
Features T n T n r n r n r n
CharacterNGramMeasure-3 0.72 2 0.39 2 0.44 3 0.70 1 0.56 1
CharacterNGramMeasure—4 0.69 3 0.38 5 0.45 2 0.67 6 0.55 2
CharacterNGramMeasure-2 0.73 1 037 9 034 10 0.69 2 053 3
tl.weight-dist-sim-wiki 0.58 14 0.39 3 0.45 1 0.67 5 052 4
tl.wn-sim-lem 0.69 4 040 1 0.41 5 0.59 10 0.52 5
GateWordMatch 0.67 8 037 11 034 11 0.60 9 0.50 6
tl.dist-sim-nyt 0.69 5 034 28 0.26 23 0.65 8 049 7
tl.n-gram—match-lem-1 0.68 6 036 16 0.37 8 0.51 14 048 8
tl.weight-dist-sim-nyt 057 17 037 14 029 18 0.66 7 047 9
tl.n-gram-match-1lc-1 0.68 7 037 10 032 13 0.50 17 047 10
MCS06-Resnik-WordNet 049 26 036 22 0.28 19 0.68 3 045 11
TWSI-Resnik—-WordNet 049 27 036 23 028 20 0.68 4 045 12
tl.weight-word-match-lem 056 18 037 16 0.37 7 050 16 045 13
MSRI-Centroid 060 13 036 17 037 9 045 19 045 14
tl.weight-word-match-olc 056 19 0.38 8 032 12 051 15 044 15
MSRI-MaxSense 058 15 036 15 031 14 045 20 042 16
GreedyStringTiling-3 0.67 9 0.38 6 0.31 15 034 29 043 17
ESA-Wikipedia 050 25 030 38 032 14 054 12 042 18
WordNGramJaccard-1 064 10 037 12 025 25 033 30 040 19
WordNGramContainment-1-stopword 0.64 25 0.38 7 025 24 032 31 040 20
RI-Hungarian 058 16 033 31 0.10 34 042 22 036 24
RI-AvgTermTerm 056 20 033 32 0.11 33 037 28 034 25
LongestCommonSubstring 040 29 030 39 0.42 4 037 27 037 26
ESA-WordNet 0.11 43 030 40 041 6 049 18 033 29
LongestCommonSubsequenceNorm 053 21 0.39 4 019 27 018 37 032 30
MultisenseRI-ContextTermTerm 039 31 033 33 0.28 21 0.15 38 029 33
MultisenseRI-HASensesTermTerm 039 32 033 34 0.28 22 0.15 39 029 34
RI-SentVectors-Norm 034 35 035 26 -001 51 024 35 023 39
RelationSimilarity 031 39 035 27 024 26 0.02 41 023 40
RI-SentVectors-TFIDF 0.27 40 0.15 50 0.08 40 0.23 36 0.18 41
GraphEditDistance 033 38 025 46 013 31 -0.11 49 0.15 42

Table 3: Correlation score and rank of the best features

8 Conclusion and Future Work

The NTNU system can be regarded as continuation
of the most successful systems from the STS’12
shared task, combining shallow textual, distribu-
tional and knowledge-based features into a support
vector regression model. It reuses features from the
TakeLab and DKPro systems, resulting in a very
strong baseline.

Adding new features to further improve
performance turned out to be hard:  only
GateWordMatch yielded improved perfor-
mance. Similarity features based on both classical
and innovative variants of Random Indexing were
shown to correlate with semantic textual similarity,
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but did not complement the existing distributional
features. Likewise, features designed to reveal
deeper syntactic (graph edit distance) and semantic
relations (RelEx) did not add to the score.

As future work, we would aim to explore a
vertical feature composition approach similar to
GateWordMatch and contrast it with the “flat”
composition currently used in our systems.
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Abstract

This paper describes our system submitted to
*SEM 2013 Semantic Textual Similarity (STS)
core task which aims to measure semantic si-
milarity of two given text snippets. In this
shared task, we propose an interpolation STS
model named Model LIM integrating Fra-
meNet parsing information, which has a good
performance with low time complexity com-
pared with former submissions.

1 Introduction

The goal of Semantic Textual Similarity (STS) is
to measure semantic similarity of two given text
snippets. STS has been recently proposed by
Agirre et al. (2012) as a pilot task, which has close
relationship with both tasks of Textual Entailment
and Paraphrase, but not equivalent with them and it
is more directly applicable to a number of NLP
tasks such as Question Answering (Lin and Pantel,
2001), Text Summarization (Hatzivassiloglou et al.,
1999), etc. And yet, the acquiring of sentence simi-
larity has been the most important and basic task in
STS. Therefore, the STS core task of *SEM 2013
conference, is formally defined as the degree of
semantic equivalence between two sentences as
follows:

e 5. completely equivalent, as they mean
the same thing.

e 4: mostly equivalent, but some unimpor-
tant details differ.
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3: roughly equivalent, but some impor-
tant information differs/missing.

2: not equivalent, but share some details.
1: not equivalent, but are on the same top-
ic.

0: on different topics.

In this paper, we attempt to integrate semantic
information into STS task besides the lower-level
word and syntactic information. Evaluation results
show that our STS model could benefit from se-
mantic parsing information of two text snippets.
The rest of the paper is organized as follows: Sec-
tion 2 reviews prior researches on STS. Section 3
illustrates three models measuring text similarity.
Section 4 describes the linear interpolation model
in detail. Section 5 provides the experimental re-
sults on the development set as well as the official
results on all published datasets. Finally, Section 6
summarizes our paper with direction for future
works.

2 Related Work

Several techniques have been developed for STS.
The typical approach to finding the similarity be-
tween two text segments is to use simple word
matching method. In order to improve this simple
method, Mihalcea et al. (2006) combine two cor-
pus-based and six knowledge-based measures of
word similarity, but the cost of their algorithm is
expensive. In contrast, our method treats words
and texts in essentially the same way.

In 2012 STS task, 35 teams participate and sub-
mit 88 runs. The two top scoring systems are UKP

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 74-79, Atlanta, Georgia, June 13-14, 2013. (©2013 Association for Computational Linguistics



and Takelab. The former system (Bér et al., 2012)
uses a simple log-linear regression model to com-
bine multiple text similarity measures (related to
content, structure and style) of varying complexity.
While the latter system Takelab (Sari¢ et al., 2012)
uses a support vector regression model with mul-
tiple features measuring word-overlap similarity
and syntax similarity.

The results of them score over 80%, far exceed-
ing that of a simple lexical baseline. But both share
one characteristic: they integrate lexical and syntax
information without semantic information, espe-
cially FrameNet parsing information. In addition,
the complexity of these algorithms is very high.
Therefore, we propose a different and simple mod-
el integrating FrameNet parsing information in this

paper.
3 Linear Interpolation Model

In this paper, we propose a combination interpola-
tion model which is constructed by the results of
three similarity models based on words, WordNet,
FrameNet , which are called simpyp(*), simwn() and
simpyn(+) respectively. The overall similarity
simpm(S;, S») between a pair of texts S;, S, is com-
puted in the following equation:

simp(S1, S2)= @; - simyp(Sy, S2) (D
+a@; * simpyn(S1, Sz) tws - simen(S), S5)

In which, w;, @, and w; are respectively the
weights of the similarity models, i.e., w; +w; +w;
= 1; and they are all positive hyperparameters.
Now, we describe the three models used in this
equation.

3.1 Similarity Based on Words

This model is motivated by Vector Space Model
(Salton et al., 1975). We present each sentence as a
vector in the multidimensional token space. Let S.
denote the set of all words in the c-th text snippets
(c = 1, 2); the words of bag is W = §; US,. Hence,
the similarity of a pair of sentences, formally ex-
pressed as:
SimWD(S], Sg) =

Wl wa
i=1 1,0 2,1

2
\/ZLQ wyi?- \/ZL‘Q wo,i? ( )

In which, we can find w,, € W(k = 1,2, ..., |W|;
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¢ = 1,2) by solving:

w _ {1: if Wek € Sc (3)

¢k 1o, otherwise

From these two equations above, we can see the
more identical words in a text pair, the more simi-
lar the two snippets are. Whereas, by intuition,
many high-frequency functional words would not
be helpful to the estimation of the similarity given
in Eq.(2). Therefore, in the preprocessing stage, we
compute the word frequencies per dataset, and then
remove the high frequency words (top 1% in fre-
quency list) in each segment.

3.2 Similarity Based on WordNet

This model measures semantic similarity with the
help of such resources that specifically encode re-
lations between words or concepts like WordNet
(Fellbaum, 1998). We use the algorithms by Lin
(1998) on WordNet to compute the similarity be-
tween two words a and b, which we call simy;,(a,
b). Let §;, S be the two word sets of two given text
snippets, we use the method below:

simyn(S1, S2) 4)

Zmin(|51|.I52|)

i=1 max (simpin(Wyi - W ;)

min(|Sy,1S21)

In which, w.; € S.(c = 1,2). In the numerator of
Eq.(4),we try to max(*), avg(*) and mid(:) respec-
tively, then we find the max(*) is the best.

3.3 Similarity Based on FrameNet

FrameNet lexicon (Fillmore et al., 2003) is a rich
linguistic resource containing expert knowledge
about lexical and predicate-argument semantics in
English. In a sentence, word or phrase tokens that
evoke a frame are known as targets. Each frame
definition also includes a set of frame elements, or
roles, corresponding to different aspects of the
concept represented by the frame, such as partici-
pants, props, and attributes. We use the term ar-
gument to refer to a sequence of word tokens
annotated as filling a frame role.

All the data are automatically parsed by
SEMFOR' (Das and Smith, 2012; Das and Smith,

!'See http://www.ark.cs.cmu.edu/SEMAFOR/.



2011). Figure 1 shows the parser output of a sen-
tence pair given in Microsoft Research Video De-
scription Corpus with annotated targets, frames
and role argument pairs. It can be noticed that
FrameNet parsing information could give some
clues of the similarity of two given snippets and
we think that integrating this information could
improve the accuracy of STS task. For example,
the sentences in the Figure 1 both illustrate “some-
body is moving”. However, our model depends on
the precision of that parser. If it would be im-
proved, the results in STS task would be better.

PegeLe SELF_MOTION
ta) ., Girls . are walking .on the stage.,
g'ie].f__n.-:-'.'e-lé Frrreress AL @2 usrsenndd
5....P-31.'sc|w.....§
PegrLE VRH'T--L.: SevF_morion Dirgcrion
(1-3] Women . .models . are walking ;dwni a catwalk.

iPersent

%.-m-Self MOVEE ..
) fpath!

Figure 1: This is a pair of sentences in 2013 STS train-
ing data: (a) Girls are walking on the stage, (b) Women
models are walking down a catwalk. The words in bold
correspond to targets, which evoke semantic frames that
are denoted in capital letters. Every frame is shown in a
distinct color; the arguments of each frame are anno-
tated with the same color, and marked below the sen-
tence, at different levels; the spans marked in the block
of dotted liens fulfill a specific role.

For a given sentence S. (¢ = 1,2) with a set of
evoked frame F,. = < f,,f5, ..., f, > (n is the number
of evoked frames), a set of target word with each
frame 7, = < ¢, t5, ..., t, > and the set of roles
(namely, frame elements) #. = {R.;, R.o ...,Rcnft,
each frame contains one or more arguments
Rey={r} (i=1 2 .., n; jis an integer that is
greater or equal to zero). Take Figure 1 as an ex-
ample,

T, = <grils, walking>,
F; = <PEOPLE, SELF MOTION>,
JH=1{R11, Ry},

R, ;= {girls},

R;, = {girls, on the stage};

T, = <women, models, walking, down>,

F,=<PEOPLE, VEHICLE,
SELF_MOTION, DIRECTION>,
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I ={Rs1, Rop, Ro3, Rof,
R, ;= {women}, R,, = {models},
R, ;= {women models}, R, ,= {down}.

In order to compute simg,(-) simply, we also use
a interpolation model to combine the similarities
based on target words simpe(-), frames simg,(-) and
frame relations simg.(*). They are estimated as the
following:

When computing the similarity on target word
level simzq(S;, S;), we also consider each sentence
as a vector of target words as is seen in Eq.(5).

T:T]UTZ,'
)

IT|
Yizq t1i-tai
T 2 T 2
\/Z|i=|1 t1,i" - \/Zizll Lo

In which, we can find t., € T(k =1,2,...,|T|;
¢ = 1,2) by solving:

Sing(S], Sg):

1, if foj€EF,andt,, €T, (6)
tC,k = (] = 112' LD |F|)
0, otherwise

Let simg,(S;, S») be the similarity on frame level
as shown in Eq.(7), with each sentence as a vector
of frames. We define f; ;, f>; like w, x in Eq.(3).

F= F] v Fg,’
Zﬁ'l fiifai ¥
F F
\/ZLll fii® \/ Lll fai®

Before computing the role relationship between
the pair of sentences, we should find the contain-
ment relationship of each pair of frames in one
sentence. We use a rule to define the containment
relationship:

Given two frames f.; f.; in a sentence S, if
tej € Rej (L # J), then f.; contains f.; - and that is
Jei s a child of f.,. After that we add them into the
set of frame relationship Rlt. = (< fC’_‘i, fC’fj >

Yi=o = (relci)i=o (k = 0).

We consider the relationship between two
frames in a sentence as a 2-tuple, and again use
Figure 1 as an example,

RIt; = (<PEOPLE, SELF_MOTION>);

RIt, = (<PEOPLE, SELF_MOTION>,

<VEHICLE, SELF_MOTION >).

simFr(S1, Sg):




Besides, we do exactly the same with both
frames, namely rel.; € Rlt, (¢ = 1,2) the value
of rel.; is 1. The similarity on frame relationship
level simg.(S;, S,) presents each sentence as a vec-
tor of roles as shown in Eq.(8).

RIt = RIt; URIty; (8)
|.th|

. =1
Simgpe(S;, S3)=

IRUt| oy 2. [gIRUE ., 2

i=1 re 1, ° i=1 re 2,i

Lastly, the shallow semantic similarity between
two given sentences is computed as:

relyj-rely;

SimFN(S1, Sg): a - Simrg(Sj, Sg) (9)
+ﬂ : SimFV(SI’ SZ) +V : SimRe(SI’ SZ)

In which, a + f + y =1, and they are all positive
hyperparameters. As shown in Figure 2, we plot
the Pearson correlation (vertical axis) against the
combination of parameters (horizontal axis) in all
2013 STS train data (2012 STS data). We notice
that generally the Pearson correlation is fluctuates,
and the correlation peak is found at 32, which in
Table 1 is a=0.6, =0.3, y=0.1.

1D a )i y 1D a p y 1D a )i y
1 1 0 0 23 |07 02 01 45 0 04 06
2 109 0 01 [ 24 |06 02 021 46|05 05 0
3 0.8 0 0225105 02 034704 05 0.1
4 107 0 03[ 26|04 02 04148 ]03 05 02
5 0.6 0 0427 |03 02 0514 |02 05 03
6 |05 0 052802 02 065 |01 05 04
7 104 0 06 [ 29 |01 02 07] 51 0 0.5 05
8 103 0 0.7 [ 30 0 02 08 ] 52 |04 0.6 0
9 [ 02 0 08 || 31 | 07 03 0 53103 06 0.1
10 | 0.1 0 0932 |06 03 01]5]02 06 02
11 0 0 1 33 /05 03 025 |01 06 03
12 109 0.1 0 34 |04 03 03] 56 0 0.6 04
13 /08 01 011]35]03 03 04 57]03 07 0
14 107 01 02136 [02 03 05]581]02 07 0.1
1506 01 03]37]01 03 065 ]01 07 02
16 | 05 01 04 38 0 03 0.7 || 60 0 0.7 03
17 104 01 05139 ]06 04 0 61 | 02 08 0
18 /]03 01 06140 |05 04 0.1 J62]01 08 0.1
19 102 01 071 41 |04 04 02] 63 0 0.8 02
20 /01 01 08 4 |03 04 03] 64]01 09 0
21 0 0.1 091 43|02 04 04| 65 0 09 0.1
22 | 08 02 0 44 | 0.1 04 05 | 66 0 1 0

Table 1: Different combinations of o, §, y (a + f +
y =I) with ID that is horizontal axis in Figure 2.
This table also apples to different combinations of
Wy Wy, W3 (CL)] +w, tw; :]) with ID that is hori-
zontal axis in Figure 3.
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0.1
[i]
1357 911131517192123252729313335373941434547495153555759616365
~train.MSRpar ~=train.MSRvid ~train.SMTeuroparl —test.MSRpar
~test. MSRvid ~test.SMTeuroparl test.OnWN test.5SMTnews

Figure 2: This graph shows the variation of Pearson
correlation (vertical axis) in all 2013 STS train data
(2012 STS data), with numbers (horizontal axis) indicat-
ing different combinations ¢, f, y in Table 1 and when
the value of result confidence is 100. The effect values
are represented by a vertical line (i.e. ID = 32).

4 Tuning Hyperparameters

Eq.(1) is a very simple linear interpolation model,
and we tune the hyperparameters on the whole
2012 STS data.

As shown in Figure 3,we plot the Pearson corre-
lation (vertical axis) for the different combination
of parameters w;, w, and w; (horizontal axis). We
notice that generally the Pearson correlation fluc-
tuates with a dropping tendency in most cases, and
the correlation peak presents at 13, which in Table
1is CO1:0.8, C()Q:O.l, 603:0.1.

1357 9111315171921232527293133353739414345474951535557 59616365

~train.MSRpar ~=train.MSRvid ~train.SMTeuroparl —test.MSRpar

~test. MSRvid ~test.SMTeuroparl test.OnWN test.5SMTnews

Figure 3: This graph shows the variation of Pearson
correlation (vertical axis) in all 2013 STS train data
(2012 STS data), with numbers (horizontal axis) indicat-
ing different combinations w;, ®,, w; in Table 1 and
when the value of result confidence is 100. The effect
values are represented by a vertical line (i.e. ID = 13).



5 Results

We submit four runs: the first one (Model WD) is
based on word similarity; the second one (Mod-
el WN) which is only using the similarity based on
WordNet, is submitted with the team name of
SXULLL; the third one (Model FN) which uses
FrameNet similarity defined in Section 3.3; and the
last one in which we combine the three similarities
described in Section 4 together with an interpola-
tion model. In addition, we map our outputs mul-
tiply by five to the [0-5] range.

It is worth notice that in the first model, we lo-
wercase all words and remove all numbers and
punctuations. And in the third model, we extract all
frame-semantic roles with SEMFOR.

In the experiment, we use eight datasets totally -
namely MSRpar, MSRvid, SMTeuroparl, OnWN,
SMTnews, headlines, FNWN and SMT - with their
gold standard file to evaluate the performance of
the submitted systems. Evaluation is carried out
using the official scorer which computes Pearson
correlation between the human rated similarity
scores and the system’s output. The final measure
is the score that is weighted by the number of text
pairs in each dataset ("Mean”). See Agirre et al.
(2012) for a full description of the metrics.

5.1 Experiments on STS 2012 Data

There is no new train data in 2013, so we use 2012

data as train data. From Table 2, 3 we can see that
the Model LIM has better performance than the
other three models.

MSRpar | MSRvid | SMTeuroparl | Mean
Model_WD 0.4532 0.4487 0.6467 0.5153
Model WN 0.2718 0.5410 0.6225 0.4774
Model FN 0.4437 0.5530 0.5178 0.5048
Model LIM | 0.4896 0.5533 0.6681 0.5696

Table 2: Performances of the four models on 2012 train
data. The highest correlation in each column is given in
bold.

From Table 2, we notice that all the models ex-
cept Model FN, are apt to handle the SMTeuroparl
that involves long sentences. For Model FN, it
performs well in computing on short and similarly
structured texts such as MSRvid (This will be con-
firmed in test data later). Although WordNet and
FrameNet model has a mere weight of 20% in
Model LIM (i.e. w; +@,= 0.2), the run which in-
tegrate more semantic information displays a con-
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sistent performance across the three train sets (es-
pecially in SMTeuroparl, the Pearson correlation
rises from 0.5178 to 0.66808), when compared to
the other three.

MSRpar MSRvid SMTeuroparl OnWN SMTnews Mean

Baseline
Model_WD
Model_WN
Model _FN
Model_LIM

0.4334
0.4404
0.1247
0.3830
0.4489
0.6830

0.2996
0.5464
0.6608
0.6082
0.6301
0.8739

0.4542
0.5059
0.0637
0.3537
0.5086
0.5280

0.5864
0.6751
0.4089
0.6091
0.6841
0.6641

0.3908
0.4583
0.3436
0.4061
0.4872
0.4937

0.4356
0.5346
0.3417
0.4905
0.5631

UKP_run2 0.6773

Table 3: Performances of our three models as well as
the baseline and UKP_run2 (that is ranked 1 in last STS
task) results on 2012 test data. The highest correlation in
each column is given in bold.

The 2012 STS test results obtained by first rank-
ing UKP run2 and baseline system are shown in
Table 3, it is interesting to notice that performance
of Model WD is similar with Model LIM except
on MSRvid, the text segments in which there are
fewer identical words because of the semantic
equivalence. For Model FN, we can see it per-
forms well on short and similarly structured texts
(MSRvid and OnWN) as mentioned before. This is
because the precision of FrameNet parser took ef-
fect on the FrameNet-based models performance.
Compared to UKP_run2, the performance of Mod-
el LIM is obviously better on OnWN set, while on
SMTeuroparl and SMTnews this model scores
slightly lower than UKP run2. Finally, Mod-
el LIM did not perform best on MSRpar and
MSRvid compared with UKP_run2, but it has low
time complexity and integrates semantic informa-
tion.

5.2 Official Results on STS 2013 Test Data

Table 4 provides the official results of our submit-
ted systems, along with the rank on each dataset.
Generally, all results outperform the baseline,
based on simple word overlap. However, the per-
formance of Model LIM is not always the best in
the three runs for each dataset. From the table we
can note that a particular model always performs
well on the dataset including the lexicon on which
the model is based on e.g. Model WN in OnWN,
Model FN in FNWN. Besides, Model WD and
Model LIM almost have same scores except in
OnWN set, because in Model LIM is included
with WordNet resource.




headlines OnWN FNWN SMT Mean
Baseline 0.5399 (66) | 0.2828(80) | 0.2146(66) | 0.2861(65) | 0.3639 (73)
Model WD | 0.6806 (24) | 0.5355(44) | 0.3181(48) | 0.3980 (4) 0.5198 (27)
Model WN | 0.4840 (78) | 0.7146 (12) | 0.0415(83) | 0.1543(86) | 0.3944 (69)
Model FN 0.4881(76) | 0.6146 (27) | 0.4237 (9) 0.3844 (6) 0.4797 (46)
Model_LIM 0.6761 (29) 0.6481 (23) 0.3025 (51) 0.4003 (3) 0.5458 (14)

Table 4: Performances of our systems as well as base-
line on STS 2013 individual test data, accompanied by
their rank (out of 90) shown in brackets. Scores in bold
denote significant improvements over the baseline.

As seen from the system rank in table, the op-
timal runs in the three submitted system remain
with Model LIM. Not only Model LIM performs
best on two occasions, but also Model FN ranks
top ten twice, in FNWN and SMT respectively, we
owe this result to the contribution of FrameNet
parsing information.

6 Conclusion

We have tested all the models on published STS
datasets. Compared with the official results, Mod-
el LIM system is apt to handle the SMT that in-
volves long sentences. Moreover, this system just
integrates words, WordNet and FrameNet semantic
information, thus it has low time complexity.
There is still much room for improvement in our
work. For example, we will attempt to use multiva-
riate regression software to tuning the hyperpara-
meters.
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Abstract

We describe a number of techniques for auto-
matically deriving lists of common and proper
nouns, and show that the distinction between
the two can be made automatically using a
vector space model learning algorithm. We
present a direct evaluation on the British Na-
tional Corpus, and application based evalua-
tions on Twitter messages and on automatic
speech recognition (where the system could be
employed to restore case).

1 Introduction

Some nouns are homographs (they have the same
written form, but different meaning) which can be
used to denote either a common or proper noun, for
example the word apple in the following examples:
(1) Apple designs and creates iPod (2) The Apple 11
series is a set of 8-bit home computers (3) The apple
is the pomaceous fruit of the apple tree (4) For apple
enthusiasts — tasting notes and apple identification.

The common and proper uses are not always as
clearly distinct as in this example; for example, a
specific instance of a common noun, e.g., District
Court turns court into a proper noun.

While heuristically, proper nouns often start with
a capital letter in English, capitalization can be in-
consistent, incorrect or omitted, and the presence or
absence of an article cannot be relied on.

The problem of distinguishing between common
and proper usages of nouns has not received much
attention within language processing, despite being
an important component for many tasks including
machine translation (Lopez, 2008; Hermjakob et al.,
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2008), sentiment analysis (Pang and Lee, 2008; Wil-
son et al., 2009) and topic tracking (Petrovic et al.,
2010). Approaches to the problem also have appli-
cations to tasks such as web search (Chen et al.,
1998; Baeza-Yates and Ribeiro-Neto, 2011), and
case restoration (e.g., in automatic speech recogni-
tion output) (Baldwin et al., 2009), but frequently
involve the manual creation of a gazeteer (a list of
proper nouns), which suffer not only from omissions
but also often do not allow the listed words to as-
sume their common role in text.

This paper presents methods for generating lists
of nouns that have both common and proper usages
(Section 2) and methods for identifying the type of
usage (Section 3) which are evaluated using data de-
rived automatically from the BNC (Section 4) and
on two applications (Section 5). It shows that it is
difficult to automatically construct lists of ambigu-
ous nouns but also that they can be distinguished ef-
fectively using standard features from Word Sense
Disambiguation.

2 Generating Lists of Nouns

To our knowledge, no comprehensive list of com-
mon nouns with proper noun usage is available. We
develop a number of heuristics to generate such lists
automatically.

Part of speech tags A number of part of speech
(PoS) taggers assign different tags to common and
proper nouns. Ambiguous nouns are identified by
tagging a corpus and extracting those that have
had both tags assigned, together with the frequency
of occurrence of the common/proper usage. The
CLAWS (Garside, 1987) and the RASP taggers

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 80-84, Atlanta, Georgia, June 13-14, 2013. (©2013 Association for Computational Linguistics



(Briscoe et al., 2006) were applied to the British Na-
tional Corpus (BNC) (Leech, 1992) to generate the
lists BNCclaws and BNCrasp respectively. In addi-
tion the RASP tagger was also run over the 1.75 bil-
lion word Gigaword corpus (Graff, 2003) to extract
the list Gigaword.

Capitalization = Nouns  appearing  intra-
sententially with both lower and upper case
first letters are assumed to be ambiguous. This
technique is applied to the 5-grams from the Google
corpus (Brants and Franz, 2006) and the BNC
(creating the lists 5-grams and BNCcaps).

Wikipedia includes disambiguation pages for
ambiguous words which provide information about
their potential usage. Wikipedia pages for nouns
with senses (according to the disambiguation page)
in a set of predefined categories were identified to
form the list Wikipedia.

Named entity recognition The Stanford Named
Entity Recogniser (Finkel et al., 2005) was run over
the BNC and any nouns that occur in the corpus with
both named entity and non-named entity tags are ex-
tracted to form the list Stanford.

WordNet The final heuristic makes use of Word-
Net (Fellbaum, 1998) which lists nouns that are of-
ten used as proper nouns with capitalisation. Nouns
which appeared in both a capitalized and lowercased
form were extracted to create the list WordNet.

Table 1 shows the number of nouns identified by
each technique in the column labeled words which
demonstrates that the number of nouns identified
varies significantly depending upon which heuris-
tic is used. A pairwise score is also shown to in-
dicate the consistency between each list and two ex-
ample lists, BNCclaws and Gigaword. It can be seen
that the level of overlap is quite low and the various
heuristics generate quite different lists of nouns. In
particular the recall is low, in almost all cases less
than a third of nouns in one list appear in the other.

One possible reason for the low overlap between
the noun lists is mistakes by the heuristics used to
extract them. For example, if a PoS tagger mistak-
enly tags just one instance of a common noun as
proper then that noun will be added to the list ex-
tracted by the part of speech heuristic. Two filter-
ing schemes were applied to improve the accuracy of
the lists: (1) minimum frequency of occurrence, the
noun must appear more than a set number of times
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words BNCclaws Gigaword
P R P R
BNCclaws | 41,110 | 100 | 100 | 31 2
BNCrasp 20,901 52 27 45 17
BNCecaps 18,524 | 56 26 66 21
5-grams 27,170 | 45 29 59 28
Gigaword 57,196 | 22 31 100 | 100
Wikipedia 7,351 49 9 59 8
WordNet 798 75 1 68 1
Stanford 64,875 | 43 67 26 29

Table 1: Pairwise comparison of lists. The nouns in each
list are compared against the BNCclaws and Gigaword
lists. Results are computed for P(recision) and R(ecall).

in the corpus and (2) bias, the least common type of
noun usage (i.e., common or proper) must account
for more than a set percentage of all usages.

We experimented with various values for these fil-
ters and a selection of results is shown in Table 2,
where freq is the minimum frequency of occurrence
filter and bias indicates the percentage of the less
frequent noun type.

bias | freq | words | BNCclaws | Gigaword
P R P R
BNCclaws | 40 100 274 100 53

1 1
BNCrasp 30 100 253 94 1 85 0
5-grams 40 150 305 80 1 67 0
Stanford 40 200 260 87 1 47 0

Table 2: Pairwise comparison of lists with filtering

Precision (against BNCclaws) increased as the fil-
ters become more aggressive. However comparison
with Gigaword does not show such high precision
and recall is extremely low in all cases.

These experiments demonstrate that it is difficult
to automatically generate a list of nouns that exhibit
both common and proper usages. Manual analy-
sis of the lists generated suggest that the heuristics
can identify ambiguous nouns but intersecting the
lists results in the loss of some obviously ambigu-
ous nouns (however, their union introduces a large
amount of noise). We select nouns from the lists
created by these heuristics (such that the distribu-
tion of either the common or proper noun sense in
the data was not less than 45%) for experiments in
the following sections.'

'The 100 words selected for our evaluation are available at
http://pastehtml.com/view/cjsbsdxvl.txt



3 Identifying Noun Types

We cast the problem of distinguishing between com-
mon and proper usages of nouns as a classification
task and develop the following approaches.

3.1 Most frequent usage

A naive baseline is supplied by assigning each word
its most frequent usage form (common or proper
noun). The most frequent usage is derived from the
training portion of labeled data.

3.2 n-gram system

A system based on n-grams was implemented using
NLTK (Bird et al., 2009). Five-grams, four-grams,
trigrams and bigrams from the training corpus are
matched against a test corpus sentence, and results
of each match are summed to yield a preferred use in
the given context with a higher weight (experimen-
tally determined) being assigned to longer n-grams.
The system backs off to the most frequent usage (as
derived from the training data).

3.3 Vector Space Model (VSM)

Distinguishing between common and proper nouns
can be viewed as a classification problem. Treating
the problem in this manner is reminiscent of tech-
niques commonly employed in Word Sense Disam-
biguation (WSD). Our supervised approach is based
on an existing WSD system (Agirre and Martinez,
2004) that uses a wide range of features:

e Word form, lemma or PoS bigrams and tri-
grams containing the target word.

e Preceding or following lemma (or word form)
content word appearing in the same sentence as
the target word.

e High-likelihood, salient, bigrams.

e Lemmas of all content words in the same sen-
tence as the target word.

e Lemmas of all content words within a 4 word
window of the target word.

e Non stopword lemmas which appear more than
twice throughout the corpus.
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Each occurrence of a common / proper noun is
represented as a binary vector in which each position
indicates the presence or absence of a feature. A
centroid vector is created during the training phase
for the common noun and the proper noun instances
of a word. During the test phase, the centroids are
compared to the vector of each test instance using
the cosine metric, and the word is assigned the type
of the closest centroid.

4 Evaluation

The approaches described in the previous section are
evaluated on two data sets extracted automatically
from the BNC. The BNC-PoS data set is created
using the output from the CLAWS tagger. Nouns
assigned the tag NPO are treated as proper nouns
and those assigned any other nominal tag as com-
mon nouns. (According to the BNC manual the
NPO tag has a precision 83.99% and recall 97.76%.2)
This data set consists of all sentences in the BNC in
which the target word appears. The second data set,
BNC-Capital, is created using capitalisation infor-
mation and consists of instances of the target noun
that do not appear sentence-initially. Any instances
that are capitalised are treated as proper nouns and
those which are non-capitalised as common nouns.

Experiments were carried out using capitalised
and decapitalized versions of the two test corpora.
The decapitalised versions by lowercasing each cor-
pus and using it for training and testing. Results are
presented in Table 3. Ten fold cross validation is
used for all experiments: i.e. 9/10th of the corpus
were used to acquire the training data centroids and
1/10th was used for evaluation. The average perfor-
mance over the 10 experiments is reported.

The vector space model (VSM) outperforms other
approaches on both corpora. Performance is partic-
ularly high when capitalisation is included (VSM w
caps). However, this approach still outperforms the
baseline without case information (VSM w/o caps),
demonstrating that using this simple approach is less
effective than making use of local context.

No manual annotation of common and proper nouns in this
corpus exists and thus an exact accuracy figure for this corpus
cannot be obtained.



Gold standard
BNC-PoS | BNC-Capital
Most frequent 79% 67%
n-gram w caps 80% 77%
n-gram w/o caps 68% 56%
VSM w caps 90% 100%
VSM w/o caps 86% 80%

Table 3: BNC evaluation results

5 Applications

We also carried out experiments on two types of
text in which capitalization information may not be
available: social media and ASR output.

5.1 Twitter

As demonstrated in the BNC based evaluations, the
system can be applied to text which does not contain
capitalization information to identify proper nouns
(and, as a side effect, enable the correction of capi-
talization). An example of such a dataset are the (up
to) 140 character messages posted on Twitter.

There are some interesting observations to be
made on messages downloaded from Twitter. Al-
though some users choose to always tweet in lower
case, the overall distribution of capitalization in
tweets is high for the 100 words selected in Section 2
and only 3.7% of the downloaded tweets are entirely
lower case. It also appeared that users who capital-
ize, do so fairly consistently.

This allows the creation of a dataset based on
downloaded Twitter data®:

1. Identify purely lower case tweets containing
the target word. These will form the test data
(and are manually assigned usage).

2. Any non-sentence initial occurrences of the tar-
get word are used as training instances: lower
case indicating a common instance, upper case
indicating a proper instance.

14 words* were randomly selected from the list
used in Section 4 and their lowercase tweet instances
were manually annotated by a single annotator. The

‘http://search.twitter.com/api

“abbot, bull, cathedral, dawn, herald, justice, knight, lily,
lodge, manor, park, president, raven and windows
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Training corpus | MF | n-grams | VSM
Twitter 59% 40% 60%
BNCclaw decap | 59% 44% 79%

Table 4: Results on the Twitter data

average proportion of proper nouns in the test data
was 59%.

The results for the three systems are presented in
Table 4. As the length of the average sentence in the
Twitter data is only 15 words (compared to 27 words
in the BNCclaws data for the same target words),
the Twitter data is likely to be suffering sparseness
issues. This hypothesis is partly supported by the in-
crease in performance when the BNCclaws decapi-
talized data is added to the training data, however,
the performance of the n-gram system remains be-
low the most frequent use. On closer examination,
this is likely due to the skew in the data — there are
many more examples for the common use of each
noun, and thus each context is much more likely to
have been seen in this setting.

5.2 Automatic speech recognition

Most automatic speech recognition (ASR) systems
do not provide capitalization. However, our sys-
tem does not rely on capitalization information, and
therefore can identify proper / common nouns even
if capitalization is absent. Also, once proper nouns
are identified, the system can be used to restore case
— a feature which allows an evaluation to take place
on this dataset. We use the TDT2 Test and Speech
corpus (Cieri et al., 1999), which contains ASR and
a manually transcribed version of news texts from
six different sources, to demonstrate the usefulness
of this system for this task.

The ASR corpus is restricted to those segments
which contain an equal number of target word oc-
currences in the ASR text and the manually tran-
scribed version, and all such segments are extracted.
The gold standard, and the most frequent usage, are
drawn from the manually transcribed data.

Again, results are based on an average perfor-
mance obtained using a ten fold cross validation.
Three versions of training data are used: the 9/10 of
ASR data (with labels provided by the manual tran-
scription), the equivalent 9/10 of lowercased manu-



Training corpus | MF | n-grams | VSM
Manual 66% 42% 73%
ASR 63% 41% 79%

Table 5: Results on the ASR data

ally transcribed data, and a combination of the two.
The results can be seen in Table 5. The perfor-
mance rise obtained with the VSM model when the
ASR data is used is likely due to the repeated errors
within this, which will not be appearing in the man-
ually transcribed texts. The n-gram performance is
greatly affected by the low volume of training data
available, and again, a large skew within this.

6 Conclusion

We automatically generate lists of common and
proper nouns using a number of different techniques.
A vector space model technique for distinguish-
ing common and proper nouns is found to achieve
high performance when evaluated on the BNC. This
greatly outperforms a simple n-gram based system,
due to its better adaptability to sparse training data.
Two application based evaluations also demonstrate
the system’s performance and as a side effect the
system could serve as a technique for automatic case
restoration.
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Abstract

This paper describes methods that were sub-
mitted as part of the *SEM shared task on
Semantic Textual Similarity. Multiple kernels
provide different views of syntactic structure,
from both tree and dependency parses. The
kernels are then combined with simple lex-
ical features using Gaussian process regres-
sion, which is trained on different subsets of
training data for each run. We found that the
simplest combination has the highest consis-
tency across the different data sets, while in-
troduction of more training data and models
requires training and test data with matching
qualities.

1 Introduction

The Semantic Textual Similarity (STS) shared task
consists of several data sets of paired passages of
text. The aim is to predict the similarity that hu-
man annotators have assigned to these aligned pairs.
Text length and grammatical quality vary between
the data sets, so our submissions to the task aimed to
investigate whether models that incorporate syntac-
tic structure in similarity calculation can be consis-
tently applied to diverse and noisy data.

We model the problem as a combination of ker-
nels (Shawe-Taylor and Cristianini, 2004), each of
which calculates similarity based on a different view
of the text. State-of-the-art results on text classifi-
cation have been achieved with kernel-based classi-
fication algorithms, such as the support vector ma-
chine (SVM) (Joachims, 1998), and the methods
here can be adapted for use in multiple kernel classi-
fication, as in Polajnar et al. (2011). The kernels are
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combined using Gaussian process regression (GPR)
(Rasmussen and Williams, 2006). It is important
to note that the combination strategy described here
is only a different way of viewing the regression-
combined mixture of similarity measures approach
that is already popular in STS systems, including
several that participated in previous SemEval tasks
(Croce et al., 2012; Bér et al., 2012). Likewise, oth-
ers, such as Croce et al. (2012), have used tree and
dependency parse information as part of their sys-
tems; however, we use a tree kernel approach based
on a novel encoding method introduced by Zanzotto
etal. (2011) and from there derive two dependency-
based methods.

In the rest of this paper we will describe our sys-
tem, which consists of distributional similarity (Sec-
tion 2.1), several kernel measures (Section 2.2), and
a combination method (Section 2.3). This will be
followed by the description of our three submissions
(Section 3), and a discussion of the results (Sec-
tion 4).

2 Methods

At the core of all the kernel methods is either sur-
face, distributional, or syntactic similarity between
sentence constituents. The methods themselves en-
code sentences into vectors or sets of vectors, while
the similarity between any two vectors is calculated
using cosine.

2.1 Distributional Similarity

Target words are the non-stopwords that occur
within our training and test data. The two distri-
butional methods we use here both represent target

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
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words as vectors that encode word occurrence within
a set of contexts. The first method is a variation on
BEAGLE (Jones and Mewhort, 2007), which con-
siders contexts to be words that surround targets.
The second method is based on ESA (Gabrilovich
and Markovitch, 2007), which considers contexts to
be Wikipedia documents that contain target words.

To gather the distributional data with both of
these approaches we used 316,305 documents from
the September 2012 snapshot of Wikipedia. The
training corpus for BEAGLE is generated by pool-
ing the top 20 documents retrieved by querying the
Wikipedia snapshot index for each target word in the
training and test data sets.

2.1.1 BEAGLE

Random indexing (Kaski, 1998) is a technique for
dimensionality reduction where pseudo-orthogonal
bases are generated by randomly sampling a distri-
bution. BEAGLE is a model where random indexing
is used to represent word co-occurrence vectors in a
distributional model.

Each context word is represented as a D-
dimensional vector of normally distributed random
values drawn from the Gaussian distribution

1
N(0,0?%), where o = 75 and D = 4096 (1)

A target word is represented as the sum of the
vectors of all the context words that occur within a
certain context window around the target word. In
BEAGLE this window is considered to be the sen-
tence in which the target word occurs; however, to
avoid segmenting the entire corpus, we assume the
window to include 5 words to either side of the tar-
get. This method has the advantage of keeping the
dimensionality of the context space constant even
if more context words are added, but we limit the
context words to the top 10,000 most frequent non-
stopwords in the corpus.

2.1.2 ESA

ESA represents a target word as a weighted
ranked list of the top N documents that contain the
word, retrieved from a high quality collection. We
used the BM25F (Robertson et al., 2004) weighting
function and the top N = 700 documents. These pa-
rameters were chosen by testing on the WordSim353
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dataset.! The list of retrieved documents can be rep-
resented as a very sparse vector whose dimensions
match the number of documents in the collection,
or in a more computationally efficient manner as
a hash map linking document identifiers to the re-
trieval weights. Similarity between lists was calcu-
lated using the cosine measure augmented to work
on the hash map data type.

2.2 Kernel Measures

In our experiments we use six basic kernel types,
which are described below. Effectively we have
eight kernels, because we also use the tree and de-
pendency kernels with and without distributional in-
formation. Each kernel is a function which is passed
a pair of short texts, which it then encodes into a spe-
cific format and compares using a defined similarity
function. LK uses the regular cosine similarity func-
tion, but LEK, TK, DK, MDK, DGK use the follow-
ing cosine similarity redefined for sets of vectors. If
the texts are represented as sets of vectors X and Y,
the set similarity kernel function is:

Kset(X,Y) = Z Zcos(a?i,gfj) )
g

and normalisation is accomplished in the standard
way for kernels by:

Iiset(X, Y)
\/(Hset(Xv X)kset(Y,Y))

LK - The lexical kernel calculates the overlap be-
tween the tokens that occur in each of the paired
texts, where the tokens consist of Porter stemmed
(Porter, 1980) non-stopwords. Each text is repre-
sented as a frequency vector of tokens that occur
within it and the similarity between the pair is cal-
culated using cosine.

LEK - The lexical ESA kernel represents each
example in the pair as the set of words that do not
occur in the intersection of the two texts. The simi-
larity is calculated as in Equation (3) with X and Y
being the ESA vectors of each word from the first
and second text representations, respectively.

TK - The tree kernel representation is based on
the definition by Zanzotto et al. (2011). Briefly,

3)

Rset—n (X7 Y) =

"http://www.cs.technion.ac.il/"gabr/resources/
data/wordsim353/



each piece of text is parsed’; the non-terminal
nodes of the parse tree, stopwords, and out-of-
dictionary terms are all assigned a new random vec-
tor (Equation 1); while the leaves that occurred
in the BEAGLE training corpus are assigned their
learned distributional vectors (Section 2.1.1).

Each subtree of a tree is encoded recursively as
a vector, where the distributional vectors represent-
ing each node are combined using the circular con-
volution operator (Plate, 1994; Jones and Mewhort,
2007). The whole tree is represented as a set of vec-
tors, one for each subtree.

DK - The dependency kernel representation en-
codes each dependency pair as a separate vector, dis-
counting the labels. The non-stopword terminals are
represented as their distributional vectors, while the
stopwords and out-of-dictionary terms are given a
unique random vector. The vector for the depen-
dency pair is obtained via a circular convolution of
the individual word vectors.

MDK - The multiple dependency kernel is con-
structed like the dependency kernel, but similarity is
calculated separately between all the the pairs that
share the same dependency label. The combined
similarity for all dependency labels in the parse is
then calculated using least squares linear regression.
While at the later stage we use GPR to combine all
of the different kernels, for MDK we found that lin-
ear regression provided better performance.

DGK - The depgram kernel represents each de-
pendency pair as an ESA vector obtained by search-
ing the ESA collection for the two words in the
dependency pair joined by the AND operator. The
DGK representation only contains the dependencies
that occur in one similarity text or the other, but not
in both.

2.3 Regression

Each of the kernel measures above is used to calcu-
late a similarity score between a pair of texts. The
different similarity scores are then combined using

Because many of the datasets contained incomplete or un-
grammatical sentences, we had to approximate some parses.
The parsing was done using the Stanford parser (Klein and
Manning, 2003), which failed on some overly long sentences,
which we therefore segmented at conjunctions or commas.
Since our methods only compared subtrees of parses, we simply
took the union of all the partial parses for a given sentence.

87

Gaussian process regression (GPR) (Rasmussen and
Williams, 2006). GPR is a probabilistic regression
method where the weights are modelled as Gaussian
random variables. GPR is defined by a covariance
function, which is akin to the kernel function in the
support vector machine. We used the squared expo-
nential isotropic covariance function (also known as
the radial basis function):

o @izzp) T pxD) "l (wi—ay)
cov(z;, x;) = pie 2

+ p36i;

with parameters p; = 1, po = 1, and p3 = 0.01. We
found that training for parameters increased overfit-
ting and produced worse results in validation exper-
iments.

3 Submitted Runs

We submitted three runs. This is not sufficient for
a full evaluation of the new methods we proposed
here, but it gives us an inkling of general trends. To
choose the composition of the submissions, we used
STS 2012 training data for training, and STS 2012
test data for validation (Agirre et al., 2012). The
final submitted runs also used some of the STS 2012
test data for training.

Basic - With this run we were examining if a sim-
ple introduction of syntactic structure can improve
over the baseline performance. We trained a GPR
combination of the linear and tree kernels (LK-TK)
on the MSRpar training data. In validation experi-
ments we found that this data set in general gave the
most consistent performance for regression training.

Custom - Here we tried to approximate the best
training setup for each type of data. We only had
training data for OnWN and for this dataset we were
able to improve over the LK-TK setup; however, the
settings for the rest of the data sets were guesses
based on observations from the validation experi-
ments and overall performed poorly. OnWN was
trained on MSRpar train with LK and DK. The head-
lines model was trained on MSRpar train and Eu-
roparl test, with LK-LEK-TK-DK-TKND-DKND-
MDK (trained on Europarl).3 FNWN was trained on
MSRpar train and OnWN test with LK-LEK-DGK-
TK-DK-TKND-DKND. Finally, the SMT model

3TKND and DKND are the versions of the tree and depen-
dency kernels where no distributional vectors were used.
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Figure 1: Score distributions of different runs on the OnWN dataset

was trained on MSRpar train and Europarl test with
LK-LEK-TK-DK-TKND-DKND-MDK (trained on
MSRpar).

All - As in the LK-TK experiment, we used
the same model on all of the data sets. It was
trained on all of the training data except MSRvid,
using all eight kernel types defined above. In sum-
mary we used the LK-LEK-TK-TKND-DK-DKND-
MDK-DGK kernel combination. MDK was trained
on the 2012 training portion of MSRpar.

4 Discussion

From the shared task results in Table 1, we can see
that Basic is our highest ranked run. It has also
achieved the best performance on all data sets. The
LK on its own improves slightly on the task baseline
by removing stop words and using stemming, while
the introduction of TK contributes syntactic and dis-
tributional information. With the Custom run, we
were trying to manually estimate which training data
would best reflect properties of particular test data,
and to customise the kernel combination through
validation experiments. The only data set for which
this led to an improvement is OnWN, indicating
that customised settings can be beneficial, but that
a more scientific method for matching of training
and test data properties is required. In the All run,
we were examining the effects that maximising the
amount of training data and the number of kernel

hdlns OnWN | FNWN SMT mean rank
BL 0.5399 | 0.2828 0.2146 | 0.2861 | 0.3639 71
Basic | 0.6399 | 0.4440 0.3995 | 0.3400 | 0.4709 51
Cstm | 0.4962 | 0.5639 0.1724 | 0.3006 | 0.4207 60
All 0.5510 | 0.3099 0.2385 | 0.1171 | 0.3200 78

Table 1: Shared task results: Pearson correlation with the
gold standard
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measures has on the output predictions. The results
show that swamping the regression with models and
training data leads to overly normalised output and
a decrease in performance.

While the evaluation measure, Pearson correla-
tion, does not take into account the shape of the out-
put distribution, Figure 1 shows that this informa-
tion may be a useful indicator of model quality and
behaviour. In particular, the role of the regression
component in our approach is to learn a transforma-
tion from the output distributions of the models to
the distribution of the training data gold standard.
This makes it sensitive to the choice of training data,
which ideally would have similar characteristics to
the individual kernels, as well as a similar gold stan-
dard distribution to the test data. We can see in Fig-
ure 1 that the training data and choice of kernels in-
fluence the output distribution.

Analysis of the minimum, first quartile, median,
third quartile, and maximum statistics of the distri-
butions in Figure 1 demonstrates that, while it is dif-
ficult to visually evaluate the similarities of the dif-
ferent distributions, the smallest squared error is be-
tween the gold standard and the Custom run. This
suggests that properties other than the rank order
may also be good indicators in training and testing
of STS methods.
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Abstract

The Semantic Textual Similarity (STS)
task aims to exam the degree of semantic
equivalence between sentences (Agirre et
al., 2012). This paper presents the work
of the Hong Kong Polytechnic University
(PolyUCOMP) team which has participated
in the STS core and typed tasks of SemEval-
2013. For the STS core task, the PolyUCOMP
system disambiguates words senses using
contexts and then determine sentence
similarity by counting the number of senses
they shared. For the STS typed task, the string
kernel (Lodhi et al., 2002) is used to compute
similarity between two entities to avoid string
variations in entities.

1 Introduction

Sentence similarity computation plays an important
role in text summarization and social network
applications (Erkan et al., 2004; Jin et al., 2011).
The SemEval 2012 competition initiated a task
targeted at Semantic Textual Similarity (STS)
between sentence pairs (Agirre et al., 2012). Given
a set of sentence pairs, participants are required to
assign to each sentence pair a similarity score.
Because a sentence has only a limited amount of
content words, it is difficult to determine sentence
similarities. To solve this problem, Hatzivassiloglou
et al. (1999) proposed to use linguistic features
as indicators of text similarity to address the
problem of sparse representation of sentences.
Mihalcea et al. (2006) measured sentence similarity
using component words in sentences. Li et al.
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(2006) proposed to incorporate the semantic vector
and word order to calculate sentence similarity.
Biemann et al. (2012) applied the log-linear
regression model by combining the simple string
based measures, for example, word ngrams and
semantic similarity measures, for example, textual
entailment. Similarly, Saric et al. (2012) used a
support vector regression model which incorporates
features computed from sentence pairs. The features
are knowledge- and corpus-based word similarity,
ngram overlaps, WordNet augmented word overlap,
syntactic features and so on. Xu et al. (2012)
combined semantic vectors with skip bigrams to
determine sentence similarity, whereas the skip
bigrams take into the sequential order between
words.

In our approach to the STS task, words in
sentences are assigned with appropriate senses using
their contexts. Sentence similarity is computed by
calculating the number of shared senses in both
sentences since it is reasonable to assume that
similar sentences should have more overlapping
senses.  For the STS-TYPED task, variations
might occur in author names, people involved,
time expression and location. Thus, string kernel
is applied to compute similarity between entities
because it can capture variations between entities.
Moreover, for the event similarity in STS-TYPED
task, semantic relatedness between verbs is derived
the WordNet.

The rest of this paper is structured as follows.
Section 2 describes sentence similarity using sense
overlapping and string kernel. Section 3 gives the
performance evaluation. Section 4 is the conclusion.
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2 Similarity between Sentences

Words are used to convey meaning in a sentence.
They are tagged with appropriate senses initially and
then sentence similarity is calculated based on the
number of shared senses.

2.1 Sense Overlapping

When comparing word features, we did not compare
their surface equality, but we first conceptualize
these words and then calculate their similarities
based on the hierarchial structure in WordNet. For a
word in a sentence, it will be assigned a WordNet
sense. In this paper, we focus on the Word
Sense Disambiguation (WSD) algorithm taken by
Banerjee and Pederson (2003). They measured the
semantic relatedness between concepts by counting
the shared words in their WordNet glosses.

In WordNet, a word sense is represented by a
synset which has a gloss that defines the concept
that it represents. For example, the words walking,
afoot, ambulate constitute a single synset which has
gloss representations as follows,

walking: the act of traveling by foot
afoot: traveling by foot
ambulate: walk about

To lift the limitations of dictionary glosses which
are fairly short with insufficient vocabulary, we
utilize the glosses of related senses since we assume
that words co-occur in one sentence share related
senses and the more glosses two senses share, the
more similar they are. Therefore, we extract not
only glosses of target synset, but also the glosses
of the hypernym, hyponym, meronym, holonym and
troponym synsets of the target synset to form a
synset context. Finally, we compare the sentence
contexts with different synset contexts to determine
which sense should be assigned to the words.

To disambiguate word senses, a window of
contexts surrounding the the target word is specified
and a set of candidate word senses are extracted for
the content word (noun, verb, adjective) within that
window. Let the current target word index ¢ = O that
is, wo, the window size be 2n+1 and —n < i < +n.
Let |w;| be the number of senses for word w; and the

4t sense of w; is si 5, where 1 < j < |w;|. Next is
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to assign an appropriate sense k to the target word.
We achieve this by adding together the relatedness
scores calculated by comparing the senses of the
target word and senses of every non-target word
within the window of context. The sense score for
the current target word wy is defined as,

n |wl

Sensep, = Z Zrelatedness(s()’k,si’j) €))

i=—n j=1

The k*" sense which has the biggest sense score
will be chosen as the right sense for the target word
wp. Now remains the question of how to define the
relatedness between two synsets. It is defined as,

relatedness(so i, sij) =
score(gloss(so k), gloss(s;
+score(hype(so k), hype

+score(hypo(sok), hypo(si,;

(si,5))
(5i.4))
(s55)
+score(hype(so k), gloss(si ;))
+score(gloss(sok), hype(si ;)

In Equation 2, the score function counts the
number of overlapping words between two glosses.
However, if there is a phrasal n-word overlap, then
a score of n? will be assigned, thus encouraging the
longer n-word overlap. Let V denote the set of n-
word overlaps shared between two glosses, the score
is defined as,

score = Z |w||? 3)

weV

where ||w|| refers to the number of words in w. In
so doing, we can have corresponding senses for the
sentence Castro celebrates 86th birthday Monday
as follows,

castro/10886929-n celebrate/02490877-v
birthday/15250178-n monday/15163979-n

To find the n-word overlap, we found that
contiguous words in two glosses lie in the diagonal
of a matrix, take the senses walk and afoot for
example, their glosses are,

walking: the act of traveling by foot
afoot: traveling by foot



Place the walking glosses in rows and afoot
glosses in columns, we get the matrix representation
in Figure 1,

walk

traveling by foot

traveling 1

afoot by 1

foot al

Figure 1: n-word overlap representation

Figure 1 shows that travel by foot is a continuous
sequence of words shared by two glosses. Steps to
find n-word overlapping are:

(1) Construct a matrix for two sentences;

(2) Get continuous n-word overlapping, n is
greater than 1;

(3) Set the cell values to O if they are contained in
continuous n-word.

(4) Get the words (unigrams) which are shared by
two sentences.

Take a b ¢ d and b c a d for example, we will have
the matrix as follows,

S O = OCT
S OO =
— O O OoOla

O = OO0

o0 o e

Table 1: Matrix representation for two sentences

By the step 2, we will get the b ¢ and its
corresponding cells cell(1,0) and cell(2,1). We then
set the two cells to zero, and obtain an updated
matrix as follows,

oo e o
S OO =i
— O O Ola

=N NoR-lid

o0 o e

Table 2: Updated matrix representation for two sentences

In Table 2, we found that cell(0,2) and cell(3,3)
have values greater than zero. Therefore, a and b
will be extracted the common terms.

This approach can also be applied to find common
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n-word overlaps between sentences, for example,

s1: Olli Heinonen, the Head of the International
Atomic Energy Agency delegation to Iran, declared
vesterday that the agency has reached an agreement
with Tehran on the method of conducting the
negotiations pertaining to its nuclear program.

s2: leader of international atomic energy agency
delegation to iran , olli heinonen said yesterday ,
that the agency concluded a mutual understanding
with tehran on the way to manage talks depending
upon its atomic program .

We will have ngrams with n ranging from 1 to 7,
such as,

unigram: of, to, its, program, yesterday

bigram: olli heinonen

trigram: that the agency

four-gram: with tehran on the

seven-gram: international atomic energy agency
delegation to iran

Similarity between two sentences is calculated by
counting the number of overlapped n-words. The
similarity for s; and s is, (1 +1+1+1+4+1) +
(2)2 4 (3)% + (4)2 + (7)? = 83.

2.2 String kernel

For the STS-TYPED task, when comparing whether
people or authors are similar or not, we found that
some entity mentions may have tiny variations, for
example,

E Vincent Harris and E.Vincent Harris

The difference between the entities lies in fact that
the second entity has one more dot. In this case,
string kernel would be a good choice in verifying
they are similar or not. If we consider n=2, we obtain
79-dimensional feature space where the two entities
are mapped in Table 3.

In Table 3, A is the decay factor, in the range
of [0,1], that penalizes the longer distance of a
subsequence. Formally, string kernel is defined as,

Kn(s,t) = > (¢uls) - dult) @)
ued "



ev ei en e. rs is
d(evincentharris) | A2 [ A3+ A3 [ A2 £\ 4 \T 0 PRI IDUNIPRE
d(e.vincentharris) | A3 | A+ A4 | A2 4 X5 4+ )8 22 A3 At A2 4212
Table 3: Feature mapping for two entities
TEAM | headlines | OnWN | FNWN | SMT mean | rank
RUNI 0.5176 | 0.1517 | 0.2496 | 0.2914 | 0.3284 | 77

Table 4: Experimental results for STS-CORE

where " is the set of all possible subsequences
of length n. wu indicates an item in the set, for
example, the subsequence ev in Table 3. ¢,(s) is
the feature mapping of the subsequences in s. In
so doing, we can have similarity between entities in
Table 3 as follows:

Kn(s,t) = A2 x A3+ (A3 + A1) x (M 4 AM) +
C (A3 EAN) X (A3 H AN+ (A2 A12) x (A2 A1)

To avoid enumeration of all subsequences for
similarity measurement, dynamic programming,
similar to the method by Lodhi et al. (2002) is used
here for similarity calculation.

3 Experiments

The STS-CORE task is to quantify how similar
two sentences are. We simply use the sense
overlapping approach to compute the similarity.
Since this approach needs to find appropriate senses
for each word based on its contexts. The number
of contextual words is set to 5. Experiments
are conducted on four datasets. They are:
headlines mined from news sources by European
Media, OnWN extracted from from WordNet and
OntoNotes, FNWN from WordNet and FrameNet
and SMT dataset from DARPA GALE HTER and
HyTER. The results of our system (PolyUCOMP-
RUN1) are given in Table 4 ,

Our system achieves rather lower performance
in the OnWN and FNWN datasets. This is because
it is difficult to use contextual terms to find the
correct senses for words in sentences of these two
datasets. Take the two sentences in OnWN dataset
for example,

s1: the act of choosing among alternatives
S2: the act of changing one thing for another

thing.
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The valid concepts for the two sentences are:

c1: 06532095-n 05790944-n
ca: 00030358-n  00126264-v
00002452-n

00002452-n

c1 and co have no shared senses, resulting in a
zero similarity between s; and so. However, s; and
so should have the same meaning. Moreover, in the
FNWN dataset, the sentence lengths are unbalanced,
for example,

s1: there exist a number of different possible
events that may happen in the future. in most cases,
there is an agent involved who has to consider which
of the possible events will or should occur. a salient
entity which is deeply involved in the event may also
be mentioned.

so: doing as one pleases or chooses;

s1 has 48 tokens with punctuations being
excluded and s3 has only 6 tokens. This would affect
our system performance as well.

For the STS-TYPED task, data set is taken
from Europeana, which provides millions of books,
paintings, films, museum objects and archival
records that have been digitised throughout Europe.
Each item has one line per type, where the type
can be the title of a record, list of subject terms,
textual description of the record, creator of the
record and date of the record. Participating systems
are supposed to compute similarities between semi-
structured items. In this task, we take the strategies
in Table 5,

Jaccard denotes the Jaccard similarity measure.
Stringkernel 4+ Jaccard means that two types
are similar if they share many terms, for example,



TEAM | general | author | people | time | location | event | subject | description | mean | rank

RUNI1 | 0.4888 | 0.6940 | 0.3223 | 0.3820 | 0.3621 | 0.1625 | 0.3962 0.4816 04112 | 12

RUN2 | 0.4893 | 0.6940 | 0.3253 | 0.3777 | 0.3628 | 0.1968 | 0.3962 0.4816 0.4155 | 11

RUN3 | 0.4915 | 0.6940 | 0.3254 | 0.3737 | 0.3667 | 0.2207 | 0.3962 0.4816 0.4187 | 10
Table 6: Experimental results for STS-TYPED

Type Strategy words. When determining similarity between two

author String kernel senses (synsets), n-word overlapping approach is

people String kernel + Jaccard used for counting the number of shared words

time String kernel + Jaccard in two glosses. Besides, string kernel is used

location | String kernel + Jaccard to capture similarity between entities to avoid

event WordNet + Jaccard variations between entities. Our approach is simple

subject Sense overlapping and we will apply regression models to determine

description Sense overlapping sentence similarity on the basis of these features in

Table 5: Strategies for computing similarity

location; and string kernel is used to determine
whether two locations are similar or not. For the
type of event, we extract verbs from records and
count the number of shared verbs between two
records. The verb similarity is obtained through
WordNet. The general similarity is equal to the
average of the 7 scores. Also, Stanford CoreNLP
tool! is used to extract author, date, time, location
and handle part-of-speech tagging.

In this STS-TYPED task, we use string kernel and
WordNet to determine whether two terms are similar
and increase the number of counts if their similarity
exceeds a certain threshold. Therefore, we have
chosen 0.4, 0.5 and 0.6 in a heuristic manner and
obtained three different runs. Experimental results
are given in Table 6.

Since the types of author, subject and
description are not related to either string kernel
or WordNet, their performances remain unchanged
during three runs.

4 Conclusions and Future Work

In the Semantic Textual Similarity task of SemEval-
2013, to capture the meaning between sentences,
we proposed to disambiguate word senses using
contexts and then determine sentence similarity
by counting the senses they shared. First, word
senses are disambiguated by means of the contextual

"http://nlp.stanford.edu/software/corenlp.shtml
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future work.
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Abstract

This paper describes a system for automat-
ically measuring the semantic similarity be-
tween two texts, which was the aim of the
2013 Semantic Textual Similarity (STS) task
(Agirre et al., 2013). For the 2012 STS task,
Heilman and Madnani (2012) submitted the
PERP system, which performed competitively
in relation to other submissions. However,
approaches including word and n-gram fea-
tures also performed well (Bir et al., 2012;
Sarié et al., 2012), and the 2013 STS task fo-
cused more on predicting similarity for text
pairs from new domains. Therefore, for the
three variations of our system that we were al-
lowed to submit, we used stacking (Wolpert,
1992) to combine PERP with word and n-
gram features and applied the domain adapta-
tion approach outlined by Daume III (2007)
to facilitate generalization to new domains.
Our submissions performed well at most sub-
tasks, particularly at measuring the similarity
of news headlines, where one of our submis-
sions ranked 2nd among 89 from 34 teams, but
there is still room for improvement.

1 Introduction

We aim to develop an automatic measure of the se-
mantic similarity between two short texts (e.g., sen-
tences). Such a measure could be useful for vari-
ous applications, including automated short answer
scoring (Leacock and Chodorow, 2003; Nielsen et
al., 2008), question answering (Wang et al., 2007),

* System description papers for this task were required to
have a team ID and task ID (e.g., “HENRY-CORE”) as a prefix.
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and machine translation evaluation (Przybocki et al.,
2009).

In this paper, we describe our submissions to the
2013 Semantic Textual Similarity (STS) task (Agirre
et al.,, 2013), which evaluated implementations of
text-to-text similarity measures. Submissions were
evaluated according to Pearson correlations between
gold standard similarity values acquired from hu-
man raters and machine-produced similarity val-
ues. Teams were allowed to submit up to three
submissions. For each submission, correlations
were calculated separately for four subtasks: mea-
suring similarity between news headlines (‘“head-
lines”), between machine translation outputs and hu-
man reference translations (“SMT”), between word
glosses from OntoNotes (Pradhan and Xue, 2009)
and WordNet (Fellbaum, 1998) (“OnWN”), and be-
tween frame descriptions from FrameNet (Fillmore
et al., 2003) and glosses from WordNet (“FNWN”).
A weighted mean of the correlations was also com-
puted as an overall evaluation metric (the OnWn and
FNWN datasets were smaller than the headlines and
SMT datasets).

The suggested training data for the 2013 STS
task was the data from the 2012 STS task (Agirre
et al.,, 2012), including both the training and test
sets for that year. The 2012 task was similar ex-
cept that the data were from a different set of sub-
tasks: measuring similarity between sentences from
the Microsoft Research Paraphrase corpus (Dolan
et al., 2004) (“MSRpar”), between sentences from
the Microsoft Research Video Description corpus
(Chen and Dolan, 2011) (“MSRvid”), and between
human and machine translations of parliamentary

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 96-102, Atlanta, Georgia, June 13-14, 2013. (©2013 Association for Computational Linguistics



proceedings (“SMTeuroparl”). The 2012 task pro-
vided training and test sets for those three subtasks
and also included two additional tasks with just test
sets: a similar OnWN task, and measuring similar-
ity between human and machine translations of news
broadcasts (“SMTnews”).

Heilman and Madnani (2012) described the PERP
system and submitted it to the 2012 STS task. PERP
measures the similarity of a sentence pair by find-
ing a sequence of edit operations (e.g., insertions,
deletions, substitutions, and shifts) that converts one
sentence to the other. It then uses various features
of the edits, with weights learned from labeled sen-
tence pairs, to assign a similarity score. PERP per-
formed well, ranking 7th out of 88 submissions from
35 teams according to the weighted mean correla-
tion. However, PERP lacked some of the useful
word and n-gram overlap features included in some
of the other top-performing submissions. In addi-
tion, domain adaptation seemed more relevant for
the STS 2013 task since in-domain data was avail-
able only for one (OnWN) of the four subtasks.

Therefore, in this work, we combine the PERP
system with various word and n-gram features.
We also apply the domain adaptation technique of
Daume III (2007) to support generalization beyond
the domains in the training data.

2 System Details

In this section, we describe the system we devel-
oped, and the variations of it that comprise our sub-
missions to the 2013 STS task.

Our system is a linear model estimated using
ridge regression, as implemented in the scikit-learn
toolkit (Pedregosa et al., 2011). The system uses
a 5-fold cross-validation grid search to tune the «
penalty for ridge regression (with o € 2{=5=%-4}h),
During development, we evaluated its performance
on the full STS 2012 data (training and test) us-
ing 10-fold cross-validation, with the 5-fold cross-
validation being used to tune within each training
partition.

2.1 Features

Our full system uses the following features com-
puted from an input sentence pair (s1, $2).
The system standardizes feature values to zero
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mean and unit variance by subtracting the feature’s
mean and dividing by its standard deviation. The
means and standard deviations are estimated from
the training set, or from each training partition dur-
ing cross-validation.

2.1.1 n-gram Overlap Features

The system computes Jaccard similarity (i.e., the
ratio of the sizes of the set intersection to the set
union) for the following overlap features:

e character n-gram overlap (n = 1...12). Note
that this is computed from the entire original
texts for a pair, including punctuation, whites-
pace, etc.

e word n-gram overlap (n = 2...8). We do not
include n = 1 here because it would be identi-
cal to the n = 1 version for the unordered word
n-gram feature described next.

e unordered word n-gram overlap features (n =
1...3). By unordered, we mean combina-
tions (in the mathematical sense of ‘“combi-
nations”) of word tokens, regardless of order.
Note that these features are similar to the word
n-gram overlap features except that the words
need not be contiguous to match. For example,
the text “John saw Mary” would result in the
following unordered word n-grams: {john},
{mary}, {saw}, {john, saw}, {mary, saw},
{john, mary}, and {john, mary, saw}.

For the word and unordered n-gram overlap fea-
tures, we computed two variants: one based on all
tokens and one based on just content words, which
we define as words that are not punctuation and do
not appear in the NLTK (Bird et al., 2009) English
stopword list. We lowercase everything for the word
overlap measures but not for character overlap.

2.1.2 Length Features

The system includes various length-related fea-
tures, where L,,,, = max(length(s;),length(ss)),
Lnin = min(length(sy), length(sz)), and length(x)
denotes the number of tokens in z. log denotes the
natural logarithm.

o log(fes)

min

° Linaz—Lmin
Lmax



1 1Og(Lmin)
d log(Lmax)

d 1Og(’Lmax - Lmin‘ + 1)

2.1.3 Sentiment Features

The system includes various features based on the
proprietary sentiment lexicon described by Beigman
Klebanov et al. (2012). Each word in this lexicon
is associated with a 3-tuple specifying a distribution
over three classes: positive, negative, and neutral.
These distributions were estimated via crowdsourc-
ing. If a word is not in the lexicon, we assume its
positivity and negativity are zero.

We define the set of sentiment words in a sen-
tence s as o(s) = {w : positivity(w) > 0.5V
negativity(w) > 0.5}. We also define the pos-
itivity, negativity, and neutrality of a sentence as
the sum over the corresponding values of indi-
vidual words w. For example, positivity(s) =
> wes Positivity (w).

The system includes the following features:

% (i.e., the Jaccard similarity of the
sentiment words)

e The cosine distance between
(positivity(sy ), negativity(sy)) and

(positivity(s2), negativity(ss2))
e |positivity(s;) — positivity(sz2)|
e |negativity(s;) — negativity(s2)|

e |neutrality(s;) — neutrality(s2)|

2.1.4 PERP with Stacking

The system also incorporates the PERP system
(Heilman and Madnani, 2012) (as briefly described
in §1) as a feature in its model by using 10-fold
stacking (Wolpert, 1992). Stacking is a procedure
similar to k-fold cross-validation that allows one to
use the output of one model as the input to another
model, without requiring multiple training sets. A
PERP model is iteratively trained on nine folds and
then the PERP feature is computed for the tenth,
producing PERP features for the whole training set,
which are then used in the final regression model.

We trained PERP in a general manner using data
from all the STS 2012 subtasks rather than training
subtask-specific models. PERP was trained for 100
iterations.
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We refer readers to Heilman and Madnani (2012)
for a full description of PERP. Next, we provide de-
tails about modifications made to PERP since STS
2012. Although these details are not necessary to
understand how the system works in general, we in-
clude them here for completeness.

e We extended PERP to model abbreviations as
zero cost edits, using a list of common abbrevi-
ations extracted from Wikipedia.'

e In a similar vein, we also extended PERP
to model multiword sequences with differing
punctuation (e.g., “Built-In Test” — “Built In
Test) as zero cost edits.

e We changed the stemming and synonymy edits
in the original PERP (Heilman and Madnani,
2012) to be substitution edits that activate addi-
tional stemming and synonymy indicator fea-
tures.

e We added an incentive to TERp’s (Snover et
al., 2009) original inference algorithm to pre-
fer matching words when searching for a good
edit sequence. We added this to avoid rare
cases where other edits would have a negative
costs, and then the same word in a sentence
pair would be, for example inserted and deleted
rather than matched.

e We fixed a minor bug in the inference algo-
rithm, which appeared to only affect results on
the MSRvid subtask in the STS 2012 task.

o We tweaked the learning algorithm by increas-
ing the learning rate and not performing weight
averaging.

2.2 Domain Adaptation

The system also uses the domain adaptation tech-
nique described by Daume III (2007) to facilitate
generalization to new domains. Instead of having
a single weight for each of the features described
above, the system maintains a generic and a subtask-
specific copy. For example, the content bigram over-
lap feature had six copies: a generic copy and one
for each of the five subtasks in the training data from

"http://en.wikipedia.org/wiki/List_of_
acronyms_and_initialisms, downloaded April 27,

2012



STS 2012 (i.e., OnWN, MSRpar, MSRvid, SMTeu-
roparl, SMTnews). And then for an instance from
MSRpar, only the generic and MSRpar-specific ver-
sions of the feature will be active. For an instance
from a new subtask (e.g., a test set instance), only
the generic feature will be active.

We also included a generic intercept feature and
intercept features for each subtask (these always had
a value of 1). These help the model capture, for
example, whether high or low similarities are more
frequent in general, without having to use the other
feature weights to do so.

2.3 Submissions

We submitted three variations of the system.

e Run 1: This run used all the features described
above. In addition, we mapped the test subtasks
to the training subtasks as follows so that the
specific features would be active for test data
from previously unseen but related subtasks:
headlines to MSRpar, SMT to SMTnews, and
FNWN to OnWN.

e Run 2: As in Run 1, this run used all the fea-
tures described above. However, we did not
map the STS 2013 subtasks to STS 2012 sub-
tasks. Thus, the specific copies of features were
only active for OnWN test set examples.

o Run 3: This run used all the features except for
the PERP and sentiment features. Like Run 2,
this run did not map subtasks.

3 Results

This section presents results on the STS 2012 data
(our development set) and results for our submis-
sions to STS 2013.

3.1 STS 2012 (development set)

Although we used cross-validation on the entire STS
2012 dataset during preliminary experiments (§2),
in this section, we train the system on the original
STS 2012 training set and report performance on the
original STS 2012 test set, in order to facilitate com-
parison to submissions to that task. It is important to
note that our system’s results here may be somewhat
optimistic since we had access to the STS 2012 test
data and were using it for development, whereas the
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participants in the 2012 task only had access to the
training data.

Table 1 presents the results. We include the results
for our three submissions, the results for the top-
ranked submission according to the weighted mean
(“UKP”), the results for the best submission from
Heilman and Madnani (2012) (“PERPphrases”), and
the mean across all submissions. Note that while we
compare to the PERP submission from Heilman and
Madnani (2012), the results are not directly compa-
rable since the version of PERP is not the same and
since PERP was trained differently.

For Run 1 on the STS 2012 data, we mapped
OnWN to MSRpar, and SMTnews to SMTeuroparl,
similar to Heilman and Madnani (2012).

3.2 STS 2013 (unseen test set)

Table 2 presents results for our submissions to the
2013 STS task. We include results for our three sub-
missions, results for the top-ranked submission ac-
cording to the weighted mean, results for the base-
line provided by the task organizers, and the mean
across all submissions and the baseline from the or-
ganizers.’

Note that while our Run 2 submission outper-
formed the top-ranked UMBC submission on the
headlines subtask, as shown in 2, there was another
UMBC submission that performed better than Run 2
for the headlines subtask.

4 Discussion

The weighted mean correlation across tasks for our
submissions was relatively poor compared to the
top-ranked systems for STS 2013: our Run 1, Run 2,
and Run 3 submissions beat the baseline and ranked
41st, 26th, and 48th, respectively, out of 89 submis-
sions.

The primary reason for this result is that perfor-
mance of our submissions was poor for the OnWN
subtask, where, e.g., our Run 2 submission’s corre-
lation was r = .4631, compared to » = .8431 for
the top-ranked submission for that subtask (“‘deft-
baseline”).  Upon investigation, we found that
OnWN training and test data were very different in
terms of their score distributions. The mean gold

2The STS 2013 results are from http://ixa2.si.
ehu.es/sts/.



Submission MSRpar | MSRvid | SMTeuroparl | OnWN | SMTnews | W. Mean
Run 1 .6461 .8060 5014 7073 4876 .6577
Run 2 .6461 .8060 5014 7274 4744 .6609
Run 3 .6369 7904 5101 7010 4985 .6529
UKP (top-ranked) .6830 .8739 5280 6641 4937 6773
PERPphrases .6397 7200 4850 7124 5312 .6399
mean-2012 4894 .7049 3958 5557 3731 .5286

Table 1: Pearson correlations for STS 2012 data for each subtask and then the weighted mean across subtasks. “UKP”
was submitted by Bir et al. (2012), “PERPphrases” was submitted by Heilman and Madnani (2012), and “mean-2012”

is the mean of all submissions to STS 2012.

Submission headlines | OnWN | FNWN | SMT | W. Mean
Run 1 .7601 4631 3516 | .2801 4917
Run 2 .7645 4631 3905 | .3593 5229
Run 3 7103 3934 3364 | .3308 4734
UMBC (top-ranked) 7642 7529 5818 | .3804 .6181
baseline .5399 2828 2146 | 2861 .3639
mean-2013 .6022 5042 2887 | .2989 4503

Table 2: Pearson correlations for STS 2013 data for each subtask and then the weighted mean across subtasks.
“UMBC” = “UMBC_EBIQUITY-ParingWords”, and “mean-2013" is the mean of the submissions to STS 2013 and

the baseline.

standard similarity value for the STS 2012 OnWN
data was 3.87 (with a standard deviation of 1.02),
while the mean for the 2013 OnWN data was 2.31
(with a standard deviation of 1.76). We speculate
that our system performed relatively poorly because
it was expecting the OnWN data to include many
highly similar sentences (as in the 2012 data). We
hypothesize that incorporating more detailed Word-
Net information (only the PERP feature used Word-
Net, and only in a limited fashion, to check syn-
onymy) and task-specific features for comparing
definitions might have helped performance for the
OnWN subtask.

If we ignore the definition comparison subtasks,
and consider performance on just the headlines and
SMT subtasks, the system performed quite well.
Our Run 2 submission had a mean correlation of
r = .5619 for those two subtasks, which would rank
5th among all submissions.

We have not fully explored the effects on perfor-
mance of the domain adaptation approach used in
the system, but our approach of mapping tasks used
for our Run 1 submission did not seem to help. It
seems better to keep a general model, as in Runs 2
and 3.
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Additionally, we observe that the performance of
Run 3, which did not use the PERP and sentiment
features, was relatively good compared to Runs 1
and 2, which used all the features. This indicates
that if speed and implementation simplicity are im-
portant concerns for an application, it may suffice to
use relatively simple overlap and length features to
measure semantic similarity.

The contribution of domain adaptation is not
clear. Mapping novel subtasks to tasks for which
training data is available (§2.3), in combination with
the domain adaptation technique we used, did not
generally improve performance. However, we leave
to future work a detailed analysis of whether the
domain adaptation approach (without mapping) is
better than simply training a separate system for
each subtask and using out-of-domain data when in-
domain data is unavailable.

5 Conclusion

In this paper, we described a system for predicting
the semantic similarity of two short texts. The sys-
tem uses stacking to combine a trained edit-based
similarity model (Heilman and Madnani, 2012) with



simple features such as word and n-gram overlap,
and it uses the technique described by Daume III
(2007) to support generalization to domains not rep-
resented in the training data. We also presented eval-
uation results, using data from the STS 2012 and
STS 2013 shared tasks, that indicate that the system
performs competitively relative to other approaches
for many tasks. In particular, we observed very
good performance on the news headline similarity
and MT evaluation subtasks of the STS 2013 shared
task.
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Abstract

This paper describes our submission for the
*SEM shared task of Semantic Textual Sim-
ilarity. We estimate the semantic similarity
between two sentences using regression mod-
els with features: 1) n-gram hit rates (lexical
matches) between sentences, 2) lexical seman-
tic similarity between non-matching words, 3)
string similarity metrics, 4) affective content
similarity and 5) sentence length. Domain
adaptation is applied in the form of indepen-
dent models and a model selection strategy
achieving a mean correlation of 0.47.

1 Introduction

Text semantic similarity estimation has been an ac-
tive research area, thanks to a variety of potential ap-
plications and the wide availability of data afforded
by the world wide web. Semantic textual similar-
ity (STS) estimates can be used for information ex-
traction (Szpektor and Dagan, 2008), question an-
swering (Harabagiu and Hickl, 2006) and machine
translation (Mirkin et al., 2009). Term-level simi-
larity has been successfully applied to problems like
grammar induction (Meng and Siu, 2002) and affec-
tive text categorization (Malandrakis et al., 2011). In
this work, we built on previous research and our sub-
mission to SemEval’2012 (Malandrakis et al., 2012)
to create a sentence-level STS model for the shared
task of *SEM 2013 (Agirre et al., 2013).

Semantic similarity between words has been
well researched, with a variety of knowledge-based
(Miller, 1990; Budanitsky and Hirst, 2006) and
corpus-based (Baroni and Lenci, 2010; Iosif and
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Potamianos, 2010) metrics proposed. Moving to
sentences increases the complexity exponentially
and as a result has led to measurements of simi-
larity at various levels: lexical (Malakasiotis and
Androutsopoulos, 2007), syntactic (Malakasiotis,
2009; Zanzotto et al., 2009), and semantic (Rinaldi
et al., 2003; Bos and Markert, 2005). Machine trans-
lation evaluation metrics can be used to estimate lex-
ical level similarity (Finch et al., 2005; Perez and
Alfonseca, 2005), including BLEU (Papineni et al.,
2002), a metric using word n-gram hit rates. The pi-
lot task of sentence STS in SemEval 2012 (Agirre et
al., 2012) showed a similar trend towards multi-level
similarity, with the top performing systems utilizing
large amounts of partial similarity metrics and do-
main adaptation (the use of separate models for each
input domain) (Bir et al., 2012; Sari¢ et al., 2012).
Our approach is originally motivated by BLEU
and primarily utilizes “hard” and “soft” n-gram hit
rates to estimate similarity. Compared to last year,
we utilize different alignment strategies (to decide
which n-grams should be compared with which).
We also include string similarities (at the token and
character level) and similarity of affective content,
expressed through the difference in sentence arousal
and valence ratings. Finally we added domain adap-
tation: the creation of separate models per domain
and a strategy to select the most appropriate model.

2 Model

Our model is based upon that submitted for the same
task in 2012 (Malandrakis et al., 2012). To esti-
mate semantic similarity metrics we use a super-
vised model with features extracted using corpus-
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based word-level similarity metrics. To combine
these metrics into a sentence-level similarity score
we use a modification of BLEU (Papineni et al.,
2002) that utilizes word-level semantic similarities,
string level comparisons and comparisons of affec-
tive content, detailed below.

2.1

Co-occurrence-based. The semantic similarity be-
tween two words, w; and wj, is estimated as their
pointwise mutual information (Church and Hanks,
1990): 1(7,j) = log ﬁ%)il’%) , where p(i) and p(j) are
the occurrence probabilities of w; and w;, respec-
tively, while the probability of their co-occurrence
is denoted by p(i, 7). In our previous participation
in SemEvall2-STS task (Malandrakis et al., 2012)
we employed a modification of the pointwise mutual
information based on the maximum sense similar-
ity assumption (Resnik, 1995) and the minimization
of the respective error in similarity estimation. In
particular, exponential weights « were introduced in
order to reduce the overestimation of denominator
probabilities. The modified metric 1,(i,j), is de-
fined as:

Word level semantic similarity

(i, j)

S )
lalt:0)=5 |18 Ga o) z

p()p*(j)
The weight o was estimated on the corpus of (losif
and Potamianos, 2012) in order to maximize word
sense coverage in the semantic neighborhood of
each word. The [,(7, j) metric using the estimated
value of « = 0.8 was shown to significantly
outperform I(i,7) and to achieve state-of-the-art
results on standard semantic similarity datasets
(Rubenstein and Goodenough, 1965; Miller and
Charles, 1998; Finkelstein et al., 2002).

Context-based: = The fundamental assumption
behind context-based metrics is that similarity
of context implies similarity of meaning (Harris,
1954). A contextual window of size 2H + 1 words
is centered on the word of interest w; and lexical
features are extracted. For every instance of w;
in the corpus the H words left and right of w;
formulate a feature vector v;. For a given value of
H the context-based semantic similarity between
two words, w; and wj, is computed as the cosine
of their feature vectors: QU (i, ) i

= Tl TloyTT
The elements of feature vectors can be weighted

(1)
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according various schemes [(Josif and Potamianos,
2010)], while, here we use a binary scheme.

Network-based: The aforementioned similarity
metrics were used for the definition of a semantic
network (Iosif and Potamianos, 2013; Iosif et al.,
2013). A number of similarity metrics were pro-
posed under either the attributional similarity (Tur-
ney, 2006) or the maximum sense similarity (Resnik,
1995) assumptions of lexical semantics!.

2.2 Sentence level similarities

To utilize word-level semantic similarities in the
sentence-level task we use a modified version of
BLEU (Papineni et al., 2002). The model works in
two passes: the first pass identifies exact matches
(similar to baseline BLEU), the second pass com-
pares non-matched terms using semantic similarity.
Non-matched terms from the hypothesis sentence
are compared with all terms of the reference sen-
tence (regardless of whether they were matched dur-
ing the first pass). In the case of bigram and higher
order terms, the process is applied recursively: the
bigrams are decomposed into two words and the
similarity between them is estimated by applying the
same method to the words. All word similarity met-
rics used are peak-to-peak normalized in the [0,1]
range, so they serve as a “degree-of-match”. The se-
mantic similarity scores from term pairs are summed
(just like n-gram hits) to obtain a BLEU-like hit-rate.
Alignment is performed via maximum similarity:
we iterate on the hypothesis n-grams, left-to-right,
and compare each with the most similar n-gram in
the reference. The features produced by this process
are “soft” hit-rates (for 1-, 2-, 3-, 4—grams)2. We also
use the “hard” hit rates produced by baseline BLEU
as features of the final model.

2.3 String similarities

We use the following string-based similarity fea-
tures: 1) Longest Common Subsequence Similarity
(LCSS) (Lin and Och, 2004) based on the Longest
Common Subsequence (LCS) character-based dy-

'The network-based metrics were applied only during the
training phase of the shared task, due to time limitations. They
exhibited almost identical performance as the metric defined by
(1), which was used in the test runs.

?Note that the features are computed twice on each sentence
pair and then averaged.



namic programming algorithm. LCSS represents the
length of the longest string (or strings) that is a sub-
string (or are substrings) of two or more strings. 2)
Skip bigram co-occurrence measures the overlap of
skip-bigrams between two sentences or phrases. A
skip-bigram is defined as any pair of words in the
sentence order, allowing for arbitrary gaps between
words (Lin and Och, 2004). 3) Containment is de-
fined as the percentage of a sentence that is con-
tained in another sentence. It is a number between
0 and 1, where 1 means the hypothesis sentence is
fully contained in the reference sentence (Broder,
1997). We express containment as the amount of n-
grams of a sentence contained in another. The con-
tainment metric is not symmetric and is calculated
as: ¢(X,Y)=1S(X)nS(Y)|/S(X), where S(X)
and S(Y) are all the n-grams of sentences X and Y’
respectively.

2.4 Affective similarity

We used the method proposed in (Malandrakis et al.,
2011) to estimate affective features. Continuous (va-
lence and arousal) ratings in [—1, 1] of any term are
represented as a linear combination of a function of
its semantic similarities to a set of seed words and
the affective ratings of these words, as follows:

N
’LA)(U]]) =ap + Zai v(wl) dija
where w; is the term z)ve1 mean to characterize,
w1...wy are the seed words, v(wy) is the valence rat-
ing for seed word w;, a; is the weight corresponding
to seed word w; (that is estimated as described next),
d;; is a measure of semantic similarity between w;
and w; (for the purposes of this work, cosine similar-
ity between context vectors is used). The weights a;
are estimated over the Affective norms for English
Words (ANEW) (Bradley and Lang, 1999) corpus.
Using this model we generate affective ratings for
every content word (noun, verb, adjective or adverb)
of every sentence. We assume that these can ad-
equately describe the affective content of the sen-
tences. To create an “affective similarity metric” we
use the difference of means of the word affective rat-
ings between two sentences.

2

daffect = 2 — |p(0(s1)) — p(9(s2))| (3)

where 1(0(s;)) the mean of content word ratings in-
cluded in sentence <.
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2.5 Fusion

The aforementioned features are combined using

one of two possible models. The first model is a

Multiple Linear Regression (MLR) model

k
Dp=ao+Y_ an fi, “)
n=1

where Dy, is the estimated similarity, fi are the un-

supervised semantic similarity metrics and a,, are

the trainable parameters of the model.

The second model is motivated by an assumption
of cognitive scaling of similarity scores: we expect
that the perception of hit rates is non-linearly af-
fected by the length of the sentences. We call this the
hierarchical fusion scheme. It is a combination of
(overlapping) MLR models, each matching a range
of sentence lengths. The first model Dy is trained
with sentences with length up to [y, i.e., I < [y, the
second model Dys up to length /5 etc. During test-
ing, sentences with length [ € [1,/;] are decoded
with D, sentences with length [ € (ly,[3] with
model Dy, etc. Each of these partial models is a
linear fusion model as shown in (4). In this work,
we use four models with [y = 10, I, = 20, I3 = 30,
l4 = OQ.

Domain adaptation is employed, by creating sep-
arate models per domain (training data source). Be-
yond that, we also create a unified model, trained
on all data to be used as a fallback if an appropriate
model can not be decided upon during evaluation.

3 Experimental Procedure and Results

Initially all sentences are pre-processed by the
CoreNLP (Finkel et al.,, 2005; Toutanova et al.,
2003) suite of tools, a process that includes named
entity recognition, normalization, part of speech tag-
ging, lemmatization and stemming. We evaluated
multiple types of preprocessing per unsupervised
metric and chose different ones depending on the
metric. Word-level semantic similarities, used for
soft comparisons and affective feature extraction,
were computed over a corpus of 116 million web
snippets collected by posing one query for every
word in the Aspell spellchecker (asp, ) vocabulary to
the Yahoo! search engine. Word-level emotional rat-
ings in continuous valence and arousal scales were
produced by a model trained on the ANEW dataset



and using contextual similarities. Finally, string sim-
ilarities were calculated over the original unmodified
sentences.

Next, results are reported in terms of correla-
tion between the generated scores and the ground
truth, for each corpus in the shared task, as well as
their weighted mean. Feature selection is applied
to the large candidate feature set using a wrapper-
based backward selection approach on the train-
ing data.The final feature set contains 15 features:
soft hit rates calculated over content word 1- to 4-
grams (4 features), soft hit rates calculated over un-
igrams per part-of-speech, for adjectives, nouns, ad-
verbs, verbs (4 features), BLEU unigram hit rates
for all words and content words (2 features), skip
and containment similarities, containment normal-
ized by sum of sentence lengths or product of sen-
tence lengths (3 features) and affective similarities
for arousal and valence (2 features).

Domain adaptation methods are the only dif-
ference between the three submitted runs. For all
three runs we train one linear model per training set
and a fallback model. For the first run, dubbed lin-
ear, the fallback model is linear and model selection
during evaluation is performed by file name, there-
fore results for the OnWN set are produced by a
model trained with OnWN data, while the rest are
produced by the fallback model. The second run,
dubbed length, uses a hierarchical fallback model
and model selection is performed by file name. The
third run, dubbed adapt, uses the same models as
the first run and each test set is assigned to a model
(i.e., the fallback model is never used). The test set -
model (training) mapping for this run is: OnWN —
OnWN, headlines — SMTnews, SMT — Europarl
and FNWN — OnWN.

Table 1: Correlation performance for the linear model us-
ing lexical (L), string (S) and affect (A) features

Feature | headl. | OnWN | FNWN | SMT | mean
L 0.68 0.51 0.23 | 0.25| 046
L+S 0.69 0.49 0.23 | 0.26 | 0.46
L+S+A 0.69 0.51 027 | 028 | 047

Results are shown in Tables 1 and 2. Results for
the linear run using subsets of the final feature set
are shown in Table 1. Lexical features (hit rates) are
obviously the most valuable features. String similar-
ities provided us with an improvement in the train-
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Table 2: Correlation performance on the evaluation set.

Run headl. | OnWN | FNWN | SMT | mean
linear 0.69 0.51 027 | 028 | 047
length 0.65 0.51 0.25 | 028 | 0.46
adapt 0.62 0.51 033 | 030 | 046

ing set which is not reflected in the test set. Af-
fect proved valuable, particularly in the most diffi-
cult sets of FNWN and SMT.

Results for the three submission runs are shown
in Table 2. Our best run was the simplest one, using
a purely linear model and effectively no adaptation.
Adding a more aggressive adaptation strategy im-
proved results in the FNWN and SMT sets, so there
is definitely some potential, however the improve-
ment observed is nowhere near that observed in the
training data or the same task of SemEval 2012. We
have to question whether this improvement is an ar-
tifact of the rating distributions of these two sets
(SMT contains virtually only high ratings, FNWN
contains virtually only low ratings): such wild mis-
matches in priors among training and test sets can
be mitigated using more elaborate machine learning
algorithms (rather than employing better semantic
similarity features or algorithms). Overall the sys-
tem performs well in the two sets containing large
similarity rating ranges.

4 Conclusions

We have improved over our previous model of sen-
tence semantic similarity. The inclusion of string-
based similarities and more so of affective content
measures proved significant, but domain adaptation
provided mixed results. While expanding the model
to include more layers of similarity estimates is
clearly a step in the right direction, further work is
required to include even more layers. Using syntac-
tic information and more levels of abstraction (e.g.
concepts) are obvious next steps.
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Abstract

This paper describes the specifications and
results of UMCC_DLSI system, which
participated in the Semantic Textual
Similarity task (STS) of SemEval-2013. Our
supervised system uses different types of
lexical and semantic features to train a
Bagging classifier used to decide the correct
option. Related to the different features we
can highlight the resource ISR-WN used to
extract semantic relations among words and
the use of different algorithms to establish
semantic and lexical similarities. In order to
establish which features are the most
appropriate to improve STS results we
participated with three runs using different
set of features. Our best run reached the
position 44 in the official ranking, obtaining
a general correlation coefficient of 0.61.

1 Introduction

SemEval-2013 (Agirre et al., 2013) presents the
task Semantic Textual Similarity (STS) again. In
STS, the participating systems must examine the
degree of semantic equivalence between two
sentences. The goal of this task is to create a
unified framework for the evaluation of semantic
textual similarity modules and to characterize
their impact on NLP applications.

STS is related to Textual Entailment (TE) and
Paraphrase tasks. The main difference is that
STS assumes bidirectional graded equivalence
between the pair of textual snippets.

In case of TE, the equivalence is directional
(e.g. a student is a person, but a person is not
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necessarily a student). In addition, STS differs
from TE and Paraphrase in that, rather than
being a binary yes/no decision, STS is a
similarity-graded notion (e.g. a student is more
similar to a person than a dog to a person).

This graded bidirectional is useful for NLP
tasks such as Machine Translation (MT),
Information Extraction (IB), Question
Answering (QA), and Summarization. Several
semantic tasks could be added as modules in the
STS framework, “such as Word Sense
Disambiguation ~and  Induction,  Lexical
Substitution, Semantic Role Labeling, Multiword
Expression detection and handling, Anaphora
and Co-reference resolution, Time and Date
resolution and Named Entity, among others™

1.1 Description of 2013 pilot task

This edition of SemEval-2013 remain with the
same classification approaches that in their first
version in 2012. The output of different systems
was compared to the reference scores provided
by SemEval-2013 gold standard file, which
range from five to zero according to the next
criterions>.  (5) “The two sentences are
equivalent, as they mean the same thing”. (4)
“The two sentences are mostly equivalent, but
some unimportant details differ”. (3) “The two
sentences are roughly equivalent, but some
important information differs/missing”. (2) “The
two sentences are not equivalent, but share some
details”. (1) “The two sentences are not

L http://www.cs.york.ac.uk/semeval-2012/task6/
2 http://www.cs.york.ac.uk/semeval-
2012/task6/data/uploads/datasets/train-readme.txt
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equivalent, but are on the same topic”. (0) “The
two sentences are on different topics”.

After this introduction, the rest of the paper is
organized as follows. Section 3 shows the
Related Works. Section 4 presents our system
architecture and description of the different runs.
In section 4 we describe the different features
used in our system. Results and a discussion are
provided in Section 5 and finally we conclude in
Section 6.

2 Related Works

There are more extensive literature on measuring
the similarity between documents than to
between sentences. Perhaps the most recently
scenario is constituted by the competition of
SemEval-2012 task 6: A Pilot on Semantic
Textual Similarity (Aguirre and Cerd, 2012). In
SemEval-2012, there were used different tools
and resources like stop word list, multilingual
corpora, dictionaries, acronyms, and tables of
paraphrases, “but WordNet was the most used
resource, followed by monolingual corpora and
Wikipedia” (Aguirre and Cerd, 2012).

According to Aguirre, Generic NLP tools were
widely used. Among those that stand out were
tools for lemmatization and POS-tagging
(Aguirre and Cerd, 2012). On a smaller scale
word sense disambiguation, semantic role
labeling and time and date resolution. In
addition, Knowledge-based and distributional
methods were highly used. Aguirre and Cerd
remarked on (Aguirre and Cerd, 2012) that
alignment and/or statistical machine translation
software, lexical substitution, string similarity,
textual entailment and machine translation
evaluation software were used to a lesser extent.
It can be noted that machine learning was widely
used to combine and tune components.

Most of the knowledge-based methods “obtain
a measure of relatedness by utilizing lexical
resources and ontologies such as WordNet
(Miller et al., 1990b) to measure definitional
overlap, term distance within a graphical
taxonomy, or term depth in the taxonomy as a
measure of specificity” (Banea et al., 2012).

Some scholars as in (Corley and Mihalcea,
June 2005) have argue “the fact that a
comprehensive metric of text semantic similarity
should take into account the relations between
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words, as well as the role played by the various
entities involved in the interactions described by
each of the two sentences”. This idea is resumed
in the Principle of Compositionality, this
principle posits that the meaning of a complex
expression is determined by the meanings of its
constituent expressions and the rules used to
combine them (Werning et al., 2005). Corley
and Mihalcea in this article combined metrics of
word-to-word similarity, and language models
into a formula and they pose that this is a
potentially good indicator of the semantic
similarity of the two input texts sentences. They
modeled the semantic similarity of a sentence as
a function of the semantic similarity of the
component words (Corley and Mihalcea, June
2005).

One of the top scoring systems at SemEval-
2012 (Sari¢ et al., 2012) tended to use most of
the aforementioned resources and tools. They
predict the human ratings of sentence similarity
using a support-vector regression model with
multiple features measuring word-overlap
similarity and syntax similarity. They also
compute the similarity between sentences using
the semantic alignment of lemmas. First, they
compute the word similarity between all pairs of
lemmas from first to second sentence, using
either the knowledge-based or the corpus-based
semantic similarity. They named this method
Greedy Lemma Aligning Overlap.

Daniel Bar presented the UKP system, which
performed best in the Semantic Textual
Similarity (STS) task at SemEval-2012 in two
out of three metrics. It uses a simple log-linear
regression model, trained on the training data, to
combine multiple text similarity measures of
varying complexity.

3 System architecture and description
of the runs

As we can see in Figure 1, our three runs begin
with the pre-processing of SemEval-2013’s
training set. Every sentence pair is tokenized,
lemmatized and POS-tagged using Freeling 2.2
tool (Atserias et al., 2006). Afterwards, several
methods and algorithms are applied in order to
extract all features for our Machine Learning
System (MLS). Each run uses a particular group
of features.
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The Run 1 (named MultiSemLex) is our main
run. This takes into account all extracted features
and trains a model with a Bagging classifier
(Breiman, 1996) (using REPTree). The training
corpus has been provided by SemEval-2013
competition, in concrete by the Semantic Textual
Similarity task.

The Run 2 (named MultiLex) and Run 3
(named MultiSem) use the same classifier, but
including different features. Run 2 uses (see
Figure 1) features extracted from Lexical-
Semantic Metrics (LS-M) described in section
4.1, and Lexical-Semantic Alignment (LS-A)
described in section 4.2.
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On the other hand, Run 3 uses features
extracted only from Semantic Alignment (SA)
described in section 4.3.

As a result, we obtain three trained models
capable to estimate the similarity value between
two phrases.

Finally, we test our system with the SemEval-
2013 test set (see Table 14 with the results of our
three runs). The following section describes the
features extraction process.

4 Description of the features used in the
Machine Learning System

Many times when two phrases are very similar,
one sentence is in a high degree lexically
overlapped by the other. Inspired in this fact we
developed various algorithms, which measure
the level of overlapping by computing a quantity
of matching words in a pair of phrases. In our
system, we used as features for a MLS lexical
and semantic similarity measures. Other features
were extracted from a lexical-semantic sentences
alignment and a variant using only a semantic
alignment.

4.1 Similarity measures

We have used well-known string based
similarity measures like: Needleman-Wunch
(sequence alignment), Smith-Waterman
(sequence alignment), Smith-Waterman-Gotoh,
Smith-Waterman-Gotoh-Windowed-Affine,
Jaro, Jaro-Winkler, Chapman-Length-Deviation,
Chapman-Mean-Length, QGram-Distance,
Block-Distance, Cosine  Similarity, Dice
Similarity,  Euclidean  Distance,  Jaccard
Similarity, Matching Coefficient, Monge-Elkan
and Overlap-Coefficient. These algorithms have
been obtained from an APl (Application
Program Interface) SimMetrics library v1.5 for
NET 2.0%. We obtained 17 features for our MLS
from these similarity measures.

Using Levenshtein’s edit distance (LED), we
computed also two different algorithms in order
to obtain the alignment of the phrases. In the first
one, we considered a value of the alignment as
the LED between two sentences. Contrary to
(Tatu et al.,, 2006), we do not remove the
punctuation or stop words from the sentences,

3 Copyright (c) 2006 by Chris Parkinson, available in
http://sourceforge.net/projects/simmetrics/



neither consider different cost for transformation
operation, and we used all the operations
(deletion, insertion and substitution).

The second one is a variant that we named
Double Levenshtein’s Edit Distance (DLED)
(see Table 9 for detail). For this algorithm, we
used LED to measure the distance between the
phrases, but in order to compare the words, we
used LED again (Ferndndez et al., 2012;
Fernandez Orquin et al., 2009).

Another distance we used is an extension of
LED named Extended Distance (in spanish
distancia extendida (DEX)) (see (Fernandez et
al., 2012; Fernandez Orquin et al., 2009) for
details). This algorithm is an extension of the
Levenshtein’s algorithm, with which penalties
are applied by considering what kind of
transformation (insertion, deletion, substitution,
or non-operation) and the position it was carried
out, along with the character involved in the
operation. In addition to the cost matrixes used
by Levenshtein’s algorithm, DEx also obtains
the Longest Common Subsequence (LCS)
(Hirschberg, 1977) and other helpful attributes
for determining similarity between strings in a
single iteration. It is worth noting that the
inclusion of all these penalizations makes the
DEx algorithm a good candidate for our
approach.

In our previous work (Fernandez Orquin et al.,
2009), DEx demonstrated excellent results when
it was compared with other distances as
(Levenshtein, 1965), (Neeedleman and Wunsch,
1970), (Winkler, 1999). We also used as a
feature the Minimal Semantic Distances
(Breadth First Search (BFS)) obtained between
the most relevant concepts of both sentences.
The relevant concepts pertain to semantic
resources ISR-WN (Gutiérrez et al.,, 2011,
2010a), as WordNet (Miller et al., 1990a),
WordNet Affect (Strapparava and Valitutti,
2004), SUMO (Niles and Pease, 2001) and
Semantic Classes (lzquierdo et al., 2007). Those
concepts were obtained after having applied the
Association Ratio (AR) measure between
concepts and words over each sentence. (We
refer reader to (Gutiérrez et al., 2010b) for a
further description).

Another attribute obtained by the system was a
value corresponding with the sum of the smaller
distances (using QGram-Distance) between the
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words or the lemmas of the phrase one with each
words of the phrase two.

As part of the attributes extracted by the
system, was also the value of the sum of the
smaller distances (using Levenshtein) among
stems, chunks and entities of both phrases.

4.2 Lexical-Semantic alignment

Another algorithm that we created is the Lexical-
Semantic Alignment. In this algorithm, we tried
to align the phrases by its lemmas. If the lemmas
coincide we look for coincidences among parts-
of-speech* (POS), and then the phrase is
realigned using both. If the words do not share
the same POS, they will not be aligned. To this
point, we only have taken into account a lexical
alignment. From now on, we are going to apply
a semantic variant. After all the process, the non-
aligned words will be analyzed taking into
account its WordNet’s relations (Synonymy,
hyponymy, hyperonymy, derivationally-related-
form, similar-to, verbal group, entailment and
cause-to relation); and a set of equivalences like
abbreviations of months, countries, capitals, days
and currency. In case of hyperonymy and
hyponymy relation, words are going to be
aligned if there is a word in the first sentence
that is in the same relation (hyperonymy or
hyponymy) with another one in the second
sentence. For the relations ‘“cause-to” and
“implication” the words will be aligned if there
is a word in the first sentence that causes or
implicates another one in the second sentence.
All the other types of relations will be carried
out in bidirectional way, that is, there is an
alignment if a word of the first sentence is a
synonymous of another one belonging to the
second one or vice versa.

Finally, we obtain a value we called alignment
relation. This value is calculated as FAV =
NAW / NWSP. Where FAV is the final
alignment value, NAW is the number of aligned
words, and NWSP is the number of words of the
shorter phrase. The FAV value is also another
feature for our system. Other extracted attributes
they are the quantity of aligned words and the
quantity of not aligned words. The core of the
alignment is carried out in different ways, which

4 (noun, verb, adjective, adverbs, prepositions,
conjunctions, pronouns, determinants, modifiers, etc.)



are obtained from several attributes. Each way

can be compared by:

the part-of-speech.

the morphology and the part-of-speech.

the lemma and the part-of-speech.

the morphology, part-of-speech, and

relationships of WordNet.

e the lemma, part-of-speech, and
relationships of WordNet.

4.3 Semantic Alignment

This alignment method depends on calculating
the semantic similarity between sentences based
on an analysis of the relations, in ISR-WN, of
the words that fix them.

First, the two sentences are pre-processed with
Freeling and the words are classified according
to their POS, creating different groups.

The distance between two words will be the
distance, based on WordNet, of the most
probable sense of each word in the pair, on the
contrary of our previously system in SemEval
2012. In that version, we assumed the selected
sense after apply a double Hungarian Algorithm
(Kuhn, 1955), for more details please refer to
(Fernandez et al., 2012). The distance is
computed according to the equation (1):

dx,y) =ZiZg wxr(LlLLE+1]); @)

Where L is the collection of synsets
corresponding to the minimum path between
nodes x and y, m is the length of L subtracting
one, r is a function that search the relation
connecting x and y nodes, w is a weight
associated to the relation searched by r (see
Table 1).

order to a better explanation of our
method.
Original pair
A: A polar bear is running towards a group of
walruses.
B: A polar bear is chasing a group of walruses.
Transformed pair:
As: A polar bear runs towards a group of cats.
Ba1: A wale chases a group of dogs.
Later on, using equation (1), a matrix with the
distances between all groups of both phrases is
created (see Table 2).

GROUPS| polar | bear | runs |towards| group | cats
wale |Dist:=3|Dist:=2|Dist:=3| Dist:=5 Dist:=2
chases |Dist:=4|Dist:=3|Disti=2| Dist:=4 Dist:=3
group Dist:=0
dogs |Dist:=3|Dist:=1|Dist:=4| Dist:=4 Dist:=1
Table 2. Distances between groups.

Using the Hungarian Algorithm (Kuhn, 1955)
for Minimum Cost Assignment, each group of
the first sentence is checked with each element
of the second sentence, and the rest is marked as
words that were not aligned.

In the previous example the words “toward”
and “polar” are the words that were not aligned,
so the number of non-aligned words is two.
There is only one perfect match: “group-group”
(match with cost=0). The length of the shortest
sentence is four. The Table 3 shows the results
of this analysis.

Number of exact | | Total Distances of Number of
coincidence optimal Matching ||| non-aligned
Words
1 5 2

Relation Weight

Hyponym, Hypernym 2
Member_Holonym,  Member_Meronym,

- 5
Cause, Entailment
Similar_To 10
Antonym 200
Other relation different to Synonymy 60

Table 1. Weights applied to WordNet relations.

Table 1 shows the weights associated to
WordNet relations between two synsets.
Let us see the following example:
e We could take the pair 99 of corpus
MSRvid (from training set of SemEval-
2013) with a littler transformation in
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Table 3. Features from the analyzed sentences.

This process has to be repeated for nouns (see
Table 4), verbs, adjective, adverbs, prepositions,
conjunctions, pronouns, determinants, modifiers,
digits and date times. On the contrary, the tables
have to be created only with the similar groups
of the sentences. Table 4 shows features
extracted from the analysis of nouns.

GROUPS bear group cats
wale Dist 1= 2 Dist := 2
group Dist:=0
dogs Dist:=1 Dist:= 1

Table 4. Distances between groups of nouns.




Number of |Total Distances| Number of non-aligned
exact of optimal Words
coincidence | Matching
1 3 0

Table 5. Feature extracted from analysis of nouns.

Several attributes are extracted from the pair of
sentences (see Table 3 and Table 5). Three
attributes considering only verbs, only nouns,
only adjectives, only adverbs, only prepositions,
only conjunctions, only pronouns, only
determinants, only modifiers, only digits, and
only date times. These attributes are:

o Number of exact coincidences
e Total distance of matching
e  Number of words that do not match

Many groups have particular features
according to their parts-of-speech. The group of
the nouns has one more feature that indicates if
the two phrases have the same number (plural or
singular). For this feature, we take the average of
the number of each noun in the phrase like a
number of the phrase.

For the group of adjectives we added a feature
indicating the distance between the nouns that
modify it from the aligned adjectives,
respectively.

For the verbs, we search the nouns that precede
it, and the nouns that are next of the verb, and
we define two groups. We calculated the
distance to align each group with every pair of
aligned verbs. The verbs have other feature that
specifies if all verbs are in the same verbal time.

With the adverbs, we search the verb that is
modified by it, and we calculate their distance
from all alignment pairs.

With the determinants and the adverbs we
detect if any of the alignment pairs are
expressing negations (like don’t, or do not) in
both cases or not. Finally, we determine if the
two phrases have the same principal action. For
all this new features, we aid with Freeling tool.

As a result, we finally obtain 42 attributes from
this alignment method. It is important to remark
that this alignment process searches to solve, for
each word from the rows (see Table 4) it has a
respectively word from the columns.

4.4  Description of the alignment feature

From the alignment process, we extract different
features that help us a better result of our MLS.
Table 6 shows the group of features with lexical
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and semantic support, based on WordNet
relation (named F1). Each of they were named
with a prefix, a hyphen and a suffix. Table 7
describes the meaning of every prefix, and Table
8 shows the meaning of the suffixes.

Features

CPA_FCG, CPNA_FCG, SIM_FCG, CPA_LCG,
CPNA_LCG, SIM_LCG, CPA_FCGR,
CPNA_FCGR, SIM_FCGR, CPA_LCGR,
CPNA_LCGR, SIM_LCGR

Table 6. F1. Semantic feature group.

Prefixes | Descriptions

CPA Number of aligned words.

CPNA Number of non-aligned words.

SIM Similarity

Table 7. Meaning of each prefixes.

Prefixes | Compared words for...

FCG Morphology and POS

LCG Lemma and POS

FCGR Morphology, POS and WordNet relation.

LCGR Lemma, POS and WordNet relation.

Table 8. Suffixes for describe each type of alignment.

Features Descriptions

LevForma Levenshtein Distance between two
phrases  comparing  words by
morphology

LevLema The same as above, but now
comparing by lemma.

LevDoble Idem, but comparing again by
Levenshtein and accepting words
match if the distance is < 2.

DEX Extended Distance

NormLevF, | Normalized forms of LevForma and

NormLevL LevLema.

Table 9. F2. Lexical alignment measures.
Features

NWunch, SWaterman, SWGotoh, SWGAffine, Jaro,
JaroW, CLDeviation, CMLength, QGramD, BlockD,
CosineS, DiceS, EuclideanD, JaccardS, MaCoef,
MongeElkan, OverlapCoef.

Table 10. Lexical Measure from SimMetrics library.

Features Descriptions

AXAQGD _L | All against all applying QGramD
and comparing by lemmas of the
words.

AXAQGD F Same as above, but applying
QGramD and comparing by
morphology.

AXAQGD_LF | Idem, not only comparing by lemma
but also by morphology.

AxALev_LF | All against all applying Levenhstein




comparing by morphology and
lemmas.

AXA_Stems Idem, but applying Levenhstein
comparing by the stems of the

words.

Test data for the core test datasets, coming
from the following:

Corpus  |Description

Table 11. Aligning all against all.

Other features we extracted were obtained
from the following similarity measures (named
F2) (see Table 9 for detail).

We used another group named F3, with lexical
measure extracted from SimMetric library (see
Table 10 for detail).

Finally we used a group of five feature (hamed
F4), extracted from all against all alignment (see
Table 11 for detail).

4.5 Description of the training phase

For the training process, we used a supervised
learning framework, including all the training set
as a training corpus. Using ten-fold cross
validation with the classifier mentioned in
section 3 (experimentally selected).

As we can see in Table 12, the attributes
corresponding with the Test 1 (only lexical
attributes) obtain 0.7534 of correlation. On the
other side, the attributes of the Test 2 (lexical
features with semantic support) obtain 0.7549 of
correlation, and all features obtain 0.7987. Being
demonstrated the necessity to tackle the problem
of the similarity from a multidimensional point
of view (see Test 3 in the Table 12).

Headlineas:|news headlines mined from several news
sources by European Media Monitor
using the RSS feed.

OnWN: mapping of lexical resources OnWN. The
sentences are sense definitions from
WordNet and OntoNotes.

FNWN: the sentences are sense definitions from
WordNet and FrameNet.

SMT: SMT dataset comes from DARPA GALE
HTER and HyTER. One sentence is a
MT output and the other is a reference
translation where a reference is generated
based on human post editing.

Table 13. Test Core Datasets.

Using these measures, our second run (Run 2)
obtained the best results (see Table 14). As we
can see in Table 14, our lexical run has obtained
our best result, given at the same time worth
result in our other runs. This demonstrates that
tackling this problem with combining multiple
lexical similarity measure produce better results
in concordance to this specific test corpora.

To explain Table 14 we present following
descriptions: caption in top row mean: 1-
Headlines, 2- OnWN, 3- FNWN, 4- SMT and 5-
mean.

Runf 1 |R| 2 |R| 3 Rl 4 |[R| 5 |R

1 10.5841/60(0.4847 54| 0.2917 |52|0.2855|66|0.4352|58

2 |0.616855|0.5557|39| 0.3045 |50/0.3407|28|0.4833 |44

3 |0.3846/85|0.134288|-0.0065 |85|0.2736|72|0.2523 |87

Correlation on the training data of SemEval-
Features|2013
Test1 Test 2 Test 3
E; 0.7549
F3 10.7534 0.7987
F4

Table 12. Features influence. Gray cells mean
features are not taking into account.

5 Result and discussion

Semantic Textual Similarity task of SemEval-
2013 offered two official measures to rank the
systems®: Mean- the main evaluation value,
Rank- gives the rank of the submission as
ordered by the "mean" result.

Shttp://ixa2.si.ehu.es/sts/index.php?option=com_content&vi
ew=article&id=53&Itemid=61
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Table 14. Official SemEval-2013 results over test
datasets. Ranking (R).

The Run 1 is our main run, which contains the
junction of all attributes (lexical and semantic
attributes). Table 14 shows the results of all the
runs for a different corpus from test phase. As
we can see, Run 1 did not obtain the best results
among our runs.

Otherwise, Run 3 uses more semantic analysis
than Run 2, from this; Run 3 should get better
results than reached over the corpus of FNWN,
because this corpus is extracted from FrameNet
corpus (Baker et al., 1998) (a semantic network).
FNWN provides examples with high semantic
content than lexical.

Run 3 obtained a correlation coefficient of
0.8137 for all training corpus of SemEval 2013,




while Run 2 and Run 1 obtained 0.7976 and
0.8345 respectively with the same classifier
(Bagging using REPTree, and cross validation
with ten-folds). These results present a
contradiction between test and train evaluation.
We think it is consequence of some obstacles
present in test corpora, for example:

In headlines corpus there are great quantity of
entities, acronyms and gentilics that we not take
into account in our system.

The corpus FNWN presents a non-balance
according to the length of the phrases.

In ONWN -test corpus-, we believe that some
evaluations are not adequate in correspondence
with the training corpus. For example, in line 7
the goal proposed was 0.6, however both phrases
are semantically similar. The phrases are:

e the act of lifting something
e the act of climbing something.

We think that 0.6 are not a correct evaluation
for this example. Our system result, for this
particular case, was 4.794 for Run 3, and 3.814
for Run 2, finally 3.695 for Run 1.

6 Conclusion and future works

This paper have introduced a new framework for
recognizing Semantic Textual Similarity, which
depends on the extraction of several features that
can be inferred from a conventional
interpretation of a text.

As mentioned in section 3 we have conducted
three different runs, these runs only differ in the
type of attributes used. We can see in Table 14
that all runs obtained encouraging results. Our
best run was situated at 44" position of 90 runs
of the ranking of SemEval-2013. Table 12 and
Table 14 show the reached positions for the three
different runs and the ranking according to the
rest of the teams.

In our participation, we used a MLS that works
with features extracted from five different
strategies: String Based Similarity Measures,
Semantic Similarity Measures, Lexical-Semantic
Alignment and Semantic Alignment.

We have conducted the semantic features
extraction in a multidimensional context using
the resource ISR-WN, the one that allowed us to
navigate across several semantic resources
(WordNet, WordNet Domains, WordNet Affect,
SUMO, SentiWordNet and Semantic Classes).
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Finally, we can conclude that our system
performs quite well. In our current work, we
show that this approach can be used to correctly
classify several examples from the STS task of
SemEval-2013. Compared with the best run of
the ranking (UMBC_EBIQUITY- ParingWords)
(see Table 15) our main run has very close
results in headlines (1), and SMT (4) core test
datasets.

Run 1 2 3 4 5 |6

(First) |0.7642|0.7529 | 0.5818 |0.3804|0.6181| 1

(Qur)

RUN 2 0.6168

0.5557 | 0.3045 |0.3407|0.4833|44

Table 15. Comparison with best run (SemEval 2013).

As future work we are planning to enrich our
semantic alignment method with Extended
WordNet (Moldovan and Rus, 2001), we think
that with this improvement we can increase the
results obtained with texts like those in OnWN
test set.

6.1 Team Collaboration

Is important to remark that our team has been
working up in collaboration with INAOE
(Instituto Nacional de Astrofisica, Optica y
Electrénica) and LIPN (Laboratoire
d'Informatique de Paris-Nord), Université Paris
13 universities, in order to encourage the
knowledge interchange and open shared
technology. Supporting this collaboration,
INAOE-UPV (Instituto Nacional de Astrofisica,
Optica y Electrénica and Universitat Politécnica
de Valencia) team, in concrete in INAOE-UPV-
run 3 has used our semantic distances for nouns,
adjectives, verbs and adverbs, as well as lexical
attributes like LevDoble, NormLevF, NormLevL
and Ext (see influence of these attributes in
Table 12).

Acknowledgments

This research work has been partially funded by
the Spanish Government through the project
TEXT-MESS 2.0  (TIN2009-13391-C04),
"Analisis de Tendencias Mediante Técnicas de
Opinién Seméntica" (TIN2012-38536-C03-03)
and “Técnicas de Deconstruccion en la
Tecnologias del Lenguaje Humano” (TIN2012-
31224); and by the Valencian Government
through the project PROMETEO
(PROMETEO/2009/199).



Reference

Agirre, E.; D. Cer; M. Diab and W. Guo. *SEM 2013
Shared Task: Semantic Textual Similarity
including a Pilot on Typed-Similarity. *SEM
2013: The Second Joint Conference on Lexical and
Computational ~ Semantics,  Association  for
Computational Linguistics, 2013.

Aguirre, E. and D. Cerd. SemEval 2012 Task 6:A
Pilot on Semantic Textual Similarity. First Join
Conference on Lexical and Computational
Semantic (*SEM), Montréal, Canada, Association
for Computational Linguistics., 2012. 385-393 p.

Atserias, J.; B. Casas; E. Comelles; M. Gonzéalez; L.
Padré and M. Padré. FreeLing 1.3: Syntactic and
semantic services in an opensource NLP library.
Proceedings of LREC'06, Genoa, Italy, 2006.

Baker, C. F.; C. J. Fillmore and J. B. Lowe. The
berkeley framenet project. Proceedings of the 17th
international  conference on  Computational
linguistics-Volume 1, Association for
Computational Linguistics, 1998. 86-90 p.

Banea, C.; S. Hassan; M. Mohler and R. Mihalcea.
UNT:A Supervised Synergistic Approach to
SemanticText Similarity. First Joint Conference on
Lexical and Computational Semantics (*SEM),
Montréal. Canada, Association for Computational
Linguistics, 2012. 635-642 p.

Breiman, L. Bagging predictors Machine learning,
1996, 24(2): 123-140.

Corley, C. and R. Mihalcea. Measuring the Semantic
Similarity of Texts, Association for Computational
Linguistic. Proceedings of the ACL Work shop on
Empirical Modeling of Semantic Equivalence and
Entailment, pages 13-18, June 2005.

Fernandez, A.; Y. Gutiérrez; H. Davila; A. Chavez;
A. Gonzélez; R. Estrada; Y. Castafieda; S.
Vazquez; A. Montoyo and R. Mufoz.
UMCC _DLSI: Multidimensional Lexical-
Semantic Textual Similarity. {*SEM 2012}: The
First Joint Conference on Lexical and
Computational ~ Semantics --  Volume 1:
Proceedings of the main conference and the shared
task, and Volume 2: Proceedings of the Sixth
International Workshop on Semantic Evaluation
{(SemEval 2012)}, Montreal, Canada, Association
for Computational Linguistics, 2012. 608--616 p.

Fernandez Orquin, A. C.; J. Diaz Blanco; A. Fundora
Rolo and R. Mufioz Guillena. Un algoritmo para la
extraccién de caracteristicas lexicograficas en la
comparacion de palabras. IV Convencion

117

Cientifica Internacional CIUM, Matanzas, Cuba,
20009.

Gutiérrez, Y.; A. Fernandez; A. Montoyo and S.
Vazquez. Integration of semantic resources based
on WordNet. XXVI Congreso de la Sociedad
Espafiola para el Procesamiento del Lenguaje
Natural, Universidad Politécnica de Valencia,
Valencia, SEPLN 2010, 2010a. 161-168 p. 1135-
5948.

Gutiérrez, Y.; A. Fernandez; A. Montoyo and S.
Vézquez. UMCC-DLSI: Integrative resource for
disambiguation task. Proceedings of the 5th
International Workshop on Semantic Evaluation,
Uppsala, Sweden, Association for Computational
Linguistics, 2010b. 427-432 p.

Gutiérrez, Y.; A. Fernandez; A. Montoyo and S.
Véazquez Enriching the Integration of Semantic
Resources based on WordNet Procesamiento del
Lenguaje Natural, 2011, 47: 249-257.

Hirschberg, D. S. Algorithms for the longest common
subsequence problem J. ACM, 1977, 24: 664-675.

Izquierdo, R.; A. Sudrez and G. Rigau A Proposal of
Automatic Selection of Coarse-grained Semantic
Classes for WSD Procesamiento del Lenguaje
Natural, 2007, 39: 189-196.

Kuhn, H. W. The Hungarian Method for the
assignment problem Naval Research Logistics
Quarterly, 1955, 2: 83-97.

Levenshtein, V. I. Binary codes capable of correcting
spurious insertions and deletions of ones. Problems
of information Transmission. 1965. pp. 8-17 p.

Miller, G. A.; R. Beckwith; C. Fellbaum; D. Gross
and K. Miller. Five papers on WordNet
Princenton  University, Cognositive  Science
Laboratory, 1990a.

Miller, G. A.; R. Beckwith; C. Fellbaum; D. Gross
and K. Miller Introduction to WordNet: An On-
line Lexical Database International Journal of
Lexicography, 3(4):235-244., 1990b.

Moldovan, D. I. and V. Rus Explaining Answers with
Extended WordNet ACL, 2001.

Neeedleman, S. and C. Wunsch A general method
applicable to the search for similarities in the
amino acid sequence of two proteins Mol. Biol,
1970, 48(443): 453.

Niles, I. and A. Pease. Origins of the IEEE Standard
Upper Ontology. Working Notes of the 1JCAI-
2001 Workshop on the IEEE Standard Upper
Ontology, Seattle, Washington, USA., 2001.



Sari¢, F.; G. Glavas; Mladenkaran; J. Snajder and B.
D. Basi¢. TakeLab: Systems for Measuring
Semantic Text Similarity. Montréal, Canada, First
Join Conference on Lexical and Computational
Semantic (*SEM), pages 385-393. Association for
Computational Linguistics., 2012.

Strapparava, C. and A. Valitutti. WordNet-Affect: an
affective extension of WordNet. Proceedings of
the 4th International Conference on Language
Resources and Evaluation (LREC 2004), Lisbon,
2004. 1083-1086 p.

Tatu, M.; B. lles; J. Slavick; N. Adrian and D.
Moldovan. COGEX at the Second Recognizing
Textual Entailment Challenge. Proceedings of the
Second PASCAL Recognising Textual Entailment
Challenge Workshop, Venice, Italy, 2006. 104-109
p.

Werning, M.; E. Machery and G. Schurz. The
Compositionality of Meaning and Content,
Volume 1: Foundational issues. ontos verlag
[Distributed in] North and South America by
Transaction Books, 2005. p. Linguistics &
philosophy, Bd. 1. 3-937202-52-8.

Winkler, W. The state of record linkage and current
research problems. Technical Report, Statistical
Research Division, U.S, Census Bureau, 1999.

118



BUT-TYPED: Using domain knowledge for computing typed similarity

Lubomir Otrusina
Brno University of Technology
Faculty of Information Technology
IT4Innovations Centre of Excellence
Bozetechova 2, 612 66 Brno
Czech Republic
iotrusina@fit.vutbr.cz

Abstract

This paper deals with knowledge-based text
processing which aims at an intuitive notion
of textual similarity. Entities and relations rel-
evant for a particular domain are identified and
disambiguated by means of semi-supervised
machine learning techniques and resulting an-
notations are applied for computing typed-
similarity of individual texts.

The work described in this paper particularly
shows effects of the mentioned processes in
the context of the *SEM 2013 pilot task on
typed-similarity, a part of the Semantic Tex-
tual Similarity shared task. The goal is to
evaluate the degree of semantic similarity be-
tween semi-structured records. As the evalu-
ation dataset has been taken from Europeana
— a collection of records on European cultural
heritage objects — we focus on computing a se-
mantic distance on field author which has the
highest potential to benefit from the domain
knowledge.

Specific features that are employed in our sys-
tem BUT-TYPED are briefly introduced to-
gether with a discussion on their efficient ac-
quisition. Support Vector Regression is then
used to combine the features and to provide a
final similarity score. The system ranked third
on the attribute author among 15 submitted
runs in the typed-similarity task.

1 Introduction

The goal of the pilot typed-similarity task lied in
measuring a degree of semantic similarity between
semi-structured records. The data came from the
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Europeana digital library! collecting millions of
records on paintings, books, films, and other mu-
seum and archival objects that have been digitized
throughout Europe. More than 2,000 cultural and
scientific institutions across Europe have contributed
to Europeana. There are many metadata fields at-
tached to each item in the library, but only fields
title, subject, description, creator, date and source
were used in the task.

Having this collection, it is natural to expect that
domain knowledge on relevant cultural heritage en-
tities and their inter-relations will help to measure
semantic closeness between particular items. When
focusing on similarities in a particular field (a se-
mantic type) that clearly covers a domain-specific
aspect (such as field author/creator in our case), the
significance of the domain knowledge should be the
highest.

Intuitively, the semantic similarity among authors
of two artworks corresponds to strengths of links
that can be identified among the two (groups of)
authors. As the gold standard for the task resulted
from a Mechanical Turk experiment (Paolacci et al.,
2010), it could be expected that close fields corre-
spond to authors that are well known to represent
the same style, worked in the same time or the same
art branch (e. g., Gabriél Metsu and Johannes Ver-
meer), come from the same region (often guessed
from the names), dealt with related topics (not nec-
essarily in the artwork described by the record in
question), etc. In addition to necessary evaluation of
the intersection and the union of two author fields
(leading naturally to the Jaccard similarity coeffi-

"http://www.europeana.eu/
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cient on normalized name records — see below), it
is therefore crucial to integrate means measuring the
above-mentioned semantic links between identified
authors.

Unfortunately, there is a lot of noise in the data
used in the task. Since Europeana does not precisely
define meaning and purpose of each particular field
in the database, many mistakes come directly from
the unmanaged importing process realized by par-
ticipating institutions. Fields often mix content of
various semantic nature and, occasionally, they are
completely misinterpreted (e. g., field creator stands
for the author, but, in many cases, it contains only
the institution the data comes from). Moreover, the
data in records is rather sparse — many fields are left
empty even though the information to be filled in is
included in original museum records (e. g., the au-
thor of an artwork is known but not entered).

The low quality of underlying data can be also
responsible for results reported in related studies.
For example, Aletras et al. (2012) evaluate semantic
similarity between semi-structured items from Euro-
peana. They use several measures including a sim-
ple normalized textual overlap, the extended Lesk
measure, the cosine similarity, a Wikipedia-based
model and the LDA (Latent Dirichlet Allocation).
The study, restricted to fields title, subject and de-
scription, shows that the best score is obtained by
the normalized overlap applied only to the title field.
Any other combination of the fields decreased the
performance. Similarly, sophisticated methods did
not bring any improvement.

The particular gold standard (training/test data)
used in the typed-similarity task is also problematic.
For example, it provides estimates of location-based
similarity even though it makes no sense for partic-
ular two records — no field mentions a location and
it cannot be inferred from other parts). A through-
out analysis of the task data showed that creator is
the only field we could reasonably use in our exper-
iments (although many issues discussed in previous
paragraphs apply for the field as well). That is why
we focus on similarities between author fields in this
study.

While a plenty of measures for computing tex-
tual similarity have been proposed (Lin, 1998; Lan-
dauer et al., 1998; Sahlgren, 2005; Gabrilovich and
Markovitch, 2007) and there is an active research
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in the fields of Textual Entailment (Negri et al.,
2012), Paraphrase Identification (Lintean and Rus,
2010) and, recently, the Semantic Textual Similar-
ity (Agirre et al., 2012), the semi-structured record
similarity is a relatively new area of research. Even
though we focus on a particular domain-specific
field in this study, our work builds on previous re-
sults (Croce et al., 2012; Annesi et al., 2012) to
pre-compute semantic closeness of authors based on
available biographies and other related texts.

The rest of the paper is organized as follows: The
next section introduces the key domain-knowledge
processing step of our system which aims at recog-
nizing and disambiguating entities relevant for the
cultural heritage domain. The realized system and
its results are described in Section 3. Finally, Sec-
tion 4 briefly summarizes the achievements.

2 Entity Recognition and Disambiguation

A fundamental step in processing text in particu-
lar fields lies in identifying named entities relevant
for similarity measuring. There is a need for a
named entity recognition tool (NER) which identi-
fies names and classifies referred entities into pre-
defined categories. We take advantage of such a
tool developed by our team within the DECIPHER
project?.

The DECIPHER NER is able to recognize artists
relevant for the cultural heritage domain and, for
most of them, to identify the branch of the arts they
were primarily focused on (such as painter, sculp-
tors, etc.). It also recognizes names of artworks,
genres, art periods and movements and geograph-
ical features. In total, there are 1,880,985 recog-
nizable entities from the art domain and more than
3,000,000 place names. Cultural-heritage entities
come from various sources; the most productive
ones are given in Table 1. The list of place names
is populated from the Geo-Names database’.

The tool takes lists of entities and constructs a fi-
nite state automaton to scan and annotate input texts.
It is extremely fast (50,000 words per second) and
has a relatively small memory footprint (less than
90 MB for all the data).

Additional information attached to entities is

Zhttp://decipher-research.eu/
3http://www.geonames.org/



Source # of entities
Freebase® 1,288,192
Getty ULAN® 528,921
VADS® 31,587
Arthermitage’ 4,259
Artcyclopedia® 3,966
Table 1: Number of art-related entities from various
sources

stored in the automaton too. A normalized form of a
name and its semantic type is returned for each en-
tity. Normalized forms enable identifying equivalent
entities expressed differently in texts, e. g., Gabri€l
Metsu refers to the same person as Gabriel Metsu,
US can stand for the United States (of America), etc.
Type-specific information is also stored. It includes
a detailed type (e.g., architect, sculptor, etc.), na-
tionality, relevant periods or movements, and years
of birth and death for authors. Types of geographical
features (city, river), coordinates and the GeoNames
database identifiers are stored for locations.

The tool is also able to disambiguate entities
based on a textual context in which they appeared.
Semantic types and simple rules preferring longer
matches provide a primary means for this. For ex-
ample, a text containing Bobigny — Pablo Picasso,
refers probably to a station of the Paris Metro and
does not necessarily deal with the famous Spanish
artist. A higher level of disambiguation takes form
of classification engines constructed for every am-
biguous name from Wikipedia. A set of most spe-
cific terms characterizing each particular entity with
a shared name is stored together with an entity iden-
tifier and used for disambiguation during the text
processing phase. Disambiguation of geographical
names is performed in a similar manner.

3 System Description and Results

To compute semantic similarity of two non-empty
author fields, normalized textual content is com-
pared by an exact match first. As there is no unified
form defined for author names entered to the field,
the next step applies the NER tool discussed in the
previous section to the field text and tries to identify
all mentioned entities. Table 2 shows examples of
texts from author fields and their respective annota-
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tions (in the typewriter font).

Dates and places of birth and death as well as few
specific keywords are put together and used in the
following processing separately. To correctly anno-
tate expressions that most probably refer to names of
people not covered by the DECIPHER NER tool, we
employ the Stanford NER? that is trained to identify
names based on typical textual contexts.

The final similarity score for a pair of author fields
is computed by means of the SVR combining spe-
cific features characterizing various aspects of the
similarity. Simple Jaccard coefficient on recognized
person names, normalized word overlap of the re-
maining text and its edit distance (to deal with typos)
are used as basic features.

Places of births and deaths, author’s nationality
(e.g., Irish painter) and places of work (active in
Spain and France) provide data to estimate location-
based similarity of authors. Coordinates of each lo-
cation are used to compute an average location for
the author field. The distance between the average
coordinates is then applied as a feature. Since types
of locations (city, state, etc.) are also available, the
number of unique location types for each item and
the overlap between corresponding sets are also em-
ployed as features.

Explicitly mentioned dates as well as information
provided by the DECIPHER NER are compared too.
The time-similarity feature takes into account time
overlap of the dates and time distance of an earlier
and a later event.

Other features reflect an overlap between visual
art branches represented by artists in question (Pho-
tographer, Architect, etc.), an overlap between their
styles, genres and all other information available
from external sources. We also employ a matrix of
artistic influences that has been derived from a large
collection of domain texts by means of relation ex-
traction methods.

Finally, general relatedness of artists is pre-
computed from the above-mentioned collection by
means of Random Indexing (RI), Explicit Seman-
tic Analysis (ESA) and Latent Dirichlet Allocation
(LDA) methods, stored in sparse matrices and en-
tered as a final set of features to the SVR process.

The system is implemented in Python and takes

“http://nlp.stanford.edu/software/CRE-NER .shtml



Eginton, Francis; West, Benjamin

Eginton, Francis</author>;

<author name="Francis Eginton" url="http://www.freebase.com/m/0bylw5n">
<author name="Benjamin West"
url="http://www.freebase.com/m/01lz6r6" >West,

Benjamin</author>

Yossef Zaritsky Israeli, born Ukraine, 1891-1985

1891-1985</author>

<author name="Joseph Zaritsky" url="http://www.freebase.com/m/0bh71lxw"
nationality="Israel" place_of birth="Ukraine" date_of birth="1891"
date_of_death="1985">Yossef Zaritsky Israeli,

born Ukraine,

<author name="Man Ray"

place_of birth="Philadelphia"
Man Ray

(Emmanuel Radnitzky) 1890,

Man Ray (Emmanuel Radnitzky) 1890, Philadelphia — 1976, Paris
alternate_name="Emmanuel Radnitzky"
url="http://www.freebase.com/m/0gskj" date_of birth="1890"

date_of_death="1976" place_of_death="Paris">
Philadelphia - 1976,

Paris</author>

Table 2: Examples of texts in the author field and their annotations

advantage of several existing modules such as gen-
sim'® for RI, ESA and other text-representation
methods, numpy'! for Support Vector Regression
(SVR) with RBF kernels, PyVowpal'? for an effi-
cient implementation of the LDA, and nltk'3 for gen-
eral text pre-processing.

The resulting system was trained and tested on the
data provided by the task organizers. The train and
test sets consisted each of 750 pairs of cultural her-
itage records from Europeana along with the gold
standard for the training set. The BUT-TYPED sys-
tem reached score 0.7592 in the author field (cross-
validated results, Pearson correlation) on the train-
ing set where 80 % were used for training whereas
20 % for testing. The score for the field on the test-
ing set was 0.7468, while the baseline was 0.4278.

4 Conclusions

Despite issues related to the low quality of the
gold standard data, the attention paid to the sim-
ilarity computation on the chosen field showed to
bear fruit. The realized system ranked third among
14 others in the criterion we focused on. Domain
knowledge proved to significantly help in measuring
semantic closeness between authors and the results
correspond to an intuitive understanding of the sim-

"http://radimrehurek.com/gensim/
http://www.numpy.org/
Phttps://github.com/shilad/Py Vowpal
Bhttp://mltk.org/
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ilarity between artists.
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Abstract

This paper reports our submissions to the
Semantic Textual Similarity (STS) task in
*SEM Shared Task 2013. We submitted three
Support Vector Regression (SVR) systems in
core task, using 6 types of similarity mea-
sures, i.e., string similarity, number similar-
ity, knowledge-based similarity, corpus-based
similarity, syntactic dependency similarity and
machine translation similarity. Our third sys-
tem with different training data and different
feature sets for each test data set performs the
best and ranks 35 out of 90 runs. We also sub-
mitted two systems in typed task using string
based measure and Named Entity based mea-
sure. Our best system ranks 5 out of 15 runs.

1 Introduction

The task of semantic textual similarity (STS) is to
measure the degree of semantic equivalence between
two sentences, which plays an increasingly impor-
tant role in natural language processing (NLP) ap-
plications. For example, in text categorization (Yang
and Wen, 2007), two documents which are more
similar are more likely to be grouped in the same
class. In information retrieval (Sahami and Heil-
man, 2006), text similarity improves the effective-
ness of a semantic search engine by providing in-
formation which holds high similarity with the input
query. In machine translation (Kauchak and Barzi-
lay, 2006), sentence similarity can be applied for
automatic evaluation of the output translation and
the reference translations. In question answering

(Mohler and Mihalcea, 2009), once the question and
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the candidate answers are treated as two texts, the
answer text which has a higher relevance with the
question text may have higher probability to be the
right one.

The STS task in *SEM Shared Task 2013 consists
of two subtasks, i.e., core task and typed task, and
we participate in both of them. The core task aims
to measure the semantic similarity of two sentences,
resulting in a similarity score which ranges from 5
(semantic equivalence) to O (no relation). The typed
task is a pilot task on typed-similarity between semi-
structured records. The types of similarity to be
measured include location, author, people involved,
time, events or actions, subject and description as
well as the general similarity of two texts (Agirre et
al., 2013).

In this work we present a Support Vector Re-
gression (SVR) system to measure sentence seman-
tic similarity by integrating multiple measurements,
i.e., string similarity, knowledge based similarity,
corpus based similarity, number similarity and ma-
chine translation metrics. Most of these similari-
ties are borrowed from previous work, e.g., (Bir et
al., 2012), (garic et al., 2012) and (de Souza et al.,
2012). We also propose a novel syntactic depen-
dency similarity. Our best system ranks 35 out of
90 runs in core task and ranks 5 out of 15 runs in
typed task.

The rest of this paper is organized as follows. Sec-
tion 2 describes the similarity measurements used in
this work in detail. Section 3 presents experiments
and the results of two tasks. Conclusions and future
work are given in Section 4.

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
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2 Text Similarity Measurements

To compute semantic textual similarity, previous
work has adopted multiple semantic similarity mea-
surements. In this work, we adopt 6 types of
measures, i.e., string similarity, number similarity,
knowledge-based similarity, corpus-based similar-
ity, syntactic dependency similarity and machine
translation similarity. Most of them are borrowed
from previous work due to their superior perfor-
mance reported. Besides, we also propose two syn-
tactic dependency similarity measures. Totally we
get 33 similarity measures. Generally, these simi-
larity measures are represented as numerical values
and combined using regression model.

2.1 Preprocessing

Generally, we perform text preprocessing before we
compute each text similarity measurement. Firstly,
Stanford parser! is used for sentence tokenization
and parsing. Specifically, the tokens n’t and 'm are
replaced with not and am. Secondly, Stanford POS
Tagger” is used for POS tagging. Thirdly, Natu-
ral Language Toolkit® is used for WordNet based
Lemmatization, which lemmatizes the word to its
nearest base form that appears in WordNet, for ex-
ample, was is lemmatized as s, not be.

Given two short texts or sentences s; and s9, we
denote the word set of s; and sy as S7 and Sy, the
length (i.e., number of words) of s; and sg as | S|
and |Sa|.

2.2 String Similarity

Intuitively, if two sentences share more strings, they
are considered to have higher semantic similarity.
Therefore, we create 12 string based features in con-
sideration of the common sequence shared by two
texts.

Longest Common sequence (LCS). The widely
used LCS is proposed by (Allison and Dix, 1986),
which is to find the maximum length of a com-
mon subsequence of two strings and here the sub-
sequence need to be contiguous. In consideration of
the different length of two texts, we compute LCS

"http://nlp.stanford.edu/software/lex-parser.shtml
Zhttp://nlp.stanford.edu/software/tagger.shtml
3http://nltk.org/
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similarity using Formula (1) as follows:

Length of LCS
min(]S1],]S2])

Simpcs = (D
In order to eliminate the impacts of various forms
of word, we also compute a Lemma LCS similarity
score after sentences being lemmatized.
word n-grams. Following (Lyon et al., 2001), we
calculate the word n-grams similarity using the Jac-
card coefficient as shown in Formula (2), where p is
the number of n-grams shared by s; and s2, ¢ and r
are the number of n-grams not shared by s; and s2,
respectively.

P ©))

Jacc = ———
p+q+r

Since we focus on short texts, here only n=1,2,3,4

is used in this work. Similar with LCS, we also com-
pute a Lemma n-grams similarity score.
Weighted Word Overlap (WWO). (§aric et al.,
2012) pointed out that when measuring sentence
similarity, different words may convey different con-
tent information. Therefore, we consider to assign
more importance to those words bearing more con-
tent information. To measure the importance of each
word, we use Formula (3) to calculate the informa-
tion content for each word w:

>wec freq(w’)
freq(w)

where C' is the set of words in the corpus and
freq(w) is the frequency of the word w in the cor-
pus. To compute ic(w), we use the Web 1T 5-gram
Corpus®, which is generated from approximately
one trillion word tokens of text from Web pages.

Obviously, the WWO scores between two sen-
tences is non-symmetric. The WWO of sy by s7 is
given by Formula (4):

3)

ic(w) =1In

> wesins, e(w)

D wres, ic(w’)

Likewise, we can get Simywo(s2,S1) score.
Then the final WWO score is the harmonic mean of
SiMawo (51, $2) and Simye(s2, s1). Similarly, we
get a Lemma WWO score as well.

“4)

Simwwo(sla 32) =

“http://www.ldc.upenn.edu/Catalog/docs/LDC2006T13



2.3 Knowledge Based Similarity

Knowledge based similarity approaches rely on
a semantic network of words. In this work
all knowledge-based word similarity measures are
computed based on WordNet. For word similarity,
we employ four WordNet-based similarity metrics:
the Path similarity (Banea et al., 2012); the WUP
similarity (Wu and Palmer, 1994); the LCH similar-
ity (Leacock and Chodorow, 1998); the Lin similar-
ity (Lin, 1998). We adopt the NLTK library (Bird,
2006) to compute all these word similarities.

In order to determine the similarity of sentences,
we employ two strategies to convert the word simi-
larity into sentence similarity, i.e., (1) the best align-
ment strategy (align) (Banea et al., 2012) and (2) the
aggregation strategy (agg) (Mihalcea et al., 2006).

The best alignment strategy is computed as below:

_ @+ X )+ 2181]19)
|S1] + |S2]

Simalign(sla 32)
®)
where w is the number of shared terms between s
and so, list ¢ contains the similarities of non-shared
words in shorter text, ¢; is the highest similarity
score of the ith word among all words of the longer
text. The aggregation strategy is calculated as be-
low:

> wes, (mazSim(w, Sz) * ic(w))

Simagg(s1, s2) S wersn ic(®)

(6)
where mazSim(w, S2) is the highest WordNet-
based score between word w and all words of sen-
tence So. To compute ic(w), we use the same cor-
pus as WWO, i.e., the Web 1T 5-gram Corpus. The
final score of the aggregation strategy is the mean of
Simagg(s1,s2) and Simggg(s2, s1). Finally we get
8 knowledge based features.

2.4 Corpus Based Similarity

Latent Semantic Analysis (LSA) (Landauer et al.,
1997). In LSA, term-context associations are cap-
tured by means of a dimensionality reduction op-
eration performing singular value decomposition
(SVD) on the term-by-context matrix 7', where T’
is induced from a large corpus. We use the TASA
corpus’ to obtain the matrix and compute the word

Shttp://1sa.colorado.edu/
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similarity using cosine similarity of the two vectors
of the words. After that we transform word similar-
ity to sentence similarity based on Formula (5).

Co-occurrence Retrieval Model (CRM) (Weeds,
2003). CRM is based on a notion of substitutabil-
ity. That is, the more appropriate it is to substitute
word w; in place of word ws in a suitable natural
language task, the more semantically similar they
are. The degree of substitutability of we with w;
is dependent on the proportion of co-occurrences of
w; that are also the co-occurrences of ws, and the
proportion of co-occurrences of wy that are also the
co-occurrences of w;. Following (Weeds, 2003), the
CRM word similarity is computed using Formula

(7):
2 % |e(wr) N c(ws)]
le(w)] + [e(w2)]

(7

Simcerm (Wi, w2) =

where c(w) is the set of words that co-occur with
w. We use the 5-gram part of the Web 1T 5-gram
Corpus to obtain ¢(w). If two words appear in one
5-gram, we will treat one word as the co-occurring
word of each other. To obtain ¢(w), we propose two
methods. In the first CRM similarity, we only con-
sider the word w with |c(w)| > 200, and then take
the top 200 co-occurring words ranked by the co-
occurrence frequency as its ¢(w). To relax restric-
tions, we also present an extended CRM (denoted
by ExCRM), which extends the CRM list that all w
with |c¢(w)| > 50 are taken into consideration, but
the maximum of |c(w)| is still set to 200. Finally,
these two CRM word similarity measures are trans-
formed to sentence similarity using Formula (5).

2.5 Syntactic Dependency Similarity

As (Saric et al., 2012) pointed out that dependency
relations of sentences often contain semantic infor-
mation, in this work we propose two novel syntactic
dependency similarity features to capture their pos-
sible semantic similarity.

Simple Dependency Overlap. First we measure the
simple dependency overlap between two sentences
based on matching dependency relations. Stanford
Parser provides 53 dependency relations, for exam-
ple:

nsubj(remain — 16, leader — 4)
dobj(return — 10, home — 11)



where nsubj (nominal subject) and dobj (direct ob-
ject) are two dependency types, remasin is the gov-
erning lemma and leader is the dependent lemma.
Two syntactic dependencies are considered equal
when they have the same dependency type, govern-
ing lemma, and dependent lemma.

Let Ry and R be the set of all dependency rela-
tions in s1 and s2, we compute Simple Dependency
Overlap using Formula (8):

2 % |R1 ﬂR2| * |R1||R2|
|R1| + | Ra2|

SimSimDep(slv 52) =

Special Dependency Overlap. Several types of de-
pendency relations are believed to contain the pri-
mary content of a sentence. So we extract three roles
from those special dependency relations, i.e., pred-
icate, subject and object. For example, from above
dependency relation dobj, we can extract the object
of the sentence, i.e., home. For each of these three
roles, we get a similarity score. For example, to cal-
culate Simpredicate. We denote the sets of predicates
of two sentences as Sp1 and Sp2. We first use LCH to
compute word similarity and then compute sentence
similarity using Formula (5). Similarly, the Simg;
and Sim,y; are obtained in the same way. In the end
we average the similarity scores of the three roles as
the final Special Dependency Overlap score.

2.6 Number Similarity

Numbers in the sentence occasionally carry similar-
ity information. If two sentences contain different
sets of numbers even though their sentence structure
is quite similar, they may be given a low similarity
score. Here we adopt two features following (Saric
et al., 2012), which are computed as follow:

log(1 + [N1| + | N2]) )

2% N1 N Na|/(|N1| + [N2]) (10)

where N7 and N, are the sets of all numbers in s
and sy. We extract the number information from
sentences by checking if the POS tag is CD (cardinal
number).

2.7 Machine Translation Similarity

Machine translation (MT) evaluation metrics are de-
signed to assess whether the output of a MT sys-

tem is semantically equivalent to a set of reference
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translations. The two given sentences can be viewed
as one input and one output of a MT system, then
the MT measures can be used to measure their se-
mantic similarity. We use the following 6 lexical
level metrics (de Souza et al., 2012): WER, TER,
PER, NIST, ROUGE-L, GTM-1. All these measures
are obtained using the Asiya Open Toolkit for Auto-
matic Machine Translation (Meta-) Evaluation®.

3 Experiment and Results

3.1 Regression Model

We adopt LIBSVM to build Support Vector Regres-
sion (SVR) model for regression. To obtain the op-
timal SVR parameters C, g, and p, we employ grid
search with 10-fold cross validation on training data.
Specifically, if the score returned by the regression
model is bigger than 5 or less than 0, we normalize
it as 5 or 0, respectively.

3.2 Core Task

The organizers provided four different test sets to
evaluate the performance of the submitted systems.
We have submitted three systems for core task, i.e.,
Run 1, Run 2 and Run 3. Run 1 is trained on all
training data sets with all features except the num-
ber based features, because most of the test data do
not contain number. Run 2 uses the same feature sets
as Run 1 but different training data sets for different
test data as listed in Table 1, where different training
data sets are combined together as they have simi-
lar structures with the test data. Run 3 uses different
feature sets as well as different training data sets for
each test data. Table 2 shows the best feature sets
used for each test data set, where “+”” means the fea-
ture is selected and “-” means not selected. We did
not use the whole feature set because in our prelimi-
nary experiments, some features performed not well
on some training data sets, and they even reduced
the performance of our system. To select features,
we trained two SVR models for each feature, one
with all features and another with all features except
this feature. If the first model outperforms the sec-
ond model, this feature is chosen.

Table 3 lists the performance of these three sys-
tems as well as the baseline and the best results on

®http://nlp.Isi.upc.edu/asiya/
"http://www.csie.ntu.edu.tw/ cjlin/libsvm/



Test Training
Headline MSRpar
OnWN+FNWN MSRpar+OnWN
SMT SMTnews+SMTeuroparl

Table 1: Different training data sets used for each test data set

type Features Headline | OnWN and FNWN | SMT
LCS + + -
Lemma LCS + + -
String N-gram + 14+2gram lgram
Based Lemma N-gram + 1+2gram Igram
WWO + + +
Lemma WWO + + +
Path, WUP,LCH,Lin + + +
Knowledge +aligh
Based Path, WUP,LCH,Lin + + +
+ic-weighted
Corpus LSA + + +
Based CRM,ExCRM + + +
Simple Dependency + + +
Syntactic Overlap
Dependency | Special Dependency + - +
Overlap
Number Number + - -
WER - + +
TER - + +
PER + + +
MT NIST + + -
ROUGE-L + + +
GTM-1 + + +
Table 2: Best feature combination for each data set
System Mean | Headline | OnWN | FNWN | SMT
Best 0.6181 | 0.7642 | 0.7529 | 0.5818 | 0.3804
Baseline 0.3639 | 0.5399 | 0.2828 | 0.2146 | 0.2861
Run 1 0.3533 | 0.5656 | 0.2083 | 0.1725 | 0.2949
Run 2 0.4720 | 0.7120 | 0.5388 | 0.2013 | 0.2504
Run 3 (rank 35) | 0.4967 | 0.6799 | 0.5284 | 0.2203 | 0.3595

Table 3: Final results on STS core task

STS core task in *SEM Shared Task 2013. For the
three runs we submitted to the task organizers, Run
3 performs the best results and ranks 35 out of 90
runs. Run 2 performs much better than Run 1. It in-
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dicates that using different training data sets for dif-
ferent test sets indeed improves results. Run 3 out-
performs Run 2 and Run 1. It shows that our feature
selection process for each test data set does help im-



prove the performance too. From this table, we find
that different features perform different on different
kinds of data sets and thus using proper feature sub-
sets for each test data set would make improvement.

Besides, results on the four test data sets are quite
different. Headline always gets the best result on
each run and OnWN follows second. And results
of FNWN and SMT are much lower than Headline
and OnWN. One reason of the poor performance of
FNWN may be the big length difference of sentence
pairs. That is, sentence from WordNet is short while
sentence from FrameNet is quite longer, and some
samples even have more than one sentence (e.g. “do-
ing as one pleases or chooses” VS “there exist a
number of different possible events that may happen
in the future in most cases, there is an agent involved
who has to consider which of the possible events will
or should occur a salient entity which is deeply in-
volved in the event may also be mentioned). As
a result, even though the two sentences are similar
in meaning, most of our measures would give low
scores due to quite different sentence length.

In order to understand the contributions of each
similarity measurement, we trained 6 SVR regres-
sion models based on 6 types on MSRpar data set.
Table 4 presents the Pearson’s correlation scores
of the 6 types of measurements on MSRpar. We
can see that the corpus-based measure achieves the
best, then the knowledge-based measure and the MT
measure follow. Number similarity performs sur-
prisingly well, which benefits from the property of
data set that MSRpar contains many numbers in sen-
tences and the sentence similarity depends a lot on
those numbers as well. The string similarity is not
as good as the knowledge-based, the corpus-based
and the MT similarity because of its disability of ex-
tracting semantic characteristics of sentence. Sur-
prisingly, the Syntactic dependency similarity per-
forms the worst. Since we only extract two features
based on sentence dependency, they may not enough
to capture the key semantic similarity information
from the sentences.

3.3 Typed Task

For typed task, we also adopt a SVR model for
each type. Since several previous similarity mea-
sures used for core task are not suitable for evalu-

ation of the similarity of people involved, time pe-
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Features results

string 0.4757
knowledge-based 0.5640
corpus-based 0.5842
syntactic dependency | 0.3528
number 0.5278

MT metrics 0.5595

Table 4: Pearson correlation of features of the six aspects
on MSRpar

riod, location and event or action involved, we add
two Named Entity Recognition (NER) based fea-
tures. Firstly we use Stanford NER® to obtain per-
son, location and date information from the whole
text with NER tags of “PERSON”, “LOCATION”
and “DATE”. Then for each list of entity, we get two
feature values using the following two formulas:

SimNER Num(LINER, L2NER) =

min(|L1ypr|, |[L2ypr)) (1D
max(|L1Ngr|, |L2NER])
Num(equalpairs)

Simyer(L1NER, L2NER) = |L1ngR| * | L2NER]

(12)
where Lyggr is the list of one entity type from
the text, and for two lists of NERs Llygr and
L2NER, there are |L1ygr| * |L2vER| NER pairs.
Num(equalpairs) is the number of equal pairs.
Here we expand the condition of equivalence: two
NERs are considered equal if one is part of another
(e.g. “John Warson” VS “Warson”). Features and
content we used for each similarity are presented in
Table 5. For the three similarities: people involved,
time period, location, we compute the two NER
based features for each similarity with NER type of
“PERSON”, “LOCATION” and “DATE”. And for
event or action involved, we add the above 6 NER
feature scores as its feature set. The NER based sim-
ilarity used in description is the same as event or ac-
tion involved but only based on “dcDescription” part
of text. Besides, we add a length feature in descrip-
tion, which is the ratio of shorter length and longer
length of descriptions.

8http://nlp.stanford.edu/software/CRF-NER.shtml



Type Features Content used
author string based (+ knowledge based for Run2) dcCreator
people involved NER based whole text
time period NER based whole text
location NER based whole text
event or action involved NER based whole text
subject string based (+ knowledge based for Run2) dcSubject
description string based, NER based,length dcDescription
General the 7 similarities above

Table 5: Feature sets and content used of 8 type similarities of Typed data

We have submitted two runs. Run 1 uses only
string based and NER based features. Besides fea-
tures used in Run 1, Run 2 also adds knowledge
based features. Table 6 shows the performance of
our two runs as well as the baseline and the best re-
sults on STS typed task in *SEM Shared Task 2013.
Our Run 1 ranks 5 and Run 2 ranks 7 out of 15 runs.
Run 2 performed worse than Run 1 and the possible
reason may be the knowledge based method is not
suitable for this kind of data. Furthermore, since we
only use NER based features which involves three
entities for these similarities, they are not enough to
capture the relevant information for other types.

4 Conclusion

In this paper we described our submissions to the
Semantic Textual Similarity Task in *SEM Shared
Task 2013. For core task, we collect 6 types of simi-
larity measures, i.e., string similarity, number sim-
ilarity, knowledge-based similarity, corpus-based
similarity, syntactic dependency similarity and ma-
chine translation similarity. And our Run 3 with dif-
ferent training data and different feature sets for each
test data set ranks 35 out of 90 runs. For typed task,
we adopt string based measure, NER based mea-
sure and knowledge based measure, our best system
ranks 5 out of 15 runs. Clearly, these similarity mea-
sures are not quite enough. For the core task, in our
future work we will consider the measures to eval-
uate the sentence difference as well. For the typed
task, with the help of more advanced IE tools to ex-
tract more information regarding different types, we
need to propose more methods to evaluate the simi-
larity.
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Abstract

We approach the typed-similarity task using
a range of heuristics that rely on information
from the appropriate metadata fields for each
type of similarity. In addition we train a linear
regressor for each type of similarity. The re-
sults indicate that the linear regression is key
for good performance. Our best system was
ranked third in the task.

1 Introduction

The typed-similarity dataset comprises pairs of Cul-
tural Heritage items from Europeana!, a single ac-
cess point to digitised versions of books, paintings,
films, museum objects and archival records from in-
stitutions throughout Europe. Typically, the items
comprise meta-data describing a cultural heritage
item and, sometimes, a thumbnail of the item itself.
Participating systems need to compute the similarity
between items using the textual meta-data. In addi-
tion to general similarity, the dataset includes spe-
cific kinds of similarity, like similar author, similar
time period, etc.

We approach the problem using a range of sim-
ilarity techniques for each similarity types, these
make use of information contained in the relevant
meta-data fields.In addition, we train a linear regres-
sor for each type of similarity, using the training data
provided by the organisers with the previously de-
fined similarity measures as features.

We begin by describing our basic system in Sec-
tion 2, followed by the machine learning system in

"http://www.europeana.eu/
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Section 3. The submissions are explained in Section
4. Section 5 presents our results. Finally, we draw
our conclusions in Section 6.

2 Basic system

The items in this task are taken from Europeana.
They cannot be redistributed, so we used the urls
and scripts provided by the organizers to extract the
corresponding metadata. We analysed the text in the
metadata, performing lemmatization, PoS tagging,
named entity recognition and classification (NERC)
and date detection using Stanford CoreNLP (Finkel
et al., 2005; Toutanova et al., 2003). A preliminary
score for each similarity type was then calculated as
follows:

e General: cosine similarity of TE.IDF vectors of
tokens, taken from all fields.

e Author: cosine similarity of TF.IDF vectors of
dc:Creator field.

e People involved, time period and location:
cosine similarity of TF.IDF vectors of loca-
tion/date/people entities recognized by NERC
in all fields.

e Events: cosine similarity of TEIDF vectors of
event verbs and nouns. A list of verbs and
nouns possibly denoting events was derived us-
ing the WordNet Morphosemantic Database?.

e Subject and description: cosine similarity of
TEIDF vectors of respective fields.

IDF values were calculated using a subset of Eu-

ropeana items (the Culture Grid collection), avail-
able internally. These preliminary scores were im-

Zurlhttp://wordnetcode.princeton.edu/standoff-
files/morphosemantic-links.xls

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
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proved using TEIDF based on Wikipedia, UKB
(Agirre and Soroa, 2009) and a more informed time
similarity measure. We describe each of these pro-
cesses in turn.

2.1 TF.IDF

A common approach to computing document sim-
ilarity is to represent documents as Bag-Of-Words
(BOW). Each BOW is a vector consisting of the
words contained in the document, where each di-
mension corresponds to a word, and the weight is
the frequency in the corresponding document. The
similarity between two documents can be computed
as the cosine of the angle between their vectors. This
is the approached use above.

This approach can be improved giving more
weight to words which occur in only a few docu-
ments, and less weight to words occurring in many
documents (Baeza-Yates and Ribeiro-Neto, 1999).
In our system, we count document frequencies of
words using Wikipedia as a reference corpus since
the training data consists of only 750 items associ-
ated with short textual information and might not be
sufficient for reliable estimations. The TE.IDF sim-
ilarity between items a and b is defined as:

simyeiar(a, b) =
Pweap fw,a X thy p X idf7,

VE wea(tfua X idfu)? X /3, ep(thup X idfu)?

where tf,, ;. is the frequency of the term w in x €
{a,b} and idf,, is the inverted document frequency
of the word w measured in Wikipedia. We substi-
tuted the preliminary general similarity score by the
obtained using the TEIDF presented in this section.

2.2 UKB

The semantic disambiguation UKB? algorithm
(Agirre and Soroa, 2009) applies personalized
PageRank on a graph generated from the English
WordNet (Fellbaum, 1998), or alternatively, from
Wikipedia. This algorithm has proven to be very
competitive in word similarity tasks (Agirre et al.,
2010).

To compute similarity using UKB we represent
WordNet as a graph G = (V, E) as follows: graph
nodes represent WordNet concepts (synsets) and

3http://ixa2.si.ehu.es/ukb/
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dictionary words; relations among synsets are rep-
resented by undirected edges; and dictionary words
are linked to the synsets associated to them by di-
rected edges.

Our method is provided with a pair of vectors of
words and a graph-based representation of WordNet.
We first compute the personalized PageRank over
WordNet separately for each of the vector of words,
producing a probability distribution over WordNet
synsets. We then compute the similarity between
these two probability distributions by encoding them
as vectors and computing the cosine between the
vectors. We present each step in turn.

Once personalized PageRank is computed, it
returns a probability distribution over WordNet
synsets. The similarity between two vectors of
words can thus be implemented as the similarity be-
tween the probability distributions, as given by the
cosine between the vectors.

We used random walks to compute improved sim-
ilarity values for author, people involved, location
and event similarity:

e Author: UKB over Wikipedia using person en-
tities recognized by NERC in the dc:Creator
field.

e People involved and location: UKB over
Wikipedia using people/location entities recog-
nized by NERC in all fields.

e Events: UKB over WordNet using event nouns
and verbs recognized in all fields.

Results on the training data showed that perfor-
mance using this approach was quite low (with the
exception of events). This was caused by the large
number of cases where the Stanford parser did not
find entities which were in Wikipedia. With those
cases on mind, we combined the scores returned by
UKB with the similarity scores presented in Section
2 as follows: if UKB similarity returns a score, we
multiply both, otherwise we return the square of the
other similarity score. Using the multiplication of
the two scores, the results on the training data im-
proved.

2.3 Time similarity measure

In order to measure the time similarity between a
pair of items, we need to recognize time expres-
sions in both items. We assume that the year of



creation or the year denoting when the event took
place in an artefact are good indicators for time sim-
ilarity. Therefore, information about years is ex-
tracted from each item using the following pattern:
[1/2][0 — 9]{3}. Using this approach, each item is
represented as a set of numbers denoting the years
mentioned in the meta-data.

Time similarity between two items is computed
based on the similarity between their associated
years. Similarity between two years is defined as:

Simyear(ylayQ) - maw{O, 1- ‘yl - y2’ * k}

k is a parameter to weight the difference between
two years, e.g. for £ = (.1 all items that have differ-
ence of 10 years or more assigned a score of 0. We
obtained best results for £ = 0.1.

Finally, time similarity between items a and b is
computed as the maximum of the pairwise similarity
between their associated years:

SiMiime(a,b) = mamye%{O, $1Myear (@i, bj)}
VIS
We substituted the preliminary time similarity

score by the measure obtained using the method pre-
sented in this section.

3 Applying Machine Learning

The above heuristics can be good indicators for the
respective kind of similarity, and can be thus applied
directly to the task. In this section, we take those
indicators as features, and use linear regression (as
made available by Weka (Hall et al., 2009)) to learn
models that fit the features to the training data.

We generated further similarity scores for gen-
eral similarity, including Latent Dirichlet Allocation
(LDA) (Blei et al., 2003), UKB and Wikipedia Link
Vector Model (WLVM)(Milne, 2007) using infor-
mation taken from all fields, as explained below.

3.1 LDA

LDA (Blei et al., 2003) is a statistical method that
learns a set of latent variables called topics from a
training corpus. Given a topic model, documents
can be inferred as probability distributions over top-
ics, 0. The distribution for a document ¢ is denoted
as 6;. An LDA model is trained using the train-
ing set consisting of 100 topics using the gensim
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The hyperparameters («, (3) were set to
T of Topics® Therefore, each item in the test set is
represented as a topic distribution.

The similarity between a pair of items is estimated
by comparing their topic distributions following the
method proposed in Aletras et al. (2012; Aletras and
Stevenson (2012). This is achieved by considering
each distribution as a vector (consisting of the topics
corresponding to an item and its probability) then
computing the cosine of the angle between them, i.e.

package®.
1

0. - 0,
simLDA(a, b) = _,aib_,
[6a] X |65]
where 6, is the vector created from the probability
distribution generated by LDA for item a.

3.2 Pairwise UKB

We run UKB (Section 2.2) to generate a probabil-
ity distribution over WordNet synsets for all of the
words of all items. Similarity between two words
is computed by creating vectors from these distri-
butions and comparing them using the cosine of the
angle between the two vectors. If a words does not
appear in WordNet its similarity value to every other
word is set to 0. We refer to that similarity metric as
UKB here.

Similarity between two items is computed by per-
forming pairwise comparison between their words,
for each, selecting the highest similarity score:

sim(a,b) = 5

1 (Zlea arg max,,, ¢, UK B(w1,w2)
|al

+

ngeb arg max,, cq UK B(w2,w1)
[b]

where a and b are two items, |a| the number of
tokens in a and U K B(w;, w2) is the similarity be-
tween words wy and ws.

3.3 WLVM

An algorithm described by Milne and Witten (2008)
associates Wikipedia articles which are likely to be
relevant to a given text snippet using machine learn-
ing techniques. We make use of that method to rep-
resent each item as a set of likely relevant Wikipedia

*nttp://pypi.python.org/pypi/gensim



articles. Then, similarity between Wikipedia arti-
cles is measured using the Wikipedia Link Vector
Model (WLVM) (Milne, 2007). WLVM uses both
the link structure and the article titles of Wikipedia
to measure similarity between two Wikipedia arti-
cles. Each link is weighted by the probability of it
occurring. Thus, the value of the weight w for a link
x — gy between articles x and ¥ is:

t
t
w(m—>y):|x—>y|xlog<zz_>y>

z=1

where t is the total number of articles in Wikipedia.
The similarity of articles is compared by forming
vectors of the articles which are linked from them
and computing the cosine of their angle. For exam-
ple the vectors of two articles x and y are:

= (w(x —l),wx —l),..,wx—1l,))
y=(wly —h),wly = l2), ... w(y — ln))

where x and y are two Wikipedia articles and z — I;
is a link from article x to article [;.

Since the items have been mapped to Wikipedia
articles, similarity between two items is computed
by performing pairwise comparison between articles
using WLVM, for each, selecting the highest simi-
larity score:

sim(a,b) =

<Zw1€a arg max,,, ¢, WLV M (w1, w2)

1
2 |al

+

2 wgeb ATEMaxXy, cq WLV M (w2, w1)
[o]

where a and b are two items, |a| the number of
Wikipedia articles in @ and WLV M (wy, ws) is the
similarity between concepts w; and wo.

4 Submissions

We selected three systems for submission. The first
run uses the similarity scores of the basic system
(Section 2) for each similarity types as follows:

e General: cosine similarity of TEIDF vectors,
IDF based on Wikipedia (as shown in Section
2.1).

e Author: product of the scores obtained ob-
tained using TEIDF vectors and UKB (as
shown in Section 2.2) using only the data ex-
tracted from dc:Creator field.
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e People involved and location: product of co-
sine similarity of TF.IDF vectors and UKB (as
shown in Section 2.2) using the data extracted
from all fields.

e Time period: time similarity measure (as
shown in Section 2.3).

e Events: product of cosine similarity of TF.IDF
vectors and UKB (as shown in Section 2.2) of
event nouns and verbs recognized in all fields.

e Subject and description: cosine similarity of
TEIDF vectors of respective fields (as shown
in Section 2).

For the second run we trained a ML model for
each of the similarity types, using the following fea-
tures:

e Cosine similarity of TEIDF vectors as shown
in Section 2 for the eight similarity types.

e Four new values for general similarity: TF.IDF
(Section 2.1), LDA (Section 3.1), UKB and
WLVM (Section 3.3).

e Time similarity as shown in Section 2.3.

e Events similarity computed using UKB initial-
ized with the event nouns and verbs in all fields.

We decided not to use the product of TE.IDF
and UKB presented in Section 2.2 in this system
because our intention was to measure the power of
the linear regression ML algorithm to learn on the
given raw data.

The third run is similar, but includes all available
features (21). In addition to the above, we included:

e Author, people involved and location similar-
ity computed using UKB initialized with peo-
ple/location recognized by NERC in dc:Creator
field for author, and in all fields for people in-
volved and location.

e Author, people involved, location and event
similarity scores computed by the product of
TF.IDF vectors and UKB values as shown in
Section 2.2.

5 Results

Evaluation was carried out using the official scorer
provided by the organizers, which computes the
Pearson Correlation score for each of the eight sim-
ilarity types plus an additional mean correlation.



Team and run General Author People_involved Time Location Event Subject Description| Mean
UBC_UOS-RUN1/|0.7269 0.4474 0.4648 0.5884 0.4801 0.2522 0.4976  0.5389 ]0.5033
UBC_UOS-RUN2/(0.7777 0.6680 0.6767 0.7609 0.7329 0.6412 0.7516 0.8024 |0.7264
UBC_UOS-RUN3|0.7866 0.6941 0.6965 0.7654 0.7492 0.6551 0.7586 0.8067 |0.7390

Table 1: Results of our systems on the training data, using cross-validation when necessary.

Team and run General Author People_involved Time Location Event Subject Description| Mean Rank
UBC_UOS-RUNT1|0.7256 0.4568 0.4467 0.5762 0.4858 0.3090 0.5015 0.5810 [0.5103 6
UBC_UOS-RUN2|0.7457 0.6618 0.6518 0.7466 0.7244 0.6533 0.7404 0.7751 |0.7124 4
UBC_UOS-RUN3| 0.7461 0.6656 0.6544 0.7411 0.7257 0.6545 0.7417 0.7763 (0.7132 3

Table 2: Results of our submitted systems.

5.1 Development

The three runs mentioned above were developed us-
ing the training data made available by the organiz-
ers. In order to avoid overfitting we did not change
the default parameters of the linear regressor, and
10-fold cross-validation was used for evaluating the
models on the training data. The results of our sys-
tems on the training data are shown on Table 1. The
table shows that the heuristics (RUN1) obtain low
results, and that linear regression improves results
considerably in all types. Using the full set of fea-
tures, RUN3 improves slightly over RUN2, but the
improvement is consistent across all types.

5.2 Test

The test dataset was composed of 750 pairs of items.
Table 2 illustrates the results of our systems in the
test dataset. The results of the runs are very similar
to those obtained on the training data, but the dif-
ference between RUN2 and RUN3 is even smaller.
Our systems were ranked #3 (RUN 3), #4 (RUN
2) and #6 (RUN 1) among 14 systems submitted
by 6 teams. Our systems achieved good correlation
scores for almost all similarity types, with the excep-
tion of author similarity, which is the worst ranked
in comparison with the rest of the systems.

6 Conclusions and Future Work

In this paper, we presented the systems submitted
to the *SEM 2013 shared task on Semantic Tex-
tual Similarity. We combined some simple heuris-
tics for each type of similarity, based on the appro-
priate metadata fields. The use of lineal regression
improved the results considerably across all types.
Our system fared well in the competition. We sub-
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mitted three systems and the highest-ranked of these
achieved the third best results overall.
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Abstract

In this paper we describe KnCe2013-CORE,
a system to compute the semantic similarity
of two short text snippets. The system com-
putes a number of features which are gath-
ered from different knowledge bases, namely
WordNet, Wikipedia and Wiktionary. The
similarity scores derived from these features
are then fed into several multilayer perceptron
neuronal networks. Depending on the size
of the text snippets different parameters for
the neural networks are used. The final out-
put of the neural networks is compared to hu-
man judged data. In the evaluation our system
performed sufficiently well for text snippets
of equal length, but the performance dropped
considerably once the pairs of text snippets
differ in size.

1 Introduction

The task of the semantic sentence similarity is to as-
sign a score to a given pair of sentences. This score
should reflect the degree by which the two sentences
represent the same meaning. The semantic similar-
ity of two sentences could then be used in a num-
ber of different application scenarios, for example it
could help to improve the performance of informa-
tion retrieval systems.

In the past, systems based on regression mod-
els in combination with well chosen features have
demonstrated good performance on this topic[4] [6].
Therefore we took this approach as a starting point
to develop our semantic similarity system; addition-
ally, we integrated a number of existing knowledge
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bases into our system. With it, trained with the data
discussed in the task specification of last year[1], we
participated in the shared task of SEM 2013.

Additionally, to the similarity based on the fea-
tures derived from the external knowledge bases, we
employ a neural network to compute the final simi-
larity score. The motivation to use a supervised ma-
chine learning algorithm has been the observation
that the semantic similarity is heavily influenced by
the context of the human evaluator. A financial ex-
pert for example would judge sentences with finan-
cial topics different to non financial experts, if oc-
curring numbers differ from each other.

The remainder of the paper is organised as fol-
lows: In Section 2 we described our system, the
main features and the neuronal network to combine
different feature sets. In Section 3 the calculation
method of our feature values is discribed. In Sec-
tion 4 we report the results of our system based on
our experiments and the submitted results of the test
data. In Section 5 and 6 we discuss the results and
the outcome of our work.

2 System Overview

2.1 Processing

Initially the system puts the sentence pairs of the
whole training set through our annotation pipeline.
After this process the sentence pairs are compared
to each other by our different feature scoring algo-
rithms. The result is a list of scores for each of these
pairs where every score represents a feature or part
of a feature. The processed sentences are now sep-
arated by their length and used to train the neuronal

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 138—142, Atlanta, Georgia, June 13-14, 2013. (©2013 Association for Computational Linguistics



network models for each length group. The testing
data is also grouped based on the sentence length
and the score for each pair is determined by a rele-
vant model.

2.2 Token Features

The first set of features are simply the tokens from
the two respective sentences. This feature set should
perform well, if exactly the same words are used
within the pair of sentences to be compared. But
as soon as words are replaced by their synonyms or
other semantically related words, this feature set will
not be able to capture the true similarity. Used with-
out other features it could even lead to false posi-
tive matches, for example given sentences with sim-
ilar content but containing antonyms. The tokenizer
used by our system was based on the OpenNLP
maximum entropy tokenizer, which detects token
boundaries based on probability model.

2.3 Wiktionary Features

While the collaboratively created encyclopedia
Wikipedia receives a lot of attention from the gen-
eral public, as well as the research community, the
free dictionary Wiktionary' is far lesser known. The
Wiktionary dictionary stores the information in a
semi-structured way using Wikimedia syntax, where
a single page represents a single word or phrase.
Therefore we developed a parser to extract relevant
information. In our case we were especially inter-
ested in semantically related terms, where the se-
mantic relationship is:

Representations: Set of word forms for a spe-
cific term. These terms are expected to indicate the
highest semantic similarity. This includes all flex-
ions, for example the ’s’ suffix for plural forms.

Synonyms: List of synonyms for the term.

Hyponyms: List of more specific terms.

Hypernym: Terms which represent more general
terms.

Antonym: List of terms, which represent an op-
posing sense.

Related Terms: Terms, with a semantic relation-
ship, which does not fall in the aforementioned cat-
egories. For example related terms for bank’ are

"http://en.wiktionary.org
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"bankrupt’. Related terms represent only a weak se-
mantic similarity.

Derived Terms: Terms, with overlapping word
forms, such as ’bank holiday’, *bankroll’ and ’data-
bank’ for the term ’bank’. From all the semantic
relationship types, derived terms are the weakest in-
dicator for their similarities.

2.4 'WordNet Features

The WordNet[5][2] features were generated identi-
cally to the Wiktionary features. We used the Word-
Net off line database and the provided library to get
a broader knowledge base. Therefore we extract the
semantically related terms of each token and saved
each class of relation. Where each dependency class
produced an one value in the final feature score list
of the sentence pairs.

2.5 Wikification Feature

We applied a Named Entity Recognition component,
which has been trained using Wikipedia categories
as input. Given a sentence it will annotate all found
concepts that match a Wikipedia article, together
with a confidence score. So for every found entry
by the annotator there is a list of possible associ-
ated topics. The confidence score can then be used
to score the topic information, in the final step the
evaluation values where calculated as follows:

|T1 ﬁT2|

Scorewiki(s1, 82) = norm(Ty, Ty)
)

where 77 and T3 are the set of topics of the two
sentences and norm is the mean of the confidence
scores of the topics.

2.6 Other Features

Although we mainly focused our approach on the
three core features above, others seemed to be useful
to improve the performance of the system of which
some are described below.

Numbers and Financial Expression Feature:
Some sentence pairs showed particular variations
between the main features and their actual score.
Many of these sentence pairs where quite similar
in their semantic topic but contained financial ex-
pressions or numbers that differed. Therefore these
expressions where extracted and compared against
each other with a descending score.



NGrams Feature: The ngram overlapping fea-
ture is based on a noun-phrase detection which re-
turns the noun-phrases in different ngrams. This
noun-phrase detection is a pos tagger pattern which
matches multiple nouns preceding adjectives and de-
terminers. In both sentences the ngrams where ex-
tracted and compared to each other returning only
the biggest overlapping. In the end, to produce the
evaluation values, the word-count of the overlapping
ngrams were taken.

3 Distance calculation

For the calculation of the distance of the different
features we chose a slightly modified version of the
Jacquard similarity coefficient.

Jsc(w,l) = %

Where in this case w stands for the intersection of
the selected feature, and 1 for @ where 1, and 1,
are the length of the sentences with or without stop-
words depending on the selected feature. The as-
sumption was that for some features the gap between
sentences where one has many stop-words and sen-
tences with none would have a crucial impact but for
others it would be detrimental. In regard to this we
used, depending on the feature, the words or words

excluding stop-words.

3.1 Scoring

One of the main issues at the beginning of our re-
search was how to signal the absence of features to
the neuronal network. As our feature scores depend
on the length of the sentence, the absence of a partic-
ular feature (e.g. financial values) and detected fea-
tures without intersections (e.g. none of the found
financial values in the sentences are intersecting) in
the sentence pairs would lead to the same result.

Therefore we applied two different similarity
scores based on the feature set. They differ in the
result they give, if there is no overlap between the
two feature sets.

For a simple term similarity we defined our simi-
larity score as

—1 :s=0o0rw=20
Jse(w,l) 1w>0

score(w, s,1) = {

140

where w stands for the intersections and S for the
word-count of the sentences. The system returns the
similarity of -1 for no overlap, which signals no sim-
ilarity at all. For fully overlapping feature sets, the
score is 1.

For other features, where we did not expect them
to occur in every sentence, for example numbers or
financial terms, the similarity score was defined as
follows:

1 is=0o0rw=20
score(w, s,1) = Jse(w,l) 1w>0

In this case the score would yield 1 decreasing for
non overlapping feature sets and will drop to -1 the
more features differentiated. This redefines the nor-
mal state as equivalent to a total similarity of all
found features and only if features differ this value
drops.

3.2 Sentence Length Grouping

From tests with the training data we found that our
system performed very diversly with both long and
short sentences although our features where normal-
ized to the sentence length. To cover this problem
we separated the whole collection of training data
into different groups based on their length, each of
the groups were later used to train their own model.
Finally the testing data were also divided into this
groups and were applied on the group model.

3.3 Neural Network

We applyied multilayer perceptron neuronal net-
works on the individual sentence length groups. So
for each group of sentence length we computed sep-
arately the weights of the neural network. To model
the neural networks we used the open-source library
Neuroph.>. This network was defined with a 48-
input layer, which represented the extracted feature
scores, 4 hidden layers, and a 1-output layer which
represents the similarity score of the sentences. For
the runs referenced by table 1 and 2 we used 400000
iterations, which gave us the best results in our tests,
with a maximum error of 0.001 and a learning rate
of 0.001

http://neuroph.sourceforge.net



4 Evaluation and Results

The following results of our system where produced
by our test-run after the challenge deadline. For
the first run we split each training set in halfe, self-
evident without the use of the datasets published af-
ter the challenge, and used the other half to validate
our system. See table 1 for result, which contain our
system.

MSRvid MSRpar SMTeuroparl
Grouping 0.69 0.55 0.50
Without Grouping 0.66 0.52 0.62

Table 1: Run with and without sentence length grouping
on the training set

For the validation the whole 2013 test set was
used as it wasnot used for training. In table 2 the
results of our system on the test-set are listed. When
using the sentence length grouping and without sen-
tence length grouping just using a single neural net-
work for all sentence similarities.

FNWN headlines OnWN SMT
Grouping 0.08 0.66 0.62 0.21
Without Grouping 0.38 0.62 0.39 0.25

Table 2: Results of our system with and without sentence
length grouping on the test set

Finally, we report the results from the original
evaluation of the STS-SharedTask in table 3.

FNWN headlines OnWN SMT
KnCe2013-all 0.11 0.35 0.35 0.16
KnCe2013-diff 0.13 0.40 0.35 0.18
KnCe2013-set 0.04 0.05 -0.15 -0.06

Table 3: The submission to the challenge

5 Discussion

Based on the results we can summarize that our
submitted system, worked well for data with very
short and simple sentences, such as the MSRvid;
however for the longer the sentences the perfor-
mance declined. The grouping based on the input
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length worked well for sentences of similar length
when compared, as we used the average length of
both sentences to group them, but it seamed to fail
for sentences with very diverse lengths like in the
FNWN data set as shown in table 2. Comparing the
results of the official submission to the test runs of
our system it underperformed in all datasets. We as-
sume that the poor results in the submission run were
caused by badly chosen training settings.

6 Conclusion

In our system for semantic sentence similarity we
tried to integrate a number of external knowledge
bases to improve its performance. (Viz. WordNet,
Wikipedia, Wiktionary) Furthermore, we integrated
a neural network component to replicate the similar-
ity score assigned by human judges. We used dif-
ferent sets of neural networks, depending on the size
of the sentences. In the evaluation we found that
our system worked well for the most datasets. But
as soon as the pairs of sentences differed too much
in size, or the sentences were very long, the perfor-
mance decreased. In future work we will consider
to tackle this problem with partial matching[3] and
to introduces features to extract core statements of
short texts.
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Abstract

In this paper we discuss our participation to
the 2013 Semeval Semantic Textual Similarity
task. Our core features includg & set of met-
rics borrowed from automatic machine trans-
lation, originally intended to evaluate auto-
matic against reference translations aingdan
instance of explicit semantic analysis, built
upon opening paragraphs of Wikipedia 2010
articles. Our similarity estimator relies on a
support vector regressor with RBF kernel. Our
best approach required 13 machine transla-
tion metrics + explicit semantic analysis and
ranked 65 in the competition. Our post-
competition analysis shows that the features
have a good expression level, but overfitting
and —mainly— normalization issues caused
our correlation values to decrease.

28660 Madrid, Spain
horacio, turno @si.upc. edu

Our approaches obtained an overall modest result
compared to other participants (best position: 65 out
of 89). Nevertheless, our post-competition analysis
shows that the low correlation was caused mainly by
a deficient data normalization strategy.

The paper distribution is as follows. Section 2 of-
fers a brief overview of the task. Section 3 describes
our approach. Section 4 discuss our experiments and
obtained results. Section 5 provides conclusions.

2 Task Overview

Detecting two similar text fragments is a difficult
task in cases where the similarity occurs at seman-
tic level, independently of the implied lexicon (e.g

in cases of dense paraphrasing). As a result, simi-
larity estimation models must involve features other
than surface aspects. The STS task is proposed as
a challenge focused in short English texts of dif-

ferent nature: from automatic machine translation

o L he 2013 S o T Isi alternatives to human descriptions of short videos.
ur participation to the emantic Textua 'MThe test partition also included texts extracted from

ilarity task (STS) (Agirre et al., 2018)was focused news headlines and FrameNet—Wordnet pairs.
on the CORE problem: GEN TWO SENTENCES The range of similarity was defined between 0

51 AND s2, QUANT'F'C\?LY 'N':_gRMdON HIOWIS”\Q]: (no relation) up to 5 (semantic equivalence). The
LAR s1 AND s2 ARE. VW€ considered real-vaiue ea'gold standard values were averaged from different

tyres from four different sogrces:)éasgt ofllngu!s- human-made annotations. The expected system’s
tic measures computed with the Asiya Toolkit for

: : . . output was composed of a real similarity value, to-
Automatic MT Evaluation (Giménez and Marquez

. . . ‘gether with an optional confidence level (our confi-
2010b), {i) an instance of explicit semantic analy-dence level was set constant)

sis (Gabrilovich and Markovitch, 2007), built on top Table 1 gives an overview of the development
of Wikipedia articles, i{i) a dataset predictor, and 2012 training and test) and test datasets. Note

(SIV) a S,:_Jbﬁ_et to;thg; fgtature? ?éa”?bli 'T ';ag)l;ezlab at both collections extracted from SMT data are
emantic Text Similarity systenBaric et al., )- highly biased towards the maximum similarity val-

ues (more than 75% of the instances have a similar-

1 Introduction

*http://ixa2.si.ehu. es/sts/
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Table 1: Overview of sub-collections in the development tastl datasets, including number of instances and distri-
bution of similarity values (in percentage) as well as m@&ainjmum, and maximum lengths.

similarity distribution length
dataset instances [0,1) [1,2) [2,3) [3,4) [4,5] mean min max
dev-[train + test]
MSRpar 1,500 1.20 8.13 17.1348.73 2480 17.84 5 30
MSRuvid 1,500 31.00 14.13 1547 20.87 1853 6.66 2 24
SMTEuroparl 1,193 0.67 042 117 1232854 21.13 1 72
OnWN 750 213 267 1040 2547 5933 757 1 34
SMTnews 399 100 075 551 13.03 79.70 1172 2 28
test
headlines 750 15.47 22.00 16.27 2467 2160 7.21 3 22
OnWN 561 36.54 980 749 17.11 29.05 7.17 5 22
FNWN 189 3439 29.63 2857 6.88 053 1990 3 71
SMT 750 0.00 027 347 2040 75.8726.40 1 96

ity higher than 4) and include the longest instance®gred a sample from three similarity families, which
On the other hand, the FNWN instances are shiftedas proposed in (Giménez and Marquez, 2010a) as
towards low similarity levels (more than 60% have a varied and robust metric set, showing good corre-
similarity lower than 2). lation with human assessments.

3 Approach Lexical Similarity Two metrics of Translation
Error Rate (Snover et al.,, 2006) (i.e. the esti-

Our similarity assessment model _relies UPOR, ated human effort to conves into s5). - TER
SVM'"""’s support vector regressor, with RBF ker- TER,4. Two measures of lexical precision:

nel (Joachims, 1999). Our model estimation pro- BLEU (Papineni et al., 2002) andil ST (Dod-

cedure consisted of two steps: parameter defina«mgton 2002). One measure of lexical recall
tion and backward elimination-based feature SeleﬁwGEv,V (Lin and Och, 2004). Finally, four vari-

It_ion. bT.h(feI cgnsid%reg _feart;[urfe S” be_long tg four_ famiémts ofMETEOR (Banerjee and Lavie, 2005¢Xact,
ies, briefly described in the following subsections. stemming, synonymad paraphrasing, a lexical

3.1 Machine Translation Evaluation Metrics metric accounting fof’-Measure.

We consider a set of linguistic measures originallsyntactic Similarity Three metrics that estimate

intended to evaluate the quality of automatic transhe similarity of the sentences over dependency

lation systems. These measures compute the qualgirse trees (Liu and Gildea, 2005)P- HACM - 4

of a translation by comparing it against one or seVior grammatical categories chairBP- HACM .- 4

eral reference translations, considered as gold stagyer grammatical relations, anBP- O.(x) over

dard. A straightforward application of these meawords ruled by non-terminal nodes. Also, one mea-

sures to the problem at hand is to considers the  syre that estimates the similarity over constituent

reference and; as the automatic translation, or viceparse treesCP- STM, (Liu and Gildea, 2005).

versa. Some of the metrics are not symmetric so we

compute similarity betweesy, ands, in both direc- Semantic Similarity Three measures that esti-

tions and average the resulting scores. mate the similarities over semantic roles (i.e. ar-
The measures are computed with the Asiyguments and adjuncts)SR- O., SR- M.(x), and

Toolkit for Automatic MT Evaluation (Giménez and SR- O.(x).  Additionally, two metrics that es-

Marquez, 2010b). The only pre-processing carrieimate similarities over discourse representations:

out was tokenization (Asiya performs additional in-DR- O.(x) andDR- O, ,(x).

box pre-processing operations, though). We consid————

3Asiya is available aht t p: // asi ya. | si . upc. edu.
2\We also tried with linear kernels, but RBF always obtainedrull descriptions of the metrics are available in the AsigatF
better results. nical Manual v2.0, pp. 15-21.
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3.2 Explicit Semaniic Analysis Table 2: Tuning process: parameter definition and feature

We built an instance of Explicit Semantic Analy-Seléction. Number of features at theginning andend
sis (ESA) (Gabrilovich and Markovitch, 2007) with Ome feature Seﬁgﬂq‘geftgg'”c'“ded- S ——
the first paragraph af00% Wikipedia articles (dump P : '

] . o o y € corr b e corr
from 2010).Pre-processing consisted of tokenizationag 37 006 0.3 08257119 14 0.8299
and lemmatization. AED 38 0.03 02 0841324 19 0.8425

AED.T | 29 0.02 0.3 0.876] 45 33 0.8803

3.3 Dataset Prediction

Given the similarity shifts in the different datasets# Experiments and Results
(cf. Table 1), we tried to predict what dataset an inggtion 4.1 describes our model tuning strategy.

stance belonged to on the basis of its vocabulary. We, (iong 4.2 and 4.3 discuss the official and post-
built binary maxent classifiers for each dataset in th@ompetition results

development set, resulting in five dataset likelihood
features:dMSRpar , dSMleur opar | ,dMSRvi d, 4.1 Model Tuning
dOnWN, anddSMInews.* Pre-processing consisted

of tokenization and lemmatization. We used only the dev-train partition (2012 training)

for tuning. By means of a 10-fold cross validation
process, we defined the trade-off (c), gamma (
and tube width ) parameters for the regressor and
We considered the features included in the Takelaperformed a backward-elimination feature selection
Semantic Text Similarity systenSaric et al., 2012), process (Witten and Frank, 2005, p. 294), indepen-
one of the top-systems in last year competition. Thigdently for the three experiments.
system is used as a black box. The resulting featuresThe results for the cross-validation process are
are named k|l ab_n, wheren = [1, 21]. summarized in Table 2. The three runs allow for cor-
relations higher than 0.8. On the one hand, the best

regressor parameters obtain better results as more

Our runs departed from three increasing subsefgy,y res are considered, still with very small differ-
of features’/AE machine translation evaluation met-, ..« 5n the other hand, the low correlation in-

rics and explicit semantic analysiBED the pre-  .o.q0 after the feature selection step shows that a
vious set plus dataset prediction, aA&D T the few features are indeed irrelevant

previous set plus Takelab’s baseline features (cf. Ta- A summary of the features considered in each ex-

bl? 33' Wehpeg‘%rmed ?featur,e r&qrmsllz_atlon, Wh'hdﬂ)eriment (also after feature selection) is displayed in
relied on the ditterent feature's distribution Over €y, o 3 The correlation obtained over the dev-test

entire dataset. Firstly, features were bounded in trbeartiti on arecorr i = 0.7269, corrapp = 0.7638
rangeu+3+o2 in order to reduce the potentially neg- AR v e

Lo ) . ndcorragp, = 0.8044 —it would have appeared
ative impact of outliers. Secondly, we normallzecﬁ] the top-10 ranking of the 2012 competition.
according to the-score (Nardo et al., 2008, pp. 28,

84); i.e.x = (z — p)/o. As aresult, each real- 42 Official Results

valued feature distribution in the dataset has- 0 We trained th th the feat
ando = 1. During the model tuning stage we tried''© " &n€d tree New regressors with Ine features

with other numerous normalization options: normalf:OnSideer relevant by the tuning process, but using

izing each dataset independently, together with thtge entire development dataset. The test 2013 parti-

training set, and without normalization at all. Nor-tlon was normalized again by means:escore, con-

malizing according to the entire dev-test dataset Ieﬂde”ng;he mear]rs glnd:?ndf\rd derz]wat]lc?n_s IO f thelen-
o the best results tire test dataset. Table 4 displays the official results.

Our best approach AE—, was positioned in rank
“We used the Stanford classifier:http://nlp. 69 The worst results of ruAED can be explained
stanf ord. edu/ sof t war e/ cl assi fier.shtn by the difference in the nature of the test respect to

3.4 Baseline
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Table 3: Features considered at the beginning of each rpregented as empty squaré$)( Filled squares®)
represent features considered relevant after featuretisele

Feature AE AED AED_T | Feature AE AED AED_T | Feature AED_T
DP-HWCMc-4 N [ | [ | MVETEOR- pa [ | [ | [ | tkl ab_7 [ |
DP-HWCMr-4 N [ | [ | MVETEOR- st O [ | O tkl ab_8 [ |
DP- Or () | | | METEOR- sy | | | tkl ab-9 |
CP- STM 4 O O [ | ESA [ | [ | [ | tkl ab_10 O
SR-O (*) O O [ | dMSRpar [ | O tklab_11 [ |
SR- M (*) | | | dSMreur opar | | | tklab_12 |
SR- O [ | [ | [ | dMSRvi d [ | O tkl ab_13 [ |
DR- O (*) O [ | [ | dOnWN O O tkl ab_14 [ |
DR- Or p(*) | | | dSMInews (| (| tkl ab_15 |
BLEU [ | [ | O tklab_1 O tkl ab_16 [ |
NI ST [ | [ | [ | tkl ab_2 [ | tklab_17 [ |
-TER [ | | [ | tkl ab_3 | tkl ab_18 |
- TERp- A [ | [ | [ | tklab_4 [ | tkl ab_19 [ |
ROUGE- W [ | [ | O tkl ab_s [ | t kl ab_20 O
METEOR- ex O O [ | tkl ab_6 O tklab_21 |

Table 4: Official results for the three runs (rank included). Table 5: Post-competition experiments results
run headlines OnWN FNWN  SMT mean run headlines OnWN FNWN  SMT mean
AE (65) 0.6092 0.5679 -0.1268 0.2090 O0.403AE (a) 0.6210 0.5905 -0.0987 0.2990 0.4456
AED (83) 0.4136 0.4770 -0.0852 0.1662 0.305Q\E (b) 0.6072 0.4767 -0.0113 0.3236 0.4282
AED_T (72) 0.5119 0.6386 -0.0464 0.1235 0.367H1E (c) 0.6590 0.6973  0.1547 0.3429 0.5208

the development dataseAED _T obtains worst re-
sults thanAE on theheadlinesand SMT datasets. independently is not a good option, as the regressor
The reason behind this behavior can be in the difs trained considering overall normalizations, which
ference of vocabularies respect to that stored in thexplains the correlation decrease. Rehi§ com-
Takelab system (it includes only the vocabulary opletely different: not normalizing any dataset —
the development partition). This could be the samboth in development and test— reduces the influ-
reason behind the drop in performance with respeeince of the datasets to each other and allows for the
to the results previously obtained on the dev-test pabest results. Indeed, this configuration would have
tition (cf. Section 4.1). advanced practically forty positions at competition
. time, locating us in rank 27.
4.3 Post-Competition Results

. - . Estimating the adequate similarities o&XWN
Our analysis of the official results showed the main . Iy
. . seems particularly difficult for our systems. We ob-
issue was normalization. Thus, we performed a . ) )
. . . serve two main factors.i)(FNWN presents an im-
manifold of new experiments, using the same con-

figuration as in rurAE, but applying other normal- portant similarity shift respect to the other datasets:

A o . . nearly 90% of the instances similarity is lower than
ization strategies:d) z-score normalization, but ig-

. . . . 2.5 and i) the average lengths ef ands, are very
noring the FNWN dataset (given its shift throughdifferent: 30 vs 9 words. These characteristics made

low values); b) z-score normalization, but consid-. .~ ) : .
L L 1gt difficult for our MT evaluation metrics to estimate
ering independent means and standard deviations for

each test dataset: argj without normalizing any of proper similarity values (be normalized or not).
dataset (including the regressor one). We performed two more experiments over
Table 5 includes the results.a)(makes evident FNWN: training regressors with ESA as the only
that the instances in FNWN represent “anomaliesfeature, before and after normalization. The correla-
that harm the normalized values of the rest of sultion was 0.16017 and 0.3113, respectively. That is,
sets. Runlf) shows that normalizing the test set¢he normalization mainly affects the MT features.
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5 Conclusions Jeslis Giménez and Lluis Marquez. 2010b. Linguistic

) ) o Measures for Automatic Machine Translation Evalua-
In this paper we discussed on our participation to the (o Machine Translation24(3—4):209—240.
2013 Semeval Semantic Textual Similarity task. Oufade Goldstein, Alon Lavie, Chin-Yew Lin, and Clare
approach relied mainly upon a combination of au- Voss, editors. 2005Proceedings of the ACL Work-
tomatic machine translation evaluation metrics and shop on Intrinsic and Extrinsic Evaluation Measures
explicit semantic analysis. Building an RBF support for Machine Translation and/or Summarizatigksso-

vector regressor with these features allowed us for a ciation for Computational Linguistics.

modest result in the competition (our best run Wagthster(; r‘:‘i/ae‘i:r:g:‘sl_'e 2?:?dvr?gcteesr il\r;laKﬁ;”e:a'\:'eéhgg;;
ranked 65 out of 89). pp ngehap g larg

SVM Learning Practical. MIT Press.
Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic Evaluation of Machine Translation Quality Us-
ing Longest Common Subsequence and Skip-Bigram
Statistics. InProceedings of the 42nd Annual Meet-

. . : _ing of the Association for Computational Linguistics
This research work was partially carried out dur (ACL 2002) Stroudsburg, PA. Association for Com-

ing the tenure of an ERCIM “Alain Bensoussan” putational Linguistics.

Fellowship. The research leading to these results g | jy and Daniel Gildea. 2005. Syntactic Features
ceived funding from the EU FP7 Programme 2007- for Evaluation of Machine Translation. In Goldstein
2013 (grants 246016 and 247762). Our research et al. (Goldstein et al., 2005), pages 25-32.

work is partially supported by the Spanish researchlichela Nardo, Michaela Saisana, Andrea Saltelli, Ste-

projects OpenMT-2 and SKATER (TIN2009-14675- fano Tarantola, Anders Hoffmann, and Enrico Giovan-

C03, TIN2012-38584-C06-01). nini. 2008.Handbook on Constructing Composite In-
dicators: Methodology and User Guid®©ECD Pub-
lishing.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A Method for Automatic
Evaluation of Machine Translation. Proceedings of
the 40th Annual Meeting of the Association for Com-
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MayoClinicNLP-CORE: Semantic representations for textual similarity
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Abstract

The Semantic Textual Similarity (STS) task
examines semantic similarity at a sentence-
level. We explored three representations of
semantics (implicit or explicit): named enti-
ties, semantic vectors, and structured vectorial
semantics. From a DKPro baseline, we also
performed feature selection and used source-
specific linear regression models to combine
our features. Our systems placed 5th, 6th, and
8th among 90 submitted systems.

1 Introduction

The Semantic Textual Similarity (STS) task (Agirre
et al., 2012; Agirre et al., 2013) examines semantic
similarity at a sentence-level. While much work has
compared the semantics of terms, concepts, or doc-
uments, this space has been relatively unexplored.
The 2013 STS task provided sentence pairs and a
0-5 human rating of their similarity, with training
data from 5 sources and test data from 4 sources.
We sought to explore and evaluate the usefulness
of several semantic representations that have had
recent significance in research or practice. First,
information extraction (IE) methods often implic-
itly consider named entities as ad hoc semantic rep-
resentations, for example, in the clinical domain.
Therefore, we sought to evaluate similarity based on
named entity-based features. Second, in many appli-
cations, an effective means of incorporating distri-
butional semantics is Random Indexing (RI). Thus
we consider three different representations possi-
ble within Random Indexing (Kanerva et al., 2000;
Sahlgren, 2005). Finally, because compositional
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distributional semantics is an important research
topic (Mitchell and Lapata, 2008; Erk and Padé,
2008), we sought to evaluate a principled compo-
sition strategy: structured vectorial semantics (Wu
and Schuler, 2011).

The remainder of this paper proceeds as follows.
Section 2 overviews our similarity metrics, and Sec-
tion 3 overviews the systems that were defined on
these metrics. Competition results and additional
analyses are in Section 4. We end with discussion
on the results in Section 5.

2 Similarity measures

Because we expect semantic similarity to be multi-
layered, we expect that we will need many similar-
ity measures to approximate human similarity judg-
ments. Rather than reinvent the wheel, we have cho-
sen to introduce features that complement existing
successful feature sets. We utilized 17 features from
DKPro Similarity and 21 features from TakeLab,
i.e., the two top-performing systems in the 2012 STS
task, as a solid baseline.

These are summarized in Table 1. We introduce 3
categories of new similarity metrics, 9 metrics in all.

2.1 Named entity measures

Named entity recognition provides a common ap-
proximation of semantic content for the informa-
tion extraction perspective. We define three simple
similarity metrics based on named entities. First,
we computed the named entity overlap (exact string
matches) between the two sentences, where NEj
was the set of named entities found in sentence
Sy. This is the harmonic mean of how closely S1

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 148—154, Atlanta, Georgia, June 13-14, 2013. (©2013 Association for Computational Linguistics



Table 1: Full feature pool in MayoClinicNLP systems. The proposed MayoClinicNLP metrics are meant to comple-

ment DKPro (Bir et al., 2012) and TakeLab (Sari¢ et al., 2012) metrics.

DKPro metrics (17)

TakeLab metrics (21)

Custom MayoClinicNLP metrics (9)

n-grams/WordNGramContainmentMeasure_1_stopword-filtered
n-grams/WordNGramContainmentMeasure_2_stopword-filtered
n-grams/WordNGramJaccardMeasure_1
n-grams/WordNGramJaccardMeasure_2_stopword-filtered
n-grams/WordNGramJaccardMeasure_3
n-grams/WordNGramJaccardMeasure_4
n-grams/WordNGramJaccardMeasure_4_stopword-filtered

t_ngram/UnigramOverlap
t_ngram/BigramOverlap
t_ngram/TrigramOverlap
t_ngram/ContentUnigramOverlap
t_ngram/ContentBigramOverlap
t_ngram/ContentTrigramOverlap

t_words/WeightedWordOverlap
t_words/GreedyLemmaAligningOverlap
t-words/WordNetAugmentedWordOverlap

custom/StanfordNerMeasure_overlap.txt
custom/StanfordNerMeasure_aligngst.txt
custom/StanfordNerMeasure_alignlcs.txt

esa/ESA_Wiktionary
esa/ESA_WordNet

t_vec/LSAWordSimilarity NYT
t_vec/LSAWordSimilarity_weighted NYT
t_vec/LSAWordSimilarity_weighted_Wiki

custom/SV SePhrSimilarityMeasure.txt

custom/SV SeTopSimilarityMeasure.txt

custom/Semantic VectorsSimilarityMeasure_d200_wr0.txt
custom/Semantic VectorsSimilarityMeasure_d200_wr6b.txt
custom/Semantic VectorsSimilarityMeasure_d200_wr6d.txt
custom/Semantic VectorsSimilarityMeasure_d200_wr6p.txt

n-grams/CharacterNGramMeasure_2
n-grams/CharacterNGramMeasure_3
n-grams/CharacterNGramMeasure_4
string/GreedyStringTiling 3
string/LongestCommonSubsequenceComparator
string/LongestCommonSubsequenceNormComparator
string/LongestCommonSubstringComparator

t_other/RelativeLengthDifference
t_other/RelativeInfoContentDifference
t_other/NumbersSize
t_other/NumbersOverlap
t_other/NumbersSubset
t_other/SentenceSize
t_other/CaseMatches
t_other/StocksSize

t_other/StocksOverlap

matches 52, and how closely S2 matches S1:

|NE1 N NE2|

i S51,52)=2-
Slmneo( I ) |NE1| + |NE2|

ey

Additionally, we relax the constraint of requiring
exact string matches between the two sentences by
using the longest common subsequence (Allison and
Dix, 1986) and greedy string tiling (Wise, 1996) al-
gorithms. These metrics give similarities between
two strings, rather than two sets of strings as we
have with NE; and NF>. Thus, we follow previ-
ous work in greedily aligning these named entities
(Lavie and Denkowski, 2009; Sari¢ et al., 2012) into
pairs. Namely, we compare each pair (ne;1,ne;2)
of named entity strings in NE; and NFE;. The
highest-scoring pair is entered into a set of pairs, P.
Then, the next highest pair is added to P if neither
named entity is already in P, and discarded other-
wise; this continues until there are no more named
entities in either NE; or NEs.

We then define two named entity aligning mea-
sures that use the longest common subsequence
(LCS) and greedy string tiling (GST) fuzzy string
matching algorithms:

> f(ne1, nea)

(ne1,nez)eP

max (|NE|, [NE>|)

SiMpe,(S1,.52) = 2)
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where f(-) is either the LCS or GST algorithm.

In our experiments, we performed named entity
recognition with the Stanford NER tool using the
standard English model (Finkel et al., 2005). Also,
we used UKP’s existing implementation of LCS and
GST (Sari¢ et al., 2012) for the latter two measures.

2.2 Random indexing measures

Random indexing (Kanerva et al., 2000; Sahlgren,
2005) is another distributional semantics framework
for representing terms as vectors. Similar to LSA
(Deerwester et al., 1990), an index is created that
represents each term as a semantic vector. But
in random indexing, each term is represented by
an elemental vector e; with a small number of
randomly-generated non-zero components. The in-
tuition for this means of dimensionality reduction is
that these randomly-generated elemental vectors are
like quasi-orthogonal bases in a traditional geomet-
ric semantic space, rather than, e.g., 300 fully or-
thogonal dimensions from singular value decompo-
sition (Landauer and Dumais, 1997). For a standard
model with random indexing, a contextual term vec-
tor ¢ gq 18 the the sum of the elemental vectors cor-
responding to tokens in the document. All contexts
for a particular term are summed and normalized to
produce a final term vector vy gq.

Other notions of context can be incorporated into



this model. Local co-occurrence context can be ac-
counted for in a basic sliding-window model by con-
sidering words within some window radius r (in-
stead of a whole document). Each instance of the
term ¢ will have a contextual vector c; yin = €4 +
o4 €p_1 + €441 + -+ + €44, context vectors for each
instance (in a large corpus) would again be added
and normalized to create the overall vector v yin.

A directional model doubles the dimensionality of
the vector and considers left- and right-context sepa-
rately (half the indices for left-context, half for right-
context), using a permutation to achieve one of the
two contexts. A permutated positional model uses a
position-specific permutation function to encode the
relative word positions (rather than just left- or right-
context) separately. Again, v, would be summed
and normalized over all instances of c;.

Sentence vectors from any of these 4 Random
Indexing-based models (standard, windowed, direc-
tional, positional) are just the sum of the vectors for
each term vg = Y ;g v;. We define 4 separate simi-
larity metrics for STS as:

simgy(S1,52) = cos(vsi, vsa) 3)

We used the semantic vectors package (Widdows
and Ferraro, 2008; Widdows and Cohen, 2010) in
the default configuration for the standard model. For
the windowed, directional, and positional models,
we used a 6-word window radius with 200 dimen-
sions and a seed length of 5. All models were
trained on the raw text of the Penn Treebank Wall
Street Journal corpus and a 100,075-article subset of
Wikipedia.

2.3 Semantic vectorial semantics measures

Structured vectorial semantics (SVS) composes dis-
tributional semantic representations in syntactic
context (Wu and Schuler, 2011). Similarity met-
rics defined with SVS inherently explore the quali-
ties of a fully interactive syntax—semantics interface.
While previous work evaluated the syntactic contri-
butions of this model, the STS task allows us to eval-
uate the phrase-level semantic validity of the model.
We summarize SVS here as bottom-up vector com-
position and parsing, then continue on to define the
associated similarity metrics.

Each token in a sentence is modeled generatively
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as a vector e,, of latent referents ., in syntactic con-
text c,; each element in the vector is defined as:

for preterm y @

e, [iy] = P(xy|lciy),

where [, is a constant for preterminals.

We write SVS vector composition between two
word (or phrase) vectors in linear algebra form,' as-
suming that we are composing the semantics of two
children e, and e in a binary syntactic tree into
their parent e :

e7=M®(vaa-ea)®(L7X5-eg)-1 %)

M is a diagonal matrix that encapsulates probabilis-
tic syntactic information; the L. matrices are linear
transformations that capture how semantically rele-
vant child vectors are to the resulting vector (e.g.,
L.« defines the the relevance of e, to ey). These
matrices are defined such that the resulting e, is a
semantic vector of consistent P(x. |lci) probabil-
ities. Further detail is in our previous work (Wu,
2010; Wu and Schuler, 2011).

Similarity metrics can be defined in the SVS
space by comparing the distributions of the com-
posed e, vectors — i.e., our similarity metric is
a comparison of the vector semantics at different
phrasal nodes. We define two measures, one cor-
responding to the top node ca (e.g., with a syntactic
constituent ca = ‘S’), and one corresponding to the
left and right largest child nodes (e.g.,, c. = ‘NP’
and c. = ‘“VP’ for a canonical subject—verb—object
sentence in English).

SiMgys op(S1, 52) =cos(ea(s1),€a(s2)) (6)
SiMgyspr(S1, 52) = max(

avgsim(eé(gl), €., (52);€x(51)s eA(SQ))a
avgsim(e (s1),€x (52);€x (s1): €2 (52))) (7)

where avgsim() is the harmonic mean of the co-
sine similarities between the two pairs of arguments.
Top-level similarity comparisons in (6) amounts to
comparing the semantics of a whole sentence. The
phrasal similarity function simgys.pn(S1,52) in (7)
thus seeks to semantically align the two largest sub-
trees, and weight them. Compared to Simgys_op,

'We define the operator ® as point-by-point multiplication
of two diagonal matrices and 1 as a column vector of ones, col-
lapsing a diagonal matrix onto a column vector.



the phrasal similarity function simgy,_pr(S1, 52) as-
sumes there might be some information captured in
the child nodes that could be lost in the final compo-
sition to the top node.

In our experiments, we used the parser described
in Wu and Schuler (2011) with 1,000 headwords
and 10 relational clusters, trained on the Wall Street
Journal treebank.

3 Feature combination framework

The similarity metrics of Section 2 were calculated
for each of the sentence pairs in the training set, and
later the test set. In combining these metrics, we ex-
tended a DKPro Similarity baseline (3.1) with fea-
ture selection (3.2) and source-specific models and
classification (3.3).

3.1 Linear regression via DKPro Similarity

For our baseline (MayoClinicNLPrl1wtCDT), we
used the UIMA-based DKPro Similarity system
from STS 2012 (Bér et al., 2012). Aside from the
large number of sound similarity measures, this pro-
vided linear regression through the WEKA package
(Hall et al., 2009) to combine all of the disparate
similarity metrics into a single one, and some pre-
processing. Regression weights were determined on
the whole training set for each source.

3.2 Feature selection

Not every feature was included in the final linear re-
gression models. To determine the best of the 47
(DKPro-17, TakeLab-21, MayoClinicNLP-9) fea-
tures, we performed a full forward-search on the
space of similarity measures. In forward-search, we
perform 10-fold cross-validation on the training set
for each measure, and pick the best one; in the next
round, that best metric is retained, and the remaining
metrics are considered for addition. Rounds con-
tinue until all the features are exhausted, though a
stopping-point is noted when performance no longer
increases.

3.3 Subdomain source models and
classification

There were 5 sources of data in the training set:
paraphrase sentence pairs (MSRpar), sentence pairs
from video descriptions (MSRvid), MT evaluation
sentence pairs (MTnews and MTeuroparl) and gloss
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pairs (OnWN). In our submitted runs, we trained
a separate, feature-selected model based on cross-
validation for each of these data sources. In train-
ing data on cross-validation tests, training domain-
specific models outperformed training a single con-
glomerate model.

In the test data, there were 4 sources, with 2
appearing in training data (OnWN, SMT) and 2
that were novel (FrameNet/Wordnet sense defini-
tions (FNWN), European news headlines (head-
lines)). We examined two different strategies for ap-
plying the 5-source trained models on these 4 test
sets. Both of these strategies rely on a multiclass
random forest classifier, which we trained on the 47
similarity metrics.

First, for each sentence pair, we considered the
final similarity score to be a weighted combination
of the similarity score from each of the 5 source-
specific similarity models. The combination weights
were determined by utilizing the classifier’s confi-
dence scores. Second, the final similarity was cho-
sen as the single source-specific similarity score cor-
responding to the classifier’s output class.

4 Evaluation

The MayoClinicNLP team submitted three systems
to the STS-Core task. We also include here a post-
hoc run that was considered as a possible submis-
sion.

rlwtCDT This run used the 47 metrics from
DKPro, TakeLab, and MayoClinicNLP as a
feature pool for feature selection. Source-
specific similarity metrics were combined with
classifier-confidence-score weights.

r2CDT Same feature pool as run 1. Best-match (as
determined by classifier) source-specific simi-
larity metric was used rather than a weighted
combination.

r3wtCD TakeLab features were removed from the
feature pool (before feature selection). Same
source combination as run 1.

r4ALL Post-hoc run using all 47 metrics, but train-
ing a single linear regression model rather than
source-specific models.



Table 2: Performance comparison.

TEAM NAME headlinesrank | OnWNrank | FNWNrank | SMT rank | mean rank
UMBC_EBIQUITY-ParingWords 0.7642 0.7529 0.5818 0.3804 0.6181 1
UMBC_EBIQUITY-galactus 0.7428 0.7053 0.5444 0.3705 0.5927 2
deft-baseline 0.6532 0.8431 0.5083 0.3265 0.5795 3
MayoClinicNLP-r4ALL 0.7275 0.7618 0.4359 0.3048 0.5707
UMBC_EBIQUITY-saiyan 0.7838 0.5593 0.5815 0.3563 0.5683 4
MayoClinicNLP-r3wtCD 0.6440 43 0.8295 2 0.3202 47 | 0.3561 17 | 0.5671 5
MayoClinicNLP-r1wtCDT 0.6584 33 0.7775 4 0.3735 26 | 0.3605 13 | 0.5649 6
CLaC-RUN2 0.6921 0.7366 0.3793 0.3375 0.5587 7
MayoClinicNLP-r2CDT 0.6827 23 0.6612 20 0.396 17 | 03946 5 0.5572 8
NTNU-RUN1 0.7279 0.5952 0.3215 0.4015 0.5519 9
CLaC-RUNI1 0.6774 0.7667 0.3793 0.3068 0.5511 10

4.1 Competition performance

Table 2 shows the top 10 runs of 90 submitted in
the STS-Core task are shown, with our three sys-
tems placing 5th, 6th, and 8th. Additionally, we can
see that run 4 would have placed 4th. Notice that
there are significant source-specific differences be-
tween the runs. For example, while run 4 is better
overall, runs 1-3 outperform it on all but the head-
lines and FNWN datasets, i.e., the test datasets that
were not present in the training data. Thus, it is
clear that the source-specific models are beneficial
when the training data is in-domain, but a combined
model is more beneficial when no such training data
is available.

4.2 Feature selection analysis
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Figure 1: Performance curve of feature selection for
rlwtCDT, r2CDT, and r4ALL
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Due to the source-specific variability among the
runs, it is important to know whether the forward-
search feature selection performed as expected. For
source specific models (runs 1 and 3) and a com-
bined model (run 4), Figure 1 shows the 10-fold
cross-validation scores on the training set as the next
feature is added to the model. As we would ex-
pect, there is an initial growth region where the first
features truly complement one another and improve
performance significantly. A plateau is reached for
each of the models, and some (e.g., SMTnews) even
decay if too many noisy features are added.

The feature selection curves are as expected. Be-
cause the plateau regions are large, feature selection
could be cut off at about 10 features, with gains in
efficiency and perhaps little effect on accuracy.

The resulting selected features for some of the
trained models are shown in Table 3.

4.3 Contribution of MayoClinicNLP metrics

We determined whether including MayoClinicNLP
features was any benefit over a feature-selected
DKPro baseline. Table 4 analyzes this question
by adding each of our measures in turn to a base-
line feature-selected DKPro (dkselected). Note that
this baseline was extremely effective; it would have
ranked 4th in the STS competition, outperforming
our run 4. Thus, metrics that improve this baseline
must truly be complementary metrics. Here, we see
that only the phrasal SVS measure is able to improve
performance overall, largely by its contributions to
the most difficult categories, FINWN and SMT. In
fact, that system (dkselected + SVSePhrSimilari-
tyMeasure) represents the best-performing run of
any that was produced in our framework.



Table 3: Top retained features for several linear regression models.

OnWN - rlwtCDT and r2CDT (15 shown/19 selected)

SMTnews - rlwtCDT and r2CDT (15 shown/17 selected)

All - r4ALL (29 shown/29 selected)

t_ngram/ContentUnigramOverlap
tother/RelativeInfoContentDifference
t_vec/LSAWordSimilarity_weighted NYT
esa/ESA_Wiktionary
t_ngram/ContentBigramOverlap
n-grams/CharacterNGramMeasure 2
t_-words/WordNetAugmentedWordOverlap
t_ngram/BigramOverlap
string/GreedyStringTiling_3
string/LongestCommonSubsequenceNormComparator
custom/ i e_d200_wr0
custom/StanfordNerMeasure_aligngst
custom/StanfordNerMeasure_alignlcs
custom/StanfordNerMeasure_overlap
custom/SVSePhrSimilarityMeasure

tother/RelativeInfoContentDifference
n-grams/CharacterNGramMeasure 2
t_other/CaseMatches
string/GreedyStringTiling_3

custom/

e_d200_wr6p
custom/StanfordNerMeasure_overlap
t_vec/LSAWordSimilarity_weighted NYT
toother/SentenceSize

custom/ e_d200_wr0
custom/SVSePhrSimilarityMeasure
esa/ESA_Wiktionary
string/LongestCommonSubstringComparator
t_other/NumbersSize

t_vec/LSAWordSimilarity_weighted NYT
n-grams/CharacterNGramMeasure_2
string/LongestCommonSubstringComparator
t_other/NumbersOverlap
t_words/WordNetAugmentedWordOverlap
n-grams/WordNGramJaccardMeasure_1
n-grams/CharacterNGramMeasure_3
t_other/SentenceSize

t_other. foContentDiffe
t_ngram/ContentBigramOverlap
n-grams/WordNGramJaccardMeasure_4
t_other/NumbersSize
t_other/NumbersSubset

n-grams/WordNGramCi
VSe

Measure_2_stopword-filt

OnWN - r3wtCD (7 shown/7 selected)

SMThnews - r3wtCD (15 shown/23 selected)

esa/ESA_Wiktionary

string/LongestCs
string/GreedyStringTiling 3
string/LongestCs b »rmC

string/GreedyStringTiling_3
custom/StanfordNerMeasure_overlap
n-grams/CharacterNGramMeasure_2
e_d200_wr6p

string/LongestCommonSubstringComparator

n-grams/CharacterNGramMeasure 3

/SVSePhrSimilarityMeasure

icVectorsSimilarityMeasure_d200_wr6p
esa/ESA_WordNet
esa/ESA_Wiktionary
string/LongestC
string/LongestC

mCc

n-grams/WordNGramContainmentMeasure_1_stopword-filtered

word-sim/MCS06_Resnik_WordNet
t_ngram/ContentUnigramOverlap

word-sim/MCS06_Resnik_WordNet string/LongestC

n-grams/WordNGramCs Measure_2_stopword-filtered

n-grams/WordNGramC Measure_2_stopword-filtered

dNer

esa/ESA_Wiktionary
esa/ESA_WordNet

_aligngst
custom/SVSePhrSimilarityMeasure

n-grams/WordNGramJ. AM 2 stop: i-filtered
t-ngram/UnigramOverlap

t-ngram/BigramOverlap

t_other/StocksSize

n-grams/WordNGramC

n-grams/WordNGramJaccardMeasure_1

Measure 2_stopword-filtered t_words/GreedyLemmaAligningOverlap

t_other/StocksOverlap

string/LongestCommonSubstringComparator

custom/

e_d200_wr6d

custom/

e_d200_wr0

Table 4:
sources.

Adding customized features one at a time into optimized DKPro feature set.

Models are trained across all

headlines OnWN FNWN SMT mean
dkselected 0.70331 0.79752 0.38358 0.31744 0.571319
dkselected + SVSePhrSimilarityMeasure 0.70178 0.79644 0.38685 0.32332 0.572774
dkselected + RandomIndexingMeasure_d200_wr0 0.70054 0.79752 0.38432 0.31615 0.570028
dkselected + SVSeTopSimilarityMeasure 0.69873 0.79522 0.38815 0.31723 0.569533
dkselected + RandomIndexingMeasure_d200_wr6d ~ 0.69944 0.79836 0.38416 0.31397 0.569131
dkselected + RandomIndexingMeasure_d200_wr6b ~ 0.69992 0.79788 0.38435 0.31328 0.568957
dkselected + RandomIndexingMeasure_d200_wr6p ~ 0.69878 0.79848 0.37876 0.31436 0.568617
dkselected + StanfordNerMeasure_aligngst 0.69446 0.79502 0.38703 0.31497 0.567212
dkselected + StanfordNerMeasure_overlap 0.69468 0.79509 0.38703 0.31466 0.567200
dkselected + StanfordNerMeasure _alignlcs 0.69451 0.79486 0.38657 0.31394 0.566807
(dk + all custom) selected 0.70311 0.79887 0.37477 0.31665 0.570586

Also, we see some source-specific behavior. None
of our introduced measures are able to improve the
headlines similarities. However, random indexing
improves OnWN scores, several strategies improve
the FNWN metric, and simgy,.pp, is the only viable
performance improvement on the SMT corpus.

5 Discussion

Mayo Clinic’s submissions to Semantic Textual
Similarity 2013 performed well, placing Sth, 6th,
and 8th among 90 submitted systems. We intro-
duced similarity metrics that used different means
to do compositional distributional semantics along
with some named entity-based measures, finding
some improvement especially for phrasal similar-

153

ity from structured vectorial semantics. Through-
out, we utilized forward-search feature selection,
which enhanced the performance of the models. We
also used source-based linear regression models and
considered unseen sources as mixtures of existing
sources; we found that in-domain data is neces-
sary for smaller, source-based models to outperform
larger, conglomerate models.
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Abstract

In this year’s Semantic Textual Similarity
evaluation, we explore the contribution of
models that provide soft similarity scores
across spans of multiple words, over the pre-
vious year’s system. To this end, we ex-
plored the use of neural probabilistic language
models and a TF-IDF weighted variant of Ex-
plicit Semantic Analysis. The neural language
model systems used vector representations of
individual words, where these vectors were
derived by training them against the context
of words encountered, and thus reflect the dis-
tributional characteristics of their usage. To
generate a similarity score between spans, we
experimented with using tiled vectors and Re-
stricted Boltzmann Machines to identify simi-
lar encodings. We find that these soft similar-
ity methods generally outperformed our previ-
ous year’s systems, albeit they did not perform
as well in the overall rankings. A simple anal-
ysis of the soft similarity resources over two
word phrases is provided, and future areas of
improvement are described.

1 Introduction

For this year’s Semantic Textual Similarity (STS)
evaluation, we built upon the best performing sys-
tem we deployed last year with several methods for
exploring the soft similarity between windows of
words, instead of relying just on single token-to-
token similarities. From the previous year’s eval-
uation, we were impressed by the performance of
features derived from bigrams and skip bigrams. Bi-
grams capture the relationship between two concur-
rent words, while skip bigrams can capture longer
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distance relationships. We found that characterizing
the overlap in skip bigrams between the sentences in
a STS problem pair proved to be a major contributor
to last year’s system’s performance.

Skip bigrams were matched on two criteria, lexi-
cal matches, and via part of speech (POS). Lexical
matching is brittle, and even if the match were made
on lemmas, we lose the ability to match against syn-
onyms. We could rely on the token-to-token simi-
larity methods to account for these non-lexical sim-
ilarities, but these do not account for sequence nor
dependencies in the sentencees. Using POS based
matching allows for a level of generalization, but at
a much broader level. What we would like to have
is a model that can capture these long distance re-
lationships at a level that is less broad than POS
matching, but allows for a soft similarity scoring be-
tween words. In addition, the ability to encompass
a larger window without having to manually insert
skips would be desirable as well.

To this end we decided to explore the use of neu-
ral probabilistic language models (NLPM) for cap-
turing this kind of behavior (Bengio et al., 2003).
NLPMs represent individual words as real valued
vectors, often at a much lower dimensionality than
the original vocabulary. By training these rep-
resentations to maximize a criterion such as log-
likelihood of target word given the other words in its
neighborhood, the word vectors themselves can cap-
ture commonalities between words that have been
used in similar contexts. In previous studies, these
vectors themselves can capture distributionally de-
rived similarities, by directly comparing the word
vectors themselves using simple measures such as

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 155-161, Atlanta, Georgia, June 13-14, 2013. (©2013 Association for Computational Linguistics



Euclidean distance (Collobert and Weston, 2008).

In addition, we fielded a variant of Explicit
Semantic Analysis (Gabrilovich and Markovitch,
2009) that used TF-IDF weightings, instead of using
the raw concept vectors themselves. From previous
experiments, we found that using TF-IDF weight-
ings on the words in a pair gave a boost in perfor-
mance over sentence length comparisons and above,
so this simple modification was incorporated into
our system.

In order to identify the contribution of these soft
similarity methods against last year’s system, we
fielded three systems:

1. System 1, the system from the previous year,
incorporating semantic similarity resources,
precision focused and Bilingual Evaluation Un-
derstudy (BLEU) overlaps (Papineni et al.,
2002), and several types of skip-bigrams.

2. System 2, features just the new NLPM scores
and TFIDF-ESA.

3. System 3, combines System 1 and System 2.

For the rest of this system description, we briefly
describe the previous year’s system (System 1), the
TFIDF weighted Explicit Semantic Analysis, and
the NLPM systems. We then describe the experi-
ment setup, and follow up with results and analysis.

2 System 1

The system we used in SemEval 2012 consisted of
the following components:

1. Resource based word-to-word similarities,
combined using a Semantic Matrix (Fernando
and Stevenson, 2008).

2. Cosine-based lexical overlap measure.

3. Bilingual Evaluation Understudy (BLEU) (Pa-
pineni et al., 2002) lexical overlap.

4. Precision focused part-of-speech (POS) fea-
tures.

5. Lexical match skip-bigram overlap.

6. Precision focused skip-bigram POS features.
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The Semantic Matrix assesses similarity between
a pair s; and sg by summing over all of the word
to word similarities between the pair, subject to nor-
malization, as given by Formula 1.

vIWv,

[vall [lv2]

ey

sim(sy, $2) =

The matrix W is a symmetric matrix that en-
codes the word to word similarities, derived from
the underlying resources this is drawn from. From
the previous year’s assessment, we used similarities
derived from Personalized PageRank (Agirre et al.,
2010) over WordNet (Fellbaum, 1998), the Explicit
Semantic Analysis (Gabrilovich and Markovitch,
2009) concept vector signatures for each lemma, and
the Dekang Lin Proximity-based Thesaurus .

The cosine-based lexical overlap measure simply
measures the cosine similarity, using strict lexical
overlap, between the sentence pairs. The BLEU,
precision focused POS, and skip-bigrams are direc-
tional measures, which measure how well a target
sentence matches a source sentence. To score pair of
sentences, we simply averaged the score where one
sentence is the source, the other the target, and then
vice versa. These directional measures were origi-
nally used as a precision focused means to assess the
quality of machine translations output against ref-
erence translations. Following (Finch et al., 2005),
these measures have also been shown to be good for
assessing semantic similarity between pairs of sen-
tences.

For BLEU, we measured how well ngrams of or-
der one through four were matched by the target sen-
tence, matching solely on lexical matches, or POS
matches. Skip bigrams performed similarly, except
the bigrams were not contiguous. The precision fo-
cused POS features assess how well each POS tag
found in the source sentence has been matched in
the target sentence, where the matches are first done
via a lemma match.

To combine the scores from these features, we
used the LIBSVM Support Vector Regression (SVR)
package (Chang and Lin, 2011), trained on the train-
ing pair gold scores. Per the previous year, we used
a radial basis kernel with a degree of three.

"http://webdocs.cs.ualberta.ca/ lindek/downloads.htm



For a more in-depth description of System 1,
please refer to (Yeh and Agirre, 2012).

3 TFIDF-ESA

This year instead of using Explicit Semantic Anal-
ysis (ESA) to populate a word-by-word similarity
matrix, we used ESA to derive a similarity score be-
tween the sentences in a STS pair. For a given sen-
tence, we basically treated it as an IR query against
the ESA concept-base: we tokenized the words, ex-
tracted the ESA concept vectors, and performed a
TFIDF weighted average to arrive at the sentence
vector. A cutoff of the top 1000 scoring concepts
was further applied, per previous experience, to im-
prove performance. The similarity score for two
sentence vectors was computed using cosine simi-
larity.

4 Neural Probabilistic Language Models

Neural probabilistic language models represent
words as real valued vectors, where these vectors are
trained to jointly capture the distributional statistics
of their context words and the positions these words
occur at. These representations are usually at a much
lower dimensionality than that of the original vocab-
ulary, forcing some form of compression to occur in
the vocabulary. The intent is to train a model that
can account for words that have not been observed
in a given context before, but that word vector has
enough similarity to another word that has been en-
countered in that context before.

Earlier models simply learnt how to model the
next word in a sequence, where each word in the vo-
cabulary is initially represented by a randomly ini-
tialized vector. For each instance, a larger vector is
assembled from the concatenation of the vectors of
the words observed, and act as inputs into a model.
This model itself is optimized to maximize the like-
lihood of the next word in the observed sequence,
with the errors backpropagated through the vectors,
with the parameters for the vectors being tied (Ben-
gio et al., 2003).

In later studies, these representations are the
product of training a neural network to maxi-
mize the margin between the scores it assigns to
observed “correct” examples, which should have
higher scores, and “corrupted examples,” where the
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Figure 1: Vector Window encoding for the phrase “heart
attack.”

token of interest is swapped out to produce an in-
correct example and preferably a lower score. As
shown in (Collobert and Weston, 2008) and then
(Huang et al., 2012), simple distance measures us-
ing the representations derived from this process are
both useful for assessing word similarity and relat-
edness. For this study, we used the contextually
trained language vectors provided by (Huang et al.,
2012), which were trained to maximize the margin
between training pairs and to account for document
context as well. The dimensionality of these vectors
was 50.

As we are interested in capturing information at
a level greater than individual words, we used two
methods to combine these NLPM word vectors to
represent an order n ngram: a Vector Window
where we simply concatenated the word vectors, and
one that relied on encodings learnt by Restricted
Boltzmann Machines.

For this work, we experimented with generating
encodings for ngrams sized 2,3,5,10, and 21. The
smaller sizes correspond to commonly those com-
monly used to match ngrams, while the larger ones
were used to take advantage of the reduced sparsity.
Similarities between a pair of ngram encodings is
given similarity of their vector encodings.

4.1 Vector Window

The most direct way to encode an order n ngram as
a vector is to concatenate the n NLPM word vectors
together, in order. For example, to encode “heart
attack”, the vectors for “heart” and “attack”, both
with dimensionality 50, are linked together to form
a larger vector with dimensionality 100 (Figure 1).

For size n vector windows where the total number
of tokens is less than n, we pad the left and right
sides of the window with a “negative” token, which
was selected to be a vector that, on the average, is
anticorrelated with all the vectors in the vocabulary.
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Figure 2: Using a RBM trained compressor to generate a
compressed encoding of “heart attack.”

4.2 Restricted Boltzmann Machines

Although the word vectors we used were trained
against a ten word context, the vector windows may
not be able to describe similarities at multiword
level, as the method is still performing comparisons
at a word-to-word level. For example the vector win-
dow score for the related phrases heart attack and
cardiac arrest is 0.35. In order to account for sim-
ilarities at a multiword level, we trained Restricted
Boltzmann Machines (RBM) to further encode these
vector windows (Hinton, 2002). A RBM is a bi-
partite undirected graphical model, where the only
edges are between a layer of input variables and a
layer of latent variables. The latent layer consists of
sigmoid units, allowing for non-linear combinations
of the inputs. The training objective is to learn a set
of weights that maximize the likelihood of training
observations, and given the independences inherent,
in the model it can be trained quickly and effectively
via Contrastive Divergence. The end effect is the
system attempts to force the latent layer to learn an
encoding of the input variables, usually at a lower di-
mensionality. In our case, by compressing their dis-
tributional representations we hope to amplify sig-
nificant similarities between multiword expressions,
albeit for those of the same size.

To derive a RBM based encoding, we first gen-
erate a vector window for the ngram, and then used
the trained RBM to arrive at the compressed vector
(Figure 2). As before, we derive a similarity score
between two RBM based encodings by comparing
their cosine distance.

Following the above example, the vectors from an
RBM trained system for heart attack and cardiac ar-
rest score the pair at a higher similarity, 0.54. For
phrases that are unrelated, comparing door key with
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cardiac arrest gives a score of -0.14 with the vector
window, and RBM this is -0.17.

To train a RBM encoder for order n ngrams,
we generated n sized vector windows over ngrams
drawn from the English language articles in
Wikipedia. The language dump was filtered to larger
sized articles, in order to avoid pages likely to be
content-free, such as redirects. The training set
size consisted of 35,581,434 words, which was split
apart into 1,519,256 sentences using the OpenNLP
sentence splitter tool 2. The dimensionality of the
encoding layer was set to 50 for window sizes 2,3,5,
and 200 for the larger windows.

4.3 Combining word and ngram similarity
scores

In order to produce an overall similarity score, we
used a variant of the weighted variant of the simi-
larity combination method given in (Mihalcea et al.,
2006). Here, we generated a directional similarity
score from a source to target by the following,

> scg maxSim(s,T)
|51

sim(S,7T) = 2)

where maxSim(s,T) represents the maximum
similarity between the token s and the set of tokens
in the target sentence, 7'. In the case of ngrams with
order 2 or greater, we treat each ngram as a token for
the combination.

avgsim(Ty, Ty) = % (sim(T1,T5) + sim(T3,T1))
3)

Unlike the original method, we treated each term
equally, in order to account for ngrams with order
2 and above. We also did not filter based off of the
part of speech, relying on the scores themselves to
help perform the filtering.

In addition to the given word window sizes,
we also directly assess the word-to-word similarity
scores by comparing the word vectors directly, using
a window size of one.

S Evaluation Setup

System 2, the TFIDF-ESA score for a pair is a fea-
ture. For each of the given ngram sizes, we treated

2http://opennlp.apache.org/



Training (2012) Test (2013)
Surprisel (ONWN) | FNWN
MSRPar Headlines
Surprisel (ONWN) | ONWN
Surprise2 (SMT) SMT

Table 1: Train (2012) and Test (2013) sets used to train
the regressors.

the ngram similarity scores from the Vector Window
and RBM methods as individual features. System
3 combines the features from System 2 with those
from System 1. For Systems 2 and 3, the SVR setup
used by System 1 was used to develop scorers. As no
training immediate training sets were provided for
the evaluation sets, we used the train and test parti-
tions given in Table 1, training on both the 2012 train
and test data, where gold scores were available.

6 Results and Discussion

The results of our three runs are given in the top half
of Table 2. To get a better sense of the contribution
of the new components, we also ran the NLPM vec-
tor window and RBM window models and TFIDF-
ESA components individually against the test sets.
The NLPM system was trained using the same SVR
setup as the main experiment.

In order to provide a lexical match comparison for
the NLPM system, we experimented with a ngram
matching system, where ngrams of size 1,2,3,5,10,
and 21 were used to generate similarity scores via
the same combination method as the NLPM models.
Here, hard matching was performed, where match-
ing ngrams were given a score of 1, else 0. Again,
we used the main experiment SVR setup to combine
the scores from the various ngram sizes.

We found that overall the previous year’s sys-
tem did not perform adequately on the evaluation
datasets, short of the headlines dataset. Oddly
enough, TFIDF-ESA by itself would have arrived at
a good correlation with OnWN: one possible expla-
nation for this would be the fact that TFIDF-ESA
by itself is essentially an order-free “bag of words”
model that assesses soft token to token similarity. As
the other systems incorporate either some notion of
sequence and/or require strict lexical matching, it is
possible that characterization does not help with the
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OnWN sense definitions.

Combining the new features with the previous
year’s system gave poorer performance; a prelimi-
nary assessment over the training sets showed some
degree of overfitting, likely due to high correlation
between the NLPM features and last year’s direc-
tional measures.

When using the same combination method, ngram
matching via lexical content over ngrams gave
poorer results than those from NLPM models, as
given in Table 2. This would also argue for identi-
fying better combination methods than the averaged
maximum similarity method used here.

What is interesting to note is that the NLPM and
TFIDF-ESA systems do not rely on any part of
speech information, nor hand-crafted semantic sim-
ilarity resources. Instead, these methods are de-
rived from large scale corpora, and generally out-
performed the previous year’s system which relied
on that extra information.

To get a better understanding of the NLPM and
TFIDF-ESA models, we compared how the com-
ponents would score the similarity between pairs of
two word phrases, given in Table 3. Atleast over this
small sampling we genearted, we found that in gen-
eral the RBM method tended to have a much wider
range of scores than the Vector Window, although
both methods were very correlated. Both systems
had very low correlation with TFIDF-ESA.

7 Future Work

One area of improvement would be to develop a bet-
ter method for combining the various ngram simi-
larity scores provided by the NLPMs. When using
lexical matching of ngrams, we found that the com-
bination method used here proved inferior to the di-
rectional measures from the previous year’s systems.
This would argue for a better way to use the NLPMs.
As training STS pairs are available with gold scores,
this would argue for some form of supervised train-
ing. For training similarities between multiword ex-
pressions, proxy measures for similarity, such as the
Normalized Google Distance (Cilibrasi and Vitanyi,
2004), may be feasible.

Another avenue would be to allow the NLPM
methods to encode arbitrary sized text spans, as the
current restriction on spans being the same size is



System headlines | OnWN | FNWN | SMT | mean | rank
SRIUBC-system1 (Baseline) 0.6083 0.2915 | 0.2790 | 0.3065 | 0.4011 | 66
SRIUBC-system2 (NLPM, TFIDF-ESA) | 0.6359 0.3664 | 0.2713 | 0.3476 | 0.4420 | 57
SRIUBC-system3 (Combined) 0.5443 0.2843 | 0.2705 | 0.3275 | 0.3842 | 70
NLPM 0.5791 0.3157 | 0.3211 | 0.2698 | 0.3714
TFIDF-ESA 0.5739 0.7222 | 0.1781 | 0.2980 | 0.4431
Lex-only 0.5455 0.3237 | 0.2095 | 0.3146 | 0.3483

Table 2: Pearson correlation of systems against the test datasets (top). The test set performance for the new Neural
Probabilistic Language Model (NLPM) and TFIDF-ESA components are given, along with a lexical-only variant for

comparison (bottom).

String 1 String 2 Vec. Window | RBM Window | TFIDF-ESA
heart attack cardiac arrest 0.354 0.544 0.182
door key cardiac arrest -0.14 -0.177 0
baby food cat food 0.762 0.907 0.079
dog food cat food 0.886 0.914 0.158
rotten food baby food 0.482 0.473 0.071
frozen solid thawed out 0.046 -0.331 0.102
severely burnt | frozen stiff -0.023 -0.155 0
uphill slog raced downhill 0.03 -0.322 0.043
small cat large dog 0.817 0.905 0.007
ran along sprinted by 0.31 0.238 0.004
ran quickly jogged rapidly 0.349 0.327 0.001
deathly ill very sick 0.002 0.177 0.004
ran to raced to 0.815 0.829 0.013
free drinks drinks free 0.001 0.042 1
door key combination lock | 0.098 0.093 0.104
frog blast vent core 0.003 0.268 0.004

Table 3: Cosine similarity of two input strings, as given by the vectors generated from the Vector Window size 2, RBM

Window size 2, and TFIDF-ESA.

unrealistic. One possibility is to use recurrent neural
network techniques to generate this type of encod-
ing.

Finally, the size of the Wikipedia dump used to
train the Restricted Boltzmann Machines could be
at issue, as 35 million words could be considered
small compared to the full range of expressions we
would wish to capture, especially for the larger win-
dow spans. A larger training corpus may be needed
to fully see the benefit from RBMs.
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Abstract

This paper describes the system used by the
LIPN team in the Semantic Textual Similarity
task at *SEM 2013. It uses a support vector re-
gression model, combining different text sim-
ilarity measures that constitute the features.
These measures include simple distances like
Levenshtein edit distance, cosine, Named En-
tities overlap and more complex distances like
Explicit Semantic Analysis, WordNet-based
similarity, IR-based similarity, and a similar-
ity measure based on syntactic dependencies.

1 Introduction

The Semantic Textual Similarity task (STS) at
*SEM 2013 requires systems to grade the degree of
similarity between pairs of sentences. It is closely
related to other well known tasks in NLP such as tex-
tual entailment, question answering or paraphrase
detection. However, as noticed in (Bir et al., 2012),
the major difference is that STS systems must give a
graded, as opposed to binary, answer.

One of the most successful systems in *SEM
2012 STS, (Bir et al., 2012), managed to grade pairs
of sentences accurately by combining focused mea-
sures, either simple ones based on surface features
(ie n-grams), more elaborate ones based on lexical
semantics, or measures requiring external corpora
such as Explicit Semantic Analysis, into a robust
measure by using a log-linear regression model.

The LIPN-CORE system is built upon this idea of
combining simple measures with a regression model
to obtain a robust and accurate measure of tex-
tual similarity, using the individual measures as fea-
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tures for the global system. These measures include
simple distances like Levenshtein edit distance, co-
sine, Named Entities overlap and more complex dis-
tances like Explicit Semantic Analysis, WordNet-
based similarity, IR-based similarity, and a similar-
ity measure based on syntactic dependencies.

The paper is organized as follows. Measures are
presented in Section 2. Then the regression model,
based on Support Vector Machines, is described in
Section 3. Finally we discuss the results of the sys-
tem in Section 4.

2 Text Similarity Measures

2.1 WordNet-based Conceptual Similarity

(Proxigenea)

First of all, sentences p and ¢ are analysed in or-
der to extract all the included WordNet synsets. For
each WordNet synset, we keep noun synsets and put
into the set of synsets associated to the sentence, C,
and Cy, respectively. If the synsets are in one of the
other POS categories (verb, adjective, adverb) we
look for their derivationally related forms in order
to find a related noun synset: if there is one, we put
this synsets in C), (or Cy). For instance, the word
“playing” can be associated in WordNet to synset
(v) play#2, which has two derivationally related
forms corresponding to synsets (n)play#5 and
(n)play#6: these are the synsets that are added
to the synset set of the sentence. No disambiguation
process is carried out, so we take all possible mean-
ings into account.

Given C), and Cj; as the sets of concepts contained
in sentences p and g, respectively, with |Cp| > |C,

’
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the conceptual similarity between p and ¢ is calcu-
lated as:

> max s(cq,co)
c1€C) caeCy ’

|Gyl

ss(p,q) = €]
where s(cq1,c2) is a conceptual similarity measure.
Concept similarity can be calculated by different
ways. For the participation in the 2013 Seman-
tic Textual Similarity task, we used a variation of
the Wu-Palmer formula (Wu and Palmer, 1994)
named “ProxiGenea” (from the french Proximité
Généalogique, genealogical proximity), introduced
by (Dudognon et al., 2010), which is inspired by the
analogy between a family tree and the concept hi-
erarchy in WordNet. Among the different formula-
tions proposed by (Dudognon et al., 2010), we chose
the ProxiGenea3 variant, already used in the STS
2012 task by the IRIT team (Buscaldi et al., 2012).
The ProxiGenea3 measure is defined as:

1
1+d(er) +d(e2) —2-d(co)

s(c1,¢2) = 2
where cg is the most specific concept that is present
both in the synset path of c; and ¢z (that is, the Least
Common Subsumer or LCS). The function returning
the depth of a concept is noted with d.

2.2 IC-based Similarity

This measure has been proposed by (Mihalcea et
al., 2006) as a corpus-based measure which uses
Resnik’s Information Content (IC) and the Jiang-
Conrath (Jiang and Conrath, 1997) similarity metric:

1
IO(Cl) + IC(CQ) -2 IC(C())

3)

sje(c1,c2) =

where IC' is the information content introduced by
(Resnik, 1995) as IC(c) = —log P(c).

The similarity between two text segments 77 and
T5 is therefore determined as:

max  ws(w,wz) * idf (w)

. 1 | wefr}w2ei{Tz}
sim(, T2) = 5 s @)

we{Ty}

max  ws(w,w1) * idf (w)
we{Ty} wi€l{T1}

> idf(w)

we{T2}

“

where idf (w) is calculated as the inverse document
frequency of word w, taking into account Google
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Web 1T (Brants and Franz, 2006) frequency counts.
The semantic similarity between words is calculated
as:

max
c eEW; ,Cj inW]-

ws(w;, wj) = sje(ciycj). (5)

where W; and W; are the sets containing all synsets
in WordNet corresponding to word w; and wj, re-
spectively. The IC values used are those calcu-
lated by Ted Pedersen (Pedersen et al., 2004) on the
British National Corpus'.

2.3 Syntactic Dependencies

We also wanted for our systems to take syntac-
tic similarity into account. As our measures are
lexically grounded, we chose to use dependen-
cies rather than constituents. Previous experiments
showed that converting constituents to dependen-
cies still achieved best results on out-of-domain
texts (Le Roux et al., 2012), so we decided to use
a 2-step architecture to obtain syntactic dependen-
cies. First we parsed pairs of sentences with the
LORG parser®. Second we converted the resulting

parse trees to Stanford dependencies?.

Given the sets of parsed dependencies D), and D,
for sentence p and ¢, a dependency d € D, is a
triple (I, h, t) where [ is the dependency label (for in-
stance, dobj or prep), h the governor and ¢ the depen-
dant. We define the following similarity measure be-
tween two syntactic dependencies di = (I1, h1,11)
and dQ = (lz, hg,tz):
dsz'm(dl, d2) = Lev(ll, lz)
idfn * swn (h1, h2) + idf * swn (t1,t2)

2

6

where idf;, = max(idf (hi1),idf (he)) and idf; =
max(idf (t1),idf (t2)) are the inverse document fre-
quencies calculated on Google Web 1T for the gov-
ernors and the dependants (we retain the maximum
for each pair), and sy is calculated using formula
2, with two differences:

e if the two words to be compared are antonyms,
then the returned score is 0;

! http://www.d.umn.edu/~tpederse/similarity.html

2https ://github.com/CNGLdlab/LORG-Release

3We used the default built-in converter provided with the
Stanford Parser (2012-11-12 revision).



e if one of the words to be compared is not in
WordNet, their similarity is calculated using
the Levenshtein distance.

The similarity score between p and g, is then cal-
culated as:

Y. max dsim(d;,d;)
diEDp dean
max ,

| Dyl

ssp(p,q) =

Y. max dsim(d;, dj)

d;€D, 4jinDp
Dy

(7

2.4 Information Retrieval-based Similarity

Let us consider two texts p and ¢, an Information Re-
trieval (IR) system .S and a document collection D
indexed by S. This measure is based on the assump-
tion that p and ¢ are similar if the documents re-
trieved by .S for the two texts, used as input queries,
are ranked similarly.

Let be L, = {dp,...,dp,} and L, =
{dgi,-..,dgy }, dz; € D the sets of the top K docu-
ments retrieved by S for texts p and ¢, respectively.
Let us define s,(d) and s4(d) the scores assigned by
S to adocument d for the query p and g, respectively.
Then, the similarity score is calculated as:

Z \VA (3p(d)—s4(d))?

N CLORI)

[ Lp N L]

simrr(p,q) =1 — (8)
if |[L, N Ly| # 0, 0 otherwise.

For the participation in this task we indexed a
collection composed by the AQUAINT-2* and the
English NTCIR-8 document collections, using the
Lucene® 4.2 search engine with BM25 similarity.
The K value was empirically set to 20 after some
tests on the STS 2012 data.

2.5 ESA

Explicit
Markovitch,

Semantic  Analysis
2007) represents

(Gabrilovich and
meaning as a

4
http://www.nist.gov/tac/data/data_desc.html#AQUAINT-2

http://metadata.berkeley.edu/NTCIR-GeoTime/
ntcir-8-databases.php

http://lucene.apache.org/core

164

weighted vector of Wikipedia concepts. Weights
are supposed to quantify the strength of the relation
between a word and each Wikipedia concept using
the #f-idf measure. A text is then represented as a
high-dimensional real valued vector space spanning
all along the Wikipedia database. For this particular
task we adapt the research-esa implementation
(Sorg and Cimiano, 2008) to our own home-made
weighted vectors corresponding to a Wikipedia
snapshot of February 4th, 2013.

2.6 N-gram based Similarity

This feature is based on the Clustered Keywords Po-
sitional Distance (CKPD) model proposed in (Bus-
caldi et al., 2009) for the passage retrieval task.

The similarity between a text fragment p and an-
other text fragment ¢ is calculated as:

Z h(z, p)#

vzeQ d(xaxmax)
D iy Wi

Where P is the set of n-grams with the highest
weight in p, where all terms are also contained in g;
@ is the set of all the possible n-grams in ¢ and n
is the total number of terms in the longest passage.
The weights for each term and each n-gram are cal-
culated as:

(€))

Simngrams (p7 Q> =

e ; calculates the weight of the term ¢; as:

log(n;)

Wi == g (10)

Where n; is the frequency of term ¢; in the
Google Web 1T collection, and N is the fre-
quency of the most frequent term in the Google
Web 1T collection.

e the function h(x, P) measures the weight of
each n-gram and is defined as:

ifx € P;
otherwise

(1)

h(z, Pj) = { OZil w

7
http://code.google.com/p/research-esa/



Where wy, is the weight of the k-th term (see
Equation 10) and j is the number of terms that
compose the n-gram x;

m is a distance factor which reduces the
weight of the n-grams that are far from the
heaviest n-gram. The function d(z, Z;e,) de-
termines numerically the value of the separa-
tion according to the number of words between
a n-gram and the heaviest one:

d(z, Tmaz) = 1 + k- In(1+ L) (12)
where k is a factor that determines the impor-
tance of the distance in the similarity calcula-
tion and L is the number of words between a
n-gram and the heaviest one (see Equation 11).
In our experiments, k was set to 0.1, the default
value in the original model.

2.7 Other measures

In addition to the above text similarity measures, we
used also the following common measures:
2.7.1 Cosine

Given p = (wp,...,wp,) and q =
(W, - -, wg,) the vectors of ¢f.idf weights asso-
ciated to sentences p and ¢, the cosine distance is
calculated as:

n
> Wp; X Wy,

i=1
q) =
n n
Do wp 2 Xy | Y we,?
i=1 i=1

The idf value was calculated on Google Web 1T.

(13)

$iMeos (P,

2.7.2 Edit Distance

This similarity measure is calculated using the
Levenshtein distance as:

Lev(p, q)

U4
max(pl ) O

simgp(p,q) =1 —

where Lev(p,q) is the Levenshtein distance be-
tween the two sentences, taking into account the
characters.
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2.7.3 Named Entity Overlap

We used the Stanford Named Entity Recognizer
by (Finkel et al., 2005), with the 7 class model
trained for MUC: Time, Location, Organization,
Person, Money, Percent, Date. Then we calculated a
per-class overlap measure (in this way, “France” as
an Organization does not match “France” as a Loca-
tion):

2% |[Np N Ng|

15)
[Np| + [N

Oner(p,q) =
where NV, and IV, are the sets of NEs found, respec-
tively, in sentences p and q.

3 Integration of Similarity Measures

The integration has been carried out using the
v-Support Vector Regression model (v-SVR)
(Scholkopf et al., 1999) implementation provided
by LIBSVM (Chang and Lin, 2011), with a radial
basis function kernel with the standard parameters
(v =0.5).

4 Results

In order to evaluate the impact of the different fea-
tures, we carried out an ablation test, removing one
feature at a time and training a new model with the
reduced set of features. In Table 2 we show the re-
sults of the ablation test for each subset of the *SEM
2013 test set; in Table 1 we show the same test on the
whole test set. Note: the results have been calculated
as the Pearson correlation test on the whole test set
and not as an average of the correlation scores cal-
culated over the composing test sets.

Feature Removed | Pearson | Loss

None 0.597 0
N-grams 0.596 0.10%
WordNet 0.563 3.39%
SyntDeps 0.602 | —0.43%
Edit 0.584 1.31%
Cosine 0.596 0.10%
NE Overlap 0.603 | —0.53%
IC-based 0.598 | —0.10%
IR-Similarity 0.510 | 8.78%
ESA 0.601 | —0.38%

Table 1: Ablation test for the different features on the
whole 2013 test set.



FNWN Headlines OnWN SMT
Feature Pearson | Loss Pearson | Loss Pearson | Loss Pearson | Loss
None 0.404 0 0.706 0 0.694 0 0.301 0
N-grams 0.379 2.49% 0.705 | 0.12% 0.698 | —0.44% 0.289 1.16%
WordNet 0.376 2.80% 0.695 | 1.09% 0.682 1.17% 0.278 2.28%
SyntDeps 0.403 0.08% 0.699 | 0.70% 0.679 1.49% 0.284 1.62%
Edit 0.402 0.19% 0.689 | 1.70% 0.667 2.72% 0.286 1.50%
Cosine 0.393 1.03% 0.683 | 2.38% 0.676 1.80% 0.303 | —0.24%
NE Overlap 0.410 | —0.61% 0.700 | 0.67% 0.680 1.37% 0.285 1.58%
IC-based 0.391 1.26% 0.699 | 0.75% 0.669 2.50% 0.283 1.76%
IR-Similarity 0.426 | —2.21% 0.633 | 7.33% 0.589 | 10.46% 0.249 5.19%
ESA 0.391 1.22% 0.691 | 1.57% 0.702 | —0.81% 0.275 2.54%
Table 2: Ablation test for the different features on the different parts of the 2013 test set.
FNWN | Headlines | OnWN | SMT | ALL
N-grams 0.285 0.532 0.459 | 0.280 | 0.336
WordNet 0.395 0.606 0.552 | 0.282 | 0.477
SyntDeps 0.233 0.409 0.345 | 0.323 | 0.295
Edit 0.220 0.536 0.089 | 0.355 | 0.230
Cosine 0.306 0.573 0.541 | 0.244 | 0.382
NE Overlap 0.000 0.216 0.000 | 0.013 | 0.020
IC-based 0.413 0.540 | 0.642 | 0.285 | 0.421
IR-based 0.067 0.598 0.628 | 0.241 | 0.541
ESA 0.328 0.546 0.322 | 0.289 | 0.390

Table 3: Pearson correlation calculated on individual features.

The ablation test show that the IR-based feature
showed up to be the most effective one, especially
for the headlines subset (as expected), and, quite sur-
prisingly, on the OnWN data. In Table 3 we show
the correlation between each feature and the result
(feature values normalised between 0 and 5): from
this table we can also observe that, on average, IR-
based similarity was better able to capture the se-
mantic similarity between texts. The only exception
was the FNWN test set: the IR-based similarity re-
turned a 0 score 178 times out of 189 (94.1%), indi-
cating that the indexed corpus did not fit the content
of the FNWN sentences. This result shows also the
limits of the IR-based similarity score which needs
a large corpus to achieve enough coverage.

4.1 Shared submission with INAOE-UPV

One of the files submitted by INAOE-UPYV,
INAOE-UPV-run3 has been produced using seven
features produced by different teams: INAOE, LIPN
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and UMCC-DLSI. We contributed to this joint sub-
mission with the IR-based, WordNet and cosine fea-
tures.

5 Conclusions and Further Work

In this paper we introduced the LIPN-CORE sys-
tem, which combines semantic, syntactic an lexi-
cal measures of text similarity in a linear regression
model. Our system was among the best 15 runs for
the STS task. According to the ablation test, the best
performing feature was the IR-based one, where a
sentence is considered as a query and its meaning
represented as a set of documents indexed by an IR
system. The second and third best-performing mea-
sures were WordNet similarity and Levenshtein’s
edit distance. On the other hand, worst perform-
ing similarity measures were Named Entity Over-
lap, Syntactic Dependencies and ESA. However, a
correlation analysis calculated on the features taken
one-by-one shows that the contribution of a feature



on the overall regression result does not correspond
to the actual capability of the measure to represent
the semantic similarity between the two texts. These
results raise the methodological question of how to
combine semantic, syntactic and lexical similarity
measures in order to estimate the impact of the dif-
ferent strategies used on each dataset.

Further work will include richer similarity mea-
sures, like quasi-synchronous grammars (Smith and
Eisner, 2006) and random walks (Ramage et al.,
2009). Quasi-synchronous grammars have been
used successfully for paraphrase detection (Das and
Smith, 2009), as they provide a fine-grained model-
ing of the alignment of syntactic structures, in a very
flexible way, enabling partial alignments and the in-
clusion of external features, like Wordnet lexical re-
lations for example. Random walks have been used
effectively for paraphrase recognition and as a fea-
ture for recognizing textual entailment. Finally, we
will continue analyzing the question of how to com-
bine a wide variety of similarity measures in such a
way that they tackle the semantic variations of each
dataset.
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Abstract

This paper describes the UNIBA participation
in the Semantic Textual Similarity (STS) core
task 2013. We exploited three different sys-
tems for computing the similarity between two
texts. A system is used as baseline, which rep-
resents the best model emerged from our pre-
vious participation in STS 2012. Such system
is based on a distributional model of seman-
tics capable of taking into account also syn-
tactic structures that glue words together. In
addition, we investigated the use of two dif-
ferent learning strategies exploiting both syn-
tactic and semantic features. The former uses
ensemble learning in order to combine the
best machine learning techniques trained on
2012 training and test sets. The latter tries to
overcome the limit of working with different
datasets with varying characteristics by select-
ing only the more suitable dataset for the train-

ing purpose.

1 Introduction

Semantic Textual Similarity is the task of comput-
ing the similarity between any two given texts. The
task, in its core formulation, aims at capturing the
different kinds of similarity that emerge from texts.
Machine translation, paraphrasing, synonym substi-
tution or text entailment are some fruitful methods
exploited for this purpose. These techniques, along
with other methods for estimating the text similar-
ity, were successfully employed via machine learn-
ing approaches during the 2012 task.

However, the STS 2013 core task (Agirre et al.,
2013) differs from the 2012 formulation in that it
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provides a test set which is similar to the training,
but not drawn from the same set of data. Hence,
in order to generalize the machine learning models
trained on a group of datasets, we investigate the use
of combination strategies. The objective of combi-
nation strategies, known under the name of ensem-
ble learning, is that of reducing the bias-variance
decomposition through reducing the variance error.
Hence, this class of methods should be more ro-
bust with respect to previously unseen data. Among
the several ensemble learning alternatives, we ex-
ploit the stacked generalization (STACKING) algo-
rithm (Wolpert, 1992). Moreover, we investigate the
use of a two-steps learning algorithm (2STEPSML).
In this method the learning algorithm is trained us-
ing only the dataset most similar to the instance to
be predicted. The first step aims at predicting the
dataset more similar to the given pair of texts. Then
the second step makes use of the previously trained
algorithm to predict the similarity value. The base-
line for the evaluation is represented by our best sys-
tem (DSM_PERM) resulting from our participation
in the 2012 task. After introducing the general mod-
els behind our systems in Section 2, Section 3 de-
scribes the evaluation setting of our systems along
with the experimental results. Then, some conclu-
sions and remarks close the paper.

2 General Models

2.1 Dependency Encoding via Vector
Permutations

Distributional models are effective methods for rep-
resenting word paradigmatic relations in a simple

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 169-175, Atlanta, Georgia, June 13-14, 2013. (©2013 Association for Computational Linguistics



way through vector spaces (Mitchell and Lapata,
2008). These spaces are built taking into account
the word context, hence the resulting vector repre-
sentation is such that the distance between vectors
reflects their similarity. Although several definitions
of context are possible (e.g. a sliding window of
text, the word order or syntactic dependencies), in
their plain definition these kinds of models account
for just one type of context at a time. To overcome
this limitation, we exploit a method to encode more
definitions of context in the same vector exploiting
the vector permutations (Caputo et al., 2012). This
technique, which is based on Random Indexing as
a means for computing the distributional model, is
based on the idea that when the components of a
highly sparse vector are shuffled, the resulting vec-
tor is nearly orthogonal to the original one. Hence,
vector permutation represents a way for generat-
ing new random vectors in a predetermined manner.
Different word contexts can be encoded using dif-
ferent types of permutations. In our distributional
model system (DSM_PERM), we encode the syn-
tactic dependencies between words rather than the
mere co-occurrence information. In this way, word-
vector components bear the information about both
co-occurring and syntactically related words. In this
distributional space, a text can be easily represented
as the superposition of its words. Then, the vec-
tor representation of a text is given by adding the
vector representation of its words, and the similarity
between texts come through the cosine of the angle
between their vector representations.

2.2 Stacking

Stacking algorithms (Wolpert, 1992) are a way of
combining different types of learning algorithms re-
ducing the variance of the system. In this model,
the meta-learner tries to predict the real value of
an instance combining the outputs of other machine
learning methods.

Figure 1 shows how the learning process takes
place. The level-0 represents the ensemble of dif-
ferent models to be trained on the same dataset. The
level-0 outputs build up the level-1 dataset: an in-
stance at this level is represented by the numeric
values predicted by each level-0 model along with
the gold standard value. Then, the objective of the
level-1 learning model is to learn how to combine
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the level-0 outputs in order to provide the best pre-
diction.

model; model, model,

level-0

meta-learner

level-1

prediction

Figure 1: Stacking algorithm

2.3 Two steps learning algorithm

Given an ensemble of datasets with different charac-
teristics, this method is based on the idea that when
instances come from a specific dataset, the learn-
ing algorithm trained on that dataset outperforms the
same algorithm trained on the whole ensemble.

Hence, the two steps algorithm tries to overcome
the problem of dealing with different datasets hav-
ing different characteristics through a classification
model.

input
classifier
—
Qé; output: dataset class
@
dataset; dataset, dataset,
Jpredicted dataset

A

@ learning algorithm

[0}

l prediction

Figure 2: Two steps machine learning algorithm

In the first step (Figure 2), a different class is as-
signed to each dataset. The classifier is trained on



a set of instances whose classes correspond to the
dataset numbers. Then, given a new instance the
output of this step will be the dataset to be used
for training the learning algorithm in the step 2. In
the second step, the learning algorithm is trained on
the dataset choose in the first step. The output of
this step is the predicted similarity between the two
texts. Through these steps, it is possible to select
the dataset with the characteristics more similar to
a given instance, and exploit just this set of data for
learning the algorithm.

2.4 Features

Both STACKING and 2STEPSML systems rely on
several kinds of features, which vary from lexical to
semantic ones. Features are grouped in seven main
classes, as follows:

1. Character/string/annotation-based features:
the length of the longest common contiguous
substring between the texts; the Jaccard index
of both tokens and lemmas; the Levenshtein
distance between texts; the normalized number
of common 2-grams, 3-grams and 4-grams; the
total number of tokens and characters; the dif-
ference in tokens and characters between texts;
the normalized difference with respect to the
max text length in tokens and characters be-
tween texts. Exploiting other linguistic anno-
tations extracted by Stanford CoreNLP!, we
compute the Jaccard index between PoS-tags
and named entities. Using WordNet we extract
the Jaccard index between the first sense and its
super-sense tag.

2. Textual Similarity-based features: a set of fea-
tures based on the textual similarity proposed
by Mihalcea (Mihalcea et al., 2006). Given two
texts 77 and 75 the similarity is computed as

follows:
. 1, > wer, maxSim(w,T?)
sim (T, 1) = = L _
Tt = s e i w)
N > wer, mazrSim(w, Tl))
ZwETQ de(w)

6]

! Available at: http://nlp.stanford.edu/software/corenlp.shtml
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We adopt several similarity measures using
semantic distributional models (see Section
2.5), the Resnik’s knowledge-based approach
(Resnik, 1995) and the point-wise mutual infor-
mation as suggested by Turney (Turney, 2001)
computed on British National Corpus?. For all
the features, the idf is computed relying on
UKWaC corpus3 (Baroni et al., 2009).

3. Head similarity-based features: this measure
takes into account the maximum similarity be-
tween the roots of each text. The roots are ex-
tracted using the dependency parser provided
by Stanford CoreNLP. The similarity is com-
puted according to the distributional semantic
models proposed in Section 2.5.

4. ESA similarity: computes the similarity
between texts using the Explicit Semantic
Analysis (ESA) approach (Gabrilovich and
Markovitch, 2007). For each text we extract the
ESA vector built using the English Wikipedia,
and then we compute the similarity as the co-
sine similarity between the two ESA vectors.

5. Paraphrasing features: this is a very simple
measure which counts the number of possi-
ble paraphrasings belonging to the two texts.
Given two texts 7% and 15, for each token in 173
a list of paraphrasings is extracted using a dic-
tionary*. If T contains one of the paraphrasing
in the list, the score is incremented by one. The
final score is divided by the number of tokens
in 7. The same score is computed taking into
account 75. Finally, the two score are added
and divided by 2.

6. Greedy Lemma Aligning Overlap features:
this measure computes the similarity between
texts using the semantic alignment of lemmas
as proposed by Sari¢ et al. (2012). In order
to compute the similarity between lemmas, we
exploit the distributional semantic models de-
scribed in Section 2.5.

ZAvailable at: http://www.natcorp.ox.ac.uk/

3 Available at: http://wacky.ssImit.unibo.it/

“English  Thesaurus for  StarDict available at
https://aur.archlinux.org/packages/stardict-thesaurus-ee/



7. Compositional features: we build several simi-
larity features using the distributional semantic
models described in Section 2.5 and a compo-
sitional operator based on sum. This approach
is thoroughly explained in Section 2.6

2.5 Distributional semantic models

In several features proposed in our approaches, the
similarity between words is computed using Dis-
tributional Semantic Models. These models repre-
sent word meanings through contexts: the different
meanings of a word can be accounted for by look-
ing at the different contexts wherein the word oc-
curs. This insight can beautifully be expressed by
the geometrical representation of words as vectors
in a semantic space. Each term is represented as a
vector whose components are contexts surrounding
the term. In this way, the meaning of a term across
a corpus is thoroughly conveyed by the contexts it
appears in, where a context may typically be the set
of co-occurring words in a document, in a sentence
or in a window of surrounding terms.

In particular, we take into account two main
classes of models: Simple Distributional Spaces and
Structured Semantic Spaces. The former considers
as context the co-occurring words, the latter takes
into account both co-occurrence and syntactic de-
pendency between words.

Simple Distributional Spaces rely on Latent
Semantic Analysis (LSA) and Random Indexing
(RD) in order to reduce the dimension of the co-
occurrences matrix. Moreover, we use an approach
which applies LSA to the matrix produced by RIL.

Structured Semantic Spaces are based on two
techniques to encode syntactic information into the
vector space. The first approach uses the vector per-
mutation of random vector in RI to encode the syn-
tactic role (head or dependent) of a word. The sec-
ond method is based on Holographic Reduced Rep-
resentation, in particular using convolution between
vectors, to encode syntactic information.

Adopting distributional semantic models, each
word can be represented as a vector in a geomet-
ric space. The similarity between two words can be
easily computed taking into account the cosine sim-
ilarity between word vectors.

All models are described in Basile et al. (2012).

172

2.6 Compositional features

In Distributional Semantic Models, given the vector
representations of two words, it is always possible
to compute their similarity as the cosine of the angle
between them.

However, texts are composed by several terms,
so in order to compute the similarity between them
we need a method to compose words occurring in
these texts. It is possible to combine words through
the vector addition (+4). This operator is similar to
the superposition defined in connectionist systems
(Smolensky, 1990), and corresponds to the point-
wise sum of components:

p=u+v 2

where p; = u; + v;

The addition is a commutative operator, which
means that it does not take into account any order
or underlying structures existing between words. In
this first study, we do not exploit more complex
methods to combine word vectors. We plan to in-
vestigate them in future work.

Given a text p, we denote with p its vector repre-
sentation obtained applying addition operator (4) to
the vector representation of terms it is composed of.
Furthermore, it is possible to compute the similar-
ity between two texts exploiting the cosine similarity
between vectors.

Formally, if a = a1, a9...a, and b = by, b3...b,,
are two texts, we build two vectors a and b which
represent respectively the two texts in a semantic
space. Vector representations for the two texts are
built applying the addition operator to the vector rep-
resentation of words belonging to them:

a=a+ax+...+ay

(3)
b=b;+by...+by

The similarity between a and b is computed as the
cosine similarity between them.

3 Experimental evaluation

SemEval-2013 STS is the second attempt to provide
a “unified framework for the evaluation of modular
semantic textual similarity and to characterize their
impact on NLP applications”. The task consists
in computing the similarity between pair of texts,



returning a similarity score. The test set is com-
posed by data coming from the following datasets:
news headlines (headlines); mapping of lexical re-
sources from Ontonotes to Wordnet (OnWN) and
from FrameNet to WordNet (FNWN); and evalua-
tion of machine translation (SMT).

The training data for STS-2013 is made up by
training and testing data from the previous edition
of STS-2012 task. During the 2012 edition, STS
provided participants with three training data: MSR-
Paraphrase, MSR-Video, STMeuropar; and five test-
ing data: MSR-Paraphrase, MSR-Video, STMeu-
ropar, SMTnews and OnWN. It is important to note
that part of 2012 test sets were made up from the
same sources of the training sets. On the other
hand, STS-2013 training and testing are very differ-
ent, making the prediction task a bit harder.

Humans rated each pair of texts with values from
0 to 5. The evaluation is performed by compar-
ing the humans scores against system performance
through Pearson’s correlation with the gold standard
for the four datasets.

3.1 System setup

For the evaluation, we built the distributional spaces
using the WaCkypedia_.EN corpus’. WaCkype-
dia_EN is based on a 2009 dump of the English
Wikipedia (about 800 million tokens) and includes
information about: part-of-speech, lemma and a full
dependency parsing performed by MaltParser (Nivre
et al., 2007). The structured spaces described in
Subsections 2.1 and 2.5 are built exploiting infor-
mation about term windows and dependency pars-
ing supplied by WaCkypedia. The total number of
dependencies amounts to about 200 million.

The RI system is implemented in Java and re-
lies on some portions of code publicly available in
the Semantic Vectors package (Widdows and Fer-
raro, 2008), while for LSA we exploited the publicly
available C library SVDLIBC®.

We restricted the vocabulary to the 50,000 most
frequent terms, with stop words removal and forc-
ing the system to include terms which occur in the
dataset.

Semantic space building involves some parame-

Shttp://wacky.sslmit.unibo.it/doku.php?id=corpora
Shttp://tedlab.mit.edu/ dr/SVDLIBC/
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ters. In particular, each semantic space needs to set
up the dimension k of the space. All spaces use a
dimension of 500 (resulting in a 50,000 500 ma-
trix). The number of non-zero elements in the ran-
dom vector is set to 10. When we apply LSA to the
output space generated by the Random Indexing we
hold all the 500 dimensions, since during the tuning
we observed a drop in performance when a lower
dimension was set. The co-occurrence distance w
between terms was set up to 4.

In order to compute the similarity between
the vector representations of text using UNIBA-
DSM_PERM, we used the cosine similarity, and
then we multiplied by 5 the obtained value.

The two supervised methods, UNIBA-2STEPML
and UNIBA-STACKING, are developed in Java
using Weka’ to implement the learning algo-
rithms. Regarding the stacking approach (UNIBA-
STACKING) we used for the level-O the follow-
ing models: Gaussian Process with polynomial ker-
nel, Gaussian Process with RBF kernel, Linear Re-
gression, Support Vector regression with polynomial
kernel, and decision tree. The level-1 model uses
a Gaussian Process with RBF kernel. In the first
step of UNIBA-2STEPML we adopt Support Vec-
tor Machine, while in the second one we use Sup-
port Vector Machine for regression. In both steps,
the RBF-Kernel is used. Features are normalized
removing non alphanumerics characters. In all the
learning algorithms, we use the default parameters
set by Weka. As future work, we plan to perform a
tuning step in order to set the best parameters.

The choice of the learning algorithms for both
UNIBA-STACKING and UNIBA-2STEPSML sys-
tems was performed after a tuning phase where only
the STS-2012 training datasets were exploited. Ta-
ble 1 reports the values obtained by our three sys-
tems on the STS-2012 test sets. After the tuning,
we came up with the learning algorithms to employ
in the level-0 and level-1 of UNIBA-STACKING
and in step-1 and step-2 of UNIBA-2STEPSML.
Then, the training of both UNIBA-STACKING and
UNIBA-2STEPSML was performed on all STS-
2012 datasets (training and test data).



MSRpar MSRvid SMTeuroparl OnWN SMTnews mean
UNIBA-2STEPSML .6056 8573 .6233 .5079 4533 7016
UNIBA-DSM_PERM 4349 7592 .5324 .6593 4559 6172
UNIBA-STACKING .6473 8727 .5344 .6646 4604 7714
Table 1: STS-2012 test results of Pearson’s correlation.
headlines OnWN FNWN SMT mean rank
UNIBA- 2STEPSML 4255 4801 1832 2710 3673 71
UNIBA- DSM_PERM .6319 4910 2717 3155 4610 54
UNIBA- STACKING .6275 4658 2111 2588 4293 61

Table 2: Evaluation results of Pearson’s correlation for individual datasets.

3.2 Evaluation results

Evaluation results on the STS-2013 data are reported
in Table 2. Among the three systems, UNIBA-
DSM_PERM obtained the best performances on
both individual datasets and in the overall evalua-
tion metric (mean), which computes the Pearson’s
correlation considering all datasets combined in a
single one. The best system ranked 54 over a to-
tal of 90 submissions, while UNIBA-STACKING
and UNIBA-2STEPSML ranked 61 and 71 re-
spectively. These results are at odds with those
reported in Table 1. During the test on 2012
dataset, UNIBA-STACKING gave the best result,
followed by UNIBA-2STEPSML, while UNIBA-
DSM_PERM gave the worst performance. The
UNIBA-STACKING system corroborated our hy-
pothesis giving also the best results on those datasets
not exploited during the training phase of the sys-
tem (OnWN, SMTnews). Conversely, UNIBA-
2STEPSML reported a different trend showing its
weakness with respect to a high variance in the data,
and performing worse than UNIBA-DSM_PERM on
the OnWN and SMTnews datasets.

However, the evaluation results have refuted our
hypothesis, even with the use of the stacking sys-
tem. The independence from a training set makes
the UNIBA-DSM_PERM system more robust than
other supervised algorithms, even though it is not
able to give always the best performance on individ-
ual datasets, as highlighted by results in Table 1.

"http://www.cs.waikato.ac.nz/ml/weka/
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4 Conclusions

This paper reports on UNIBA participation in Se-
mantic Textual Similarity 2013 core task. In this
task edition, we exploited both distributional mod-
els and machine learning techniques to build three
systems. A distributional model, which takes into
account the syntactic structure that relates words in a
corpus, has been used as baseline. Moreover, we in-
vestigate the use of two machine learning techniques
as a means to make our systems more independent
from the training data. However, the evaluation re-
sults have highlighted the higher robustness of the
distributional model with respect to these systems.
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Abstract

We present a system submitted in the Semantic
Textual Similarity (STS) task at the Second
Joint Conference on Lexical and Computa-
tional Semantics (*SEM 2013). Given two
short text fragments, the goal of the system is
to determine their semantic similarity. Our sys-
tem makes use of three different measures of
text similarity: word n-gram overlap, character
n-gram overlap and semantic overlap. Using
these measures as features, it trains a support
vector regression model on SemEval STS 2012
data. This model is then applied on the STS
2013 data to compute textual similarities. Two
different selections of training data result in
very different performance levels: while a cor-
relation of 0.4135 with gold standards was ob-
served in the official evaluation (ranked 63
among all systems) for one selection, the other
resulted in a correlation of 0.5352 (that would
rank 21%).

1 Introduction

Automatically identifying the semantic similarity
between two short text fragments (e.g. sentences) is
an important research problem having many im-
portant applications in natural language processing,
information retrieval, and digital education. Exam-
ples include automatic text summarization, question
answering, essay grading, among others.

However, despite having important applications,
semantic similarity identification at the level of
short text fragments is a relatively recent area of in-
vestigation. The problem was formally brought to
attention and the first solutions were proposed in
2006 with the works reported in (Mihalcea et al.,
2006) and (L.i et al., 2006). Work prior to these fo-
cused primarily on large documents (or individual
words) (Mihalcea et al., 2006). But the sentence-
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level granularity of the problem is characterized by
factors like high specificity and low topicality of the
expressed information, and potentially small lexical
overlap even between very similar texts, asking for
an approach different from those that were designed
for larger texts.

Since its inception, the problem has seen a large
number of solutions in a relatively small amount of
time. The central idea behind most solutions is the
identification and alignment of semantically similar
or related words across the two sentences, and the
aggregation of these similarities to generate an over-
all similarity score (Mihalcea et al., 2006; Islam and
Inkpen, 2008; Sari¢ et al., 2012).

The Semantic Textual Similarity task (STS) or-
ganized as part of the Semantic Evaluation Exer-
cises (see (Agirre et al., 2012) for a description of
STS 2012) provides a common platform for evalua-
tion of such systems via comparison with human-
annotated similarity scores over a large dataset.

In this paper, we present a system which was
submitted in STS 2013. Our system is based on very
simple measures of lexical and character-level over-
lap, semantic overlap between the two sentences
based on word relatedness measures, and surface
features like the sentences’ lengths. These measures
are used as features for a support vector regression
model that we train with annotated data from
SemEval STS 2012. Finally, the trained model is ap-
plied on the STS 2013 test pairs.

Our approach is inspired by the success of simi-
lar systems in STS 2012: systems that combine mul-
tiple measures of similarity using a machine learn-
ing model to generate an overall score (Bar et al.,
2012; Sari¢ et al., 2012). We wanted to investigate
how a minimal system of this kind, making use of
very few external resources, performs on a large da-
taset. Our experiments reveal that the performance
of such a system depends highly on the training
data. While training on one dataset yielded a best

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 176—180, Atlanta, Georgia, June 13-14, 2013. (©)2013 Association for Computational Linguistics



correlation (among our three runs, described later in
this document) of only 0.4135 with the gold scores,
training on another dataset showed a considerably
higher correlation of 0.5352.

2 Computation of Text Similarity: System
Overview

In this section, we present a high-level description
of our system. More details on extraction of some of
the measures of similarity are provided in Section 3.
Given two input sentences S; and S,, our algo-
rithm can be described as follows:
1. Compute semantic overlap (8 features):

a. Lemmatize S; and S, using a memory-
based lemmatizer' and remove all stop
words.

b. Compute the degree to which the concepts
in S; are covered by semantically similar
concepts in S, and vice versa (see Section 3
for details). The result of this step is two dif-
ferent ‘degree of containment’ values (S; in
S, and vice versa).

c. Compute the minimum, maximum, arith-
metic mean and harmonic mean of the two
values to use as features in the machine
learning model.

d. Repeat steps 1a through 1c for a weighted
version of semantic overlap where each
word in the first sentence is assigned a
weight which is proportional to its specific-
ity in a selected corpus (see Section 3).

2. Compute word n-gram overlap (16 features):

a. Extract n-grams (for n =1, 2, 3,4) of all
words in S; and S, for four different setups
characterized by the four different value
combinations of the two following varia-
bles: lemmatization (on and off), stop-
WordsRemoved (on and off).

b. Compute the four measures (min, max,
arithmetic and harmonic mean) for each
value of n.

3. Compute character n-gram overlap (16 fea-
tures):

a. Repeat all steps in 2 above for character n-
grams (n = 2,3,4,5).

L http://www.clips.ua.ac.be/pages/MBSP#lemmatizer
2 http://conceptnet5.media.mit.edu/data/5.1/as-
soc/clen/cat? filter=/c/en/dog&limit=1
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4. Compute sentence length features (2 features):

a. Compute the lengths of S; and S,; and the
minimum and maximum of the two values.

b. Include the ratio of the maximum to the min-
imum and the difference between the maxi-
mum and minimum in the feature set.

5. Train a support vector regression model on the
features extracted in steps 1 through 4 above us-
ing data from SemEval 2012 STS (see Section
4 for specifics on the dataset). We used the
LibSVM implementation of SVR in WEKA.

6. Apply the model on STS 2013 test data.

3 Semantic Overlap Measures

In this section, we describe the computation of the
two sets of semantic overlap measures mentioned in
step 1 of the algorithm in Section 2.

We compute semantic overlap between two sen-
tences by first computing the semantic relatedness
among their constituent words. Automatically com-
puting the semantic relatedness between words is a
well-studied problem and many solutions to the
problem have been proposed. We compute word re-
latedness in two forms: semantic relatedness and
string similarity. For semantic relatedness, we uti-
lize two web services. The first one concerns a re-
source named ConceptNet (Liu and Singh, 2004),
which holds a large amount of common sense
knowledge concerning relationships between real-
world entities. It provides a web service? that gener-
ates word relatedness scores based on these relation-
ships. We will use the term CNrel(w;,w,) to de-
note the relatedness of the two words w, and w, as
generated by ConceptNet.

We also used the web service® provided by an-
other resource named Wikipedia Miner (Milne and
Witten, 2013). While ConceptNet successfully cap-
tures common sense knowledge about words and
concepts, Wikipedia Miner specializes in identify-
ing relationships between scientific concepts pow-
ered by Wikipedia's vast repository of scientific in-
formation (for example, Einstein and relativity). We
will use the term WMrel(w;, w,) to denote the re-
latedness of the two words w; and w, as generated
by Wikipedia Miner. Using two systems enabled us

3 http://wikipedia-miner.cms.waikato.ac.nz/ser-
vices/compare? terml=cat&term2=dog



to increase the coverage of our word similarity com-
putation algorithm.

Each of these web services return a score in the
range [0, 1] where O represents no relatedness and 1
represents complete similarity. A manual inspection
of both services indicates that in almost all cases
where the services” word similarity scores deviate
from what would be the human-perceived similar-
ity, they generate lower scores (i.e. lower than the
human-perceived score). This is why we take the
maximum of the two services’ similarity scores for
any given word pair as their semantic relatedness:

semRel(wy,w,)
= max{CNrel(w;,w,), WMrel(w,,w,)}

We also compute the string similarity between
the two words by taking a weighted combination of
the normalized lengths of their longest common
substring, subsequence and prefix (normalization is
done for each of the three by dividing its length with
the length of the smaller word). We will refer to the
string similarity between words w; and w, as
stringSim( wy,w,). This idea is taken from (Islam
and Inkpen, 2008); the rationale is to be able to find
the similarity between (1) words that have the same
lemma but the lemmatizer failed to lemmatize at
least one of the two surface forms successfully, and
(2) words at least one of which has been misspelled.
We take the maximum of the string similarity and
the semantic relatedness between two words as the
final measure of their similarity:

sim(wy, w)
= max{semRel(wy,w,), stringSim(wy,w,)}

At the sentence level, our first set of semantic
overlap measures (step 1b) is an unweighted meas-
ure that treats all content words equally. More spe-
cifically, after the preprocessing in step 1a of the al-
gorithm, we compute the degree of semantic cover-
age of concepts expressed by individual content
words in S; by S, using the following equation:

Yses, [rtggg{sim(s. t)}]
511

CoVyw (51: 52) =

4 http://googleresearch.blogspot.com/2006/08/all-our-n-
gram-are-belong-to-you.html

178

where sim(s, t) is the similarity between the two
lemmas s and t.

We also compute a weighted version of semantic
coverage (step 1d in the algorithm) by incorporating
the specificity of each word (measured by its infor-
mation content) as shown in the equation below:

Eies, [maxtic(s).sim(s, 0}
|54

where ic(w) stands for the information content of
the word w. Less common words (across a selected
corpus) have high information content:

Lwecf W)

fw)

where C is the set of all words in the chosen corpus
and f(w) is the frequency of the word w in the cor-

pus. We have used the Google Unigram Corpus* to
assign the required frequencies to these words.

covy, (51,5;) =

ic(w) =1n

4 Evaluation

The STS 2013 test data consists of four datasets:
two datasets consisting of gloss pairs (OnWN: 561
pairs and FNWN: 189 pairs), a dataset of machine
translation evaluation pairs (SMT: 750 pairs) and a
dataset consisting of news headlines (headlines: 750
pairs). For each dataset, the output of a system is
evaluated via comparison with human-annotated
similarity scores and measured using the Pearson
Correlation Coefficient. Then a weighted sum of the
correlations for all datasets are taken to be the final
score, where each dataset’s weight is the proportion
of sentence pairs in that dataset.

We computed the similarity scores using three
different feature sets (for our three runs) for the sup-
port vector regression model:

1. All features mentioned in Section 2. This set of
features were used in our run 1.

2. All features except word n-gram overlap (ex-
periments on STS 2012 test data revealed that
using word n-grams actually lowers the perfor-
mance of our model, hence this decision). These
are the features that were used in our run 2.

3. Only character n-gram and length features (just
to test the performance of the model without



any semantic features). Our run 3 was based on
these features.

We trained the support vector regression model
on two different training datasets, both drawn from
STS 2012 data:

1. In the first setup, we chose the training datasets
from STS 2012 that we considered the most
similar to the test dataset. The only exception
was the FNWN dataset, for which we selected
the all the datasets from 2012 because no single
dataset from STS 2012 seemed to have similar-
ity with this dataset. For the OnWN test dataset,
we selected the OnWN dataset from STS 2012.
For both headlines and SMT, we selected SMT-
news and SMTeuroparl from STS 2012. The ra-
tionale behind this selection was to train the ma-
chine learning model on a distribution similar to
the test data.

2. In the second setup, we aggregated all datasets
(train and test) from STS 2012 and used this
combined dataset to train the three models that
were later applied on each STS 2013 test data.
Here the rationale is to train on as much data as
possible.

Table 1 shows the results for the first setup. This
is the performance of the set of scores which we ac-
tually submitted in STS 2013. The first four col-
umns show the correlations of our system with the
gold standard for all runs. The rightmost column
shows the overall weighted correlations. As we can
see, run 1 with all the features demonstrated the best
performance among the three runs. There was a con-
siderable drop in performance in run 3 which did not
utilize any semantic similarity measure.

Table 1. Results for manually selected training data

Run | headlines | OnWN |FNWN| SMT | Total
1 4921 3769 | .4647 | .3492 | .4135
2 4669 4165 | .3859 | .3411 | .4056
3 .3867 .2386 | .3726 | .3337 | .3309

As evident from the table, evaluation results did
not indicate a particularly promising system. Our
best system ranked 63 among the 90 systems eval-
uated in STS 2013. We further investigated to find
out the reason: is the set of our features insufficient
to capture text semantic similarity, or were the train-
ing data inappropriate for their corresponding test
data? This is why we experimented with the second
setup discussed above. Following are the results:
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Table 2. Results for combined training data

Run | headlines | OnWN |FNWN| SMT | Total
1 .6854 5981 | .4647 | .3518 | .5339
2 7141 5953 | .3859 | .349 | 5352
3 .6998 4826 | .3726 | .3365 | .4971

As we can see in Table 2, the correlations for all
feature sets improved by more than 10% for each
run. In this case, the best system with correlation
0.5352 would rank 21 among all systems in STS
2013. These results indicate that the primary reason
behind the system’s previous bad performance (Ta-
ble 1) was the selection of an inappropriate dataset.
Although it was not clear in the beginning which of
the two options would be the better, this second ex-
periment reveals that selecting the largest possible
dataset to train is the better choice for this dataset.

5 Conclusions

In this paper, we have shown how simple measures
of text similarity using minimal external resources
can be used in a machine learning setup to compute
semantic similarity between short text fragments.
One important finding is that more training data,
even when drawn from annotations on different
sources of text and thus potentially having different
feature value distributions, improve the accuracy of
the model in the task. Possible future expansion in-
cludes use of more robust concept alignment strate-
gies using semantic role labeling, inclusion of struc-
tural similarities of the sentences (e.g. word order,
syntax) in the feature set, incorporating word sense
disambiguation and more robust strategies of con-
cept weighting into the process, among others.
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Abstract

This paper describes our system entered for the
*SEM 2013 shared task on Semantic Textual
Similarity (STS). We focus on the core task
of predicting the semantic textual similarity of
sentence pairs.

The current system utilizes machine learn-
ing techniques trained on semantic similarity
ratings from the *SEM 2012 shared task; it
achieved rank 20 out of 90 submissions from
35 different teams. Given the simple nature of
our approach, which uses only WordNet and
unannotated corpus data as external resources,
we consider this a remarkably good result, mak-
ing the system an interesting tool for a wide
range of practical applications.

1 Introduction

The *SEM 2013 shared task on Semantic Textual
Similarity (Agirre et al., 2013) required participants
to implement a software system that is able to pre-
dict the semantic textual similarity (STS) of sentence
pairs. Being able to reliably measure semantic simi-
larity can be beneficial for many applications, e.g. in
the domains of MT evaluation, information extrac-
tion, question answering, and summarization.

For the shared task, STS was measured on a scale
ranging from O (indicating no similarity at all) to 5
(semantic equivalence). The system predictions were
evaluated against manually annotated data.

2 Description of our approach

Our system KLUE-CORE uses two approaches to
estimate STS between pairs of sentences: a distri-
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butional bag-of-words model inspired by Schiitze
(1998), and a simple alignment model that links each
word in one sentence to the semantically most similar
word in the other sentence. For the alignment model,
word similarities were obtained from WordNet (using
a range of state-of-the-art path-based similarity mea-
sures) and from two distributional semantic models
(DSM).

All similarity scores obtained in this way were
passed to a ridge regression learner in order to obtain
a final STS score. The predictions for new sentence
pairs were then transformed to the range [0,5], as
required by the task definition.

2.1 The training data

We trained our system on manually annotated sen-
tence pairs from the STS task at SemEval 2012
(Agirre et al., 2012). Pooling the STS 2012 training
and test data, we obtained 5 data sets from differ-
ent domains, comprising a total of 5343 sentence
pairs annotated with a semantic similarity score in
the range [0,5]. The data sets are paraphrase sen-
tence pairs (MSRpar), sentence pairs from video de-
scriptions (MSRvid), MT evaluation sentence pairs
(MTnews and MTeuroparl), and glosses from two
different lexical semantic resources (OnWN).

All sentence pairs were pre-processed with Tree-
Tagger (Schmid, 1995)! for part-of-speech annota-
tion and lemmatization.

"http://www.ims.uni-stuttgart.de/forschung/
ressourcen/werkzeuge/treetagger .html

Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 181-186, Atlanta, Georgia, June 13-14, 2013. (©2013 Association for Computational Linguistics



2.2 Similarity on word level

Our alignment model (Sec. 2.3.1) is based on similar-
ity scores for pairs of words. We obtained a total of
11 different word similarity measures from WordNet
(Miller et al., 1990) and in a completely unsupervised
manner from distributional semantic models.

2.2.1 WordNet

We computed three state-of-the-art WordNet simi-
larity measures, namely path similarity, Wu-Palmer
similarity and Leacock-Chodorow similarity (Budan-
itsky and Hirst, 2006). As usual, for each pair of
words the synsets with the highest similarity score
were selected. For all three measures, we made use of
the implementations provided as part of the Natural
Language ToolKit for Python (Bird et al., 2009).

2.2.2 Distributional semantics

Word similarity scores were also obtained from two
DSM: Distributional Memory (Baroni and Lenci,
2010) and a model compiled from a version of the
English Wikipedia.” For Distributional Memory, we
chose the collapsed W x W matricization, resulting
in a 30686 x 30686 matrix that was further reduced
to 300 latent dimensions using randomized SVD
(Halko et al., 2009). For the Wikipedia DSM, we
used a L2/R2 context window and mid-frequency
feature terms, resulting in a 77598 x 30484 matrix.
Co-occurrence frequency counts were weighted us-
ing sparse log-likelihood association scores with a
square root transformation, and reduced to 300 latent
dimensions with randomized SVD. In both cases, tar-
get terms are POS-disambiguated lemmas of content
words, and the angle between vectors was used as a
distance measure (equivalent to cosine similarity).
For each DSM, we computed the following se-
mantic distances: (i) angle: the angle between the
two word vectors; (ii) fwdrank: the (logarithm of
the) forward neighbour rank, i.e. which rank the sec-
ond word occupies among the nearest neighbours
of the first word; (iii) bwdrank: the (logarithm of
the) backward neighbour rank, i.e. which rank the
first word occupies among the nearest neighbours of
the second word; (iv) rank: the (logarithm of the)
arithmetic mean of forward and backward neighbour

2For this purpose, we used the pre-processed and linguis-
tically annotated Wackypedia corpus available from http://
wacky.sslmit.unibo.it/.
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rank; (v) lowrank: the (logarithm of the) harmonic
mean of forward and backward neighbour rank.

A composite similarity score in the range [0, 1]
was obtained by linear regression on all five distance
measures, using the WordSim-353 noun similarity
ratings (Finkelstein et al., 2002) for parameter esti-
mation. This score is referred to as similarity below.
Manual inspection showed that word pairs with simi-
larity < 0.7 were completely unrelated in many cases,
so we also included a “strict” version of similarity
with all lower scores set to 0. We further included
rank and angle, which were linearly transformed to
similarity values in the range [0, 1].

2.3 Similarity on sentence level

Similarity scores for sentence pairs were obtained in
two different ways: with a simple alignment model
based on the word similarity scores from Sec. 2.2
(described in Sec. 2.3.1) and with a distributional
bag-of-words model (described in Sec. 2.3.2).

2.3.1 Similarity by word alignment

The sentence pairs were preprocessed in the follow-
ing way: input words were transformed to lower-
case; common stopwords were eliminated; and dupli-
cate words within each sentence were deleted. For
the word similarity scores from Sec. 2.2.2, POS-
disambiguated lemmas according to the TreeTagger
annotation were used.

Every word of the first sentence in a given pair
was then compared with every word of the second
sentence, resulting in a matrix of similarity scores
for each of the word similarity measures described
in Sec. 2.2. Since we were not interested in an asym-
metric notion of similarity, matrices were set up so
that the shorter sentence in a pair always corresponds
to the rows of the matrix, transposing the similarity
matrix if necessary. From each matrix, two similar-
ity scores for the sentence pair were computed: the
arithmetic mean of the row maxima (marked as short
in Tab. 4), and the artihmetic mean of the column
maxima (marked as long in Tab. 4).

This approach corresponds to a simple word align-
ment model where each word in the shorter sentence
is aligned to the semantically most similar word in
the longer sentence (short), and vice versa (long).
Note that multiple source words may be aligned to
the same target word, and target words can remain



unaligned without penalty. Semantic similarities are
then averaged across all alignment pairs.

In total, we obtained 22 sentence similarity scores
from this approach.

2.3.2 Distributional similarity

We computed distributional similarity between the
sentences in each pair directly using bag-of-words
centroid vectors as suggested by Schiitze (1998),
based on the two word-level DSM introduced in
Sec. 2.2.2.

For each sentence pair and DSM, we computed (i)
the angle between the centroid vectors of the two sen-
tences and (ii) a z-score relative to all other sentences
in the same data set of the training or test collection.
Both values are measures of semantic distance, but
are automatically transformed into similarity mea-
sures by the regression learner (Sec. 2.4).

For the z-scores, we computed the semantic dis-
tance (i.e. angle) between the first sentence of a given
pair and the second sentences of all word pairs in the
same data set. The resulting list of angles was stan-
dardized to z-scores, and the z-score corresponding
to the second sentence from the given pair was used
as a measure of forward similarity between the first
and second sentence. In the same way, a backward
z-score between the second and first sentence was
determined. We used the average of the forward and
backward z-score as our second STS measure.

The z-transformation was motivated by our obser-
vation that there are substantial differences between
the individual data sets in the STS 2012 training and
test data. For some data sets (MSRpar and MSRvid),
sentences are often almost identical and even a single-
word difference can result in low similarity ratings;
for other data sets (e.g. OnWN), similarity ratings
seem to be based on the general state of affairs de-
scribed by the two sentences rather than their par-
ticular wording of propositional content. By using
other sentences in the same data set as a frame of
reference, corpus-based similarity scores can roughly
be calibrated to the respective notion of STS.

In total, we obtained 4 sentence (dis)similarity
scores from this approach. Because of technical is-
sues, only the z-score measures were used in the
submitted system. The experiments in Sec. 3 also
focus on these z-scores.
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2.4 The regression model

The 24 individual similarity scores described in
Sec. 2.3.1 and 2.3.2 were combined into a single
STS prediction by supervised regression.

We conducted experiments with various machine
learning algorithms implemented in the Python li-
brary scikit-learn (Pedregosa et al., 2011). In partic-
ular, we tested linear regression, regularized linear
regression (ridge regression), Bayesian ridge regres-
sion, support vector regression and regression trees.
Our final system submitted to the shared task uses
ridge regression, a shrinkage method applied to linear
regression that uses a least-squares regularization on
the regression coefficients (Hastie et al., 2001, 59).
Intuitively speaking, the regularization term discour-
ages large value of the regression coefficients, which
makes the learning technique less prone to overfit-
ting quirks of the training data, especially with large
numbers of features.

We tried to optimise our results by training the indi-
vidual regressors for each test data set on appropriate
portions of the training data. For our task submis-
sion, we used the following training data based on
educated guesses inspired by the very small amount
of development data provied: for the headlines test
set we trained on both glosses and statistical MT
data, for the OnWN and FNWN test sets we trained
on glosses only (OnWN), and for the SMT test set
we trained on statistical MT data only (MTnews and
MTeuroparl). We decided to omit the Microsoft Re-
search Paraphrase Corpus (MSRpar and MSRvid)
because we felt that the types of sentence pairs in this
corpus were too different from the development data.

For our submission, we used all 24 features de-
scribed in Sec. 2.3 as input for the ridge regression
algorithm. Out of 90 submissions by 35 teams, our
system ranked on place 20.3

3 Experiments

In this section, we describe some post-hoc experi-
ments on the STS 2013 test data, which we performed
in order to find out whether we made good decisions
regarding the machine learning method, training data,

3This paper describes the run listed as KLUE-approach_2 in
the official results. The run KLUE-approach_1 was produced by
the same system without the bag-of-words features (Sec. 2.3.2);
it was only submitted as a safety backup.



similarity features, and other parameters. Results of
our submitted system are typeset in italics, the best
results in each column are typeset in bold font.

3.1 Machine learning algorithms

Tab. 1 gives an overview of the performance of vari-
ous machine learning algorithms. All regressors were
trained on the same combinations of data sets (see
Sec. 2.4 above) using all available features, and eval-
vated on the STS 2013 test data. Overall, our choice
of ridge regression is justified. Especially for the
OnWN test set, however, support vector regression
is considerably better (it would have achieved rank
11 instead of 17 on this test set). If we had happened
to use the best learning algorithm for each test set,
we would have achieved a mean score of 0.54768
(putting our submission at rank 14 instead of 20).

3.2 Regularization strength

We also experimented with different regularization
strengths, as determined by the parameter & of the
ridge regression algorithm (see Tab. 2). Changing o
from its default value & = 1 does not seem to have
a large impact on the performance of the regressor.
Setting o = 2 for all test sets would have minimally
improved the mean score (rank 19 instead of 20).
Even choosing the optimal o for each test set would
only have resulted in a slightly improved mean score
of 0.53811 (also putting our submission at rank 19).

3.3 Composition of training data

As described above, we suspected that using different
combinations of the training data for different test
sets might lead to better results. The overview in
Tab. 3 confirms our expectations. We did, however,
fail to correctly guess the optimal combinations for
each test set. We would have obtained the best re-
sults by training on glosses (OnWN) for the headlines
test set (rank 35 instead of 40 in this category), by
training on MSR data (MSRpar and MSRvid) for the
OnWN (rank 11 instead of 17) and FNWN test sets
(rank 9 instead of 10), and by combining glosses and
machine translation data (OnWN, MTnews MTeu-
roparl) for the SMT test set (rank 30 instead of 33).
Had we found the optimal training data for each test
set, our system would have achieved a mean score of
0.55021 (rank 11 instead of 20).
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3.4 Features

For our submission, we used all the features de-
scribed in Sec. 2. Tab. 4 shows what results each
group of features would have achieved by itself (all
runs use ridge regression, default o = 1 and the same
combinations of training data as in our submission).
In Tab. 4, the line labelled wp500 shows the re-
sults obtained using only word-alignment similarity
scores (Sec. 2.3.1) based on the Wikipedia DSM
(Sec. 2.2.2) as features. The following two lines give
separate results for the alignments from shorter to
longer sentence, i.e. row maxima (wp500-short) and
from longer to shorter sentence, i.e. column maxima
(wp500-long), respectively. Below are corresponding
results for word alignments based on Distributional
Memory (dm, dm-short, dm-long) and WordNet simi-
larity as described in Sec. 2.2.1 (WN, WN-short, WN-
long). The line labelled bow represents the two z-
score similarities obtained from distributional bag-of-
words models (Sec. 2.3.2); bow-wp500 (Wikipedia
DSM) and bow-dm (Distributional Memory) each
correspond to a single distributional feature.
Combining all the available features indeed results
in the highest mean score. However, for OnWN and
SMT a subset of the features would have led to better
results. Using only the bag-of-words scores would
have improved the results for the OnWN test set by
a considerable margin (rank 8 instead of 17), using
only the alignment scores based on WordNet would
have improved the results for the SMT test set (rank
17 instead of 33). If we had used the optimal subset
of features for each test set, the mean score would
have increased to 0.55556 (rank 9 instead of 20).

4 Conclusion

Our experiments show that it is essential for high-
quality semantic textual similarity to adapt a corpus-
based system carefully to each particular data set
(choice of training data, feature engineering, tuning
of machine learning algorithm). Many of our edu-
cated guesses for parameter settings turned out to be
fairly close to the optimal values, though there would
have been some room for improvement.

Overall, our simple approach, which makes very
limited use of external resources, performs quite well
— achieving rank 20 out of 90 submissions — and will
be a useful tool for many real-world applications.



headlines OnWN FNWN SMT mean

Ridge Regression ~ 0.65102  0.68693 0.41887 0.33599 0.53546
Linear Regression  0.65184 0.68118 0.39707 0.32756 0.52966
Bayesian Ridge 0.65164 0.68962 0.42344 0.33003 0.53474
SVM SVR 0.52208  0.73330 0.40479 0.30810 0.49357
Decision Tree 0.29320 0.50633 0.05022 0.17072 0.28510

Table 1: Evaluation results for different machine learning algorithms

o headlines OnWN FNWN SMT mean

1 0.65102  0.68693 0.41887 0.33599 0.53546
0.01 0.65184 0.68129 0.39773 0.32773 0.52980
0.1 0.65186 0.68224 0.40246 0.32900 0.53087
0.5 0.65161 0.68492 0.41346 0.33311 0.53374
0.9 0.65114 0.68660 0.41816 0.33560 0.53523
2 0.64941 0.68917 0.42290 0.33830 0.53659
5 0.64394  0.69197 0.42265 0.33669 0.53491

Table 2: Evaluation results for different regularization strengths of the ridge regression learner

headlines OnWN FNWN SMT mean

def 0.65440 0.68693 0.41887 0.32694 0.53357
smt 0.65322  0.62643 0.24895 0.33599 0.50684
def+smt 0.65102  0.59665 0.24953 0.33867 0.49962
msr 0.63633  0.73396 0.43073 0.33168 0.54185

def+smt+msr  0.65008  0.65093 0.39636 0.28645 0.50777
approach; 0.65102 0.68693 0.41887 0.33599 0.53546

Table 3: Evaluation results for different training sets (“approach,” refers to our shared task submission, cf. Sec. 2.4)

headlines OnWN FNWN SMT mean

wp500 0.57099  0.59199 0.31740 0.31320 0.46899
wp500-long  0.57837  0.59012 0.30909 0.30075 0.46614
wp500-short  0.58271  0.58845 0.34205 0.29474 0.46794

dm 042129  0.55945 0.21139 0.27426 0.38910
dm-long 0.40709  0.56511 0.28993 0.23826 0.38037
dm-short 0.44780  0.53555 0.28709 0.24484 0.38853
WN 0.63654 0.65149 0.41025 0.35624 0.52783

WN-long 0.62749  0.63828 0.39684 0.33399 0.51297
WN-short 0.64986  0.66175 0.41441 0.33350 0.52759

bow 0.52384 0.74046 0.31917 0.24611 0.46808
bow-wp500  0.52726  0.73624 0.32797 0.24460 0.46841
bow-dm 0.21908 0.66873 0.17096 0.20176 0.32138
all 0.65102 0.68693 0.41887 0.33599 0.53546

Table 4: Evaluation results for different sets of similarity scores as features (cf. Sec. 3.4)
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Abstract
We present in this paper the systems we
participated with in the Semantic Textual

Similarity task at SEM 2013. The Semantic
Textual Similarity Core task (STS) computes the
degree of semantic equivalence between two
sentences where the participant systems will be
compared to the manual scores, which range from
5 (semantic equivalence) to 0 (no relation). We
combined multiple text similarity measures of
varyi